

Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Article scientifique

Article 2018

Accepted version

Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of the published version may differ .

Modulation of magmatic processes by CO₂ flushing

Caricchi, Luca; Sheldrake, Thomas Edward; Blundy, Jon

How to cite

CARICCHI, Luca, SHELDRAKE, Thomas Edward, BLUNDY, Jon. Modulation of magmatic processes by CO₂ flushing. In: Earth and Planetary Science Letters, 2018, vol. 491, p. 160–171. doi: 10.1016/j.epsl.2018.03.042

This publication URL:https://archive-ouverte.unige.ch/unige:103444Publication DOI:10.1016/j.epsl.2018.03.042

© The author(s). This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND) <u>https://creativecommons.org/licenses/by-nc-nd/4.0</u> 1 Modulation of magmatic processes by CO₂ flushing

2 Luca Caricchi¹, Tom E. Sheldrake¹, Jon Blundy²

3 1) Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva,
4 Switzerland

4 Switzerland

5 2) School of Earth Sciences, University of Bristol, Wills Memorial Building, BS8 1RJ, Bristol, UK

6

7 Abstract

8 Magmatic systems are the engines driving volcanic eruptions and the source of fluids 9 responsible for the formation of porphyry-type ore deposits. Sudden variations of 10 pressure, temperature and volume in magmatic systems can produce unrest, which 11 may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. 12 Such variations of the conditions within magmatic systems are commonly ascribed to 13 the injection of new magma from depth. However, as magmas fractionating at depth 14 or rising to the upper crust release CO₂-rich fluids, the interaction between carbonic 15 fluids and H₂O-rich magmas stored in the upper crust (CO₂ flushing), must also be a 16 common process affecting the evolution of subvolcanic magma reservoirs. Here, we 17 investigate the effect of gas injection on the stability and chemical evolution of 18 magmatic systems.

19 We calculate the chemical and physical evolution of magmas subjected to CO₂-20 flushing using rhyolite-MELTS. We compare the calculations with a set of melt 21 inclusion data for Mount St. Helens, Merapi, Etna, and Stromboli volcanoes. We 22 provide an approach that can be used to distinguish between melt inclusions trapped 23 during CO₂ flushing, magma ascent and decompression, or those affected by post-24 entrapment H₂O-loss. Our results show that CO₂ flushing is a widespread process in 25 both felsic and mafic magmatic systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid 26

27 release. We suggest that CO₂ flushing is a fundamental process modulating the
28 behaviour and chemical evolution of crustal magmatic systems.

29

30 1. Introduction

31 Magmatic fluids are mainly composed of H₂O and CO₂, the latter being significantly 32 less soluble in silicate melts (Ghiorso and Gualda, 2015; Newman and Lowenstern, 33 2002). Crystallisation of silicate magma at depth and/or its ascent through the crust 34 leads to preferential release of CO₂-rich fluids (Blundy et al., 2010; Newman and 35 Lowenstern, 2002; Papale et al., 2006), such that magmas stored in the upper crust 36 contain 40-60 times more H₂O than CO₂ (GEOROC database; Fig. 1a; Barsanti et al., 37 2009). Thus, magmas stored at shallow depths are, in effect, high temperature 38 chemical reactors exposed to flushing of hot CO2-rich fluids released from deeper in 39 the magmatic system (Barsanti et al., 2009; Blundy et al., 2010; Evans et al., 2016; 40 Metrich et al., 2004; Moretti et al., 2013; Yoshimura and Nakamura, 2011; 2010). 41 Similar interactions between CO₂-rich fluids and magmas can also occur in carbonate-42 hosted magmatic systems (Blythe et al., 2015; Cross et al., 2013; Di Rocco et al., 43 2012; Iacono Marziano et al., 2007; Jolis et al., 2013; Mason et al., 2017; Preece et 44 al., 2014).

An increase in the partial pressure of CO_2 in the fluid phase in equilibrium with a magma, produced either by CO_2 flushing or by interaction with carbonate, leads to the dissolution of modest amounts of CO_2 in the melt and exsolution of several wt.% of H₂O (Ghiorso and Gualda, 2015; Newman and Lowenstern, 2002; Yoshimura and Nakamura, 2011; Fig. 1a, b). The effects are a net increase of magma volume (i.e. excess fluid volume fraction), progressive magma crystallisation due to reduced weight fraction of dissolved H₂O (Fig. 1a,b; Blundy and Cashman, 2008; Blundy et

2

al., 2010; Riker et al., 2015), and changes in crystallising assemblage and mineral
chemistry (Riker et al., 2015).

54 Previous studies have applied Rhyolite-MELTS (Gualda et al., 2012) to quantify the 55 effect of crystallisation and excess volatile exsolution on the evolution of the physical 56 properties of magma and fluid overpressure (Tramontano et al., 2017; Fowler and 57 Spera, 2008). Here, we use Rhyolite-MELTS to simulate interaction between CO₂-58 rich fluids and magmas stored in the upper crust and quantify the impact of this 59 process on the chemical and physical evolution of the system. We also simulate 60 simple, adiabatic decompression of volatile-bearing magmas to compare the effects of 61 these two contrasted processes on the chemical evolution of the residual melt (i.e. 62 melt in equilibrium with fluid phase and crystals). The results of our calculations 63 allow us to explore melt inclusion data collected in systems for which extensive 64 datasets exist (Mt. St. Helens, Merapi, Etna and Stromboli; GEOROC and Blundy et 65 al., 2010; Metrich et al., 2010; Preece et al., 2014). We propose a new approach that 66 can be applied to melt inclusions datasets to distinguish between magma-ascent, 67 interaction with CO₂-rich fluids or post-entrapment H₂O loss. The application of this 68 method to felsic and mafic magmatic systems (GEOROC and Blundy et al., 2010; 69 Metrich et al., 2010; Preece et al., 2014) show that melt inclusion data invariably 70 record interaction between magma and CO₂-rich fluids. Consequently, we focus on 71 the impact of CO₂ flushing on the evolution of the chemical and physical properties of 72 upper crustal magma reservoirs, and discuss the influence of CO₂ flushing on the 73 ability of a magma reservoir to erupt magma and/or release magmatic volatiles.

74

75 **2. Methods**

76 2.1 Rhyolite-MELTS

77 We performed calculations using the thermodynamic software Rhyolite-MELTS 78 (version 1.1.0; Ghiorso and Gualda, 2015; Gualda et al., 2012) to simulate the effects 79 of CO₂ flushing and adiabatic ascent on the chemical and physical evolution of 80 volatile-bearing magma. The chemical interaction between pure, hot CO₂ and magma is performed considering no subsequent heat loss from the system. CO₂ is injected at 81 82 the liquidus temperature of the magma. In the calculations we consider either an 83 initially H₂O-saturated (CO₂-free) rhyolitic magma (composition equivalent to the 84 average melt inclusion composition of the early phase of the Bishop Tuff eruption: 85 Gualda et al., 2012; Ghiorso and Gualda, 2015) or a H₂O-bearing basalt (Etna; melt 86 inclusion composition MI 33 of Metrich et al., 2004; 3 wt. % H₂O; Tables 1, 2) at 87 their respective liquidus temperatures. Rhyolite-MELTS was chosen as it performs all 88 thermodynamic calculations with the latest available solubility data for magmas of a 89 wide variety of compositions (Ghiorso and Gualda, 2015). Simulations were carried 90 out at fixed confining pressures of 100, 200 and 300 MPa and constant oxygen 91 fugacity (fO₂). Simulations for Bishop Tuff and Etna compositions were completed with $fO_2 = NNO$ (Tables 1, 2). To check for the effect of redox state additional 92 simulations for the Etna composition were performed at $fO_2 = QFM$ (Table 1S). We 93 94 simulate isenthalpic assimilation of a fluid phase composed of pure CO₂. CO₂ is added in steps of 0.01 grams up to a total of 10 grams of CO₂ for 100 grams of 95 96 magma. Thermodynamic equilibrium is achieved at each step of the calculations 97 between melt, injected fluid and crystals (i.e. we consider crystallisation at 98 equilibrium).

A second set of simulations was performed to simulate adiabatic ascent of volatilebearing magma: 1) isentropic ascent with the same compositions as those used for the CO_2 flushing simulations, but with the magma initially containing some CO_2 (Tables

102 1, 2); 2) ascent of magma initially containing excess fluids (Tables 1, 2). In both 103 cases, the starting composition was equilibrated at fO_2 = NNO buffer, but left free to 104 vary during magma ascent and degassing.

105 In all simulations we trace the evolution of magma volume, temperature, crystallinity, 106 and residual melt chemistry (Figs. 2-5) to provide insights into how CO₂ flushing and 107 adiabatic ascent of magmas influence respectively the chemical variability and 108 volatile content of melt inclusions. We consider closed-system (no release of excess 109 fluids) and thermodynamic equilibrium in our simulations. The release of the excess 110 volatile phase, if equilibrium between fluid and magma is maintained, does not affect 111 the chemical evolution of the system. However, as discussed more extensively in 112 Section 4.2, the release of a portion of the excess fluids can affect the total volume 113 increase of the system and magma compressibility, thus influencing the overpressure 114 produced. Whilst, closed-system assumption might be more conceivable for large 115 silicic systems in comparison to more dynamic basaltic open-conduit systems, we 116 focus on closed system conditions to understand the effects of CO₂-flushing on 117 magmatic systems of varying chemistry.

118

119 2.2. Melt inclusions calculations

We calculated pressure of entrapment, and composition (xH₂O) of the excess fluid phase for melt inclusions (MI) assuming entrapment at fluid-saturated conditions. We do not consider the individual composition of each melt inclusions when computing entrapment pressure and the composition of the excess fluid phase, but consider instead generic solubility models applicable to felsic and mafic compositions from Ghiorso and Gualda (2015). Calculations for Mount. St. Helens and Merapi MIs were performed with the solubility model provided for the Bishop Tuff in Ghiorso and

Gualda, (2015). For Etna and Stromboli MIs, we considered the H₂O-CO₂ solubility 127 128 model provided for MORB in Ghiorso and Gualda (2015). We calculate the 129 entrapment pressure and the composition of the excess fluid phase by determining the 130 isobar and fluid isopleth passing through the H₂O and CO₂ content of each MI. The 131 resulting entrapment pressure and composition of the excess fluid phase are combined 132 with their K₂O content, a proxy for magma crystallisation, to identify the processes 133 responsible for MI entrapment and chemical composition. Note that K₂O can be 134 substituted by any other element that is incompatible during crystallisation.

To test the reliability of our generic solubility approach, we calculated the entrapment pressure for several pairs of melt inclusions (a couple from Merapi and Mt. St. Helens, and another from Stromboli-Etna) considering explicitly their compositions and using MagmaSat (Ghiorso and Gualda, 2015) to calculate pressure and fluid chemistry. The comparison between the calculations performed with our approach and MagmaSat, shows that the uncertainty is never larger than ± 25 MPa and about 0.05 in xH₂O (Figs. 6, 7).

142

143 **3. Results**

144 *3.1. CO*₂ - magma interaction

The progressive addition of CO_2 to H_2O -saturated magma at constant confining pressure leads to progressive dissolution of CO_2 and concomitant exsolution of H_2O (Fig. 1) leading to an increase in the mass of excess fluid phase in equilibrium with the magma (Figs. 1, 2a, 3a). The impact of CO_2 flushing on melt fraction and temperature differs between felsic and mafic magmatic systems (Fig. 2, 3). For felsic magma, the molar fraction of H_2O in the excess fluid phase (x H_2O_{fluid}) decreases as a consequence of the increasing amount of CO_2 added to the system and the minor 152 amount dissolved in the residual melt phase (Fig. 2). The decrease of H₂O 153 concentration in the residual melt phase drives magma crystallisation due to liquidus 154 temperature increase (Fig. 2b; Riker et al., 2015). As the calculations were performed 155 at isenthalpic conditions (no exchange of heat with the exterior), the release of latent 156 heat of crystallisation during CO₂ flushing results in an increase of temperature, 157 which is more pronounced with decreasing confining pressure (Fig. 2c). In contrast, in 158 mafic magma CO₂ flushing leads to progressive dissolution of CO₂, but exsolution of 159 H₂O is delayed until the system reaches fluid saturation (Fig. 3). The lower amount of 160 H₂O initially dissolved in the mafic magma results in a smaller drop of the residual 161 melt fraction during progressive CO₂ addition (Fig. 3b). In turn, this leads to the 162 progressive drop of temperature, as the latent heat of crystallisation is insufficient to 163 compensate for the heat required for excess fluid vaporisation (Fig. 3c).

164 Residual melt chemistry also changes with CO₂ flushing because of progressive 165 magma crystallisation. We plot the results of the thermodynamic calculations 166 considering H₂O, CO₂ and K₂O concentration in the residual melt combined with the 167 evolution of the molar fraction of xH₂O in the excess volatile phase (Fig. 4). We have 168 selected these parameters because their evolution during CO₂-flushing, magma ascent 169 (Blundy and Cashman, 2008) and post-entrapment H₂O loss (Gaetani et al., 2012) is 170 different. This provides a chance to distinguish between these processes simply from 171 analysis of melt inclusion data. CO₂ flushing at constant confining pressure produces 172 a decrease of H₂O in the residual melt accompanied by an increase of CO₂ and K₂O 173 (Fig. 4). The variations occur together with a progressive decrease of xH_2O in the 174 excess fluid phase (Fig. 4b). Magmas initially containing lower H₂O (e.g. Etna with 175 respect to Bishop Tuff), exposed to CO₂-flushing, experience less crystallisation than 176 magmas containing more H₂O for comparable drops in xH₂O_{fluid} (Fig. 4b, d). This manifests graphically as a steeper drop of xH_2O_{fluid} with respect to the decrease of K_2O_{min}/K_2O in the residual melt (Fig. 4b, d; where K_2O_{min} is the lowest content of K_2O in the set of melt inclusions of interest, i.e. the K_2O of the less chemically evolved MI).

181 Results of calculations performed for the Etna composition at $fO_2 = QFM$ buffer, are 182 almost identical to those performed at NNO (Tables 1, 2; Figs. 3, S1).

183

184 3.2. Variation of residual melt chemistry during magma ascent

185 We calculate the evolution of residual melt chemistry during magma ascent to identify 186 differences to the variations produced by CO₂-flushing. Results, presented in H₂O- CO_2 and $K_2O_{min}/K_2O - xH_2O_{fluid}$ space (Fig. 5), show that the increase of K_2O content 187 188 of the residual melt phase occurs at relatively low pressure only after significant 189 amounts of H₂O have been lost to the excess volatile phase (Fig. 5). This modest K₂O 190 increase is associated with the limited crystallisation occurring at intermediate to high 191 pressure (500-200 MPa) during magma ascent (Fig. 5a). Upon decompression 192 xH₂O_{fluid} increases while K₂O_{min}/K₂O of the residual melt only starts to increase at the 193 pressure at which significant H₂O degassing occurs (Fig. 5b, d; Papale, 2005).

194 We tested also the effect of excess fluid on the evolution of residual melt chemistry 195 upon magma ascent using the Etna composition and considering an exsolved fluid 196 phase already present at depth (Fig. 5d; Table 1). The initial presence of excess CO₂-197 rich fluids promotes magma crystallisation and limits the increase of xH₂O_{fluid} upon 198 ascent (Fig. 5e, f). As identified in previous melt inclusions studies, if sufficient 199 excess fluid is present initially, the volatile content of the ascending magma can follow an isopleth corresponding to the molar ratio of CO₂ and H₂O in the excess 200 201 fluid phase (Metrich et al., 2004). However, we note that even in the presence of an excess fluid phase, decompression between 500 and 200 MPa results in a modest amount of crystallisation (Fig. 5e, f). Increasing the mass of excess fluid by a factor of five with respect to the amount reported in Table 1 produced results similar to those reported in Figure 5e and f.

In summary, thermodynamic calculations performed to simulate CO_2 -flushing and magma ascent show that the residual melt chemistry changes in very distinctive ways for these two processes. Therefore, the analysis of dissolved volatile content and chemistry of melt inclusions remains a useful tool to probe processes accompanying magma transfer and storage in the crust.

211

212 *3.3 Melt inclusions*

213 Once any effects of post-entrapment processes are accounted for, MIs can provide 214 information on magmatic processes taking place in crystallising portions of magmatic 215 systems (Metrich et al., 2004; Blundy and Cashman, 2001; Gaetani et al., 2012; 216 Papale, 2005). The relative chemical signals of magmatic and post-entrapment 217 processes can be deconvolved through the combined analysis of MI volatile content 218 and chemistry (inset Fig. 6b). Ascent of fluid-saturated magmas triggers exsolution of 219 volatiles, which are initially dominated by CO₂ (Ghiorso and Gualda, 2015; Newman 220 and Lowenstern, 2002). As ascent continues, the amount of CO₂ dissolved in magma 221 decreases and the proportion of H₂O in the exsolved fluid phase increases (Fig. 5). If 222 ascent is accompanied by crystallisation (Blundy et al., 2010), MIs will record this 223 process with specific CO₂-, H₂O- and K₂O trends (Fig. 5). Post-entrapment hydrogen 224 loss from MIs (Gaetani et al., 2012) leads to a simultaneous decrease in H₂O and 225 increase in CO₂ with respect to chemical trajectories produced by fluid-saturated 226 magma ascent but without variation of MI chemistry (inset Fig. 6a,b). CO₂ flushing

227 leads consistently to a decrease of dissolved H_2O and the combined increase of CO_2 228 and incompatible elements such as K_2O (Figs. 2-4, 6).

229 We consider MI data from four well-studied felsic and mafic volcanic systems 230 (Mount St. Helens, Merapi, Etna and Stromboli; GEOROC; Blundy et al., 2010; 231 Metrich et al., 2010; Preece et al., 2014). In all systems, MIs with the highest K₂O 232 content contain the lowest H₂O (Figs. 6a,c; 7a, c). Whereas ascent-induced 233 crystallisation can be responsible for the high K₂O of MIs with the lowest H₂O and 234 CO₂ content, only CO₂ flushing can produce water-poor and CO₂ and K₂O-rich melt 235 inclusions (Figs. 6a, c; 7a, c). The same conclusion is reached when projecting the 236 data in $K_2O_{min}/K_2O - xH_2O_{fluid}$ space (Figs. 6b, d; 7b, d). MI for Mount St. Helens and 237 Merapi seem dominated by the effects of CO₂ flushing, while a minority can be 238 explained by ascent-induced crystallisation or H₂O-loss (Fig. 6). This interpretation 239 differs from that of Blundy and Cashman (2005). In basaltic systems most of the melt 240 inclusions can be explained by CO₂ flushing or ascent of magma initially saturated in 241 CO₂-rich fluids (0.25<xH₂O<0.4; Fig. 7).

242

243 3.4. Evolution of physical properties of magma undergoing CO₂ flushing

244 Melt inclusion data show that CO₂ flushing is an important process to consider for the 245 chemical evolution of magmas in the crust. As CO₂ flushing is accompanied by 246 exsolution of volatiles, increase in magma volume and crystallisation (Fig. 1), the 247 consequent evolution of physical properties determines the potential for CO₂ flushing 248 to trigger volcanic eruptions or the release of fluids from magma reservoirs (Figs. 1-249 3). The increase of volume associated with the presence of excess fluid is larger at 250 lower confining pressure because of the effect of fluid compressibility (Pitzer and 251 Sterner, 1994; Sterner and Pitzer, 1994; Fig. 8a, b, c). Conversely, as the solubility of volatiles increases with confining pressure, the amount of H_2O released during CO_2 flushing increases with confining pressure (Fig. 8d, e, f). The residual melt fraction decreases during flushing together with xH_2O_{fluid} (Fig. 8). As the mass of injected CO_2 increases the excess fluids become progressively more carbonic as shown previously by Yoshimura and Nakamura (2011). The rate of volume expansion, H_2O release, and crystallisation are all highest for relatively small amounts of added CO_2 , i.e. less than 0.5-1 wt.% (Fig. 8).

259 An example can be used to elucidate the progressive evolution of magma undergoing CO₂ flushing. A magma with the Bishop Tuff composition and an initial melt fraction 260 261 of 0.8, progressively flushed with CO₂, will progressively readjust its dissolved and 262 exsolved fluid composition until a total of about 9 wt.% fluid at 100 MPa and 8 wt.% 263 at 300 MPa has been added to the system (grey arrows in Fig. 8). At this point the 264 excess fluid fraction, considering a closed system, will be 0.55 at 100 MPa and 0.3 at 265 300 MPa. The residual melt fraction will have decreased from 0.8 to 0.2 at 100 MPa 266 and to 0.3 at 300 MPa (Fig. 3). While these calculations are strictly valid only for the 267 Bishop Tuff composition, the general evolution of crystallinity and composition of the 268 excess fluid phase for other magmas will be similar.

269

270 **4. Discussion**

271 *4.1. Interpreting melt inclusions*

Most of the MIs from Mt. St. Helens and Merapi can be explained by residual melt evolution resulting from CO_2 flushing, with a subset suggesting trapping during ascent (Fig. 6). In mafic systems such as Etna and Stromboli, the MIs with the highest water content and variable CO_2 describe a trend that can be explained with entrapment during magma ascent in the presence of sufficient excess fluid to, at least 277 partially, buffer xH₂O in the fluid phase (Fig. 7). Rhyolite-MELTS simulations of the 278 evolution of H₂O- and CO₂-bearing magma during adiabatic ascent to the surface 279 show that there is little or no crystallisation until the pressure drops to less than ~120 280 MPa (Fig. 5a, b). This is unsurprising given that ascent-induced crystallisation only 281 occurs once significant amounts of H₂O are lost from the residual melt phase, or if 282 significant cooling occurs during ascent (Blundy and Cashman, 2001; Blundy et al., 283 2010; Papale, 2005). However, the implications for the interpretation of MIs are 284 significant. If no crystallisation occurs, MIs cannot be trapped, which accounts for the 285 paucity or total absence of H₂O-rich MI containing CO₂ over a wide range of 286 concentrations (Fig. 6). For systems such as Etna and Stromboli MI with the highest 287 H₂O and CO₂ content are rare and their dissolved volatile content is likely to represent 288 minimum estimates as no crystallisation can occur at higher pressures, when magma 289 is strongly H₂O-undersaturated (Fig. 7). This implies that melt inclusions data provide 290 only partial information on the ascent path of magmas from the lower crust to the 291 surface. We notice that for Etna and Stromboli, the large amount of melt inclusions 292 containing variable CO₂ and relatively constant H₂O could be also explained by 293 trapping over a variety of pressure during crystallisation. This would also imply that 294 the crystals containing these MIs have been remobilised during the ascent of a magma 295 batch feeding a volcanic eruption.

For Stromboli melt inclusions concentrate along the xH_2O 0.3 isopleth, which could indicate that the concentration of H_2O and CO_2 in the melt (and recorded by the melt inclusions) is controlled by the composition of the excess fluid phase. In an open conduit system such as Stromboli, it is plausible that magma fills the plumbing system over a range of depths and fluids of deeper origins buffer xH_2O of the excess fluid phase.

303 *4.2. CO*₂-induced destabilisation of magmatic systems

304 Both crystallisation and magma ascent lead to the release of carbonic fluids once fluid 305 saturation is achieved. The CO₂-rich fluids can interact with upper crustal magma 306 reservoirs triggering variations in the physical properties of magma. The increase of 307 magma volume associated with CO₂ flushing (Fig. 3,8) can generate overpressure, 308 and potentially destabilise the magmatic system leading to volcanic eruption. 309 However, whether this happens will depend on the crystal content of the magma, 310 which reduces magma mobility and increases with progressive addition of CO_2 . If 311 magma reaches its rheological locking point (Marsh, 1981), the chance that the CO₂-312 flushed magma will feed volcanic eruptions drops rapidly. Thus, in this scenario, CO₂ 313 flushing will promote magma storage and the release of excess fluids without 314 associated magma (Parmigiani et al., 2016). Moreover, with progressive addition of 315 CO₂, magma compressibility increases and the efficiency of CO₂ flushing in 316 generating volumetric expansion and, potentially, overpressure decreases (Fig. 8).

317 To explore whether CO₂ flushing induces eruption or release of fluids, we calculate 318 the overpressure generated by CO₂ flushing and compare the timescales required to 319 pressurise the reservoir to values compatible with volcanic eruptions to the viscous 320 relaxation timescales of the upper crust (Jellinek and DePaolo, 2003; Rubin, 1995). 321 Pressurisation of a magma reservoir to values sufficient to trigger eruption 322 $(10 \le \Delta P_{crit} \le 40 \text{ MPa};)$ can occur if the increase of magma volume occurs on timescales 323 shorter than the those required for viscous relaxation of the surrounding crust (Jellinek 324 and DePaolo, 2003; Parmigiani et al., 2016). Additionally, the progressive decrease of 325 magma density associated with the increase of excess volatiles will increase buoyancy 326 and contribute to destabilisation of magmatic systems (Caricchi et al., 2014). The

327 value of ΔP_{crit} is controlled by the overpressure required to propagate a dyke to the 328 surface without freezing (Rubin, 1995; Jellinek and DePaolo, 2003). The value of 329 ΔP_{crit} varies with magma composition and tectonic setting and here we select a range 330 appropriate for felsic magmas.

331 To explore the pressurisation of a CO₂-flushed magma reservoir we performed 332 calculations for plausible conditions using the results of the Rhyolite-MELTS simulations. We considered a cylindrical, 1 km-thick, 5000 km³ magma reservoir with 333 the Bishop Tuff composition embedded at depths equivalent to 100 and 300 MPa 334 pressure in a crust with viscosity between 10^{19} and 10^{20} Pa s (Jellinek and DePaolo, 335 2003). The reservoir is flushed with pure CO_2 at a mass flux between 10^{-7} and 10^{-3} 336 mol/m²/s, consistent with surface observations at volcanoes (Federico et al., 2010; 337 338 Werner and Brantley, 2003). Fluid transport modelling shows that, regardless of the 339 mechanism of fluid percolation through a magma reservoir, fluid ascent velocity is 340 sufficiently low to enable complete chemical equilibration between fluid and magma 341 (Federico et al., 2010; Werner and Brantley, 2003; Yoshimura and Nakamura, 2011). 342 Thus, once the CO_2 -rich fluid front reaches the top of the magmatic system (1 year for 343 a system of 1 km thickness; Yoshimura and Nakamura, 2011), the rate of volume 344 increase of the reservoir is controlled only by the mass flux of injected fluid. We note 345 that the results are valid for the explored range of CO₂-fluxes for reservoirs of 346 different volumes, provided that the reservoir thickness remains at 1 km. For thicker 347 reservoirs, the time required for the fluid to reach the top of the system will increase 348 (Yoshimura and Nakamura, 2011). We calculate the viscous relaxation timescale of 349 the crust as (Jellinek and DePaolo, 2003):

$$350 \qquad \tau = \frac{\eta_{crust}}{E} \tag{1}$$

1 Л.

where η_{crust} is its viscosity and *E* its elastic modulus (≈ 10 GPa). The overpressure (ΔP) resulting from CO₂-magma interaction is calculated as (Tramontano et al., 2017):

354
$$\Delta P = \frac{dV}{V_{res}} \cdot \frac{1}{\beta}$$
(2)

355 where dV is the volume change, V_{res} is the reservoir volume and β is magma 356 compressibility. dV and β are provided by the Rhyolite-MELTS calculations.

357 We focus our analysis on the first 0.1 wt.% of CO₂ added where the rate of pressure 358 increase is highest (Fig. 3). Results show that whether CO_2 flushing can trigger an 359 eruption or provoke release of magmatic fluids depends on: the initial melt fraction of 360 the magma; the depth of the reservoir; the critical overpressure required to trigger 361 eruption; and the timescale over which CO₂ is added. CO₂ flushing of magma 362 reservoirs containing eruptible magma (i.e. <50 vol.% crystals; Marsh, 1981; 363 Yoshimura and Nakamura, 2011) at 100 MPa confining pressure can generate 364 overpressures compatible with eruption (ΔP_{crit} ; Jellinek and DePaolo, 2003; Rubin, 365 1995) when less than 0.025 wt.% of CO₂ has been flushed through the system at rates of $\geq 10^{-5}$ mol/m²/s⁻¹ (i.e. timescales to reach ΔP_{crit} shorter than about 10 years; Fig. 9). 366 367 For lower CO₂-fluxes, viscous relaxation timescales of the surrounding crust are 368 shorter than those required to reach ΔP_{crit} , hence volumetric expansion is 369 accommodated entirely by viscous deformation of the crust (Fig. 9). For reservoirs located at 300 MPa, the minimum amount of injected CO₂ required to reach ΔP_{crit} is 370 larger, increasing to ~0.06 wt.% for ΔP_{crit} =40MPa (Fig. 9). This is a direct 371 372 consequence of the decreasing volume of a given mass of excess fluid phase with 373 increasing depth of the reservoir. The minimum CO₂-flux required to trigger volcanic 374 activity is essentially independent of the depth of the reservoir (Fig. 9). However,

375 considering that the viscosity of the crust likely decreases with increasing depth, 376 higher CO₂-fluxes may be required to destabilise deeper reservoirs. If critical 377 overpressures are not achieved, or the CO₂-flux is too low, progressive flushing 378 simply increases excess fluid phase fraction and magma compressibility, thus 379 enhancing the capacity of the reservoir to accommodate further magma input without 380 eruption (Fig. 9). The increase of magma compressibility will also reduce our capacity 381 of detecting volumetric variations within the magma reservoir by surface deformation 382 measurements alone (Kilbride et al., 2016).

383 The progressive increase of excess fluid fraction and crystallinity associated with CO₂ 384 flushing will lead eventually to the release of large quantities of H₂O-rich, and 385 potentially mineralising, fluids from the magma body (Parmigiani et al., 2016; Fig. 8). 386 As flushing continues, exsolved fluids become increasingly carbonic (Yoshimura and 387 Nakamura, 2010), which could force the deposition of metals from metal-rich 388 magmatic brines released in the initial phases of the CO₂ flushing event, when xH₂O 389 of the released fluid is the highest (Blundy et al., 2015; Kokh et al., 2017; van 390 Hinsberg et al., 2016). An alternative to this temporal evolution is that magma 391 buoyancy becomes sufficiently large to destabilise the magma reservoir, before the 392 magma has become too crystallised for an eruption to occur (Caricchi et al., 2014).

393 It is important to point out that overpressure calculations were performed assuming a 394 closed system scenario (i.e. no progressive leakage of the excess volatile phase). This 395 translates into the maximum possible volumetric expansion generated by CO_2 396 flushing, but also into the largest possible magma compressibility. Therefore, while 397 leakage would decrease the volumetric expansion of the system, decreasing the 398 overpressure with respect to the values provided here, leakage would also decrease 399 magma compressibility and increase the resultant overpressure. 400

401 **5.** Conclusions

402 Volatile content and chemistry of melt inclusions from mafic and felsic systems 403 suggest that CO_2 flushing is a widespread process affecting the chemical and physical 404 evolution of magmas stored in the upper crust. Decompression-induced 405 crystallisation, is also a viable mechanisms accounting for the variability observed in 406 MIs, however our calculations show that trapping of a suite of melt inclusions 407 recording the entire magma decompression path is unlikely (Figs. 4, 5).

408 Depending on the initial crystallinity of a CO₂-fluxed magma reservoir, sufficient 409 overpressure resulting from the interaction between carbonic fluids and magma can 410 either trigger a volcanic eruption or lead to the abrupt release of fluids. Because 411 crystal content determines whether magmas can erupt (Marsh, 1981), initially crystal 412 rich (40-50 wt.%) magmas attain their rheological locking point after only small 413 amounts of injected CO₂, inhibiting their capacity to feed volcanic eruptions, but 414 increasing the potential for excess fluid release (Parmigiani et al., 2016). The 415 extraction of initially H₂O-rich fluids, that progressively become more carbonic, could 416 provide an efficient mechanism for the extraction and precipitation of metals required 417 for the formation of magmatic ore deposits (Kokh et al., 2017; van Hinsberg et al., 418 2016).

The interaction between CO_2 and magmas stored in the upper crust is an unavoidable consequence of the different solubility of H₂O and CO₂. CO₂ flushing exerts an important control on the chemical and physical evolution of magmatic systems that can be traced using both melt inclusions (Fig. 2) and detailed analysis of magmatic minerals (Blundy et al., 2015; Cashman and Blundy, 2013). We propose that CO₂ flushing is a previously unheralded process of destabilisation of magmatic systems, 425 capable of triggering both eruptions and impulsive release of potentially mineralising

426 fluids.

427

- 428 REFERENCES
- Barsanti, M., Papale, P., Barbato, D., Moretti, R., Boschi, E., Hauri, E., & Longo, A.
 (2009). Heterogeneous large total CO2 abundance in the shallow magmatic
 system of Kilauea volcano, Hawaii. Journal of Geophysical Research, 114(B12),
 387–7. http://doi.org/10.1029/2008JB006187
- Blythe, L. S., Deegan, F. M., Freda, C., Jolis, E. M., Masotta, M., Misiti, V., et al.
 (2015). CO₂ bubble generation and migration during magma–carbonate
 interaction. Contributions to Mineralogy and Petrology, 1–16.
 http://doi.org/10.1007/c00410.015.1137.4
- 436 http://doi.org/10.1007/s00410-015-1137-4
- Blundy, J, Cashman, K., 2008. Petrologic Reconstruction of Magmatic System
 Variables and Processes. Reviews in mineralogy and Geochemistry 69, 179–239.
 doi:10.2138/rmg.2008.69.6
- Blundy, J, Cashman, K., 2001. Ascent-driven crystallisation of dacite magmas at
 Mount St Helens, 1980-1986. Contributions to Mineralogy and Petrology 140,
 631–650.
- Blundy, J., & Cashman, K. (2005). Rapid decompression-driven crystallization
 recorded by melt inclusions from Mount St. Helens volcano. Geology, *33*(10),
 793. http://doi.org/10.1130/G21668.1
- Blundy, J, Mavrogenes, J., Tattitch, B., Sparks, S., Gilmer, A., 2015. Generation of
 porphyry copper deposits by gas-brine reaction in volcanic arcs. Nature
 geoscience 8, 235–240. doi:10.1038/ngeo2351
- Blundy, J, Cashman, K.V., Rust, A., Witham, F., 2010. A case for CO₂-rich arc
 magmas. Earth and Planetary Science Letters 290, 289–301.
 doi:10.1016/j.epsl.2009.12.013
- 452 Caricchi, L., Annen, C., Blundy, J., Simpson, G., Pinel, V., 2014. Frequency and
 453 magnitude of volcanic eruptions controlled by magma injection and buoyancy.
 454 Nature geoscience 7, 126–130. doi:10.1038/ngeo2041
- 455 Cashman, K., Blundy, Jon, 2013. Petrological cannibalism: the chemical and textural
 456 consequences of incremental magma body growth. Contributions to Mineralogy
 457 and Petrology 166, 703–729. doi:10.1007/s00410-013-0895-0
- 458 Cross, J.K., Tomlinson, E.L., Giordano, G., Smith, V.C., De Benedetti, A.A.,
 459 Roberge, J., Manning, C.J., Wulf, S., Menzies, M.A., 2013. High level triggers
 460 for explosive mafic volcanism: Albano Maar, Italy. Lithos 190-191, 137–153.
 461 doi:10.1016/j.lithos.2013.11.001
- Di Rocco, T., Freda, C., Gaeta, M., Mollo, S., & Dallai, L. (2012). Magma Chambers
 Emplaced in Carbonate Substrate: Petrogenesis of Skarn and Cumulate Rocks and
 Implications for CO₂ Degassing in Volcanic Areas. Journal of Petrology, 53(11),
 2307–2332. http://doi.org/10.1093/petrology/egs051
- Evans, B.W., Hildreth, W., Bachmann, O., Scaillet, B., 2016. In defense of magnetiteilmenite thermometry in the Bishop Tuff and its implication for gradients in
 silicic magma reservoirs. Am Mineral 101, 469–482. doi:10.2138/am-2016-5367
- Federico, C., Pietro Paolo Corso, Fiordilino, E., Cardellini, C., Chiodini, G., Parello,
 F., Pisciotta, A., 2010. degassing at La Solfatara volcano (Phlegrean Fields):

471 Processes affecting d. Geochim Cosmochim Ac 74, 3521–3538. 472 doi:10.1016/j.gca.2010.03.010 473 Fowler, S. J., & Spera, F. J. (2008). Phase equilibria trigger for explosive volcanic 474 eruptions. Geophysical Research Letters, 35(8), 1127–5. 475 http://doi.org/10.1029/2008GL033665 476 Gaetani, G.A., O'Leary, J.A., Shimizu, N., Bucholz, C.E., Newville, M., 2012. Rapid 477 reequilibration of H₂O and oxygen fugacity in olivine-hosted melt inclusions. 478 Geol 40, 915-918. doi:10.1130/G32992.1 479 Ghiorso, M.S., Gualda, G.A.R., 2015. An H₂O-CO₂ mixed fluid saturation model 480 compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology 1-481 30. doi:10.1007/s00410-015-1141-8 Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., Carley, T.L., 2012. Rhyolite-MELTS: 482 483 a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing 484 Magmatic Systems. Journal of petrology 53, 875–890. 485 doi:10.1093/petrology/egr080 Iacono Marziano, G., Schmidt, B.C., Dolfi, D., 2007. Equilibrium and disequilibrium 486 487 degassing of a phonolitic melt (Vesuvius AD 79 "white pumice") simulated by 488 decompression experiments. Journal of Volcanology and Geothermal Research 489 161, 151–164. doi:10.1016/j.jvolgeores.2006.12.001 490 Jellinek, A.M., DePaolo, D.J., 2003. A model for the origin of large silicic magma 491 chambers: precursors of caldera-forming eruptions. Bulletin of Volcanology 65, 492 363-381. doi:10.1007/s00445-003-0277-y 493 Jolis, E.M., Freda, C., Troll, V.R., Deegan, F.M., Blythe, L.S., McLeod, C.L., 494 Davidson, J.P., 2013. Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius, Italy. Contributions to Mineralogy and Petrology 166, 495 496 1335-1353. doi:10.1007/s00410-013-0931-0 497 Kilbride, B. M., Biggs, J., & Edmonds, M. (2016). Observing eruptions of gas-rich 498 compressible magmas from space. Nature Communications, 7, 1–8. 499 http://doi.org/10.1038/ncomms13744 500 Kokh, M.A., Akinfiev, N.N., Pokrovski, G.S., Salvi, S., Guillaume, D., 2017. The role 501 of carbon dioxide in the transport and fractionation of metals by geological fluids. 502 Geochim Cosmochim Ac 197, 433-466. doi:10.1016/j.gca.2016.11.007 503 Marsh, B.D., 1981. On the Crystallinity. Probability of Occurrence, and Rheology of 504 Lava and Magma. Contributions to Mineralogy and Petrology 78, 85–98. 505 Mason, E., Edmonds, M., Turchyn, A.V., 2017. Remobilization of crustal carbon may 506 dominate volcanic arc emissions. Science 357. doi:10.1126/science.aan5049 507 Metrich, N., Allard, P., Spilliaert, N., Andronico, D., Burton, M., 2004. 2001 flank 508 eruption of the alkali- and volatile-rich primitive basalt responsible for Mount 509 Etna's evolution in the last three decades. Earth and Planetary Science Letters 510 228, 1-17. doi:10.1016/j.epsl.2004.09.036 511 Metrich, N., Bertagnini, A., Di Muro, A., 2010. Conditions of Magma Storage, 512 Degassing and Ascent at Stromboli: New Insights into the Volcano Plumbing 513 System with Inferences on the Eruptive Dynamics. Journal of petrology 51, 603– 514 626. doi:10.1093/petrology/egp083 515 Moretti, R., Arienzo, I., Civetta, L., Orsi, G., & Papale, P. (2013). Multiple magma 516 degassing sources at an explosive volcano. Earth and Planetary Science Letters, 517 367, 95–104. http://doi.org/10.1016/j.epsl.2013.02.013 518 Newman, S., Lowenstern, J.B., 2002. VOLATILECALC: a silicate melt-H₂O-CO₂ solution model written in Visual Basic for excel. Computers & Geosciences 28, 519 520 597-604.

- Papale, P. (2005). Determination of total H₂O and CO₂ budgets in evolving magmas
 from melt inclusion data. Journal of Geophysical Research, 110(B3), B03208.
 http://doi.org/10.1029/2004JB003033
- Papale, P., Moretti, R., Barbato, D., 2006. The compositional dependence of the
 saturation surface of H₂O+CO₂ fluids in silicate melts. Chemical Geology 229,
 78–95.
- Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O., Su, Y., 2016. Bubble
 accumulation and its role in the evolution of magma reservoirs in the upper crust.
 Nature 532. doi:10.1038/nature17401
- 530 Pitzer, K.S., Sterner, S.M., 1994. Equations of state valid continuously from zero to
 531 extreme pressures for H₂O and CO₂. J. Chem. Phys. 101, 3111–3116.
 532 doi:10.1063/1.467624
- Preece, K., Gertisser, R., Barclay, J., Berlo, K., Herd, R.A., Facility, E.I.M., 2014.
 Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and
 2006 eruptions of Merapi volcano, Indonesia. Contributions to Mineralogy and
 Petrology 168. doi:10.1007/s00410-014-1061-z
- Riker, J.M., Blundy, J.D., Rust, A.C., Botcharnikov, R.E., Humphreys, M.C.S., 2015.
 Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for
 interpreting crystallization paths in degassing silicic magmas. Contributions to
 Mineralogy and Petrology 1–22. doi:10.1007/s00410-015-1160-5
- Rubin, A.M., 1995. Getting Granite Dikes Out of the Source Region. J Geophys ResSol Ea 100, 5911–5929.
- 543 Sterner, S.M., Pitzer, K.S., 1994. An equation of state for carbon dioxide valid from
 544 zero to extreme pressures. Contributions to Mineralogy and Petrology 117, 362–
 545 374. doi:10.1007/BF00307271
- Tramontano, S., Gualda, G. A. R., & Ghiorso, M. S. (2017). Internal triggering of
 volcanic eruptions: tracking overpressure regimes for giant magma bodies. Earth
 and Planetary Science Letters, 472, 142–151. doi: 10.1016/j.epsl.2017.05.014.
- van Hinsberg, V.J., Berlo, K., Migdisov, A.A., Williams-Jones, A.E., 2016. CO2fluxing collapses metal mobility in magmatic vapour. Geochemical Perspectives
 Letters 169–177. doi:10.7185/geochemlet.1617
- Werner, C., Brantley, S., 2003. CO₂ emissions from the Yellowstone volcanic system.
 Geochemistry geophysics Geosystems 4, 387. doi:10.1029/2001JB000407
- Yoshimura, S., Nakamura, M., 2011. Carbon dioxide transport in crustal magmatic
 systems. Earth and Planetary Science Letters 307, 470–478.
 doi:10.1016/j.epsl.2011.05.039
- Yoshimura, S., Nakamura, M., 2010. Chemically driven growth and resorption of
 bubbles in a multivolatile magmatic system. Chemical Geology 276, 18–28.
 doi:10.1016/j.chemgeo.2010.05.010
- 560 561

562 Figure captions

- 563 Figure 1: Variation of dissolved H₂O and CO₂, crystal and fluid fraction as functions
- of H₂O dissolved in magma. Blue lines refer to calculations performed at 300 MPa,
- red at 100 MPa. a) coloured lines are H₂O and CO₂ solubility isobars for magma
- saturated in H₂O-CO₂ fluids with different molar fraction of H₂O (xH₂O); grey lines

are isopleths, indicating the H_2O and CO_2 dissolved in magma in equilibrium with fluids of fixed xH₂O. b) The continuous and dashed lines show, respectively, the evolution of the crystal (weight) and fluid (volume) fraction during CO_2 flushing as functions of dissolved H_2O .

Figure 2: Evolution of H₂O and CO₂ dissolved in melt undergoing CO₂ flushing as calculated by Rhyolite-MELTS (Gualda et al., 2012). All simulations started with magma saturated in H₂O. The diagrams are colour-contoured for wt.% of exsolved fluids (panel a), melt fraction (b), and temperature (c). Simulations were performed at $fO_2 = NNO$ for a felsic magma with a composition equivalent to the average melt inclusion composition of the early phase of the Bishop Tuff eruption (Table 1; Gualda et al., 2012; Ghiorso and Gualda, 2015)

Figure 3: Evolution of H₂O and CO₂ dissolved in melt undergoing CO₂ flushing as

580 magma containing only H_2O (initially undersaturated). The diagrams are colour-

calculated from Rhyolite-MELTS (Gualda et al., 2012). All simulations started with

581 contoured for wt.% of exsolved fluids (panel a), melt fraction (b), and temperature (c).

582 The simulations were performed at fO_2 = NNO for a magma of basaltic composition

583 (Metrich et al., 2004).

579

Figure 4: Evolution of H₂O and CO₂ dissolved in melt, and K₂O content of residual melt during CO₂ flushing calculated by Rhyolite-MELTS. Panels a and b are calculations performed for Bishop Tuff and c, d for Etna composition (see text and Table 1 for more details). The colour contouring in panel a and c is for K₂O content of the residual melt. Colours in panels b and d are for the different confining pressures at which the simulations were performed.

Figure 5: Evolution of H₂O and CO₂ dissolved in melt , and K₂O content of residual

melt during magma ascent. Panels a and b are calculations performed for Bishop Tuff

and c, d, e, and f are for Etna composition (see text and Table 1 for more details). The colour contouring in panels a, b and c is for K_2O content of the residual melt. Colour contouring in panels b, d and f indicates the evolution of the confining pressure during the simulations. The results shown in panels e and f were calculated starting with a fluid-saturated composition (Table 1). The arrowheads indicate the evolution of parameters during decompression.

598 Figure 6: Volatile and K₂O content of melt inclusions and recalculated excess 599 equilibrium fluid fraction for melt inclusions from Mount St. Helens and Merapi 600 volcanoes. a) Isobars (black lines) and isopleths (grey lines) are calculated using the 601 model of Ghiorso and Gualda (2015) for rhyolitic magma with a composition 602 equivalent to the average melt inclusion composition of the early phase of the Bishop 603 Tuff eruption (Table 1; Gualda et al., 2012; Ghiorso and Gualda, 2015). Symbols are 604 colour contoured for K₂O content. Inset shows the MI trajectories for the different 605 processes affecting MIs; b) xH₂O of the excess fluid phase recalculated using the 606 model of Ghiorso and Gualda (2015) assuming equilibrium and volatile saturation. 607 Symbols are colour coded for calculated entrapment pressure increasing from blue to 608 red. Inset shows the MI trajectories for the different processes affecting MIs; c) Same 609 as panel a showing melt inclusions from Merapi. d) Same as panel b for melt 610 inclusions from Merapi.

Figure 7: Volatiles, K₂O content of melt inclusions and recalculated fraction of
excess fluids in equilibrium with melt inclusions from Etna and Stromboli volcanoes.
a) Isobars (black lines) and isopleths (grey lines) are calculated using the model of
Ghiorso and Gualda (2015) for basaltic (MORB) composition (Gualda et al., 2012).
Symbols are colour contoured for K₂O content. b) xH₂O of the excess fluid phase
recalculated using the model of Ghiorso and Gualda (2015) assuming equilibrium and

volatile saturation. Symbols are colour coded for calculated entrapment pressure
increasing from blue to red. c) Same as panel a but for melt inclusions from
Stromboli. d) Same as panel b but for melt inclusions from Stromboli.

620 Figure 8: Variations of melt weight fraction, excess fluid volume fraction, wt.% of 621 exsolved H₂O and xH₂O of the excess fluid phase as functions of the wt.% of CO₂ 622 injected into magma with different initial melt fractions. Black colour refers to melt 623 fraction, green to excess fluid volume fraction, cyan to wt.% of exsolved H₂O, and red 624 to xH₂O of the excess fluid phase. a, c) Contours of equal melt and bubble fractions as 625 function of the wt.% of injected CO₂ at 100 and 300 MPa respectively. b) Section of 626 panel a and c corresponding to the grey arrows showing evolution of melt and bubble 627 fraction as functions of injected CO_2 (wt.%) for a magma with an initial melt fraction 628 of 0.8. d, f) Contours of wt. % exsolved H₂O and xH₂O of excess fluid phase as 629 functions of the wt.% of injected CO₂. e) Section of panel d and f corresponding to the 630 grey arrows, showing the evolution of wt. % exsolved H₂O and xH₂O as functions of 631 injected CO_2 (wt.%) for a magma with an initial melt fraction of 0.8.

632 Figure 9: Time required to inject CO₂ at different mass flux rates into a reservoir of 5000 km³ volume and 1 km thickness. The red and blue areas provide the range of 633 634 injected CO₂ required to reach an overpressure in the magma reservoir of 10 to 40 635 MPa for magma reservoirsd at a confining pressure of 100 and 300 MPa respectively. 636 The brown area indicates the range of viscous relaxation timescales for an upper crust viscosity of 10^{19} and 10^{20} Pa s. The black lines represent the time required to inject a 637 638 given amount of CO₂ for different mass fluxes. If the black lines intercept the red or 639 blue regions prior to the brown region, the rate of CO₂ injection is sufficient to reach 640 critical overpressures before viscous relaxation of the crust is achieved; white dashed 641 lines indicate conditions compatible with volcanic eruption. Conversely, if the black

lines intercept the brown area, viscous relaxation of the crust occurs on shorter
timescales than those required for overpressurisation of the magma reservoir to 10-40
MPa; green dashed lines indicate conditions favourable for magma accumulation and
fluid release.

646

Figure S1: Evolution of H₂O and CO₂ dissolved in magma undergoing CO₂ flushing as calculated from rhyolite-MELTS (Gualda et al., 2012). The simulations all started from magma containing only water. The diagrams are colour-contoured for wt.% of exsolved fluids (panel a), melt fraction (b), and temperature (c). The simulations were performed considering a felsic magma of basaltic composition (Metrich et al., 2004). Calculations were performed at an oxygen fugacity fixed to a value equivalent to QFM.

654

655 Acknowledgments

L.C. and T.E.S. received funding from the European Research Council (ERC) under
the European Union's Horizon 2020 research and innovation programme (grant
agreement No. 677493 - FEVER). J.B acknowledges research funding from BHP.
Detailed and insightful comments by Paolo Papale and an anonymous reviewer
significantly improved this contribution.

661

662 Author Contributions

All authors contributed to the design of the study. L.C. and T.E.S. performed the
calculations and drafted the first version of the manuscript. All authors contributed to
the final version.

666

