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The problem of demonstrating entanglement is central to quantum information processing applications.

Resorting to standard entanglement witnesses requires one to perfectly trust the implementation of

the measurements to be performed on the entangled state, which may be an unjustified assumption.

Inspired by the recent work of F. Buscemi [Phys. Rev. Lett. 108, 200401 (2012)], we introduce the

concept of measurement-device-independent entanglement witnesses (MDI-EWs), which allow one to

demonstrate entanglement of all entangled quantum states with untrusted measurement apparatuses.

We show how to systematically obtain such MDI-EWs from standard entanglement witnesses.

Our construction leads to MDI-EWs that are loss tolerant and can be implemented with current

technology.

DOI: 10.1103/PhysRevLett.110.060405 PACS numbers: 03.65.Ud, 03.67.Bg, 03.67.Mn

Introduction.—Quantum entanglement [1]—an essential
feature of quantum theory, describing nonclassical corre-
lations between quantum systems—is the key resource that
gives quantum information processing applications their
advantage over classical computing [2]. Its characteriza-
tion and verification, both from a theoretical and a practical
point of view, are therefore crucial problems in quantum
information science.

Several criteria have been proposed to distinguish
entangled quantum states from separable ones. A simple
one is based on the concept of entanglement witnesses
[3,4]: for any entangled state �, there exists a Hermitian
operatorW such that tr½W��< 0, while tr½W�� � 0 for all
separable states �. Such an operator W [called an entan-
glement witness (EW)] can thus be used to detect the
entanglement of �. Experimentally testing an EW requires
one to be able to estimate tr½W��; this is typically done
by decomposing W as a linear combination of product
Hermitian operators, estimated independently from differ-
ent local measurements on each subsystem of �. A draw-
back of this entanglement verification technique using
standard EWs is, however, that it requires a perfect imple-
mentation of the measurements, so as to faithfully recon-
struct tr½W��. Imperfect measurements can indeed lead
to an erroneous estimation of tr½W��, and possibly to the
wrong conclusion about the presence of entanglement,
even if � is separable [5–10].

A way to get around this difficulty is to rely on the
(loophole-free) violation of a Bell inequality [11].
Indeed, within quantum theory this can only be obtained
when one performs measurements on an entangled state
[12]. A violation therefore guarantees the presence of
entanglement, independently of the measurements actually
performed, of the functioning of any device used in the
experiment, as well as of the dimension of the underlying

shared quantum state. The price to pay when considering
such device-independent entanglement witnesses (DI-EWs)
[9] is that not all entangled states can be detected: there are
indeed (mixed) entangled states that can only generate
locally causal correlations, which satisfy all Bell inequalities
[12,13] when measured one copy at a time. While this prob-
lem can be circumvented to some extent when partial knowl-
edge of the system or devices is available (see, e.g., Ref. [14]
and references therein), the possibility of witnessing all
entangled states via these approaches remains unclear.
Generalizing the concept of so-called nonlocal games

[15], Buscemi recently introduced Bell-like scenarios
where instead of classical inputs specifying which mea-
surements to be performed, the participating parties receive
quantum inputs [16]. Interestingly, he showed that all
entangled states can give an advantage over separable
states in such scenarios. While this suggests a way to
certify the entanglement of all nonseparable states, the
proof presented in Ref. [16] does not, however, provide
any explicit method to do this.
In this Letter we show that any standard entanglement

witness can be used to derive an explicit criterion for wit-
nessing entanglement in the aforementioned scenario with
quantum inputs. Such criteria do not depend on the particular
functioning of the measuring devices, and thus provide
measurement-device-independent entanglement witnesses
(MDI-EWs), offering an interesting level of robustness
against imperfect implementations. To illustrate the power
of these criteria, we provide explicit MDI-EWs that can be
used to witness the entanglement of any 2-qubit entangled
Werner state, as well as noisy 3-qubit Greenberger-Horne-
Zeilinger (GHZ) states that exhibit genuine tripartite entan-
glement. These MDI-EWs are tolerant to some common
form of losses, and can be implemented with linear optics
using current technology.

PRL 110, 060405 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 FEBRUARY 2013

0031-9007=13=110(6)=060405(5) 060405-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.200401
http://dx.doi.org/10.1103/PhysRevLett.110.060405


Measurement-device-independent EWs.—For simplicity
we consider first a bipartite scenario, the extension to
multipartite cases being discussed below.

In the so-called semiquantum nonlocal games [16], the
two separated parties, Alice and Bob, receive some quan-
tum states �s (for Alice) and !t (for Bob) and must output
some values a and b, respectively. The correlation between
these values is characterized by the conditional probability
distribution Pða; bj�s; !tÞ.

While not being allowed to communicate during the
game (although they can communicate before to agree on
a preestablished strategy—see also Ref. [17] where com-
munication is allowed during the game), Alice and Bob are
nonetheless allowed in this scenario to share some quan-
tum state �AB. If their state is entangled, then Alice and
Bob can obtain—by making appropriate joint measure-
ments on their respective part of �AB and on their input
states—a correlation P� that cannot be explained without

entanglement [16]. Indeed, convexity arguments allow one
to prove that there must exist a linear combination of
probabilities

IðPÞ ¼ X

s;t;a;b

~�s;t;a;bPða; bj�s; !tÞ (1)

such that IðP�Þ< 0, while IðPÞ � 0 necessary holds if

Alice and Bob only have access to separable quantum
states, and possibly infinite shared randomness. The real

coefficients ~�s;t;a;b in Eq. (1) correspond, up to a sign, to

Buscemi’s ‘‘payoff function’’ [16], multiplied by the
probability distributions for s and t.

The fact that IðPÞ � 0must hold when Alice and Bob do
not share entanglement does not depend on the measure-
ments they perform—as long as these are fully described
by quantum theory. Hence, if Alice and Bob obtain a
value IðPÞ< 0, this guarantees in a measurement-device-
independent (MDI) manner (although not independently of
the input states and of quantum theory) that they shared
entanglement; in this sense, IðPÞ from Eq. (1) defines a
MDI-EW. In particular, no assumption is made on the
dimension of the shared state. The requirement that with
standard EWs the measurement implementations must be
trusted is replaced here by the requirement that the input
states must precisely be those specified in the assumptions.
This is a natural assumption if one considers the frame-
work of nonlocal games where an external referee wants to
be convinced that two untrusted parties share entangle-
ment; clearly, the referee trusts the input states that he or
she chooses. Another conceivable situation would be a case
where Alice and Bob want to verify their entanglement
themselves and therefore choose and generate their input
states themselves; in that case their generating devices
must be trusted. Arguably, it may, however, be more rea-
sonable to trust a source device than a detection device
(which is, by definition, open to its external, untrusted
environment and may receive any kind of physical systems

from it). This can indeed be the case in particular in the
context of quantum key distribution (QKD), where MDI-
QKD—with the similar assumptions that the state prepa-
rations are trusted, but not the measuring devices—has
been proposed [18–20] and recently implemented [21].
Note that in all cases, it is a crucial assumption when using
MDI-EWs that the measuring devices must not have access
a priori to the classical labels s, t of the input states; there
must in particular be no unwanted side channels carrying
this information to Alice’s and Bob’s devices.
MDI-EWs from standard EWs.—We now explain how

MDI-EWs can be derived from any standard EW.
Consider a bipartite entangled state �AB acting on some

Hilbert space H A �H B, with dim H A ¼ dA and dim
H B ¼ dB. LetW be an EW detecting the entanglement of
�AB, i.e., a Hermitian operator on H A �H B such that
tr½W�AB�< 0, while tr½W�AB� � 0 for all separable states
�AB 2 H A �H B. Because the set of density matrices
spans the whole space of Hermitian operators, W can be
written in the (nonunique) form

W ¼ X

s;t

�s;t�
>
s �!>

t ; (2)

with some real coefficients �s;t, and where the operators

�>s 2 H A and !>
t 2 H B are density matrices. Defining

�s and !t to be their transposes, with respect to some
orthonormal bases fjiig of H A and fjjig of H B, these
are also density matrices.
We use the decomposition of Eq. (2) to obtain a

MDI-EW in the following way: Alice’s and Bob’s inputs
are the quantum states �s and !t, respectively. They are
asked to output a binary result, 0 or 1. The expression

IðPÞ ¼ X

s;t

�s;tPð1; 1j�s; !tÞ (3)

is then of the form (1) [with ~�s;t;1;1 ¼ �s;t and ~�s;t;a;b ¼ 0
for ða; bÞ � ð1; 1Þ], and takes non-negative values IðPÞ � 0
when Alice and Bob do not share entanglement, while
sharing the entangled state �AB (and projecting their part
of it together with their input state onto a maximally
entangled state—see the proof below) allows them to get
a correlation P� such that IðP�Þ< 0. These properties

precisely define a MDI-EW.
Proof.—(i) Suppose Alice and Bob do not share entan-

glement; all they can do is then to share a separable state of
the form �AB ¼ P

kpk�
k
A � �k

B, of any dimension, with
pk � 0 and

P
kpk ¼ 1 (note that any shared randomness

can be included in �AB), and measure their respective part
of �AB together with their input states. Writing A1 and B1

their positive operator-valued measure (POVM) elements
[22] corresponding to the outcomes 1, the probability that
they both get this outcome is

P�ð1; 1j�s; !tÞ ¼ tr½ðA1 � B1Þð�s � �AB �!tÞ�
¼ X

k

pk tr½ðAk
1 � Bk

1Þð�s �!tÞ� (4)
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with Ak
1 ¼ trA½A1ð1 � �k

AÞ� and Bk
1 ¼ trB½B1ð�k

B � 1Þ�
being effective POVM elements acting on the state space
of �s and!t, and where trA and trB denote the partial traces
over the systems of �k

A and �k
B. From Eqs. (3) and (2) and

by linearity, one finds

IðP�Þ ¼
X

s;t

�s;t

X

k

pk tr½ðAk
1 � Bk

1Þð�s �!tÞ�

¼ X

k

pk tr½ðAk
1 � Bk

1ÞW>�: (5)

Because W is an entanglement witness and all operators
Ak>
1 and Bk>

1 are positive Hermitian operators, one has
tr½ðAk

1 � Bk
1ÞW>� ¼ tr½WðAk>

1 � Bk>
1 Þ� � 0 for all k. This

proves that IðP�Þ � 0 for any separable state �AB.
(ii) Suppose now that Alice and Bob share the state �AB.

We define Alice and Bob’s measurements to be the joint
projections of their input state and their part of �AB onto

the maximally entangled states j�þ
AAi ¼ 1ffiffiffiffi

dA
p PdA

i¼1 jii � jii
and j�þ

BBi ¼ 1ffiffiffiffi
dB

p PdB
j¼1 jji � jji; the outcome 1 indicates a

successful projection. We thus obtain

P�ð1; 1j�s; !tÞ ¼ tr½ðj�þ
AAih�þ

AAj � j�þ
BBih�þ

BBjÞ
� ð�s � �AB �!tÞ�

¼ tr½ð�>s �!>
t Þ�AB�=ðdAdBÞ (6)

and

IðP�Þ ¼
X

s;t

�s;t tr½ð�>s �!>
t Þ�AB�=ðdAdBÞ

¼ tr½W�AB�=ðdAdBÞ< 0; (7)

which concludes the proof.
Note that our construction above gives a more direct

proof—based simply on the already established existence
of a standard EW for any entangled state [3]—that all
entangled states, including multipartite non–fully sepa-
rable states [1,23], can be ‘‘witnessed’’ in a Bell-like
scenario with quantum inputs [16]. An interesting feature
of our construction is that it does not require Alice and Bob
to perform a full (generalized) Bell measurement, as con-
sidered in Ref. [16], but simply a projection onto a single
maximally entangled state. We emphasize also that the
proof that the separable bound is 0 allows for any possible
measurement by Alice and Bob, together also with any
premeasurement quantum operation, including losses—
whether they are state dependent (e.g., polarization depen-
dent), on the input states, or on the shared state. Losses
therefore cannot lower this separable bound, and our MDI-
EWs are not prone to any detection loophole, contrary to
standard EWs [6] (and to Bell inequalities when one post-
selects on the detected events [24]). On the other hand, if
an entangled state � gives IðP�Þ< 0 without losses, and

if the effect of losses is simply to reduce all probabilities
Pð1; 1j�s; !tÞ by the same multiplicative factor, then

although the value of IðP�Þ will get closer to 0, it will

remain negative with such losses; our MDI-EWs are thus
resistant to this typical kind of losses.
MDI-EWs from standard EWs for genuine multipartite

entanglement.—The construction given above can also be
applied to entanglement witnesses that detect genuine
multipartite entanglement [23]. For simplicity, we shall
concentrate here on the tripartite scenario, the generaliza-
tion to an arbitrary number of parties being straightfor-
ward. Let us start by recalling that a tripartite state �bs

shared among Alice, Bob, and Charlie is said to be bise-
parable if it can be written in the form [23,25]:

�bs ¼
X

k

�k
AB � �k

C þX

k

�k
AC � �k

B þX

k

�k
BC � �k

A; (8)

where we have included the weight of each individual state
of the mixture in its normalization; a state that cannot be
written as above is said to be genuinely tripartite entangled.
Consider such a genuinely tripartite entangled state

�ABC acting on H A�H B�H C, and a witness W detect-
ing its genuine tripartite entanglement—i.e., a Hermitian
operator such that tr½W�ABC�< 0, while tr½W�bs� � 0 for
all biseparable states �bs acting on H A �H B �H C

[26]. Similarly to Eq. (2), let us decompose W as

W ¼ X

s;t;u

�s;t;u�
>
s �!>

t � �>
u ; (9)

where �>s ,!>
t , and �

>
u are density matrices acting onH A,

H B, and H C while �s;t;u are real expansion coefficients.

In a similar way as in the bipartite case, one can show
that using the input states �s for Alice, !t for Bob, and �u

for Charlie, and letting them perform binary-outcome
measurements, the inequality

IðPÞ ¼ X

s;t;u

�s;t;uPð1; 1; 1j�s; !t; �uÞ � 0 (10)

holds true for all probability distributions Pð1; 1; 1j�s;
!t; �uÞ obtainable from biseparable states �bs, but can be
violated by some probability distributions derived from
�ABC. The proof follows closely that for the bipartite case
given previously; we sketch the less trivial part in Ref. [27].
We note again that such MDI-EWs for multipartite entan-
glement are also resistant to the typical kind of losses
mentioned before, although in that case, the values of
IðP�Þ will approach the separable bound 0 faster as the

number of qubits gets larger.
Some explicit examples of MDI-EWs.—In order to illus-

trate our technique for constructing MDI-EWs, let us first
consider the 2-qubit Werner state [12]

�v
AB ¼ vj��ih��j þ ð1� vÞ1=4 (11)

with v 2 ½0; 1� and where j��i ¼ j01i�j10iffiffi
2

p is the singlet

state. �v
AB is entangled if and only if v > 1=3 [12,28],

which can be detected with the EW [23,29]
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W ¼ 1
21� j��ih��j; (12)

such that tr½W�v
AB� ¼ 1�3v

4 < 0 for v > 1=3, while

tr½W�AB� � 0 for all separable 2-qubit states �AB.
W can, for instance, be decomposed as in Eq. (2) with

�s;t ¼ 5
8 if s ¼ t; �s;t ¼ �1

8 if s � t; (13)

for s; t ¼ 0; . . . ; 3, and

�s ¼ �s

1þ ~n � ~�

2
�s; !t ¼ �t

1þ ~n � ~�

2
�t; (14)

where ~n ¼ ð1; 1; 1Þ= ffiffiffi
3

p
, ~� ¼ ð�1; �2; �3Þ is the vector of

Pauli matrices, and where we write �0 ¼ 1 for conve-
nience. The MDI-EW we obtain using our construction
can thus explicitly be written as

IðPÞ ¼ 5

8

X

s¼t

Pð1; 1j�s; !tÞ � 1

8

X

s�t

Pð1; 1j�s; !tÞ; (15)

with Alice’s and Bob’s 4 pure states �s, !t corresponding
to the four vertices of a regular tetrahedron on the Bloch
sphere. By construction, IðPÞ � 0 must hold if Alice and
Bob do not share entanglement, while they can obtain
IðP�vÞ ¼ 1�3v

16 < 0 if they share the Werner state �v
AB of

Eq. (11) with v > 1
3 and perform joint projective measure-

ments on their part of �v
AB and their input states, onto the

maximally entangled states j�þi ¼ j00iþj11iffiffi
2

p (or j��i,
equivalently).

Note that another possible decomposition for W is the
following: defining s ¼ ðs1; s2Þ and t ¼ ðt1; t2Þ, with
s1; t1 ¼ 0; 1 and s2; t2 ¼ 1; . . . ; 3, Eq. (2) holds with

�s;t ¼ �s2;t2

3�s1;t1 � 1

6
; (16)

where �i;j is the Kronecker delta, and with

�s ¼
1þ ð�1Þs1�s2

2
; !t ¼

1þ ð�1Þt1�t2

2
: (17)

This defines another MDI-EW, now with the input states
j � xi, j � yi, j � zi, the respective eigenstates of the three
Pauli matrices.
As another example, let us consider the family of noisy

3-partite GHZ states

�v
GHZ ¼ vjGHZihGHZj þ ð1� vÞ1=8; (18)

where jGHZi ¼ j000iþj111iffiffi
2

p . This state is genuinely tripartite

entangled if and only if v > 3=7 [30], which can be dem-
onstrated using the following witness for genuine tripartite
entanglement [23,29]:

WGHZ ¼ 1
21� jGHZihGHZj: (19)

A possible way to decompose WGHZ in the form of Eq. (9)
is to make use of the states defined in Eq. (14) (with �u

defined analogously), together with the coefficients

�s;t;u ¼ 3

32
ð�1Þbðs�1Þ=2cbðt�1Þ=2cþbðs�1Þ=2cbðu�1Þ=2cþbðt�1Þ=2cbðu�1Þ=2cþ1½ð�1Þbðs�1Þ=2cþbðt�1Þ=2cþbðu�1Þ=2c þ ð�1Þsþtþu

ffiffiffi
3

p �:

These define a MDI-EW as in Eq. (10), allowing one to
certify the genuine tripartite entanglement of �v

GHZ for all
v > 3=7 (by again letting Alice, Bob, and Charlie perform
projections onto j�þi).

Conclusion.—Inspired by Buscemi’s ‘‘semiquantum
nonlocal games,’’ we have introduced the concept of
measurement-device-independent entanglement witnesses.
These can certify the entanglement of all entangled states,
however weakly entangled they are—which cannot be
done in a fully device-independent manner (at least,
when measured one copy at a time [12,13]; see, however,
Ref. [31]). We have shown that explicit, fairly loss-tolerant
MDI-EWs can be systematically obtained from any
standard entanglement witness (and, actually, from any
particular decomposition thereof)—including those for
witnessing genuine multipartite entanglement—in a sce-
nario where each party receives quantum input states and
projects them, together with their part of an entangled
state, onto a maximally entangled state.

For multiqubit entangled states, as considered in the
explicit examples above, the MDI-EWs obtained with
our construction thus only involve projections onto 2-qubit

Bell states, which can be implemented with linear optics
by simply letting photons interfere on a beam splitter [32].
Together with their loss tolerance, this makes our MDI-EWs
quite suitable for experimental tests, which are readily
feasible with current technology. An experimental challenge
will nevertheless be to faithfully prepare the input states
with a very good precision and no side channel (which may
otherwise transmit their classical labels), and possibly to
adapt our MDI-EWs to account for some small, experimen-
tally inescapable imprecision in the input state preparation
(e.g., by calculating new separable bounds, as can be done
to account for measurement misalignments in the case of
standard entanglement witnesses [10]).
With our approach, the problem of finding MDI-EWs

reduces to the problem of finding standard EWs, for which
a number of techniques are known (see, e.g., Ref. [33] and
references therein). Note that our construction only gen-
erates MDI-EWs of the special form of Eq. (3) [and that,
reciprocally, any MDI-EW of the form of Eq. (3) that can
be tested by Alice and Bob performing projections onto
maximally entangled states gives rise through Eq. (2) to a
standard EW]. More general forms of MDI-EWs exist, as
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in Eq. (1), which may be useful, for instance, if the pro-
jection onto a maximally entangled state happened to be
infeasible. Other techniques will, however, be required to
generate more general MDI-EWs. It may be interesting to
investigate whether more general MDI-EWs can have other
practical advantages, e.g., with respect to the robustness to
imperfect state preparation, or for possible applications
like MDI-QKD based on MDI-EWs; the ideas developed
here indeed suggest the possibility for new protocols for
MDI-QKD, different from those of Refs. [18–21].
Likewise, another interesting question is whether using
more quantum inputs [as in Eq. (17) compared to
Eq. (14)] offers some more robustness or some advantage
for MDI-QKD. These are left as open problems.

We acknowledge useful discussions with Francesco
Buscemi. This work was supported by a UQ Postdoctoral
Research Fellowship, by the Swiss NCCR ‘‘Quantum
Science and Technology,’’ the CHIST-ERA DIQIP, and
the European ERC-AG QORE.

Note added.—While finalizing our manuscript, we
became aware of the recent work of Cavalcanti et al.
[34], which interprets (and extends) Buscemi’s results
[16] in terms of trust in the entanglement verification
procedure. Our results answer in particular some of the
questions mentioned in the conclusion of that paper.
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