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Résumé

L’objet de cette dissertation est d’examiner divers aspects des distances et
des méthodes à base de noyaux dans le cadre de l’apprentissage relationnel.
Nous commençons par introduire un formalisme pour la représentation multi-
relationnelle des données qui repose sur les concepts de tuples, d’ensembles et
de listes que nous avons implémenté dans le langage de l’algèbre relationnel. Par
la combinaison de ces types de données, nous sommes en mesure de modéliser
une grande diversité d’objets composites tels que des arbres et des graphes.

Nous continuons avec la définition de plusieurs opérateurs de distances et de
noyaux sur ce formalisme de représentation. Nous ne sommes pas limités à un
opérateur spécifique, mais au contraire, nous sommes libres de choisir l’opérateur
à appliquer à un type particulier parmi l’ensemble des opérateurs disponibles
pour ce type. L’opérateur final applicable à l’objet composite est donné par
une combinaison récursive des opérateurs affectés aux sous-structures qui le
composent. Nous nous focalisons sur des opérateurs de projections définies sur
des ensembles.

Ensuite, nous proposons trois nouvelles familles de noyaux flexibles sur des
ensembles où la similitude est basée sur des projections entre les éléments des
deux ensembles. Ces familles diffèrent de la plupart des noyaux existants qui
moyennent la similarité entre tous les éléments des deux ensembles.

Enfin, nous proposons un framework pour sélectionner adaptativement les
représentations des données complexes et/ou des opérateurs sur les représentations.
Plus précisément, notre framework comprends un ensemble d’opérateurs et de
représentations prédéfinies qui sont combinées de manière optimal. Nous nous
focalisons seulement sur un paradigme à base de distances et nous exploitons
des travaux antécédents sur l’apprentissage de métriques dans les données vecto-
rielles. Nous utilisons la combinaison optimale de différents graphes de décompositions
en sous-structures d’un type spécifique pour définir des noyaux adaptatifs sur
des graphes qui tentent de résoudre les limitations actuels des noyaux sur les
structures complexes.

Nous entreprenons une comparaison en profondeur de notre système relation-
nel à base de distances et de noyaux qui comprend: une évaluation empirique
de plusieurs distances composites, en insistant sur la comparaison de distances
entre ensembles à base de projections; une évaluation empirique de différents
noyaux complexes, en insistant sur la comparaison des noyaux sur ensemble à
base de moyenne, et des noyaux sur ensembles à base de diverse projections;
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une évaluation empirique de notre framework adaptatif pour la combinaison de
distances sur ensembles, et la combinaison de diverse décomposition de graphes
en sous-structures de divers types.

L’évaluation empirique du système montre que les paradigmes proposés à
base de distances et de noyaux sont efficaces sur plusieurs jeux de données
d’essai. De plus, pour tous les problèmes relationnels examinés nous parvenons
à des résultats conforment à l’état de l’art, et supérieurs aux meilleurs résultats
obtenus avec d’autres systèmes relationnels.



Abstract

The goal of this dissertation is to examine various aspects of the distance- and
kernel-based learning paradigms applied in relational settings. We start by in-
troducing a multi-relational representation formalism, at the core of which lie
the concepts of tuples, sets and lists, which we implemented over the relational
algebra language. By combining these data types we are able to model a variety
of composite objects, such as trees and graphs.

We proceed with the definition of various distance and kernel operators over
the representation formalism. We are not constrained to a specific operator,
instead, we are free to assign an operator, selected from a set of available oper-
ators, to a particular data type. The final operator over the composite objects
is given as a recursive combination of operators assigned to the sub-structures
which constitute the objects. We focus on mapping-based operators defined over
sets.

Next, we propose three new and flexible families of set kernels where the
overall similarity is based on mappings between the elements of the two sets.
These kernels differ from most of the existing set kernels which are based on
averaging of the similarities of all the elements of the two sets.

Finally, we propose a general framework for adaptively selecting represen-
tations of complex data and/or operators over representations. More precisely,
our framework assumes a set of predefined representations and operators which
are then combined in an optimal way. We focus only on the distance-based
paradigm and we exploit previous work on metric learning over vectorial data.
We use the optimal combination of different graph decompositions into sub-
structures of specific types to define adaptive graph kernels which address the
limitations of the existing kernels over these complex structures.

We undertook extensive comparisons of our distance- and kernel-based re-
lational system, which included: an empirical evaluation of various composite
distances, with the focus on comparison of set distances based on mappings; an
empirical evaluation of different complex kernels, with the focus on comparison
of set kernels based on averaging and set kernels based on various mappings; an
empirical evaluation of our adaptive framework for the tasks of combination of
set distances, and combination of various graph decompositions into substruc-
tures of various types.

The empirical evaluation of the system has shown that the proposed distance-
and kernel-based paradigms are effective over a number of relational benchmark
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datasets. Additionally, in all of the examined relational problems we achieved
state-of-the-art results which are better than the best results obtained using
other relational systems.



Chapter 1

Introduction

The traditional and widely-used approach in typical data mining and machine
learning methods is based on representing learning instances in a vectorial for-
mat. This representation allows for the construction of efficient learning systems
and has the advantage of simplicity. However, it also restricts the applicability
of the resulting algorithms since individuals must be represented as fixed-length
tuples of constants. This feature might be inadequate in domains where the
intrinsic structure of learning objects is more complex. Examples of applica-
tions requiring a richer representation widely occur in various practical fields
including computational biology, chemoinformatics, natural language process-
ing, computer vision and networking applications (Džeroski and Lavrac, 2001;
Getoor and Taskar, 2007).

As a result of the above fact, the field of relational data mining has developed
and flourished over the last fifteen years (Džeroski and Lavrac, 2001; Getoor and
Taskar, 2007). One of its most prominent representatives is the subfield of In-
ductive Logic Programming (ILP) which is usually described as the intersection
of machine learning and logic programming. Within the ILP paradigm learning
examples are described using first-order logic concepts (e.g. clauses and terms)
or subsets of first-order logic (Džeroski and Lavrac, 2001). Recently, a higher
order logic was also used as a representation formalism resulting in even more
powerful systems (Lloyd, 2003; Gärtner et al., 2004). The main advantage of
this formalism is that it allows for the natural representation of sets and multi-
sets, a main difference from first-order terms. Moreover, the higher-order logic
usually considers typed syntax which is important for pruning search spaces and
simplifies the process of modeling of semantic of the data (Lloyd, 2003).

While the logic-based formalisms are widely used to represented structured
data, the scope has now extended and includes other knowledge representation
languages. Although the new formalisms are usually not as expressive as the rep-
resentations based on logic programs, the full power of the latter is hardly ever
needed. In particular, in the last few years the focus in the data mining and ma-
chine learning communities was on topological structures such as graphs (Washio
and Motoda, 2003), or special kinds of graphs like sequences (Durbin et al.,
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1999; Leslie et al., 2003), trees (Culotta and Sorensen, 2004; Bille, 2005) and
sets (Eiter and Mannila, 1997; Grauman and Darrell, 2007). Both graph-based
and logic-based representations are strongly related in the sense that they al-
low for modeling of complex data. However, the mining of graph data is more
concerned with analyzing topological structures embedded in graph data and
hence is more geometry oriented. On the other hand, relational data mining is
more powerful and aims to find patterns expressed in some logic language, and
hence is more relation (or logic) oriented (Washio and Motoda, 2003).

Several learning paradigms were proposed over the logic- and graph-based
representations (Džeroski and Lavrac, 2001; Getoor and Taskar, 2007; Gärtner
et al., 2004; Washio and Motoda, 2003). Two prominent and widely used fam-
ilies of algorithms exploited in this context are the distance- and kernel-based
algorithms.

Distance-based learning is one of the oldest, yet surprisingly effective paradigms
in the field of data mining and machine learning (Duda and Hart, 1973; Aha
et al., 1991) and has been used in various learning tasks such as classifica-
tion, clustering and regression. In classification it is known under various names
such as k-Nearest Neighbor classification, instance-based learning or lazy learn-
ing (Duda et al., 2001; Aha et al., 1991; Aha, 1997). In clustering it is probably
the most widely used approach, exploited in methods such as k-means clustering,
hierarchical clustering or self organized maps (Duda et al., 2001; Hastie et al.,
2001). In regression it has been used to perform local regression where regres-
sion models are fitted locally within neighbors of the learning examples (Hastie
et al., 2001). More recently, distance-based algorithms became popular in semi-
supervised learning (Chapelle et al., 2006) and for (non-linear) dimensionality
reduction (Saul et al., 2006). Finally, in the last years there is a growing interest
in adaptive approaches for distance measure learning in either fully supervised
settings (Goldberger et al., 2005; Globerson and Roweis, 2006) or using side-
information (Xing et al., 2003).

Kernel-based methods are a relatively new development within the machine
learning and data mining communities (Shawe-Taylor and Cristianini, 2004;
Schölkopf and Smola, 2001; Cristianini and Shawe-Taylor, 2000), nevertheless,
because of their simplicity and versatility they quickly become a first-choice
tool in diverse areas such as classification, regression, clustering, novelty detec-
tion and dimensionality reduction (see e.g. Shawe-Taylor and Cristianini, 2004).
One of the main advantages of kernel-based methods is that they combine the
flexibility of non-linear algorithms with the efficiency and simplicity of linear
methods. The non-linearity is achieved by the application of a positive semi-
definite kernel function that enables the data to be non-linearly embedded in
some inner-product (or pre-Hilbert) feature space without the explicit compu-
tation of the feature map. As a result, any linear algorithm which is based on
inner products can be implicitly applied in this feature space and hence become
non-linear. The foundation of kernel-based methods in Statistical Learning The-
ory (Vapnik, 2000) made it possible to apply these methods in cases where the
feature space is of high (or even infinite) dimensionality, avoiding over-fitting and
without being affected by the ”course of dimensionality” (Hastie et al., 2001).
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Finally, the learning part in kernel methods usually boils down to a convex op-
timization problem which has an unique solution and is amenable to efficient
optimization techniques.

The distance- and kernel-based approaches are collectively characterized by
the fact that they do not require a direct access to the training examples, instead
they access the data only by a distance and a kernel function, respectively. As
a result, the above two paradigms are easily extended to support input spaces
whose representation is more general than attribute-value. This is achieved by
defining data specific distance or kernel functions providing the interface with
the composite data and incorporating domain knowledge, if such exists.

Most of the work in the distance-based relational learning falls within the
ILP paradigm in which the representational language used is most often first-
order logic or some subset of it (Horváth et al., 2001; Ramon and Bruynooghe,
1998). In the last few years the focus has turned to special types of complex
objects, namely general graphs (Washio and Motoda, 2003), or specific types of
graphs such as sequences (Durbin et al., 1999), trees (Bille, 2005) and sets (Eiter
and Mannila, 1997; Tatti, 2007; Woźnica et al., 2006a). Ramon (2002) provides
an overview of different types of structured problems tackled in distance-based
relational learning.

Unlike the distance-based relational learning community, the kernel-based
research community has largely ignored the issue of data and problem repre-
sentation, with the exception of Gärtner et al. (2004), who have introduced
a relational learning framework for general structured data based on a typed
formalism of a higher-order logic. Other examples of kernels defined over spe-
cific types of complex objects include kernels over sets (Kondor and Jebara,
2003; Woźnica et al., 2006a), sequences (Leslie et al., 2003), trees (Collins and
Duffy, 2002), and labeled graphs (Gärtner et al., 2003; Kashima et al., 2003;
Ramon and Gärtner, 2003; Menchetti et al., 2005). Most of these kernels boil
down to the general <-Convolution kernel proposed by Haussler (1999). Gärtner
(2003) provides an overview of different kernels defined on structured learning
problems.

The characteristically modular design of the distance- and kernel-based meth-
ods makes them amenable to theoretical analysis but also simplifies the com-
puter implementation process (Cristianini and Shawe-Taylor, 2003). More pre-
cisely, a general purpose learning module implementing the task of, e.g. classi-
fication or clustering, can be easily combined with a data specific distance or
kernel modules. The result is that these methods can be used for dealing with
”non-standard” learning problems such as classification on graphs, clustering of
sets, etc.

1.1 Limitations of the Existing Approaches

In this section we describe some of the limitations of the existing approaches for
learning over structured data. We will describe the general problems common to
various relational methods as well as problems specific to distance- and kernel-
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based learning over complex objects.
In order to design algorithms over composite objects one needs a knowledge

representation formalism that is able to accurately and straightforwardly reflect
the underlying semantics of the data. In order for the representation language to
become acceptable by a wide audience it should have several properties. First,
the formalism should naturally extend the propositional representation based on
a single table, making it easier to design relational algorithms which naturally
encompass existing algorithms operating on a single table. Second, the repre-
sentation language should be ideally defined in a modular fashion, simplifying
the process of data modeling and the design of various data mining operators
applied over this representation. Third, a desired property of such formalism is
that it is typed; as pointed out by Flach et al. (1998), a typed approach usually
makes the modeling process easier. Finally, within this formalism it should be
easy to store (and possibly index) the complex objects in such a way that they
can be efficiently accessed. Most of the existing logic- or topological-based ap-
proaches have difficulties reaching most the above goals. The exception is the
higher-order logic formalism of Lloyd (2003) which is based on typed λ-calculus;
however, because of its flexibility this formalism is not easy to understand and
renders the modeling process a non trivial task.

The other problem, which is strongly associated with the lack of modularity
of the underlying representation languages, is that most of the existing relational
systems can be characterized as monolithic in the sense that they rely on a
single type of data mining operator, defined on a specific complex data type.
The result is a large number of relational data mining algorithms and systems
which have limited applicability to problems that involve only very specific
complex data types, most often only a single complex data type, and even more
limited, if inexistent, flexibility on the data mining operators that they employ.
Džeroski (2007) has stressed the limitations of the existing systems and has
emphasized the need for a general framework for data mining which, among
others, should allow for the easy definition of new complex data types and data
mining operators over these data types.

The above limitations are in particular problematic in the relational distance-
and kernel-based paradigms, where most of the existing systems are constrained
to a single monolithic type of complex distance or kernel, respectively. It is
obvious that there is no single distance (kernel) that is overall better than any
other for all types of problems. This has been observed in various empirical
comparisons (Aha et al., 1991; Kalousis et al., 2005) as well as confirmed by
various ”no free lunch theorems” (Schaffer, 1994; Wolpert, 2001). Typically, a
practitioner should consider different distances (kernels) to find the one that best
matches the problem requirements. To make things even more complicated, it
can be that different constituent sub-objects of the same type call for different
operators. Thus, a desired property of the final complex distance (kernel) is
that it is derived by a combination of heterogeneous distances (kernels). Only
a few of the existing relational distance- or kernel-based systems offer this type
of flexibility.

The other limitation specific to relational kernel-based learning is that many
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of the kernels defined over structured data like sequences, sets and graphs are
based on a (sometimes implicit) decomposition of complex structures into sub-
structures of different types. The final kernel is defined as the Cross Product
Kernel between the corresponding multi-sets of decompositions. For particular
decompositions Ot1 and Ot2, into substructures of type t, of the composite objects
O1 and O2, the above kernel can be written as

kset(O1, O2) =
∑

(o1,o2)∈Ot1×O
t
2

k(o1, o2) (1.1)

where k is a kernel over specific types of substructures in Ot, and the summation
over the elements of the multi-sets takes into account their multiplicity.

One problem with the kernel given in Equation 1.1 is that it computes the
average of similarities given by the sub-kernels applied on every pair of elements
from the two decompositions. This feature might be inappropriate in cases where
only specific elements of decompositions are important; in such cases the kernel
based on specific elements is expected to perform better. An example of such
application is multiple-instance learning where the task is to learn a concept
given positive and negative sets of instances (Gärtner et al., 2002). In this setting
a set is labeled negative if all the instances are negative and is labeled positive
if at least one of the instances is positive. The fact that all the elements of
the sets are matched, might also be problematic in kernels for graphs where
the cross product kernel is their integral part and is applied on the multisets
of decompositions of graphs into their parts (walks, paths, trees, etc.). This
might adversely affect the generalization of a large margin classifier (e.g. SVM)
since due to the combinatorial growth of the number of distinct subgraphs most
of the features in the feature space will be poorly correlated with the target
variable (Ben-David et al., 2002; Menchetti et al., 2005).

Different solutions to tackle the above problem have been proposed in the
literature. For kernels over graphs the possible solutions include down-weighting
the contribution of larger subgraphs (Collins and Duffy, 2002; Gärtner et al.,
2003), using prior knowledge to guide the selection of relevant parts (Cumby
and Roth, 2003) or considering contextual information for limited-size sub-
graphs (Menchetti et al., 2005). Yet another solution was proposed in (Fröhlich
et al., 2005) in which only specific elements of the corresponding multi-sets are
matched in such a manner that the sum of similarities of the matched elements
is maximum. The underlying idea in this kernel is that the actual matching
will focus on the most important structural elements, neglecting the substruc-
tures which are likely to introduce noise to the representation. Similar kernels
were considered in the computer vision community (Wallraven et al., 2003; Lyu,
2005b; Boughorbel et al., 2004), where explicit correspondences between two
sets’ features of images are constructed.

The above idea based on explicit correspondences between elements of the
two sets can be also generalized by changing the right side of Equation 1.1
such that the sum runs over specific elements of the corresponding multi-sets of
decompositions excluding elements which are likely to be irrelevant for a given
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target variable. This kernel will be based on specific pairs of elements from the
two sets and can be written in a general form as

kset(O1, O2) =
∑

(o1,o2)∈F

k(o1, o2), F ∈ F (1.2)

i.e. it is a sum of pairwise elementary kernels, k(o1, o2) over specific pairs which
are defined by the mapping F ⊆ Ot1 × Ot2 which belongs to a mapping fam-
ily F . This kernel naturally generalizes the cross product kernel and kernels
from (Fröhlich et al., 2005; Wallraven et al., 2003; Lyu, 2005b; Boughorbel
et al., 2004). Moreover, its semantics are similar to the semantics of set dis-
tance measures based on mappings. For example, in the kernel of Fröhlich et al.
(2005) the mapping family F contains all the bijections of the larger set to the
smaller. The idea of using specific pairs of points in a set kernel is promising,
however, it is easy to show that the kernel from Equation 1.2 is not positive
semi-definite for a general F . Moreover, some of the existing kernels of the form
as in Equation 1.2, which were ”believed” to be valid, were recently shown to
be non-PSD in general (Vert, 2008; Lyu, 2005b). The other limitation of the
above kernels is that the appropriate selection of the specific pairs of elements
is application dependent and ideally should be guided by domain knowledge, if
such exists. As a result there is a need for other, more flexible set kernels which
are not necessarily based on averaging and are positive semi-definite.

Finally, one of the main challenges in applications involving complex objects
is that of the proper representation of the learning instances (within a given rep-
resentation formalism). The choice of the correct representation is crucial for the
successful application of machine learning techniques since it renders the actual
problem easier (if not trivial) to solve. Within the logic- and graph-based rep-
resentations the complex objects can be represented in different manners, mod-
eling for different semantics and aspects of the problem. For example graphs,
in the context of kernel-based algorithms, can be represented among others as
sets of walks of different lengths, trees or more general subgraphs (Ramon and
Gärtner, 2003), but in practice it is difficult to specify in advance the appropri-
ate type of substructures for a problem at hand. A common intuition is that by
decomposing into more complex subgraphs the expressivity, and consequently
the performance, of resulting kernels increase. This is, however, in contrast with
some experimental evidence (Menchetti et al., 2005) which show that decompo-
sitions into rather simple substructures perform remarkably well with respect
to more complex decompositions on a number of different datasets. Although it
is in principle possible to simultaneously exploit kernels defined over different
representations, this is usually not done because there is a trade-off between
expressivity reached by enlarging the kernel-induced feature space and the in-
creased noise to signal ratio (introduced by irrelevant features). In practice a
single type of decomposition is used which is then, most often, employed in the
context of the cross product kernel of Equation 1.1.

Strongly associated with the problem of selection of the appropriate repre-
sentation, is that of selection of an appropriate distance or kernel function on
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the selected representation. It is possible to have different distance (or kernel)
functions for a given representation, where again each distance (kernel) has dif-
ferent semantics. Using again the example of graphs: if these are represented as
sets of objects then we can choose among different distance measures or kernels
defined over sets.

Adapting (or learning) a distance measure (kernel) for a given problem is
a difficult task and in general there are only few systematic approaches that
address it. In the context of distance-based learning and for propositional data,
one family of such methods consists of finding a set of good feature weights in
the input space. Several feature weighting algorithms have been proposed over
the last decade (Wettschereck et al., 1997), however, they have two main lim-
itations. First, it is difficult to extend these techniques to non-vectorial data.
Second, their expressiveness is limited since most of them do not account for
feature interactions. A generalization of the feature weighting approach is based
on adjusting (or learning) parameters of a (parameterized) distance measure
directly from the data. In this context several attempts have been made re-
cently, either in a fully supervised setting (Goldberger et al., 2005; Globerson
and Roweis, 2006; Domeniconi and Gunopulos, 2002; Weinberger et al., 2006;
Yang et al., 2006) or using side information (Xing et al., 2003; Bar-Hillel et al.,
2005; Kwok and Tsang, 2003; Hertz et al., 2004; Schultz and Joachims, 2004).
The methods in the latter class consider side information in the form of: (i)
relative, qualitative examples (e.g. ”A is closer to B than B is to C”) (Schultz
and Joachims, 2004), (ii) multiple, absolute, qualitative examples (e.g. ”A, B
and C are similar”) (Bar-Hillel et al., 2005) (iii) pairwise, absolute, qualitative
examples (e.g. ”A and B are similar” or ”B and C and not similar”) (Xing
et al., 2003; Kwok and Tsang, 2003; Hertz et al., 2004). The distance measures
in the above methods are usually restricted to the Mahalanobis metric family1

parameterized by a positive semi-definite matrix. All these methods were devel-
oped for vectorial data and are similar in the sense that the actual problem is
cast as a mathematical optimization task. However, these algorithms differ with
respect to the actual objective function that is being optimized and hence they
implicitly assume different distributions of the data.

It should be mentioned that the automatic adaptation of kernels (Lanckriet
et al., 2004; Ong et al., 2005; Bousquet and Herrmann, 2003) is more general
than metric learning since a valid kernel k can be directly used to compute a
pseudo metric in the feature space by

√
k(x, x)− 2k(x, y) + k(y, y). The pro-

posed methods for kernel combination differ in the objective functions (e.g.
cross-validation risk, margin based, Kullback-Leibler divergence, etc.) as well as
in the classes of kernels that they consider (e.g. finite or infinite set of kernels,
etc.). Nevertheless, the problem with learning kernel combinations is that the
combined elements should, obviously, be valid kernels on the different types of
decompositions. However, as we mentioned previously this type of kernels are
based on the cross product kernel that requires the complete matching of the

1The Mahalanobis metric parameterized by a positive semi-definite matrix A is defined as:
dA(x,y) = (x− y)TA (x− y) for ∀x, y ∈ Rn.
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individual components, raising the problems that were described before. The
other problem with the existing methods for kernel combination is that they
work only in a transductive setting, i.e. completing the labeling of a partially
labeled dataset, which in turn limits the application area of such methods.

To summarize, the two important constituents of any distance and kernel-
based algorithms are the representation of the learning instances and the opera-
tor employed on that representation. Ideally, both of them should be determined
on the basis of domain knowledge; however, even in the presence of domain
knowledge, it can be far from obvious which complex representation should be
used or which operator should be applied on the chosen representation. An obvi-
ous question is how to select from the set of plausible couplings of representations
and operators the one that best fits the requirements of the problem at hand. A
simple solution is to select it by cross-validation; however, the main drawback of
this approach is that only one representation-operator couple per training set is
selected which limits the expressiveness of the resulting method. Additionally,
this approach is limited to a small number of representations and operators,
due to computational constraints, and requires the use of extra data. Given the
above problems a better solution would be to automatically combine a number
of the representation-operator couples where each couple is assigned a weight,
which specifies its importance. Ideally, the establishment of these weights should
be a part of the learning process.

1.2 Contributions

The goal of this thesis is to examine various aspects of the distance- and kernel-
based learning paradigms applied in relational settings. The representation for-
malism we used to represent composite objects is based on concepts from rela-
tional algebra. Over this representation we proposed various distance and kernel
operators which are defined as a recursive combination of operators associated
with the sub-structures which constitute the learning instances. We also ex-
tended the flexibility of the existing kernels over sets and proposed three new
and flexible families of set kernels where the overall similarity is based only
on specific elements of the two sets. Finally, we proposed a general framework
for combining representations of complex data and/or operators over a given
representation. We exploited this adaptive framework to define a flexible and
powerful class of graph kernels. Finally, we undertook extensive and in-depth
analysis of our distance- and kernel-based relational system.

In what follows, we provide a short summary list of the main contributions
of this work.

1. Representation Language (Chapter 2)

(a) Definition of a multi-relational representation formalism, at the core
of which are three data types, i.e. tuples, sets and lists. Based on
these data types one can directly model a variety of complex struc-
tures such as trees, graphs or more general structures that do not fall
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to a specific topological category. The representation language is im-
plemented over the relational algebra language where the description
of an object is spread across different interconnected tables which
constitute a relational database.

(b) Definition of a general class of data mining / machine learning bi-
nary operators over the proposed representation. The operators are
given as a recursive combination of operators assigned to the sub-
structures which constitute the learning instances. Different opera-
tors can be used on the different building blocks of the relational
instances, and it is up to the practitioner to declare the particular
operators’ assignment.

2. Distances (Chapter 3)

(a) Definition and theoretical analysis of various distance operators over
composite objects represented in the relational formalism, with the
focus on set distances based on mappings between sets. We start with
distances on simple domains and we gradually build more complex
distances on more complex domains, using the simpler distances as
building blocks.

(b) An in-depth analysis of the performance of composite distances on a
number of relational benchmark datasets.

3. Kernels (Chapter 4)

(a) Definition and theoretical analysis of various kernel operators over
composite objects represented in our formalism. Similar to distances,
kernels on simple objects form a basis for definitions of more complex
kernels.

(b) Definition of three families of set kernels which are not based on aver-
aging; instead they take into account only specific pairs of elements
from the two sets. The considered kernels are kernels in proximity
space induced by set distances, set distance substitution kernels and
kernels directly based on specific pairs of elements of the form of
Equation 1.2. The semantics of mappings between specific sets’ ele-
ments is similar to the one used in set distances.

(c) Rigorous empirical evaluation of the proposed kernels on a number
of relational problems.

4. Adaptive Approaches (Chapter 5)

(a) Definition of a general framework for learning a ”good” combination
of different representations of complex data and/or a ”good” com-
bination of complex distances over a given representation. We focus
only on the distance-based paradigm and we exploit the previous
work on metric learning over vectorial data. The learning problem
is defined as a mathematical optimization task. Additionally, we ad-
dress the problem of regularization of the learned combinations.
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(b) Evaluation of the proposed framework for the task of combination of
set distances.

(c) Evaluation of the proposed framework for the task of combination
of graph decompositions into subgraphs of various types. This eval-
uation is performed in the context of graph kernels which are based
on combinations of different representations. These kernels form a
powerful and flexible class of graph kernels which address some of
the limitations of the existing kernels over these complex objects.

1.3 Reading Guide

To help those ”impatient” readers who want to quickly grasp the main con-
tributions of this thesis, we advice, after reading the present chapter, to move
directly to the first part of Chapter 6 (without Section 6.1) where we give an
overview of the main findings and observations.

We also provide a more detailed reading guide through all Chapters 1 to 6,
pointing to sections which should not be omitted at a fist reading. First, for
an overview of the limitations of the current approaches an informal account
of the material that follows, the reader is advised to read all of the present
chapter. Next, in Chapter 2 it is recommended to read Section 2.1 and most
of Section 2.3 where we informally introduce our representation language and
describe how to model graphs, respectively. The remaining sections (2.2 and 2.4)
can be skipped during the first reading; they are intended for readers interested
in practical implementation of our formalism. In Chapter 3 the reader should
not omit Sections 3.2.2, 3.2.3 and 3.3 where we describe distances on tuples,
sets and trees; these concepts will be widely used in the remaining part of this
study. The most important experimental results from this chapter are presented
in Sections 3.5.4 and 3.5.7. Our main contributions from Chapter 4 are the
theoretical presentation of the set kernels based on mappings (Section 4.2.4),
kernels on trees (Section 4.3), and the experiments with set kernels based on
mappings (Section 4.4.4). The reader is expected to study all of Chapter 5 as it
presents novel techniques for adaptive learning over composite representations.
Finally, it is important to read the first part of Chapter 6 (without Section 6.1)
for an overview of the main contributions of this work. The reading guide to
this thesis, with the material which should not be omitted, is schematically
presented in Figure 1.1.

Finally, we mention that yet another way to read this dissertation is to
start with the present chapter, then move to the first part of Chapter 6 for
the summary of the main contributions, and the fill in the details by reading
Chapters 2 to 5.
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1.4 Bibliographical Note

The content of this dissertation is based on the existing publications. In par-
ticular some parts of Chapter 2 are based on (Woźnica et al., 2005a; Kalousis
et al., 2005; Woźnica et al., 2005b, 2006b) while the material from Chapter 3 is
based on (Kalousis et al., 2005; Woźnica et al., 2005b, 2006a). Our work pre-
sented in (Woźnica et al., 2005a, 2004, 2006c) has laid the groundwork for the
material in Chapter 4. Finally, the content of Chapter 5 is based on (Woźnica
et al., 2007, 2006b,d, 2008).



Chapter 2

Representation Language

The traditional and still widely used approach to representing complex learning
instances1 is based on first- or higher-order logic. Recently, also the representa-
tions based on graphs, or special types of graphs, have become very popular. In
this study we adopt a different representational approach and define learning
instances using solely concepts from relational algebra.

Relational databases are probably the most common way of storing struc-
tured information nowadays. In the relational representation the description of
an object is spread across a number of interconnected tables which constitute a
relational database. There are several advantages of representing composite ob-
jects using this formalism. First, relational algebra provides a robust data mod-
eling tool with well understood semantics by a large audience. Second, learning
algorithms directly operating over this representation can readily tackle any kind
of relational problem in which training data is stored within a typical relational
database, with no need for a change of representation. Third, the relational for-
malism naturally extends the typical attribute-value representation, and hence it
is in principle easier to design a relational learning algorithm, naturally encom-
passing an existing algorithm operating over a single table. Fourth, a computer
implementation of a learning system over complex objects is simplified, since
the existing relational database systems can be exploited to store learning in-
stances. Finally, relational databases provide the functionality of indexing the
instances so that they can be accessed in an efficient way.

Before going to the detailed description of the relational algebra formalism
it is useful to first provide a high-level informal and intuitive presentation of
the underlying concepts. More precisely, we will consider learning instances rep-
resented in this formalism as composite objects which can be decomposed into
simpler sub-parts of various types. These sub-objects are further decomposed
until non-decomposable (i.e. primitive) objects such as numbers or nominal at-
tributes are encountered. The non-primitive building blocks are tuples, sets and
lists. Tuples allow to represent fixed-length collections of objects of possibly

1In this work we will use terms complex, composite and structured instances (or objects,
examples, etc.) interchangeably.

13



14 CHAPTER 2. REPRESENTATION LANGUAGE

different types, while sets (lists) are used to represent unordered (ordered) col-
lection of objects, each of which is of the same type. Based on these building
blocks one can directly represent a variety of composite structures such as trees
or graphs, the latter through various approximations.

The main reason why we consider learning instances in this modular way is
that it simplifies the process of data modeling and the design of the data mining
operators. The data mining operators we consider are defined in a declarative
manner where the practitioner first defines the different data types which con-
stitute the learning examples, and then declares which operator should be used
for each data type. In general there is a number of different data mining op-
erators associated with different data types, each one with different semantics.
In particular, it is possible to define different operators even for objects of the
same general type e.g. sets of lists, and sets of tuples, etc. The final data mining
operator over the full complex learning instances is then automatically com-
posed by simply combining, in a recursive manner, the operators assigned to
the sub-structures which constitute the learning instances. Obviously, there are
as many different instantiations of the final data mining operator as there are
combinations of data mining operators over the components of the full complex
learning instances.

The remaining part of this chapter is organized as follows. In Section 2.1 we
give an informal introduction to the representation language by defining various
building blocks of learning instances; we consider primitive attributes, tuples,
sets and lists. In Section 2.1.5 we show how the above building blocks can be
combined so that we obtain general composite objects in the form of trees. In
Section 2.2, we give a description of relational algebra and provide a link with the
high-level concepts. In Section 2.2.3 we illustrate the main ideas of our approach
with an example from the field of proteomics. In Section 2.3 we demonstrate
how the proposed relational representation formalism can by exploited to model
(labeled) graphs. In Section 2.4 we define a general class of recursive machine
learning / data mining operators applied on our representation language. In
Section 2.5 we give an overview of the related work and place our framework
within that context. Finally, we conclude with Section 2.6.

Figure 2.1: Schematic structure of Chapter 2. The recommended sections to
read are highlighted.

The reader is recommended to read at least Section 2.1 where we informally
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describe concepts of our representation language, and most of Section 2.3 where
we discuss how to model trees and graphs. Sections 2.2 and 2.4 can be omitted
at a first reading; they are mainly intended for readers interested in practical im-
plementation of our formalism. The organization of this chapter is schematically
presented in Figure 2.1.

2.1 Introduction of the Basic Concepts

As already argued, it is of crucial importance to be able to deal with structured
data; handling complex data is attracting an increasing amount of attention
within the data mining and machine learning communities. In the remaining part
of this section we will present the basic concepts of our relational representation
language in an informal way, trying to keep it as intuitive as possible.

A structured individual datum is an object that has its own structure, i.e. it
consists of values for several attributes which may be of different types and may
take values in different ranges (Džeroski, 2007). We require that all data items
– learning instances – provided to a learning algorithm are of the same type and
share the same structure. We assume a set of elementary data types, such as
symbolic or numeric. Other elementary data types might include symbolic(S),
where S is a finite set of identifiers, or integer. These are the most basic building
blocks characterized by the fact that they are not decomposable into simpler
sub-parts. In addition, we are given a number of type constructors, such as tuple,
set and list, that can be used to construct more complex data types from the
existing ones. For example, tuple(boolean, number) denotes a data type where
each datum consists of a pair of a boolean value and a real number, while
list(tuple(boolean, number)) denotes a data type where each datum is a list of
such pairs. Different data types can be combined such that we can define e.g.
tuples where nodes are objects of type set, or sets where elements are lists, etc.

To summarize, in modeling complex data the practitioner has the freedom
to combine different data types such as elementary attributes, tuples, sets and
lists. In general, the process of data modeling should be guided by the available
background knowledge and application requirements. Moreover, computational
constraints should be taken into account since in general more complex represen-
tations impose a higher computational burden on the corresponding operators
defined over the selected representations. It should be mentioned that the back-
ground knowledge-driven data modeling might be problematic in practice since
we rarely have a solid description of the learning problem. This issue will be
tackled in Chapter 5 where we will show how the proper representation of the
data can be automatically adapted to a problem at hand.

In the remaining part of this section we will present in more detail the
primitive (symbolic and numeric) as well as composite (tuples, sets and lists)
data types that will be used in our study. Then we will show how these data
types can be combined to define general composite objects.
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2.1.1 Primitive Attributes

We start our presentation by defining the most basic objects, which we call
primitive objects, sometimes also referred to as elementary features or primitive
attributes. These objects are collectively characterized by the fact that they are
not decomposable into simpler sub-parts.

In this study we focus only on the symbolic (or nominal) and numeric (or
quantitative) features. The type of the former is denoted as symbolic(S), where
S is a finite and discrete set of identifiers. Symbolic features represent a finite set
of possible values, symbols or modalities. Moreover, they can be counted, but
not ordered. For example, in order to create a symbolic object representing an
atom we could set S = {H,C,CL,O, . . .}. The other type of primitive objects
are numerical attributes whose type is denoted by numeric(a, b). This attribute
takes values on an interval [a, b] ⊂ R. Here we do not make a distinction between
real numbers and subsets thereof (e.g. integers). This means that in general the
elements of these attributes are uncountable, but ordered.

2.1.2 Tuples

A tuple is a finite and fixed-length array of objects, where each object has a
specific data type; different objects might have different data types. Tuples are
also sometimes referred to as records (Stonebraker, 1996). In the rest of this
study we will sometimes make a distinction between tuples and vectors. By
the latter we mean tuples whose elements are the basic (i.e. numerical and
symbolic) data types2. Vectors are probably the simplest composite objects and
are widely used to represent data in the ”traditional” areas of machine learning
and data mining (Duda et al., 2001; Hastie et al., 2001) as well as in multivariate
statistics (Mardia et al., 1979; Wasserman, 2004).

More formally, consider data types Ti for i = 1, . . . , n. In general Ti 6= Tj
for i 6= j, and Ti are not necessarily primitive data types. We also assume that
there is a type constructor tuple used to provide the tuple data type. Thus
tuple(T1, . . . , Tn) denotes the data type of tuple whose elements are of data
types Ti. Let Xi be a set of objects of data type Ti. Then a tuple consisting of
objects o1, . . . , on, where oi ∈ Xi, is denoted by o = (o1, . . . , on)T ∈ X , where
X = Xi × . . . × Xn. In particular, for objects o1, . . . , on of type numeric(R),
o = (o1, . . . , on)T ∈ Rn is a standard vector in the Euclidean space Rn. For a
tuple o, o(i) denotes its i-th element.

2.1.3 Sets

The other important data type we consider in this work are finite, unordered
sets and more generally multi-sets, i.e. sets which can contain the same element

2Conventionally, vectors were limited to contain only numerical values, however, symbolic
attributes can be easily converted to orthogonal vectors with 0 and 1 as elements. In any case,
this conversion does not influence the various operators over tuples, which will be defined in
the subsequent chapters.
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several times. We only focus on (multi-)sets containing elements which are of
the same type.

Application domains, where it is most natural to represent each training
example as a (multi-)set of objects, include chemoinformatics where chemical
molecules may be described by a set of possible decompositions into different
paths (Ramon and Gärtner, 2003). Similarly, in computer vision, images may be
represented as sets of pixels encoding the corresponding coordinates, intensities
and colors (Jebara and Kondor, 2003; Kondor and Jebara, 2003); in bioinfor-
matics, and more specifically in proteomics, a mass-spectrum could be described
as a set of peaks of the form (mass,intensity) (Kalousis et al., 2005); in natu-
ral language processing the most widely used representation is based on bags
(multi-sets) of constituent words (Joachims, 2002).

More formally, let T be a data type. Moreover, we assume that there exists a
type constructor set used to provide the set data types and set(T ) denotes the
set data type whose elements are of data type T . Let also X be a set of objects
of data type T . We denote a set consisting of (not necessarily different) objects
o1, . . . , on, where oi ∈ X , by {o1, . . . , on}.

2.1.4 Lists

Lists are important and widely used composite objects. Similarly to sets we
assume that the elements of lists are of the same type. Lists are used in cases
where it is important to account for the order of elements in a given collection
of objects. In fact, this is the main difference between lists and sets where the
order is not given. In practice the elements of lists are assigned index values
i ∈ N specifying the position within the collection.

Consider a data type T and assume that there is a type constructor list
used to provide the list data type. Then list(T ) is the data type of lists whose
elements are of data type T . Let X be a set of objects of data type T . We will
denote a finite list ` of objects `1, . . . , `n (`i ∈ X ) as ` = [`1, . . . , `n] ∈ Xn.

Some definitions and notations will be useful in the remainder of this work.
Sequences are lists which consist of elements of primitive data types. |`| is the
length of `. We denote by i a sequence 1 ¬ i1 < i2 < . . . < in ¬ |`| of indices; we
say that i ∈ i if i is one of the sequence indices. We denote with l(i) the length
of i. For list `, `[k] is its kth element. Finally, we denote the set of all lists of
objects from X by L(X ).

2.1.5 General Composite Objects

In this section we will show how the different objects defined so far can be
exploited to represent general composite instances. Informally, the general com-
plex objects are recursively defined using the primitive data types as well as
composite data types, i.e. tuples, sets and lists. To get the complete description
of a complex object, O, we have to traverse its full structure, starting from the
top-level ”root” element of O (denoted as root(O)), and following all associa-
tions between the nested sub-parts. Each time composite sub-objects are found,
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(a) (b)

Figure 2.2: Examples of two trees corresponding to complex objects where only
sets (a) and only lists (b) are used.

they are further decomposed. This procedure continues until primitive objects
are encountered.

The way a complex object, O, is constructed suggests that it can be in fact
regarded as a tree3 whose root corresponds to root(O). The root is connected
with the nodes of the second level via a set or list data type, i.e. the root has
as a part of its description a set of objects or list of objects from the second
level. In the same way nodes at level d of the tree are also sub-objects related
with one of the elements found in nodes at level d − 1. A node is a leaf if it
is of either elementary (i.e. numeric or symbolic) or of tuple type. In case the
connections between the nodes are determined only by the application of objects
of type set we obtain unordered trees. On the other hand, if only objects of type
list are used we obtain ordered trees. It should be mentioned that the resulting
structures are labeled trees (with some labels being possibly empty), where labels
are in the form of vectors (or primitive types) and are only assigned to nodes
(and not to edges). Figure 2.2 presents two examples of trees generated from
complex objects where the links correspond to sets and lists, respectively. In the
first plot (a) only sets are used and the tree corresponds to a composite object
of type

set(tuple(Tprim, set(Tprim)))

where Tprim is some primitive data type, either numeric or symbolic. In the
second plot (b) we use only objects of type list and hence the tree is ordered;
this tree corresponds to an object of type

list(tuple(Tprim, list(Tprim))).

In general, we can use both sets and lists where children of a given node are
divided into non-overlapping groups, so that we obtain mixed trees. An example
of such tree corresponding to an object of type

tuple(set(list(Tprim)), list(set(Tprim)))
3The formal definition of trees will presented in Section 2.3.
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Figure 2.3: An example of a mixed tree.

is given in Figure 2.3.
To summarize, labeled trees can be easily represented using simpler objects.

In particular, it means that possible operators on trees could be defined as a
combination of operators over simpler structures4.

2.1.6 Operators

In this section we will briefly describe general data mining operators applied
over the proposed representation; data mining operators will be the main focus
in the remaining part of this study.

Informally, our operators work in a recursive manner traversing the full tree
structures of the input composite objects, as described in Section 2.1.5. During
the recursion, the components of the input objects are visited in exactly the same
order as when these were constructed. The operators are defined as a recursive
combination of operators defined on composite objects’ sub-parts, both primitive
(i.e. numeric and symbolic) and composite (tuples, sets and lists). The data
mining operators we consider in this study are defined in a declarative manner.
i.e. the practitioner specifies which operators should be used for each of the sub-
objects. In general, there is a number of different data mining operators, each
one with different semantics, and it is up to the analyst to declare which specific
operator should be used for a given data type. A more formal presentation of
the data mining operators will be given in Section 2.4.

2.2 Relational Representation

In the previous sections we presented the high-level concepts of our represen-
tation language. In this section we provide a detailed presentation of relational
algebra and make a link with the definitions presented above. We show that the
relational paradigm is a natural choice when it comes to modeling composite

4Other operators on trees taking into account a more global view are possible. Different
distance and kernel global operators will be discussed in Sections 3.6 and 4.5, respectively
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objects which are decomposed into primitive attributes, tuples and sets. The
”standard” relational formalism has a limitation when it comes to modeling
lists, however we propose an extension which allows for representation of these
composite structures. We conclude this section by illustrating the modeling pro-
cess with a simple example from the field of proteomics where we start with a
problem specification and model the data using the relational formalism.

It should be mentioned that the relational representation can be seen as
a simplified version of the formalism presented in (Lloyd, 2003; Gärtner et al.,
2004) which is based on the higher-order logic. However, because of its flexibility
the latter representation language is not intuitive and difficult to use in practice.
The higher-order formalism will be discussed in some details in Section 2.5.

We also mention that the actual relational learning system we exploited in
all our experiments was our multi-relational extension of the WEKA machine
learning / data mining toolkit (Witten and Frank, 2005). We decided to exploit
this system because of its versatility and the availability of the existing code.
Moreover, it was natural to extend it to the multi-relational representation by
redefining its input data in the form of a relational database, i.e. it consists of
a set of interconnected tables, where each table is stored in an ”.arff” file (i.e.
the native WEKA format for storing tables). This set of interconnected tables
precisely defines a relational schema.

2.2.1 Relational Algebra

The following relational algebra definitions are adapted from (Ullman, 1982).
A relation Ri is a set of tuples, more specifically a subset of some Cartesian
product D1 × . . . × Dzi where each Dl is a domain (i.e., a set of objects of
primitive types). The relation schema of a relation Ri is the set of all attributes
of Ri and we denote it as Ri(A1, . . . , Azi). Each attribute Al has an associated
domain dom(Al) = Dl. The number of attributes zi of a relation Ri is called
the arity of the relation. A tuple Rij of a relation Ri is a particular row in Ri
with Rij = (vj1, vj2, . . . , vjzi) and vjl the value of the Al attribute in the Rij
tuple; vjl will be also denoted as Rij .Al. A relational database schema is a set
of relation schemes R = {R1, . . . , Rn}.

An attribute Ak ∈ Ri(A1, . . . , Azi) is called a potential key of relation Ri
if it assumes a unique value for each tuple of the relation. An attribute Al ∈
Rj(A1, . . . , Azj ) of relation Rj is a foreign key if it references a potential key Ak
of relation Ri, in that case we will also call Ak a referenced key. A standard link
is defined on the basis of a foreign key relation and is a quadruple of the form
sl(Ri, Ak, Rj , Al) where either Al is a foreign key of Rj referencing a potential
key Ak of Ri, or vice versa. The association between Ak and Al models one-to-
many relations, i.e. one element of Ri can be associated with a set of elements
of Rj . The notion of links built on top of the foreign key relations is critical for
our relational representation since it will provide the basis for the definition of
the set type that lies in the core of our relational representation.

One of the main limitations of the relational algebra representation is that,
although it is ideal for modeling tuples and sets, it can not naturally model
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lists. To be able to represent lists we extend the standard relational algebra by
defining an extension of standard link which we call list link (ll) that adds the
order information in the corresponding collection of objects. More precisely, a
list link as a quintuple ll(Ri, Ak, Rj , Al, LIST (Al)) where Ri, Ak, Rj , Al are
defined as before and LIST (Al) is a list of values from D(Al) defining the order
of the elements of the list. As with the standard link, the association between
Ak and Al encoded in ll models one-to-many relations; while for sl one element
of Ri is associated with a set of elements of Rj , in the case of ll one element of
Ri is connected with a list of elements from Rj

5.
As already mentioned, the objects of type set and list are based on the

notion of links. In fact each link in which a relation Ri participates will give
rise to an object of type set or list, depending on the type of the link. We will
denote the set of sets related with relation Ri with ISL,Ri . Similarly the set of
lists will be denoted with ILL,Ri . We will call the set of attributes of a relation
Ri that are not keys (i.e. referenced keys, foreign keys or attributes defined as
keys but not referenced) standard attributes and denote it with IA,Ri .

The above concepts provide a direct link with the definitions introduced
on the conceptual level presented in Section 2.1. In particular, primitive data
types that constitute a relation correspond to the primitive objects presented
in Section 2.1.1. Tuples whose elements are primitive attributes (from IA,Ri
for Ri ∈ R), sets (from ISL,Ri) and lists (from ILL,Ri) correspond to tuples
presented Section 2.1.2. As already mentioned, the notion of set and list links
which are defined by foreign key associations allow for direct modeling of objects
of types set and list from Sections 2.1.3 and 2.1.4, respectively. Finally, in the
next section we will describe how we can exploit the structures provided by
relational algebra in order to define representation of composite objects, which
directly correspond to general complex objects presented in Section 2.1.5.

2.2.2 Relational Instance

We will now describe how we can retrieve the description of a relational instance.
Each tuple-instance, Ria , of a relation, Ri, can give rise to a relational instance,
R+
ia

. A relational instance is defined recursively in terms of the instances with
which Ria is related. It is a tree structure whose root contains Ria . Each node
at the second level of the tree is a set (list) of instances from some relation
Rj ∈ R related via a link sl(Ri, Al, Rj , Ak) (or ll(Ri, Al, Rj , Ak, LIST (Al)))
with instance Ria . In the same way nodes at level d of the tree are also sets (or
lists) of instances from a given relation. Each of these sets (lists) is related with
one of the instances found in a set (list) of nodes at level d − 1. One can view
a relational instance R+

ia
as that snapshot of the dataset that we get when we

start from instance Ria of Ri and retrieve instances by recursively following the
links defined in the relational schema.

To get the complete description of R+
ia

one will have to traverse possibly
all the relational schema according to the relation associations, i.e., links, de-

5More generally one element of Ri can be associated with a list which elements are sets of
tuples from Rj .
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fined in the schema. This is done via the recursive application of the function
R+
t (Ri, Ria , ·, ·) (Algorithm 2.1), on the associated tuples of Ria in the rela-

tions given by the links SL(Ri), SL−1(Ri) for sets, and LL(Ri), LL−1(Ri) for
lists. The function takes as input an instance Ria of a relation Ri for which it
returns its corresponding relational instance R+

ia
. The reason we follow links in

both directions is that an entity is described both in terms of the entities it
refers to, SL−1(Ri) (or LL−1(Ri)), but also in terms of the entities that refer
to it SL(Ri) (LL(Ri)).

More precisely, for a given tuple, Ria , of any relation, Ri, the function
R+
t (Ri, Ria , ·, ·) will create a relational instance R+

ij
that will have the same

set of standard attributes IA,Ri and the same values for these attributes as
Ria has (Algorithm 2.1, Lines 13-15). Furthermore, for each link sl(Ri, Al,
Rj , Ak) ∈ SL(Ri) ∪ SL−1(Ri) it will add in R+

ij
one attribute of type set,

constructing in this way the set attributes, ISL,Ri . The value of an attribute of
type set is defined based on the link sl with which the attribute is associated,
and it will be the set of tuples – relational instances – with which Ria is asso-
ciated in relation Rj when we follow sl (Lines 17-19). This set is retrieved via
the application of the function set(Ria .Al, Rj, Ak, ·, ·) (Line 18). Similarly, to
obtain attributes of type list we follow all the list links (Lines 21-23). Then the
corresponding lists are retrieved by using list(Ria .Al, Rj, Ak, LIST (Al), ·, ·).

The set and list functions, (given in the second part of Algorithm 2.1), first
perform a simple SQL query which returns the collection of tuples of relation Rj
for which Ak = Ria .Al, i.e. the set or lists of tuples related with Ria in the Rj
relation (Algorithm 2.1, set function, Line 2 and list function, Line 2). Then
it returns the corresponding set (list) of relational instances computed by the
R+
t function for each of the elements of the initial set (list).

To summarize, a relational instance R+
ia

consists of three parts. The first
one corresponds to the set of IA,Ri attributes of Ria , the second one to the
attributes of type set, ISL,Ri , and the third one to the attributes of type list,
ILL,Ri . The last two types are constructed on the basis of the links in which
Ria participates.

Traversing the relational schema in order to retrieve the complete descrip-
tion of a given relational instance can easily produce self replicated loops. For
example, when we follow twice in the row the same link: if we are at an instance
Rij of relation Ri and we follow the link sl(Ri, Al, Rj , Ak) whose opposite link,
i.e. sl(Rj , Ak, Ri, Al) lead us to Rij , then among other instances of relation Rj
we will also visit again that instance of Rj that brought us to Rij , whose in-
formation has already been accounted for. The same situation can appear when
there are two foreign keys, Af1k , Af2k , in relation Rj on the same potential key
Ak of a relation Ri. We have chosen to terminate the acquisition of informa-
tion when a self replicated loop appears. To do that we keep track of all the
instances of the different relations that appear in a given path of the recursion,
this is the role of the instStack variable in Algorithm 2.1. The moment an
instance appears a second time in the given recursion path the recursion termi-
nates (Algorithm 2.1, Line 8). In the next section we will give an example of the
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Algorithm 2.1 Retrieving a tree description of a relational instance.

1: R+t (Ri, Ria , d, instStack)
2: // Ria : instance for which we want to create its relational instance, R+

ia

3: // Ri: the relation to which Ria belongs to
4: // d: the depth of recursion to which we are
5: // instStack: instances visited so far in the current recursion path
6:
7: if Ria ∈ instStack then
8: return null // Came to a loop
9: else

10: stack.push(Ria)
11: end if
12: // Get the values of all standard attributes (i.e. attribute-value) for R+

ia

13: for Al ∈ IA,Ri do
14: R+

ia
.Al ← Ria .Al

15: end for
16: // Recuperate the values of all set attributes for R+

ia

17: for all sl(Ri, Al, Rj , Ak) ∈ SL(Ri) ∪ SL−1(Ri) do
18: R+

ia
.Al ← set(Ria .Al, Rj , Ak, d+ 1, instStack)

19: end for
20: // Recuperate the values of all list attributes for R+

ia

21: for all ll(Ri, Al, Rj , Ak, LIST (Al)) ∈ LL(Ri) ∪ LL−1(Ri) do
22: R+

ia
.Al ← list(Ria .Al, Rj , Ak, LIST (Al), d+ 1, instStack)

23: end for
24: return R+

ia

1: set(Ria .Al, Rj , Ak, d, instStack)
2: set← {Rjm ∈ Rj : Ria .Al = Rjm .Ak}
3: set′ ← ∅
4: for all Rjb ∈ set do
5: R+

jb
← R+

t (Rj , Rjb , d, instStack)
6: set′ ← set′ ∪R+

jb
7: end for
8: return set′

1: list(Ria .Al, Rj , Ak, LIST (Al), d, instStack)
2: list← [Rjm ∈ Rj : Ria .Al = Rjm .Ak ORDER AS LIST (Al)]
3: list′ ← []
4: for all Rjb ∈ list do
5: R+

jb
← R+

t (Rj , Rjb , d, instStack)
6: list′.add(R+

jb
)

7: end for
8: return list′
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construction of a relational instance. Within the example we will also provide
a discussion of the issues related to self replicating loops. For the moment let
us simply note that not allowing them seems a reasonable choice, since these
would result in the introduction of redundant information; however, taking a
closer look at the problem makes the other alternative equally plausible.

Finally, to define a learning problem one of the relations in R should be
defined as the main relation, M , i.e. the relation on which the learning problem
will be defined. Then for classification tasks one of the attributes of this relation
should be defined as the class attribute, Mc, i.e. the attribute that defines the
classification problem. Each of the instances of the relation M will give rise to
their corresponding relational instances which are the ones that will be used
during learning.

The use of the links defined on foreign keys guides the acquisition of the
information related with a given instance. At each moment we know on which
relations we should be looking and which attribute we should be using to retrieve
that information. In Section 2.4 we will define a class of general binary opera-
tors over relational instances. The proposed operators are defined as (recursive)
combinations of the operators defined over the building blocks, i.e. primitive at-
tributes, tuples, sets and lists. In the next chapters we will focus on distance and
kernel operators and propose various distances and kernels over these building
blocks. We should note that we are not necessarily limited to distance and kernel
based approaches. If the appropriate operators are defined for tuples, set and
list attributes one can imagine relational learners of different paradigms, e.g.
decision trees, linear learners etc. In Section 2.5 we will show how the relational
representational paradigm that we have established here relates to some of the
most common approaches used in Inductive Logic Programming.

2.2.3 An Example

We will now illustrate the main ideas of our approach with a simple example
from the field of proteomics. More precisely, we will describe how by starting
from a problem specification we can model the composite data and obtain its
relational representation.

We consider a learning problem where the goal is to characterize proteins as
belonging to a positive or negative class, based the description of the different
substances with which they interact and the family to which they belong. We
assume that as a problem specification we know that a given protein can interact
in various ways with a different number of substances. Moreover, a given protein
family can have various member proteins. Finally, protein families, substances
as well as protein-substance interactions are characterized by a number of at-
tributes (numbers and nominal attributes) and the number of these attributes
is fixed for each type of the objects. For example, a protein family can be char-
acterized by its type as well as some numeric attributes specifying coherence of
member proteins.

Given the above definition of the problem we are now in position to propose
a specific data representation. Different representations of this data are possible;
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the one selected by a practitioner should reflect the semantics of the data as
closely as possible. From the specification we can describe a protein family by a
number of primitive objects of types Tf1 , . . . , Tfk for some k ∈ N, where Tfi is ei-
ther numeric(a, b) or symbolic(S) for some S, i = 1, . . . , k. Similarly, substances
and interactions are characterized respectively by Ts1 , . . . , Tsm and Ti1 , . . . , Tin
(m,n ∈ N), where again Tsi and Tij are numeric(a, b) or symbolic(S) for some
S, i = 1, . . . ,m and j = 1, . . . , n. Since we know that the number of these at-
tributes is fixed for a given type, we can group these primitive data types into
tuples, i.e. we define Tf = tuple(Tf1 , . . . , Tfk), Ts = tuple(Ts1 , . . . , Tsm) and
Ti = tuple(Ti1 , . . . , Tin). As a result, an object of type Tf characterizes protein
families while objects of types Ts and Ti characterize substances and interac-
tions, respectively. A given protein can interact with a number of substances,
and hence the description of a protein should contain information about both
the set of substances with which it interacts and the interactions themselves.
This suggests the following data type to be used for this purpose

set(tuple(Ti, Ts)).

Finally, a protein contains information both about interactions and protein fam-
ilies so that we obtain the following data type which characterizes proteins

tuple(Tf , set(tuple(Ti, Ts))).

As in (Gärtner et al., 2004), the formal specification of this data can be presented
as follows

type Protein = tuple(Family, I-Ss)
type I-Ss = set(I-S)
type I-S = tuple(Interaction, Substance)
type Family = tuple(Prim,...,Prim) // length k
type Substance = tuple(Prim,...,Prim) // length m
type Interaction = tuple(Prim,...,Prim) // length n
type Prim = numeric | symbolic

The above representation corresponds to a relational schema containing four
tables. One corresponding to descriptions of families (Tf ), Families, with pri-
mary key F.ID; a second one, Substances, with primary key S.ID, corresponding
to descriptions of substances (Ts); a third one contains Proteins, with primary
key P.ID; and finally a table defining the interactions P-S-Interaction (Ti). The
latter has two foreign keys P.ID, S.ID, pointing respectively to the Proteins
and Substances tables. To declare the family to which a protein belongs we add
a foreign key, F.ID, to the table of Proteins pointing to the table of Families.
The resulting relational schema is given in Figure 2.4. From the above relational
description it is clear that the concept of a set is created on the basis of a for-
eign key, e.g. the P.ID foreign key in the P-S-Interaction table, which points to
the Proteins table, models the I-Ss set. The example of particular values in this
database is given in Table 2.1.
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Figure 2.4: A relational schema corresponding to a sample database from the
domain of proteomics. Referenced keys are marked in bold, foreign keys in
italics.

Families Proteins P-S-Interaction Substances
F.ID Tf P.ID F.ID Class P.ID S.ID Ti S.ID Ts
Fa PA Fa + PA Da Da
Fb PB Fa - PA Db Db
Fc PC Fc + PB Dz Dz

Table 2.1: The example database corresponding to the relational schema from
Figure 2.4.

Let’s suppose that we want to access the information related with the protein
PA in order to construct the corresponding relational instance. To that end we
should traverse the complete relational schema in a recursive manner using the
defined links. Looking at the Proteins relations we see that there is a foreign key
F.ID referencing the Families relation so we have to move there to recuperate
the description of the family to which the protein PA belongs. The description of
the family FA associated with our protein PA will add one attribute of type set
to the attributes of the Proteins relation. Examining now the Families relation
we see that it does not have any foreign keys that we could follow to another
relation. However, its key F.ID is referenced by the F.ID of the Proteins relation;
following that link back for the FA brings us to a set of two instances from the
proteins relation, this set of instances now adds one more attribute of type
set to the description of FA family. Nevertheless, PA is already present in the
recursion path so we exclude it from the set, according to the design choice
on self replicating loops, and continue only with the PB protein which via the
F.ID foreign key will bring us back to the FA instance of the Families relation.
But FA is also already present in the recursion path so we terminate here the
recursion.
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Figure 2.5: The relational instance that corresponds to protein Pa. The oblique
lines indicate where recursion ends due to the appearance of a self replicating
loop.

The relation between Proteins and Families clearly illustrates why links
should be followed in both directions. A protein is described by the family
to which it belongs so we should follow the link from proteins to families; at
the same time a family is described by the proteins that form it, so we should
now follow the same link in the opposite direction. It is questionable whether
ignoring protein PA when we come from the family FA is the perfect choice.
Ignoring PA leaves somehow incomplete the description of FA, especially if PA
is a typical or important member of the family. On the other hand the infor-
mation that PA brings has already been accounted for, although at a shallower
level of the recursion.

Back in the Proteins relation the key P.ID is referenced by a foreign key
in table P-S-Interaction so now we have to move there and recuperate all the
instances of the P-S-Interaction table associated with our protein PA. We see
that there are two such instances. Again, this set of instances will contribute
one more attribute of type set to the attributes of the Proteins relation. At
relation P-S-Interaction we see that there is one foreign key S.ID pointing to
the Substances relation which we should follow in order to get a description
of each of the substances interacting with our protein. Again this description
will contribute an attribute of type set in table P-S-Interaction. At the Sub-
stances relation, following back the links in which it participates will bring us
to instances that have already been accounted for, so the recursion ends here.

The result is that the final description of PA will consist of two set attributes.
The first one describes the family to which PA belongs, a family which is de-
scribed in terms of its protein members except PA. The second set attribute
describes the set of substances with which PA interacts, substances whose de-
scription was retrieved from the Substances table. The resulting relational in-
stance is given in Figure 2.5.
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2.3 Graphs and Trees

In Section 2.2 we introduced the extended relational algebra representation and
provided a link with the high-level concepts presented in Section 2.1. In particu-
lar, within the proposed formalism it is possible to directly represent composite
objects such as tuples, sets and lists. Moreover, general composite objects mod-
eled using relational formalism can be viewed as tree structures. In this section
we show how the relational representation can be exploited to model other,
more general structures. In particular, we demonstrate how to represent labeled
graphs.

Informally speaking, graphs and trees consist of vertices (or nodes) and edges
that connect pairs of vertices. Graphs are widely used tools to model pairwise re-
lations between objects from a certain collection. As a result, graphs are among
the most common and well-studied combinatorial structures in computer sci-
ence and are widely used to model complex data. In the area of machine learn-
ing and data mining these complex structures have been used to model data
in bioinformatics (e.g. RNA secondary structures) (Zhang and Shasha, 1989;
Passerini et al., 2006), chemoinformatics (e.g. chemical compounds) (Ralaivola
et al., 2005; Ramon and Gärtner, 2003; Deshpande et al., 2003), Natural Lan-
guage Processing (parse or dependency trees) (Collins and Duffy, 2002; Zelenko
et al., 2003; Culotta and Sorensen, 2004) and various types of network data (e.g
transportation systems, communication networks, social network) (Chakrabarti
and Faloutsos, 2006).

We will not directly represent graphs, instead our representation is based on
decompositions of these complex structures into sub-graphs of different types.
In particular, we focus on decompositions into three types of structures: walks,
trees and tree-like structures. These representations provide only an approxi-
mation of these complex structures, nevertheless this approach is widely used
in practice, as it reduces the computational complexity of graph-based algo-
rithms, and in terms of predictive performance it has been proved to be quite
effective. We mention that within the relational algebra formalism it is possible
to model labeled graphs without a loss of information, however, because of the
above mentioned advantages of different approximations, we will not exploit the
”exact” representation in the remaining part of this study.

In order to formally introduce walks, trees and other related structures we
first provide some basic concepts and notations of the mathematical graph the-
ory. For more in-depth discussion of graphs and related concepts the reader is
referred to (Diestel, 2005).

Definition 2.1 (Graph). A graph is defined as an ordered pair G = (V, E)
where V = {v1, . . . , vk} is a finite set of vertices and E is a finite set of edges.
In the case of undirected graphs E = {{vi, vj} : vi, vj ∈ V}, while for directed
graphs E = {(vi, vj) : vi, vj ∈ V}.

We denote the number of vertices in a graph G by |G(V)| (or simply by
|G|) and the number of edges by |G(E)|. Moreover, we shall use the following
notation for edges: eij = {vi, vj} (or eij = (vi, vj) for directed graphs). In the
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remaining part of this study we will focus on graphs where each vertex and edge
is labeled.

Definition 2.2 (Labeled Graph). A labeled graph is a graph G = (V, E) where
there is additionally a set of vertex labels LV and edge labels LE together with
functions lV : V → LV and lE : E → LE that assign labels to vertices and edges,
respectively.

Usually we assume that all the elements in LV are of the same type denoted
by TV . Similarly, all the elements in LE are assumed to be of type TE . Tradition-
ally, only graphs with symbolic labels have been considered in the literature (i.e.
TV = TE = symbolic(S) for some S), however, in general there is no restriction
on the types of objects in both LV and LE . In the rest on this work we will
usually assume that the labels are vectors of the same type, i.e. LV ⊆ Rm and
LE ⊆ Rn for some values of m and n. We will use lab(x) to denote, in a more
general form, the label of x; whether lab(x) = lV(x) or lab(x) = lE(x) will be
clear from the type of the x argument, i.e. vertex or edge. By dim(lab(x)) we
will denote the dimensionality of the label vector lab(x) which obviously will
be the dimensionality of either LV or LE depending again on the type of the x
argument.

One the of most popular approaches for representing and handling graph
structures is based in an algebraic framework. The central concept here is the
adjacency matrix.

Definition 2.3 (Adjacency Matrix). The adjacency matrix A of G(V, E) is
defined as Aij = 1 ⇐⇒ {vi, vj} ∈ E (or Aij = 1 ⇐⇒ (vi, vj) ∈ E for directed
graphs) and Aij = 0 otherwise.

It can be shown that there exists an unique adjacency matrix for each graph
(up to permuting rows and columns), and it is not the adjacency matrix of any
other graph (Diestel, 2005). Now we are in position to formally define different
specialized types of graphs.

Trees and Other Types of Graphs

Some special types of graphs that are relevant to our work are walks and trees.

Definition 2.4 (Walk). A walk W in a graph G is a sequence of vertices and
edges, W = [v1, e12, v2 , . . . , es,s+1, vs+1], such that vj ∈ V for 1 ¬ j ¬ s+ 1 and
eij ∈ E for 1 ¬ i ¬ s. Walks may end in an edge, e.g. W = [v1, e12, v2, . . . , es,s+1].

The length l of a walk W , denoted as length(W ), is the number of vertices
and edges in W ; for W = [v1, e12, v2 , . . . , es,s+1, vs+1] it is l = 2s+1. We denote
W [i] its element at the position i = 1, . . . , l. Finally, the set of all walks of length
l in a graph G is W(G)l.

Definition 2.5 (Tree). A tree T is defined as graph where any two vertices are
connected by exactly one path, i.e. a tree is a connected and acyclic graph.
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As in the case of general graphs we are mainly interested in labeled trees
where labels are assigned to both nodes and edges. Similarly to graphs the size
of a tree T is denoted by |T |, i.e. the number of nodes in T . The root of T is
denoted by root(T ); obviously root(T ) ∈ V. In this work we focus on directed
rooted trees where the “direction” is from the root down to the leafs. The height
h of a tree T , denoted as height(T ), is the length of the longest walk from the
root node to any of the leaf nodes. It should be mentioned that as in walks
we allow trees to have edges as leafs. We denote a set of trees by T , and a set
of all trees of height h in a graph G by T (G)h. For directed graphs and trees
we define the neighborhood of a node, v, as δ(v) = {e : e = (v, u) ∈ E}, and
the neighborhood of an edge, e, as δ(e) = {u : e = (v, u) ∈ E}; note that in
fact the neighborhood of an edge is a one element set, containing a single node.
For undirected graphs and trees the corresponding neighborhoods are defined
as δ(v) = {e : e = {v, u} ∈ E} and δ(e) = {u : e = {v, u} ∈ E}. We call a node
v a leaf iff δ(v) = ∅. Similarly we call an edge e a leaf iff δ(e) = ∅. Finally, for a
node v the elements of δ(v) are called the children edges of v and the elements
of {u : (v, u) ∈ E} are the children nodes of v. It is important to realize that a
tree T can be alternatively defined by recursive alternating application of δ(v)
and δ(e), where the recursion starts with δ(root(T )). Finally, we note that in
the trees we consider, elements at a given height are of the same type, and will
either TV (for nodes) or TE (for edges).

The main focus in this work is on unordered trees, i.e. trees where no order
is imposed among the elements of δ(v) for v ∈ V. If the order among elements of
δ(v) is given (e.g. by the labels of the edges) we obtain ordered trees. We could
also combine ordered with unordered trees (i.e. ∃v ∈ V where the order among
δ(v) is given, and ∃v ∈ V for which the order among δ(v) is not specified) such
that we obtain mixed trees.

2.3.1 Representation of Graphs

As already mentioned, graphs are not directly represented within our frame-
work. Instead, we represent graphs as sets resulting from their decompositions
into different sub-parts. Depending on the actual type of elements in the de-
compositions, different graph representations are obtained. It should be stressed
that in any case the resulting representation provides only an approximation of
graphs, and depending on the decompositions the resulting representation could
be more or less accurate. For example, it is expected that decompositions into a
set of atoms will be less accurate than decompositions into, say cyclic patterns
as considered by Horváth et al. (2004). Moreover, the actual representation di-
rectly influences the computational complexity of the different machine learning
algorithms applied over this representation. As a result, decompositions into a
set of atoms might be appropriate for a given problem and decomposition into
other substructures will be unnecessarily complex.

This approach of representing graphs is widely used and has been proved to
be quite effective in practical applications. For example, in almost all the kernels
over labeled graphs, the decompositions are among others into walks (Gärtner,
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2002; Kashima et al., 2003; Mahé et al., 2004), shortest paths (Borgwardt and
Kriegel, 2005) and subtrees (Ramon and Gärtner, 2003)6. The problem of select-
ing the ”proper” decomposition from a number of predefined decompositions (or
more generally combination of these decompositions) will be the focus in Chap-
ter 5.

In this work we focus on decompositions into three types of substructures:
(i) walks of various lengths, (ii) trees of different heights and (iii) particular
types of tree-like structures. In the rest of this section we will describe these
decompositions in more detail and show how these structures can be modeled
within our relational representation.

The two first decompositions based on walks and trees are obtained from a
depth first exploration, that includes both vertices and edges, emanating from
each node in a graph and yielding all the walks of length l and all the trees
of height h. We mention that we only consider unordered trees where the order
among the siblings at a given height is not important. In particular, for l = 1
(and h = 1) a graph is represented as the set of all its vertices. For l = 2 a graph
is decomposed into a set of two-element tuples with the first element of each pair
being a vertex, and the second – one of its adjacent edges. Similarly for h = 2
the corresponding decomposition is into trees with vertices as roots connected to
all their adjacent edges. More formally, the decomposition into trees of height h
of a graph G = (V, E) can be represented as a set of trees T (G)h = {T1, . . . , Tr}
of various heights where the root of each tree is a node from G, i.e. root(Ti) ∈ V
for i = 1, . . . , r and height(Ti) = h. Obviously r = |G(V)|. For decompositions
into walks of length l, a graph G can be represented as a set of walks W(G)l =
{W1, . . . ,Ws} where ∀Wi∃v∈V such that Wi[1] = v. Moreover, length(Wi) = l
and in general for long walks the cardinalities of the decompositions will be
much larger that number of vertices in a graph, i.e. s� |G(V)|.

In our decompositions into walks and graphs we do not allow repetitions of
the same two-nodes-cycles. As a result, we avoid the problem of tottering. That
is, we exclude from the decomposition walks of the form W = [v1, e12, v2, . . . ,
es,s+1,vs+1] with vi = vi+2 for some i since this is likely to remove noise from
the representation of a graph. As an example consider a chemical molecule rep-
resented as a labeled graph where vertices are atoms and edges are covalent
bonds. In such case the existence of a walk with labels C-C-C might indicate
a succession of 3 C-labeled vertices in the graph, or alternatively it might cor-
respond to a succession of 2 C-labeled vertices visited by a tottering random
walk (Mahé et al., 2004). In the case of trees we do not allow such walks in the
trees’ descriptions. The problem of tottering was first recognized in (Mahé et al.,
2004) where the authors proposed a modification of the random walk model in-
troduced by Kashima et al. (2003), however, their algorithm did not lead to
an improvement in predictive performance. Similar observations were also re-
ported in (Fröhlich et al., 2005) where the authors compared kernels based on
trees with, and without, tottering. Even though the graph representation based

6Sometimes the decompositions are constructed implicitly. Examples include the works
of Gärtner (2002) and Kashima et al. (2003).
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on tottering-free walks does not seem to bring an improvement to the predictive
performance, it has the advantage of inducing decompositions smaller in size.
This has a direct influence on the computational complexity of the different data
mining operators applied over this representation7.

The last type of sub-graphs on which we focus in this study are recursive
tree-like structures which are constructed by a depth first exploration emanat-
ing from each edge and where the recursion continues further through the two
adjacent nodes. This is in contrast with ”standard” trees which are constructed
by recursive exploration which starts from δ(v) for v ∈ V; tree-like structures
are defined by alternating application of δ(e) and δ(v) and the recursion starts
with δ(e) for e ∈ E . In the case we limit the recursion depth to d = 1 the
corresponding set of decomposition contains only edges, while for d = 2 the
elements are tree-like structures having edges as roots which are connected to a
set of corresponding vertices. For a graph G = (V, E) decomposed into tree-like
structures with recursion depth limited to d we obtain a set {T ′1, . . . , T ′t} where
root(T ′i ) ∈ E , i = 1, . . . , t and t = |G(E)|.

Relational Representation of Graphs

Decompositions into the above structures can be easily represented within our
relational framework. In the remainder of this section we will formally model
a labeled graph G = (V, E) for which we assume that TV and TE are the data
types corresponding to labels of vertices and edges, respectively. We start with
decompositions into walks and let tuplel(TV , TE) be the data type corresponding
to a walk W with length l, constructed by concatenating the labels of elements
of W , i.e. tuplel(TV , TE) = tuple(TV , TE , . . .︸ ︷︷ ︸

l

). In this case G is of the following

data type
set(tuplel(TV , TE)).

To formally define a data type of G, where decomposition into trees is used we
define treeh(TV , TE) as the data type of a tree of height h, i.e. for h = 1 the
corresponding data type is tree1(TV , TE) = TV ; for h = 2 it is tree2(TV , TE) =
tuple(TV , set(TE)); for h = 3 we have tree3(TV , TE) = tuple(TV , set(tuple(TE , TV))),
etc. In this case G is of the following data type

set(treeh(TV , TE)).

Finally, the data type of G, where decomposition into tree-like structures of
depth d is used, is of the following data type

set(tsd(TE , TV))

where tsd(TE , TV) is a data type corresponding to a tree-like structure of depth
d, and is defined in a similar way as treeh(TV , TE).

7On the other hand, one problem with the decomposition of molecules into sets of walks of
length l, in which tottering is not allowed, is that small molecules for large values of l will be
associated with an empty set of walks. This problem will be discussed in detail in Section 5.4.



2.4. OPERATORS OVER RELATIONAL REPRESENTATIONS 33

(a) (b)

Figure 2.6: Two relational representations of labeled graphs. The first one (a)
corresponds to the decomposition into trees while the second one (b) corresponds
to decompositions into tree-like structures.

Assuming that TV and TE are tuples of primitive data types, i.e. TV =
tuple(TV1 , . . . , TVm) and TE = tuple(TE1 , . . . , TEn) where TVi , TVj are either of
type numeric or symbolic (i = 1, . . . ,m and j = 1, . . . , n) the trees and tree-like
structures can be easily represented in a relational database. The two corre-
sponding relational representations are presented in Figure 2.6. The relational
representation in the case of trees is given in chart (a) while a relational struc-
ture corresponding to decomposition into tree-like structures is given in plot
(b). Referenced keys are marked in bold, foreign keys in italics. Both of the
representations assume that descriptions of edges in given in relation ”Edges”
and description of vertices are encoded in relation ”Vertices”. The main differ-
ence between these relational schemes is that in the decomposition into trees
the recursion starts with the ”Vertices” relation, while in decompositions into
tree-like structures the recursion starts with ”Edges”.

2.4 Operators over Relational Representations

In this section we will define general data mining operators applied over the
proposed relational representation; data mining operators will be the main fo-
cus in the remaining part of this work. In this study we only consider binary
operators which take two relational instances as inputs and return a numeric
value as an output. In particular, in Chapter 3 we focus on distance functions
where the output value corresponds to the dissimilarity between two relational
instances, while in Chapter 4 we propose various kernels which for two input
objects return their similarity (or equivalently the inner product in some fea-
ture space). It should be mentioned that other data mining operators are also
possible, e.g. unary operators performing relational feature selection, operators
used within relational decision trees, etc.

As already mentioned in Section 2.1.5, our operators work in a recursive man-
ner traversing the full tree structures of the input relational instances. During
the recursion, the components of the relational instances are visited in exactly
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the same order as when these were constructed (see Algorithm 2.1). The oper-
ators are defined as a recursive combination of operators defined on relational
instances’ sub-parts, both primitive (i.e. numeric and symbolic) and compos-
ite (tuples, sets and lists). For computational reasons the depth of recursion
is controlled by a depth parameter which affects the estimation of the final
operator value (in Section 3.4 we will examine its impact in the context of dis-
tances). Finally, the data mining operators we consider in this study are defined
in a declarative manner. i.e. the practitioner specifies which operators should be
used for each of the sub-objects. In general, there is a number of different data
mining operators, each one with different semantics, and it is up to the analyst
to declare which specific operator should be used for a given data type.

We denote the operators over two objects of data type type as follows

operatortype(·, ·)→ R

where type is primitive8, tuple, set or list. We mention that in some cases the
co-domain of operatortype is a subset of R, e.g. for the distance operators from
Chapter 3, operatortype takes values in R+

0 . Moreover, we usually assume that
operatortype returns a normalized value, i.e. ∀x, y operatortype(x, y) ¬ 1.

Algorithm 2.2 Operator on relational instances.

1: operator(R+ia , R
+
ib
)

2: // R+
ia
, R+

ib
: relational instances

3:
4: Ria ← the main tuple-instance of R+

ia

5: Rib ← the main tuple-instance of R+
ib

6: Ri ← the relation to which Ria and Rib belong
7:
8: return operatortuple(Ria , Rib , Ri, [], [], 1)

The full procedure of computing the operator over relational instances is
given by Algorithm 2.2 which exploits the function defined in Algorithms 2.3
(Algorithm 2.3 uses the functions from Algorithms 2.4 and 2.5). The operator
function, given by Algorithm 2.2, shows how the computation of the operator be-
tween any two relational instances, R+

ia
, R+

ib
is done. This function directly calls

the operatortuple function from Algorithm 2.3 which takes as arguments the
two tuples Ria , Rib , of a given relation Ri, which are the main tuple-instances
of R+

ia
and R+

ib
, respectively. After the current recursion depth (given by the

d parameter) and the self replicated loops (variables aStack and bStack) are
controlled the operatortuple function is divided in two independent blocks.
In the first part of this algorithm (Lines 20 to 31), from the two input tuples

8For simplicity, in this section we do not make a distinction between different primitive
data types and assume that the operator operatorprimitive can be applied over objects of
types numeric and symbolic.
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Algorithm 2.3 Operator on tuples.
1: operatortuple(Ria , Rib , Ri, aStack, bStack, d)
2: // Ria , Rib : the tuple-instances from Ri
3: // aStack, bStack: instances visited so far during the recursion
4: // d: current depth of recursion
5:
6: if d > MAX −DEPTH then
7: return null
8: end if
9: if Ria ∈ aStack then

10: return null // A loop has occurred, Ria could be used to describe Ria
11: else
12: aStack.push(Ria)
13: end if
14: if Rib ∈ bStack then
15: return null // A loop has occurred, Rib could be used to describe Rib
16: else
17: bStack.push(Rib)
18: end if
19:
20: // Recuperate elements of tuples and apply corresponding operators
21: array ← vector of size |IA,Ri |+ |ISL,Ri |+ |ILL,Ri |
22: for Ak ∈ IA,Ri do
23: array(k)← operatorprimitive(vak, vbk)
24: end for
25: for sl(Ri, Ak, Rj , Al) ∈ SL(Ri, ) ∪ SL−1(Ri, ) do
26: array(k)← operatorset(vak, vbk, Rj , aStack, bStack, d+ 1)
27: end for
28: for ll(Ri, Ak, Rj , Al, LIST (Al)) ∈ LL(Ri, ) ∪ LL−1(Ri, ) do
29: array(k)← operatorlist(vak, vbk, Rj , aStack, bStack, d+ 1)
30: end for
31: aStack.pop(); bStack.pop();
32:
33: // Combine results
34: return combinetuple(array)
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Algorithm 2.4 Operator on sets.
1: operatorset(va, vb, Rj , aStack, bStack, d)
2: // va, vb: sets of relational instances from Rj
3: if va = ∅ XOR vb = ∅ then
4: return onlyOneEmptyV alue
5: else if va = ∅ AND vb = ∅ then
6: return bothEmptyV alue
7: end if
8:
9: // Recuperate elements of sets and apply operators on tuples

10: bag ← |va| × |vb| array
11: for all (Rjk , Rjl) ∈ va × vb do
12: o← operatortuple(Rj , Rjk , Rjl , aStack, bStack, d)
13: if o 6= null then
14: bag.add(Rj , Rjk , Rjl , o)
15: end if
16: end for
17:
18: // Combine results
19: return combineset(bag)

Algorithm 2.5 Operator on lists.
1: operatorlist(va, vb, Rj , aStack, bStack, d)
2: // va, vb: lists of relational instances from Rj
3: if va = ∅ XOR vb = ∅ then
4: return onlyOneEmptyV alue
5: else if va = ∅ AND vb = ∅ then
6: return bothEmptyV alue
7: end if
8:
9: // Recuperate elements of lists and apply operators on tuples

10: bag ← |va| × |vb| array
11: for all (Rjk , Rjl) ∈ va × vb do
12: o← operatortuple(Rj , Rjk , Rjl , aStack, bStack, d)
13: if o 6= null then
14: bag.add(Rj , Rjk , Rjl , o)
15: end if
16: end for
17:
18: // Combine results
19: return combinelist(bag)
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operatortuple recuperates all the values (vak and vbk) of an attribute Ak which
is of type primitive (Line 22), set (Line 25) and list (Line 28). The correspond-
ing objects are matched by means of the appropriate operators and the results
are stored in an one-dimensional array of size being the total number of all at-
tributes. In the second part of the algorithm, after all pairwise operators between
the relational instances have been computed, the combinetuple(·)→ R function
is applied on that collection and combines the corresponding results. Different
combination strategies are possible and the one used is selected according to the
user’s choice. For example, in the context of distance measures, we can define
this combination as a normalized Euclidean metric (Definition 3.28); for kernels
the possible combinations include the simple (normalized) sum (Definition 4.5)
or product (Definition 4.6) of the corresponding sub-kernels.

If Ak is an object of type set (Line 25) or list (Line 28) then the values
vak, vbk, are actually the two sets (lists) of relational instances that are associ-
ated with Ria and Rib in relation Rj when we follow the link sl(Ri, Ak, Rj , Al)
(ll(Ri, Ak, Rj , Al, LIST (Ak))). In order to compute the operator between these
two sets (lists) we use the function operatorset (operatorlist) given in Algo-
rithm 2.4 (2.5). If both input objects are empty then operatorset (operatorlist)
will return a value specified by bothEmptyV alue; if only one of them is empty
then the corresponding operator will return a value onlyOneEmptyV alue. The
values of both constants depend on the actual type of operator: for distances
it is natural to set bothEmptyV alue to be 0, and onlyOneEmptyV alue to the
maximum possible distance (since we are working with normalized operators
this will be 1). In the case of kernel operators, to assure that we obtain valid
kernels (Definition 4.2), we set bothEmptyV alue to 1 and onlyOneEmptyV alue
to 0. In the case when both objects are not empty, operatorset and operatorlist
will work in a similar manner as the operator defined on tuples. More precisely,
we first recuperate all the elements of sets (lists) and compute all the pairwise
operators between the elements of the two sets (lists). Remember that these sets
(lists) are sets (lists) of relational instances whose distances have to be computed
by using again the operatortuple function given by Algorithm 2.3. The results of
the matching process are stored in a two dimensional array where its rows and
columns correspond to the elements of the two corresponding sets (lists). After
all pairwise operators between the relational instances have been computed we
apply the function combineset (combinelist) combining the results. Again, the
particular combination schema is specified by a practitioner and should reflect
the semantics of the problem at hand. For example, in the context of distances
combineset can be defined as the minimum of all the distances over sets’ ele-
ments (Definition 3.15), while for kernels combineset is usually defined as the
average value of all the corresponding sub-kernels (Section 4.2.3).

To summarize, the general data mining operators operatortype over relational
instances are defined as a particular combination of operators defined over ob-
jects sub-parts. In all the sub-operators, with the exception of operatorprimitive,
we first recuperate the actual structure of objects from the corresponding re-
lational representations and compute all the pairwise operators between the
objects’ decompositions. It is the internal structure of a composite object which
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determines which elements could be matched. For example, in case of tuples
only elements corresponding to a given tuple’s dimension can be compared. On
the other hand, sets and lists are less structured, and hence for these objects
we have more freedom in matching their sub-parts. The actual value returned
by the operator is computed by combining the corresponding results of pairwise
sub-parts matching. This is implemented in the combinetype function. Finally,
we mention that in case of operatorprimitive, the above procedure is greatly
simplified since primitive attributes are not decomposable, and hence the cor-
responding retrieval and combination processes are trivial.

An Example

As already mentioned our system is declarative in nature so that the practi-
tioner can declare which operator should be used for each building block that
constitutes a learning instance. In this section we will provide an example of how
it can be done in practice; we will show how this can be done using the problem
from proteomics from Section 2.2.3. Assuming that we work with distances, we
could declare the operators for different data types as follows

type Protein = tuple(Family, I-Ss) : distanceTuple1
type I-Ss = set(I-S) : distanceSet
type I-S = tuple(Interaction, Substance) : distanceTuple2
type Family = tuple(Prim,...,Prim) : distanceTuple2
type Substance = tuple(Prim,...,Prim) : distanceTuple1
type Interaction = tuple(Prim,...,Prim) : distanceTuple1
type Prim = numeric | symbolic
symbolic : distanceSymbolic
numeric : distanceNumeric

where distanceTuple1 and distanceTuple2 are different distances over tuple
data types, and distanceNumeric, distanceSymbolic and distanceSet are dis-
tances over numeric, symbolic and set data types, respectively. Note, that al-
though Interaction and Family are the same general data types, i.e. tuple,
they have been assigned different distances. On the other hand, the Interaction,
Substance and Protein data types are associated with the same distance over
tuples, even though they occur on different depths of the composite object.

Parameterized Operators

In the remaining part of this study we will also consider parameterized operators
which are characterized by the fact that the matching of the corresponding
parts (implemented by the combinetype → R function in Algorithms 2.3, 2.4
and 2.5) depends on a number of adjustable parameters. The main advantage of
such parameterized operators is that we can adjust their parameters (preferably
within the learning process) so that they better reflect the semantic of a problem
at hand.
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More formally, we assume that the (numeric) parameters are given by P . In
order to incorporate these parameters to the various operators we extended the
definition of the function combinetype(·)→ R as

combinetype,P (·)→ R.

In the context of distances, one particular example of the above operator that we
consider in this work is the extension of combinetuple(t) (t is a vector) exploited
in Algorithm 2.3. It is straightforward to define P as a vector of real numbers
where each dimension corresponds to the ”importance” of each element in t. In
the case combinetuple(t) is the Euclidean metric, then combinetuple,P (t) defines
a weighted Euclidean metric. More generally, P can take a form of a positive
semi-definite matrix such that combinetuple,P (t) corresponds to the Mahalanobis
distance measure (Definition 3.14). In Chapter 5 we will examine different ways
such that P can be automatically adjusted for a problem at hand.

2.5 Related Work

In this section we will describe some of the related work which is relevant to
relational algebra representation.

As already mentioned the proposed relational formalism can be considered as
a specialized version of the formalism based on the higher-order logic of Lloyd
(2003); Gärtner et al. (2004). The representation language that they used is
that of typed λ-calculus which allows for the natural representation of sets and
multisets, a main difference from first order terms. The proposed approach al-
lows also for the modeling of more complex structures like lists, trees or graphs.
Individuals are represented as terms of the typed λ-calculus formal logic. The
composition of individuals from their parts is expressed in terms of a fixed type
structure that is made up of function types, product types and type construc-
tors. Function types are used to represent types corresponding to sets and mul-
tisets, product types represent types corresponding to fixed size tuples and type
constructors (of various arities) for structured objects such as lists and trees.
Moreover, type constructors of arity 0 are used to construct elementary types
(called closed types) such as booleans and numbers. The definition of graphs
in this framework closely corresponds to the mathematical definition of labeled
graphs (Section 2.3). Each type defines a set of terms that represent instances
of that type.

The concepts used in (Lloyd, 2003) can be directly mapped to concepts used
in our work. In particular, function types correspond to sets while product types
are directly related to tuples. Moreover, in (Lloyd, 2003) the types constructors
of arity 0 give rise to primitive data types while a particular class of type con-
structor corresponds to lists. Our relational formalism is less expressive since it
is function-free. Additionally, our formalism is less formal, however, it is more
intuitive, easier to understand and straightforward to use in practice. There
is also a difference when dealing with objects of type set and list. For exam-
ple, lists considered by (Gärtner et al., 2004) could in fact contain elements
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of different type. This might introduce a computational burden while apply-
ing a data mining operator (e.g. a distance or a positive semi-definite kernel)
over these structures since the elements of different types need to handled cor-
rectly (see Gärtner et al., 2004, Example 4.1). On the other hand multi-sets
in the λ-calculus framework are potentially handled more efficiently since the
multiplicity of the corresponding elements is already given and does not have
to be determined each time from the sets’ structure.

The modular representation of data is widely used in object-oriented databases (Kim,
1990; Cattell et al., 2000). Most of the existing systems are in fact object-
relational databases where the support to object-oriented data modeling is built
”on top” of the standard relational functionality (Stonebraker, 1996). In addi-
tion to the data types considered in this study, other data types are useful
in practical applications. Examples include e.g. objects of type stack, queue
and array (Stonebraker, 1996). The other major difference is that the existing
object-oriented database systems support objects’ inheritance, which allows for
more flexibility in defining new data types.

Comparison with Inductive Logic Programming

There is a straightforward mapping of the concepts of relational algebra to these
of logic programming (Džeroski and Lavrac, 2001):

• a relation name Ri is a predicate symbol Ri,

• a relation Ri, i.e. a set of tuples, corresponds to a predicate Ri defined
extensionally as a collection of ground facts,

• an attribute Al of the relation Ri is an argument of the predicate Ri,

• a tuple Rij corresponds to the jth ground fact built on the predicate Ri.

With respect to the above definitions and mappings the main difference of re-
lational algebra from logic programming is the direct ability of the former to
define types, i.e. each attribute of a relation has a given type defined by its
domain, and associations between tuples based on the notion of foreign keys.

One of the first systems directly exploiting the concepts of relational algebra
and foreign keys was MIDOS (Wrobel, 1997). However, the work of Wrobel
(1997) is was only focused on the KDD subgroup discovery task whereas our
system can be used in various learning paradigms.

Two of the most popular learning paradigms in relational learning are learn-
ing from interpretations and learning from entailment (Muggleton, 1995; Raedt,
1997; Džeroski and Lavrac, 2001; Blockeel, 1998). We will briefly sketch the rep-
resentation differences between the two settings. In relational learning knowledge
is usually separated to two parts, knowledge concerning the training examples
and background knowledge, B, i.e. knowledge which is common to many ex-
amples. The differences in the two approaches are in the way knowledge is
represented and in the notion of coverage that they use. We will focus mainly
on the knowledge representation.
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In learning from interpretations each example is described by a set of ground
facts, e. The interpretation that represents the example is the set of all the
ground facts that are entailed by e ∩ B, i.e. the minimal Herbrand model of
e∩B. Usually each example comes in the form of a Prolog program; background
knowledge is also represented in the form of a Prolog program. In learning
from interpretations there is a clear separation of examples and background
knowledge. There is also a clear separation between examples since one of its
main assumptions is that these are independent of each other, i.e. there are no
associations between them. For example, a coverage test would examine only a
single example at the time.

In learning from entailment learning examples are in general represented
by clauses but in practice are most often represented by a single fact, every-
thing else even information concerning an individual example is placed within
B, usually represented as a Prolog program. Thus, unlike learning from interpre-
tations, there is no clear separation of the information concerning the examples
and the background knowledge. Furthermore, no assumption is done about the
independence of examples, so training examples can be linked to other train-
ing examples. This on the one hand makes it possible to learn more complex
concepts, like recursive concepts, but considerably increases the computational
burden since every time the complete information has to be considered, i.e. all
training examples together with the background knowledge. For example a cov-
erage test on a single example in principle would have to consider not only the
background knowledge but also all other examples.

To place the representation constructed byR+
t (·) (Algorithm 2.1) in the con-

text of the representations constructed by the two aforementioned approaches
let us first consider a second alternative in acquiring the complete information
related with an instance Rij that avoids the use of recursion. Let us define the
function set′ as

set′(Rij ) = {Rjm ∈ Rj : ∃Rj∈R, ∃Al∈Ik,Ri , ∃Ak∈Ik,Rj , Rjm .Ak = Rij .Al}

This function will return the set of instances found in any relation of the rela-
tional database schema that have a key attribute that shares a value with one
of the key attributes of Rij . The produced set is the set of instances associated
with Rij at level one. To get all instances associated with Rij in a depth d we
simply have to apply the set function to all the instances retrieved at the d− 1
depth. To get the complete set of instances we simply get the union of all sets
for each depth up to the maximum depth (Algorithm 2.6, function R+

f (·)). The
union guarantees that each instance appears at most once. We will first exam-
ine the similarities and differences of the example representation constructed by
R+
f (·) with respect to existing representational paradigms in relational learning

and then consider in more detail the differences of R+
t (·) from R+

f (·).
Algorithm 2.6 is equivalent to the INTERPRETATIONS algorithm given

by Blockeel (1998) in order to retrieve the interpretation of an instance from
the relations of a relational database9 in the context of learning from interpreta-

9Excluding these relations that are part of the background knowledge.
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Algorithm 2.6 Retrieving a flat description of a relational instance.

1: R+f (Rij )
2: // S the complete set of instances associated with Rij
3: // S′ the set of instances associated with Rij at level d
4: S = S′ = Rij
5: for d = 1 to MAX −DEPTH do
6: S′ = ∪x∈S′set′(x)
7: S = S ∪ S′
8: end for
9: return S

tions. In fact, the set of instances returned byR+
f (Rij) is the interpretation that

corresponds to Rij , including also the related part of the background knowledge
since we make no distinction between relations that belong or do not belong
to the background knowledge. This is exactly the minimal Herbrand model of
e ∩B as it is used in learning from interpretations. There is however an impor-
tant difference with respect to learning from interpretations: we do not make
any assumption about the independence of learning examples. The collected set
of instances describing a given learning example, Rij , could very well incorpo-
rate information about other learning examples with which Rij is associated.
In that sense the representation is closer to the representation used in learning
from entailment where learning examples can be described in terms of their as-
sociations with other learning examples and their properties, but unlike learning
from entailment learning operators are not going to be applied to the complete
database but only to that part which is relevant to Rij and is contained in
R+
f (Rij).

The representations constructed by R+
t (Rij) and R+

f (Rij) contain exactly

the same set of instances; the union of all instances found in the R+
t (Rij)

gives us R+
f (Rij). Nevertheless, contrary to the flat representation assumed by

R+
f (Rij), R+

t (Rij) provides a structured representation in which an instance
of a relation can be present more than once inside the tree, the only restriction
is that it can appear at most once in a given path from the root to a leaf.
The multiple appearances are not redundant but describe different local aspects
of the relational instance with each appearance occurring in a different local
context. The advantage of the tree representation is that it provides readily
information about the structural properties of the learning example, i.e. how
the various tuples-ground facts that constitute a relational instance are related
to each other.

2.6 Conclusions

We proposed a novel and general representational formalism that builds directly
over the concepts of (extended) relational algebra, unlike existing work which
was mainly logic programming oriented. Our algorithm works in a recursive
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manner traversing the relations of the relational schema in order to gather the
relevant information. The recursion among the different relations is guided by
the concept of links which are based on the notion of foreign keys. Foreign keys
provide a natural and intuitive way to provide a declarative bias and render un-
necessary type definitions extensively used in inductive logic programming. At
each moment they provide direct access to the relevant information providing
increased efficiency. The system is directly operational on any learning prob-
lem represented by means of a classical relational database, without any need
for conversion as it is the case with almost all first order based systems. The
algorithmic concepts are expressed in terms of relational algebra terminology
bringing the underlying notions much closer to the intuition of the database
community thus increasing the potential of wider use by less expert users. Fi-
nally, the relational representation has also the advantage of having as a special
case the typical propositional representation, which simplifies the design of a
relational algorithm, naturally encompassing an existing method operating on
a single table.

It is advantageous to consider relational instances as composite objects which
can be decomposed into simpler sub-parts. These sub-objects are further decom-
posed until non-decomposable (primitive) objects such as numbers or nominal
attributes are encountered. The non-primitive building blocks are tuples, sets
and lists. More complex objects such as trees and graphs can be also represented,
however, the latter only through various approximations.

This modular representation of complex objects is very intuitive and con-
siderably simplifies the design of learning algorithms operating over composite
structures, since various (parameterized) data mining operators can be defined
as a combination of operators defined on the building blocks of learning in-
stances. More precisely, the data mining operators we consider in this study are
defined in a declarative manner where the practitioner first defines the differ-
ent data types which constitute the learning examples, and then declares which
operator should be used for each data type. In general, there is a number of
different data mining operators, each one with different semantics, and it is up
to the analyst to declare which specific operator should be used for a given data
type. It is even possible to define different operators for objects of the same gen-
eral type e.g. sets of lists, and sets of tuples, etc. Various data mining operators
will be the main subject of the subsequent chapters. In particular, in Chapter 3
we discuss distance operators, in Chapter 4 we focus on kernels, and finally in
Chapter 5 we consider adaptive operators.
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Chapter 3

Distances

Distance-based learning is one of the oldest, yet surprisingly effective paradigm
in the fields of machine learning and data mining (Duda and Hart, 1973). When
combined with the available background knowledge, distance-based methods
have advanced the state-of-the-art in various domains (Globerson and Roweis,
2006; Wettschereck et al., 1997; Saul et al., 2006).

It is clear that the choice of a distance measure is crucial for the success-
ful applications of distance-based algorithms, rendering the learning problems
easier to solve. Depending on how training instances are represented, defining a
distance measure which is able to accurately and naturally model the underlying
semantics of the data is a challenging task. In most of the existing distance-based
relational systems the representation of learning instances is based on logic pro-
gramming approach typically employed within the inductive logic programming
community (Horváth et al., 2001; Ramon and Bruynooghe, 1998). More recently,
the focus has turned to special types of complex objects, namely specific topo-
logical structures such as general graphs (Washio and Motoda, 2003), or specific
types of graphs such as sequences (Durbin et al., 1999), trees (Bille, 2005) and
sets (Eiter and Mannila, 1997; Tatti, 2007; Woźnica et al., 2006a).

Almost all the existing relational distance-based approaches from the litera-
ture are constrained to a single monolithic type of a complex distance measure.
Nevertheless, it is obvious that there is no single distance measure that is overall
better than any other for all types of problems. Typically, a practitioner should
consider different distances to find the one that best matches the problem re-
quirements. Thus one can imagine that the final relational distance measure is
derived by a combination of distance measures defined over the sub-parts of
composite objects. To make things even more complicated it can be that dif-
ferent constituent sub-objects of the same general data type long for different
distance measures. None of the existing relational distance-based systems offers
this type of flexibility.

In this chapter we address the above limitations and define various distance
operators over the relational data representation presented in Chapter 2. The
resulting distances are based on decompositions of complex structures into sub-

45
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parts of various types that are compared via appropriate distance functions.
There are a number of different distances which are associated with each ba-
sic data type, each one with different semantics, and it is up to the analyst to
declare which specific distance should be used for a given data type. It is even
possible to define different operators for objects of the same general type e.g.
sets of primitive data types, and sets of tuples, etc. The final distance over the
full complex learning instances is given as a recursive combination of distance
functions assigned to the sub-structures which constitute the learning instances.
There are as many different instantiations of the overall distances as there are
combinations of distances over the components of the full complex learning in-
stances.

Figure 3.1: Schematic structure of Chapter 3. The most important sections are
highlighted.

The remainder of this chapter is organized as follows. In Section 3.1 we
briefly review some of the terminology and the definitions used to characterize
the different distances explored in this study. Then, in Sections 3.2.1–3.2.4, we
formally define distances over the different building blocks of relational instances
as presented in Chapter 2. More precisely, in Section 3.2.1 we present distances
over objects of elementary types while in Sections 3.2.2 , 3.2.3 and 3.2.4 we define
distances on tuples, sets and lists, respectively. Section 3.3 describes distance
measures on trees. In the second part of the this chapter (Section 3.5) we present
the experimental results where different distance measures are used in a common
framework exploiting the k-Nearest Neighbor algorithm, defined in Section 3.5.1.
In Section 3.6 we place our relational distances in the context of related work.
Finally, we conclude with Section 3.7.

Most of the important theoretical work is presented in Section 3.2.2 where
we describe (parameterized) distances on tuples which will be widely exploited
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in Chapter 5, in Section 3.2.3 where we introduce set distances based on map-
pings (used throughout the rest of the thesis), and in Section 3.3 where we
describe distances on trees. The most important experimental results are pre-
sented in Sections 3.5.4 and 3.5.7. In these experiments we respectively analyse
the performance of the above distances and examine a learner which is based on
cross-validated distance selection; the latter will form a baseline method for the
algorithms from Chapter 5. The organization of this chapter is schematically
presented in Figure 3.1.

3.1 Preliminaries

Before going to the description of different distance measures we will briefly
review some of the terminology and the definitions used to characterize the
different distances explored in this study. In the rest of this chapter we assume
that X is a set whose elements are general complex objects, and not necessarily
a standard numerical space.

Definition 3.1 (Dissimilarity). A function d : X ×X → R+
0 is a dissimilarity

function on a nonempty set X iff it is reflexive, i.e.

∀x ∈ X : d(x, x) = 0

Definition 3.2 (Distance). A function d : X × X → R+
0 is a distance iff it is

a dissimilarity function and it is symmetric, i.e.

∀x, y ∈ X : d(x, y) = d(y, x)

Definition 3.3 (Metric). A function d : X × X → R+
0 is a metric iff it is a

distance function and

• it is strict i.e.
∀x, y ∈ X : d(x, y) = 0⇒ x = y

• and satisfies the triangle inequality i.e.

∀x, y, z ∈ X : d(x, z) ¬ d(x, y) + d(y, z)

Definition 3.4 (Pseudo-metric). A function d : X × X → R+
0 is a pseudo-

metric iff it is reflexive, symmetric and satisfies the triangle inequality.

Definition 3.5 (Semi-metric). A function d : X × X → R+
0 is a semi-metric

iff it is reflexive, symmetric and strict.

Any distance measure d that is not reflexive can be made reflexive by:

d(x, y) := d(x, y)− 1
2

(d(x, x) + d(y, y)) (3.1)
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Additionally any distance measure d that is not symmetric can be symmetrized
by

d(x, y) :=
1
2

(d(x, y) + d(y, x)) (3.2)

It should be noted that the strict and reflexive properties are sometimes identi-
fied collectively as reflexivity

∀x, y ∈ X : d(x, y) = 0 iff x = y.

For reasons of readability we will call all of the above distance measures; when
it is necessary we will make clear whether a distance measure is a dissimilarity,
distance, metric etc.

In many cases it is desirable to upper bound the distance measures.

Definition 3.6 (r-bounded distance). A distance measure d : X × X → R+
0

is r-bounded (r ∈ R+) iff

∀x, y ∈ X : d(x, y) ¬ r.

In this work we will consider the 1-bounded distance measures. It should be
noted that we can always compute the so called trivial distance measure between
composite objects.

Definition 3.7 (Trivial Distance). A distance measure d : X × X → R+
0 is

said to be trivial iff

∀x, y ∈ X : d(x, y) =

{
0 if x = y

1 otherwise.
(3.3)

It is straightforward to show the following proposition.

Proposition 3.1. The trivial distance measure is a metric.

While the trivial metric can be computed efficiently for many types of com-
plex objects it is of little practical interest and we will be mainly interested in
distance measures which assign dissimilarities between two objects in a smooth
way.

We conclude this section by the definition of a concept of a distance mea-
sure which is isometric to an L2-norm. This distance measure will be used in
Chapter 4.

Definition 3.8 (Distance Isometric to L2 Norm). We call a distance measure
d : X × X → R+

0 isometric to an L2-norm iff the data can be embedded in a
Hilbert space H by φ : X → H such that

d(x, y) = ‖φ(x)− φ(y)‖H.

We will sometimes call a distance measure isometric to an L2-norm a Hilber-
tian metric.
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3.2 Distances over Relational Building Blocks

After defining the basic concepts we move to definitions of various distance
operators on building blocks of relational instances, as defined in Section 2.1.
In particular, in Section 3.2.1 we present elementary distances, while in Sec-
tions 3.2.2, 3.2.3 and 3.2.4 we define various distances over tuples, sets and lists,
respectively.

3.2.1 Distances on Primitive Attributes

In this section we define the distance measures for the most basic objects, i.e.
numerical and symbolic data types.

We start with numerical data types. Let x, y be objects of numeric data type
with range [a, b] (a < b), i.e. type(x) = type(y) = numeric(a, b). The distance
between objects of numeric data type we used in this study is defined as follows.

Definition 3.9 (Distance between Numerical Values). The distance measure
between two numerical values x, y ∈ R is defined as

dnum(x, y) =
|x− y|
b− a

(3.4)

It is straightforward to show that the dnum distance measure is a metric.

Proposition 3.2. The dnum distance measure is a metric on R.

Let X be a finite set of symbolic values and let x, y be objects of symbolic
data type, i.e. type(x) = type(y) = symbolic(S) for some finite set S of iden-
tifiers. The most widely used distance measure over symbolic values is the δ
distance which is an instantiation of the trivial metric of Definition 3.7. This is
the distance we will use in this work.

Definition 3.10 (δ Distance). For two values x, y ∈ X we define the δ Distance
as

dδ(x, y) =

{
0 if x = y

1 otherwise.
(3.5)

More generally, when not all elements in the set X play the same role, one
can also define a |X | × |X | matrix that defines the distance between different
elements (Ramon, 2002). Such approach is frequently used e.g. for computing
distances between amino acids in proteins’ sequences (Durbin et al., 1999) where
the actual distance between any two elements is derived from how often different
amino acids replace other amino acids in evolution. Obviously by setting all the
diagonal elements of such matrix to 1 and off-diagonal elements to 0 we get the
distance measure of Equation 3.5.
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3.2.2 Distances on Tuples

In this section we will define various distance measures defined over the tuple
data type. One of the most widely used distance on tuples is the Minkowski
distance measure.

Definition 3.11 (Minkowski Distance). Let X1,X2, . . . ,Xm be sets on which
the corresponding distance measures d1, d2, . . . , dm are defined, i.e. di : Xi ×
Xi → R+

0 for i = 1, . . . ,m. Moreover, let X = X1 × X2 × . . . × Xm be the
set of all tuples (x1, x2, . . . , xm) such that xi ∈ Xi. Then the distance function
dtuple,p : X ×X → R+

0 defined as

dtuple,p(x,y) =

(
m∑
i=1

dpi (xi, yi)

) 1
p

(3.6)

is called a Minkowski distance measure, p ∈ N.

The following proposition holds.

Proposition 3.3. The dtuple,p distance measure is a metric on X = X1×X2×
· · · × Xm provided all d1, d2, . . . , dm are metrics.

The Minkowski distance measure is also referred to as the Lp norm. The L1

norm is sometimes called the Manhattan or city block distance. In this study we
will only focus on the L2 norm which is the well-known Euclidean metric.

The generalized version of Euclidean metric is the Mahalanobis distance. In
order to define this distance measure we need to introduce a concept of a positive
(semi-)definite matrix.

Definition 3.12 (Positive Semi-Definite Matrix). A real matrix A ∈ Rm×m is
called positive semi-definite (PSD), denoted as A � 0, iff

∀x ∈ Rm : xTAx  0

Definition 3.13 (Positive Definite Matrix). A real matrix A ∈ Rm×m is called
positive definite (PD), denoted as A � 0, iff

∀x ∈ Rm : xTAx > 0

Definition 3.14 (Mahalanobis Distance). Let X1,X2, . . . ,Xm be sets on which
the corresponding distance measures d1, d2, . . . , dm are defined, i.e. di : Xi ×
Xi → R+

0 and let X = X1×X2×· · ·×Xm be the set of all vectors (x1, x2, . . . , xm)
such that xi ∈ Xi. Moreover, let

d(x,y) = [d1(x1, y1), d2(x2, y2), . . . , dm(xm, ym)]T

and let A be a m×m positive semi-definite matrix. Then the distance function
dtuple,A : X ×X → R+

0 defined as

dtuple,A(x,y) =
√
d(x,y)TA d(x,y) (3.7)

is called a Mahalanobis distance measure.
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It should be noted that the Mahalanobis distance can be re-parameterized
as:

dtuple,W (x,y) =
√
d(x,y)TW TW d(x,y) (3.8)

where A = W TW and W is a m × m matrix (not necessarily PSD). For
any W we have A = W TW � 0. The Mahalanobis distance (with both re-
parameterizations) will be used in Chapter 5. The following proposition holds.

Proposition 3.4. dtuples,A is a pseudo-metric on X = X1×X2×· · ·×Xm pro-
vided that all d1, d2, . . . , dm are pseudo-metrics and A � 0. If all d1, d2, . . . , dm
are metrics and A � 0 then dtuple,A is a metric.

It is easy to show that by restricting A to a diagonal matrix, i.e. A = I,
the Mahalanobis distance reduces to the Euclidean distance. If matrix A is
diagonal, i.e. A = diag(a1, . . . , am) and Xi = R for i = 1, . . . ,m, then the
resulting distance measure amounts to a weighted Euclidean distance

dtuple,diag(a1,...,am)(x,y) =

√√√√ m∑
i=1

aid2
i (xi, yi)

3.2.3 Distances on Sets

The issue that arises when working with sets of objects is how one can use
the distance measures defined on X in order to define distance measures on
the power set 2X of X and under what conditions the set distance measure is
a distance or a metric function. For the moment we only focus on standard
sets (i.e. we do not allow elements to appear multiple times); multi-sets will
be considered later. A number of different measures have been proposed in the
literature for defining distances between sets of objects. We will briefly present
some of them.

Consider two non-empty and finite sets A = {a} ⊆ X and B = {b} ⊆ X . Let
d be a distance measure defined on X . The set distance measure dset defined on
2X as:

dset : 2X × 2X → R+
0 , dset(A,B) = f({d(a, b)|(a, b) ∈ A×B}) (3.9)

is some function, f , of the set of pairwise distances, d(a, b), of the set of all
pairs (a, b) ∈ A × B. Different definitions of f functions give rise to different
set distance measures. Within this framework we can define the following set
distance measures.

Definition 3.15 (Single Linkage). The Single Linkage set distance measure is
defined as the minimum distance of all pairwise distances (Hastie et al., 2001)

dSL(A,B) = min
(a,b)∈A×B

{d(a, b)} (3.10)
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It is not a metric or a pseudo-metric even if the underlying distance mea-
sure d is a metric because it does not satisfy the strict and triangle inequality
properties.

Example 3.1. A counter example for the strict and triangle inequality prop-
erties is to consider A = {a, b}, B = {c, d}, C = {a, c} with d being the δ
metric from Equation 3.5. We have dSL(A,C) = 0, but A 6= C. Moreover
1 = dSL(A,B) > dSL(A,C) + dSL(B,C) = 0.

As a result the following proposition holds.

Proposition 3.5. If the function d is at least a distance function then dSL is
also a distance function.

Definition 3.16 (Complete Linkage). The Complete Linkage set distance mea-
sure is defined as the maximum of all pairwise distances (Hastie et al., 2001)

dCL(A,B) = max
(a,b)∈A×B

{d(a, b)} (3.11)

The dCL distance measure is not even a dissimilarity function since it does
not satisfy the reflexive property.

Definition 3.17 (Average Linkage). The Average Linkage set distance is de-
fined as the sum of all pairwise distances (Hastie et al., 2001)

dAL(A,B) =
∑

(a,b)∈A×B

{d(a, b)} (3.12)

Similarly to dCL, dAL does not satisfy the reflexive property and hence is
not even a dissimilarity function. All the above set distance measures are widely
used in computing set distances in clustering.

Definition 3.18 (Sum of Minimum Distances). The Sum of Minimum Dis-
tances set distance measure (Eiter and Mannila, 1997) is defined as the sum of
the minimum distances of the elements of the first set to the elements of the
second set and vice versa. More formally:

dSMD(A,B) =
∑
a∈A

min
b∈B
{d(a, b)}+

∑
b∈B

min
a∈A
{d(b, a)} (3.13)

It should be noted that the formulation presented above differs from the one
given in (Eiter and Mannila, 1997) where this set distance measure is normalized
as dSMD(A,B) := dSMD(A,B)

2 . The normalization of this set distance measure
is discussed in Section 3.2.5. The dSMD distance measure is not a metric even
if the underlying distance measure d is a metric because it fails to satisfy the
triangle inequality property.

Example 3.2. This example is taken from (Eiter and Mannila, 1997). Consider
A = {a, c}, B = {b} and C = {d} as in Figure 3.2 together with the Manhattan
metric from Equation 3.20 (i.e. p = 1). If d(a, b) = d(b, c) = d(b, d) = 1 then
dSMD(A,B) = 3, dSMD(A,C) = 6 and dSMD(B,C) = 2, hence dSMD(A,C) >
dSMD(A,B) + dSMD(B,C).
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a b c

d

Figure 3.2: Triangle inequality violations for A = {a, c}, B = {b} and C = {d}.

However, it it easy to show the following proposition.

Proposition 3.6. If d is at least a semi-metric then dSMD is also a semi-
metric.

The Hausdorff set distance measure was discussed in (Eiter and Mannila,
1997; Klein and Thompson, 1984) and is one of the best known distances mea-
sures between sets.

Definition 3.19 (Hausdorff). The Hausdorff set distance measure is defined
as:

dH(A,B) = max
(

max
a∈A
{min
b∈B
{d(a, b)}},max

b∈B
{min
a∈A
{d(b, a)}}

)
(3.14)

Intuitively, if the Hausdorff distance measure between sets A and B is dH
then every point of A is within distance dH of at least one point of B and
vice versa. In other words, the notion of resemblance encoded by this distance
measure is that each member of A is near some member of B and vice versa (Hut-
tenlocher et al., 1993). Following (Dugundji, 1966) the following theorem holds.

Theorem 3.1. If d is a metric then dH is also a metric.

Definition 3.20 (RIBL). The RIBL set distance measure is defined as the sum
of the minimum distances of the elements of the smaller set to the elements of the
larger, normalized by the cardinality of the smaller set (Emde and Wettschereck,
1996; Horváth et al., 2001):

dRIBL(A,B) =


∑
a∈A

minb∈B{d(a,b)}
|A| if |A| < |B|∑

b∈B
mina∈A{d(a,b)}
|B| otherwise

(3.15)

From the definition it is clear that dRIBL is not symmetric. Moreover, it
does not satisfy the triangle inequality property.

Example 3.3. Consider A = {0, 1}, B = {−2, 1} with the standard metric over
numbers from Equation 3.4 (to simplify the calculations we assume that it is not
normalized by b − a). We have dRIBL(A,B) = 2

2 = 1 but dRIBL(B,A) = 1
2 . A

simple counter example for the triangle inequality is to consider A = {a}, B =
{b}, C = {a, b} with the δ metric. We have 1 = dRIBL(A,B) > dRIBL(A,C) +
dRIBL(C,B) = 0.
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Proposition 3.7. The dRIBL distance measure is a dissimilarity measure pro-
vided that d is a dissimilarity measure.

The dRIBL distance measure can be symmetrized by Equation 3.2. However,
the resulting distance will be equivalent (up to a normalization term) to dSMD.
As a result, in the remainder of this study we will consider the original version
of dRIBL.

So far the distance measures over sets that we have presented are relatively
simple ones whose computation is straightforward if one has computed all the
pairwise distances among all the pairs of elements defined from the two sets.
Another family of more elaborate distance measures is based on the definition of
a set of relations R = {Ri|Ri ⊆ A×B} between the two sets. The computation
of the distance measure will be based on that Ri ∈ R that minimizes a distance
measure computed on the elements that are part of the relation Ri. We denote
|Ri| as the number of elements in Ri.

The relations R considered in this work are surjections, fair surjections,
linkings and matchings. The extra restrictions of the first two relations is that
they define mappings of the set with the larger cardinality to the set of the
smaller cardinality.

Definition 3.21 (Surjection). A relation Ri ⊆ A×B is a surjection iff

• ∀(a,b),(c,d)∈Ri : (a = b⇒ c = d)

• ∀b∈B∃a∈A : (a, b) ∈ Ri

Definition 3.22 (Fair Sujrection). A surjection Ri ⊆ A×B is fair iff

∀b,c∈B : ||R−1{b}| − |R−1{c}|| ¬ 1

In other words a surjection is fair if it maps as evenly as possible the elements
of the larger set to the elements of the smaller set.

Definition 3.23 (Linking). A relation Ri ⊆ A×B is a linking iff

• ∀a∈A∃b∈B : (a, b) ∈ Ri

• ∀b∈B∃a∈A : (a, b) ∈ Ri

In other words a linking is a mapping of one set to the other where all
elements of each set participate in at least one pair of the mapping.

Definition 3.24 (Matching). A relation Ri ⊆ A×B is a matching iff

∀(a,b),(c,d)∈Ri : (a = b⇔ c = d)

In a matching each element of the two sets is associated with at most one
element of the other set.
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The general form of the set distance measures based on the above families
of binary relations can be written as (Ramon and Bruynooghe, 2001)

dset(A,B) = min
Ri∈R

(
∑

(a,b)∈R

d(a, b) + (|B −Ri(A)|+ |A−R−1
i (B)|)× M

2
) (3.16)

where R can be the set of all possible surjections (then dset is denoted as dS),
fair surjections (dFS), linkings (dL) or matchings (dM ). Moreover, M is the
maximum possible distance between two elements. What the second term of
the sum in Equation 3.16 actually does is to add an M/2 penalty for these
elements of the A and B that do not participate in the relation Ri. In dS ,
dL, dFS the second term of the sum vanishes because all elements of the two
sets participate in the relation Ri. We mention here that in Section 3.3 we will
exploit dM as a building block for defining distance on trees.

An algorithm for computing dS , dL is given in (Eiter and Mannila, 1997)
and is based on graph theoretical concepts, more precisely on minimum weight
perfect matching in bipartite graphs. For dFS and dM the corresponding algo-
rithms are presented in (Eiter and Mannila, 1997) and (Ramon and Bruynooghe,
2001), respectively, and are based on flow networks and the minimum weight
maximum flow.

Proposition 3.8. The dS, dFS, dL distance measures do not satisfy the tri-
angle inequality so they are semi-metrics. The counter example for the triangle
inequality is the same as the one presented in Example 3.2.

Proposition 3.9. The dM distance measure is a metric provided that d is a
metric.

Proof. The proof is given in (Ramon, 2002).

All of the above set distance measures reduce to d(a, b) in the trivial case that
A = {a} and B = {b}. This is a necessary property if we want the set represen-
tation to have as a special case the typical attribute-single-value representation.
Additionally all of the above set distance measures, with the exception of the
dM set distance measure, can be in also written as

dset(A,B) =
∑

(a,b)∈F

d(a, b) (3.17)

i.e. it is the sum of pairwise distances over specific pairs of elements from the two
sets defined by F ⊆ A× B. A simple visualization of specific pairs of elements
given by F for the considered set distance measures is presented in Figure 3.3.

In this work we also included a set distance measure which can not be written
as in Equation 3.17. The Tanimoto set distance measure is discussed in (Duda
et al., 2001) and is used when we do not have a notion of graded distance or
similarity between the elements of two sets, i.e. two elements are simply the
same or different.
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(a) dSL (b) dCL (c) dAL

(d) dSMD (e) dRIBL (f) dH

(g) dS (h) dFS (i) dL

(j) dM

Figure 3.3: Specific pairs of elements defined by F for the considered set distance
measures.
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Distance Measure Reflexive Symmetric Strict Triangle Type
dSL + + - - distance
dCL - + - - -
dAL - + - - -
dSMD + + - - semi-metric
dH + + + + metric
dRIBL + - - - dissimilarity
dT + + - - distance
dS + + + - semi-metric
dFS + + + - semi-metric
dL + + + - semi-metric
dM + + + + metric

Table 3.1: Characterization of the different distance measures according to the
properties they satisfy.

Definition 3.25 (Tanimoto). The Tanimoto set distance measure is defined as

dT (A,B) =
|A|+ |B| − 2|A ∩B|
|A|+ |B| − |A ∩B|

(3.18)

In order to be able to deal with graded similarities we defined an extension
of dT . Two elements a ∈ A and b ∈ B will be considered identical if d(a, b) ¬ θ
where θ is a user specified threshold parameter. Under this loose definition of
identity it is now possible to compute the cardinality of A∩B with the constraint
that each element of a set can be only matched once. This loose definition of
identity has as a result that the strictness property and the triangle inequality
are no longer satisfied.

Example 3.4. Consider the sets from Example 3.2 and set θ = 1. In this case
dT (A,B) = 2+1−2·1

2+1−1 = 1
2 , dT (A,C) = 2+1−2·0

2+1−0 = 1 and dT (B,C) = 1+1−2·1
1+1−1 = 0,

but B 6= C. Moreover, dT (A,C) > dT (A,B) + dT (B,C).

It is straightforward to show the following proposition.

Proposition 3.10. The dT set distance measure is a distance provided d is a
distance.

The general properties of distance measures are presented in Table 3.1. It
should be mentioned that these properties are only guaranteed to hold in cases
where the objects are sets and not multisets. For example, the strictness prop-
erty, even if it is satisfied for some set distance measures, in general it will not
hold for multisets. On the other hand, it is straightforward to show that the
reflexive and symmetric properties are not influenced if we allow repetitions of
the same elements. Finally, it is an open question how the triangle inequality
property is affected by this change.

Each of the presented distance measures imposes different semantics on what
is important in determining the distance between two sets. For example in dSL
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it is only the two most similar elements that determine the distance between
the two sets, while in dCL it is exactly the opposite, i.e. the two most dissimilar
objects determine the set distance. The main limitation that one could see in
dSL, dCL and dH is that they do not take into account the complete information
provided by the whole sets but rather focus on a specific pair of elements. A
fact that can be quite problematic in the presence of noise or outliers within the
sets. dRIBL and dSMD do not focus on the distance of a single pair of elements
but on the set of minimum distances of the elements of one set to the elements
of the other set providing a more global measure of how similar are the two sets
with respect to their most similar elements. This approach though more global
could still be problematic if there is an outlier in one of the sets, let’s say in
set A, that is much closer than all other elements of set A to the elements of
the B set. In that case it will be the minimum distances from that element that
will mainly determine the final distance. The problem is more acute for dRIBL
since it is not symmetric in its use of minimal distances with respect to the two
sets. For dSMD it is less problematic since it will only dominate one of the two
sum terms. dAL tries to take into account the complete available information
by averaging overall the pairwise distances. However the main problem of this
measure is that it does not satisfy the reflexive property which in fact means
that the distance of a set from itself can be, and most often will be, bigger
than zero. This can lead to awkward situations where a set is more similar to
another set than it is to itself. dCL also exhibits the same type of pathology. The
reason for which we included these two measures is that they are extensively
used in computing set distances in clustering. The Tanimoto based distance
measure is a measure of the degree of overlap between the two sets under the
loose definition of identity that we have introduced. It is less sensitive to the
problem of outliers since each element of a set can be matched at most once.
The relation based measures are also less sensitive to the existence of outliers
since they take a more global view by seeking a mapping between the elements
of the two sets which uses all the available information given by the sets. In the
case of dL, dS and dFS each element of the two sets will participate at least once
in the relation and the resulting distance will be the minimum computed overall
permissible relations. In that way the distance computation is spread across all
the elements of the two sets making it less sensitive to the presence of noise or
outliers. In the case of dM it is not required that every element participates in
the relation, however even the elements that do not participate are accounted
for in the distance computation by the penalty term.

Nothing can be said about the general superiority of one distance measure
over another. It all depends on the specific problem application and its semantics
which should mainly drive the selection of the appropriate measure. For example
in some applications it might be that what is most important is the distance
between the two most similar elements of the sets, while for others a more global
approach that takes into account all the elements might be required.
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Distance Measure Complexity
dSL O(n2)
dCL O(n2)
dAL O(n2)
dSMD O(n2)
dRIBL O(n2)
dH O(n2)
dT O(n3)
dS O(n3)
dFS O(n3)
dL O(n3)
dM O(n3)

Table 3.2: Characterization of the different distance measures according to their
complexities (n is the set cardinality).

Complexity

The computational complexities of the considered set distance measures are
presented in Table 3.2. As expected the simple distance measures have the low-
est complexity which is quadratic with respect to cardinalities of the sets. It
should be mentioned that although for dSL we used the naive implementation
which has complexity of O(n2), it might be possible to exploit the ideas pre-
sented in (Toussaint and Bhattacharya, 1983) and reduce this complexity to
O(n log(n)). Similarly, it is sometimes possible to compute dH faster than in
the naive implementation which has complexity of O(n2), e.g. the time complex-
ity of dH between two sets of vertices of convex polygons in Rn is O(n) (Atallah,
1983). It would be interesting to analyze whether this complexity can be reduced
for general sets. The time complexity reported for dT , which is cubic in the set
cardinalities, is the worst time complexity. The reason it is higher than in the
simple set distance measures is a result of the fact that each element of a set can
be matched at most once. The other, more elaborate set distance measures have
higher complexity which is approximately cubic1 in the number of elements in
the sets. The time complexity for dS , dFS and dL is reported from (Eiter and
Mannila, 1997) whereas the complexity of dM is taken from (Ramon, 2002).

3.2.4 Distances on Lists

In this work we exploit the alignment-based edit distance (Levenshtein, 1966;
Durbin et al., 1999) which is probably the most widely used distance measure for
sequences over finite alphabets. In edit distance we are given a set of basic edit
operations on sequences (replace, insert, delete) together with a cost function
that tells us how expensive each operation is. The edit distance of two sequences
is the cost of the lowest cost sequence of such operations that transforms the

1The complexity is precisely cubic only for dS .
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first sequence into the second. The edit distance does not only give a distance of
the two sequences but it also provides the alignment-matching of the elements
of the two sequences.

In order to adapt the edit distance so that it can operate on lists that do
not necessarily consist of symbolic objects we simply have to change the cost
function that it uses. Replacing the cost function with a distance between general
complex objects, the edit distance can then be applied to any list of complex
objects. We will give now a more formal presentation of the alignment-based
edit distance that we are going to use. Lets suppose we are given two lists
`1 = [`11 , . . . , `1n ], `2 = [`21 , ..., `2m ], where `ij ∈ X and let d be a distance
measure over set X .

Definition 3.26 (Alignment). An alignment A of `1 and `2 is a set of two
sequences `′1 and `′2 of equal length, l, l  max(|`1|, |`2|), constructed from the
initial sequences by insertion of gaps, − .

Aligning two elements there are only three possibilities:

• the i-th element of `1 is aligned to a gap (insert operation),

• the i-th element of `1 is aligned to the k-th element of `2 (replace opera-
tion),

• the k-th element of `2 is aligned to a gap (delete operation).

The above operations are called edit operations and can be also considered
as rewriting rules that transform the list `1 to `2. More precisely, for a, b ∈ X ,
the insert, replace and delete edit operations correspond to the application of
rewriting − → a, a→ b and a→ −, respectively, where − is an empty element.

The cost of an alignment is simply the sum of the cost of all operations used
to derive the alignment c(A) =

∑l
i=1 c(`

′
1i , `

′
2i) where the cost of the replace

operation is c(x, y) = d(x, y), x, y ∈ X , and the cost of the insert and delete
operations is usually assumed to be constant α, i.e., c(x,−) = c(−, y) = α. α
is also known as the gap penalty. If d is a 1 bonded distance measure then α is
usually set to 1. The cost of an alignment is hence defined as

c(A) =
l∑
i=1

d(`′1i , `
′
2i)

Now we are in position to define the edit distance measure.

Definition 3.27 (Edit Distance). The alignment-based edit distance measure
(also know as the Levenshtein distance), dedit(`1, `2), of two sequences, `1, `2, is
the minimum cost over all possible alignments of the two sequences

dedit(`1, `2) = argminAc(A) (3.19)

In other words the edit distance measure is equivalent to the cost of the
lowest cost sequence of operations that turns the first list into the second. Using
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dynamic programming (Durbin et al., 1999; Wagner and Fischer, 1974) it is
easy to compute the edit distance with a complexity of O(nm). Moreover, it is
possible to show the following proposition.

Proposition 3.11 (Edit Distance). The dedit(`1, `2) distance measure from
Equation 3.19 defined over L(X ∪−) is a metric provided d defined on X is also
a metric.

Proof. All the necessary conditions follow directly from the definition of the edit
distance measure.

3.2.5 Normalization

One problem with most of the distance measures presented in this section is
that they are influenced by the number of constituent parts of the composite
objects. For example, this will happen with the set distances which are based
on the definition of specific types of mappings where the final distance is a sum
of distances (Equation 3.17), thus its value will depend on the cardinality of
the mapping. This could be problematic also in cases when one set has small
cardinality and the other has a large cardinality. Similar arguments also hold for
the edit distance measure on lists. Finally, the Minkowski metric is influenced by
the number of elements in tuples. In this section we show how we can normalized
the above distance measures such that they take values between 0 and 1.

Tuples

In this work we will use the normalized Minkowski metric of Equation 3.11.

Definition 3.28 (Normalized Minkowski Distance). Let all notations be the
same as in Definition 3.11. The normalized Minkowski distance measure is de-
fined as

dtuple,p(x,y) =
(∑m

i=1 d
p
i (xi, yi)
m

) 1
p

(3.20)

The above normalized distance measures have the same properties as their
non-normalized versions from Section 3.2.2. In particular, the Normalized Minkowski
Distance is a metric.

Sets

Of the presented set distance measures the ones that are not normalized are
dAL, dSMD, dS , dL, dFS and dM . As in Equation 3.17 the normalized version
of the above set distance measures can be written as

dset(A,B) =

∑
(a,b)∈F d(a, b)

|F |

where F ⊆ A × B defines the pairs of elements and |F | denotes the num-
ber of such pairs. In particular the dAL set distance measure is normalized by
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|F | = |A||B|; for dSMD we have |F | = |A| + |B|; for dS , dL and dFS we nor-
malize by the cardinality of the surjection, linking or fair surjection on which
the minimum distance was computed, i.e. |F | = |Ri|. All of the above normal-
ization procedures do not alter the formal properties of the corresponding set
distance measures. For dM we used its normalized version given in (Ramon and
Bruynooghe, 2001)

dM (A,B) :=
2dM (A,B)

dM (A,B) + (|A|+ |B|)/2
.

Lists

In the remaining part of this chapter we will use the normalized edit distance.

Definition 3.29 (Normalized Edit Distance). The Normalized Edit Distance
is defined as:

dedit(`1, `2) :=
1
l
dedit(`1, `2) (3.21)

where l, as defined above, is given as l = |`′1| = |`′2|.

Unfortunately, the normalized dedit is not a metric since it violates the tri-
angle inequality.

Example 3.5. Consider X = {a} with a trivial metric and let α = 1. Let `1 =
[a . . . a︸ ︷︷ ︸

9

], `2 = [a . . . a︸ ︷︷ ︸
10

] and `2 = [a . . . a︸ ︷︷ ︸
15

]. Then dedit(`1, `2) = 1
10 , dedit(`2, `3) = 1

3

and dedit(`1, `3) = 3
5 . However, 1

10 + 1
3 <

3
5 .

Proposition 3.12. The normalized dedit distance measure is semi-metric on
L(X ∪ −) provided d is a semi-metric.

3.3 Distances on Trees and Tree-like Structures

In the previous section we proposed various distance operators defined over
the different building blocks of our composite objects. In this section we will
move to distances, dtree(Ti, Tj), over two trees (or tree-like structures), Ti, Tj ,
defined in Section 2.3, which are constructed as a particular combination of
the basic structures. The reason we devote a separate section to distances on
trees is that in the remainder of this work trees (and tree-like structures) will
be widely exploited to represent labeled graphs. Moreover, the main difference
from distances over general composite objects and dtree is that in the latter
we put some additional constraints on the actual distance operators applied
over basic structures. We focus here on trees where the labels, LV and LE , are
vectors in an Euclidean space. Moreover, we only consider unordered trees, such
that all children nodes of a given node are of the same type. The extension
of the presented ideas to ordered trees (and to other, more general trees) is
straightforward.
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Let x, y, be two elements of the two trees found at the same height h. These
elements are of the same data type and are either two vertices, u, v, or two edges
ei, ej . Then the distance between x and y is given by

d2(x, y) =


1
N ′

(
d2
tuple,p(lab(x), lab(y)) + d2

M (δ(x), δ(y))
)

if δ(x) 6= ∅ ∧ δ(y) 6= ∅
1
N ′

(
d2
tuple,p(lab(x), lab(y))

)
if δ(x) = ∅ ∧ δ(y) = ∅

1
N ′

(
d2
tuple,p(lab(x), lab(y)) + 1

)
if δ(x) = ∅ ⊕ δ(y) = ∅

where dtuple,p(lab(x), lab(y)) is, the Euclidean metric (i.e. p = 2) between the
labels of the x, y from Equation 3.20; δ(x) is the neighborhood function, defined
in Section 2.3, that returns either: the set of edges to which a vertex connects
to as a starting vertex, if x is of type vertex, or the vertex to which an edge
arrives if x is of type edge; dM is the matching set distance measure, given in
a general form in Equation 3.16, between the sets of elements that are found in
the neighborhoods of x and y.

The N ′ in the denominator is also a normalization factor that corresponds to
the dimensionality of the label vectors of x and y plus one to account for the set
distance dimension, i.e. N ′ = dim(lab(x)) + 1 = dim(lab(y)) + 1. The reason we
exploited the matching distance dM from Equation 3.16 as the building block
of dtree is that it is equivalent to a frequency based distance, i.e. for each of the
symbolic substructures in δ(x), δ(y), it will count how many times it appears
and the final distance will be the sum of differences of these frequencies. More
precisely, for M = 2 the dM distance measure between two sets A and B of
symbolic elements is equivalent to the standard Euclidean distance of vectors
vA and vB , of dimensionality equal to the number of distinct elements in A∪B,
where each dimension corresponds to the frequency of a specific element in sets
A and B, respectively. It should be noted that in principle other set distance
measures can be used to compute the distance between sets of siblings.

d2(x, y) is a recursive distance requiring the computation of set distances
between the elements of the trees that are associated to x, y, at height h + 1.
The final distance between two trees, Ti, Tj , is given by

dtree(Ti, Tj) = d (root(Ti), root(Tj)) (3.22)

From the above it is obvious that the computation of dtree(Ti, Tj) requires re-
cursive and alternating computations of distances between nodes and edges.
Moreover, in view of the various distances defined in the previous sections, it is
obvious that dtree can be equivalently implemented by a recursive application of
the Euclidean distance on tuples as well as the Matchings set distance measure.

In order to show the computational complexity of the proposed tree ker-
nel we use BF to denote the maximal out-degree of the considered trees, i.e.
maxv∈T (V),T∈T {|δ(v)|}. The computation of the distance between two trees of
height h is proportional to O((BF 3)h−1) = O(BF 3(h−1)) (here we assume that
the root of a tree is at level 1). This is a result of the fact that at level k we
have to compute at most BF k−1 dM , each of which has complexity O(n3) (n is
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a cardinality of the corresponding sets). This is the pessimistic estimate of the
time complexity and more accurate would be acquired if the average branching
factors were used.

3.4 Properties of the Relational Distance

The formal properties of the distance measure applied over general composite
objects, i.e. whether it is a metric, distance etc, depend on the formal properties
of the constituent distance measures that are used.

For the moment let’s consider composite objects whose building blocks are
only sets, tuples and elementary attributes. It is obvious that for problems in-
volving only three levels of recursion (i.e. composite objects are sets of tuples
and elements of tuples are elementary attributes), the distance distance(O1, O2)
between two relational objects, O1, O2, is a metric iff the set distance measure
employed is a metric, the distance on tuples is a metric, and distances on el-
ementary objects are metrics. For problems involving k levels of recursion we
can show that each of the distances defined on objects found at the k − 1 level
is a metric according to the arguments given before for the tree levels. Apply-
ing recursively the same reasoning we can easily see that at the top level the
distance function that we get is also a metric. In general distance(·, ·) inherits
the ”weakest” properties of the constituent distance measures defined on sets,
tuples and elementary objects. For example, if the dSL (Equation 3.10) and
dtuple,p (Equation 3.20) distance measures are used then the overall distance
measure will be only a distance since dSL is a distance, even though dtuple,p is
a metric. The above reasoning applies also to more general objects which con-
sist of tuples, sets and lists. The properties of constituent distance measures are
propagated from the simpler objects towards the more complicated objects, and
finally affect the final distance measure.

The computation of distance between two relational objects, o1, o2, is done
in a recursive manner by computing the distances between objects’ subparts
that are associated with o1, o2. With an increasing depth the importance of the
corresponding sub-objects becomes smaller. Objects that directly constitute the
main object have a higher contribution on the distances. It is relatively easy to
estimate the contribution of a given object to the final distance in association
with the recursion depth at which the former is encountered. Consider a simple
scenario where a complex object is defined in terms of elementary attributes,
tuples and sets, where the elements of each set at level k − 1 are in fact tuples
which consist of elementary attributes, defined at level k − 1, and sets defined
at level k. Let d be the relational distance between two such composite objects,
computed with a recursion depth of n, and d̂ its approximation, computed with
a recursion depth of n − 1 (i.e. sets at level n are not included in the distance
computation). The approximation error and thus the influence of the sets at level
n, in the case of (normalized) dAL and the (normalized) Euclidean distance, can
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be shown to be bounded as follows

|d2
1 − d̂2

1| ¬
1∏n−1

i=1 Ni

where Ni is the number of attributes (standard plus set) of at level i. In other
words the elements at level n contribute at most 1/

∏n−1
i=1 Ni to d. This bond is

a result of the fact that dAL takes values between 0 and 1, and at each level i the
Euclidean distance is normalized by the number of attributes, Ni. By recursively
combining the importance of objects at each level we obtain the desired result.

For other set distance measures, the bound is not straightforward to com-
pute. Excluding sets at level n might alter the mappings between elements of sets
of level n−1, nevertheless these distances too follow roughly the same law. The
same reasoning also holds for other types of data where e.g. the edit distance
over lists is used (Equation 3.19). A similar result was also given in (Bisson,
1992) where a closely related iterative approach was used for distance compu-
tation between complex objects.

A direct consequence of that result is that we can reduce the depth of re-
cursion, thus speeding up classification time, without a significant loss in the
accuracy of the distance computation. Moreover, the problem of self replicated
loops encountered in relational algebra representation is alleviated since their
contribution reduces with the depth of the recursion (see the discussion below
Algorithm 2.1).

3.5 Experiments

In this section we will compare different instantiations of the complex distance
measures defined in the above sections on a number of relational problems (pre-
sented in Section 3.5.3). The learning task will be always classification and
we will use the kNN classification rule presented in Section 3.5.1 to decide the
classification of a given instance. In the experiments we focus on set and list dis-
tance measures, and perform their in-depth empirical analysis (Sections 3.5.4
and 3.5.5). More precisely we would like to examine whether the qualitative
characterization of these distances measures is supported by the experimental
observations. Next, in Section 3.5.6 we analyze how our distance-based system
compares with other state-of-the-art relational systems. In Section 3.5.7 we show
how we can automatically select the composite distance measures from a set of
predefined distance measures. Finally, in Section 3.5.8 we examine the influence
of the θ parameter on the predictive performance of the Tanimoto distance.

3.5.1 K-Nearest Neighbor

Here we describe the k-Nearest Neighbor (kNN) method which will be used in
the rest of this section as a classification rule to decide the class label of a new
unseen composite object. The kNN rule (Duda et al., 2001) is one of the simplest
and most popular data mining and machine learning algorithms. In its simplest
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form, 1-NN assigns a new object to the class of its nearest neighbor chosen from
the training set. In the k-NN rule an unknown object is assigned to the class
that is most frequent among its k neighbors.

We assume a training set D = {(xi)}ni=1 for xi ∈ X together with class
labels class(xi) ∈ C, where C is a set containing symbolic values, i.e. we only
deal with classification problems. We assume that for each pair of elements
xi, xj ∈ X it is possible to compute a (normalized) distance measure d such
that it assigns values close to 0 for instances being ”similar” and close to 1
for instances being ”dissimilar”. For each point xi ∈ D in the training set we
can determine the k nearest neighbors denotes as N(xi) = {xi1 , . . . , xik} ⊆ D
according to the distance measure d. Usually, the k parameter is assumed to
be odd to avoid ties (for two-class problems). We also denote Nc(xi) = {xi ∈
X | xi ∈ N(x) ∧ class(x) = c}, i.e. neighbors of x which have class c. The class
value for a new instance x′ ∈ X is determined from a neighborhood N(x′) as

classpred(x′) = argmax
c∈C

∑
x∈Nc(x′)

δ(class(x), c)

where δ(x, y) = 1 iff x = y and δ(x, y) = 0 otherwise.
The kNN method is a simple and intuitively appealing yet effective algorithm

for the task of classification. The advantage of this algorithm comes mainly from
the fact that its decision surfaces are non-linear, it can be easily adapted to in-
cremental learning, and there is only one single integer parameter k that can be
easily tuned with cross-validation. Moreover, the expected quality of kNN im-
proves with the increased amount of training data, making it asymptotically at
most twice as bad as the Bayes rule (Duda et al., 2001). Additionally, it requires
no modification for multi-category classification problems. In Chapter 4 we will
see that in comparison with SVM (Cristianini and Shawe-Taylor, 2000) kNN
performs better for problems with large number of classes. Its main advantage
from our perspective, however, is that kNN can be easily adapted to classify
composite instances since it does not require a direct access to the training
examples, instead it accesses the data only via a distance measure (this is in
general true for any distance-based algorithm).

The main disadvantages of this algorithm are large storage and computa-
tional requirements as well as sensitivity to outliers. Moreover, if the data is
sparsely sampled and the underlying distance measure is not a metric, the clas-
sification performance of the kNN algorithm may significantly differ from its
asymptotic behavior.

3.5.2 Experimental Setup

The learning task will always be classification. We will use the kNN classifica-
tion rule presented in Section 3.5.1 to decide the classification of a given in-
stance; the k parameter was optimized in an inner 10-fold cross validation loop
over the set k = {1, 3, 9}. We estimate accuracy using 10-fold stratified cross-
validation and control for the statistical significance of observed differences for
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all pairs of distance measures using McNemar’s test (McNemar, 1947) (signifi-
cance level=0.05). In order to have a more global picture, than the one provided
by the basic pairwise comparisons, of the relative merits of the different distance
measures, we establish a ranking schema based on the results of the pairwise
comparisons (Kalousis and Theoharis, 1999). More precisely for a given dataset
if distance measure d1 is significantly better than d2 then d1 is credited with one
point and d2 with zero points; if there is no significant difference then both are
credited with half point. Since we are comparing 11 different relational distance
measures it is obvious that if there is a distance measure that is better than all
the others it will be credited with ten points, if it is worse than all the others it
will be credited with zero points while if all distances are equivalent they will
be all credited with five points.

For the above problems we exploited the Euclidean distance on tuples from
Equation 3.20 (i.e. we fix p = 2). For representations involving sets the various
set distance measures presented in Section 3.2.3 were used. The threshold pa-
rameter, θ, used in dT was a priori fixed to 0.01; in Section 3.5.8 we will discuss
how the value of this parameter affects classification performance of dT . For
decompositions into trees we used the recursive tree distance presented in Sec-
tion 3.3 while for lists we exploited the edit distance measure from Section 3.2.4.
Finally, the two distance measures on elementary attributes from Section 3.2.1
are used.

3.5.3 Datasets

We will experiment on a number of relational problems which are presented in
Appendix A. According to the actual representation of the learning examples
the learning problems can be divided naturally into three main subgroups.

The learning instances in the first group are represented as sets of vectors,
hence these learning problems can be simply reduced to direct comparisons of
sets of fixed-length tuples requiring no further recursion. The datasets in this
group are diterpenes, musk (both versions) and duke.

For the datasets in the second group, i.e. graph classification problems, dif-
ferent representations of the data are possible (see Section 2.3). Here we focus on
two representations where graphs are decomposed into sets, trees and tree-like
structures; decompositions into other sub-structures (i.e. walks) will be consid-
ered in Chapter 5. As already mentioned in Section 2.3 the considered types
of decompositions are obtained from a depth first exploration emanating either
from each vertex or from each edge a graph and yielding all recursive structures
of height h. More precisely in the first representation the trees have nodes as
roots; we consider trees of height 3 (i.e. a tree contains only the root together
with two adjacent edges and vertices). The second representation consists of
tree-like structures which have edges as roots. In this case the considered trees
have height of 2 (i.e. trees have edges as roots which are connected to a set of
corresponding vertices). The graph datasets in this group are mutagenesis and
4 versions of carcinogenicity (i.e. FM, FR, MM and MR).

Finally, we also experimented with the protein fingerprint dataset where
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Distance diterpenes musk (ver. 1) musk (ver. 2) duke
dSL 51.63 (2.0)(+) 81.52 (6.5)(+) 69.61 (5.0)(=) 41.46 (3.5)(=)
dCL 21.82 (0.0)( -) 66.30 (1.5)(=) 68.63 (5.0)(=) 39.02 (3.0)(=)
dAL 39.45 (1.0)(+) 82.61 (6.5)(+) 68.63 (5.0)(=) 58.54 (5.0)(=)
dSMD 95.14 (7.0)(+) 80.43 (6.5)(+) 75.49 (5.0)(=) 78.05 (6.5)(=)
dH 84.96 (3.0)(+) 80.43 (6.5)(+) 76.47 (5.0)(=) 60.98 (5.0)(=)
dRIBL 95.14 (6.5)(+) 65.22 (1.5)(=) 61.76 (4.5)(=) 68.29 (6.0)(=)
dT,θ=0.01 97.41 (10.0)(+) 51.09 (1.0)(=) 61.76 (4.5)(=) 58.54 (4.5)(=)
dS 95.54 (6.0)(+) 83.70 (7.0)(+) 73.53 (5.0)(=) 63.41 (5.5)(=)
dFS 95.61 (6.0)(+) 82.61 (6.5)(+) 77.45 (6.5)(+) 58.54 (5.0)(=)
dL 94.48 (5.5)(+) 84.78 (7.0)(+) 73.53 (5.0)(=) 73.17 (6.0)(=)
dM 96.14 (8.0)(+) 70.65 (4.5)(+) 61.76 (4.5)(=) 63.41 (5.0)(=)
Def. Acc. 29.81 51.09 61.76 58.54

Table 3.3: Accuracy and rank results (the first parenthesis) on the datasets
where instances are represented as sets of vectors. The ranking is based on the
scheme described in Section 3.5.2. The sign in the second parenthesis compares
the performance of the corresponding distance measures with that of the default
classifier (Def. Acc.).

learning instances are presented as general relational structures. We used two
different representations of the learning examples. In the first representation
each learning instance is associated with a set of ”motifs”; in the second represen-
tation each instance is associated with a list of ”motifs”. We also experimented
with the following weighting scheme in the top level description of learning ob-
jects: all elementary attributes are assigned equal weights, composite attributes
are assigned the same weight multiplied by the number of elementary attributes
they have except for ”motifs” object where we put double that value. More pre-
cisely we assigned value 0.1428 to all the elementary attributes, i.e. 1 divided
by the total number of attributes (12), motifs was assigned weight of 2 x 10 x
0.1428, while information corresponding to tables PropMaj1234, NormEnt1234,
PropAtLeast3or4 and RHS were assigned values of 4 x 0.1428, 4 x 0.1428, 2
x 0.1428 and 3 x 0.1428, respectively (see Figure A.2 in Appendix A.3). This
weighting schema reflects the fact that the composite objects representing statis-
tics on the set of proteins could be stored in the main table. On the other hand
by putting double weight for the ”motifs” object we emphasize the importance
of the information associated with it. We mention here that the above weight-
ing scheme was assigned in an ad-hoc manner; in Chapter 5 we will propose a
framework which allows for setting the weights in an automatic and principled
manner.

3.5.4 Classification Performance

The results are presented in Tables 3.3, 3.4 and 3.6; the detailed significance
results are given in Appendix B.1. The top ranked distance measures (according
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Distance muta (ver. 1) muta (ver. 2) FM (ver. 1) FM (ver. 2)
dSL 77.13 (5.0)(+)(=) 71.81 (2.5)(+) 59.31 (5.5)(=)(=) 58.74 (5.5)(=)
dCL 79.26 (5.0)(+)(+) 68.09 (1.5)(=) 49.00 (2.0)( -)(=) 48.42 (2.5)( -)
dAL 65.96 (1.0)(=)(=) 68.62 (1.5)(=) 58.17 (5.5)(=)(=) 54.73 (4.5)(=)
dSMD 82.45 (6.5)(+)(=) 83.51 (7.5)(+) 53.87 (4.0)(=)(=) 58.74 (6.0)(=)
dH 78.72 (5.0)(+)(=) 78.72 (5.0)(+) 59.60 (6.5)(=)(=) 60.46 (6.0)(=)
dRIBL 73.40 (3.0)(+)(=) 78.19 (6.0)(+) 56.73 (5.5)(=)(=) 55.30 (5.0)(=)
dT,θ=0.01 87.23 (9.0)(+)(=) 87.23 (8.5)(+) 63.32 (7.5)(=)(=) 62.46 (7.0)(=)
dS 79.79 (5.5)(+)(=) 78.72 (5.5)(+) 52.72 (3.5)(=)(=) 51.86 (3.0)(=)
dFS 81.91 (6.5)(+)(=) 81.91 (7.0)(+) 55.30 (4.5)(=)(=) 54.15 (4.0)(=)
dL 80.85 (5.5)(+)(=) 82.98 (7.0)(+) 58.17 (6.0)(=)(=) 61.32 (6.5)(=)
dM 73.40 (2.5)(=)(=) 73.40 (3.0)(=) 55.01 (4.5)(=)(=) 55.59 (5.0)(=)
Def. Acc. 66.49 59.03

Distance FR (ver. 1) FR (ver. 2) MM (ver. 1) MM (ver. 2)
dSL 65.53 (5.5)(=)(=) 65.53 (5.5)(=) 61.90 (6.0)(=)(=) 61.31 (5.0)(=)
dCL 57.26 (2.5)( -)(=) 58.97 (3.5)( -) 42.86 (0.0)( -)( -) 52.98 (2.5)(=)
dAL 65.24 (5.5)(=)(=) 64.39 (5.0)(=) 55.65 (4.0)(=)(=) 60.42 (5.0)(=)
dSMD 63.82 (5.0)(=)(=) 65.24 (5.5)(=) 62.80 (6.0)(=)(=) 61.90 (5.5)(=)
dH 61.82 (5.0)(=)(=) 62.96 (5.0)( -) 58.93 (5.5)(=)( -) 65.18 (6.0)(=)
dRIBL 64.67 (5.5)(=)(=) 64.39 (5.0)(=) 56.55 (5.0)(=)(=) 59.52 (5.0)(=)
dT,θ=0.01 63.82 (5.0)(=)(=) 62.39 (5.0)(=) 57.14 (5.5)(=)(=) 58.63 (4.5)(=)
dS 65.24 (5.5)(=)(=) 62.39 (5.0)(=) 61.90 (5.5)(=)(=) 60.71 (5.5)(=)
dFS 61.54 (5.0)(=)(=) 61.82 (5.0)(=) 62.20 (5.5)(=)(=) 58.63 (5.0)(=)
dL 64.10 (5.5)(=)(=) 66.67 (5.5)(=) 63.39 (6.5)(=)(=) 62.80 (5.5)(=)
dM 62.11 (5.0)(=)(=) 62.68 (5.0)(=) 58.33 (5.5)(=)(=) 61.01 (5.5)(=)
Def. Acc. 65.53 61.61

Distance MR (ver. 1) MR (ver. 2)
dSL 55.52 (5.5)(=)(=) 55.81 (6.0)(=)
dCL 43.90 (0.5)( -)(=) 49.42 (4.0)(=)
dAL 54.65 (5.5)(=)(=) 52.03 (5.0)(=)
dSMD 61.63 (7.0)(+)(=) 56.69 (6.0)(=)
dH 52.91 (4.5)(=)(=) 57.56 (6.5)(=)
dRIBL 54.65 (5.5)(=)(+) 47.97 (3.0)( -)
dT,θ=0.01 54.94 (5.5)(=)(=) 58.43 (6.5)(=)
dS 54.36 (4.5)(=)(=) 52.33 (5.0)(=)
dFS 54.94 (5.5)(=)(=) 52.91 (5.5)(=)
dL 61.34 (7.0)(+)(+) 54.94 (5.5)(=)
dM 49.42 (4.0)(=)(=) 45.93 (2.0)( -)
Def. Acc. 55.81

Table 3.4: Accuracy and rank results (the first parenthesis) on the graph
datasets. For each dataset the performance for two different representation is
given. The ranking is based on the scheme described in Section 3.5.2. The sign in
the second parenthesis compares the performance of the corresponding distance
measures with that of the default classifier (Def. Acc.). The sign in the third
parenthesis for version 1 of datasets compares the performance with version 2.
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dCL dAL dRIBL dM dSL dH dS dT dL dFS dSMD

2.53 4.38 4.78 4.94 5.03 5.31 5.31 5.34 5.44 5.72 6.16

Table 3.5: Average ranks of set distances over all the datasets. The ranking is
based on the scheme described in Section 3.5.2.

to the rank results presented in the first parenthesis) are emphasized. In all the
tables the values in the column with signs (-, + and =) indicates whether the
performance of the corresponding distance measure is significantly better (the
+ sign) or worse (the - sign) than that of a specific algorithm (mentioned in
tables’ descriptions) or there is no significant difference (the = sign). In Table 3.6
the accuracies are given both for the weighted and non-weighted versions of
the dataset. Moreover, we report the performance using 10-fold stratified cross
validation (the ”10-fold CV” columns) and on a independent test set (the ”test
set” columns). On the independent set we fixed k = 9 as this was the most
frequent value returned by the internal cross validation.

The rest of this section is divided into three parts. First, we analyze the
performance of the various set distance measures (this analysis will be further
continued in the subsequent sections). Then, we examine the results obtained for
the protein fingerprint dataset where two different weighting schemes and two
different representations are used. Finally, we analyze the relative performance
of the two different representations used in the graph datasets.

Performances of Set Distances

From the overall results it is obvious that there is no set distance measure which
is the overall winner, something that was to be expected. To give an overall
picture of the performance of the distance measures we averaged their rankings
over the different datasets and report their average ranks in Table 3.5. There are
however some distance measures that perform consistently well over a series of
problems. The example of such distance measure is dSMD which is top-ranked
or its performance is very close to the top performing. In terms of the average
rank dSMD is on the best position. What makes this distance measure even
more interesting is that it is one of the simplest distance measures with only
quadratic complexity. The two other set distance measures which have good
average performances are dFS and dL, however these have cubic complexities.

What came as a surprise was the low performance of the matching based dis-
tance measure, dM , in terms of its average rank it was placed only on the eighth
position among the eleven different measures. Quite astonishing was its bad
performance on the musk dataset for which previously it was reported to have a
very good performance (Ramon and Bruynooghe, 2001). We experimented also
with its non-normalized version for which indeed it performed well on the musk
problem; for the other datasets there were no differences between the normalized
and non-normalized versions (in the above paper it is not clear which version the
authors used, i.e., normalized or non-normalized). Another important difference
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from the results reported in (Ramon and Bruynooghe, 2001) is the performance
of the dFS set distance measure on the musk (ver. 1) and diterpenes datasets;
more precisely (Ramon and Bruynooghe, 2001) report accuracies of 49 % and 87
% for the two datasets while our error estimation gives much higher accuracies,
82.61 % and 95.61 % respectively. These big differences cannot be explained by
a different experimental setup since they used 10-fold stratified cross-validation.
In an initial phase we had similar error estimates only to discover later that this
was due to a limitation of the library used to solve the min weight maximum
flow problem.

In contrast to dM the three other relation based distance set measures, dFS ,
dL, and dS , exhibit a rather good predictive performance. In terms of their
average ranking they take the second, third and fourth position, respectively.
Their main difference from dM is the fact that each element of a set must be a
part of the mapping between the two sets. No element is left outside as it is the
case with dM . Another difference is the way that dFS , dL, and dS are normalized,
i.e. by the cardinality of the relation over which they were computed. dFS , dL,
and dS are rather similar to dSMD in these respects, i.e. the normalization2 and
the fact that all the elements are accounted for in the distance computation.
Note that these four distance measures were ranked in the top four positions
when we average their rankings over all the datasets, Table 3.5.

dRIBL differs from dFS , dL, and dS , in the same way that dM does. dRIBL
does not use all the elements of the two sets in the distance computation, many of
the elements of the larger set can be left aside. The normalization of the distance
is not done by the cardinality of the relation that dRIBL imposes between the
two sets but by the cardinality of the larger set. If we take a look on the ranking
of dRIBL and dM averaged over all the datasets we see that they are ranked
next to each other, with a small difference in their average ranks, with dRIBL
being ranked on the ninth position and dM on the eighth.

In Section 3.2.3 we also mentioned that dSMD (ranked on the first position)
and dRIBL (ranked on the ninth position) are similar in the sense that the former
distance measure can be considered as a symmetrized version of dRIBL. This fact
indicates that the symmetry of a distance measure is a fundamental property,
largely influencing the predictive performance of a distance-based algorithm.

Another distance measure that is similar to dFS , dS , dL, and dSMD, with
respect to normalization and accounting for all the elements, is dAL which nev-
ertheless was ranked usually on the low positions. dAL exhibits a fundamental
flaw, it does not satisfy the reflexivity property, which could explain its bad
behavior.

A rather separate family of distance measures are the ones that base their
distance only on a single pair of elements, namely dH , dSL and dCL. The per-
formance of the two former with respect to their rankings averaged over all the
datasets is very similar, in fact they are ranked close to each other taking the
fifth and seventh position. dCL though has a very bad performance which could

2In dSMD normalizing by the sum of the cardinalities of the two sets is equivalent to
normalizing by the cardinality of the relation defined by dSMD.
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Distance no weights with weights
10-fold CV test set 10-fold CV test set

dSL 83.32 (6.0)(5.0)(+) 78.87 85.34 (7.5)(6.5)(+)(+) 82.25
dCL 83.25 (6.5)(5.5)(+) 78.31 83.39 (2.0)(1.5)(+)(=) 81.13
dAL 83.86 (6.5)(5.5)(+) 79.44 84.80 (5.0)(4.5)(+)(=) 83.10
dSMD 84.33 (7.5)(6.5)(+) 79.16 86.01 (9.0)(8.0)(+)(+) 82.25
dH 83.86 (6.5)(5.5)(+) 78.87 84.80 (5.5)(5.0)(+)(=) 81.41
dRIBL 83.66 (6.5)(5.5)(+) 79.72 84.40 (4.5)(4.0)(+)(=) 82.53
dT,θ=0.01 79.96 (1.0)(0.5)(+) 74.65 81.71 (1.0)(1.0)(+)(+) 79.15
dS 84.13 (6.5)(5.5)(+) 79.15 85.81 (8.5)(7.5)(+)(+) 82.25
dFS 84.20 (7.0)(6.0)(+) 79.44 85.88 (9.0)(8.0)(+)(+) 81.41
dL 78.28 (0.5)(0.5)(+) 75.21 83.46 (3.0)(2.5)(+)(+) 78.03
dM 85.41 (10.0)(9.0)(+) 82.25 85.07 (7.0)(6.5)(+)(=) 82.53
dedit 81.10 (1.5)(+) 76.34 83.86 (4.0)(+)(+) 86.15
Def. Acc. 54.40

Table 3.6: Accuracy and rank (the first parenthesis) results on the protein
fingerprint dataset, both with and without weights. The ranking is based on
the scheme described in Section 3.5.2. The second parenthesis contains ranks
results where dedit is not considered (when computing the ranks from the first
parenthesis, dedit was included). The sign in the third parenthesis compares the
performance of the corresponding distance measures with that of the default
classifier (Def. Acc.). The sign in the fourth parenthesis for weighted dataset
compares the weighted with non-weighted versions.

be explained by the fact that it is sensitive to outliers and does not satisfy the
reflexivity property.

The Tanimoto based distance is quite different from all the above. Although
it constructs a mapping between the elements of the two sets based on the
threshold parameter3 it does not compute the distance between the two sets
based on the distances included in the mapping. It uses the mapping to compute
a degree of fuzzy overlap between the two sets. Some clarifications should be
given here on its parameter setting. When we performed the experiments we
have chosen the value of the threshold to be equal to 0.01 since we considered
that to be a sensible choice. We did that a priori and without any tests. However,
experimenting afterward with the three datasets (duke, musk ver. 1, 2) in which
it did not perform well we found parameter settings for which it performed much
better, a more informative way of selecting the value of the threshold would
result in better performance (see Section 3.5.8). Nevertheless we have chosen to
report results only on this initial setting so that the results are not biased. In
terms of its average rank it performs quite well taking the sixth position over
all distance measures.

No general statement can be done about the superiority of one distance mea-
sure over another. There are though some distance measures that exhibited a

3It does not account for all the elements of both sets. In this respect dT is more similar to
dRIBL and dM .
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good and stable performance over the small number of datasets that we exam-
ined here. For example dSMD, the good performance of which coupled with its
quadratic computational complexity make it a good first choice. However, in
general everything depends on the type of application and its underlying as-
sumptions which should mainly guide the selection of the distance measure. In
the absence of such assumptions the obvious question is how distance selection
could be done. In Section 3.5.7 we will show one way to achieve that.

Performances for Protein Fingerprints

From the results presented in Table 3.6 it is clear that the weighting scheme
in the top level description of the learning instances has a positive impact on
the predictive performance of the kNN algorithm (the results are reported in
the fourth parenthesis for the weighted version of the dataset). For all the dis-
tance measures (except for dM ) there is an improvement in predictive accuracy
in comparison with the unweighted schema; the difference in performances is
statistically significant in seven out of twelve cases. The biggest advantage is
for the dL set distance measure where the difference is 5.11 %. This observation
suggests, considering that the weights were selected in an ad-hoc manner, that
there is a space for improvement if other, more elaborate weighting methods,
e.g. adaptive, are used. Such algorithms will be proposed in Chapter 5.

The other observation is that in terms of predictive performance the ap-
proach based on sets have better representation power that the one based on
list. In the weighted version of the dataset and for 10-fold CV the dedit distance
measure performs poorly and it is ranked on the eighth position together with
dRIBL. On the other hand for the weighted case there is a clear advantage of
the representation based on lists when comparing the results on the independent
test set. This could indicate that the representation based on lists reflects the
semantics of the data, and the performance could be improved if other operators
(e.g. other distances or kernels on lists) are exploited.

Performances of Graph Representations

Finally, we compare the two different graph representations described in Sec-
tion 3.5.3, i.e. version 1 where decompositions are into trees of height 3, and
version 2 where decompositions are into tree-like structures of height 2. From
the results it is clear that depending on which set distance is used, the optimal
decomposition is different for different datasets. For example, in mutagenesis
for dCL the better result is obtained in the version 1 of the dataset, while in
the MR dataset it is the other representation which has a higher predictive per-
formance. The first representation is significantly better in two cases, while the
second is significantly better in three cases out of fifty five cases; in other case
the differences are not statistically significant.

The above results indicate that in general it is difficult to specify in advance
the appropriate type of substructures for a given problem. The appropriate
type(s) of the subgraphs should be specified on the basis of domain knowledge
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and applications requirements, but, even in the presence of domain knowledge,
it can be far from obvious which representation should be used. A common intu-
ition is that by decomposing into more complex subgraphs the expressivity, and
consequently the performance, of resulting resulting algorithms increase. This is,
however, in contrast with some experimental evidence (Menchetti et al., 2005) in
the context of graph kernels which show that decompositions into rather simple
substructures perform remarkably well with respect to more complex decompo-
sitions on a number of different datasets. This observation suggests that there
is a need for a more automated way of determining a good decomposition for a
problem at hand. This problem will be tackled in Chapter 5 where we propose
a framework for learning ”good” decompositions of graphs. More precisely, we
will show how to automatically combine a number of predefined decompositions.

3.5.5 Families of Set Distance Measures

Based on qualitative characteristics of the different set distance measures, there
is a division of these distances based on how they account for the elements of
the two sets. Possible options are:

1. base distance only on a single pair of elements

2. account for subsets of the two sets

3. account for all the elements of the two sets

This division is reflected on the performances of the measures as these are
given by their average rankings presented in Table 3.5. Measures that share
common features have in general a similar average ranking among the different
problems.

Going one step further we have tried to cluster the different set distance
measures based on their ranking on each dataset. Each measure was described
by a sixteen element vector where each feature of the vector corresponds to the
ranking of the given measure in one of the datasets4. We used an agglomera-
tive hierarchical clustering algorithm (Duda et al., 2001), together with Ward’s
minimum-variance method to determine which clusters should be merged at
each agglomeration step. The resulting dendrogram is given in Figure 3.4.

It should be stressed that the assumption we make here is that semanti-
cally similar set distances will lead to similar relative performances and will be
grouped in one cluster. However, the opposite is not true, i.e. set distances with
different qualitative characteristics might have similar relative performances
(e.g. dSL and dS have the same ranks in musk (ver. 2), even though these
distances have different characteristics).

We can see that this performance based clustering roughly agrees with the
conceptual differences among the distance measures. The two measures that
exploit all the instances and normalize by the cardinality of the relation that

4For the protein fingerprints dataset we computed the ranking excluding dedit. This ranking
is presented the second parenthesis in Table 3.6
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Figure 3.4: Clustering the relational distances with respect to their rank per-
formance among the datasets examined.

they induce, dSMD, dFS and are first to be merged. Then this cluster is merged
with dS which intuitively makes sense since dS and dFS both use surjection in
order to match elements of the two sets, with dFS imposing the extra constraint
that surjections should be fair. What came as a surprise is that dL is not together
with dSMD, dFS , dS , even though it also uses all the instances and normalizes
by the cardinality of the optimum linkings.

The next cluster merging is that of two measures that are based on a single
pair of instances and respect the reflexivity property, dSL, dH , further merged
with dAL. The latter set distance measure takes into account all the elements,
but it can be also considered as computing the distance measure between means
of the corresponding two sets. The next merge is that of dM and dRIBL, creating
a cluster of distance measures that do not account for all the elements of the
two sets. What comes as a surprise is the fact that dT and dL are placed in one
cluster; this an example where set distance measures with different characteris-
tics are grouped together as they happen to have similar relative performances.
Finally, the fact that dCL is placed in its own cluster indicates which reflect
the fact that in comparison with other distances dCL has consistently a poor
performance among different datasets as can be seen from Table 3.5. It should
be mentioned that given the small number of datasets examined it is an open
question whether this performance based clustering would persist and reflect in
the same manner the qualitative differences of the measures if more datasets
are considered.
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Loosely speaking a set distance measure computes a distance in a high di-
mensional space where the number of dimensions equals the product of cardi-
nalities of the two sets whose distance is computed. Each dimension is defined
by a specific pair of elements of the two sets. Depending on the set distance
measure used all, some, or a single dimension, are considered in order to com-
pute the final distance. One can view that as a weighted distance computation
where the dimensions that are not used have a weight of zero. This view is di-
rectly reflected on the first dimension of the qualitative characterization of the
set distance measures. Normalizing then by the cardinality of the relation that
is used to compute the set distance is simply averaging over the dimensions that
are accounted for in the distance computation.

The clustering of the distance measures according to their relative perfor-
mances and the characterization of the clusters according to the dimensions
given in the beginning of this section is strongly connected to the different
types of problems that we can face. Relational classification problems can be
characterized along the first two qualitative dimensions, e.g. whether all, sub-
sets or a specific pair should determine classification, for example multi-instance
classification problems fall in the last category. If we have a way to character-
ize a classification problem along these dimensions then we would expect the
associated cluster of distance measures to have the best performance for that
problem.

3.5.6 Comparison with Other Systems

The right choice of distance measure results in a classification performance that
compares favorably with the performances of state-of-the-art learning systems.
In Table 3.7 we give the performance of some relational systems along with
the performance of the best distance measure which is reported in the kNNBest

column (the entries in the kNNCV column will be discussed in Section 3.5.7).
The best distance measure was selected according to the ranking results. We
note that for some datasets there are more than one best distance measures.
For the graph datasets we choose the representation with the highest perfor-
mance. Finally, for protein fingerprints we exploited the weighted version of the
dataset. The results of other systems are divided into three groups: (i) results for
distance-based classifiers, (ii) results of kernel-based algorithms and (iii) other
general well-known systems. In the table we only report results on the same
problem formulation, with the same accuracy estimation procedure (by default
it is 10-fold cross-validation; if the evaluation method is different we explicitly
indicate it). When more than one result is available we always take the best.

The results in diterpenes for Tilde, RIBL, FOIL and ICL are reported
from (Džeroski et al., 1996). The result for Matching are from (Ramon and
Bruynooghe, 2001) while KeS and DeS are from (Gärtner et al., 2004) and
denote kernel and distance based learners, respectively. For both versions of
the musk datasets the algorithms compared are EM-DD (Zhang and Goldman,
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2002)5, DD (Maron and Lozano-Pérez, 1998), IAPR (Dietterich et al., 1997),
mi-SVM and MI-SVM (Andrews et al., 2002), MIK (Gärtner et al., 2002) and
Des and KeS of Gärtner et al. (2004). Moreover, for musk (ver. 1) the TILDE
result was the best result reported in (Blockeel and De Raedt, 1997), while for
Matchings the result is from (Ramon and Bruynooghe, 2001).

For mutagenesis the results are taken from (Blockeel and De Raedt, 1997)
on the B2 formulation of the problem that corresponds to our version 2 of
mutagenesis and from (Ramon, 2002) for the Matchings. For the KES and
DES systems the results are from (Gärtner et al., 2004) while MIK is taken
from (Gärtner et al., 2002). K1, K2, K3 are the graph kernels (evaluated using
leave-one-out cross validation) from (Kashima et al., 2003), (Mahé et al., 2004)
and (Ralaivola et al., 2005), respectively. RK is the relational kernel of Cumby
and Roth (2003). For mutagenesis there is a variety of other results reported in
the literature showing even better performance. Nevertheless, these have been
achieved on a different problem formulation that contained more information.
However, for completeness we will mention few of them. G-NET (Anglano et al.,
1998) achieved an accuracy of 91.2% on the merge of the regression-friendly and
unfriendly datasets (see Appendix A.2) using as input: information on atoms
and bonds, global properties of the molecules (five attributes, e.g. hydrophobic-
ity) and chemical structures present in the molecules, e.g. benzenic rings. On
similar representation (Lodhi and Muggleton, 2005) presented results based on
an ensemble method using Aleph-generated theories in which they achieved a
cross-validated accuracy of 95.8 %. Similarly, in all the carcinogenicity datasets
we only cite works which use similar features to describe atoms and bonds. In
particular our results on this dataset are not directly comparable with the ones
reported e.g. in (Fröhlich et al., 2005).

The results for the protein fingerprints classification are taken from (Hilario
et al., 2004) and were obtained using both 10-fold cross-validation and on an
independent test set.

For the diterpenes the best distance is better than all the other reported
performances. The best distance is also close to the best results in the FM, FR
and MM datasets. For mutagenesis the best distance ranked fourth after MIK,
K2 and K3. For musk (ver. 1) the best distance is ranked 7th (out of 8 com-
petitors), however, the differences in performance are probably not significant
considering the small size of this dataset. The poor performance on the musk
(ver. 2), although the same type of application as with version 1, could be ex-
plained by the fact that the distributions of set cardinalities are very skewed
and range from one to more than one thousand. Figure 3.5 shows the cardinality
distribution for the two problems.

For the datasets on which the best distance is not the winner, i.e. musk
and graph datasets the best performance is achieved by a large-margin classifier

5As noted by Andrews et al. (2002) the results of EM-DD presented in (Zhang and Gold-
man, 2002) (96.8 % for version 1 of musk and 96.0 % for version 2 of musk) are optimistically
biased since the test data was used to select the optimal solution obtained from multiple runs
of the algorithm. Here, the presented results are from (Andrews et al., 2002) who used the
corrected version of EM-DD.
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Figure 3.5: Distributions of set cardinalities for the two versions of musk.

using a specialized kernel, based either on sets or on graphs. In Chapter 4
we will propose kernel functions which compare favorably with these state-of-
the art kernels. In protein fingerprints the performance of dSMD using 10-fold
cross-validation is better than the best result, however the performance of the
same distance measure on an independent test is lower that the corresponding
predictive accuracy from (Hilario et al., 2004).

It is obvious that the above comparison between the best distance and the
other relational learners is optimistically biased since the former is the result
of extensive experimentation6 and of an a-posteriori selection of the best. The
comparison would have been fair if the selection was done a priori without
looking at the performance on the test set. Actually this is related to the problem
of selecting among different models – parameterizations of a learning algorithm
– or among different learning algorithms the most appropriate for the problem
at hand. In the next section we will see how we can perform distance selection
in the absence of any assumptions about the problem at hand. The selection
strategy will also provide a basis for fair comparison with previous work.

3.5.7 Selecting Complex Distances

The problem of selecting the appropriate model among a set of candidate models
or selecting the appropriate classification algorithm from a set of classification
algorithms has received considerable attention in the machine learning and data
mining community. Here we describe one of the simplest and most often used
strategies to tackle the above problem, which is based on cross-validation on
the training set (Schaffer, 1993). In this method the error of all classification
algorithms is estimated on the training set using cross-validation, the algorithm

6Although the same could be argued for most of the results of the other relational systems
given in Table 3.7 since when multiple results where available we reported on the best.
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kNNBest kNNCV Distance-based Kernel-based General
diterpenes

97.41 dT 97.41 (=) RIBL 91.20 KeS 94.70 Tilde 90.40
DeS 97.10 Foil 78.30
Matchings 93.50 ICL 86.00

musk (ver. 1)
84.78 dL 80.43 (=) KeS 81.00 EM-DD 84.80

MIK 91.60 DD 88.90
mi-SVM 87.40 IAPR 92.40
MI-SVM 77.90 Tilde 91.20

musk (ver. 2)
77.45 dFS 70.59 (=) Matchings 88.00 KeS 85.50 EM-DD 84.90

MIK 88.00 DD 82.50
mi-SVM 83.60 IAPR 84.90
MI-SVM 84.30

duke
78.05 dSMD 70.73 (=)

mutagenesis
87.23 dT 87.23 (=) Matchings 83.00 MIK 93.00 Progol 81.00

K1 85.1 (loo) Tilde 79.00
K2 91.0 (loo) Foil 61.00
K3 91.5 (loo)
RK 85.4

FM
63.32 dT 57.31 (-) K1 63.4 (loo)

K3 64.5 (loo)

FR
66.67 dL 64.10 (=) K1 66.1 (loo)

K3 66.9 (loo)

MM
65.18 dH 62.80 (=) K1 64.3 (loo)

K3 66.4 (loo)

MR
61.63 dSMD 61.92 (=) K1 58.4 (loo)

K3 65.7 (loo)

Protein Fingerprints
86.01 dSMD 85.47 (=) 85.91
82.25 (test set) 85.92 (test set)

Table 3.7: Accuracy results of the best (kBest) and CV (kCV) distances together
with performances of other relational systems. The references of the specific
systems are given in the text.
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selected for application is the one that has the highest estimated accuracy. Once
a specific algorithm is selected it is retrained on the complete training set and
the induced classification model is tested on the test data.

We adopt the same strategy in order to select the appropriate complex dis-
tance. That is, all complex distances are cross-validated on the training set and
we choose for application the one that minimizes the estimated error. To mea-
sure the classification performance of the distance selection strategy we used
the same 10-fold stratified cross-validation as in the previous experiments. For
each of the training folds there is now a second, inner 10-fold stratified cross-
validation7 over all the complex distances that performs the distance selection.
The results of this automatic distance selection are given in Table 3.7 under the
entry kNNCV. The representation of the graph dataset used to compute this au-
tomatic distance selection is the same as the one reported for the best complex
distance measure. The sign in the parenthesis for kNNCV indicates whether the
performance of this method is significantly better (the + sign) or worse (the -
sign) than that of kNNBest or there is no significant difference (the = sign).

For most of the problems, with the exception of the diterpenes and mu-
tagenesis, the performance of kNNCV is different than that of kNNBest, how-
ever, the differences in performances are not statistically significant. Moreover,
the kNNCV is usually lower than the one of kNNBest, which makes sense since
as already mentioned the performances of kNNBest are optimistically biased.
The differences in performances indicate that the actual distance measure se-
lected within the internal cross-validation process is different from the one cor-
responding to kNNBest. Finally, we mention that in diterpenes the performance
of kNNCV is the same as for best distance and better than that reported for
any of the other relational systems.

Although the results from Table 3.7 show that this method is quite efficient in
practice, its main limitation is that it selects only one complex distance. More
elaborate methods, which are able to combine a number of existing distance
measures will be presented in Chapter 5.

3.5.8 Parameter Selection for the Tanimoto Distance

In this work we introduced a modified version of the Tanimoto distance mea-
sure, dT , from Equation 3.18, which can be used with graded similarities. This
adaptation included the definition of a threshold parameter, θ, which in our
previous experiments was a priori set to 0.01. We will take a closer look on how
the value of this parameter affects the classification performance of dT . In order
to do that we estimated the classification error when θ was taking the follow-
ing values: 0.001 . . . 0.009 with a step of 0.001; 0.01 . . . 0.09 with a step of 0.01;
0.1 . . . 0.5 with a step of 0.1. The results are depicted graphically in Figure 3.6.
For some of the datasets (diterpenes, mutagenesis and carcinogenicity) the de-
fault value of the parameter is very close to the best achieved performance from

7The first inner 10-fold stratified cross-validation as already mentioned is performed over
the k parameter.
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Figure 3.6: Behavior of the Tanimoto distance with respect to its θ parameter.
Chart (a) presents datasets where instances are sets of vectors, chart (b) gives
performance for the mutagenesis and protein fingerprints datasets, and chart
(c) presents results for the carcinogenicity datasets.

which it has no significant difference (Table 3.8). However, for the two versions
of musk this is not the case. Better performance can be achieved if one carefully
tunes the parameter value, this could be done using internal cross-validation for
parameter tuning.

Examining Figure 3.6 we can see that for different datasets there are dif-
ferent behaviors of the Tanimoto distance with respect to its θ parameter. For
example, in the mass spectrometry problem (duke) the performance starts with
high values and then it quickly falls, while in the carcinogenicity datasets the
performance stays constant for values of θ in the range between 0.001 and ap-
proximately 0.2 (for larger θ the performance changes). The behavior of dT in
duke agrees with the technical characteristics of mass spectrometry, where the
devices exploited to produce the samples have the measurement error which is
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dataset best θ best accuracy default θ accuracy sig
diterpenes 0.03 97.54 97.41 =
musk (ver. 1) 0.3 66.30 51.09 +
musk (ver. 2) 0.2 77.45 61.76 +
duke 0.001 75.61 60.98 =
muta (ver. 1) 0.006,0.03 87.77 87.23 =
muta (ver. 2) 0.02 89.36 87.23 =
FM (ver. 1) 0.4 62.18 59.31 =
FM (ver. 2) All except: 0.4,0.5 61.32 61.32 =
FR (ver. 1) All except: 0.4,0.5 62.68 62.68 =
FR (ver. 2) All except: 0.4,0.5 62.39 62.39 =
MM (ver. 1) All except: 0.4,0.5 60.12 58.63 =
MM (ver. 2) All except: 0.4,0.5 60.42 60.42 =
MR (ver. 1) All except: 0.4,0.5 54.94 54.94 =
MR (ver. 2) All except: 0.4,0.5 57.27 57.27 =
PFP not-weighted 0.1 84.73 79.96 +
PFP weighted 0.04 84.80 81.71 +

Table 3.8: Effect of parameter tuning on classification performance of the Tani-
moto distance. The sign in the ”sig” column indicates whether the performance
of the best threshold value was significantly better than that of the default (the
+ sign) or there was no significant difference (the = sign).

approximately 0.001 (Prados et al., 2004). For the other datasets we can observe
a very rough pattern: classification performance improves as we move away from
very low values of θ, it then reaches some kind of plateau in which it gets its
best values, and deteriorates as we move to higher values of θ. The position
and size of the plateau depends on the classification problem. This behavior
is somehow similar to the one observed in carcinogenicity where the plateau
starts directly from very low values of θ and deteriorates for θ  0.2. This kind
of pattern is quite reasonable if one thinks how the Tanimoto distance works.
For very low values of θ few elements of the two sets, if any, will be matched.
As the value increases more and more elements are matched to reach at some
point an optimal matching level that depends on the problem at hand. As θ
continues to increase even more elements are matched; at θ = 1.0 all elements
are matched (when normalized distances are used), this results in a Tanimoto
distance that only depends on the cardinality of the two sets being compared,
dT = |A|+|B|−2min{|A|,|B|}

|A|+|B|−min{|A|,|B|} (in this case |A ∩B| = min{|A|, |B|}, since we allow
each element to be matched only once). If we assume that set A is the mini-
mum cardinality set then dT = |B|−|A|

|B| , which simply describes how larger is
the cardinality of |B| compared to the cardinality of |A|.
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3.6 Related Work

In this section we will describe some of the distances defined in the literature
which are most relevant to our work. More precisely, we report previous work
on distances defined over sets, lists, trees and general complex structures. We
conclude by commenting on kernel induced distances; kernels over composite
objects will be the main focus in Chapter 4.

Distances on Sets

The central idea in set distance measures we have considered is the definition
of a mapping of elements of one set to elements of the other set such that the
final distance is determined on the basis of specific pairs of elements from the
two corresponding sets. Different types of mappings correspond to distances
that have different semantics. It should be noted that the other widely used
approach for computing distances is based on averaging. For example, (Tatti,
2007) proposed a general set distance measure which is based on comparison
of summary statistics (e.g. a proportion of a specific element) computed from
the corresponding sets. The other class of distance measures based on averag-
ing can be obtained from applying different divergence measures between the
probability density functions (PDF) fitted to the elements of the corresponding
two sets. In this framework we can use among others the Kullback-Leibler di-
vergence, J-coefficient, χ2-divergence, Hellinger coefficient and the family of Lp
distances. If the data is assumed to be drawn from normal distributions with
equal covariance matrices, the standard Mahalanobis distance between their
means can be used (Pekalska and Duin, 2005). For an overview of different di-
vergence measures the reader is referred to (Taneja, 1989; Pekalska and Duin,
2005). The main disadvantage with the above set distance measures is that they
might be inappropriate for applications where only some elements from the two
sets determine the overall similarity (e.g. multiple-instance learning). Finally, we
mention that some affinity measures between distributions (Kondor and Jebara,
2003; Lyu, 2005a) have the property that the resulting similarities between sets
are positive semi-definite (see Section 4.1) and as such they can be directly used
in the context of kernel-based learning; these approaches will be discussed in
some detail in Section 4.5.

Traditionally, the most widely used set distance measure based on mapping
between sets of objects is the Hausdorff metric (Klein and Thompson, 1984) and
its many variants (Huttenlocher et al., 1993; Zhao et al., 2005; Yang et al., 2007;
Baudrier et al., 2004; Jesorsky et al., 2001), mainly used in the image processing
and computer vision communities. In particular, some of the related distance
measures presented by Dubuisson and Jain (1994) amount in fact to the dSMD

and dAL distance measures; the others are generalized dSL and dCL where the
corresponding k smallest (of largest) distances are selected. The other widely
used set distance measures based on mappings are single linkage, complete link-
age and average linkage. These distance measures, together with centroid link-
age, median linkage and Ward’s linkage are extensively used in computing set
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distances in clustering.
Similarly to the above method, the evaluation of the inter-population dis-

similarity could also rely on describing each (parametric) distribution as a point
in a Riemann space with the coordinates specified by the distribution’s param-
eters (Pekalska and Duin, 2005). Similar populations, i.e. populations which
give rise to distributions with similar parameters, will be mapped into neigh-
boring points in this space. This method can be further extended by defining
the coordinates in the feature by partial derivatives of the log-likelihood of the
distribution with respect to the model parameters. This construction of the gra-
dient space, F , is in the core of the Fisher kernel (Jaakkola and Haussler, 1999)
which is defined as the inner product in F (possibly normalized by the Fisher
information matrix).

Distances on Lists

The idea of using the edit distance (Section 3.2.4) for general lists was proposed
by Horváth et al. (2001). However, Horváth et al. (2001) applied this procedure
only for lists over a symbolic alphabet whereas we apply it to the problem
where elements of lists are general complex objects. The other difference is in
the normalization method since Horváth et al. (2001) normalizes the distance
by the maximum lengths of the two lists. In our case this distance measure is
normalized by the number of elementary operations which transform one list
into another. Nevertheless, in both cases the resulting distance measure in not
a metric (see Example 3.5) since the triangle inequality does not hold.

Apart from the edit distance and its variants (Durbin et al., 1999) a num-
ber of other distances for strings have been proposed in the literature. For an
overview of different string distances and string matching algorithms the reader
is referred to (Gusfield, 1997; Stephen, 1994).

Another class of distance measure over binary sequences is based on the
notion of Kolmogorov complexity of a string, s, which is defined as the length
(in bits) of the shortest program (in a fixed computing system) that produces
s (Bennett et al., 1998). Since the Kolmogorov complexity is not computable,
an approximate distance measure based on a compressing program was pro-
posed (Cilibrasi and Vitányi, 2005). Since any data objects can be represented
as binary strings (after proper encoding) a Kolmogorov complexity-based dis-
tance measure can be applied for general complex objects. So far it has been
applied to DNA sequences (Li et al., 2003), music pieces in MIDI format (Cili-
brasi and Vitányi, 2005) and various time series datasets (Keogh et al., 2004).

Distances on Trees

The most widely used distance on labeled (both ordered and unordered) trees is
the tree edit distance (Zhang and Shasha, 1989; Klein, 1998; Bille, 2005), which
can be seen as an extension of the basic string edit distance from Section 3.2.4.
The edit distance of two trees is the cost of the lowest cost sequence of such oper-
ations that turns the first tree into the second one. There are currently two main
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algorithms for solving this problem for ordered trees: Zhang-Shasha (Zhang and
Shasha, 1989) and Klein (Klein, 1998), both based on the dynamic program-
ming. On the other hand for unordered trees the problem turns out to be NP-
hard (Bille, 2005) and except for some restricted cases no efficient algorithms
exist.

The main difference between the tree distance proposed in Section 3.3 and
tree edit distance lies in the fact that the former tackles the problem using
a local approach. When computing our distance the relevant information is
considered in a recursive manner according to the levels of given trees. At each
level only information from the next deeper level is used so that at the end
all the relevant information is accounted for, but it does not take into account
the structural properties of learning instances. On the other hand, the tree
edit distance explicitly focuses the structural properties training objects. Of
course, no general statement can be done about the superiority of one distance
measure over another – it is application depend and should be guided by domain
knowledge. The other difference is that the edit distance can be only applied on
labeled trees which are ordered or unordered and it is not clear how to extend
this distance to the generic trees we considered here. Finally, the computational
complexity of the edit distance depends on the actual type of a tree (and it
is different for ordered and unordered) whereas in our case the complexity is
constant, even for trees which consist of both ordered and unordered parts. To
our best knowledge no edit distance exists for “mixed” trees.

Distances on General Structures

A number of systems that perform distance based learning over general complex
representations have appeared in the literature. The most directly related with
our work are KBG (Bisson, 1992), RIBL2.0 (Horváth et al., 2001), FORC and
RDBC (Kirsten et al., 2001) with the latter two being based on the relational
distance of RIBL2.0. In all of them the representation language is that of first
order logic and the distance is computed recursively by taking into account
all the information directly or indirectly related with two given instances and
information that is found in deeper levels of the recursion has a lesser impact
on the computation of the final distance. RIBL2.0 is much closer to our system
since it is used in a classification context the other three systems are clustering
systems.

As in our system, RIBL2.0 can handle terms and lists. However, unlike
RIBL2.0 our system is declarative in nature, and hence we are not constrained
to a homogeneous distance measure but we can induce a variety of relational
distance measures depending on the distance measures that are declared for
different data types. We can even use different distance operators even for ob-
jects of the same general type. The above characteristics provide much greater
flexibility since it is generally accepted that there is no distance measure that
is adequate for all kinds of applications, a fact which also came clear out in the
experimental comparison. One can now choose among a number of distance mea-
sures or even plug-in easily the one that is most appropriate for the application
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at hand. Moreover, in what can be seen as model selection, the most appro-
priate distance measure can be selected via the use of internal cross-validation.
In Chapter 5 we will also propose more elaborate methods, which are based on
combination of a number of predefined distance measures. Finally, RIBL2.0’s
distance measure is a dissimilarity measure while the properties of the finally
induced relational distance of our system depend directly, as we have shown, on
the distance measure that is used.

Other related work on distances in relational domains include the work
of Hutchinson (1997) who defines pseudo-metrics between ground terms based
on their distance from their least general generalization. These are then cou-
pled with the Hausdorff distance in order to compute distances between clauses,
which are nothing more than disjunctions of positive or negative atoms. Nienhuys-
Cheng (1997) proposed a metric on ground terms computed recursively on the
different levels of the structure of the terms. Sub-terms that are found deeper in
the structure have a lower influence on the distance between the terms. Combin-
ing this metric with the Hausdorff distance she produced a metric over sets of
ground terms, i.e. interpretations, which can be used to represent the learning
examples. Both of the above do not account for variables or identifiers (identi-
fiers correspond to foreign key relations in the context of relational algebra).

Ramon and Bruynooghe (1998) extended the above approaches based on
interpretations so that they are able to handle variables and identifiers and pro-
posed a general framework for the definition of distances between first order
logic objects at three levels. At the first level a distance between atoms is re-
quired, then exploiting that distance a distance between models or clauses can
be defined (models are sets of atoms and clauses sets of literals, i.e. positive or
negative atoms). At the last level one has to account for the common terms, i.e.
variables or identifiers, that appear within each set and appropriately adjust the
final distance. This is done by selecting over all the computed distances between
the two sets of atoms or literals under all possible renaming substitutions8 of the
variables and identifiers the one that is minimal. The main problem here comes
from the computational complexity of the renaming substitutions which is ex-
ponential in the number of the variables or identifiers that are present within
the sets.

More concretely, if learning examples are represented via sets of ground
atoms, the distance between these sets will be computed using some set distance
measure over the distance defined on atoms. In order to take into account the
presence of identifiers this distance should be computed for each of the possible
renaming substitutions of the identifiers. The final distance of two learning ex-
amples will be the minimal distance over all the renaming substitutions of their
identifiers. To place the interpretation approach in the context of relational al-
gebra in order to construct the interpretation of a given relational instance we
would have to flatten the tree structure of the relational instance to its corre-
sponding set of atoms, each tuple of a relation present within the tree structure

8The renaming substitution amounts to trying to find the best match between the variables
and identifiers of the two sets.
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of the relational instance will result in one atom of the interpretation. The main
difference between the recursive computation of the relational distance as it is
done in RIBL2.0 and our system, and the approach of Ramon and Bruynooghe
(1998) is that in the latter all atoms of an interpretation contribute equally to
the final distance between two relational examples while in the two former the
contribution of a given tuple-atom reduces with the depth in which it is found
in the recursion. The recursive computation of the distance is an approximate
computation whose quality increases with the depth of the recursion while the
approach of (Ramon and Bruynooghe, 1998) is an exact computation; however
the cost that one has to pay is the computation of the optimal matching of
identifiers which is exponential to the number of identifiers. In fact, because
of that one has often to resolve to an approximate computation as it is done
by Ramon (2002, chapter 5) for the mutagenesis problem.

Finally, Sebag (1997) proposes a system called DISTILL, where a set of
disjunctive hypotheses, possibly redundant, are constructed using disjunctive
version spaces. These hypotheses are used in a subsequent step to map examples
onto a new space where each dimension of that space corresponds to a given
disjunctive hypothesis and its value is the number of disjunctions that subsume
a given example. The distance between two relational instances is simply the
euclidean distance in that space. The induced distance is a pseudo-metric. This
approach has some commonalities with the kernel approaches that we are going
to see in Chapter 4, there the examples are also mapped in a new space in which
a semi-metric can be induced on the basis of the kernel.

Probably the most important difference from all of the previous work on
complex distances is that we are not limited to a single distance measure. All
previous systems implement a single relational distance measure. Instead our
system offers a variety of distance measures among which the user can choose the
one that better matches the problem at hand. In the case that such knowledge is
not available distance selection based on cross validation can be employed. Fur-
thermore the system is implemented in such a way that it is straightforward to
incorporate new distances. Last but not least the presence of different distances
allows for their simultaneous use in a single relational problem. For example, the
user can specify that for one set of tuples a given set distance measure should
be used, while for other sets of tuples a different distance should be used. This
results in a final relational distance that is heterogeneous and matches better
the problem requirements; none of the previous work offers that flexibility.

Kernel-Based Distances

Another way of defining distances is by exploiting kernels over structured do-
mains (kernels over complex objects will be presented in Chapter 4). A kernel
over a structured domain can induce a distance measure which is actually a
pseudo-metric. There is a growing literature on kernels defined over structured
objects such as sets, lists and general complex objects (for an overview see Sec-
tion 4.5). Most of the work in that area is based on a decomposition of the
structured objects to sets of their subparts (Haussler, 1999), the computation
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of kernels on these subparts, and the combination of these kernels in a way that
the resulting function is still a valid kernel, i.e., positive semi-definite. This com-
bination (and hence a kernel over sets) is defined by taking the sum of kernels
over all the possible pairs of subparts of the two structured objects. Compared
to distances over sets one limitation of kernels on sets is that they consider all
pairs of elements (in order to guarantee positive definiteness), while as we have
seen in distances over sets it is possible to define mappings of elements result-
ing in greater flexibility. Nevertheless, the advantage of kernels is that they can
be used within a support vector machine (Section 4.4.1) which can potentially
result in higher classification accuracy and speed compared to the nearest neigh-
bor classifier; the latter due to the small number of support vectors that will be
established resulting in a small number of kernel computations. The limitation
of existing kernels between sets will be addressed in Section 4.2.4 where a new
class of kernels based on specific elements from the two sets is considered.

3.7 Conclusions

In this chapter we proposed various distance measures defined over different
building blocks (i.e. primitive attributes, tuples, sets and lists) of composite
objects represented using the relational formalism. The distances over general
composite objects are based on the decomposition of the objects to simpler
parts of various types and the combination of distances on these simpler parts.
Our system is not constrained to a specific distance measure over the learning
instances. The practitioner has freedom in assigning a distance measure, selected
from a set of available distances, to a particular data type. Moreover, it is
possible to use different distance operators even for objects of the same general
type.

From the experimental evidence it is clear that classification performance
critically depends on the choice of the distance measure, which should be guided
by domain knowledge. The right choice of distance measure gives encourag-
ing classification results that in many cases compare favorably with those of
other relational learners reported in literature. Moreover, by exploiting a cross-
validation based distance selection, in what amounts to model selection, we ob-
tain a relational learner whose performance is comparable to the performance
of the a-posteriori selected best distance measure.

The central idea in set distance measures we have considered is the definition
of a mapping of elements of one set to elements of the other set such that the
final distance is determined on the basis of specific pairs of elements from the
two corresponding sets. Different types of mappings correspond to distances
that have different semantics. The characterization of the various instantiations
of the set distance measures was supported by the empirical results, i.e. set
distances that were semantically similar were in general also similar in terms of
their relative performance on the relational benchmarks examined.

The various distance measures proposed in this chapter form a basis for the
material in the remaining part of this study. In particular the various mappings
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of elements exploited by different set distance measures will be used to define
novel kernels over sets (Chapter 4). Moreover, in Chapter 5 we will propose a
method for learning how to combine a set of predefined distance measures.
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Chapter 4

Kernels

In this chapter we consider kernel functions, the second class of operators de-
fined over the relational representation. Kernels are fundamental ingredients
of kernel-based methods (Shawe-Taylor and Cristianini, 2004; Schölkopf and
Smola, 2001; Cristianini and Shawe-Taylor, 2000), the most famous and suc-
cessful example of which is the Support Vector Machine (SVM). Traditionally,
kernel-based methods have been applied on vectorial data, however, starting
from the seminal work of Haussler (1999) it became clear that this class of algo-
rithms has the potential to support input spaces whose representation is more
general than attribute-value. The examples of existing kernels defined on com-
posite data include kernels on sets (Kondor and Jebara, 2003; Woźnica et al.,
2006a), sequences (Leslie et al., 2003), trees (Collins and Duffy, 2002), labeled
graphs (Gärtner et al., 2003; Kashima et al., 2003; Ramon and Gärtner, 2003;
Menchetti et al., 2005) and general structured data (Gärtner et al., 2004).

For good generalization abilities of kernel-based algorithms it is necessary
that the kernel function reflects the underlying semantics of the data and in-
corporates problem-specific a priori knowledge, if such exists. However, this has
been shown to be difficult in practice and in particular defining kernels over
composite representations remains a challenging task. To facilitate the design of
composite kernels we propose a general method for constructing kernel operators
following the syntactic structure of the complex learning instances as defined by
their relational representations. Similarly to composite distances defined in the
previous chapter the proposed kernels are based on decompositions of complex
structures into subparts of various types that are compared via appropriate ker-
nels. The practitioner has freedom in declaring which specific kernel, selected
from a set of available kernels, should be used for a particular data type. The
final kernel over the complex learning instances is given as a recursive combi-
nation of kernel functions assigned to the sub-structures which constitute the
learning instances. Ideally, this combination should be defined in a way that the
resulting kernel is positive semi-definite such that the data can be mapped to
a (pre-)Hilbert feature space where all the kernel-based algorithm is implicitly
applied. The above mentioned modular nature of the proposed kernels provides
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Figure 4.1: Schematic structure of Chapter 4. The sections with our main
contributions are highlighted.

with the analyst the maximum flexibility in defining a kernel which reflects the
application requirements.

Many of the kernels defined over structured data such as sets, graphs and
sequences are based on (usually implicit) decompositions of these complex struc-
tures into substructures of different types. The final kernel that is applied on
the resulting decompositions is the cross product kernel computing the average
of similarities given by the sub-kernels applied on every pair of elements from
the two decompositions. This feature might be inappropriate in cases where
only specific elements of decompositions are important for a problem at hand.
To address the above problem we propose a family of set kernels which are not
based on averaging; instead they take into account the specific pairs of elements.
We examine the formal properties of the proposed kernels and evaluate them
empirically. To the best of our knowledge it is the first time that such general
kernels over complex data are considered.

The remaining part of this chapter is organized as follows. In Section 4.1 we
review some of the terminology, definitions and theorems used to characterize
the kernels explored in this work. In Sections 4.2.1–4.2.5 we formally define
different kernels over the building blocks of relational instances. In particular, in
Section 4.2.1 we present kernels over elementary objects and in Section 4.2.2 we
define various kernels on tuples. In Section 4.2.3 we review and analyze the cross
product kernel which is probably the most widely used kernel on sets, while in
Section 4.2.4 we propose three families of set kernels which are based on specific
pairs elements from the two sets. Finally, in Section 4.2.5 we define kernels
over lists. In Section 4.3 we move to composite objects and describe kernels on
trees. In the experiments (Section 4.4) we exploit the Support Vector Machines
(Section 4.4.1) to empirically analyze the proposed kernels. The description
of experiments is divided into three parts: in Section 4.4.3 we examine the
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performance of the standard cross product kernel, in Section 4.4.4 we analyze
the performance of other, more flexible set kernels, and finally in Section 4.4.5
we report the experimental results where we exploit various kernels on lists. In
Section 4.5 we place our complex kernels in the context of related work. Finally,
we conclude with Section 4.6.

The most important of our theoretical contributions from this chapter are
the theoretical presentation of the flexible set kernels based on mappings (Sec-
tion 4.2.4) and the kernel on trees (Section 4.3). The most important experimen-
tal results are presented in Section 4.4.4; we argue there that when dealing with
set problems the standard approaches based on averaging do not necessarily
provide the best performance. The organization of this chapter is schematically
presented in Figure 4.1.

4.1 Preliminaries

In this section we review some of the terminology, definitions and basic theorems
which are relevant to different kernel functions used in this study. We start with
the definition of a kernel function.

Definition 4.1 (Kernel). A kernel is a symmetric function k : X ×X → R, i.e.

∀x, y ∈ X : k(x, y) = k(y, x)

Most of this chapter will be devoted to kernel functions which are positive
semi-definite.

Definition 4.2 (Positive Semi-Definite Kernel). We call a kernel k : X×X → R
positive semi-definite (PSD) iff for all x, y ∈ X

k(x, y) = 〈φ(x), φ(y)〉Φ

where φ is a mapping from X to a feature space Φ embedded with an inner
product 〈·, ·〉Φ, i.e. a pre-Hilbert space.

Sometimes we will use the term valid kernel to denote a PSD kernel. A kernel
which is not PSD will be also referred to as an indefinite kernel. It should be
stressed that the definition of a PSD kernel does not require that the input space
X is a vectorial space – it can be any set which we can embed in the feature
space Φ via a PSD kernel. The attractiveness of kernels lies in the fact that
one does not need to explicitly compute the mappings φ(x) in order to compute
the inner products in the feature space. It is easy to show the following two
theorems (Shawe-Taylor and Cristianini, 2004).

Theorem 4.1. A function k : X × X → R is a positive semi-definite kernel iff
for any x1, . . . , xn ∈ X the induced kernel matrix K = (k(xi, xj))ni,j is positive
semi-definite according to Definition 3.12 in Section 3.2.2.
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Theorem 4.2. A function k : X × X → R is positive semi-definite iff for any
x1, . . . , xn ∈ X the induced kernel matrix K = (k(xi, xj))ni,j has non-negative
eigenvalues.

The kernel matrix is sometimes referred to as the Gram matrix. In the re-
maining part of this chapter we will mainly use kernels which are normalized.
The most popular way to normalize a valid kernel k : X × X → R is given by

k(x, y) :=
k(x, y)√

k(x, x)k(y, y)
(4.1)

Obviously, for the above kernel k(x, x) = 1 holds. Assuming that φ is a mapping
to a feature space Φ associated with kernel k, it is straightforward to find a
transformation for the normalized kernel of Equation 4.1 (Shawe-Taylor and
Cristianini, 2004).

Proposition 4.1. Let k : X × X → R be a valid kernel function that cor-
responds to the feature mapping φ to a feature space Φ. Then the normalized
kernel defined in Equation 4.1 corresponds to the following feature map

φ(x) :=
φ(x)
‖φ(x)‖Φ

(4.2)

where ‖ · ‖Φ denotes the norm in Φ.

The above normalization procedure is general and can be applied to any
kernel. It can be shown that this normalization method computes the cosine
of the angle between the two corresponding vectors in the feature space. Other
normalization procedures are possible, however they depend on the particular
kernel and will be introduced in the following sections. In any case, in order to
render kernels defined over various composite objects directly comparable, we
require that ∀x, y ∈ X k(x, y) ¬ 1. Moreover, it is desirable that k(x, x) = 1.

We also note that for any PSD kernel defined on X , a pseudo-metric d :
X × X → R+

0 can be induced by

d2(x, y) = ‖φ(x)− φ(y)‖2Φ
= 〈φ(x)− φ(y), φ(x)− φ(y)〉Φ
= 〈φ(x), φ(x)〉Φ − 2〈φ(x), φ(y)〉Φ + 〈φ(y), φ(y)〉Φ
= k(x, x)− 2k(x, y) + k(y, y) (4.3)

Additionally d is a metric if φ is injective (Schölkopf and Smola, 2001).
The above discussion suggests that apart from considering kernels as inner

products in some feature space Φ, these functions can be also regarded as mea-
sures of similarity, in the sense that ∀x, y ∈ X k(x, y) is ”large” when x and y
are ”similar” (Vert and Schölkopf, 2004). This can be seen from Equation 4.3
which shows that the kernel k(x, y) measures similarity between x and y as
the opposite of the square distance d2(x, y) between their images in the feature
space (up to the terms k(x, x) = ‖φ(x)‖2Φ and k(y, y) = ‖φ(y)‖2Φ). In particular
if ∀x ∈ X k(x, x) = constant then the kernel is simply a decreasing measure of
the distance in the feature space (Vert and Schölkopf, 2004).
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4.2 Kernels over Relational Building Blocks

After defining the basic concepts we move to definitions of various kernel opera-
tors on building blocks of relational instances. In particular, in Section 4.2.1 we
present kernels over primitive data types, while in Section 4.2.2 we define vari-
ous kernels over tuples. Different set kernels will be considered in Sections 4.2.3
and 4.2.4. Finally, in Section 4.2.5 we focus on kernels over lists.

4.2.1 Kernels on Primitive Attributes

In this section we review kernels for the most basic objects, i.e. numerical and
symbolic data types.

We start by considering numerical data types. Let x, y be objects of numeric
data type in range [a, b] (a < b), i.e. type(x) = type(y) = numeric(a, b). The
kernel defined over numerical data types we used in this work is defined as
follows.

Definition 4.3. A kernel between two numerical values x, y ∈ R is defined as

knum(x, y) = x · y (4.4)

Let X be a finite set of symbolic values and let x, y be objects of symbolic
data type, i.e. type(x) = type(y) = symbolic(S) for some finite set of identifiers
S. The most widely used kernel over symbolic values, and the one used in this
study, is the δ kernel.

Definition 4.4 (δ kernel). For two objects x, y ∈ X we define the δ kernel
kδ : X × X → R as

kδ(x, y) =

{
1 if x = y

0 otherwise.
(4.5)

The above kernel is associated with the `2(X ) Hilbert space indexed by all
the elements of X (assuming that X is countable) (Shawe-Taylor and Cristianini,
2004).

4.2.2 Kernels on Tuples

In this section we will first consider the Direct Sum Kernel and the Tensor Prod-
uct Kernel (Schölkopf and Smola, 2001) which are defined over tuples where
elements are general structured objects. Then, we will briefly review some of
the well-known kernels defined over vectors in the Rn Euclidean space. In com-
parison with kernels over general tuples, the existing vector kernels give more
freedom in handling non-linearities in the data.

Let X1,X2, . . . ,Xn, not necessary vectorial spaces, be sets on which the cor-
responding kernel functions k1, k2, . . . , kn are defined, i.e. ki : Xi × Xi → R
for i = 1, . . . , n. Moreover, let X = X1 × X2 × · · · × Xn be the set of all tuples
(x1, x2, . . . , xn) such that xi ∈ Xi. The first kernel we define on X is the Direct
Sum Kernel.
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Definition 4.5 (Direct Sum Kernel). Let x,y ∈ X . The kernel function kΣ :
X ×X → R defined as

kΣ(x,y) =
n∑
i=1

ki(xi, yi) (4.6)

is called the Direct Sum Kernel.

It is straightforward to show that the direct sum Kernel is a valid ker-
nel (Cristianini and Shawe-Taylor, 2000).

Proposition 4.2. The direct sum kernel is a valid kernel over X = X1 ×X2 ×
· · · × Xn provided that all kernels ki are valid, for i = 1, . . . , n.

It is obvious that kΣ is affected by the number of the constituent elements
of tuples. In order to factor out this effect we use a normalized version of kΣ

defined as

kΣ(x,y) :=
kΣ(x,y)

n
(4.7)

The other considered kernel over tuples is the Tensor Product Kernel.

Definition 4.6 (Tensor Product Kernel). Let x,y ∈ X . The kernel function
kΠ : X ×X → R is defined as

kΠ(x,y) =
n∏
i=1

ki(xi, yi) (4.8)

is called the Tensor Product Kernel.

Similarly to kΣ, the tensor product kernel is PSD provided all the sub-kernels
are PSD (Cristianini and Shawe-Taylor, 2000).

Proposition 4.3. The tensor product kernel is a valid kernel over X = X1 ×
X2 × · · · × Xn provided that all kernels ki are valid, for i = 1, . . . , n.

Again, it is obvious that the value of kΠ is affected by the number of con-
stituent elements. We opted for the feature space normalization from Equa-
tion 4.1 resulting in the following kernel

kΠ(x,y) :=
kΠ(x,y)√

kΠ(x,x)kΠ(y,y)
(4.9)

In order to get an insight into the behavior of kΣ and kΠ we analyze the
feature space associated with these two kernels. Let φΣ (φΠ) be an embedding
function into a feature space ΦΣ (ΦΠ) for the kernel kΣ (kΠ). Let also φ1, . . . , φn
be embedding functions into feature spaces Φ1, . . . ,Φn of the kernels k1, . . . , kn
which constitute the two kernels kΣ and kΠ. It is easy to show that ΦΣ =
Φ1 ⊕ . . . ⊕ Φn and ΦΠ = Φ1 ⊗ . . . ⊗ Φn where ⊕ denotes the direct sum and
⊗ denotes the tensor product of vector spaces (Schölkopf and Smola, 2001). In
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other words, φΠ is constructed by computing all the possible products of all
the dimensions of its constituent spaces, where each product becomes a new
dimension of ΦΠ. In contrast ΦΣ is constructed by a simple concatenation of
the dimensions of its constituent spaces. In case the spaces Φi (i = 1, . . . , n)
have a finite number of dimensions (denoted by dim(Φi)), it is obvious that
dim(ΦΣ) =

∑n
i=1 dim(Φi) and dim(ΦΠ) =

∏n
i=1 dim(Φi). In order to get the

explicit feature space representation induced be the above kernels one has to
recursively combine the feature spaces induced by a kernel on tuples’ subparts
(which are possibly complex themselves).

An important result of the above discussion is that the feature space induced
by the tensor product kernel, ΦΠ, is more expressive since it accounts for feature
interactions by means of the corresponding products. From the practical point of
view the larger feature space induced by kΠ might be beneficial for ”complex”
problems, while ”simple” problems can be best solved in the smaller feature
space generated by direct sum version, kΣ. Additionally, distance-based learning
in the feature space induced by kΠ is expected to be more difficult than in the
one induced by kΣ. This is because the dimensionality of ΦΠ is much higher
than ΦΣ

1, and hence distance-based methods can be affected by the ”curse of
dimensionality” (Hastie et al., 2001) and susceptible to over-fitting. On the other
hand, algorithms based on the concept of large margin regularize the solution
and are potentially less sensitive to the high dimensionality of ΦΠ.

It should be noted that the two above kernels on tuples are specific ap-
plications of the <-Convolution kernel of Haussler (1999), which is one of the
best known kernels defined over non-vectorial data. The main idea in the <-
Convolution kernels is that composite objects consist of simpler parts that are
related with the objects via a relation <. In other words the relation < defines
how subparts are related to each other and form the composite objects. Kernels
on composite objects can be then computed by combining kernels defined on
their constituent parts. More formally let x ∈ X be a composite object and
~x = (x1, . . . , xD) ∈ X1× . . .×XD its particular decomposition into constituent
parts. Then we can represent the relation ”~x are the parts of x” by the relation
< defined over the set X1 ×X2 × . . .×XD × X where <(~x, x) is true iff x are
the parts of x. Let <−1(x) = {~x : <(~x, x)} and we assume that a composite ob-
ject can have more than one decomposing possibilities. Then the <-Convolution
kernel is defined as

k<(x, y) =
∑

x∈<−1(x),y∈<−1(y)

D∏
d=1

kd(xd, yd) (4.10)

where kd : Xd × Xd → R (d = 1, . . . , D) is a kernel function defined on
complex objects’ subparts. It should be noted that the product operator in
the above equation, which is in fact the tensor product of kernels, can be re-
placed by other operators that need to be closed with respect to kernel positive

1This holds if the elementary kernels induce a feature space of finite dimensionality, oth-
erwise they are both of infinite dimension.
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semi-definiteness. An example of such other operator is a direct sum operator
resulting in k<(x, y) =

∑
x∈<−1(x),y∈<−1(y)

∑D
d=1 kd(xd, yd). The k< kernel can

be applied to tuples: since there is only one way to decompose a tuple, the sum
in the Equation 4.10 vanishes and we obtain the product of kernels defined over
elements of tuples, hence the tensor product kernel. By using the direct sum
operator we obtain the direct sum kernel.

The main advantage of the <-Convolution kernel is that it is very general
and as such can be applied for various complex data. On the other hand it is not
always easy to adapt this kernel to a problem at hand (Gärtner et al., 2002).

Kernel over Vectors in Euclidean Spaces

In this section we will briefly review some of the kernels defined over the Rn
Euclidean space. As already mentioned, the reason we consider vector kernels as
a special case of kernels over general tuples, is that the former allow for treating
the data non-linearities in a more principled way. Probably the simplest kernel
defined over Rn is the Linear Kernel.

Definition 4.7 (Linear Kernel). Let x,y ∈ Rn. The linear kernel is defined as

klin(x,y) = 〈x,y〉 (4.11)

The above kernel can be easily derived by applying the direct sum kernel
over general tuples from Equation 4.6 where all the corresponding sub-kernels
are knum from Equation 4.4. In such case the linear kernel can be equivalently
written as

klin(x,y) =
n∑
i=1

knum(xi, yi) (4.12)

The other widely used kernel over Rn is the Polynomial Kernel.

Definition 4.8 (Polynomial Kernel). Let x,y ∈ Rn. Moreover, let l ∈ R and
p ∈ N (p  2) be two parameters. The Polynomial Kernel kpoly : Rn×Rn → R
is defined as

kpoly(x,y) = (〈x,y〉+ l)p (4.13)

The feature space corresponding to this kernel is constructed by taking prod-
ucts of the original features. More precisely for l = 0 the feature space has
dimensions indexed by all monomials (of input features) of degree p; the corre-
sponding features do not receive equal weights in this embedding (Cristianini
and Shawe-Taylor, 2000). In case l > 0 the features are monomials up to and
including degree p. Hence, the l parameter can be considered a bias towards
lower-order monomials. Additionally, the relative weighting of the higher order
polynomials is decreased as l increases. The following proposition determines the
dimensionality of the feature space induced by the polynomial kernel (Shawe-
Taylor and Cristianini, 2004).

Proposition 4.4. The dimensionality of the feature space for the polynomial

kernel kpoly(x,y) = (〈x,y〉+ l)p for x,y ∈ Rn and l > 0 is
(
n+ d
d

)
.



4.2. KERNELS OVER RELATIONAL BUILDING BLOCKS 99

Finally, we consider the Gaussian RBF Kernel.

Definition 4.9 (Gaussian RBF Kernel). Let x,y ∈ Rn. Given the parameter
γ ∈ R the Gaussian RBF kernel kRBF : Rn × Rn → R is defined as

kRBF (x,y) = e−γ‖x−y‖
2

(4.14)

The corresponding embedding φkRBF into the feature space ΦkRBF maps the
points onto a surface of a hyperball. The feature space ΦkRBF has an infinite
number of dimensions since any two images are orthogonal and any set of im-
ages is linearly independent (Schölkopf and Smola, 2001). The Gaussian RBF
kernel can be also considered as a polynomial kernel of infinite degree where
the features in ΦkRBF are all possible monomials without restriction on the de-
grees. By the Taylor expansion of the exponential function ex =

∑∞
i=0

1
i!x

i it is
clear that the importance of individual monomials in kRBF decreases as i! with
increasing degree (Shawe-Taylor and Cristianini, 2004).

The parameter γ acts in a similar way to the p parameter in the polynomial
kernel. In particular for large values of γ, which correspond to large values
of p, the resulting kernel matrix becomes similar to identity matrix. In such
cases a kernel-based classifier can fit any labels, and hence the generalization is
harmed (Schölkopf et al., 2002). On the other hand, for small values of γ the
kernel becomes a constant function, making it difficult to learn (Shawe-Taylor
and Cristianini, 2004).

4.2.3 Cross Product Kernel on Sets

In this section we describe different variants of the Cross Product (CP) Kernel
which is one of the simplest, yet widely used kernels defined over (multi-)sets.
This kernel can be considered as a direct application of the <-Convolution kernel
of Equation 4.10. The CP kernel (and the <-Convolution kernel) plays a funda-
mental role in the definition of kernels for structured domains. This is a result
of the fact that an integral part of many kernels for complex objects is the de-
composition of these structures into multi-sets of their parts (e.g. sub-sequences
in case of strings; walks, sub-trees, etc. in case of graphs), and the final kernel
is defined precisely as the CP kernel between the corresponding multi-sets of
decompositions (Haussler, 1999; Horváth et al., 2004).

Definition 4.10 (Cross Product Kernel). Let A = {a} ⊆ X and B = {b} ⊆ X
be two non-empty and finite sets and let k : X × X → R be a (valid) kernel.
The Cross Product (CP) Kernel between sets is defined as

kCP (A,B) =
∑

a∈A,b∈B

k(a, b) (4.15)

It should be noted that in case the arguments to the above kernel are multi-
sets, the summation on the right hand of the above equation takes into account
the sets’ multiplicity. It is straightforward to show the following proposition.
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Proposition 4.5 (PSD-ness of the Cross Product Kernel). The cross product
kernel is a valid kernel function over 2X × 2X provided k : X × X → R is a
valid kernel over X × X .

Proof. This kernel is an instantiation of the <-Convolution kernel from Equa-
tion 4.10. More precisely by defining the relation < as a set-membership, i.e.
x ∈ <−1(x)⇔ x ∈ x and by setting D = 1 we obtain the desired result.

The procedure of computing the CP kernel is sensitive to cardinality varia-
tions; sets with larger cardinality will dominate the overall solution. This leads
us to the issue of normalization of the CP kernel, so that we obtain

kCP (A,B) :=
kCP (A,B)

fnorm(A)fnorm(B)
(4.16)

where fnorm(·) is a normalization function which is non-negative and takes
non-zero values. Different choices of fnorm(·) give rise to different normaliza-
tion methods (Gärtner et al., 2002). By putting fnorm(·) = | · | we obtain the
Averaging normalization method. By defining fnorm(·) =

√
k(·, ·) we get the

normalization in the feature space. This amounts to the normalized kernel from
Equation 4.1. The two above kernels are valid since for both of them the explicit
representation of the feature space can be constructed.

Similarly to the analysis performed in Section 4.2.2 we will examine the
feature space associated with the normalized CP kernel from Equation 4.16. We
assume φk is an embedding function into a feature space Φk for the kernel k
on the right hand of Equation 4.15 so that ∀a, b ∈ X k(a, b) = 〈φk(a), φk(b)〉Φk .
Consider the following embedding function for a finite set A

φset(A) =
∑
a∈A

φk(a) ∈ Φset (4.17)

It is easy to show that φset is an embedding function into the feature space Φset
for the CP kernel (Shawe-Taylor and Cristianini, 2004). Similarly, the feature
space induced by the kernel from Equation 4.16 where fnorm(A) = |A| is given

by φset(A) =
∑
a∈A

φk(a)

|A| . In other words this normalization method amounts
to computing the inner product, in the feature space induced by the kernel k,
between the two centroids of the corresponding sets. Similar to Equation 4.2, in
the case fnorm(A) =

√
k(A,A), the feature space is given by

φset(A) =

∑
a∈A φk(a)

‖
∑
a∈A φk(a)‖

(4.18)

The computational complexity of the CP kernel between two finite sets A
and B is proportional to O(|A||B|). If we assume that the elementary kernel
is a polynomial kernel with the exponent p (with the bias towards lower or-
der monomial) and input space is Rn, then this complexity is proportional to
O(|A||B|(n + p)). It is interesting to compare this computational complexity
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with that of the inner product computed directly in the feature space, which
is proportional to O{2(p+np )(|A| + |B|)}, i.e. each point has to be mapped to
(p+np ) – dimensional feature space (|A|+ |B|) times and the computation of the
inner product in the feature space is again proportional to (p+np ). For example,
if we put n = 10, p = 2 and |A| = |B| = 100 then the computation of the cross
product kernel requires approximately five times more operations than the inner
product in the feature space. As a result, we can see that in some cases it is
more efficient to explicitly map the instances to the feature space and compute
the inner product.

The CP kernel of Equation 4.16 is simple to compute and proved to be quite
useful in practice. However, its main disadvantage is that it takes into account
all the elements of the two sets. In fact, this kernel can be shown to compute
an inner product between two means of the corresponding probability density
functions in the feature space induced by the kernel over the sets’ elements. This
feature might be inappropriate for applications where only some elements from
the two sets determine the overall similarity. In Section 4.2.4 we will address this
problem by proposing kernels for sets which are not based on averaging, instead
they only take into account similarities between specific pairs of elements from
the two sets.

4.2.4 Kernels on Sets Based on Mappings

As already mentioned the set kernels which are based on averaging might not be
suitable for some learning problems. In this section we will propose three new
and flexible families of kernels over sets, where the overall similarity is based
only on specific elements of the two sets. The proposed kernels are based on
the various families of mapping introduced in Section 3.2.3. Depending on the
chosen family of mappings we get set kernels with different semantics which
can be then used within the regularization framework possibly increasing the
predictive performance over methods where distances are used in a standard
way (e.g. kNN). These set kernels can be divided into three groups: (i) kernels
defined as the sum of elementary kernels between specific pairs of elements, (ii)
set distance substitution kernels, where the set distances are substituted using
the Gaussian RBF similarity measure (Haasdonk and Bahlmann, 2004), and
(iii) kernels in the proximity space induced by set distances where the mapping
is defined by a given representation set (Pekalska and Duin, 2005). While the
kernels in the first group exploit the families of mapping in a direct way, the
kernels in the second and third group are based on set distance measures and
exploit the various mappings indirectly.

We should mention that although we use the distance substitution kernels
and kernels in proximity spaces to define kernels over sets, these kernels are not
limited to be only used with set distance measures. In fact, we can exploit vir-
tually any distance measure to obtain kernels over general structured domains.

The main problem with kernels of the first group and the distance substi-
tution kernels is that they are not PSD in general, however, encouraged by
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recent experimental and theoretical results on the application of Support Vec-
tor Machines with non-PSD kernels, we are able to use such kernels with the
corresponding theoretical framework (see Section 4.4.1). In Section 4.4.4 where
we report experimental results we will see that the performance of the SVM
algorithm with kernels based on specific pairs of elements compares favorably
to the SVM with kernels based on averaging.

The remaining part of this section is organized as follows. In Section 4.2.4
we defined kernels directly based on mappings, in Section 4.2.4 the distance
substitution kernels and in Section 4.2.4 we defined the kernels in the proximity
space.

Kernels on Sets Based on Mappings

The first class of kernels based on specific pairs of elements from the two sets is
characterized by the fact that the mapping between sets is defined in the feature
space associated with kernels on sets’ elements. The considered mappings are
the same as the ones used to define set distance measures in Section 3.2.3.
Unfortunately, all the kernels defined in this section are not valid, i.e. they are
not positive semi-definite.

Let A = {a} ⊆ X and B = {b} ⊆ X be two non-empty and finite sets. Let
also k : X ×X → R be a (valid) kernel. The set kernel kset over 2X is defined
as

kset : 2X × 2X → R, kset(A,B) = f({k(a, b)|(a, b) ∈ A×B}).

where k is a kernel on X . The above general form of the set kernel is similar to
the one of the set distance measure from Equation 3.9 defined as some function
of the pairwise distances, d(a, b), of the set of all pairs (a, b) ∈ A×B; here the
set kernel is defined as a function, f , of the set of pairwise kernels, k(a, b). The
actual functions f have the same semantics to the ones used to compute set
distance measures. Finally, all the kernels defined in this section are normalized
by the number of matched elements defined by the mapping.

Definition 4.11 (Single Linkage Kernel). The Single Linkage Kernel is defined
as the maximum kernel of all pairwise kernels

kSL(A,B) = max
(a,b)∈A×B

{k(a, b)} (4.19)

Example 4.1. A counter example for the PSD-ness is to considerA = {a, b}, B =
{c, d}, C = {a, c} with k being the δ kernel from Equation 4.5. We have kSL(A,A) =
kSL(B,B) = kSL(C,C) = 1, kSL(A,B) = 0, kSL(A,C) = 1 and kSL(B,C) = 1.
The corresponding Gram matrix is the following

KSL =

 1 0 1
0 1 1
1 1 1


However, it eigenvalues are λ1 ≈ −0.41, λ2 = 1, λ3 ≈ 2.41, hence the kSL kernel
is not PSD.



4.2. KERNELS OVER RELATIONAL BUILDING BLOCKS 103

Definition 4.12 (Complete Linkage Kernel). The Complete Linkage Kernel is
defined as the minimum kernel of all pairwise kernels

kCL(A,B) = min
(a,b)∈A×B

{k(a, b)} (4.20)

Example 4.2. A counter example for the PSD-ness is to consider A = {a, b},
B = {a} with k being the δ kernel from Equation 4.5. We have kCL(A,A) = 0,
kCL(B,B) = 1 and kCL(A,B) = 1. The corresponding Gram matrix is the
following

KCL =
(

0 1
1 1

)
but its eigenvalues are λ1 ≈ −0.61, λ2 ≈ 1.62, hence kCL is not PSD.

Definition 4.13 (Sum of Maximum Kernels). The Sum of Maximum Kernels
set kernel is defined as the sum of the maximum kernels of the elements of the
first set to the elements of the second set and vice versa:

kSMD(A,B) =

∑
a∈A maxb∈B{k(a, b)}+

∑
b∈B maxa∈A{k(b, a)}

|A|+ |B|
(4.21)

Example 4.3. A counter example for the PSD-ness of kSMD is taken from (Lyu,
2004). Consider A = {a, b}, B = {c, d} and C = {e, f}. We assume that the
kernel on set X = {a, b, c, d, e, f} computed by some PSD kernel k is given by
the following Gram matrix

K =


127 127 141 60 159 128
127 287 215 127 236 135
141 215 206 101 223 157
60 127 101 73 134 79
159 236 223 134 281 191
128 135 157 79 191 160

 (4.22)

The above matrix is PSD (i.e. has non-negative eigenvalues) and hence by The-
orem 4.1 the kernel k is a valid kernel over X . From K, the kSMD kernel can
be computed as kSMD(A,A) = 828, kSMD(A,A) = 614, kSMD(C,C) = 944,
kSMD(A,B) = 698, kSMD(A,C) = 766 and kSMD(B,C) = 737. However, the
resulting Gram matrix

KSMD =

 828 698 766
698 614 737
766 737 944


is not PSD since its lowest eigenvalue is λ1 ≈ −0.0071.

Definition 4.14 (Hausdorff Kernel). The Hausdorff set kernel is defined as

kH(A,B) = min
(

min
a∈A
{max
b∈B
{d(a, b)}},min

b∈B
{max
a∈A
{d(b, a)}}

)
(4.23)
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Example 4.4. Similar to Example 4.3 consider A = {a, b}, B = {c, d} and
C = {e, f}. Let also the matrix from Equation 4.22 be a Gram matrix defined
on X = {a, b, c, d, e, f}. The Gram matrix for kH is the following:

KH =

 127 127 135
127 101 134
135 134 191


However, it has the following eigenvalues: λ1 ≈ −14.9, λ2 ≈ 25.81 and λ3 ≈
408.1, and hence kH is not PSD.

Definition 4.15 (RIBL Kernel). The RIBL set kernel is given as the sum of
the maximum kernels of the elements of the smaller set to the elements of the
larger set, normalized by the cardinality of the smaller set

kRIBL(A,B) =


∑
a∈A

maxb∈B{k(a,b)}
|A| if |A| < |B|∑

b∈B
maxa∈A{k(a,b)}
|B| otherwise

(4.24)

Since it is not symmetric is has to be symmetrized e.g. as kRIBL(A,B) :=
1
2 (kRIBL(A,B) + kRIBL(B,A)). It is easy to see that this kernel is equivalent
(up to a normalization terms) to kSMD, and hence in the following we will focus
only on the latter. Moreover, it is not PSD – the counterexample is the same as
in Example 4.3.

We also define set kernels which are based on relations R = {Ri|Ri ⊆ A×B}
between the two sets. The computation of the set kernel will be based on the
Ri ∈ R that maximizes a sum of kernels computed on the elements that are
part of the relation Ri (or equivalently minimizes the sum of inverse kernels).
The relations R considered in this work are surjections, fair surjections, linkings
and matchings.

For the R being a set of surjections we can define Surjections Kernel, kS , as

kS(A,B) =
maxRi∈R

∑
(ai,bj)∈Ri k(ai, bj)

|Ri|
.

Similarly, for the R being a set of fair surjections we can define Fair Surjections
Kernel, kFS , as

kFS(A,B) =
maxRi∈R

∑
(ai,bj)∈Ri k(ai, bj)

|Ri|
.

When R is a set of linkings Linkings Kernel, kL. is defined as

kL(A,B) =
maxRi∈R

∑
(ai,bj)∈Ri k(ai, bj)

|Ri|
.

Finally, the corresponding set kernel derived from the Matchings family of
mappings is defined as

kM (A,B) =
maxRi∈R(

∑
(ai,bj)∈Ri k(ai, bj) + (|B −Ri(A)|+ |A−R−1

i (B)|)× M
2 )

|A|+ |B|
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where R is a set of matchings.
We also consider a kernel which measures degree of overlapping between

the two sets. In this sense this kernel is related to the Tanimoto distance of
Definition 3.25.

Definition 4.16 (Intersection Kernel). For two sets A,B the (normalized) In-
tersection Kernel is defined as

k∩(A,B) =
|A ∩B|
|A|+ |B|

(4.25)

The above kernel (defined over symbolic sets) is a valid kernel since it is
a special case of the CP Kernel where the kernel over sets’ elements is the
matching kernel of Equation 4.5. Similar to the Tanimoto distance we will extend
this kernel to be able to deal with graded similarities. More precisely, we will
consider two a ∈ A and b ∈ B identical if k(a, b)  1 − θ where θ is a user
specified threshold parameter and k : X ×X → R a valid, normalized kernel on
sets’ elements. Unfortunately, for such loose definition of identity the resulting
kernel is not PSD. We could not find any simple counterexample, however,
for the datasets we considered k∩ gives rise to non-PSD Gram matrices (see
Section 4.4.4)2.

It should be noted that the kernel exploiting the dAL set distance measure
amounts to the well known cross product kernel kernel on sets discussed in
Section 4.2.3. Finally, we mention that the computational complexity of the
kernels defined in this section depends on the complexity of computing the
corresponding mappings and are the same as presented in in the context of
set distances in Table 3.2. In the next two sections we will propose a class of
set kernels where distance on sets are used explicitly. We start by defining the
Distance Substitution Kernel.

Distance Substitution Kernels

Distance Substitution Kernels have been echoing in the literature for some
time (Chapelle et al., 1999; Bahlmann et al., 2002; Haasdonk and Keysers,
2002; Moreno et al., 2004; Belongie et al., 2002b; Desobry et al., 2005; Chen,
2004; Hein et al., 2004; Chapelle and Zien, 2005) but only recently were they
introduced in a general form in (Haasdonk and Bahlmann, 2004; Haasdonk,
2005a).

Definition 4.17 (Distance Substitution Kernel). Let k : Rn × Rn → R be a
valid kernel that can be written in the form of k(‖x−y‖) and d : X ×X → R+

0
is a distance measure which is at least a distance function, i.e. it is nonnegative,
zero-diagonal and symmetric. Then for any x, y ∈ X the Distance Substitution
(DS) Kernel is defined as

kDS(x, y) = k(d(x, y)).

2The same comment applies to the kernels based on relations, i.e. kS , kFS , kL and kM .
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The fact that we do not place any constraints of the underlying distance
measure (except that it should be a distance function) makes the DS kernels
widely applicable. In particular, the DS kernels are of direct use in these areas of
data mining/machine learning where a wide range of different distance measures
already exist.

Such a general family of kernels naturally recovers most of the standard vec-
torial kernels such as the Gaussian RBF and the negative-distance kernels (Berg
et al., 1984). It should be also mentioned that similar to the DS kernel it is pos-
sible to generalize any kernel of the form k(x,y) = k(〈x,y〉) for x,y ∈ Rn such
that we obtain a class of kernels based on inner-products3. Examples of such
kernels are the standard linear and polynomial kernels.

In this work we focus on the generalized Gaussian RBF kernel, which has
been widely used and proved to be quite effective in various structured pattern
recognition problems (see e.g. Chapelle et al., 1999; Chen, 2004). More precisely,
the generalized Gaussian RBF kernel is defined as

kDS(x, y) = kRBF (d(x, y)) = e−γd(x,y)2 (4.26)

for any x, y ∈ X , γ ∈ R+ and where d is at least a distance function. The intu-
ition beyond the above kernel is that it is expected to reflect the same behavior
as the standard Gaussian RBF kernel, such as nonlinearity, etc. Moreover, this
kernel takes values between [0, 1] and hence it does not have to be normalized.

Some statements about the PSD-ness of the kernel from Equation 4.26 can be
made. In particular, the following proposition holds (Haasdonk and Bahlmann,
2004).

Proposition 4.6. For any distance measure d : X × X → R+
0 which is at

least a distance function, the kernel from Equation 4.26 is PSD for any γ ∈ R+

iff d is isometric to an L2-norm (Definition 3.8).

An intermediate result of the above proposition is the following conjecture.

Conjecture 4.1. For d : X × X → R+
0 which is not a metric (L2-norms are

in particular metrics) the kernel from the Equation 4.26 is not PSD.

In particular, from the results presented in Table 3.1, we conclude that for
dAL (after making it reflexive), dSL, dCL, dSMD, dRIBL (after converting it to
be symmetric), dT , dS , dL and dFS set distance measures, the resulting kernel
kDS(x, y) is not PSD. For dH and dM , even though these distance measures are
metrics, the resulting kernels are not PSD since counterexamples can be found4.

3In fact, the distance substitution and inner-product-based kernels are related since any
symmetric distance measure d together with the choice of an origin O ∈ X induces a general-
ized inner product by 〈x, y〉Od := − 1

2 (d(x, y)2−d(x,O)2−d(y,O)2) for x, y ∈ X . In particular,
for d being a Hilbertian metric (Equation 3.8), 〈x, y〉Od corresponds to the inner product in
the corresponding space with respect to the origin O (Haasdonk, 2005a).

4In the datasets we considered, and for dH and dM the DS kernel results in non-PSD Gram
matrices (see Section 4.4.4).
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Kernels in Proximity Spaces

In the last method we consider the learning instances are represented in the so
called proximity space (Pekalska and Duin, 2005; Pekalska et al., 2001; Graepel
et al., 1999). This space is defined by a given distance measure and a representa-
tion set of learning instances (i.e. set of prototypes). More precisely, given a rep-
resentation set S = {s1, . . . , sn} ⊆ X and a distance measure d : X ×X → R+

0
we define a mapping d(z, S) : X → Rn as

d(z, S) = [d(z, s1), . . . , d(z, sn)]T

where z ∈ X . Since distance measures are non-negative, all the data examples
are projected to a non-negative orthotope of the Rn vector space. The dimen-
sionality of this space is controlled by the size of the set S (usually the full
training set).

The construction of the proximity space is justified by the fact that for an
object si belonging to the same class as z, d(z, si) should be small while for
an object sj of different classes d(z, sj) should be large, resulting in a set of
features with possibly high discrimination power (Pekalska et al., 2001). On the
other hand, if si is a characteristic object of a particular class, then the feature
d(x, si) has a large discrimination power, while for sj being an outlier, d(x, sj)
may discriminate poorly. It should be noted that the mapping d(z, S) transforms
instances to a vector space where any traditional machine learning algorithm
such as kNN and SVM may be used.

A direct approach exploiting the dissimilarity information given by by d leads
to the k-Nearest Neighbor method (Section 3.5.1). For a given test instance z
this rule is applied to d(z, si) (si ∈ S) such that z is classified to the most
frequent class occurring among the k neighbors in S. As already mentioned in
Section 3.5.1, the main disadvantages of this algorithm are large storage and
computational requirements as well as sensitivity to outliers. Moreover, if the
data is sparsely sampled and the underlying distance measure is not a metric,
the classification performance of the kNN algorithm may significantly differ from
its asymptotic behavior. It has been argued (Pekalska and Duin, 2005) that the
above problems could be alleviated precisely by representing the data in the
proximity space. As a result, the classification performance in the proximity
space is expected to be higher than the one in the “initial” space of input
objects.

The definition of a kernel in the proximity space amounts to choosing a
distance measure d and a vectorial kernel k in the induced space. The resulting
Gram matrix of the kernel kP consists of the elements

(KP,d)ij = k(d(xi, S),d(xj , S)) (4.27)

It should be stressed that the above kernel is PSD iff k is PSD, independently of
the characteristics of the corresponding set distance measure. We also mention
that in practice we require that k is normalized.

The kernel of Equation 4.27 is similar to the kernels based on similarity
measures between distributions and linear subspaces defined over sets (Lyu,
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2005a; Wolf and Shashua, 2003; Kondor and Jebara, 2003), in the sense that
there too sets are first transformed to some other spaces. For kernels based
on distributions the “elementary” kernel is defined in a space of (parametric)
distributions whereas for the latter all the operations take place in a space of
linear subspaces. In our case the sets are mapped to a vectorial space whose
dimensionality is given by the cardinality of the representation set.

In the proximity space the final decision rules are functions of dissimilarities
of all the elements of a given representation set S, usually the full training set,
as a result the final classification models are not sparse. The above issue can be
cast as a problem of prototype selection (Wilson and Martinez, 2000) which in
our context amounts to applying a feature selection method which returns a set
of optimal features (prototypes) according to some class separability measure.
We will see in Section 5.4 that it is indeed possible to reduce the size of the
representation set without harming the performance of our kernels.

Finally, the computational complexity of the kernels defined in this section
depends on the complexity of computing the corresponding set distances (Ta-
ble 3.2) multiplied by the the size of the representation set S.

4.2.5 Kernels on Lists

In this section we define two kernels over lists of general complex objects that
will be used in the rest of this chapter. A natural kernel to consider at this
point would be an extension of the edit distance between lists. However, this
kernel has already been considered in (Jean-Philippe Vert, 2004), where it was
empirically observed it is not PSD in general. The first kernel we define is the
Contiguous Sublist Kernel.

Definition 4.18 (Contiguous Sublist Kernel). Let k : X ×X → R be a kernel
defined over X . Let λ ∈ R+, λ < 1 be a parameter. Then the Contiguous Sublist
Kernel over all lists where elements are from X , i.e. L(X ∪ −), is defined as

kCS(`1, `2) =
∑

i,j,l(i)=l(j)

λl(i)
∑

s=1,...,l(i)

k(`1[is], `2[js]) (4.28)

where the subsequences i and j are assumed to be contiguous and l(i) denotes
the length of i.

This kernel is a modified version of the Contiguous Subtree Kernel from (Ze-
lenko et al., 2003). It works by first enumerating all contiguous sublists of equal
length and aggregating their similarities which are calculated by adding the
similarities of the elements of the sublists. The similarities between sublists de-
crease by the factor λl(i), i.e. the role of the λ parameter is to penalize longer
sublists. Finally, the similarity of two lists is the sum of all possible contiguous
sublists of the two input lists.

A slightly more general kernel is proved to be a valid kernel (Zelenko et al.,
2003). Moreover, the computational complexity of this kernel is O(mn) where
m and n are the lengths of lists `1 and `2, respectively.
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The other kernel on lists we experimented with is a specialized version of the
kernel over basic terms from (Gärtner et al., 2004) which we call the Longest
Common Sublist Kernel.

Definition 4.19 (Longest Common Sublist Kernel). Let k : X ×X → R be a
kernel defined over X . Then the Longest Common Sublist Kernel over all lists
where elements are of type X , i.e. L(X ∪ −), is defined as

kLCS(`1, `2) = m+
m∑
s=1

k(`1[s], `2[s]) + n (4.29)

where m = min(l(`1), l(`2)), i.e. the length of the shortest list, and n = 1 if the
lists are of the same length and 0 otherwise.

This kernel is proved to be a valid kernel (Gärtner et al., 2004). Its compu-
tational complexity is O(m).

The underlying notion of similarities of kCS and kLCS is different. In the
former the overall similarity is measured by sum of the similarities of all the
(consecutive) sublists of the same length. The similarity between the sublists
are computed by means of kernels defined over the elements of the lists. On the
other hand, kLCS takes only the longest common contiguous sublist at the start
of the two input lists into account. Then a penalty term is added if the input
lists have different lengths. In this sense kCS takes a more “global” view and it
is expected to perform better in practice. In order to use the above kernels we
normalize them using feature space normalization (Equation 4.1).

4.3 Kernels on Trees and Tree-like Structures

In the previous section we proposed various kernel operators defined over the
different building blocks of our relational objects. Similar to Section 3.3 we will
now define kernels, ktree(Ti, Tj), over two trees (or tree-like structures), Ti, Tj ∈
T , defined in Section 2.3, which are constructed as a particular combination of
the basic structures. The reason we consider kernels over trees as a separate
case of kernels over general composite objects is that the former structures
will be widely exploited to represent labeled graphs. The main difference from
kernels over general composite objects and ktree is that in the latter we put
some additional constraints on the actual kernel operators applied over basic
structures. Finally, we focus here on unordered trees where the labels, LV and
LE , are vectors in an Euclidean space. The extension of the presented ideas to
ordered trees (and to other, more general trees) is straightforward.

Let x, y, be two elements of the two trees found at the same height h. These
elements are of the same type and are either two vertices, u, v, or two edges
ei, ej . We also assume that the kernel ktuple defined over tuples is given and is
either the normalized direct sum kernel kΣ from Equation 4.7 or the normalized
tensor product kernel kΠ (Equation 4.9). Then the kernel between x and y is
defined as

k(x, y) = ktuple ((lab(x), δ(x)), (lab(y), δ(y))) (4.30)
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where (lab(x), δ(x)) and (lab(y), δ(y)) are tuples consisting of two elements: the
first is a label of a vertex (or an edge) and the second is defined through the
δ(x) neighborhood function, described in Section 2.3, that returns either: the
set of edges to which a vertex connects to as a starting vertex, if x is a vertex,
or the vertex to which an edge arrives, if x is an edge.

The above kernel requires the definition of a kernel on the labels of x, y
and on the sets δ(x), δ(y). In the former case we exploit one of the kvector
kernels defined in Section 4.2.2. To compute the kernel over sets we use the
cross product kernel of Equation 4.16 (normalized using either of the methods),
however other set kernels can be exploited in this context. When x or y are
leafs the δ(·) function will return an empty set. kCP should be possible to apply
when one or both δ(x), δ(y) are empty. We assume that kCP applied on two
empty sets returns a maximum value (i.e. 1), when only one of the sets is empty
kCP returns 0. To summarize, the definition of k applied on two elements x, y
requires the definition of a kernel over vectors, kvector, the normalization of kCP ,
and finally the definition of a kernel defined over tuples, ktuple. Different choices
of the above kernels will give rise to different kernels defined over x and y.

k is a recursive kernel requiring the computation of set kernels between the
elements of the trees that are associated to x, y, at the h + 1 height. The final
kernel between two recursive structures, Ti, Tj , is given by

ktree(Ti, Tj) = k(root(Ti), root(Tj)) (4.31)

From the above discussion it is obvious that the computation of ktree requires
recursive and alternating computations of kernels between nodes and edges.

In order to show the computational complexity of the proposed tree ker-
nel we use BF to denote the maximal out-degree of the considered trees, i.e.
maxv∈T (V),T∈T {|δ(v)|}. It is easy to show that the computation of the rela-
tional kernel between two trees of height h is proportional to O((BF 2)h−1) =
O(BF 2(h−1)) (here we assume that the root of a tree is at level 1). This is
a result of the fact that at level k we have to compute at most BF k−1 cross
product kernels, each of which has complexity O(n2) (n is a cardinality of the
corresponding sets). This is the pessimistic estimate of the time complexity a
more accurate estimate would be acquired if the average branching factors were
used.

4.4 Experiments

In the experiments we will compare different instantiations of the complex ker-
nels defined in the previous sections on a number of relational problems. This
section is divided into five parts. First, in Section 4.4.1 we briefly describe the
Support Vector Machines classification method that we will use in the experi-
ments. Then, in Section 4.4.2 we describe the experimental setup. Section 4.4.3
examines the performance of the standard cross product kernel, kCP . In Sec-
tion 4.4.4 we analyze the performance of the more flexible set kernels proposed
in Section 4.2.4 which are based on specific pairs of elements from the two sets.
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Finally, in Section 4.4.5 we report the experimental results for the problem of
protein fingerprints classification where we exploit various kernels on lists.

4.4.1 Support Vector Machines

Probably the most prominent and widely used class of kernel-based meth-
ods in supervised settings are the Support Vector Machines (SVMs). In the
remainder of this section we assume that the training data is in the form
(X ,Y) = {(xi, yi)}ni=1 where X denotes a set of input individuals and Y de-
notes a set of output labels. For the moment we only consider binary problems
where the learning instances are either positive or negative, i.e. Y = {−1, 1}.
Assuming that xi ∈ Rm for some m ∈ N (i = 1, . . . , n), SVMs learn a linear
decision boundary to discriminate between the two classes. This decision bound-
ary is then used to classify new test examples. In such case the support vector
machine is the hyperplane f(x) = 〈w,x〉+ b maximizing the margin 1

〈w,w〉 be-
tween two separable classes (or equivalently minimizing 〈w,w〉) where w ∈ Rm
is a normal vector to the hyperplane and b ∈ R is the bias. A new point x ∈ Rm
is classified as positive (negative) if f(x) > 0 (f(x) < 0).

In case the corresponding sets cannot be correctly separated by a linear
hyperplane, the above problem is modified such that we obtain the following
quadratic optimization problem (Cristianini and Shawe-Taylor, 2000)

min
w,b,ξ1,...,ξn

〈w,w〉+ C

n∑
i=1

ξi

subject to yi(〈w,xi〉+ b)  1− ξi, (4.32)

ξi  0, i = 1, . . . , n

where the parameter C > 0 controls the trade-off between empirical risk mini-
mization and margin.

Following the standard way of formulating a dual form for the Problem 4.32
we obtain (Boyd and Vandenberghe, 2004; Cristianini and Shawe-Taylor, 2000)

argmin
α∈Rn

n∑
i=1

αi −
1
2

n∑
i,j=1

yiyjαiαj〈xi,xj〉

subject to
n∑
i=1

yiαi = 0, (4.33)

C  αi  0, i = 1, . . . , n

From the above optimization problem we see that learning a linear classifier
only involves the points in the training set through their inner products. By
replacing the inner products with a valid kernel function, the SVM can be
implicitly applied in the feature space induced by the kernel. Hence, the task
from Equation 4.33 can reformulated as the following optimization problem,
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represented in the matrix notation

argmin
α∈Rn

1Tα− 1
2
αT (yTKy)α (4.34)

subject to yTα = 0,

C1  α  0, i = 1, . . . , n

where Kij = k(xi, xj) and y = (y1, . . . , yn)T and 1 denotes the vector of length
n consisting of the all 1’s. In the above case xi, xj ∈ X can be general complex
objects as long as a proper kernel function k is defined.

Multi-class SVMs

The above formulation of SVM can only handle binary classification problems.
In order to deal with multi-class learning problems we reformulate the learning
task as a number of binary classification problems, and solve these problems
with binary SVM. The resulting SVMs are then combined to form a multi-
class prediction algorithm. Several different combinations schemes have been
proposed in the literature (Weston and Watkins, 1999); among them the best
known are one-against-rest and one-against-one. In this work we used the latter
scheme where one classifier is learned for each possible pair of classes (Friedman,
1996). More precisely, assuming c is the number of classes, for each of the c(c−1)

2
two-class-combinations, a binary SVM is trained, and then during classification
each SVM is used to vote for a particular class. A class with maximum number
of votes is selected. The main advantage is that the resulting binary problems
are more balanced than in the one-against-rest scheme. The main disadvantage
of this method is that the number of binary classifiers increases quadratically
with the number of classes. Moreover, depending on the actual distribution of
classes the learning tasks can be still unbalanced, and hence difficult to solve.

SVMs with Indefinite Kernels

Traditionally the SVM algorithm was applied only if the underlying Gram
matrix (i.e. matrix K in Equation 4.34) is PSD, resulting in a convex, local-
optimum free optimization problem which is amenable to various efficient opti-
mization algorithms. However, recent experimental (Haasdonk and Bahlmann,
2004; Lin and Lin, 2003; Bahlmann et al., 2002; Haasdonk and Keysers, 2002;
Chapelle et al., 1999) and theoretical (Haasdonk, 2005b; Ong et al., 2004; Lin
and Lin, 2003) results state that even kernels which are not PSD can be used
within the SVMs. The theoretical arguments supporting the use of indefinite ker-
nels in SVMs are three-fold. First, the indefinite kernels can be interpreted as
inner products in pseudo-Euclidean (Haasdonk, 2005b; Pekalska et al., 2001) or
more general Krein spaces (Ong et al., 2004). Second, SVMs with indefinite ker-
nels can be interpreted as optimal hyperplanes in these indefinite spaces (Haas-
donk, 2005b). Third, the uniqueness of the solution of the SVMs can be guar-
anteed (Haasdonk, 2005b).
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Several criteria can be used to determine how suitable a given non-PSD
kernel is for SVMs (Haasdonk, 2005b). One of the widely used tests of how
difficult it is to obtain a suitable solution with SVMs is to examine the spectrum
of a non-PSD kernel matrix. The more negative eigenvalues it has, the more
difficult it is to obtain good generalization with SVMs. This criterion can be
formalized by defining the ratio r of the negative to the positive eigenvalue sum

r(K) =

∑
λi<0 |λi|∑
λi>0 λi

∈ [0,∞) (4.35)

where λ1, . . . , λn are eigenvalues of a Gram matrix K. Ideally, this quantity
is 0 for a positive definite matrix, whereas it goes to infinity, if a matrix has
only negative eigenvalues. We will use this test in experiments (Section 4.4.4)
to characterize the indefinite kernels from Sections 4.2.4 and 4.2.4. It should be
mentioned that other indicators can be computed; more details can be found
in (Haasdonk, 2005b).

The other approach to dealing with non-PSD kernels is to regularize the
kernel matrix by eliminating its negative eigenvalues. Possible approaches to
address this problem include: (i) an uniform shifting of the spectrum of the
eigenvalues (without changing the eigenvectors), (ii) removing negative eigen-
values by thresholding, (iii) reflecting negative eigenvalues by taking their ab-
solute values or (iv) adding a suitable constant to the off-diagonal elements of
the induced (squared) distance matrix (Haasdonk and Bahlmann, 2004). The
main problem with the above procedures it that the kernel function is no longer
given in analytic form and the testing data should be known beforehand so that
it can used for computing the modified kernel matrix.

4.4.2 Experimental Setup

The learning problems used in these experiments are the same as the ones used
in the context of distance-based learning (Section 3.5). More precisely, the learn-
ing problems of the first group (i.e. diterpenes, two versions of musk and duke)
are characterized by the fact that the learning instances are represented as sets
of vectors requiring no further recursion. The learning problems of the second
group (mutagenicity and four versions of carcinogenicity) are graph classifica-
tion problems where the learning instances can be represented in many different
ways. The representations we used here are based on graph decompositions into
trees and tree-like structures (see Section 3.5.3). The last learning problem is
that of protein fingerprint classification. For this problem we used two repre-
sentations where motifs are represented as sets and lists. We experimented only
with the weighted version of the problem. The details on the datasets and on
the different representations used are given in Appendix A and in Section 3.5.3.

The learning task is always classification. We use both SVM (Section 4.4.1)
and kNN (Section 3.5.1) classification rules to decide the classification of a
given instance. We estimate accuracy using ten-fold stratified cross-validation
and control for the statistical significance of observed differences for all pairs of
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distance measures using McNemar’s test (McNemar, 1947), significance level of
0.05. Similarly to the experimental setup described in Section 3.5.2 we establish
a ranking schema of the different kernels, based on their relative performance
as determined by the results of the significance tests, as follows (Kalousis and
Theoharis, 1999): in a given dataset if a kernel k1 is significantly better than
k2 then k1 is credited with one point and k2 with zero points; if there is no
significant difference then both are credited with half point.

4.4.3 Experiments with Cross Product Kernel

In the experiments with the cross product (CP) kernel (using both SVM and
kNN) we want to perform several comparisons of different composite kernels
and examine the influence of their parameter settings to the final results. First,
we want to explore the effect of different vector kernels (i.e. klin, kpoly and
kRBF ). Second, we want to see how the different kernel set normalizations, i.e.
averaging (fnorm(·) = |·|) and feature space normalization (fnorm(·) =

√
k(·, ·)),

influence the performance of the SVM and kNN classifiers. This comparison will
be performed only in the first group of datasets (diterpenes, both versions of
musk and duke datasets) and we report results where the kernels on tuples is
fixed to the direct sum kernel. Third, we want to see how the performance of the
direct sum kernel (kΣ) compares with that of tensor product kernel (kΠ). This
comparison will be performed on the graph and protein fingerprints datasets. In
graph learning problems the building blocks of the kernel on trees (or tree-like
structures) from Equation 4.31 are the CP kernel, different kernels on vectors
and two kernels over tuples, i.e. kΣ and kΠ. The normalization scheme in the CP
kernel is fixed to averaging and was used: (i) to compute the set kernel between
two sets of decompositions and (ii) inside the tree kernels. Finally, we are going
to examine how the SVM algorithm compares with the kNN algorithm which
uses distances induced from the corresponding kernels (Equation 4.3). By doing
this we establish the influence of the biases introduced by SVM and kNN on the
predictive performance.

In SVMs the regularization parameter C was optimized in an inner 10-fold
cross validation loop over the set C = {0.1, 1, 10, 50} whereas in kNN the selec-
tion of the k parameter was performed over set k = {1, 3, 9}. In protein finger-
prints for kNN applied on an independent test set the k parameter was fixed to 9,
as this value was most frequently selected by the corresponding cross-validation.
The vector kernels in all the experiments are the linear (Equation 4.11), polyno-
mial (Equation 4.13) and Gaussian RBF (Equation 4.9) kernels. In polynomial
kernel we report results for p = {2, 3}, l = 1 whereas in Gaussian RBF kernel
we experimented with γ = {0.1, 1, 10}.

Classification Performance

The results for SVM are presented in Tables 4.1 and 4.2 while the results where
kNN is used are given in Tables 4.3 and 4.4. In the above tables the top ranked
kernels (according to the ranking schema) are emphasized. In Tables 4.3 and 4.4
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Kernel diterpenes musk (ver. 1) musk (ver. 2) duke
fnorm(·) = | · |

klin 75.12 (2.5) 83.70 (6.5) 84.31 (6.0) 58.54 (5.5)
kpoly,p=2,l=1 77.98 (4.0) 89.13 (6.5) 82.35 (5.5) 58.54 (5.5)
kpoly,p=3,l=1 79.77 (5.5) 84.78 (6.5) 87.25 (6.0) 58.54 (5.5)
kRBF,γ=0.1 71.66 (0.5) 86.96 (6.5) 94.12 (9.0) 58.54 (5.5)
kRBF,γ=1 81.30 (7.5) 89.13 (6.5) 90.20 (6.5) 58.54 (5.5)
kRBF,γ=10 87.56 (10.0) 51.09 (0.5) 61.76 (0.5) 58.54 (5.5)

fnorm(·) =
√
k(·, ·)

klin 75.78 (2.5) 86.96 (6.5) 82.35 (5.5) 58.54 (5.5)
kpoly,p=2,l=1 79.71 (5.5) 88.04 (6.5) 84.31 (6.0) 58.54 (5.5)
kpoly,p=3,l=1 81.44 (7.5) 84.78 (6.5) 90.20 (7.5) 58.54 (5.5)
kRBF,γ=0.1 71.59 (0.5) 85.87 (6.5) 91.18 (6.5) 58.54 (5.5)
kRBF,γ=1 83.43 (9.0) 85.87 (6.5) 87.25 (6.5) 58.54 (5.5)
kRBF,γ=10 90.22 (11.0) 51.09 (0.5) 61.76 (0.5) 58.54 (5.5)

Table 4.1: Accuracy and rank results (SVM) for kCP on the datasets where
instances are sets of vectors.

the sign in the second parenthesis indicates whether the performance of kNN
with the corresponding kernel is significantly better (the + sign) or worse (the
- sign) than that of SVM or there is no significant difference (the = sign). The
detailed significance results are given in Appendix B.2.

Comparison of Different Vector Kernels In order to compare the different
vector kernels we average over the datasets the ranks of kpoly (including klin) and
kRBF , ignoring their parameter settings. For SVM there is a slight advantage of
the polynomial over the Gaussian RBF kernels; the average rank of polynomial
vector kernels is 5.68 (for Gaussian RBF kernels 5.32). For kNN the two kernels
perform similarly and the average ranks for the polynomial and Gaussian RBF
kernels are 5.53 and 5.47, respectively. We also observed that the polynomial
kernel is not very sensitive to the parameter settings (i.e. the p parameter) and
thus no extensive search is required over the parameter space. The Gaussian
RBF kernel is less stable and the wrong selection of the γ parameter might
degrade the performance dramatically (see e.g. the results of kRBF,γ=10 for
version 1 of musk). This observation agrees with the discussion at the end of
Section 4.2.2 where the stability of the Gaussian RBF kernel with respect to the
γ parameter is considered. For SVM the average ranks for the linear and two
polynomial kernels were 5.28, 5.78 and 5.98, respectively. On the other hand,
the average ranks for the Gaussian RBF are 4.72, 6.08 and 5.15, respectively.
For kNN the corresponding values for the linear and polynomial kernels are
5.18, 5.73 and 5.68; for Gaussian RBF the average ranks are 5.47, 5.7 and 5.23.
The stability among different parameters of the polynomial kernel might be a
result of the fact that the normalization of the CP kernel plays an important
role in the construction of our structured kernel. This normalization can factor
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Kernel muta (ver. 1) muta (ver. 2) FM (ver. 1) FM (ver. 2)
kΣ

klin 80.32 (4.0) 76.60 (5.5) 62.18 (5.5) 61.32 (5.5)
kpoly,p=2,l=1 80.32 (4.0) 76.60 (5.5) 62.18 (5.5) 61.32 (5.5)
kpoly,p=3,l=1 79.79 (3.5) 76.60 (5.5) 62.46 (5.5) 61.32 (5.5)
kRBF,γ=0.1 75.53 (1.5) 75.00 (4.5) 61.32 (5.5) 61.32 (5.5)
kRBF,γ=1 78.72 (3.0) 77.66 (5.5) 62.46 (5.5) 60.74 (5.0)
kRBF,γ=10 81.38 (4.5) 76.60 (5.0) 62.46 (5.5) 61.32 (5.5)

kΠ

klin 87.23 (9.0) 80.32 (5.5) 61.60 (5.5) 62.18 (5.5)
kpoly,p=2,l=1 87.23 (9.0) 80.32 (5.5) 62.18 (5.5) 62.18 (5.5)
kpoly,p=3,l=1 87.23 (9.0) 79.79 (5.5) 61.89 (5.5) 62.18 (5.5)
kRBF,γ=0.1 77.66 (3.0) 77.13 (5.5) 61.32 (5.5) 61.03 (5.5)
kRBF,γ=1 86.17 (8.5) 81.91 (6.0) 62.18 (5.5) 62.18 (5.5)
kRBF,γ=10 84.57 (7.0) 82.45 (6.5) 61.60 (5.5) 62.46 (6.0)

FR (ver. 1) FR (ver. 2) MM (ver. 1) MM (ver. 2)
kΣ

klin 68.38 (5.5) 66.95 (6.5) 64.58 (5.5) 63.39 (5.5)
kpoly,p=2,l=1 68.09 (5.5) 67.24 (6.5) 64.58 (5.5) 63.69 (5.5)
kpoly,p=3,l=1 68.38 (5.5) 67.52 (6.5) 64.58 (5.5) 63.10 (5.5)
kRBF,γ=0.1 68.09 (5.5) 65.24 (0.5) 64.58 (5.5) 62.80 (5.5)
kRBF,γ=1 68.09 (5.5) 67.81 (6.5) 64.58 (5.5) 63.69 (5.5)
kRBF,γ=10 68.09 (5.5) 68.09 (6.5) 64.58 (5.5) 63.69 (5.5)

kΠ

klin 67.52 (5.5) 68.09 (6.5) 63.10 (5.5) 63.39 (5.5)
kpoly,p=2,l=1 67.81 (5.5) 67.81 (6.5) 63.99 (5.5) 63.10 (5.5)
kpoly,p=3,l=1 67.81 (5.5) 68.09 (6.5) 63.99 (5.5) 63.99 (5.5)
kRBF,γ=0.1 68.09 (5.5) 65.24 (0.5) 63.10 (5.5) 63.10 (5.5)
kRBF,γ=1 67.52 (5.5) 68.09 (6.5) 63.10 (5.5) 63.99 (5.5)
kRBF,γ=10 67.81 (5.5) 68.09 (6.5) 63.39 (5.5) 63.39 (5.5)

MR (ver. 1) MR (ver. 2)
Protein Fingerprints

10-fold CV test set
kΣ

klin 58.72 (5.5) 57.56 (6.0) 83.12 (1.5) 77.75
kpoly,p=2,l=1 58.72 (5.5) 58.43 (6.0) 85.61 (7.0) 83.94
kpoly,p=3,l=1 58.72 (5.5) 58.72 (6.5) 86.08 (7.0) 83.66
kRBF,γ=0.1 58.43 (5.5) 55.52 (1.5) 85.68 (7.0) 81.97
kRBF,γ=1 58.72 (5.5) 58.72 (6.5) 86.08 (7.5) 83.66
kRBF,γ=10 58.72 (5.5) 58.72 (6.5) 84.87 (5.5) 76.90

kΠ

klin 59.59 (5.5) 58.43 (6.0) 83.25 (1.5) 77.74
kpoly,p=2,l=1 60.17 (5.5) 57.85 (5.5) 85.94 (7.0) 83.94
kpoly,p=3,l=1 60.17 (5.5) 57.85 (5.5) 86.21 (7.5) 83.66
kRBF,γ=0.1 57.85 (5.5) 56.98 (4.0) 85.74 (7.0) 81.97
kRBF,γ=1 61.34 (5.5) 58.14 (6.0) 86.35 (7.5) 83.66
kRBF,γ=10 60.76 (5.5) 58.14 (6.0) 80.63 (0.0) 76.90

Table 4.2: Accuracy and rank results (SVM) for kCP on the graph and protein
fingerprints datasets.
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Kernel diterpenes musk (ver. 1) musk (ver. 2) duke
fnorm(·) = | · |

klin 89.22 (2.0)(+) 85.87 (7.0)(=) 66.67 (5.5)( -) 58.54 (5.5)(=)
kpoly,p=2 91.08 (5.5)(+) 85.87 (7.0)(=) 68.63 (5.5)( -) 46.34 (5.5)(=)
kpoly,p=3 91.62 (6.0)(+) 88.04 (7.0)(=) 67.65 (5.0)( -) 41.46 (5.5)(=)
kRBF,γ=0.1 90.02 (2.5)(+) 83.70 (7.0)(=) 74.51 (6.5)( -) 46.34 (5.5)(=)
kRBF,γ=1 92.28 (8.0)(+) 57.61 (1.5)(-) 78.43 (6.5)( -) 39.02 (5.5)(=)
kRBF,γ=10 94.81 (10.5)(+) 48.91 (0.5)(=) 61.76 (5.0)(=) 41.46 (5.5)(=)

fnorm(·) =
√
k(·, ·)

klin 88.16 (0.0)(+) 83.70 (7.0)(=) 67.65 (5.5)( -) 58.54 (5.5)(=)
kpoly,p=2 90.82 (4.0)(+) 85.87 (7.0)(=) 63.73 (4.0)( -) 41.46 (5.5)(=)
kpoly,p=3 91.68 (7.0)(+) 88.04 (7.0)(=) 68.63 (5.5)( -) 41.46 (5.5)(=)
kRBF,γ=0.1 90.09 (2.5)(+) 85.87 (7.0)(=) 71.57 (5.5)( -) 51.22 (5.5)(=)
kRBF,γ=1 92.28 (7.5)(+) 88.04 (7.0)(=) 73.53 (6.0)( -) 46.34 (5.5)(=)
kRBF,γ=10 94.88 (10.5)(+) 58.70 (1.0)(=) 72.55 (5.5)(=) 48.78 (5.5)(=)

Table 4.3: Accuracy and rank results (kNN) for kCP on the datasets where
instances are sets of vectors.

out the effect of possible outliers and different cardinalities of sets. In the case
of kRBF with large values of γ the corresponding Gram matrix is almost an
identity matrix. The kernel matrix of kCP has similar behavior, independently
of the normalization. In addition, for the graph datasets, this stability could
be an indication that the structural properties of the relational instances are
more important for the classification than the properties of constituent atoms
and bonds. The last finding is that the performance of the linear kernel, klin, is
usually inferior to the one of kpoly and kRBF , provided that for the latter kernels
careful parameter selection is performed. On the other hand the advantage of
klin is that it does not require any parameter selection.

Normalization of the CP kernel The different normalization methods for
the CP kernel do not appear to have a big influence on the final results. For
SVM in diterpenes dataset averaging led to an average rank of 5 over the differ-
ent elementary kernels, and feature space normalization to an average rank of 6.
In musk 1 (musk 2) the corresponding figures were 5.5 and 5.5 (5.58 and 5.42).
In duke the two normalization schemes had the same average rank of 5.5. For
kNN similar trends hold: the average ranks for averaging (features space) nor-
malization in diterpenes, musk (ver. 1), musk (ver. 2) and duke are 5.75 (5.25),
5 (6), 5.67 (5.33) and 5.5 (5.5), respectively. One explanation for this might be
that the two denominators in the explicit feature space representations for the
two kernels (Equations 4.17 and 4.18) are correlated, which makes sense since
sets of higher cardinality will probably have a higher ‖

∑
a∈A φk(a)‖, at least

for the datasets we examined. However, this depends on the problem at hand,
there could other datasets where this correlation does not hold.
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Kernel muta (ver. 1) muta (ver. 2) FM (ver. 1) FM (ver. 2)
kΣ

klin 84.04 (5.5)(=) 85.64 (5.5)(+) 62.75 (6.5)(=) 60.17 (5.5)(=)
kpoly,p=2,l=1 82.45 (5.0)(=) 87.77 (5.5)(+) 62.46 (6.5)(=) 58.45 (5.5)(=)
kpoly,p=3,l=1 83.51 (5.5)(=) 86.70 (5.5)(+) 62.18 (6.0)(=) 59.31 (6.0)(=)
kRBF,γ=0.1 82.98 (5.5)(+) 87.77 (5.5)(+) 61.89 (6.0)(=) 57.59 (5.5)(=)
kRBF,γ=1 84.57 (5.5)(=) 87.23 (5.5)(+) 61.89 (6.0)(=) 57.31 (5.5)(=)
kRBF,γ=10 84.57 (5.5)(=) 86.17 (5.5)(+) 59.89 (5.5)(=) 56.16 (5.0)(=)

kΠ

klin 85.11 (5.5)(=) 85.11 (5.5)(=) 57.02 (5.5)(=) 59.31 (5.5)(=)
kpoly,p=2,l=1 84.57 (5.0)(=) 86.17 (5.5)(=) 57.31 (5.5)(=) 59.89 (5.5)(=)
kpoly,p=3,l=1 86.70 (5.5)(=) 87.23 (5.5)(+) 57.02 (4.5)(=) 59.31 (5.5)(=)
kRBF,γ=0.1 85.64 (5.5)(+) 86.17 (5.5)(+) 59.03 (5.5)(=) 57.31 (5.5)(=)
kRBF,γ=1 87.77 (6.5)(=) 88.83 (5.5)(+) 55.01 (3.0)(-) 57.59 (5.5)(=)
kRBF,γ=10 86.70 (5.5)(=) 87.77 (5.5)(+) 57.31 (5.5)(=) 56.45 (5.5)(=)

FR (ver. 1) FR (ver. 2) MM (ver. 1) MM (ver. 2)
kΣ

klin 67.24 (5.5)(=) 62.39 (5.5)(=) 63.39 (6.0)(=) 62.50 (5.5)(=)
kpoly,p=2,l=1 66.95 (5.5)(=) 62.96 (5.5)(=) 63.69 (6.0)(=) 66.07 (9.0)(=)
kpoly,p=3,l=1 67.52 (5.5)(=) 62.96 (5.5)( -) 61.90 (5.5)(=) 63.69 (6.0)(=)
kRBF,γ=0.1 67.24 (5.5)(=) 62.68 (5.5)(=) 62.80 (5.5)(=) 64.58 (7.5)(=)
kRBF,γ=1 67.52 (5.5)(=) 63.82 (5.5)(=) 61.31 (5.5)(=) 59.52 (4.0)(=)
kRBF,γ=10 68.09 (5.5)(=) 62.39 (5.5)( -) 61.90 (5.5)(=) 60.71 (4.5)(=)

kΠ

klin 66.38 (5.5)(=) 63.82 (5.5)(=) 58.04 (4.5)(=) 61.31 (5.5)(=)
kpoly,p=2,l=1 67.52 (5.5)(=) 65.24 (5.5)(=) 58.33 (5.5)(=) 60.12 (5.0)(=)
kpoly,p=3,l=1 67.81 (5.5)(=) 66.38 (6.0)(=) 59.52 (5.5)(=) 59.23 (4.5)(=)
kRBF,γ=0.1 65.81 (5.5)(=) 63.25 (5.5)(=) 60.12 (5.5)(=) 60.71 (5.0)(=)
kRBF,γ=1 66.10 (5.5)(=) 64.67 (5.5)(=) 58.93 (5.5)(=) 59.52 (4.5)(=)
kRBF,γ=10 65.81 (5.5)(=) 62.39 (5.0)( -) 63.10 (5.5)(=) 59.52 (5.0)(=)

MR (ver. 1) MR (ver. 2)
Protein Fingerprints

10-fold CV test set
kΣ

klin 52.33 (5.0)(=) 53.49 (6.0)(=) 82.99 (2.5) (=) 80.84
kpoly,p=2,l=1 53.20 (5.5)(=) 50.58 (3.5)( -) 84.73 (6.5) (=) 83.94
kpoly,p=3,l=1 52.62 (5.0)(=) 51.16 (4.0)( -) 84.80 (6.5) (=) 83.66
kRBF,γ=0.1 52.62 (5.0)(=) 49.42 (2.0)(=) 84.33 (5.5) (=) 81.97
kRBF,γ=1 53.78 (5.5)(=) 50.29 (3.5)( -) 84.87 (6.5) (=) 83.66
kRBF,γ=10 52.03 (5.0)(=) 50.29 (3.5)( -) 83.52 (4.0) (=) 76.90

kΠ

klin 57.27 (5.5)(=) 56.69 (8.0)(=) 82.04 (2.0) (=) 77.74
kpoly,p=2,l=1 57.56 (5.5)(=) 56.98 (8.0)(=) 85.34 (7.5) (=) 83.94
kpoly,p=3,l=1 55.23 (5.5)(=) 55.52 (6.0)(=) 85.14 (7.0) (=) 83.66
kRBF,γ=0.1 57.27 (5.5)(=) 54.94 (6.0)(=) 85.74 (8.0) (=) 81.97
kRBF,γ=1 56.69 (5.5)(=) 57.56 (8.0)(=) 86.15 (10.0) (=) 83.66
kRBF,γ=10 59.30 (7.5)(=) 56.40 (7.5)(=) 56.22 (0.0) ( -) 76.90

Table 4.4: Accuracy and rank results (kNN) for kCP on the graph and protein
fingerprints datasets.
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Comparison of kΣ vs. kΠ The next dimension of comparison is the relative
performance of kΣ and kΠ. There is a slight advantage of kΠ over kΣ: for kNN
the averaged ranks (over all the graph datasets) of kΣ and kΠ are 5.4 and 5.6,
respectively. This is a rather surprising fact since as we have seen before, the
instance-based learning in the space induced by the tensor product kernel should
be harder than in the space induced by the direct sum kernel. However, kΠ is
more expressive than kΣ because it accounts for feature interactions. The trade-
off between hardness of learning in a space of higher dimensionality and the
higher expressiveness might explain the better performance of kΠ than that of
kΣ. For SVM the advantage of kΠ over kΣ is even bigger: the averaged ranks of
kΣ is 5.32 while for kΠ the corresponding value is 5.78. The better performance
of kΠ in SVM could be a result of the fact that in general large margin classifiers
regularize the solutions, and hence they handle redundant or irrelevant features
in a more efficient way (Schölkopf and Smola, 2001).

Comparison of SVM vs. kNN We also compared the performances of the
SVM and kNN for different structured kernels (the results are reported in the
second parenthesis in Tables 4.3 and 4.4). In general there is an advantage of
using SVM over kNN; the highest is in the musk (version 2) where SVM is
significantly better than kNN in 10 out of 12 kernels. For other datasets (with
the exception of the diterpenes and muta datasets) SVM wins more often. The
poor performance of SVM in diterpenes datasets might be explained by the fact
this is a 23-class problem, and hence most of the binary classifiers which are
combined in multi-class predictions are unbalanced (see Section 4.4.1).

Summary of the Results To summarize, in our experiments we observed
several findings: (i) our complex kernels are in general stable to the parameter
settings of the vectorial kernels (polynomial kernels are more stable than the
Gaussian RBF kernels) – this is probably due to the normalization of kCP or the
importance of the structural features, (ii) the performance of the linear kernel is
usually inferior to the one of polynomial or Gaussian RBF kernels – the nonlin-
earity induced by the latter kernels is important, (iii) different normalizations
of kCP as well as different choices of kernels on tuples do not have a big impact
on the classification accuracy and (iv) in general there is an advantage of using
SVM over kNN (with the exception of the learning problems with large number
of classes).

Comparison with other systems Finally, we note that for many datasets
the results obtained using our best kernel (for SVM) compare favorably with
the results obtained using other relational kernel-based systems and the best
complex distances from Chapter 3. These results are reported in Table 4.5 under
the columns SVMbest, ”Kernel-based” and kNNBest, respectively. The references
of the specific relational kernel-based systems are given in Section 3.5.6. The
entries in the ”SVMbest from Section 4.4.4” column will be discussed in the next
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SVMbest SVMbest from Section 4.4.4 Kernel-based kNNBest

diterpenes
90.22 94.54 KeS 94.70 97.41

musk (ver. 1)
89.13 94.74 KeS 81.00 84.78

MIK 91.60
mi-SVM 87.40
MI-SVM 77.90

musk (ver. 2)
94.12 92.24 KeS 85.50 77.45

MIK 88.00
mi-SVM 83.60
MI-SVM 84.30

duke
58.54 70.73 78.05

mutagenesis
87.23 85.64 MIK 93.00 87.23

K1 85.1 (loo)
K2 91.0 (loo)
K3 91.5 (loo)
RK 85.4

FM
62.46 67.05 K1 63.4 (loo) 63.32

K3 64.5 (loo)

FR
68.38 67.81 K1 66.1 (loo) 66.67

K3 66.9 (loo)

MM
64.58 66.67 K1 64.3 (loo) 65.18

K3 66.4 (loo)

MR
61.34 64.53 K1 58.4 (loo) 61.63

K3 65.7 (loo)

Table 4.5: Accuracy results of the best kernel from this section (SVMbest)
together with the best distance (kNNBest) and other related relational ker-
nels (”Kernel-based”). Additionally, we provide the best results obtained using
the kernels from Section 4.4.4. The references of the specific systems (”Kernel-
based” column) are given in Section 3.5.6.

section. We mention that the results in columns ”Kernel-based” and kNNBest

are the same as reported in Table 3.7.

The best result in version 2 of musk (94.12 %) obtained for kRBF,γ=0.1 is
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significantly better than the one of the best distance measure and is the best
result reported in the literature so far. In FR the best result (68.38 %) is better
than both best distance and other related kernels, however, the difference in
performance with the former is not statistically meaningful. In version 1 of
musk the result for our kernel is better than the best performance obtained
using distances (this difference is also not statistically significant), however, it is
worse than the performance of the MIK kernel of Gärtner et al. (2002). The best
kernel in mutagenesis has the same performance as the best distance. Finally,
the results for diterpenes, duke, FM, MR and MM are worse than the best
accuracies from the previous chapter, however the differences in performances
are statistically meaningful only in diterpenes.

4.4.4 Experiments with Set Kernels Based on Mappings

In these experiments we want to perform several comparisons of the SVM and
kNN algorithms with different set kernels based on specific pairs, and distances
over sets. First, for the various distance measures we want to explore the rela-
tive performance of: (i) the kernels based on mappings (Section 4.2.4), (ii) the
DS kernels from Equation 4.26 and (iii) the linear kernel defined in the corre-
sponding proximity spaces. These kernels will be used with the SVM method,
resulting in the SVMSP , SVMDS and SVMP algorithms, respectively. Second,
we want to see how the performance of SVM with the above kernels compares
with SVM with the following three kernels based on averaging: (i) Bhattachar-
rya kernel (Bhatta) (Kondor and Jebara, 2003) with the linear kernel as the
elementary kernel (ii) the cross product kernel kCP with the linear kernel and
(iii) the linear kernel in the proximity space induced by the dAL distance mea-
sure; kernels based on averaging are a standard way of tackling classification
problems where instances are represented as sets. Third, we are going to exam-
ine how the SVMP algorithm compares with the kNN algorithm where these
distances are used directly. By doing this we establish whether SVMP indeed
provides an improvement over the simple kNN. Finally, we will try to gain more
insight into the proximity space by examining the relative performance of the
SVMP and the kNN algorithm operating in the same feature space (denoted as
kNNP). The reason we use the linear kernel in the experimental setup is to make
a fair comparison between the algorithms and to avoid the situation where an
implicit mapping given by a nonlinear kernel will influence the results.

The results are not reported for the protein fingerprints dataset. For graph
datasets the results are only reported where the first representation of the
learning instances is used, i.e. graphs are represented as sets of trees (see Sec-
tion 3.5.3). The representation of learning objects for other datasets is the same
as in the previous section. We also note that we do not report results using
the mapping defined by dRIBL since this is closely related with the mapping of
dSMD (see the remark after Definition 4.15). Finally, the kernel corresponding
to dT and used within SVMSP is in fact the intersection kernel of Definition 4.16.
For SVMP, SVMSP, and for kernels based on averaging the regularization pa-
rameter C was optimized in an inner 10-fold cross validation loop over the set
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C = {0.1, 1, 10, 50}. For SVMDS the same procedure was used to optimize the
width γ and the C parameter over the grid of γ = {0.1, 1, 5, 10, 20, 30, 40, 50, 60}
and C = {0.1, 1, 10, 50}. In all the kNN algorithms the number of nearest neigh-
bors was optimized over the set k = {1, 3, 9}.

Classification Performance

The classification and rank results (with the significance test results in paren-
thesis) are presented in Tables 4.6, 4.7 and 4.8. The first parenthesis contains
rank results comparing SVMP, SVMDS and SVMSP (for a given distances). The
sign in the second parenthesis corresponds to comparison of SVMP vs. Bhat-
tacharrya kernel from (Kondor and Jebara, 2003) and the third to SVMP vs.
SVM with cross product (CP) kernel and the last one to SVMP vs. SVMP where
dAL is used. In all the cases + stands for a significant win of the first algorithm
in the pair, - for a significant loss and = for no significant difference.

Comparison of SVMP, SVMDS and SVMSP In order to compare SVMP with
SVMDS and SVMSP we fix a dataset and for each distance measure we compute
ranks of different kernels. The comparison results of the three kernels provide
strong evidence that in terms of predictive accuracy there is an advantage of
the linear kernels in the proximity spaces over the set distance substitution
kernels, and the kernels which are directly based on specific mappings. Indeed,
SVMP was significantly worse than SVMDS only once and it was significantly
better in 30 cases. In the remaining 50 cases there was no significant difference.
The advantage of SVMP in comparison with SVMSP is even stronger: SVMP

was significantly better in 38 cases, there was no significant difference in 41
cases and SVMP was significantly worse only in 1 case. The average ranks for
SVMP (averaged over different mappings and different datasets) was 1.41. The
average ranks for SVMDS and SVMSP were 0.97 and 0.64, respectively. The
better performance of SVMP could be explained by the fact that the set distance
substitution kernels and kernels used within SVMSP for our mappings are not
PSD, which means that it is harder for SVM to find an optimal solution.

To further investigate the above issue we examined the spectra of the kernel
matrices corresponding to the different set kernels presented in Section 4.2.4
which are directly based on the different mapping between the sets. The results
for the considered datasets are visualized in Figure 4.2. In each of the graphs
the x-axis corresponds to different set kernels. For each set kernel we provide the
r ratio (solid lines) from Equation 4.35 which characterizes the ”non-positive
definiteness” of the corresponding kernel matrices. Additionally, we present the
estimated accuracies of SVMSP for each of the kernel (the bars). The analysis
of the spectra reveals that for all the datasets (except for diterpenes) for the
mappings corresponding to the kSL, kCL, kSMD, kH , k∩, kS and kL set kernels,
the proportion of sums of negative to the sums of positive eigenvalues as given
by the r ratio is relatively small. This is in contrast with the remaining set
kernels, i.e. kFS and kM , for which the r ratio is larger, and in many datasets
it takes values which are close to (or even larger than) one. This could indicate
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diterpenes
SVMP SVMDS SVMSP

dSL 82.50 (2.0)(=)(+)( -) 29.81 (0.5) 29.81 (0.5)
dCL 52.03 (2.0)( -)( -)( -) 29.81 (0.0) 37.13 (1.0)
dSMD 94.54 (2.0)(+)(+)(+) 90.22 (1.0) 49.77 (0.0)
dH 73.85 (1.5)( -)(=)( -) 73.85 (1.5) 29.81 (0.0)
dT 94.21 (2.0)(+)(+)(+) 90.22 (1.0) 68.00 (0.0)
dS 93.68 (2.0)(+)(+)(+) 82.30 (1.0) 29.81 (0.0)
dFS 93.68 (2.0)(+)(+)(+) 82.24 (1.0) 29.81 (0.0)
dL 93.48 (2.0)(+)(+)(+) 60.21 (1.0) 29.81 (0.0)
dM 94.48 (2.0)(+)(+)(+) 89.02 (1.0) 29.81 (0.0)
Bhatta 83.03
kCP 75.12
dAL 91.62

musk (ver. 1)
SVMP SVMDS SVMSP

dSL 79.35 (1.0)(=)(=)(=) 81.52 (1.5) 70.65 (0.5)
dCL 79.35 (1.5)(=)(=)(=) 66.30 (0.0) 78.26 (1.5)
dSMD 94.74 (2.0)(+)(+)(+) 85.87 (1.0) 67.39 (0.0)
dH 83.70 (1.5)(=)(=)(=) 83.70 (1.5) 67.39 (0.0)
dT 51.09 (1.0)( -)( -)( -) 51.09 (1.0) 53.26 (1.0)
dS 79.35 (1.5)(=)(=)(=) 79.35 (1.5) 51.09 (0.0)
dFS 90.22 (2.0)(+)(+)(+) 82.61 (1.0) 53.26 (0.0)
dL 84.78 (2.0)(=)(=)(=) 68.48 (1.0) 51.09 (0.0)
dM 84.78 (2.0)(=)(=)(=) 53.26 (0.5) 51.09 (0.5)
Bhatta 80.43
kCP 83.70
dAL 83.70

musk (ver. 2)
SVMP SVMDS SVMSP

dSL 82.35 (1.5)(+)(=)(=) 72.55 (1.5) 58.82 (1.5)
dCL 80.39 (2.0)(=)(=)(=) 62.75 (0.5) 66.67 (0.5)
dSMD 92.24 (2.0)(+)(+)(+) 78.43 (1.0) 56.86 (0.0)
dH 91.27 (1.5)(+)(+)(+) 88.24 (1.5) 78.43 (0.0)
dT 61.76 (0.5)(=)( -)( -) 61.76 (0.5) 72.55 (2.0)
dS 83.33 (1.5)(+)(=)(=) 76.47 (1.5) 61.76 (0.0)
dFS 75.49 (1.5)(=)(=)(=) 62.75 (1.5) 61.76 (0.0)
dL 88.24 (2.0)(+)(=)(=) 75.49 (1.0) 61.76 (0.0)
dM 78.43 (2.0)(=)(=)(=) 60.78 (0.5) 55.88 (0.5)
Bhatta 69.61
kCP 84.31
dAL 82.35

Table 4.6: Accuracy, ranks and significance test results for set kernels in diter-
penes and both versions of the musk dataset. The description of the notation is
given in the text.
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duke
SVMP SVMDS SVMSP

dSL 68.29 (1.0)(=)(=)(=) 58.54 (1.0) 58.54 (1.0)
dCL 68.29 (1.0)(=)(=)(=) 58.54 (1.0) 58.54 (1.0)
dSMD 68.29 (1.0)(=)(=)(=) 58.54 (1.0) 58.54 (1.0)
dH 70.73 (1.0)(=)(=)(=) 70.73 (1.0) 58.54 (1.0)
dT 60.98 (1.0)(=)(=)(=) 65.85 (1.0) 58.54 (1.0)
dS 65.85 (1.0)(=)(=)(=) 58.54 (1.0) 58.54 (1.0)
dFS 58.54 (1.0)(=)(=)(=) 58.54 (1.0) 58.24 (1.0)
dL 60.98 (1.0)(=)(=)(=) 58.54 (1.0) 58.54 (1.0)
dM 68.29 (1.0)(=)(=)(=) 58.54 (1.0) 53.66 (1.0)
Bhatta 58.54
kCP 58.54
dAL 63.41

muta (ver. 1)
SVMP SVMDS SVMSP

dSL 79.79 (2.0)(+)(=)(=) 66.49 (0.5) 66.49 (0.5)
dCL 67.02 (1.0)(=)( -)(=) 66.49 (1.0) 70.21 (1.0)
dSMD 78.19 (2.0)(=)(=)(=) 63.83 (0.5) 64.36 (0.5)
dH 73.94 (0.0)(=)(=)(=) 79.79 (1.5) 79.79 (1.5)
dT 85.64 (1.5)(+)(=)(+) 85.64 (1.5) 66.49 (0.0)
dS 81.91 (1.5)(+)(=)(+) 66.49 (0.0) 81.38 (1.5)
dFS 79.79 (2.0)(=)(=)(+) 66.49 (1.0) 40.96 (0.0)
dL 78.19 (2.0)(=)(=)(=) 66.49 (0.5) 66.49 (0.5)
dM 83.51 (2.0)(+)(=)(+) 66.49 (0.5) 64.89 (0.5)
Bhatta 71.81
kCP 80.32
dAL 73.40

FM (ver. 1)
SVMP SVMDS SVMSP

dSL 58.74 (1.0)(=)(=)(=) 59.03 (1.0) 57.88 (1.0)
dCL 54.73 (1.0)( -)( -)(=) 59.03 (1.0) 60.17 (1.0)
dSMD 62.46 (1.5)(=)(=)(=) 56.73 (0.5) 58.74 (1.0)
dH 61.03 (1.0)(=)(=)(=) 59.60 (1.0) 59.03 (1.0)
dT 64.47 (1.0)(=)(=)(=) 67.05 (1.5) 59.03 (0.5)
dS 62.46 (1.0)(=)(=)(=) 59.03 (1.0) 59.03 (1.0)
dFS 57.02 (1.0)( -)(=)(=) 59.03 (1.5) 51.58 (0.5)
dL 61.89 (1.5)(=)(=)(=) 57.88 (0.5) 59.03 (1.0)
dM 62.46 (1.5)(=)(=)(=) 59.03 (1.5) 46.42 (0.0)
Bhatta 63.32
kCP 62.18
dAL 59.31

Table 4.7: Accuracy, ranks and significance test results for set kernels in duke,
muta and FM datasets. The description of the notation is given in the text.
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FR (ver. 1)
SVMP SVMDS SVMSP

dSL 64.67 (1.0)(=)( -)(=) 65.53 (1.0) 65.53 (1.0)
dCL 64.39 (1.0)(=)( -)(=) 65.53 (1.0) 65.53 (1.0)
dSMD 67.81 (1.0)(=)(=)(=) 65.24 (1.0) 65.81 (1.0)
dH 63.53 (1.0)(=)( -)(=) 64.96 (1.0) 65.53 (1.0)
dT 65.53 (1.0)(=)( -)(=) 66.38 (1.0) 65.53 (1.0)
dS 67.24 (1.0)(=)(=)(=) 64.67 (1.0) 65.53 (1.0)
dFS 63.82 (1.5)(=)( -)(=) 65.53 (1.5) 54.42 (0.0)
dL 66.95 (1.5)(=)(=)(=) 64.39 (0.5) 65.53 (1.0)
dM 67.81 (2.0)(+)(=)(+) 65.53 (1.0) 56.70 (0.0)
Bhatta 63.82
kCP 68.38
dAL 65.53

MM (ver. 1)
SVMP SVMDS SVMSP

dSL 63.99 (1.0)(=)(=)(=) 59.82 (1.0) 61.61 (1.0)
dCL 58.33 (1.0)(=)( -)( -) 61.61 (1.0) 62.80 (1.0)
dSMD 65.48 (1.0)(=)(=)(=) 61.61 (1.0) 61.61 (1.0)
dH 61.01 (1.0)(=)(=)(=) 61.01 (1.0) 60.42 (1.0)
dT 66.37 (1.0)(=)(=)(=) 65.77 (1.0) 61.61 (1.0)
dS 66.67 (2.0)(=)(=)(=) 61.61 (0.5) 61.31 (0.5)
dFS 57.74 (1.0)( -)( -)( -) 61.61 (1.0) 61.61 (1.0)
dL 66.07 (2.0)(=)(=)(=) 61.61 (0.5) 61.61 (0.5)
dM 65.48 (1.5)(=)(=)(=) 63.69 (1.5) 47.92 (0.0)
Bhatta 64.29
kCP 64.58
dAL 63.99

MR (ver. 1)
SVMP SVMDS SVMSP

dSL 55.81 (1.0)( -)(=)(=) 55.81 (1.0) 54.36 (1.0)
dCL 53.20 (1.0)( -)( -)(=) 55.81 (1.0) 55.23 (1.0)
dSMD 57.56 (1.0)(=)(=)(=) 55.23 (1.0) 55.81 (1.0)
dH 53.49 (1.0)( -)(=)(=) 54.94 (1.0) 56.10 (1.0)
dT 64.53 (1.5)(=)(=)(+) 59.59 (1.0) 55.81 (0.5)
dS 58.14 (1.0)(=)(=)(=) 56.10 (1.0) 55.81 (1.0)
dFS 54.94 (1.5)( -)(=)(=) 55.81 (1.5) 47.09 (0.0)
dL 60.47 (1.0)(=)(=)(=) 55.23 (1.0) 55.23 (1.0)
dM 61.63 (1.5)(=)(=)(=) 55.52 (1.0) 48.84 (0.5)
Bhatta 62.79
kCP 58.72
dAL 55.23

Table 4.8: Accuracy, ranks and significance test results for set kernels in FR,
MM and MR datasets. The description of the notation is given in the text.
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that for the former set kernels efficient learning with SVM is possible while for
kFS and kM it is much harder for SVM to converge to a global optimum (see
discussion in Section 4.4.1). Indeed, in these datasets we observed a correlation
between the spectra of a given kernel matrix and the estimated accuracy of the
corresponding SVM algorithm, i.e. a high ratio r usually is associated with low
accuracy. In diterpenes the r ratio for all the set kernels was smaller that in
other datasets, and it was the highest for k∩. In this dataset no clear correlation
between the spectra and accuracies can be observed, e.g the highest predictive
accuracy is obtained for k∩. As a result we can state that the bad performance
of the SVMSP algorithm, relative to SVMP, might be a result of: (i) the lack
of PSD-ness of the corresponding kernels or (ii) the fact that the kernels in the
proximity space are simply better suited for the datasets we considered.

We also performed the above analysis for the different distance substitution
kernels. The results for γ = 1 are presented in Figure 4.3; the results for γ =
0.1 and γ = 10 are presented in Appendix B.3. The results suggest that in
comparison with set kernels used within SVMSP, it should be easier to train
SVM using the distance substitution kernels since in general the corresponding
r ratio takes lower values. This observation agrees with empirical results since
SVMDS was significantly better than SVMSP in 27 cases, it was worse in 4 cases
and in the remaining cases (50) the differences were not statistically significant.

Comparison of SVMP vs. SVM with Kernels Based on Averaging The
next dimension of comparison is the relative performance between the SVMP

and SVM with kernels based on averaging (the latter, as already mentioned, is a
standard approach to tackle set problems). We experimented with the following
kernels based on averaging: the Bhattacharrya kernel (Bhatta) (Kondor and Je-
bara, 2003), the cross product kernel kCP and the linear kernel in the proximity
space induced by the dAL distance measure. The main point of this comparison
is to examine whether there are cases in which different ways of matching the
elements of two sets can be more beneficial than the standard averaging which
matches everything with everything. From the results it is clear that the relative
performance of kernels based on specific pairs of elements and kernels based on
averaging depends on the actual application. The strongest advantage of the
former is in diterpenes, mutagenesis and musk. For carcinogenicity datasets the
opposite trend holds. For duke both approaches have similar performance and
no conclusions can be drawn. It should be noted that the state-of-the-art Bhat-
tacharrya set kernel from (Kondor and Jebara, 2003) performs poorly for all the
examined datasets. Overall the choice of the appropriate way of matching the
elements of two sets depends on the application and ideally should be guided
by domain knowledge, if such exists. Nevertheless, the relative performance of
the different kernels provides valuable information about the type of problem
we are facing. For example, by examining mutagenesis and carcinogenicity we
see that although they correspond to the same type of classification problem,
i.e. classification of graphs, in the latter averaging works better, hinting that the
global structure of the molecules is important, whereas in the former averaging
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Figure 4.2: Spectra of Gram matrices of set kernels used within SVMSP. The
solid line denotes the r ratio from Equation 4.35 (left y-axis) and bars denote
the estimated accuracies (right y-axis).



128 CHAPTER 4. KERNELS

SL CL SMD H T S FS L M
0

20

40

60

80

100

Set distances

E
st

im
a
te

d
 A

cc
u
ra

cy

0

0.05

0.1

0.15

0.2

R
a
tio

 r

(a) diterpenes

SL CL SMD H T S FS L M
0

20

40

60

80

100

Set distances

E
st

im
a
te

d
 A

cc
u
ra

cy

0

0.01

0.02

0.03

0.04

0.05

0.06

R
a
tio

 r

(b) musk (ver. 1)

SL CL SMD H T S FS L M
0

20

40

60

80

100

Set distances

E
st

im
a
te

d
 A

cc
u
ra

cy

0

0.05

0.1

0.15

0.2

0.25

R
a
tio

 r

(c) musk (ver. 2)

SL CL SMD H T S FS L M
0

20

40

60

80

Set distances

E
st

im
a

te
d

 A
cc

u
ra

cy

0

1

2

3

4

5

6
x 10

−4

R
a

tio
 r

(d) duke

SL CL SMD H T S FS L M
0

20

40

60

80

100

Set distances

E
st

im
a
te

d
 A

cc
u
ra

cy

0

0.02

0.04

0.06

0.08

0.1

0.12

R
a
tio

 r

(e) muta (ver. 1)

SL CL SMD H T S FS L M
0

10

20

30

40

50

60

70

Set distances

E
st

im
a
te

d
 A

cc
u
ra

cy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
a
tio

 r

(f) FM (ver. 1)

SL CL SMD H T S FS L M
0

10

20

30

40

50

60

70

Set distances

E
st

im
a
te

d
 A

cc
u
ra

cy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
a
tio

 r

(g) FR (ver. 1)

SL CL SMD H T S FS L M
0

10

20

30

40

50

60

70

Set distances

E
st

im
a
te

d
 A

cc
u
ra

cy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
a
tio

 r

(h) MM (ver. 1)

SL CL SMD H T S FS L M
0

10

20

30

40

50

60

Set distances

E
s
ti
m

a
te

d
 A

c
c
u

ra
c
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
a

ti
o

 r

(i) MR (ver. 1)

Figure 4.3: Spectra of Gram matrices of set distance substitution kernels. The
solid line denotes the r ratio from Equation 4.35 (left y-axis) and bars denote
the estimated accuracies (right y-axis). The γ parameter is fixed to 1.
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performs poorly, indicating that matching specific components of the molecules
is more informative. Finally, for the diterpenes and musk (ver. 2) datasets we
see that there is an advantage of the kernels based on matchings of specific
elements of two sets over kernels that match everything with everything.

Comparison of SVM vs. kNN We also compared the performance of a
standard kNN algorithm on the standard set distance measures with that of
SVMP in order to establish whether the latter indeed brings some improvement
over the naive way of exploiting distance measures (these results are listed in
Table 4.9 5). Indeed, kNN was significantly better than SVMP in only 6 cases and
it was significantly worse in 25 cases. For the remaining set distance measures
(59) the differences were not statistically significant.

To analyze whether the above improvement simply comes from the use of
SVM, we compared SVMP with kNN applied in the same proximity spaces,
kNNP (these results are also listed in Table 4.9). Overall, the results are similar
to ones presented above: SVMP performed significantly better (worse) in 24 (7)
cases; in 59 the differences were not significant. Nevertheless, for some datasets
(both versions of musk and FM) the performances of SVMP and kNNP are very
similar (according to statistical significance results) and the former performed
significantly better than standard kNN. For the other datasets we conjecture
that the bias introduced by SVM is important.

The better performance of SVMP and kNNP in the musk and FM datasets
in comparison with the “standard” kNN can be also explained by the fact that
working in the proximity space gives a more global view to the data. More pre-
cisely, the kNN algorithm in a non proximity space examines a single neighbor-
hood of a given instance which is to be classified. On the other hand SVMP and
kNNP in the proximity space have access to all the neighborhoods of points in
the representation set. These neighborhoods are precisely given by the instances
in the new space. In particular, it means that kNN in the proximity space has
access to more training points, hence kNN in the initial space would probably
achieve better results for higher values of the parameter k. To check the above
hypothesis we examined the performance of the standard kNN in the version 1
of musk dataset for two set distance measures dRIBL and dM where the number
of nearest neighbors k was fixed to 9 (these set distance measures achieve the
poor accuracy of 50 % for k = 1). For k = 9 the performance increased by more
than 15 % reaching 65.22% and 70.65 %, respectively.

Summary of the Results To sum up, in our experiments we observed several
findings: (i) kernels in the proximity space (kP ) outperform distance substitution
kernels (kDS) and kernels directly based on specific pairs of elements (kSP ) –
this is due to the non-PSD-ness of kDS and kSP (or to better suitability of kP ),
(ii) as a result of many negative eigenvalues in the corresponding spectra kDS
outperforms kSP , (iii) the appropriate way of matching the elements of two sets
depends on the actual application (kernels based on specific pairs vs. kernels

5In contrast with Tables 4.6, 4.7 and 4.8 we report results also for dRIBL.
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diterpenes musk (ver. 1) musk (ver. 2)
SVMP kNNP SVMP kNNP SVMP kNNP

dSL 82.50 (+)(+) 77.38 79.35 (=)(=) 89.13 82.35 (=)(+) 89.13
dCL 52.03 ( -)(+) 70.73 79.35 (=)(=) 80.43 80.39 (=)(+) 76.47
dSMD 94.54 (+)(=) 89.22 94.74 (=)(+) 92.39 92.24 (=)(+) 87.25
dH 73.85 ( -)( -) 85.83 83.70 (=)(=) 85.87 91.27 (+)(+) 84.31
dRIBL 94.88 (+)(=) 89.42 83.70 (=)(+) 82.61 77.45 (=)(+) 74.51
dT 94.21 ( -)( -) 96.21 51.09 (=)(=) 51.09 61.76 (=)(=) 61.76
dS 93.68 (=)( -) 92.81 79.35 ( -)(=) 90.22 83.33 (=)(=) 87.25
dFS 93.68 (=)( -) 92.81 90.22 ( -)(+) 96.74 75.49 (=)(=) 72.55
dL 93.48 (+)(=) 88.96 84.78 (=)(=) 84.78 88.24 (+)(+) 77.45
dM 93.48 (=)( -) 93.21 84.78 (=)(+) 82.61 78.43 (=)(+) 72.55

duke muta (ver. 1) FM (ver. 1)
SVMP kNNP SVMP kNNP SVMP kNNP

dSL 68.29 (=)(=) 51.22 79.79 (=)(=) 78.72 58.74 (=)(=) 55.01
dCL 68.29 (=)(+) 53.66 67.02 ( -)( -) 76.06 54.73 ( -)(=) 61.32
dSMD 68.29 (=)(=) 53.66 78.19 (=)(=) 80.85 62.46 (+)(=) 55.59
dH 70.73 (=)(=) 68.29 73.94 (=)(=) 77.13 61.03 (=)(=) 55.87
dRIBL 70.73 (=)(=) 58.54 81.91 (=)(=) 85.11 61.32 (+)(=) 52.15
dT 60.98 (=)(=) 58.54 85.64 (=)(=) 82.98 64.47 (+)(=) 57.88
dS 65.85 (=)(=) 65.85 81.91 (=)(=) 82.45 62.46 (=)(+) 59.89
dFS 58.54 (=)(=) 58.54 79.79 (=)(=) 85.11 57.02 (=)(=) 55.01
dL 60.98 (=)(=) 60.98 78.19 (=)(=) 80.85 61.89 (=)(=) 57.31
dM 68.29 (=)(=) 65.85 83.51 (=)(+) 83.51 62.46 (+)(=) 52.72

FR (ver. 1) MM (ver. 1) MR (ver. 1)
SVMP kNNP SVMP kNNP SVMP kNNP

dSL 64.67 (+)(=) 55.56 63.99 (=)(=) 59.82 55.81 (=)(=) 57.56
dCL 64.39 (+)(+) 56.13 58.33 (=)(+) 63.99 53.20 (=)(+) 51.16
dSMD 67.81 (+)(+) 54.99 65.48 (=)(=) 60.42 57.56 (=)(=) 59.30
dH 63.53 (+)(=) 57.83 61.01 (=)(=) 60.12 53.49 (=)(=) 56.69
dRIBL 64.10 (+)(=) 55.56 62.20 (+)(+) 55.65 57.56 (=)(=) 52.33
dT 65.53 (=)(=) 59.83 66.37 (+)(+) 55.36 64.53 (=)(+) 60.76
dS 67.24 (+)(=) 49.29 66.67 (+)(+) 59.82 58.14 (=)(=) 54.07
dFS 63.82 (+)(=) 53.56 57.74 (=)(=) 58.33 54.94 (=)(=) 53.78
dL 66.95 (+)(=) 53.28 66.07 (=)(=) 63.99 60.47 (=)(=) 54.07
dM 67.81 (+)(=) 52.99 65.48 (+)(=) 57.14 61.63 (+)(+) 53.78

Table 4.9: Accuracy, ranks and significance test results on the considered
datasets. The first parenthesis corresponds to the comparison of SVMP vs. kNNP

and the second compares SVMP vs. kNN.

based on averaging), (iv) SVMP (and in some cases kNNP) performs better
than standard kNN (in the proximity space algorithms have a more global view
to the data, hence separability is increased).

Comparison with Other Systems Finally, we situate the performance of
our relational kernel to other relational learning systems and the best cross
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product kernel (kCP ) of Section 4.4.3. The results for our kernels are presented
in Table 4.5 under the column ”SVMbest from Section 4.4.4”. In the version 1 of
musk, for SVMP with dSMD, we obtained 94.54 % of accuracy which the best
result reported so far. Moreover, in duke, FM and MM the results are better
than both the best results reported in the literature and the results of kCP ,
however, the difference in accuracy with kCP is statistically significant only in
FM. In other datasets the results are worse than either the other relational
kernels or the best kCP . From the results reported above we can see that our
kernel-based learner compares favorably with the results achieved by special-
purpose algorithms applied to structured data. Finally, we mention that except
for diterpenes, mutagenesis and duke the performances of our best kernels is
better than the performances of best distances (kNNbest column).

4.4.5 Experiments with Kernels on Lists

In this section we will perform experiments on the protein fingerprints dataset
where we analyze the performance of different kernels defined over lists. More
precisely, the considered list kernels are the Contiguous Sublist kernel (kCS)
from Equation 4.28 and the Longest Common Sublist kernel (kLCS) from Equa-
tion 4.29. We experiment with two different representations of the protein fin-
gerprints dataset. The first approach is identical to the one used in Section 3.5.3
and is based on relating protein fingerprints with a list of motifs. The second
representation is based on combination of representations based on sets and lists
such that a given fingerprint is associated both with the set and list of motifs.
Finally, all the results are reported for the weighted version of the dataset (see
description in Section 3.5.3)6.

In all the experiments we used only the SVM classification rule to decide
the classification of a given instance. The performance is measured using both
10-fold cross validation and on an independent test set. The regularization pa-
rameter C was optimized in an inner 10-fold cross validation loop over the set
C = {0.1, 1, 10, 50}. Similar to the experimental setup from Section 4.4.3 the
exploited vector kernels are the linear, polynomial and Gaussian RBF kernels.
In polynomial kernel we report results for p = {2, 3}, l = 1 whereas in Gaussian
RBF kernel we fix γ = {0.1, 1, 10}. In kCS we fixed the λ parameter to 0.5.
Finally, we report results only for the tensor product kernel kΠ. The results are
presented in Table 4.10. In the ”lists” column the sign compares the represen-
tation based on lists with the representation based on sets from Table 4.2 (with
kΠ). In the ”sets and lists” column the sign compares the representation based
on both sets and lists with the representation based only on lists.

6In the case where the representation based on both sets and lists is used, both of these
complex objects are assigned the same weight.
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lists sets and lists
Kernel 10-fold CV test set 10-fold CV test set

kCS
klin 83.12 (2.5)(=) 78.31 82.99 (2.5)(=) 83.25
kpoly,p=2,l=1 86.01 (7.5)(=) 82.82 87.09 (9.5)(+) 87.01
kpoly,p=3,l=1 86.48 (9.0)(=) 83.63 87.69 (10.5)(+) 87.35
kRBF,γ=0.1 85.81 (7.5)(=) 82.53 86.15 (7.5)(=) 85.68
kRBF,γ=1 86.35 (8.5)(=) 83.66 86.15 (7.0)(=) 83.94
kRBF,γ=10 80.23 (0.5)(=) 78.59 78.55 (0.5)( -) 76.90

kLCS
klin 83.19 (2.5)(=) 78.31 82.78 (2.5)(=) 83.32
kpoly,p=2,l=1 85.27 (6.5)(=) 82.82 85.34 (6.0)(=) 85.68
kpoly,p=3,l=1 85.68 (7.5)(=) 83.66 85.88 (7.0)(=) 85.68
kRBF,γ=0.1 85.34 (7.0)(=) 82.82 85.00 (6.0)(=) 85.73
kRBF,γ=1 85.54 (6.5)(=) 84.51 85.88 (6.5)(=) 83.66
kRBF,γ=10 79.69 (0.5)(=) 78.59 79.29 (0.5)(=) 77.18

Table 4.10: Accuracy, rank and significance test results (SVM) on the weighted
version of the protein fingerprints dataset.

Classification Performance

The first observation from the results in Table 4.10 is that, in terms of predictive
performance, the two representations based on lists and sets7 are equivalent, i.e.
for all the vector kernels the differences in predictive performances estimated
using 10-fold CV are not statistically significant. A similar observation holds for
the results computed on the independent test set. This is in contrast with the
results presented in Section 3.5.4, obtained using kNN, where the representation
based on sets showed better performance.

The other observation is that there is an advantage of the contiguous sub-
list kernel, kCS , over the longest common sublist kernel, kLCS . Indeed, for the
representation based on lists the average rank of all the vector kernels used to-
gether with kCS is 5.92, while the average rank of kernels combined with kLCS
is 5.08. For representation based on both sets and lists the corresponding values
are 6.25 and 4.75. This could be a result of the fact that in comparison with
kLCS , kCS takes a more “global” view on the compared lists, since it takes into
account all (consecutive) sublists of the same length. In contrast, kLCS focuses
only on the longest common contiguous sublist at the start of the two lists.

When comparing performances between representations based on lists, and
on both sets and lists, we note that except for 3 cases the differences in per-
formances are not statistically significant; in two cases the latter representation
was better, in one case it was worse. The best results are obtained for the
kpoly,p=3,l=1 elementary kernel together with the Contiguous Sublist kernel kCS
and where the representation of the data based both on sets and lists is used.
The estimated cross-validation accuracy is 87.69 % whereas the holdout accu-

7Results obtained using the representation based on sets are presented in Table 4.2.



4.5. RELATED WORK 133

racy is 87.35 %. This represents a statistically significant improvement over the
best accuracy presented in Tables 3.6, 4.2 and 4.4. Moreover, this result is sig-
nificantly better than the one presented in (Hilario et al., 2004) by 1.78 % for
cross-validation, and 1.43 % for the holdout test set.

4.5 Related Work

In this section we describe some of the kernels over complex objects which
are the most relevant in our context. We also report the previous work on
distance substitution kernels and proximity spaces. For an overview of other
kernels defined over non-vectorial spaces the reader is refered to (Gärtner, 2003).

Kernels on Sets

The most popular approach for constructing a PSD kernel over sets is based on
computing different affinity measures between the Probability Density Functions
(PDF) fitted to the elements of the two sets (Kondor and Jebara, 2003; Lyu,
2005a; Moreno et al., 2004; Cuturi et al., 2005; Jebara et al., 2004; Lafferty
and Lebanon, 2002). For example, the PDFs in (Kondor and Jebara, 2003) and
in (Lyu, 2005a) are Gaussians and mixtures of Gaussians which are compared
using the Bhattacharyya affinity and expected likelihood8, respectively. Non-
parametric distribution estimates were considered e.g. in (Hein and Bousquet,
2005) where the distributions are estimated using histograms and the kernels
are built from similarity measures on histograms. A more flexible approach was
proposed in (Cuturi et al., 2005) where the authors considered a general class
of kernels between (molecular) measures or densities defined over the space of
elements of the two sets. The final kernel is defined as a measure of dispersion of
the sum of the corresponding measures. The authors prove that several functions
that quantify the dispersion of measures through their entropy (or through their
generalized variance) result in a PSD kernel. The standard cross product (CP)
kernel defined in Section 4.2.3, which amounts to computing an inner product
between two means of the corresponding PDFs in the feature space, can be seen
as a simple example of such kernels. Similar argument holds for a specialized
kernel for multiple-instance problems from (Gärtner et al., 2002) which, in case
of a Gaussian RBF elementary kernel, amounts to the standard CP kernel.

A somehow related kernel is the Fisher kernel of Jaakkola and Haussler
(1999), initially proposed for sequences over finite alphabet, but being general
enough to be applied for general objects over which a PDF can be defined. Here
a (parametric) distribution is represented as a point in a Riemann space with
the coordinates specified by the partial derivatives of the log-likelihood of the
distribution with respect to the model parameters. The final kernel is defined
as an inner product in this gradient space. This kernel is often referred to as
the practical Fisher kernel. The theoretical Fisher kernel is normalized by the

8The Bhattacharyya’s affinity and the expected likelihood similarity measures are variants
of the kernel between distribution from (Jebara et al., 2004).
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Fisher information matrix, which is not feasible to compute for most of practical
tasks and is usually omitted.

The above approaches for building set kernels suffer from several drawbacks.
First, these kernels assume that sets are large enough to accurately estimate
the distribution parameters, whereas in real data it is not always the case. In
particular, for sets with a small number of elements it is hard to estimate the
corresponding PDFs (Duda et al., 2001). Second, if the underlying PDFs can be
estimated well enough, a Bayesian framework would be probably more appropri-
ate (Desobry et al., 2005). Last, the “averaging” property might be inadequate
for some applications (e.g. multiple-instance problems). The kernels presented
in Section 4.2.4 address precisely the last shortcoming of the above kernels. By
exploiting the semantics of different set distance measures the proposed ker-
nels are not based on averaging, instead they take into account similarities only
between specific pairs of elements from the two sets.

A geometrical approach for building set kernels was presented in (Wolf and
Shashua, 2003) where the concept of principal angles between two linear sub-
spaces is exploited. This kernel has a cubic complexity and is only PSD for
sets of equal cardinality. A similar idea was developed in (Shashua and Hazan,
2005) where an algebraic kernel based on a group invariant tensor product is
used to combine similarities given by local (vector-based) kernels. Again, the
above kernels can be seen as averaged similarities of the elements of the two
sets.

Kernels over sets which are based on specific pairs of elements were consid-
ered mainly in the computer vision community (Wallraven et al., 2003; Lyu,
2005b; Boughorbel et al., 2004). The underlying idea in these kernels is that
the actual matching should focus on the most important elements of the sets,
neglecting the elements which are likely to introduce noise. The kernel defined
in (Wallraven et al., 2003) can be seen as a variant of the Sum of Maximal
Kernels from Equation 4.21. Despite the claim of Wallraven et al. (2003), the
kernel is not PSD (see Example 4.3). The kernel from (Lyu, 2005b) tries to
overcome this limitation by raising the elementary kernel between each pair of
elements to a given power, p, such that the final kernel becomes similar to kSMD

of Equation 4.21 but it is still PSD. With p = 1, the proposed kernel includes
the standard CP kernel as a special case. However, as p becomes larger, the more
dominant pair is the best matched pair, and in the limit of large p we obtain
kSMD. An interesting alternative is presented by Boughorbel et al. (2004) where
a greedy algorithm is used to search for the optimal matching between two sets.
A similar idea to the above kernels was proposed in the context of kernels over
graphs (Fröhlich et al., 2005) where only specific elements of decompositions of
graphs into their parts are considered. This kernel has been recently shown to
be non-PSD by Vert (2008). The actual mapping considered in this work is such
that the sum of similarities (kernels) of the matched elements is maximum. In
this sense this kernel is similar to kernels based on relations between two sets
(i.e. kS , kFS , kL and kM ). In contrast, the kernels considered in this study are
more flexible since they allow for more flexible matchings of elements between
the two sets.
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Recently, an efficient matching-based kernel called the pyramid match ker-
nel was proposed by Grauman and Darrell (2007). It approximates the optimal
partial matching by computing a weighted intersection over multi-resolution his-
tograms with different sizes of bins. Two elements from two sets are considered
matched if they fall in the same bin. The correspondences between elements are
implicit in the sense that matches are counted and weighted according to their
strength, but the specific pairwise links between points do not to be individually
enumerated. This characteristic renders the complexity of the pyramid match
kernel to be linear in the cardinalities of sets.

Kernels on Lists

Although many kernels have been recently proposed for sequences over a finite
alphabet (Leslie et al., 2003; Saigo et al., 2004; Lodhi et al., 2002; Viswanathan
and Smola, 2003; Tsuda et al., 2002), not much work has been done for defin-
ing kernels over lists of complex objects. The exceptions are kernels described
in (Zelenko et al., 2003) and (Gärtner et al., 2004), variants of which are used
in this study (Section 4.2.5). The main difference between the kCS kernel from
Equation 4.28 and the Contiguous Subtree kernel from (Zelenko et al., 2003) is
that the latter uses an additional user defined matching function. For the trees
we consider it is the syntax of relational object representation that determines
whether two nodes are matchable or not. The other difference is that kernels
from (Zelenko et al., 2003) are highly specialized for the task of information
extraction where the instances are shallow parse tress (i.e. ordered trees where
nodes are labeled with vectors) whereas our kernels are not domain-specific and
can be used for any classification problem. The kernel from Equation 4.29 is
a direct application of the kernel over basic terms defined in (Gärtner et al.,
2004). The main difference is that the latter kernel was only used for sequences
over a finite alphabet (with matching kernel for sequences’ elements) whereas
we applied it to more complex structures.

Most of the existing kernels for sequences were developed in the context
of computational biology (Leslie et al., 2003; Saigo et al., 2004; Tsuda et al.,
2002). The kernel from (Leslie et al., 2003) implicitly induce a feature space
indexed by all the l-length sub-sequences from a given string alphabet. If each
feature is simply a count of the number of exact occurrences of each of the
sub-sequences, we obtain the Spectrum kernel. In general, if we allow for some
inexact string matching we obtain more general feature maps, such as mismatch,
wildcards, etc. The main problem with this kernel is that it is designed only for
sequences over finite alphabet and it is not straightforward to extend it so that
it can handle general lists. The kernel of Saigo et al. (2004) is based on the
detection of local alignment in strings and in that sense is similar to the edit
distance measure from Section 3.2.4. The kernel from (Tsuda et al., 2002) is a
generalization of the Fisher kernel of Jaakkola and Haussler (1999).
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Kernels on Trees

The two kernels most relevant to the kernels over trees from Section 4.3 are
the kernels from (Collins and Duffy, 2002) and (Kashima and Koyanagi, 2002).
These kernels can be considered as specialized <-Convolution kernels where
instances are labeled, ordered and directed trees. The main idea is based on
the notion of counting common subtrees in a tree i.e. the kernel function is the
inner product in the space which describes the number of occurrences of all
possible subtrees. The main difference between the kernels from (Collins and
Duffy, 2002) and (Kashima and Koyanagi, 2002) is that the former is applicable
only to trees where no node shares its label with any of its siblings. (Kashima
and Koyanagi, 2002) overcomes this limitation by defining the substructures of
a tree as a tree such that there is a descendant order preserving mapping from
vertices in the substructure to vertices in the tree. There are many differences
between our kernel and kernels defined in (Kashima and Koyanagi, 2002). First,
the trees considered in (Kashima and Koyanagi, 2002) are labeled trees, i.e.
each node is characterized by a symbolic label so two nodes are either the
same or different, there is no graded similarity. In our case however nodes can
be associated with more general labels, resulting in the definition of a graded
similarity. The only restriction is that the comparison is performed only between
subtrees rooted at nodes of the same ”type” and only descendants of the same
type can be compared. Second, the trees in (Kashima and Koyanagi, 2002) are
ordered whereas we consider both ordered and unordered trees. The difference
in time complexity between our kernel and the kernels of (Collins and Duffy,
2002; Kashima and Koyanagi, 2002) comes mainly from the fact that the input
trees for our kernel are ordered and unordered whereas their kernels operate
only on ordered trees.

A general class of kernels over trees was defined in (Passerini et al., 2006).
More precisely, the considered trees are prolog proof trees, which are obtained
by execution traces of a prolog program taking two complex instances as input.
The abstraction from the input instances renders the proposed kernel to be in
fact applied on general objects represented in the first-order formalism. The
actual kernels are the instantiations of the <-Convolution kernels which work
in a recursive manner similar to the kernel from Section 4.3.

Kernels on Graphs

Due to the rich expressiveness of graphs it has been proved that kernels over
arbitrarily structured graphs, taking their full structure into account, can be nei-
ther computed (Gärtner et al., 2003) nor even approximated efficiently (Ramon
and Gärtner, 2003). The most popular way to tackle this problem is based on
decompositions of graphs into subgraphs of specific types which are compared
via subkernels. The subgraph types mainly considered are walks (Gärtner et al.,
2003; Kashima et al., 2003; Mahé et al., 2004; Borgwardt et al., 2005; Ralaivola
et al., 2005; Vishwanathan et al., 2007). However, other researchers have exper-
imented with shortest paths (Borgwardt and Kriegel, 2005), subtrees (Ramon
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and Gärtner, 2003; Fröhlich et al., 2005), cyclic and tree patterns (Horváth
et al., 2004; Horváth, 2005) and limited-size general subgraphs centered at each
vertex (Menchetti et al., 2005).

The existing kernels based on decompositions have two main limitations.
First, it is difficult in general to specify in advance the appropriate type of sub-
structures for a given problem. The proper representation of learning examples
should be determined by domain knowledge and the application requirements,
however, in practice we rarely have a solid description of the learning prob-
lem. Second, most of the decomposition-based kernels combine substructures
using the cross product kernel which accounts for all possible substructures of
a given decomposition. This might adversely affect the generalization of the fi-
nal classifier since most of the substructures-subgraphs, and hence attributes in
the induced feature space, will be poorly correlated with the actual class vari-
able (Ben-David et al., 2002; Menchetti et al., 2005). The latter limitation of the
graph kernels was considered in Section 4.2.4 where we defined a more flexible
class of kernels. In Chapter 5 we will show how we can combine a number of
existing graph decompositions.

Most of the kernels on graphs use the δ kernel (i.e. kδ(x, y) = 1 ⇐⇒ x =
y, kδ(x, y) = 0 otherwise) on subparts. As a result the ability to find partial sim-
ilarities is lost and the expressivity of these kernels is reduced (Borgwardt and
Kriegel, 2005). A graded similarity on walks was considered in the graph kernel
presented in (Borgwardt and Kriegel, 2005), however it suffers from high compu-
tational complexity since it requires taking powers of the adjacency matrix of the
direct product graph, leading to huge runtime and memory requirements (Borg-
wardt et al., 2005). Graded similarities on trees were also used in (Fröhlich et al.,
2005).

In parallel to kernels based on comparison of particular subgraphs the other
line of research focuses on special kinds of graphs such as strings, trees and
nodes in graphs (Gärtner et al., 2003). The resulting kernels are efficient, how-
ever, they lose most of the modeling power of general graphs. An alternative
direction explicitly controls the dimensionality of the feature space by generat-
ing sets of connected graphs that occur frequently as subgraphs in the graph
database and this frequency is beyond a user defined threshold (Deshpande
et al., 2003; Kramer et al., 2001; Horváth et al., 2006; Horváth et al., 2006;
Rückert and Kramer, 2004). These kernels form an attractive alternative to
kernels based on decompositions since the corresponding feature space is con-
structed explicitly. On the other hand these methods bear difficulties since their
efficiency is threshold-dependent. It should be mentioned it is also possible to
automatically extract features which are maximally class-correlated, or maxi-
mally diverse (Rückert and Kramer, 2007; Bringmann et al., 2006). Yet another
approach was recently proposed in (Mahé et al., 2006) where the kernel takes
into account the 3D structures of the molecules. This kernel, although com-
putationally more expensive, achieved good performance on the task of target
binding of molecules where it is known that traditional 2D representations are
not sufficient.

For an overview of kernels over graphs the reader is referred to (Gärtner
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et al., 2007; Wrobel et al., 2006).

Kernels on General Structures

Gärtner et al. (2004) proposed a framework that allows the application of ker-
nel methods to different types of structured data e.g. sets, trees, graphs, lists.
The representation formalism used was that of typed λ-calculus. The represen-
tation framework allows for the modeling of arbitrary complex objects which
however is not at all a trivial task. Individuals are represented as terms of the
typed λ-calculus formal logic. The composition of individuals from their parts
is expressed in terms of a fixed type structure that is made up of function
types, product types and type constructors. Function types are used to repre-
sent types corresponding to sets and multisets, product types represent types
corresponding to fixed size tuples and type constructors for arbitrary structured
objects such as lists, trees, graphs. Each type defines a set of terms that repre-
sent instances of that type. Kernels are then defined on each of the functions,
product types and type constructors, along with a kernel defined on the data
constructors associated with each type constructor.

Distance Substitution Kernels

Several experimental results on applying the distance substitution (DS) ker-
nels (Section 4.2.4) have been presented in the literature. The first attempts
were based on the χ2-distance on histograms (Chapelle et al., 1999), tangent-
distance (Haasdonk and Keysers, 2002), dynamic-time-warping (Bahlmann et al.,
2002) and Kullback-Leibler divergence between distributions (Moreno et al.,
2004). More recent examples include the applications of DS kernels for semi-
supervised learning problems (Chapelle and Zien, 2005), segmentation of images
by spectral partitioning (Belongie et al., 2002b) and M-estimators (Chen, 2004).
DS kernels were also used to define kernels on sets of vectors (Desobry et al.,
2005), where set distance measures based on level sets of corresponding PDFs,
easier to estimate than the PDFs themselves, are “substituted”. However, in
this kernel the averaging mechanism is also present (see Section 4.5). Haasdonk
and Bahlmann (2004) presents a general framework for DS kernels, examines
their formal properties and shows that better performance of SVMs with these
kernels over standard kNN algorithms can be achieved.

Proximity Spaces

Proximity space was first proposed by Tsuda (1999). However, in (Tsuda, 1999)
the space is induced by means of an asymmetric kernel function. The proximity
space defined by dissimilarity measures was considered among others in (Graepel
et al., 1999; Pekalska et al., 2001). Several experimental results were reported
for algorithms in the proximity space: SVM was considered in (Graepel et al.,
1999; Pekalska et al., 2001), LP machines and Fisher Linear Discriminant were
examined in (Pekalska et al., 2001). Various methods for prototype selection
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which amount to feature selection in the proximity space were examined in (Duin
et al., 1999; Pekalska et al., 2006).

Proximity spaces induced by set distances based on specific pairs of elements
were considered in (Zhang and Malik, 2003) where the application domain is
recognition of handwritten digits, and the shape context distance of Belongie
et al. (2002a) was used as the set distance measure. The kernel from (Boughorbel
et al., 2005) is similar to the Gaussian RBF kernel in proximity space (Equa-
tion 4.27) induced by dSL set distance. However, instead of mapping the data
points to the R|S| where S is the representation set, the instances are mapped
to one-dimensional space F and the final kernel over sets is defined as the sum
of kernels defined in F .

Proximity spaces were also exploited for classifying sequences of proteins (Liao
and Noble, 2002). In this case the actual (dis-)similarities exploited to construct
the feature space were the pairwise scores obtained from the Smith-Waterman
or BLAST algorithms (Durbin et al., 1999).

4.6 Conclusions

Bringing together kernel methods and structured data is an important direction
for practical machine learning and data mining research. In this chapter we pro-
posed kernel operators defined over composite objects that are represented using
the relational formalism. The resulting kernels are based on decompositions of
complex objects into simpler parts of various types (i.e. primitives, tuples, sets
and lists) and the combination of kernels on these simpler parts. The analyst can
define a new composite kernel, that reflects as closely as possible the semantics
of a problem at hand, by simply declaring which kernel should be used for a
given data type.

We extended the flexibility of existing kernels over sets by allowing only
specific elements from the two sets to be matched such that the resulting set
kernels are not based on averaging. Within this context we proposed three flex-
ible families of set kernels, namely: kernels in proximity space induced by set
distances, set distance substitution kernels and kernels directly based on spe-
cific mappings. The last class of kernels naturally generalizes the standard cross
product (CP) kernel and a number of existing kernels based on explicit corre-
spondences between sets’ elements. The semantics of the proposed set kernels
are similar to the semantics of various set distances considered in Chapter 3.

In the experiments we examined the performance of the CP set kernel, set
kernels based on specific mappings and kernels on lists. The CP kernel was in
general stable with respect to the parameter settings of the vectorial kernels, dif-
ferent normalization schemes and various choices of kernels on tuples. Moreover,
we observed that in comparison with kNN using kernel induced distances, the
bias introduced by SVM was usually beneficial. The experimental results with
more flexible set kernels showed that the kernels in the proximity space outper-
form the set distance substitution kernels and kernels directly based on various
mappings. We also argued that when dealing with set problems the standard
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approaches based on averaging do not necessarily provide the best performance.
We can get significant gains in classification performance by focusing on specific
types of matchings between elements of the two sets. Finally, the experiments
with lists kernels showed better performance of the contiguous sublist kernel
over the longest common sublist kernel. The experiments indicated that on a
range of real-world datasets our kernel-based learner compares favorably with
other state-of-the-art algorithms.



Chapter 5

Adaptive Approaches

The correct choice of representation for the learning instances and the data
mining / machine learning operators to be applied on the chosen representation
are two crucial components for the successful application of learning algorithms.
Preferably, both of them should be adapted for a given problem in a manner
that reflects the important relationships between features in the data; however,
this has been proved to be difficult in practice. For example, the experimen-
tal evidence from Chapters 3 and 4 clearly indicated that there is no distance
(kernel) which is overall better than any other, and in the context of graph
datasets the optimal representations of learning instances depends on the prob-
lem at hand. As a result, for a given problem there might exist several plausible
operators which are defined over different representations and reflect different
aspects of the data. An obvious question is how to chose the pair of represen-
tation and operator that best fits the requirements of the problem at hand. A
simple solution that was examined in the previous chapters is to select these
pairs by cross-validation; however, the main drawback of this approach is that
only one representation-operator combination per training set is selected, and
hence the expressiveness of the resulting method is limited. Additionally, this
method requires the use of extra data.

In this chapter we address the above issues and propose a general framework
for combining representations of complex data and/or the corresponding oper-
ators. Couplings of representations and operators are the building blocks of our
method, the relative importance of which is learned directly from the training
data. This approach allows for the simultaneous combination of representations
and operators, nevertheless one can choose to focus on only one of them, i.e.
one can apply a fixed operator on different decompositions, or apply different
operators which are defined on the same representation.

We only focus on the distance-based paradigm since, as already mentioned,
distances over composite objects are in general more flexible than composite ker-
nels; in the latter case the options are much more limited due to the requirement
of positive semi-definiteness. In any case the ideas presented in this chapter can
be easily extended to kernels. We assume that learning objects are internally
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modeled as tuples where each dimension corresponds to a particular represen-
tation of the instances and on each of the representations a given operator is
applied. The actual combination of the building blocks is achieved by the use of
a Mahalanobis distance measure (parameterized by a positive semi-definite ma-
trix) between the corresponding tuples. In order to learn the parameters of this
distance measure we exploit three metric learning methods from (Xing et al.,
2003; Globerson and Roweis, 2006; Goldberger et al., 2005), originally developed
for propositional data, and adapt them so that they can be used in the context
of complex structures. The proposed methods boil down to mathematical opti-
mization problems which are amenable to various optimization techniques. We
empirically evaluate our framework for the tasks of combination of set distance
measures, and combination of different graph decompositions into sub-graphs of
specific types. In the latter case we exploit the adaptive sub-graphs combination
to construct a flexible and powerful class of graph kernels which are defined in
proximity space (Section 4.2.4).

Figure 5.1: Schematic structure of Chapter 5.

This chapter is organized as follows. In Section 5.1 we propose a framework
for learning combinations of distance measures and representations on complex
objects. In particular, in Section 5.1.1 we review some of the definitions which
will be used in the remainder of this chapter, and define the general optimization
method. Next, in Sections 5.1.2, 5.1.3 and 5.1.4 we present the three instantia-
tions of this framework. In Section 5.1.5 we address the problem of regulariza-
tion of the solutions, and in Section 5.1.6 we describe how the corresponding
optimization tasks are solved. In Section 5.1.7 we discuss the computational
complexity of the proposed techniques. In Section 5.2 we describe the appli-
cation scenarios of the proposed framework. In particular in Section 5.2.1 we
discuss the adaptive graph kernels which are constructed by combining various
graph decompositions. In the experiments we present the performance of the
proposed framework for the tasks of combination of distances (Section 5.3) and
representations of labeled graphs (Section 5.3). In Section 5.5 we present related
work and we conclude with Section 5.6.

The organization of this chapter is schematically presented in Figure 5.1.



5.1. ADAPTIVE METHODS 143

5.1 Adaptive Methods

We view the problem of representation and/or distance combination as an op-
timization problem where the two main constituents are the definition of a pa-
rameterized cost function that depends on the class labels (or in general on some
form of side-information) and an optimization method. In this work we only fo-
cus on methods which combine representations (or distance measures) in a global
manner as opposed to local methods which aim to determine a “stretched” neigh-
borhood around each query instance such that class conditional probabilities are
likely to be constant (Hastie and Tibshirani, 1996; Domeniconi and Gunopu-
los, 2002; Yang et al., 2006). Local methods form an interesting alternative and
were shown to achieve better performance for data exhibiting “difficult” distri-
butions; however, global methods have the advantage of providing insight into
the underlying structure of the data which might be subsequently used e.g. for
dimensionality reduction.

In this study, in order to render the optimization task computationally effi-
cient and amenable to theoretical analysis, we take the view that the top level
representation of complex objects consists of tuples, the elements of which cor-
respond to m different representations. This may seem too restrictive; however,
we do not put any restrictions on the type of structures contained in the tu-
ples and, as we will see in the experiments, this representation allows for the
modeling of a wide class of composite objects, or approximations of composite
objects. Over the tuples we use the Mahalanobis distance measure defined in
Section 3.14 which depends on a number of continuous parameters. In general
the number of these parameters scales with O(m2); however, we can also use a
parameterization based on O(m) parameters. Depending on whether the goal
is to combine representations or distance measures we can apply a fixed dis-
tance measure on different representations, or apply different distance measures
which are defined on a fixed representation, or both. The parameters of the Ma-
halanobis distance measure will reflect the importance of the decompositions
and of the distance measures. We mention that the Mahalanobis distance mea-
sures can be used to define cost functions that are differentiable with respect
to the parameters such that the machinery of the mathematical optimization
theory can be exploited (Avriel, 2003). Finally, it is sometimes possible to define
these cost functions such that they are convex with respect to the parameters
of the Mahalanobis distance measures; in these cases an unique global solution
can be guaranteed (Boyd and Vandenberghe, 2004).

5.1.1 General Optimization Method

We begin with a labeled set of n complex objects {(xi, yi)}ni=1 where xi ∈ X
and yi ∈ {1, 2, . . . , c}. We assume that each complex object xi is given by a tuple
(xi1 , . . . , xim)T where xil ∈ Xl and Xl (l = 1, . . . ,m) are different representation
spaces of xi. In particular xi ∈ X = X1×· · ·×Xm. On each of the Xl a (possibly
different) distance measure dl : Xl × Xl → R+

0 is defined. We can now define
two variants of the Mahalanobis distance measure over tuples xi,xj ∈ X as
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follows
d2
tuple,A(xi,xj) = d(xi,xj)TA d(xi,xj) (5.1)

and
d2
tuple,W (xi,xj) = d(xi,xj)TW

TWd(xi,xj) (5.2)

where A,W ∈ Rm×m, A = W TW � 0, i.e. it is positive semi-definite, and
d(xi,xj) = (d1(xi1 , xj1), . . . , dm(xim , xjm))T . We mention, that the distance
measures from Equations 5.1 and 5.2 are the same as defined in Section 3.2.2.
As already mentioned, the above quadratic forms have the Mahalanobis distance
over vectorial data as a special case. In this case the elements of the tuples are
simply numbers and the (absolute) difference between these numbers is used
as a distance, i.e. xil ∈ R and dl(xil , xjl) = |xil − xjl | for l = 1, . . . ,m. The
fact that we use the Mahalanobis distance measure defined over general tuples
allows for adaptive learning on complex data, as long as distance measures over
the corresponding representations are defined.

It should be noted that the matrix W (and A) implicitly defines a transfor-
mation of the data by providing a set of ”useful” directions in the input space.
More precisely, in the case of Euclidean space (with dl being the absolute differ-
ences between real numbers) the application of the dtuple,A (or dtuple,W ) distance
measure is equivalent to finding an explicit transformation that replaces each
point xi with Wxi, and applying a standard Euclidean metric on the rescaled
data. In general, this transformation is implicit and depends on the topology
induced by the distance measures dl.

For an optimization problem where the objective function is optimized with
respect to matrix A it is necessary to ensure that A � 0 such that dtuple,A is a
pseudo-metric (if all dl are pseudo-metrics), or at least dtuple,A is non-negative
(see Proposition 3.4). On the other hand, an optimization problem where the
objective function is optimized with respect to the matrix W is not constrained
by W � 0 and thus is easier to solve.

A common approach for learning a metric is to provide information in the
form of equivalence relations as pairwise constraints on the data. In the classifica-
tion framework there is a natural equivalence relation in the above form, namely
whether two points are in the same class or not, i.e. S = {(xi,xj) | yi = yj}
and D = {(xi,xj) | yi 6= yj}. The general problem of representation and dis-
tance combination in a supervised setting can be now stated as the following
optimization problem

min
Z
FZ(S,D, dtuple,Z) (5.3)

where FZ is a differentiable function, Z = A or Z = W , and this optimization
is subject to some constraints (e.g. A � 0 if Z = A). Depending on the actual
form of the function FZ and the optimization technique, different instantiations
of the algorithm can be obtained.

In the next three subsections we explore three different instantiations of
the above framework which differ with respect to the actual objective function
which is being optimized. We based our study on methods originally developed



5.1. ADAPTIVE METHODS 145

for vectorial data, namely Xing’s method (Xing et al., 2003), Maximally Col-
lapsing Metric Learning (MCML) method (Globerson and Roweis, 2006) and
Neighborhood Component Analysis (NCA) method (Goldberger et al., 2005).
We adapted these methods so that they can learn the Mahalanobis distance mea-
sure of the form given in Equation 5.1 (for Xing’s and MCML methods) and
Equation 5.2 (for NCA). The methods differ with respect to the assumptions
they make for the data distribution. In principle any metric learning method
where the objective is a function of pairwise distances could be formulated within
this framework.

In the rest of this chapter, to simplify the notation, we will denote δl =
dl(xi, xj) for l = 1, . . . ,m.

5.1.2 Xing’s Method

The first method proposed by Xing et al. (2003) was originally developed for
clustering with side-information. Adapting from (Xing et al., 2003) we formulate
the problem of distance combination as the following optimization task

min
A

∑
(xi,xj)∈S

d2
tuple,A(xi,xj) (5.4)

s. t.
∑

(xi,xj)∈D

dtuple,A(xi,xj)  1

A � 0

The above optimization problem is convex and is equivalent (up to a multipli-
cation of A by a positive constant) to minimizing

FA =
∑

(xi,xj)∈S

d2
tuple,A(xi,xj)− log

 ∑
(xi,xj)∈D

dtuple,A(xi,xj)

 (5.5)

subject to A � 0 (Xing et al., 2003). Differentiating FA with respect to the
elements of A yields the following gradient rule which we will use for learning

∂FA
∂Akl

=
∑
S
δkδl +

1
2
∑
D dtuple,A(xi,xj)

∑
D

δkδl
dtuple,A(xi,xj)

where Akl denotes the k, l-th element of matrix A.
From Equation 5.5 it is clear that more emphasis is placed on minimizing

the pairwise distances between all examples in the same class. Moreover, this
method implicitly assumes that instances from each class form a single compact
and connected set. In particular, for binary problems where the negative class
contains any examples which do not have the property encoded by the positive
class, the cost function for Xing’s method will be severely penalized. A similar
problem occurs for data exhibiting highly multi-modal distributions. The other
problem with this method is that the use of the squared distance in the mini-
mization term and the non-squared distance for the constraint term is arbitrary
and asymmetric.



146 CHAPTER 5. ADAPTIVE APPROACHES

5.1.3 MCML

The MCML algorithm is based on the simple geometric intuition that all points
of the same class should be mapped onto a single location and far from points of
the other classes (Globerson and Roweis, 2006). To learn the metric which would
approximate this ideal geometrical setup a conditional distribution is introduced
which for each example xi selects another example xj as its neighbor with some
probability pA(j|i), and xi inherits its class label from xj . The probability
pA(j|i) is based on the soft-max of the dtuple,A distance measure, i.e.

pA(j|i) =
e( − d2

tuple,A)(xi,xj)∑
k 6=i e

−d2
tuple,A

(xi,xk)
, p(i|i) = 0 (5.6)

It can be shown (Globerson and Roweis, 2006) that any set of points which
has the distribution p0(j|i) = 1 if (xi,xj) ∈ S and p0(j|i) = 0 if (xi,xj) ∈ D
exhibits the desired ideal geometry. It is thus natural to seek a matrix A such
that pA(·|i) is as close (e.g. in the sense of the Kullback-Leibler divergence, KL)
to p0(·|i). This is equivalent to minimizing

FA =
∑
i

KL[p0(·|i)|pA(·|i)] (5.7)

subject to A � 0. We can rewrite the above objective function in the form1

FA = −
∑

(xi,xj)∈S

log(pA(j|i)) (5.8)

Taking the first-order derivative of FA with respect to the elements of A we
obtain

∂FA
∂Akl

=
∑

(xi,xj)∈S

(p0(j|i)− pA(j|i)) δkδl.

MCML is similar to the well-known Linear Discriminant Analysis (LDA) (Bishop,
2006) in that it tries to minimize within class distances (variance) and maximize
between class distances (variances). The main difference between MCML and
LDA is that the latter is a purely second order (i.e. ”Gaussian”) method, i.e. it
depends only on the mean of each class and on covariance of points within the
same class. MCML is a generalization of LDA that makes a much weaker as-
sumption, namely that each class is uni-modally distributed. It has been shown
in (Globerson and Roweis, 2006) that the sufficient statistics used in MCML
are n “spread” matrices centered at each training point. The main difference
between MCML and Xing’s method is that the former puts more emphasis on
the pairs of points which are in different classes.

1Up to an additive constant −
∑

i
H(p0(j|i)), where H(·) denotes the entropy function.
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5.1.4 NCA

The NCA method proposed by Goldberger et al. (2005) attempts to directly
optimize a continuous version of the leave-one-out error of the kNN algorithm
on the training data. The main difference between NCA and the two previous
methods is that optimization in NCA is done with respect to the matrix W of
Equation 5.2. The actual cost function used is a differentiable function based
on stochastic neighbor assignments in the weighted space, which is based on
pW (j|i) of Equation 5.6 where A is replaced with W . In the remainder we de-
note the set of points that share the same class with xi by Ci = {j|(xi,xj) ∈ S}.
Under this stochastic selection rule the probability pW (i) of correctly classify-
ing xi is given by

∑
j∈Ci pW (j|i). One possible objective to minimize is the

negative of the expected number of correctly classified points which is given by
−
∑
i

∑
j∈Ci pW (j|i). Instead, in this work we use the following objective

FW = −
∑
i

log(
∑
j∈Ci

pW (j|i)) (5.9)

which expresses the probability of obtaining an error free classification on the
training set (Goldberger et al., 2005). Differentiating FW with respect to the
elements of W yields the following gradient rule

∂FW
∂Wkl

= 2Wkl

∑
i

(
∑
j

pW (j|i)δkδl −
∑
j∈Ci pW (j|i)δkδl∑
j∈Ci pW (j|i)

).

The main advantage of the NCA method is that it makes no assumptions
about the shape of the class conditional distributions or the corresponding
boundaries (Goldberger et al., 2005). In particular, nothing is assumed whether
the class conditional distributions are uni- or multi-modal. The main problem
with the NCA algorithm is that there is no guarantee that a gradient method
will converge to the global optima.

5.1.5 Regularization

One possible problem with the optimization task of Equation 5.3 is that for
full matrices Z the number of parameters to estimate is O(m2) (the number
of these parameters is precisely m(m−1)

2 since Z is assumed to be symmetric).
This could be problematic in cases where m is large with respect to the number
of instances in the training set and could lead to over-fitting. One possible way
to overcome this problem is to add a soft constraint to the objective function,
which results in the following regularized optimization task

min
Z
{FZ(S,D, d2

tuple,Z) + λΩ(Z)} (5.10)

where Ω(Z) is a regularization term and λ > 0 is a regularization parameter.
For dtuple,A defined in Equation 5.1 we set Ω(A) = Tr(A) i.e. the trace of
A, whereas for dtuple,W given in Equation 5.2 we set Ω(W ) = ‖W ‖2F where
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‖ · ‖F denotes the Frobenius norm applied over matrices. It is easy to show that
Tr(A) = ‖W ‖2F .

The above regularization can be also regarded as a method for reducing
the number of features retained by the matrix A (or W ), meaning that the
rank of these matrices should be kept as small as possible (Kwok and Tsang,
2003). More precisely, assume that the eigen-decomposition of A = W TW is
UΣUT . Then rank(A) = rank(Σ) = ‖Σ‖0 where ‖ · ‖0 denotes the zero norm
(i.e. number of non-zero elements). Since in general the direct minimization of
the zero norm is difficult it can be approximated by the Euclidean norm as
‖Σ‖0 ' ‖Σ‖2 = Tr(A) = ‖W ‖2F .

A complementary solution that we will explore is to restrict matrix A (or
W ) to be diagonal resulting in a weighted combination of distances, i.e.

d2
tuple,Z(xi,xj) =

∑
l=1,...,m

tlld
2
l (xil , xjl)

where tll are the diagonal elements of A or W TW . This restriction can be
seen as a simple form of regularization since it reduces the effective number of
parameters from O(m2) to O(m). It should be noted that the regularization
technique based on diagonal matrices, although resulting in faster algorithms,
is also less expressive since it does not account for interactions between different
decompositions. When full matrices are used these interactions are weighted by
off diagonal elements of matrix A or W TW , i.e.

d2
tuple,Z(xi,xj) =

∑
l,k=1,...,m

tlkdl(xil , xjl)dk(xik , xjk).

5.1.6 Solving Optimization Problems

As already mentioned in the Xing and MCML methods the objective functions
are convex (Avriel, 2003) and thus the optimization problems are well defined
in the sense that there exists a single global optimum. Different initialization
and optimization techniques may affect the efficiency of the algorithm but the
final solution itself is unique. In order to ensure that A � 0 we use the iterative
projection approach as proposed in (Xing et al., 2003). First, we calculate the
eigen-decomposition of A =

∑
k λkuku

T
k , where λk for k = 1, . . . ,m are A’s

eigenvalues, and uk the corresponding eigenvectors. Subsequently, we set A =∑
k max(λk, 0)ukuTk . In the NCA method the optimization is done with respect

to matrix W of Equation 5.2 which makes the optimization problem easier
to solve, since it is unconstrained. However, the objective function is no longer
convex and is thus susceptible to local minima, and sensitive to initial conditions
and choice of optimization method.

In order to solve the optimization problems we exploit the conjugate gradient
method (Avriel, 2003) where backtracking line search is used to optimize the
step-size parameter. For full matrices this method has a complexity of O(m2)
since it requires computing a gradient in the form of an m ×m matrix. In the
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case of diagonal matrices the above complexity is reduced to O(m). This method
has an advantage over the well-known Newton method since the latter has a
complexity of O(m3) (for diagonal matrices) because it requires the inversion of
the m×m Hessian matrix; for full matrices this complexity is O(m6).

5.1.7 Computational Complexity

The computational complexity of the adaptive methods depends on the cost of
computing the objective function, the gradient, and the number of iterations
needed to converge. The cost of computing the objective functions and the
gradients depends on the size of the sets S and D, and the parameter m (i.e.
the lengths of the input tuples). In the supervised setting the size of both S and
D scales in general as O(n2) where n is the size of the training set. Moreover, as
mentioned in the previous section, for full (diagonal) matrices the complexity
of computing the objective and gradient scales as O(m2) (O(m)).

In the case of Xing’s method the complexity of computing the objective
function and gradient is O(n2m2) and O(n2m) depending on whether full or
diagonal matrices are used. In MCML and NCA the additional complexity comes
from the normalization of pA(j|i) (or pW (j|i)) which requires one extra iteration
through the training set. As a result, the computational complexity of MCML
and NCA is O(n3m2) (or O(n3m) for diagonal matrices). On the other hand,
since MCML and NCA do not take implicitly into account the pairs in D, their
complexity is reduced and depends only on |S|. The complexities of the proposed
algorithms are also influenced by the number of iterations i needed to converge,
which in the applications we examined, depending on the method and the choice
of the λ parameter, varied between 2 and 60.

5.2 Application Scenarios

The above adaptive framework can be used in various learning tasks involving
composite objects. In this section we list the application scenarios that we will
examine in the remainder of this chapter (Sections 5.3 and 5.4). More precisely,
we show that it is possible to: (i) learn an optimal combination of a set of prede-
fined complex distance measures and (ii) combine a number of representations
of composite objects.

In the task of distance combination we assume that an object is represented
as xi = (xi1 , . . . , xim)T ∈ X = X1 × . . .×Xm where xik = xil , ∀k, l = 1, . . . ,m.
Over each of Xl, l = 1, . . . ,m a different complex distance measure dl : Xl ×
Xl → R+

0 is applied. The goal here is to learn an optimal combination of all dl.
Our framework can be also used in applications where the ”correct” rep-

resentation of composite objects is not given and it is difficult to specify it
a priori. More precisely, we assume that a composite object is represented as
xi = (xi1 , . . . , xim)T ∈ X = X1 × . . . × Xm where xik 6= xil , ∀k, l = 1, . . . ,m.
Over each of Xl, l = 1, . . . ,m a fixed distance measure d : Xl × Xl → R+

0 is
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applied. The goal here is to learn, according to d, a combination of the different
decompositions Xl.

In this study we focus on graph problems and we learn the appropriate
combinations of different graph decompositions; there exist several possible de-
compositions of graphs into specific subparts and it is in general difficult to
specify the appropriate decomposition a priori. We decompose graphs into sets
of walks and trees of various lengths and heights, respectively (see Section 2.3
for details). Both types of decompositions are obtained from a depth first explo-
ration emanating from each node in a graph and yielding all the walks of length
l and all the trees of height h. Additionally, we require that repetitions of the
same two-nodes-cycles are not allowed so that we avoid the problem known as
tottering (Mahé et al., 2004). In particular, for l = 1 (and h = 1) a graph is
represented as a set of vertices. For l = 2 a graph is decomposed into a set of
two-element tuples where the first element is a vertex, and the second element is
one of its adjacent edges. Similarly, for h = 2 the corresponding decomposition
is into trees with vertices as roots connected to all their adjacent edges.

The adaptive distance measures can be easily turned into kernels, which
could be used in large-margin classification, possibly increasing the performance
of the adaptive techniques. For this purpose we can use the kernels in the prox-
imity space kP,d defined in Section 4.2.4 which were shown to be quite effective
in various domains2. The adaptive kernel is induced by the learned combina-
tion of representations or distances on a given representation set (usually the
full training set). In particular, the distance measures resulting from combina-
tions of various graph decompositions into substructures of specific types can be
exploited to construct positive semi-definite (PSD) kernels in proximity space
resulting in a flexible and powerful class of graph kernels. In the next section
we will show how this kernel relates with the other relevant kernels defined on
graphs; the general discussion on the the existing kernels over graphs was al-
ready given in Section 4.5. We also discuss the computational complexity of the
proposed kernels.

5.2.1 Graph Kernels

As already mentioned, in this work we will experiment with, and learn com-
binations of, two types of decompositions: walks and trees of various lengths
and heights. The former were widely used in the context of graph kernels and
shown to be very effective in chemical domains, achieving state-of-the-art re-
sults (Gärtner et al., 2003; Kashima et al., 2003; Mahé et al., 2004; Borgwardt
et al., 2005; Ralaivola et al., 2005; Vishwanathan et al., 2007). Decomposition
kernels based on trees were first proposed by Ramon and Gärtner (2003); how-
ever, the authors did not perform experimental evaluation. Graph kernels based
on trees were empirically examined in (Fröhlich et al., 2005).

2 We could also use the distance substitution kernel from Section 4.2.4; however, the ex-
perimental results from Section 4.4.4 indicated that kernels in proximity space are a better
alternative.
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The fact that we combine different graph representations and use flexible set
distance measures over the corresponding decompositions, results in a flexible
and powerful class of PSD kernels over graphs. In particular, the resulting ker-
nels address some of the limitations of the existing decomposition-based graph
kernels.

To the best of our knowledge all existing graph kernels are currently limited
to a single type of decomposition which is then, most often, used in the con-
text of the cross product kernel. However, it is difficult in general to specify in
advance the appropriate type of substructures for a given problem. Although it
is in principle possible to simultaneously exploit kernels defined over different
representations, this is usually not done because there is a trade-off between
expressivity, achieved by enlarging the kernel-induced feature space, and the
increased noise to signal ratio (introduced by irrelevant features). It should be
noted that we could directly combine graph kernels using the methods pro-
posed e.g. in (Lanckriet et al., 2004; Ong et al., 2005; Bousquet and Herrmann,
2003). Nevertheless, the problem with learning kernel combinations is that the
combined elements should, obviously, be valid kernels on the different types of
decompositions. However, as we saw previously this type of kernels are based on
the cross product kernel that requires the complete matching of the individual
components, raising the problems that were described before. Finally, the exist-
ing methods for kernel combination work only in transductive setting, i.e. they
complete the labeling of a partially labeled dataset, which limits the application
area of such methods (see Section 5.5).

The use of flexible set distance measures results in kernels which do not
necessarily require that every subpart of one decomposition is matched against
every subpart of the other, or that all elements of the two sets should participate
in the computation of the final distance. This is in contrast with most of the
graph kernels (or kernels on composite structures) which are based on averaging;
for such kernels the generalization of a large margin classifier might be harmed
since due to the combinatorial growth of the number of distinct subgraphs most
of the features in the feature space will be poorly correlated with the target
variable (see the discussion on the set and graph kernels in Section 4.5).

Walks and trees can be easily compared by a graded similarity (e.g. the stan-
dard Euclidean distance measure for walks). Nevertheless, most of the kernels
on graphs use the δ kernel (Definition 4.4) on subparts, i.e. k(x, y) = 1 ⇐⇒
x = y, k(x, y) = 0 otherwise. As a result, the ability to find partial similari-
ties is lost and the expressivity of these kernels is reduced (Borgwardt et al.,
2005). A graded similarity on walks was considered in the graph kernel pre-
sented in (Borgwardt et al., 2005); however, it suffers from high computational
complexity since it requires taking powers of the adjacency matrix of the direct
product graph, leading to huge runtime and memory requirements (Borgwardt
and Kriegel, 2005). Graded similarities on trees were also used in (Fröhlich et al.,
2005).

The main disadvantage of the graphs kernels defined in the proximity space
is that the resulting models are not sparse, i.e. predictions for new inputs depend
on all the examples from the representation set. However, as already noted in
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Figure 5.2: A schematic description of the basic building components of the
proposed graph kernel. G1, G2 are any two graphs, Gtki is the decomposition
of the Gi graph to substructures of type tk, dset(Gtk1 ,G

tk
2 ) is a set distance

between the sets of decompositions of G1 and G2 to substructures of type tk,
d2
tuple,A(G1, G2) is the final learned weighted distance that combines different

types of decompositions.

Section 4.2.4, one way to overcome this limitation is to use a prototype selection
method which makes the resulting models sparser. In the experiments reported
in Section 5.4.2 we will see that it is indeed possible to reduce the size of the
representation set without harming the performance of a large-margin algorithm
(SVM).

The idea of our adaptive graph kernels in proximity space kP,d can be il-
lustrated with a simple example given in Figure 5.2. Consider two graphs G1

and G2; each graph, Gi, is decomposed into a number of sets of walks of vary-
ing lengths, noted in the figure as Gt1i ,G

t2
i ,G

t3
i , . . ., and a number of sets of

trees of varying height, noted as Gtji ,G
tj+1
i , . . ., giving rise to the final repre-

sentation of each graph as Gi = (Gt1i , . . . ,G
tl
i )T where l is the total number of

different decompositions. In order to compute the final distance between the
two graphs we have first to compute their distance with respect to each of the
components of Gi using a set distance, the result is a vector of l set distances,
d(G1, G2) = (dset(Gt11 ,G

t1
2 ), dset(Gt21 ,G

t2
2 ), ..., dset(Gtl1 ,G

tl
2 ))T . The next step is

to learn the final distance d2
tuple,A(G1, G2) as a weighted combination of the

component-wise set distances, i.e., d2
tuple,A(G1, G2) = d(G1, G2)TA d(G1, G2).

Once the distance d2
tuple,A is learned we can induce the corresponding proximity

space, using d2
tuple,A and the representation set, the latter typically being the

full training set. It is on that space that the final kernel on graphs is defined.



5.2. APPLICATION SCENARIOS 153

Complexity Analysis

In this section we provide the analysis of the computational complexity of our
adaptive graph kernels. The complexity of general graph kernels based on decom-
positions depends largely on the cost of constructing and matching subgraphs
as well as computing the cross product (CP) kernel. We replace the computa-
tion of the CP kernel by a given set distance measure. An additional factor that
influences complexity of our kernel is the cost of learning the weights; however,
this occurs only during the training phase. We will give the complexity of the
adaptive matching based kernels where decompositions are into walks and trees.
For decompositions into other types of subgraphs different complexity might be
obtained. Finally, we report the complexity assuming that the full matrices are
used.

The complexity of computing a set distance measure varies from O(n2) (for
dSL, dCL, dAL, dSMD, dH and dRIBL) to O(n3) (for dT , dS , dFS , dL and dM )
where n is the cardinality of the sets (see Section 3.2.3). The complexity of
extracting all walks of length up to lmax (trees of height up to hmax) from
a graph G is at most O(|G|αlmax) (or O(|G|αhmax)) where α is the branch-
ing factor which can be upper bounded by a small constant (usually 4). The
cost of matching walks of length l using the normalized Euclidean distance
(Equation 3.11) is O(l) whereas the complexity of computing distances from
Equation 3.22 between trees of height h is O(α3(h−1)); here we assume that
labels of vertices and edges can be matched in O(1) time. Given the above
observations the overall complexity of computing the adaptive matching ker-
nel between two graphs (if the weights of different decompositions are known)
is at most O{|S|m2|G|3(α3lmax + α3hmax)} where |S| is the cardinality of the
representation set and m = lmax + hmax is the number of decompositions.

Depending on the actual application and the characteristics of decomposi-
tions different factors will dominate the above complexity. In particular, the
size of the representation set can be reduced by using prototype selection meth-
ods as described in Section 4.2.4. Moreover, the average branching factor in the
datasets we experimented with was close to two (the last column in Table A.3)3.
As a result, in our experimental setup (Section 3.5), the above complexity re-
duces to O(|G|3); or O(|G|2) if one of the dSL, dCL, dAL, dSMD, DH , dRIBL,
set distance measures is used.

The complexity of learning the weights for MCML and NCA is at most
O(im2(n2|G|3 + n3)) where i is the number of iterations needed for the above
function to converge (in our case, depending on the set distance measure and
the application, i varied between 5 and 40). In the Xing method this complexity
is at most O(im2n2|G|3). In Table 5.1 we compare the complexity of our kernel
to known decomposition kernels based on walks and trees (only testing phase).
We assume that we are dealing with two graphs with n nodes and k bonds.

3In organic chemistry in general this average is slightly above two (Ralaivola et al., 2005).
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Graph Kernel Complexity
Exponential and Geometric kernels (Gärtner
et al., 2003; Vishwanathan et al., 2007)

O(n3)

Random walks kernels (Kashima et al., 2003;
Vishwanathan et al., 2007)

O(n3)

Kernels from (Ralaivola et al., 2005) O(nk)
Assignments kernel (Fröhlich et al., 2005) O(n3)
Graph kernel from this section O(|S|m2n2) or

O(|S|m2n3) plus
complexity of learning
the weights

Table 5.1: Worst-case complexity of related kernels based on walks and trees.

5.3 Experiments on Distance Measure Learning

In the first part of the experiments, we will perform the evaluation of the meth-
ods from Section 5.1 on the task of composite distance combination. We focus
on problems where training instances are represented as sets of objects. More
precisely, we used a representation where an instance xi is given as tuple of 11
sets, i.e. xi = (xi1 , . . . , xi11)

T where ∀k, l ∈ {1, . . . , 11}, xik = xil . On each of
the decomposition we apply one of the 11 set distance measures described in
Section 3.2.3, i.e. dSL, dCL, dAL, dSMD, dH , dRIBL, dT,θ=0.01, dS , dFS , dL and
dM . The different complex distance combination methods are compared in the
context of the kNN algorithm. The goal is to examine whether we can increase
the predictive performance of kNN by combining different set distance measures.
We denote kNN in which the combined distances are used by kNNDC.

5.3.1 Experimental Setup

We compared two regularized instantiations of the Xing, MCML and NCA
methods, over full and diagonal matrices which we will denote respectively
METHODfull and METHODdiag, where METHOD is Xing, MCML or NCA.
We used two methods as a baseline for comparison. The first one, denoted as
kNNBest, is obtained by simply selecting the set distance which gives the best
10-fold CV performance on the full dataset. It should be noted that this perfor-
mance estimate is optimistically biased. The second baseline method, denoted
as kNNCV, is based on an inner cross-validation loop to select the appropri-
ate set distance. More precisely, on each training set an inner 10-fold stratified
cross-validation is performed for each set distance in order to select the one with
the highest accuracy.

The results are reported for all the datasets, except for the protein finger-
prints. For graph datasets the results are only reported when the first represen-
tation of the learning instances is used, i.e. graph are represented as sets of trees



5.3. EXPERIMENTS ON DISTANCE MEASURE LEARNING 155

X
in

g f
u
ll

X
in

g d
ia

g
M

C
M

L
fu

ll
M

C
M

L
d
ia

g
N

C
A

fu
ll

N
C

A
d
ia

g
kN

N
B

es
t

kN
N

C
V

di
te

rp
en

es
96

.0
1(

-)
(

-)
51

.6
3(

-)
(

-)
97

.5
4(

=
)(

=
)

98
.3

4(
+

)(
+

)
98

.3
4(

+
)(

+
)

97
.7

4(
=

)(
=

)
97

.4
1

97
.4

1
m

us
k

(v
er

.
1)

63
.0

4(
-)

(
-)

75
.0

0(
=

)(
=

)
84

.7
8(

=
)(

=
)

88
.0

4(
=

)(
+

)
85

.8
7(

=
)(

=
)

89
.1

3(
=

)(
+

)
84

.7
8

80
.4

3
m

us
k

(v
er

.
2)

59
.8

0(
-)

(=
)

57
.8

4(
-)

(=
)

60
.7

8(
-)

(=
)

74
.5

1(
=

)(
=

)
79

.4
1(

=
)(

=
)

88
.2

4(
+

)(
+

)
77

.4
5

70
.5

9
du

ke
65

.8
5(

=
)(

=
)

65
.8

5(
=

)(
=

)
70

.7
3(

=
)(

=
)

65
.8

5(
=

)(
=

)
60

.9
8(

=
)(

=
)

63
.4

1(
=

)(
=

)
78

.0
5

70
.7

3
m

ut
a

(v
er

.
1)

67
.0

2(
-)

(
-)

76
.0

6(
-)

(
-)

82
.9

8(
=

)(
=

)
82

.4
5(

=
)(

=
)

85
.6

4(
=

)(
=

)
86

.1
7(

=
)(

=
)

87
.2

3
87

.2
3

F
M

(v
er

.
1)

52
.1

5(
-)

(=
)

56
.7

3(
=

)(
=

)
58

.1
7(

=
)(

=
)

63
.9

0(
=

)(
+

)
60

.1
7(

=
)(

=
)

62
.1

8(
=

)(
=

)
63

.3
2

57
.3

1
F

R
(v

er
.

1)
63

.5
2(

=
)(

=
)

61
.8

2(
=

)(
=

)
62

.3
9(

=
)(

=
)

62
.1

1(
=

)(
=

)
64

.1
0(

=
)(

=
)

64
.6

7(
=

)(
=

)
65

.5
3

66
.1

0
M

M
(v

er
.

1)
59

.5
2(

=
)(

=
)

59
.8

2(
=

)(
=

)
61

.9
0(

=
)(

=
)

60
.4

2(
=

)(
=

)
62

.8
0(

=
)(

=
)

59
.8

2(
=

)(
=

)
63

.3
9

60
.4

2
M

R
(v

er
.

1)
54

.9
4(

=
)(

=
)

56
.6

9(
=

)(
=

)
56

.6
9(

=
)(

=
)

54
.3

6(
-)

(
-)

56
.4

0(
=

)(
=

)
54

.9
4(

=
)(

=
)

61
.6

3
61

.9
2

T
ab

le
5.

2:
A

cc
ur

ac
y

an
d

si
gn

ifi
ca

nc
e

te
st

re
su

lt
s

of
th

e
kN

N
D

C
al

go
ri

th
m

.
T

he
+

si
gn

st
an

ds
fo

r
a

si
gn

ifi
ca

nt
w

in
of

th
e

fir
st

al
go

ri
th

m
in

th
e

pa
ir

,
-

fo
r

a
si

gn
ifi

ca
nt

lo
ss

an
d

=
fo

r
no

si
gn

ifi
ca

nt
di

ff
er

en
ce

.
T

he
si

gn
s

in
th

e
fir

st
pa

re
nt

he
si

s
co

rr
es

p
on

d
to

th
e

co
m

pa
ri

so
n

of
kN

N
D

C
vs

.
kN

N
w

he
re

th
e

b
es

t
di

st
an

ce
is

us
ed

(t
he

kN
N

B
es

t
co

lu
m

n)
an

d
th

e
se

co
nd

to
th

e
co

m
pa

ri
so

n
of

kN
N

D
C

vs
.

kN
N

w
it

h
cr

os
s-

va
lid

at
io

n
(t

he
kN

N
C

V
co

lu
m

n)
.



156 CHAPTER 5. ADAPTIVE APPROACHES

of height 3.
In all the experiments the number of nearest neighbors in kNN was opti-

mized in an inner 10-fold cross validation loop over k = {1, 3, 9}. Moreover,
the the regularization parameter λ in METHODfull was cross-validated over
λ = {0, 0.1, 1, 10}; in METHODdiag the λ parameter was set to 0. We estimate
accuracy using stratified ten-fold cross-validation and control for the statisti-
cal significance of observed differences using McNemar’s test (McNemar, 1947),
with significance level of 0.05.

5.3.2 Results and Analysis

The results are presented in Table 5.2. From these results we can see that NCA
has an advantage over the considered baseline methods. It is never significantly
worse and sometimes it is significantly better than both kNNBest and kNNCV.
The MCML method is also sometimes significantly better than the baseline
methods; however, in comparison with NCA it does not fare so well, being some-
times significantly worse than both baseline methods. Finally, Xing’s method is
never significantly better (and in many cases it is significantly worse) than both
kNNBest and kNNCV. We note that the performances achieved by MCMLfull

and NCAdiag in the diterpenes dataset (98.34 %) are the best reported so far in
the literature.

The poor performance of Xing’s method might be a result of the fact that
the objective function in this method is not suitable for data exhibiting a multi-
modal distribution. On the other hand, the good performance of NCA could be
explained by the fact that it makes no assumptions about the shape of the class
conditional distributions or the boundaries between different classes. Another
possible explanation for the poor performance of Xing’s method, especially in
musk (ver. 1), musk (ver. 2) and mutagenesis datasets, is that in these datasets
the negative class contains any examples which do not have the property en-
coded by the positive class. As already mentioned, in such cases the cost function
implemented by Xing’s method is severely penalized. The above limitations also
hold for MCML; however, as we can see from Table 5.2 MCML has an advan-
tage over the Xing method. This might be a result of the fact that in MCML
more importance is put on the pairs of instances form different classes (in Xing’s
method this contribution is logarithmically down-weighted) which could factor
out the effect of the above mentioned multi-modalities.

The instantiations of the Xing, MCML and NCA methods for which opti-
mization is performed over diagonal matrices tend to have an advantage over the
corresponding soft-regularized full matrix instantiations, mainly for the datasets
with small number of instances (i.e. both versions of the musk datasets and
duke). Indeed, in these datasets the accuracy of METHODdiag was higher that
METHODfull in 6 out of 9 cases; however, only in one case was this difference
statistically significant (MCML in version 2 of musk); in all other cases the
differences were not statistically meaningful. For these datasets, when we work
with the full matrices which have O(m2) parameters to estimate, the small num-
ber of training instances leads to under-determined problems. In these cases, in
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Figure 5.3: Relative importance of the different set distance measures, computed
by METHODdiag (λ = 0), for the diterpenes and musk (ver. 1) datasets. The
weights are learned on the full training set. For each set distance measure we
also provide in parenthesis the corresponding performance of kNN.

comparison with the soft-regularization, the reduction of the number of free pa-
rameters to estimate to O(m) tends to be a better means of protection against
a possible overfit. For other datasets no clear trends can be observed.

The results of the optimization process, both for full and diagonal matrices,
can be visualized to provide insight into the relative importance of the distance
measures (and their combinations for METHODfull), as these are determined by
each method. An example of such a visualization for diterpenes and version 1 of
musk is given in Figure 5.3, where optimization is performed over diagonal ma-
trices and where the weights are learned on the full training set; the visualization
for other datasets is presented in Tables B.3 and B.4 in Appendix B.4. The bars
correspond to distance measures for which the corresponding accuracies of kNN,
estimated by 10-fold cross-validation, are given in parenthesis. The y-axis rep-
resents the weights, normalized by the Frobenius norm of A, computed by the
three methods. The visualization results are somehow in agreement with results
from Table 5.2. For example, in diterpenes MCMLdiag (98.34 % of accuracy)
assigns high weights to distance measures which individually exhibit good per-
formance (dS , dFS and dM ) and neglects the ones with lower performance (dSL,
dCL, dAL, dSMD, dH , dL). For this combination method the performance of each
of the constituent distances is lower than the performance of dT (i.e. the best
”single” distance measure), nevertheless, by combining the constituent distance
measures we are able to obtain the best performance in diterpenes reported in
the literature. The lower accuracy of Xingdiag (96.01 %) and NCAdiag (97.74
%) is a result of assigning very high weights to dM and dT , respectively. In the
version 1 of musk Xingdiag (with performance of 75.00 %) assigns high weight
to dRIBL (65.22 %) and weights which are close to zero for other distances.
This indicates that other configurations of weights are used within the different
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Figure 5.4: Stability of the distance combination techniques in musk (ver. 1).
Weights in each of the 10 folds (i.e. rows) are normalized by a Frobenius norm
of A (W ).

folds of internal cross-validation (as noted above the weights are obtained by
application of METHODdiag of the full training set). This might be a result
of the fact that musk (ver. 1) has a small number of instances, and hence the
instantiations of METHODdiag are not stable with respect to the perturbations
in training data.

To further investigate the issue of stability of the solutions obtained by
METHODdiag we plot in Figure 5.4 the relative importance of the different set
distance measures (for version 1 of musk), assigned by different methods, across
the different folds of the 10-fold cross-validation. For example, in Xingdiag only
dRIBL and dL contribute to the final solution; however, the weights assigned to
these distance measures are not stable, i.e. the weights are either 0 or 1 (with
the exception of fold 7 where both components have weights close to 0.5). On
the other hand, in MCMLdiag and NCAdiag the solutions are more stable among
different folds and are in agreement with the results presented in Figure 5.3 (b).
In Figures B.5 and B.6 in Appendix B.4 we present the same visualization for the
remianing datasets; in these datasets the solutions of the distance combinations
are in general stable across different cross-validation folds.

The full matrix obtained for the diterpenes and mutagenesis datasets using
NCAfull (λ = 0) is displayed graphically in Figure 5.5. As with the diagonal
case the weights are obtained on the full training dataset and are normalized
by the Frobenius norm of A. For example in diterpenes, presented in plot (a),
the NCAfull method assigns the highest weights to dT , dSL and dAL, as well as
the combinations of these distances. The two latter distances have a very poor
performance when used alone (21.81 % of accuracy for dSL and 39.45 % for
dAL); however, when combined with dT (97.41 %), the state-of-the-art accuracy
of 98.67 % is achieved. On the other hand, in the version 1 of musk dCL (79.26 %)
and dT (87.23 %) distances (and their combinations) are assigned high weights;
however, the performance of the overall combination is 85.87 % and is lower
than of dT .

It is also interesting to analyze the impact of the λ parameter on the resulting
weights. In Figure 5.6 we present the relative importance of the different set
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Figure 5.5: Relative importance of the different set distance measures, computed
by NCAfull (λ = 0), for the diterpenes and mutagenesis datasets. The weights
are computed on the full training set. For each set distance measure we also give
the corresponding performance of kNN in parenthesis.
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Figure 5.6: Relative importance of the different set distance measures as these
are computed by MCMLfull and NCAfull, for different values of λ. The weights
are computed in the diterpenes dataset and on the full training set.
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Figure 5.7: The estimated accuracy for METHODdiag (using kNN) where l =
1, . . . , 6, 11 top ranked distance measures (according to the assigned coefficients)
are combined for computing the actual distance. Additionally, the performance
of kNNBest and kNNCV is presented.

distance measures computed by the MCMLfull and NCAfull methods, in the
diterpenes dataset, for different values of λ = {0, 1, 10}. We can see that for
MCMLfull the λ parameter does not seem to have an impact on the obtained
weights, i.e. the relative importance of the different set distance measures is
preserved across the considered values of λ. This is in contrast with NCAfull

where the weights obtained for λ = {0, 1} are different than when λ was fixed
to 10, and in particular, the set distances which were assigned high weights for
λ = {0, 1}, are neglected for λ = 10, and vice-versa. Visualization for other
datasets is presented in Tables B.7 to B.14 in Appendix B.4.

Using the method instantiations based on diagonal matrices, it is easy to
reduce the size of the problem by selecting only the l top-ranked distance mea-
sures (according to the assigned coefficients) which can be used to obtain the
distance combination. We examined the performance of kNNDC for l ranging
from 1 to 7 (the total number of distance measures is 11). The visualization for
the diterpenes and musk (ver. 1) datasets is given in Figure 5.7 (the visualiza-
tion for other datasets is presented in Figures B.15 and B.16 in Appendix B.4).
For comparison we also provide the results when all 11 distance measures are
combined. It should be noted that the objective functions are optimized with
respect to all the distance functions considered. Indeed, in diterpenes it is clear
that the best performance of kNNDC is achieved when all the distance mea-
sures are used (i.e. l = 11). However, the performance when we select the 4
top distance measures is very similar to the performance when all distances are
used.

There is an interesting synergy that arises from the nature of the set distances
and the fact that we learn combinations of them. Remember that all the set
distances we consider (with the exception of dT ) are defined on the basis of a
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given mapping, F , of elements of one set to elements of the other set. One can
view the task of learning a set distance measure as learning the mapping F ,
i.e. which pairs of elements of the two sets should participate in the mapping
and how important they are. Under this view learning a set distance measure
would correspond to learning the weights ωab (associated with a pair of elements
(a, b) ∈ A×B), in the function

dset(A,B) =
∑

(a,b)∈A×B

ωabd(a, b)

where ωab ∈ {0, 1} (or more general ωab ∈ [0, 1]). It can be seen that the
combination of distances from Equation 3.14 provides an intermediate solution
to this problem. By restricting the matrix from Equation 3.14 to be diagonal,
we obtain a set distance measure of the form

dset(A,B) =
∑

(a,b)∈F

wabd(a, b)

where F =
⋃m
i=1 Fi, Fi is the mapping corresponding to set distance measure di

and wab is computed by adding the coefficients assigned to set distance measures
in which (a, b) appears. The final mapping, F , is more expressive than any
of its constituents, Fi, and cannot be obtained by considering any of the Fis
individually. This flexible way of mapping of elements of the two sets might
explain the good performance of the combinations of set distances.

5.4 Experiments on Representation Learning

In this section we apply the proposed adaptive framework on the task of learn-
ing the appropriate combinations of different graph decompositions for various
graph classification problems (i.e. mutagenesis and four versions of carcinogenic-
ity); there exist several possible decompositions of graphs into specific subparts
and it is in general difficult to specify the appropriate decomposition a priori.

We decompose graphs into sets of walks and trees of various lengths and
heights, respectively. We set the maximum length of walks to 11 and the max-
imum depth of trees to 4. More formally, a graph xi is presented as tuple
(xi1 , . . . , xi11 , xi12 , . . . , xi15)

T where xil , for l = 1, . . . , 11, represents a set of
walks of length l and xih , for h = 12, . . . , 15, corresponds to a set of (unordered)
trees of height h− 11. The performances of the different graph decompositions
will be examined in the context of graph kernels as presented in Section 5.2.1.
These kernels are plugged into an SVM algorithm and it is the performance of
the SVM with the corresponding kernel that we estimate.

In the experiments we want to examine a number of issues related to: the
individual performances of the different decompositions and how these relate to
the performance of the combined decompositions; the performance of different
ways of combining the constituents of a given decomposition, i.e. the use of
different set distances, and how they relate to more standard ways of combining



162 CHAPTER 5. ADAPTIVE APPROACHES

these constituents such as averaging; the importance of size of the different sub-
structures and the performance of various weighting schemes; the performance
of the feature (prototype) selection algorithms; and finally, the performance of
our graphs kernels in comparison to other graph kernels.

More precisely, first, for different set distance measures we will explore the
effect of the length of walks (and the height of trees) on the performance of
kPdset , i.e. we fix the walk length to a specific l for l = 1, . . . , 11 (and the height
of a tree is fixed to a specific h, h = 2, . . . , 5) and we use only the corresponding
decomposition to construct the final kernel; we do not combine decompositions.
We will compare the performance of the above simplified kernels with kPdtuple,A
(for the MCML method) and kPdtuple,W (for NCA) where we combine over all
the different l + h decompositions for l = 1, . . . , 11 and h = 2, . . . , 5. For the
kernel k on the proximity space we will be using the linear kernel in order to
make a fair comparison between the algorithms and to avoid the situation where
an implicit mapping given by a nonlinear kernel will influence the results.

Second, we will examine how the performance of the kernel kPdtuple,A (kPdtuple,W )
compares with the following two set kernels based on averaging: (i) the direct
sum kernel based on the cross product kernels applied on the different decom-
positions with the linear kernel (in case of walks) and the tree kernel (for trees)
as kernels on the sets’ elements, and (ii) the linear kernel in the proximity
space induced by dtuple,A (dtuple,W ), also over the combination of the different
l + h decompositions, where dAL set distance measure is applied over the de-
compositions. Kernels matching all subgraphs are a standard way of tackling
classification problems where instances are represented as graphs.

Third, we will analyze the importance of size of different sub-structures, de-
termined on the basis of weights assigned by our adaptive methods. We will
focus on decompositions into walks and analyze the impact of walks’ lengths.
Additionally, we will examine how the performance of our methods applied
on decompositions into walks of different lengths compares with two baseline
weighting schemes which are widely used in practice. These weighting schemes
are the isotropic scheme which assumes that all decompositions are equally im-
portant, and down-weighted scheme where decompositions into walks of length
l are assigned weights of 1/2l.

Next, we are going to examine the influence of a prototype selection al-
gorithm (or equivalently feature selection algorithm applied in the proximity
space) to the performance of the kernels in proximity spaces. More precisely,
we will use the CFS algorithm (Hall, 1998). The goal of this experiment is to
check whether we can obtain sparse solutions such that the complexity is lower
for both representation and computation of the kernels.

Finally, we will compare our graph kernels with other state-of-the-art graph
kernels presented in the literature.

5.4.1 Experimental Setup

In order to combine different graph representations we need to define distance
measures over corresponding sets of decompositions. For this purpose we ex-



5.4. EXPERIMENTS ON REPRESENTATION LEARNING 163

ploit the set distance measures from Section 3.2.3 which allow for increased
flexibility on the type of matchings of elements between the two sets of decom-
positions. More precisely, we experimented with the dSL, dCL, dAL, dSMD, dH ,
dRIBL, dT,θ=0.01, dS , dFS , dL and dM set distance measures. The distance over
walks is defined as the normalized Euclidean distance measure on the walks’
vectorial representation (Definition 3.28). The distance over trees is defined in
Section 3.3 and is based on an alternating, recursive computation of the nor-
malized Euclidean distances applied on the nodes of the trees and a modified
version of the matching set distance measure, dM , applied on the sets of children
of the nodes.

As already mentioned, the different graph decompositions will be compared
in the context of SVM with the graph kernels defined in the proximity space.
For SVM the regularization parameter C was optimized in an inner 10-fold
cross-validation loop over the set C = {0.1, 1, 10, 50}. In all the experiments,
unless stated otherwise, we used the regularized version of the MCMLfull and
NCAfull algorithms (Equations 5.7 and 5.9) where the regularization parame-
ter λ is cross-validated over λ = {0, 0.1, 1, 10}; due to the poor performance of
Xingfull reported in Section 5.3.2 we did not use this method in the experiments.
Note that we have 11 different instantiations of the kPdtuple,A (kPdtuple,W ) kernel,
each one corresponding to one of the 11 set distance measures. In all the ex-
periments accuracy was estimated using stratified 10-fold cross-validation and
controlled for the statistical significance of observed differences using McNemar’s
test (McNemar, 1947), with significance level of 0.05.

5.4.2 Results and Analysis

Performance of Individual vs. Combined Decompositions

We first examine the influence of the length of the walks and heights of the
trees on the predictive performance of SVM. The results for the mutagenesis
dataset are presented in Figure 5.8; the results for the other datasets are given
in Figures B.17 and B.18 in Appendix B.5. From the results it is clear that
in mutagenesis the optimal decomposition depends on the actual set distance
measure. For example, for dSMD the highest predictive accuracy is obtained for
walks of length 6 whereas for dS the best decomposition is into walks of length
10. Additionally, with the exception of dSL, decompositions in walks in general
outperform decompositions into trees. For the other examined datasets the op-
timal decompositions are different. Thus we have no way to know a priori which
type of decomposition is appropriate. By combining them using either NCAfull

or MCMLfull (results also given in Figure 5.8) we usually get a classification
performance that is as good as that of the single decompositions. Indeed, in
mutagenesis the performance of MCML was significantly better in 120 cases, in
44 cases the differences were not significantly meaningful and in 1 case it was
significantly worse compared to the single decompositions4; the corresponding

4The total number of comparisons is 165 = 11 walk decompositions x 11 set distances + 4
tree decompositions x 11 set distances
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Figure 5.9: Estimated accuracy (SVM) of different kernels in the proximity
space, i.e. kPdtuple,A (for MCMLfull) and kPdtuple,W (for NCAfull), combining only
walks, only trees and both walks and trees vs. different set distance measures
in the mutagenesis dataset.

number of cases when NCA was better, equal or worse than the performance
of individual decompositions are 68, 92 and 5. The results for all the graph
datasets are given in Table B.23 in Appendix B.5.
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Figure 5.10: Percentage of empty sets vs. lengths of walks for the graph datasets
(wl denotes walks of length l).

In Figure 5.9 we provide results of experiments on the mutagenesis dataset
in which we combine only specific types of decompositions, i.e. only paths, only
trees (we also repeat previous results where both paths and trees are com-
bined); the visualizations for the FM, FR, MM, and MR datasets are given in
Figures B.19 and B.20 in Appendix B.5. We can see that in general there is an
advantage in combining heterogeneous decompositions as opposed to combing
homogeneous decompositions only of specific type (only paths or only trees).
Indeed, the homogeneous decompositions into walks and trees were never sig-
nificantly better than than the decompositions into both walks and trees, and
the latter decompositions were significantly better than both homogeneous de-
compositions in 2 cases for MCMLfull and 4 cases for NCAfull. The significance
test results for other graph datasets are presented in Table B.24.

One problem with the decomposition of molecules into sets of walks of length
l, in which tottering is not allowed, is that small molecules for large values of
l will be associated with an empty set of walks5. To get more insight into this
problem we present in Figure 5.10 the relation between the length of the walks
and the percentage of molecules associated with empty sets. As we can see in
the carcinogenicity datasets starting from walks of 8 or longer the number of
molecules associated with empty sets starts to increase rapidly. On the other
hand, in mutagenesis none of the molecules are associated with empty sets, even
for the longest length of walks that we considered. As a result, one can expect

5The same observation holds also for decompositions into trees; however, the distance
measure on trees from Section 3.3 can be applied on trees of different heights, hence we do
not need to remove ”incomplete” trees from corresponding decompositions.
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Figure 5.11: Medians of cardinalities vs. lengths of walks for the graph datasets
(wl denotes walks of length l).

that the performance of a classifier operating on such incomplete descriptors
will be harmed. On the other hand, the fact that a given molecule can not be
described by walks of a specific length could be of predictive value. In Figure 5.11
we give the relation between the lengths of the considered walks and medians
of cardinalities of the resulting decompositions; the longer the walks are the
larger the cardinality of the resulting decompositions. More detailed statistics
on the decompositions into walks in the considered graph datasets are presented
in Figure B.21 in Appendix B.5.

Similarly to the visualizations presented in Section 5.3.2 the results of the op-
timization process that learns the optimal decomposition can be graphically pre-
sented providing insight to the relative importance of different decompositions.
In Figure 5.12 we give an example of such a visualization for the FM dataset
and the dSMD set distance measure; the visualization for other datasets (for
dSMD) is presented in Figure B.22 in Appendix B.5. In graph (c) of that figure
the optimization was performed for diagonal matrices. The different elements in
x-axis are the elements of the diagonal of the matrix A (or W TW = A) which
correspond to a decomposition into walks and trees whereas the y-axis repre-
sents the (normalized) weights returned by the optimization method. What we
see from the graph is that in FM for NCAdiag the highest weights are assigned to
walks of lengths longer than 6 and all tress, independent of their heights, while
MCMLdiag assigned high weights only to the trees. The graphs (a) and (b) of
the Figure 5.12 provide the visualization of the optimization process for NCAfull

and MCMLfull, respectively, where now the matrix A is a full matrix. Note here
that the off-diagonal elements in the full matrix correspond to hybrid distances,
i.e. distances that are defined over two distinct decompositions, for example, for
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Figure 5.12: Relative importance of different decompositions (FM dataset) for
the dSMD set distance measure both for full and diagonal matrices A (for
MCML) or W TW = A (for NCA). wl denotes walks of length l whereas th
denotes trees of height h. It is represented as normalized weights A. Weights
are normalized by a Frobenius norm of A.

a given off-diagonal element one part might come from a decomposition to a set
of walks of a given length and the other part from a decomposition to a set of
trees of a given height. One observation is that for NCAfull the decompositions
into trees and long walks are assigned low weights. At the same time combi-
nations of trees with long walks and combinations of shorter walks are of high
importance.

Performance of Matchings Strategies

The next dimension of comparison is the relative performance of the instanti-
ations of the kPdtuple,A kernel for different set distances and the following two
set kernels based on averaging: (i) the direct sum kernel based on the cross
product kernels applied on the different decompositions (we denote this kernel
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as kΣ,CP ), and (ii) the linear kernel in the proximity space induced by dtuple,A,
also over the combination of the different l + h decompositions, with the dAL
set distance measure. As already noted, the above two kernels constitute a stan-
dard approach to tackling graph problems. The main point of this comparison
is to examine whether there are cases in which different ways of matching the
elements of two sets of subgraphs can be more beneficial than the standard
averaging which matches everything with everything.

The results (with the significance test results in parenthesis) are presented
in Tables 5.3 (for MCMLfull) and 5.4 (for NCAfull). From the results it is clear
that the relative performance of kernels based on specific pairs of elements and
kernels based on averaging depends on the actual application. For the mutage-
nesis and MR datasets there is an advantage of the kernels based on specific
pairs of elements, while for the remaining datasets the performances are very
similar. Overall, the choice of the appropriate way of matching the elements of
two sets depends on the application and ideally should be guided by domain
knowledge, if such exists. Nevertheless, the relative performance of the different
kernels provides valuable information about the type of problem we are facing.
For example examining mutagenesis and carcinogenicity we see that although
they correspond to the same type of classification problem, i.e. classification of
graphs, in the latter (except for the MR) averaging works better, hinting that
the global structure of the molecules is important, whereas in the former av-
eraging performs poorly, indicating that matching specific components of the
molecules is more informative. It should be noted that these results agree with
the observation from Section 4.4.4 where among others we compared kernels
based on averaging and kernels based on specific pairs of elements; the differ-
ence is that in Section 4.4.4 we used only one graph representation that was
based on trees.

The last parenthesis in Table 5.4 compares the performances of NCAfull

vs. MCMLfull. From the results we can see that in general these two methods
achieve rather similar performances, i.e. in 51 out of 55 cases the differences
in performances between these two methods were not statistically significant,
while in 3 (1) cases NCAfull was significantly better (worse) than MCMLfull.

Importance of Size of Sub-substructures

One of the observations presented in the previous section, where the results
presented in Figure 5.12 were discussed, was that in some cases longer walks
might be of high discriminatory information. This observation is somehow in
contradiction to the common practice in various graph kernels (Gärtner et al.,
2003; Collins and Duffy, 2002), based on the cross product kernel where typ-
ically larger structures are down-weighted. To further investigate the issue we
decomposed graphs into walks of different lengths and visualized the relative
importance of the resulting decompositions. In order for the weights to have
a clear semantics we limited to a diagonal matrix of weights A (or W ). We
examined the weights learned on the dAL set distance measure. We have chosen
dAL because its semantics are very similar to the cross product kernel in the
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Figure 5.13: Relative importance of different decompositions (mutagenesis and
FM datasets) for the dAL set distance (wl denotes walks of length l).

sense that it is also based on averaging, i.e. each element of one decomposition
is matched against each element of the other decomposition. The results for
the mutagenesis and FM datasets are given in Figure 5.13; the visualization for
other datasets is presented in Figure B.23 in Appendix B.5. As we can see for
both datasets the decompositions to sets of walks of longer lengths are given
a high relative importance. Again, by examining these findings in view of Fig-
ure 5.10 we see that for the FM dataset a large percentage of the molecules are
associated with empty sets of walks of length 10 and 11, roughly 12 %. So, in
accordance with the observations in the above paragraph it seems that the ab-
sence of longer walks does indeed convey discriminatory information. However,
if we turn now to the mutagenesis dataset we see that this has no empty sets
for decompositions to sets of walks of longer lengths; in fact there are no empty
sets at all, but still these decompositions are assigned a large importance. So it
seems that the presence or absence of longer walks does not solely explain the
importance assigned to the corresponding decompositions. The above indicates
that larger structures can indeed convey important discriminatory information,
not limited to their presence or absence, and they should not be down-weighted
in advance.

To further analyze this aspect we examined how the performances of NCAfull

and MCMLfull (where λ was internally cross-validated) compare with two base-
line weighting schemes of different decompositions which are widely used in
practice. In the first (isotropic) weighting scheme all the decompositions are
assumed to be equally important and assigned equal weights of 1. In the second
weighting scheme the decompositions into weights of length l are down-weighted
as 1/2l; a similar scheme is used e.g. in the graph kernels of Gärtner et al.
(2003). The visualization of the results for the mutagenesis and MR datasets
is provided in Figure 5.14 where for each set distance measure we report the
four estimated accuracies corresponding to the above two standard weighting
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Figure 5.14: Performances (using SVM) of the various weighting schemes for
mutagenesis and MR datasets.

schemes and the weighting schemes obtained by NCAfull and MCMLfull. The
results for other datasets are presented in Figure B.24 in Appendix B.5. From
the results it is clear that the optimal weighting scheme depends on the prob-
lem at hand. While in mutagenesis the isotropic and down-weighted weighting
schemes seem to have an advantage over the more complicated ones, in MR the
opposite trend holds. The significance results are reported in Table B.25.

To explain the surprisingly good behavior of the simple weighting schemes
we first note that the predictive error of the kNN algorithm is largely domi-
nated by the high-variance component; the bias component is usually low since
this algorithm does not make strong assumptions on the distribution of the
data (Hastie et al., 2001). Now, by using multiple decompositions we in fact re-
duce the variance, and hence the error. NCAfull and MCMLfull also use multiple
decompositions; however, in comparison with the simple weighting schemes, the
reduction in variance is potentially lower since m(m−1)

2 parameters of the matrix
A need to be estimated, and as we have shown in Section 5.3 this procedure
might be sensitive to perturbations in the training set. This observation agrees
with the empirical results presented above, since the highest advantage of the
simple weighting schemes was reported in the mutagenesis dataset which, in
comparison with carcinogenicity, has small number of instances, i.e. 188.

Performance of Prototype Selection Methods

Finally, we examined whether it is possible to reduce the size of the represen-
tation set without a reduction in the classification performance of our graph
kernels. As described in Section 4.2.4 it is possible to select the prototypes by a
feature selection algorithm working in the proximity space. The feature selection
algorithm we experimented with is CFS (Hall, 1998). CFS evaluates the worth
of a subset of attributes by considering the individual predictive ability of each
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Figure 5.15: Accuracy of kPdtuple,A (using SVM) for the mutagenesis and FM
datasets and for different set distance measures. The results are obtained using
MCMLdiag where feature selection in the proximity space is performed using
the CFS method (the first bar). For comparison we also report the accuracy of
the kPdtuple,A on the full set of prototypes (the second bar).

feature along with the degree of redundancy between them. Subsets of features
that are highly correlated with the class while having low inter-correlation are
preferred. We should note that CFS automatically selects the most appropriate
number of features-prototypes. In all the experiments with prototype selection
we used the NCAdiag and MCMLdiag methods where λ was fixed to 0.

The accuracy results for the CFS algorithm for the mutagenesis and FM
datasets (using MCMLdiag) are given in Figure 5.15; the results of other datasets
is given in Figures B.25 (for MCMLdiag) and B.26 (for NCAdiag) in Appendix B.5.
The main observation is that for the FM dataset the performance is not harmed
when a subset of the training instances is used. Indeed, in this dataset all the
differences in accuracies between the ”full” and ”sparse” models were not sta-
tistically significant. In mutagenesis the advantage of the non-reduced data rep-
resentation is more evident which might indicate that in mutagenesis the data
is uniformly distributed making it harder to select a small set of prototypes
representative of the underlying distribution. In this dataset the performance
of the model based on all the prototypes was significantly better in 3 cases for
MCML and 3 cases for NCA; in the remaining cases the differences between
the performances were not statistically significant. In FR and MM the differ-
ences for all the methods were not statistically significant. In MR and for NCA
the ”full” models were better in 4 cases, while in MCML one ”full” model was
significantly worse than the corresponding ”sparse” model.

As already mentioned, CFS feature selection automatically selects the most
appropriate number of features. Figure 5.16 presents the number of selected
features (prototypes) in mutagenesis and FM by the CFS algorithm for the
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Figure 5.16: Number of selected features (prototypes) by the CFS algorithm
in the mutagenesis and FM datasets. The results are reported for different set
distance measures and using MCMLdiag. The first bar denotes the number of
instances in the training set.

different set distance measures; similar graphs are presented in Figures B.27 (for
MCMLdiag) and B.28 (for NCAdiag) in Appendix B.5. The numbers of selected
features are averaged over the models built by CFS within the folds in cross
validation6. For comparison, we also provide the number of training instances
in the considered datasets. From these results it is clear that all the resulting
models are sparse. In particular in mutagenesis by selecting approximately 10 %
of initial instances we obtain results which are similar to the results where the
full dataset was used. For the other datasets the number of selected prototypes
was at most 3% of the training set, thus the final models rely on a very small
representation set. The sparsity of the above models in the examined datasets
considerably improves the computational efficiency during the testing phase.

Comparison with Other Graph Kernels

To situate the performance of our kernels to other graph kernels we provide
in Table 5.5 the results reported in the literature on the same benchmark
datasets; these are the results already reported in Table 4.5 under column
”Kernel-based”7. Additionally, we provide the best results of the cross product
kernels from Section 4.4.3 or kernels based on specific pairs of elements from
Section 4.4.4; these results are also reported in Table 4.5. The corresponding
results show that our kernel achieves a performance accuracy which is similar

6In total there are 400 = 10x10x4 folds as in each fold of 10-fold cross-validation we
internally cross-validate (again in 10-folds) over C = {0.1, 1, 10, 50}.

7As in Table 4.5 we only cite works which use similar features to describe atoms and bonds.
For example, our results in carcinogenicity are not directly comparable with the ones reported
by Fröhlich et al. (2005).
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Graph kernels from: mutagenesis FM FR MM MR
(Kashima et al., 2003) 85.1 63.4 66.1 64.3 58.4
(Mahé et al., 2004) 91.0 - - - -
(Ralaivola et al., 2005) 91.5 64.5 66.9 66.4 65.7
Best Cross Product Kernel 87.2 62.5 68.4 64.6 61.3
Best kernel based on mappings 85.6 67.0 67.8 66.7 64.5
Best adaptive kernel (this section) 92.5 65.0 67.8 68.4 68.0

Table 5.5: Comparison with other related graph kernels. The best kernels in
each datasets are emphasized. The results for the best Cross Product Kernel
are taken from Section 4.4.3; the results the best kernel based on mappings are
taken form Section 4.4.4.

or better than the performance of the existing graph kernels. In particular, for
mutagenesis, MM and MR we get classification results that are better than the
best results reported so far in the literature. These performances are also better
than the results reported in the previous chapter; however, the differences are
not statistically significant. The two main sources of the above improvements
over the current literature results are the possibility of flexible matchings be-
tween the elements of the decompositions and the fact that we can combine
decompositions of different types. In FM and FR the results are better than the
results reported elsewhere; however, they are worse than the results obtained
using the cross product kernels and kernels based on specific pairs.

5.5 Related Work

In this section we will describe the existing work that is relevant in our context.
More precisely, we report previous work on metric learning and methods for
generating representations for graph data. Graph kernels were also discussed in
Sections 4.5 and 5.2.1.

Metric Learning

Related work on metric learning can be categorized into supervised metric learn-
ing, where the goal is to learn the metric from labels (or more generally from
side-information), and unsupervised metric learning where the goal is to find a
low-dimensional embedding of the data such that the topological relations be-
tween the instances are preserved. For a survey on metric learning the reader is
referred to (Yang and R.Jin, 2006). The focus in this section is on the supervised
methods as these are more relevant in our context.

As already noted, any supervised (or based on side-information) metric learn-
ing method can be adapted to the representation or distance combination in
complex domains, as long as in the objective function the access to data is
only through a distance function. A classical example of such method is Linear
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Discriminant Analysis (LDA) (Bishop, 2006, e.g.) which defines a projection
that maximizes the distance between the means of the classes while minimiz-
ing the variance within each class. The main problem with this method is that
the dimensionality of the projected space depends on the number of classes
and not on the inputs themselves. Moreover, LDA is based on the Gaussian
assumption (which is rarely true in practice) since it uses covariance matrices.
Additionally, LDA suffers from a small sample size problem when dealing with
high-dimensional data. As already noted, MCML is a generalization of LDA
that makes a much weaker assumption, namely that each class is distributed
as a uni-modal blob, which can be separated (under the right metric) from the
other class blobs (Globerson and Roweis, 2006). We mention that several other
extensions of the standard LDA have been proposed in the literature. For ex-
ample, Sugiyama (2006) proposed Local Linear Discriminant Analysis which
extends LDA by assigning greater weights to those instances that are close to-
gether.

The RCA algorithm from (Bar-Hillel et al., 2005) constructs a Mahalanobis
metric from a weighted sum of in-class covariance matrices; however, it only
takes into account similar pairs of points and discards the dissimilar ones. As
a result it is unlikely that this method will perform well on fully labeled data.
The objective functions in this method can be shown to be similar to the one of
Xing’s method (up to a constant); however, the constraint in the optimization
problem in RCA, i.e. det(A)  1, is in general more difficult to fulfill. One may
imagine the straightforward extension of RCA that would also take into account
the dissimilar pairs and try to maximize some measure of the variance or the
distance between the dissimilar pairs while minimizing the corresponding mea-
sure between the similar pairs, an approach that would be in fact similar to the
one used in LDA. An example of such extension is the Discriminative Compo-
nent Analysis (DCA) proposed by Hoi et al. (2006) which exploits cannot-link
constraints and captures non-linear relationships using contextual information.

The method proposed in (Schultz and Joachims, 2004) learns the metric
from relative and qualitative examples of the form “A is closer to B than A is
to C”. It uses a different form of side-information which renders the method
applicable in a wider range of domains than it is the case with other metric
learning methods. However, such side-information might not be always easy to
obtain.

Two algorithms from (Shalev-Shwartz et al., 2004) and (Weinberger et al.,
2006) can be easily adapted in our context. The cost functions in these algo-
rithms are based on the notion of large margin which separates elements with
different labels while keeping elements of the same class together. The main
difference is that the latter focuses on the local neighborhood while the for-
mer seeks to minimize distance between all similarly labeled examples. The
other algorithm which can be easily adapted to complex objects is the method
of Chopra et al. (2005) which is parameterized by pairs of identical convolution
neural networks.

As already noted, some of the metric learning methods have been recently
kernelized which enables their use on complex data as long as a valid kernel



5.5. RELATED WORK 177

function over the learning objects is defined. For example, the work of Tsang
et al. (2005) extends the RCA algorithm from (Bar-Hillel et al., 2005), the
algorithm presented by Kwok and Tsang (2003) can be seen as the extension of
the Xing algorithm from Section 5.1.2, and Kernel DCA of Hoi et al. (2006) is
a direct extension of DCA. The one problem with these methods is that most
of the kernels for complex objects are defined as cross product kernels between
sets of objects’ decompositions (see discussion in Section 4.5), i.e. they are based
on averaging, and hence their expensiveness is limited. In contrast the different
distances on decompositions from Equations 5.1 and 5.2 give us more flexibility
in defining (dis-)similarities between complex objects.

In addition to metric learning several attempts have been recently made
to learn kernel operators directly from the data (Lanckriet et al., 2004; Ong
et al., 2005; Cristianini et al., 2002; Chapelle et al., 2002; Duan et al., 2003;
Bousquet and Herrmann, 2003; Crammer et al., 2002). This approach is more
general than metric learning in the sense that any valid kernel k can be directly
used to compute a pseudo metric in the feature space. The proposed methods
differ in the objective functions (e.g. CV risk, margin based, etc.) as well as
in the classes of kernels that they consider (e.g. finite or infinite set of kernels,
etc.). In the case of set distances based on kernels there are two main problems.
First, most of the kernels over sets proposed so far in the literature are based on
averaging (i.e. they depend on all the elements in the two sets). As mentioned
above, this feature might be inappropriate for some applications (e.g. multiple-
instance problems) where the classification depends on specific pairs of elements
from the two sets. Second, with the exception of the work of Argyriou et al.
(2005), all of the methods work only in a transductive setting, i.e. completing
the labeling of a partially labeled dataset. This in turn limits the application
area of such methods.

The goal of unsupervised metric learning methods is to find an embedding of
the original feature space. These methods are divided into linear and non-linear
methods. Well-known methods for linear dimensionality are the Principal Com-
ponent Analysis (Bishop, 2006) where the goal is to preserve the variance of the
data, Multidimensional Scaling (Cox and Cox, 1994) that finds a projection that
best preserves the distances between the instances, and Independent Compo-
nent Analysis (Comon, 1994) that seeks a linear transformation to coordinates
in which the data are maximally statistically independent. Well known methods
for non-linear unsupervised metric learning methods are ISOMAP (Tenenbaum
et al., 2000) which seeks an embedding that best preserves the geodesic dis-
tances between the instances, and Locally Linear Embedding (Roweis and Saul,
2000) and Laplacian Eigenmap (Belkin and Niyogi, 2003) that focus on preserv-
ing local neighborhood structures. For an overview of non-linear unsupervised
methods the reader is referred to (Saul et al., 2006).

Representation Generation for Graphs

Representation (or feature) generation for structured data has been proved to
be difficult in practice due to the vast number of possible feature candidates.
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In particular, in graphs where the number of possible representations is virtu-
ally unlimited, one can not hope to extract relational features (i.e. sub-graphs)
without some assumptions on the type of generated features. As a result, sev-
eral methods have been proposed in the literature (Rückert and Kramer, 2007;
Deshpande et al., 2003; Kramer et al., 2001; Horváth et al., 2006) to automat-
ically extract subgraphs that correspond to frequently occurring, maximally
class-correlated, or maximally diverse subgraphs. The generated features are
propositional, they assume a single value that indicates either presence or ab-
sence of the corresponding relational structure, or the frequency with which it
is encountered, within a given training instance. Subsequently, any standard
propositional framework can be applied on the set of extracted features.

Kudo et al. (2005) proposed a classification method which does not make
any assumptions about the type of generated subgraphs. The actual learning
algorithm used is AdaBoost (Bishop, 2006) where binary decision stumps tak-
ing the corresponding subgraphs as arguments (one subgraph for one decision
stump) are exploited as weak learners. Instead of exhaustively enumerating all
the subgraphs of a given graph (which is not feasible) the authors propose a
variant of branch-and-bound algorithm which allows for an efficient pruning of
the search space which is based on upper-bounding of the error used within
the AdaBoost algorithm. As already noted, this method does not make any as-
sumptions about the types of subgraphs; however, the classification model is in
fact based on the weighted binary representation of the graph data where the
binary features (generated by the decision stumps) correspond to a particular
subgraph.

The representation combination methods proposed in this chapter are based
on the assumption that the a priori selected decompositions provided by the
analyst are informative for the problem at hand. However, in contrast with all
the previous approaches the features do not just indicate presence or absence of
the corresponding relational substructure, instead the features are relational in
nature. The main advantage of this approach is that for these features we can
apply operators (e.g. distances and kernels) which take into account the features’
relational nature. As a result the algorithms operating over this representation
are of higher expressivity.

5.6 Conclusions

In this chapter we proposed a general framework that allows for combining dif-
ferent composite representations of a given learning problem and/or different
distances defined on these representations. The building blocks of our method
are couplings of representations and distances over these representations, the
relative importance of which is learned directly from the training data. These
building blocks are a priori provided to the algorithm, and reflect the prac-
titioner’s ”initial guesses” of good representations and distance. We exploited
ideas developed previously on metric learning developed for propositional data
and adapted three methods so that they can be used in the context of compos-
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ite structures. These methods boil down to mathematical optimization problems
which are amenable to various optimization techniques. We also proposed two
techniques for regularizing the solutions of our adaptive methods.

We showed the utility of the proposed framework for two learning problems.
The goal in the first problem is to combine distances over objects which are
represented as sets, i.e. the combined elements are different distances on sets.
We demonstrated that for various learning problems it is indeed possible to
increase the predictive performance of kNN by combining different set distance
measures. In particular, in the diterpenes dataset the results we reported are
the best reported so far. We also showed that the results of the optimization
processes can be visualized to provide insight into the relative importance of
the various distances. Finally, we demonstrated that it is possible to reduce the
size of the problem by combining only a few of the top set distances which are
selected according to the assigned coefficients.

In the second learning task we analyzed the performance of our framework
for the task of combinations of various graph decompositions into substructures
of specific types. We exploited this adaptive combination to construct positive
semi-definite kernels in the proximity space resulting in a flexible and powerful
class of graph kernels. These kernels for graphs are based on walks and trees
without repetitive occurrences of nodes, are computable in polynomial time,
are positive semi-definite, and are applicable to a wide range of graphs. The
distinctive feature of our kernels is that they allow for combinations of different
types of decompositions, and instead of accounting for all the subparts of a given
decomposition our framework allows for specific types of mappings between sub-
parts, exploiting notions from set distances. We reported experimental results
for the task of activity prediction of drug molecules. Our main observation is
that the performance of our kernels which combine several decompositions is in
most of the cases not worse than the performance of the corresponding single
decompositions. Moreover, depending on the actual application, the adaptive
matching based kernels have an advantage over kernels based on all possible
pairs of points from decompositions. Finally, we demonstrated that state-of-
the-art classification performances can be achieved.
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Chapter 6

Overview, Discussion and
Future Work

The goal of this dissertation was to examine various aspects of the distance- and
kernel-based learning paradigms applied in relational settings. As a first step, in
order to represent composite objects, we defined a representation language that
is built over an extension of relational algebra, a fact that makes it directly ac-
cessible to a wide audience that is familiar with the relational algebra concepts.
The proposed formalism is typed, modular, intuitive to use and naturally ex-
tends the propositional case. The relational instances are defined in a recursive
manner traversing the relations of the relational schema in order to gather the
relevant information. The recursion among the different relations is guided by
the concept of links which are based on the notion of foreign keys. Foreign keys
provide a natural and intuitive way to provide a declarative bias and render
unnecessary type definitions extensively used in inductive logic programming.

At the core of our extended relational representation formalism there are
three data types, i.e. tuples, sets and lists. By combining these data types we
can directly model a variety of complex structures such as trees, graphs (through
various approximations) or more general structures that do not fall to a specific
topological category. Associated with each basic data type there is a number
of different data mining operators, each one with different semantics, and it
is up to the analyst to declare which specific operator should be used for a
given data type. In our system it is also possible to define different operators
for objects of the same general type e.g. sets of lists, sets of tuples, etc. The
final operator over the full complex learning instances is given as a recursive
combination of operators assigned to the sub-structures which constitute the
learning instances. Obviously, there are as many different instantiations of the
final data mining operator as there are combinations of data mining operators
over the components of the full complex learning instances. The above flexibility
of our system is in contrast with the most of the existing relational data mining
algorithms and systems which can be characterized as monolithic in the sense
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that they either focus only on a specific complex data type, or they rely on a
single type of data mining operator, or most often both. In this study we have
only focused on distance- and kernel-based data mining operators.

One of the core elements of our relational learning approach is the decom-
position of the complex relational objects into multi-sets of simpler components
which have to be matched in a systematic manner. This matching is typically
achieved through the definition of a set operator matching the elements of the
corresponding multi-set decompositions, in order to compute the final data min-
ing operator, whether kernel- or distance-based. For example, within the context
of relational learning with kernels over labeled graphs, the graphs were decom-
posed into sets of walks, trees, tree-like structures etc. No matter what the
decomposition was, it always resulted in a set of elements that required the def-
inition of a set operator. We also mention that other complex structures, such
as lists, or even tuples, can be considered as special cases of sets that simply
possess more structure, thus less degrees of freedom, reducing the number of
permissible matchings. For example, in distances and kernels over sequences
considered in this thesis, sequences are decomposed into sub-sequences and the
elements of decompositions can be matched only in such ways that retain the
relative order of sub-components within the original sequences. Other than that,
the final operator is computed in the same manner as in the case of sets, usually
as some aggregation function over the matched components.

The distance-based approaches over multi-sets of decompositions of compos-
ite objects have given rise to a number of set distances where the main difference
came from the family of permissible matchings considered each time (and the ag-
gregation function over the matched components). We examined the behavior of
set distances corresponding to different types of mappings over a number of rela-
tional benchmark datasets. Overall, the examined set distances gave satisfactory
results when used together with the k-Nearest Neighbor (kNN) algorithm; how-
ever, no general statement can be made about the superiority of one set distance
measure over another. In general, everything depends on the type of application
and its underlying assumptions which should guide the selection of the distance
measure. However, there are some distance measures that exhibited a good and
stable performance over the datasets that we examined. For example, dSMD, the
good performance of which coupled with its quadratic computational complex-
ity make it a good first choice. The characterization of the various instantiations
of the set distance measures was supported by the empirical results, i.e. set dis-
tances that were semantically similar were in general also similar in terms of
their relative performance on the relational benchmarks examined. Finally, the
right choice of distance measure gives encouraging classification results that in
many cases compare favorably with these of other relational learners reported
in literature. For example, in the diterpenes dataset we obtained the accuracy
of 97.41 % which was better than the best result from the literature.

In comparison with set distance measures based on different mappings, the
options in kernels are much more limited due to the requirement of positive semi-
definiteness. In fact, the only known matching strategy which is guaranteed to
result in a valid set kernel is based on averaging, matching of all elements of
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one (multi-)set to all elements of the other (multi-)set. Our experimental results
demonstrated that this simple way of matching the elements in general achieves
a good predictive performance, and by carefully selecting parameters of this
kernel, it compares favorably with other relational kernel-based systems, e.g.
in version 2 of musk we reported 94.12 % of accuracy which is the best result
obtained so far. Additionally, this kernel was shown to be quite stable to the
parameter setting of the kernels defined over the elements of the sets, different
normalization schemes, etc. This stability might be precisely a result of the
above mentioned ”averaging” property. Finally, we note that by using kernels
based on lists, which as already mentioned can be considered as a special case
of matching-based kernel on sets, in protein fingerprints we obtained state-of-
the-art cross-validation results of 87.69 % (the accuracy on a holdout test set
was 87.35 %).

The above mentioned kernels which work by matching everything with ev-
erything might be inappropriate in cases where only specific elements of decom-
positions are important for a problem at hand (e.g. multiple-instance problems).
To address this limitation we proposed three new and flexible families of kernels
over sets, where the overall similarity is based only on specific elements of the
two sets. More precisely, these kernels are defined respectively as the sum of
elementary kernels between specific pairs of elements, set distance substitution
kernels, and kernels in the the proximity space induced by set distances. The
main problem with kernels in the first group and the distance substitution ker-
nels is that they are not positive semi-definite in general; however, encouraged
by recent experimental and theoretical results we are able to use such kernels
within Support Vector Machines (SVM). The main finding which came out of
our experiments is that the relative performance of kernels based on specific
pairs of elements and kernels based on averaging depends on the actual applica-
tion. An even more interesting observation is that in datasets corresponding to
the same general type of learning problem (i.e. molecule classification) different
matching strategies were more appropriate. e.g. in carcinogenicity the global
structure of the molecules are important, while in mutagenesis only the specific
components of the molecules are informative. We note that the state-of-the-
art averaging-based Bhattacharrya set kernel from (Kondor and Jebara, 2003)
performed poorly in all the examined benchmark datasets. The other finding
is that the kernels in proximity space outperform distance substitution kernels
and kernels directly based on specific pairs of elements. Moreover, in general
SVM with our kernel outperformed the standard kNN where the set distances
are exploited in a ”naive” way. We also mention that in version 1 of musk we
obtained 94.54 % accuracy, which is the best result reported so far.

Finally, we addressed the problem of adaptation of representation of learning
instances and data mining / machine learning operators applied on the selected
representation. The motivation for this work were the experimental results dis-
cussed above, which clearly indicated that there is no distance (kernel) which
is overall better than any other, and the optimal representation of learning
instances depends on the problem at hand. The approach we followed was to
combine a number of predefined representations and operators. Couplings of rep-
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resentations and operators are the building blocks of our method, the relative
importance of which is learned directly from the training data. These build-
ing blocks are a priori provided to the algorithm, and reflect the practitioner’s
”initial guesses” of good representations and operators. This approach allows
for the simultaneous combination of representations and operators, nevertheless
one can choose to focus on only one of them, i.e. one can apply a fixed operator
on different decompositions, or apply different operators which are defined on
the same representation. We only focused on the distance-based paradigm and
exploited three metric learning methods which were developed for propositional
data, and adapted them so that they can be used in the context of composite
structures. These methods boil down to mathematical optimization problems
which are amenable to various optimization techniques. We also proposed two
techniques for regularizing the solutions of our adaptive methods.

We demonstrated the utility of the proposed framework for two learning
problems. The goal in the first task was to combine a number of predefined set
distances. For various learning problems it was indeed possible to increase the
predictive performance of kNN by combining different set distance measures.
Moreover, it was possible to reduce the size of the problem by combining only
a few of the top set distances which were selected according to the assigned
coefficients. We demonstrated that the results of the optimization processes
could be visualized, providing insight into the relative importance of the various
distances. Finally, in the diterpenes dataset we reported predictive accuracy of
98.34 % which is the best result reported in the literature so far.

In the second learning task we analyzed the performance of our framework
for the task of combinations of various graph decompositions into substructures
of specific types. We exploited this adaptive combination to construct positive
semi-definite kernels in the proximity space resulting in a flexible and powerful
class of graph kernels. It has been argued in (Borgwardt and Kriegel, 2005) that
a “good” kernel for graphs should fulfill at least the following requirements: (i)
should be a good similarity measure for graphs, (ii) its computation should be
possible in polynomial time, (iii) should be positive semi-definite and (iv) should
be applicable for various graphs. Our adaptive kernels for graphs which are based
on walks and trees without repetitive occurrences of nodes, are computable in
polynomial time, positive semi-definite and applicable to a wide range of graphs.
Additionally, there are two distinctive features of the class of graph kernel we
defined. First, they allow for combinations of different types of decompositions.
We have demonstrated this by combining decompositions that correspond to
walks and trees, however in the same manner we can combine decompositions
based on cyclic patterns, paths, etc. We show that our combination schema
solves the problem of selecting the appropriate representation. Second, instead
of accounting for all the subparts of a given decomposition our framework allows
for specific types of mappings between subparts, exploiting notions from set
distances. To practically demonstrate the effectiveness of our graph kernels we
report experimental results for the task of activity prediction of drug molecules.
Our main finding is that the performance of our kernels which combine several
decompositions is in most of the cases not worse than the performance when
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the single decomposition is used. Next, depending on the actual application,
the adaptive matching based kernels have an advantage over kernels based on
all possible pairs of points from decompositions. Finally, we demonstrated that
state-of-the-art classification performance can be achieved. In particular for the
mutagenesis, MM and MR datasets we get classification accuracy of respectively
92.5 %, 68.4 % and 68.0 %, that are better than the best results reported so far
in the literature

6.1 Future Work

In this section we will list the potential extensions of the work presented in
this thesis. More precisely, in Section 6.1.1 we raise the issue of adaptive gen-
eration of representation of composite objects; in Section 6.1.2 we discuss the
limitations of the different cost functions used in Chapter 5; in Section 6.1.3
we argue that more aggressive regularization techniques in the context of our
adaptive framework might be more beneficial; in Section 6.1.4 we discuss the
extension of our system for learning with side-information; in Section 6.1.5 we
provide a description of how to learn adaptive operators over sets; and finally
in Section 6.1.6 we argue that it is important to theoretically analyze the set
kernels based on mappings.

6.1.1 Extracting Relational Representations

Till now we have considered that the system is given a set of representations and
operators for a given relational problem. In Chapter 5 we demonstrated that it is
possible to learn how to combine these representations and operators by solving
an optimization problem over the given learning data. It would be interesting
to go one step further and turn to the automatic extraction of discriminative
relational representations, which can be seen in fact as an automatic extraction
of relational features, that will be used subsequently within the combination
learning module.

The main idea to pursue is the following. Once the data analyst has given
to the system a set of learning data stored in the form of a general relational
dataset, the system will construct a set of relational features by exploring the
search space which is defined by the relational schema of the learning dataset.
This is a typical search problem so we need a cost function to evaluate the cur-
rent state, a number of operators that allow us to move in that space by gener-
ating new states, and a structure over our search space. This approach is similar
to approaches used in the context of propositionalization of relational problems.
For example in the context of labeled graphs several methods have been pro-
posed in the literature (Rückert and Kramer, 2007; Deshpande et al., 2003;
Kramer et al., 2001; Horváth et al., 2006) to automatically extract relational
features that correspond to frequently occurring, maximally class-correlated, or
maximally diverse subgraphs, etc.

The possible cost functions that are worth considering in this context are the
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cost functions that we have used as a part of the optimization problem where
the goal is to learn to combine representations and operators. Nevertheless,
here only a single representation (i.e. relational feature) will be examined at
time for inclusion in our set of representations; thus there is no optimization
problem, just an evaluation of the quality of the given relational representation.
For example, Xing’s cost function from Section 5.1.2 tries to optimize a measure
of class separation which boils down to how compact are the different classes
and far apart from each other. It is obvious that the same measure can be used
to judge the quality of the different relational features. Discriminative features
will be the ones that reduce the distances of instances of the same class, while
keeping far apart instances from different classes.

The structure of the search space, at a first stage, could be determined by
the relational schema, a relational feature generation mechanism will be parsing
the relational schema, in a depth-first manner, starting the search from the rela-
tion that was defined as the main relation. We will have a restricted dictionary
of parsing operators, such as paths and trees, or combinations of them. The
system would automatically extract such representations from the training data
and evaluate their quality with respect to the employed cost function. Special
care should be given to the incremental construction of the relational features;
since the search space is very large, one needs to derive efficient ways of gener-
ating these features that do not require a complete re-computation of the cost
functions. For example, in the case of paths the quality of paths of length n can
be based on an incremental computation of the quality of the paths of length
n−1. Different heuristic criteria need to be established that will determine when
the search should stop; these could be simple conditions such as search termi-
nates when the quality of the extracted relational features does not improve
above a threshold.

6.1.2 Cost Functions

As already mentioned in Section 5.1, the three cost functions, i.e. Xing’s, MCML’s
and NCA’s we have explored for representation and operator combination, make
different assumptions about the data distribution which makes them suitable for
different types of problems. For example, Xing’s and MCML’s functions implic-
itly assume that the instances of each class form a single compact and connected
set. The main advantage of these cost functions is that they are convex. On the
other hand, the NCA method is non-parametric and makes no assumptions
about the shape of the class conditional distributions; however, the price for
this flexibility is that the objective function is not convex.

One way to address the problems of the above cost functions is to use the
method proposed by Weinberger et al. (2006). The corresponding cost function
is based on the notion of large margin which separates elements (only in the
local neighborhood) with different labels while keeping elements of the same
class together. No assumptions are made about the structure or distribution of
the data and the optimization problem is cast as an instance of semi-definite
programming. Thus optimization is convex, and its global minimum can be
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efficiently computed.
The other possible option is to explore local distance combinations (Yang

et al., 2006; Domeniconi and Gunopulos, 2002). Local methods form an interest-
ing alternative and in comparison with global approaches were shown to achieve
better performance for data exhibiting “difficult” distributions. The adaptation
of our framework to local methods will result in an even more flexible method
for representation and operator combination on complex domains.

6.1.3 Regularization

The other research direction is to examine other regularization strategies than
the ones proposed in Section 5.1.5. More precisely, it would be interesting to ex-
amine more aggressive regularization based on the L1 norm similar to that used
in LASSO (Tibshirani, 1996). To the best of our knowledge such regularization
has not been considered in the context of metric learning. This regularization
technique can be implemented by solving the optimization problem from Equa-
tion 5.10 where Ω(Z) =

∑
ij |Zij |. L1 regularization enjoys several favorable

properties compared to L2 regularization. For example, in the context of logis-
tic regression, it was shown, both theoretically and empirically, to work well in
domains with a high fraction of irrelevant features (Ng, 2004). Moreover, the L1

regularizer usually produces sparse solutions in which most of the model param-
eters are zero, and hence the resulting models are faster and more interpretable.
This sparsity is a consequence of the fact that its first partial derivative with
respect to each variable is constant as the variable moves toward zero, ”pushing”
the value all the way to zero if possible (Andrew and Gao, 2007).

The main problem of this regularization technique comes form the fact that
the resulting problem is not differentiable at zero and hence is much more dif-
ficult to solve. In particular the objective function can not be optimized with
general purpose gradient-based optimization algorithms. Several special-purpose
algorithms have been designed to overcome this difficulty (Tibshirani, 1996;
Perkins and Theiler, 2003; Lee et al., 2006; Andrew and Gao, 2007), however,
it remains to be seen which optimization technique to use in our context.

6.1.4 Learning with Side-Information

So far our work has been focused only on the supervised learning paradigm
where the information was provided in the form of equivalence relations as
pairwise constraints, namely whether two points are in the same class or not. As
a direct extension of this paradigm it is possible to adapt our methods to learn
the optimal combination even if we do not have complete information about
the class labels, but instead we only have access to some limited knowledge,
i.e. side-information, that might be advantageous to exploit by the adaptive
methods.

There are three main benefits of using side-information in our context. First,
by exploiting various forms of side-information we are able to extend the meth-
ods from the simple classification context to other learning paradigms, such as
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clustering, information retrieval, regression, etc. Second, unlike labels the vari-
ous forms of side information can be automatically obtained without the need of
human intervention. For example, side-information in the form of relative, qual-
itative examples (e.g. ”A is closer to B than B is to C”) was shown by Schultz
and Joachims (2004) to be readily available from search-engine query logs; side-
information in the form of multiple, absolute, qualitative examples (e.g. ”A,
B and C are similar”) can be automatically obtained from stationary indoor
surveillance cameras Bar-Hillel et al. (2005), etc. Finally, even in the supervised
setting, we can reduce the computational complexity of the adaptive methods
by limiting the size of S and D. In particular the complexity of all the consid-
ered methods with respect to S and D was shown in Section 5.1.7 to scale as
O(|S|2 + |D|2), and by reducing the size of S and D e.g. by sampling, we can
make our methods more efficient.

More precisely, we envisage two aspects of representation and operator learn-
ing with side-information which are worth considering. First, it would be inter-
esting to examine how the performance of our system is affected when the size of
S and D is reduced. As already mentioned, by limiting the size of these sets we
are able to reduce the computational complexity of the adaptive methods. One
problem with this approach is that for small S and D over-fitting might occur,
i.e. a particular configuration of small S and D is likely to have a big impact on
the particular solution A (or (W )). In such cases one should pay attention to
regularization of the solutions using the different regularization strategies.

The second research direction is to apply our framework in domains where
it is difficult to obtain class labels and which require richer data representation;
possible applications are sentence redundancy detection and evaluation of phar-
maceutical projects. In the former case the goal is to find structural features
of the two sentences which could indicate if these sentences are on the same
topic, or whether one of them ”subsumes” the other. It is clear that with the
standard bag-of-words representations it is not possible to capture such depen-
dencies, and we need richer representation based e.g. on parse or dependency
parsing. Different forms of side information can be used within this context, e.g.
multiple, absolute, qualitative examples, i.e. ”sentences A,B,... are similar”. The
second structured application for which it is natural to define side-information
is the problem of valuating pharmaceutical projects. In this case it is most nat-
ural to represent the learning examples as tuples consisting of both primitive
attributes and sets; the sets in this composite representation correspond e.g. to
the different action mechanisms of a given drug. This problem can be naturally
tackled within the framework of clustering with side-information of the form
of pairwise, absolute, qualitative examples, i.e. ”projects A and B are similar,
while C and D are dissimilar”.

6.1.5 Adaptive Distances on Sets

The central idea in most of the operators on sets that we have considered in this
work, both distance- and kernel-based, is the definition of a family of mappings
F , from which a specific mapping, F , of the elements of the sets is selected,
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usually via some optimization function. More precisely, the set operator opset

between A and B can be written as

opset(A,B) =
∑

(a,b)∈F

op(a, b), F ∈ F (6.1)

where op is the operator over the elements of the sets, i.e. distance or kernel.
It would be interesting to explore ways in which we can improve these set

operators by making them more flexible. We envisage two research directions.
In the first, the goal is to learn and optimize the mapping F with respect to
the representation of the elements of the sets. This will result in more optimal
solutions than the ones that we get when we are limited in the original fixed
representation of the elements of the sets. In the second, and more ambitious
direction, the goal is to relax the representation bias of the set operators by
removing the constraint that the mapping F should belong to a specific family
of mappings F .

The definition of set operator in Equation 6.1 is such that within a given
family of mappings F , the actual mapping F of elements depends on the oper-
ator op, defined on the sets’ elements. Changing op we can actually change the
way the elements of two sets are matched. In what follows we assume that the
computation of op depends on some parameters P so that we obtain a parame-
terized operator denoted by opP . For example, in the context of distances over
sets where elements are vectors, P might take the form of a positive semi-definite
matrix such that dP is the Mahalanobis distance defined over the elements of
the sets. The set operator can be then presented by

opset,P (A,B) =
∑

(a,b)∈F

opP (a, b), F ∈ F (6.2)

where F ∈ F for some family F . We mention that the parameterization of the
above Equation has already been exploited in a similar context (graph matching)
where it was used to guide the search for optimal matchings within the family
of injections (Caetano et al., 2007).

It is also possible to re-parametrize the set operator given in Equation 6.1
so that it is possible to represent the F mappings in a more structured way.
The new formulation is based on the matching matrix Π, where Πij = 1 if
element i from set A is mapped to elements j in B, and Πij = 0 otherwise,
for some ordering of the elements of the two sets. Moreover, let O be a matrix
which contains the elements from {op(a, b)} (indexed in the same order as in
Π). Based on the above definitions the set operator is now given by

opset,Π(A,B) =
∑
ij

ΠijOij . (6.3)

The matching matrix Π can be relaxed by allowing the elements of Π to take
continuous values e.g. in [0, 1]. A continuous Π allows fuzzy, partial matchings
between elements of sets. As a result, the direct search for the optimal Π might
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be easier since the mappings are able to improve gradually and continuously
during the search, without ”jumping around” in the space of binary matching
matrices.

Based on the above versions of the set operators, similarly to Equation 5.3,
we can define a generic formulation of learning a ”good” mapping which consists
in finding the optimal parameters Z given by the solution of the following
optimization problem

min
Z
G(S,D, opset,Z) (6.4)

where Z is either P or Π, G is an objective function that needs to be minimized
with respect to the elements of Z. In general different choices of G will give
rise to different mappings; when the cost functions are differentiable a standard
gradient-based optimization method can be used to find the optimal solution.

It is interesting to note that the optimization problem of Equation 6.4 gen-
eralizes the problem of learning mappings when that is tackled in the framework
of structural supervised learning (Caetano et al., 2007; Taskar, 2004; Tsochan-
taridis et al., 2005). The main problem with this approach is that it assumes that
pairs of sets are provided together with the ”true” mappings, which are usually
difficult to obtain. As a consequence, it is more advantageous in practice to
exploit other objective functions G which do not depend on training data being
annotated with mappings. The obvious choices are the cost functions that we
have already explored in the context of representation or distance combination
in Chapter 5.

There are several challenges related to applications of the above cost func-
tions for the two proposed parameterizations, and the way the resulting op-
timization problems are solved. For example, the main difficulty in the opti-
mization of P comes from the fact that this has to be done with respect to
a particular mapping family F . While it is easy to do it for the mapping F ,
that contains all the matchings of elements, it is not obvious how to do it for
a general family of mappings. The main difficulty comes from the fact that in
the general case the cost function G depends on the parameters P in a com-
plicated way, resulting in a very difficult (in particular non-convex or possibly
even non-differentiable) optimization problem.

There are two main problems related to learning the operators given in
Equation (6.3). The first problem is that of ordering the elements of the sets,
and the second is the varying cardinality of the sets. If we do not address these
problems, the direct optimization of the mapping Π is not feasible since the
corresponding search space will lack structure. In particular, for any pair of sets
the matching matrix Π depends on the permutation, i.e. order, of elements that
we consider within the sets. Moreover, the dimensions of the matching matrices
Π vary according to the cardinalities of the sets involved. In order to learn
optimal Π it is hence necessary to define an appropriate coordinate system in
which we can represent different sets in a unique, meaningful, and unambiguous
manner.
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6.1.6 Theoretical Analysis of Mapping-Based Set Kernels

Finally, it is interesting to focus on set kernels based on mappings from Equa-
tion 6.1 and analyze the conditions the mapping family F between two sets
should fulfill so that the resulting kernel is positive semi-definite. To the best
of our knowledge there is only one family of mappings defined in the literature
which gives rise to valid kernels, i.e. by setting F = A × B, F ∈ F we obtain
the well known cross product kernel (Section 4.2.3). Other mapping-based ker-
nels have been defined in the literature (Fröhlich et al., 2005; Wallraven et al.,
2003; Boughorbel et al., 2004), however, they have been shown not to be positive
semi-definite in general. In particular, it was recently shown in (Vert, 2008) that
the optimal assignment kernel from (Fröhlich et al., 2005), which was claimed
to be valid, is not positive semi-definite in general. Moreover, all the set kernels
from Section 4.2.3 which are directly based on mappings have been verified not
to be valid. An obvious question is what are the conditions on F for the kernel
to be positive semi-definite. It is our feeling that only F ⊆ A×B, F ∈ F gives
rise to a valid kernel; however, this statement needs to be verified theoretically.
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Thomas Gärtner. Exponential and geometric kernels for graphs. In NIPS*02
Workshop on Unreal Data: Principles of Modeling Nonvectorial Data, 2002.
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Appendix A

Datasets

In the following appendix we will briefly present the relational benchmark
datasets examined in this study. All the considered problems have in common
the fact that the learning instances have no natural propositional representa-
tion as a single tuple in a single, fixed-width table. The presentation of the
relational datasets is divided into three parts. The first group of learning prob-
lems is characterized by the fact that the learning instances are most naturally
represented as sets of vectors (Appendix A.1). In Appendix A.2 we describe
graph datasets which can have many plausible representations. All the consid-
ered graph learning problems are from the domain of chemo-informatics. Finally,
in Appendix A.3 we describe the problem of classifying protein fingerprints
where the learning examples are represented as general relational structures.
Table A.1 gives the overall description of the considered datasets.

Dataset # instances # classes
Diterpenes 1503 23
Musk ver. 1 92 2
Musk ver. 2 102 2
Duke 41 2
Mutagenicity 188 2
FR 351 2
FM 349 2
MR 344 2
MM 336 2
Protein Fingerprint 1487 3

Table A.1: Datasets used in this work.
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A.1 Sets

The first group of learning problems is where the training examples are given
in the form of sets of vectors. In Table A.1 we provide some basic statistics on
the considered datasets.

Dataset min. max. median
Diterpenes 20 20 20
Musk ver. 1 2 40 4
Musk ver. 2 1 1044 10
Duke 301 895 522

Table A.2: Datasets where instances are represented as sets of vectors. Minimum,
maximum and median number of sets cardinalities is given by min., max. and
median, respectively.

Diterpenes

In the diterpene dataset (Džeroski et al., 1996) the goal is to identify the type
of diterpenoid compound skeletons given their 13C-NMR-Spectrum. Diterpenes
are compounds make up from four isoprene units and are thus terpenes. They
are found in essential oils in many plants and are often biologically active or
exhibit some medical properties. Each 13C-NMR-spectrum consists of a set of
points, each of the form (multiplicity, frequency). Depending on the number of
protons connected to a particular carbon atom, the multiplicity of a signal peak
can take the following value: singulet (no proton), doublet (one proton), triplet
(two protons) and quadruplet (three protons). There are 1503 learning instances
(i.e. spectras) and 23 classes. Each instance is described by 20 tuples.

Musk

The musk datasets was first described in (Dietterich et al., 1997) and the goal
is to predict the activity of synthetic musk molecules. A molecule is active if it
binds well to larger protein molecules such as enzymes or cell-surface receptors.
It is the shape of molecules which determines the binding strength, however,
molecules can change their shapes by rotating some of the their internal bonds.
Every combination of angles of the rotatable bonds of a molecule, i.e. its shape,
defines a ”conformation”. Since we do not know a priori which of the confor-
mation of a molecule will bind well to an enzyme or cell-surface receptor, we
should consider all the possible shapes of a molecule by representing it by a set
of descriptions of its different conformations. We are hence conformed with an
multiple-instance learning problem.

The class labels were provided by human domain experts and they are avail-
able two overlapping datasets. Version 1 of the dataset contains 92 molecules
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where 47 are labeled as ”Musk” and 45 are labeled as ”Non-Musk”. The car-
dinality of the sets in this dataset ranges mostly between 2 and 10 with a
maximum value of 40 and a median of 4. Each tuple has 166 features. Version
2 contains altogether 102 molecules where 63 are labeled as ”Non-Musk” and
39 are labeled as ”Musk”. Here the cardinality ranges mostly between 1 and
60 with a maximum value of 1044 and a median of 12. The second version of
the problem has sets of much more varied and greater cardinality than the first
version.

Duke

This is a dataset from the domain of proteomics (Campa et al., 2003). The
goal is to classify mass-spectra acquired from blood serum of individuals that
have developed lung cancer or healthy individuals. The dataset consists of mass-
spectra of 24 diseased and 17 healthy persons. Each spectrum is described by
a set of peaks of the form (mass,intensity). The median of the cardinalities of
the sets is 522. We will consider a version of this problem where a peak will
consist only of its mass. This representation corresponds roughly to a binary
representation of a spectrum where presence of a given mass indicates presence
of the corresponding peak. The most similar spectra will be the ones that have
more similar peaks determined by the mass dimension. In our context this is a
more appropriate representation for a mass spectrometry problem since what is
more important is to find an appropriate matching of masses and only then take
into account intensity differences. It should be mentioned that other representa-
tions are possible where both mass and intensity are used. This representation
places on an equal footing both dimensions, it thus violates the semantics of the
problem and does not naturally fit within our context so we will not consider it
here.

A.2 Graphs

The second group of relational datasets are graph problems, which are from
the domain of chemo-informatics. In all the learning problems the goal is to
predict the activity of chemical molecules represented by undirected labeled
graphs where vertices are atoms, connected by edges that are covalent bonds.
In such domains the vertices and edges are usually labeled, modeling atom
and bond types, respectively. Various statistics of the examined datasets are
summarized in Table A.3.

Mutagenicity

The Mutagenicity was introduced in (Srinivasan et al., 1994). The application
task is the prediction of mutagenicity of a set of 230 aromatic and heteroaromatic
nitro-compounds. Mutagenic compounds are often know to be carcinogenic and
could cause damage to DNA. Clearly, it is of great importance to the phar-
maceutical industry to determine which compounds show mutagenic activity.
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mutagenesis fr fm mr mm
# pos. 125 121 143 152 129
# neg. 63 230 206 192 207
min. |G(V)| 14 2 2 2 2
max. |G(V)| 40 109 109 109 109
med. |G(V)| 26 23 22 22 21
min. |G(E)| 14 1 1 1 1
max. |G(E)| 44 108 108 108 108
med. |G(E)| 28 24 23 23 21
mean branching factor 2.13 1.99 1.99 1.98 1.99

Table A.3: Various statistics of the graph datasets. # pos. and # neg. denote
the number of positive and negative examples, respectively. Minimum, maximum
and median number of atoms is given by min. |G(V)|, max. |G(V)| and med.
|G(V)|. Minimum, maximum and median number of bonds is given by min.
|G(E)|, max. |G(E)| and med. |G(E)|.

Training instances are divided to 42 “regression unfriendly” and 188 “regression
friendly”. We worked with the latter dataset where 125 instances have positive
log mutagenicity and are labeled as active whereas 63 molecules have zero or
negative log mutagenecity labeled as inactive. Bonds are described by the type
of the bond while atoms are described by their charge numeric values, type e.g.
aromatic carbon, aryl carbon and name e.g. N, F, S, O, etc.

Carcinogenicity

The other graph classification problem comes from the Predictive Toxicology
Challenge and is defined over carcinogenicity properties of chemical compounds (Helma
et al., 2001). This dataset lists the bioassays of 417 chemical compounds for four
type of rodents: male rats (MR), male mice (MM), female rats (FR) and female
mice (FM) which give rise to four independent classification problems. We trans-
formed the original dataset with eight classes into a binary problem by ignoring
EE equivocal evidence, E equivocal and IS inadequate study classes, grouping
SE some evidence, CE clear evidence and P positive in the positive class and N
negative and NE no evidence in the negative one. After this transformation the
MR, MM, FR and FM datasets had 344, 336, 351 and 349 instances, respectively.

A.3 General relational structures

Protein Fingerprint

The Protein Fingerprint classification problem was first introduced in (Hilario
et al., 2004). Protein fingerprints are groups of conserved motifs regions drawn
from multiple sequences alignment that can be used as diagnostic signatures to
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identify and characterize collections of protein sequences. Protein fingerprints
are schematically presented in Figure A.1. The fingerprints are stored in the
PRINTS database (Attwood et al., 2003), after time-consuming annotation by
domain experts who must first determine the fingerprint type. Broadly speak-
ing, fingerprints may be diagnostic for a gene family or superfamily united by
a common function, or a domain family united by a common structural mo-
tif. Here we attempt to build classifiers based on information drawn from the
fingerprints’ component motifs and protein sequences from the SWISS-PROT
database. We are therefore confronted with a multi-relational learning problem,
which can be addressed most naturally using a relational approach. Our ap-
proach will be different from the one presented in (Hilario et al., 2004) since
there the task representation is propositionalized by aggregating protein and
motif characteristic over a fingerprint.

xxxxx
xxxxx

xxxxx

xxxxx
xxxxx

xxxxx

xxxxx
xxxxx

cydeggis

cyhgdggs
cyrgdgnt

cyedggis
cyeeggit xxxxx

motif

c−y−x2−[dg]−g−x−[st]

fingerprint

sequence
alignment

xxxxx
xxxxx

xxxxx

Figure A.1: Schematic representation of a protein fingerprint. Each row is a
protein sequence. Solid rectangles denote motifs.

We modeled this data in the following way: the “fingerprints” main relation
with global characteristics of the instances is associated through an one-to-many
relation with the “motifs” relation. Additionally there is a number of relations
with aggregated information about proteins (actually proteins IDs) associated
with the main relation using one-to-one relations. The actual relational repre-
sentation used in this study in given in Figure A.2.

Protein fingerprints are globally characterized by number of component mo-
tifs (attribute #motifs in Figure A.2) and proteins (#proteins). The coherence
of a fingerprint is expressed by the proportion of protein sequences that match
all (TPRate) or only a part of the motifs (PPRate) in the fingerprint. Finger-
prints are also described by the relative frequency of SWISS-PROT IDS in the
set of constituent proteins (pSP).

Individual motifs are characterized by their size and conservation. The size
is expressed by the number of amino acids length and coverage i.e., the fraction
of protein sequences in the fingerprint that match the motif. The conservation
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Figure A.2: Relational representation of protein fingerprints.

was encoded by motif’s entropy averaged over the entropies of its individual
columns and normalized by the number of sequences. The other way to measure
the motif’s conservation is to use domain knowledge about similarity between
residues which has been codified in substitution matrices. Here the Blosum
substitution matrices were used and a motif’s blosum score was computed by
averaging over the blosum scores of its individual residues.

The last source of information are protein sequences and more precisely their
SWISS-PROT/TrEMBL labels or accession numbers. Here we use these codes
to retrieve the SWISS-PROT entry for a given protein. We focus on SWISS-
PROT’S CC similarity field, which often contains information about the family
membership of a protein. Instead of boolean value indication the presence or
absence of the specific value in this filed we use the proportion computed over
the proteins constituting the fingerprint. Besides of that the SWISS-PROT ID
field itself is particularly informative be virtue of its structure. It is composed
of two parts separated by an underscore: the left hand side LHS and the right
hand side RHS. Here we use four set of features based on the SWISS-PROT
ID: (i) the majority score (the PropMaj1234 table) defined as the proportion
of LHSs sharing the most frequent common root of 1-4 characters, (ii) (nor-
malized) entropy (NormEnt1234) averaged over the first 1-4 characters of the
LHS, (iii) fraction of proteins whose LHS length is greater than 3-4 characters
(PropAtLeast3or4), and (iv) majority score and entropy (RHS), but computed
over the RHS as a whole. Features computed on the basis of these labels can
be considered as statistics computed on the set of proteins and hence they can



A.3. GENERAL RELATIONAL STRUCTURES 217

be stored in the “fingerprints” relation. However, keeping them in separate ta-
bles provides us a way to treat a missing values which is the case here since
not all proteins have an SWISS-PROT entry. More information about different
attributes in different relations can be found in (Hilario et al., 2004).

We defined three different data representations based on different building
blocks of learning instances. First, we assumed that each “fingerprint” is as-
sociated with a set of “motifs”. In the second approach we assumed that the
order in which motifs appear along the sequence of amino acids is important
i.e. we assumed that each “fingerprint” is associated with a list of motifs. The
latter representation is justified by the fact that a motif is basically a multiple
sequence alignment with a number of conserved regions so there exists an intrin-
sic notion of order along protein sequences. Finally, in the third approach (which
is exploited in Section 4.4.5) we combine the two previous representations: an
fingerprint is related with both with the set and list of motifs.
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Appendix B

Detailed Experimental
Results

In the following appendix we will report the detailed significance results. In all
the tables a cell with the +/- signs indicate that the predictive performance of
an algorithm associated with the corresponding row is significantly better/worse
than that of the algorithm associated with the given column, the = sign indi-
cates that the performance difference is not significant. We provide results both
for complex distances (Appendix B.1) and complex kernels (Appendix B.2). In
Appendix B.1 for dT we set θ = 0.01.

B.1 Detailed Experimental Results for Distances

219
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diterpenes
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + + - - - - - - - -
dCL - x - - - - - - - - -
dAL - + x - - - - - - - -
dSMD + + + x + = - = = + =
dH + + + - x - - - - - -
dRIBL + + + = + x - = = = =
dT + + + + + + x + + + +
dS + + + = + = - x = = -
dFS + + + = + = - = x = -
dL + + + - + = - = = x -
dM + + + = + = - + + + x

duke
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x = = - = - = = = - =
dCL = x = - = - = - = - =
dAL = = x = = = = = = = =
dSMD + + = x = = + = = = =
dH = = = = x = = = = = =
dRIBL + + = = = x = = = = =
dT = = = - = = x = = = =
dS = + = = = = = x = = =
dFS = = = = = = = = x = =
dL + + = = = = = = = x =
dM = = = = = = = = = = x

Table B.1: Detailed results of McNemar’s test of statistical significance for kNN
in diterpenes and duke.
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musk (ver. 1)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + = = = + + = = = =
dCL - x - - - = = - - - =
dAL = + x = = + + = = = =
dSMD = + = x = + + = = = =
dH = + = = x + + = = = =
dRIBL - = - - - x = - - - =
dT - = - - - = x - - - -
dS = + = = = + + x = = +
dFS = + = = = + + = x = =
dL = + = = = + + = = x +
dM = = = = = = + - = - x

musk (ver. 2)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x = = = = = = = = = =
dCL = x = = = = = = = = =
dAL = = x = = = = = = = =
dSMD = = = x = = = = = = =
dH = = = = x = = = = = =
dRIBL = = = = = x = = - = =
dT = = = = = = x = - = =
dS = = = = = = = x = = =
dFS = = = = = + + = x = +
dL = = = = = = = = = x =
dM = = = = = = = = - = x

Table B.2: Detailed results of McNemar’s test of statistical significance for kNN
in musk.
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mutagenesis (ver. 1)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x = + = = = - = = = =
dCL = x + = = = - = = = =
dAL - - x - - = - - - - =
dSMD = = + x = + = = = = +
dH = = + = x = - = = = =
dRIBL = = = - = x - = - - =
dT + + + = + + x + = + +
dS = = + = = = - x = = +
dFS = = + = = + = = x = +
dL = = + = = + - = = x +
dM = = = - = = - - - - x

mutagenesis (ver. 2)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x = = - = - - = - - =
dCL = x = - - - - - - - =
dAL = = x - - - - - - - =
dSMD + + + x + = = = = = +
dH = + + - x = - = = = =
dRIBL + + + = = x - = = = =
dT + + + = + + x + = = +
dS = + + = = = - x = = =
dFS + + + = = = = = x = +
dL + + + = = = = = = x +
dM = = = - = = - = - - x

Table B.3: Detailed results of McNemar’s test of statistical significance for kNN
in mutagenesis.
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FM (ver. 1)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + = = = = = = = = =
dCL - x - = - - - = = - =
dAL = + x = = = = = = = =
dSMD = = = x - = - = = = =
dH = + = + x = = + = = =
dRIBL = + = = = x = = = = =
dT = + = + = = x + + = +
dS = = = = - = - x = - =
dFS = = = = = = - = x = =
dL = + = = = = = + = x =
dM = = = = = = - = = = x

FM (ver. 2)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + = = = = = = = = =
dCL - x = - - = - = = - =
dAL = = x = = = - = = = =
dSMD = + = x = = = + = = =
dH = + = = x = = + = = =
dRIBL = = = = = x = = = = =
dT = + + = = = x + + = =
dS = = = - - = - x = - =
dFS = = = = = = - = x - =
dL = + = = = = = + + x =
dM = = = = = = = = = = x

Table B.4: Detailed results of McNemar’s test of statistical significance for kNN
in FM.
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FR (ver. 1)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + = = = = = = = = =
dCL - x - = = - = - = - =
dAL = + x = = = = = = = =
dSMD = = = x = = = = = = =
dH = = = = x = = = = = =
dRIBL = + = = = x = = = = =
dT = = = = = = x = = = =
dS = + = = = = = x = = =
dFS = = = = = = = = x = =
dL = + = = = = = = = x =
dM = = = = = = = = = = x

FR (ver. 2)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + = = = = = = = = =
dCL - x = - = = = = = - =
dAL = = x = = = = = = = =
dSMD = + = x = = = = = = =
dH = = = = x = = = = = =
dRIBL = = = = = x = = = = =
dT = = = = = = x = = = =
dS = = = = = = = x = = =
dFS = = = = = = = = x = =
dL = + = = = = = = = x =
dM = = = = = = = = = = x

Table B.5: Detailed results of McNemar’s test of statistical significance for kNN
in FR.
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MM (ver. 1)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + + = = = = = = = =
dCL - x - - - - - - - - -
dAL - + x - = = = = = - =
dSMD = + + x = = = = = = =
dH = + = = x = = = = = =
dRIBL = + = = = x = = = - =
dT = + = = = = x = = = =
dS = + = = = = = x = = =
dFS = + = = = = = = x = =
dL = + + = = + = = = x =
dM = + = = = = = = = = x

MM (ver. 2)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x = = = = = = = = = =
dCL = x = - - = = - = - -
dAL = = x = = = = = = = =
dSMD = + = x = = = = = = =
dH = + = = x = + = = = =
dRIBL = = = = = x = = = = =
dT = = = = - = x = = = =
dS = + = = = = = x = = =
dFS = = = = = = = = x = =
dL = + = = = = = = = x =
dM = + = = = = = = = = x

Table B.6: Detailed results of McNemar’s test of statistical significance for kNN
in MM.
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MR (ver. 1)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x + = = = = = = = = =
dCL - x - - - - - - - - =
dAL = + x = = = = = = = =
dSMD = + = x + = = + = = +
dH = + = - x = = = = - =
dRIBL = + = = = x = = = = =
dT = + = = = = x = = = =
dS = + = - = = = x = - =
dFS = + = = = = = = x = =
dL = + = = + = = + = x +
dM = = = - = = = = = - x

MR (ver. 2)
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM

dSL x = = = = + = = = = +
dCL = x = = - = - = = = =
dAL = = x = = = = = = = =
dSMD = = = x = + = = = = +
dH = + = = x + = = = = +
dRIBL - = = - - x - = = = =
dT = + = = = + x = = = +
dS = = = = = = = x = = =
dFS = = = = = = = = x = +
dL = = = = = = = = = x +
dM - = = - - = - = - - x

Table B.7: Detailed results of McNemar’s test of statistical significance for kNN
in MR.
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Non-weighted Protein Fingerprint
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM dedit

dSL x = = - = = + = = + - +
dCL = x = = = = + = = + - +
dAL = = x = = = + = = + - +
dSMD + = = x = = + = = + = +
dH = = = = x = + = = + - +
dRIBL = = = = = x + = = + - +
dT - - - - - - x - - = - =
dS = = = = = = + x = + - +
dFS = = = = = = + = x + = +
dL - - - - - - = - - x - -
dM + + + = + + + + = + x +
dedit - - - - - - = - - + - x

Weighted Protein Fingerprint
dSL dCL dAL dSMD dH dRIBL dT dS dFS dL dM dedit

dSL x + = = = = + = = + = +
dCL - x - - - = = - - = - =
dAL = + x - = = + - - = = =
dSMD = + + x + + + = = + = +
dH = + = - x = + = - = = =
dRIBL = = = - = x + - - = = =
dT - = - - - - x - - = - -
dS = + + = = + + x = + = +
dFS = + + = + + + = x + = +
dL - = = - = = = - - x - =
dM = + = = = = + = = + x =
dedit - = = - = = + - - = = x

Table B.8: Detailed results of McNemar’s test of statistical significance for kNN
in Protein Fingerprints.
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B.2 Detailed experimental for Kernels

B.2.1 Results for CP kernel using SVMs

diterpenes
1 2 3 4 5 6 7 8 9 10 11 12

fnorm(·) = | · |
1 klin x - - + - - = - - + - -
2 kpoly,p=2 + x - + - - + - - + - -
3 kpoly,p=3 + + x + - - + = - + - -
4 kRBF,γ=0.1 - - - x - - - - - = - -
5 kRBF,γ=1 + + + + x - + + = + - -
6 kRBF,γ=10 + + + + + x + + + + + -

fnorm(·) =
√
k(·, ·)

7 klin = - - + - - x - - + - -
8 kpoly,p=2 + + = + - - + x - + - -
9 kpoly,p=3 + + + + = - + + x + - -
10 kRBF,γ=0.1 - - - = - - - - - x - -
11 kRBF,γ=1 + + + + + - + + + + x -
12 kRBF,γ=10 + + + + + + + + + + + x

duke
1 2 3 4 5 6 7 8 9 10 11 12

fnorm(·) = | · |
1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

fnorm(·) =
√
k(·, ·)

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

Table B.9: Detailed results of McNemar’s test of statistical significance for SVM
in diterpenes and duke.
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musk (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

fnorm(·) = | · |
1 klin x = = = = + = = = = = +
2 kpoly,p=2 = x = = = + = = = = = +
3 kpoly,p=3 = = x = = + = = = = = +
4 kRBF,γ=0.1 = = = x = + = = = = = +
5 kRBF,γ=1 = = = = x + = = = = = +
6 kRBF,γ=10 - - - - - x - - - - - =

fnorm(·) =
√
k(·, ·)

7 klin = = = = = + x = = = = +
8 kpoly,p=2 = = = = = + = x = = = +
9 kpoly,p=3 = = = = = + = = x = = +
10 kRBF,γ=0.1 = = = = = + = = = x = +
11 kRBF,γ=1 = = = = = + = = = = x +
12 kRBF,γ=10 - - - - - = - - - - - x

musk ver. 2
1 2 3 4 5 6 7 8 9 10 11 12

fnorm(·) = | · |
1 klin x = = - = + = = = = = +
2 kpoly,p=2 = x = - = + = = - = = +
3 kpoly,p=3 = = x - = + = = = = = +
4 kRBF,γ=0.1 + + + x = + + + = = = +
5 kRBF,γ=1 = = = = x + = = = = = +
6 kRBF,γ=10 - - - - - x - - - - - =

fnorm(·) =
√
k(·, ·)

7 klin = = = - = + x = - = = +
8 kpoly,p=2 = = = - = + = x = = = +
9 kpoly,p=3 = + = = = + + = x = = +
10 kRBF,γ=0.1 = = = = = + = = = x = +
11 kRBF,γ=1 = = = = = + = = = = x +
12 kRBF,γ=10 - - - - - = - - - - - x

Table B.10: Detailed results of McNemar’s test of statistical significance for
SVM in musk.
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mutagenesis (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = + = = - - - = - =
2 kpoly,p=2 = x = + = = - - - = - =
3 kpoly,p=3 = = x = = = - - - = - =
4 kRBF,γ=0.1 - - = x = - - - - = - -
5 kRBF,γ=1 = = = = x = - - - = - -
6 kRBF,γ=10 = = = + = x - - - = = =

kΠ

7 klin + + + + + + x = = + = =
8 kpoly,p=2 + + + + + + = x = + = =
9 kpoly,p=3 + + + + + + = = x + = =
10 kRBF,γ=0.1 = = = = = = - - - x - -
11 kRBF,γ=1 + + + + + = = = = + x =
12 kRBF,γ=10 = = = + + = = = = + = x

mutagenesis (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = - -
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = -

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = + = = = = = = x =
12 kRBF,γ=10 = = = + = + = = = = = x

Table B.11: Detailed results of McNemar’s test of statistical significance for
SVM in mutagenesis.
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FM (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

FM (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = -
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = + = = = = = = x

Table B.12: Detailed results of McNemar’s test of statistical significance for
SVM in FM.
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FR (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

FR (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = + = = = = = + = =
2 kpoly,p=2 = x = + = = = = = + = =
3 kpoly,p=3 = = x + = = = = = + = =
4 kRBF,γ=0.1 - - - x - - - - - = - -
5 kRBF,γ=1 = = = + x = = = = + = =
6 kRBF,γ=10 = = = + = x = = = + = =

kΠ

7 klin = = = + = = x = = + = =
8 kpoly,p=2 = = = + = = = x = + = =
9 kpoly,p=3 = = = + = = = = x + = =
10 kRBF,γ=0.1 - - - = - - - - - x - -
11 kRBF,γ=1 = = = + = = = = = + x =
12 kRBF,γ=10 = = = + = = = = = + = x

Table B.13: Detailed results of McNemar’s test of statistical significance for
SVM in FR.
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MM (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

MM (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

Table B.14: Detailed results of McNemar’s test of statistical significance for
SVM in MM.
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MR (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

MR (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = + = = = = = = = =
2 kpoly,p=2 = x = + = = = = = = = =
3 kpoly,p=3 = = x + = = = = = + = =
4 kRBF,γ=0.1 - - - x - - - = = = - -
5 kRBF,γ=1 = = = + x = = = = + = =
6 kRBF,γ=10 = = = + = x = = = + = =

kΠ

7 klin = = = + = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = - = - - = = = x = =
11 kRBF,γ=1 = = = + = = = = = = x =
12 kRBF,γ=10 = = = + = = = = = = = x

Table B.15: Detailed results of McNemar’s test of statistical significance for
SVM in MR.
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B.2.2 Results for CP kernel using kNN

diterpenes
1 2 3 4 5 6 7 8 9 10 11 12

fnorm·) = | · |
1 klin x - - = - - + - - = - -
2 kpoly,p=2 + x = + - - + = = + - -
3 kpoly,p=3 + = x + - - + = = + = -
4 kRBF,γ=0.1 = - - x - - + = - = - -
5 kRBF,γ=1 + + + + x - + + = + = -
6 kRBF,γ=10 + + + + + x + + + + + =

fnorm· =
√
k·, ·)

7 klin - - - - - - x - - - - -
8 kpoly,p=2 + = = = - - + x - = - -
9 kpoly,p=3 + = = + = - + + x + = -
10 kRBF,γ=0.1 = - - = - - + = - x - -
11 kRBF,γ=1 + + = + = - + + = + x -
12 kRBF,γ=10 + + + + + = + + + + + x

duke
1 2 3 4 5 6 7 8 9 10 11 12

fnorm·) = | · |
1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

fnorm·) =
√
k·, ·)

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

Table B.16: Detailed results of McNemar’s test of statistical significance for
kNN in diterpenes and duke.
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musk ver. 1
1 2 3 4 5 6 7 8 9 10 11 12

fnorm·) = | · |
1 klin x = = = + + = = = = = +
2 kpoly,p=2 = x = = + + = = = = = +
3 kpoly,p=3 = = x = + + = = = = = +
4 kRBF,γ=0.1 = = = x + + = = = = = +
5 kRBF,γ=1 - - - - x + - - - - - =
6 kRBF,γ=10 - - - - - x - - - - - =

fnorm· =
√
k·, ·)

7 klin = = = = + + x = = = = +
8 kpoly,p=2 = = = = + + = x = = = +
9 kpoly,p=3 = = = = + + = = x = = +
10 kRBF,γ=0.1 = = = = + + = = = x = +
11 kRBF,γ=1 = = = = + + = = = = x +
12 kRBF,γ=10 - - - - = = - - - - - x

musk ver. 2
1 2 3 4 5 6 7 8 9 10 11 12

fnorm(·) = | · |
1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x - = = = = = = = =
4 kRBF,γ=0.1 = = + x = = = + = = = =
5 kRBF,γ=1 = = = = x + = + = = = =
6 kRBF,γ=10 = = = = - x = = = = = =

fnorm(·) =
√
k(·, ·)

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = - - = = x = = - =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = + = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

Table B.17: Detailed results of McNemar’s test of statistical significance for
kNN in musk.
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mutagenesis (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = - =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = - =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = + = = = = = + = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

mutagenesis (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

Table B.18: Detailed results of McNemar’s test of statistical significance for
kNN in mutagenesis.
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FM (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = + = + =
2 kpoly,p=2 = x = = = = = = + = + =
3 kpoly,p=3 = = x = = = = = = = + =
4 kRBF,γ=0.1 = = = x = = = = = = + =
5 kRBF,γ=1 = = = = x = = = = = + =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 - - = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 - - - - - = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

FM (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = + = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = - = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

Table B.19: Detailed results of McNemar’s test of statistical significance for
kNN in FM.
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FR (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

FR (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = -
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = +
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = - = = x

Table B.20: Detailed results of McNemar’s test of statistical significance for
kNN in FR.
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MM (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = + = = = = =
2 kpoly,p=2 = x = = = = + = = = = =
3 kpoly,p=3 = = x = = = = = = = = =
4 kRBF,γ=0.1 = = = x = = = = = = = =
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = =

kΠ

7 klin - - = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 = = = = = = = = = = = x

MM (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = =
2 kpoly,p=2 = x = = + + = + + + + +
3 kpoly,p=3 = = x = + = = = = = = =
4 kRBF,γ=0.1 = = = x + + = = + = + =
5 kRBF,γ=1 = - - - x = = = = = = =
6 kRBF,γ=10 = - = - = x = = = = = =

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = - = = = = = x = = = =
9 kpoly,p=3 = - = - = = = = x = = =
10 kRBF,γ=0.1 = - = = = = = = = x = =
11 kRBF,γ=1 = - = - = = = = = = x =
12 kRBF,γ=10 = - = = = = = = = = = x

Table B.21: Detailed results of McNemar’s test of statistical significance for
kNN in MM.
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MR (ver. 1)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = = = = = = = = = -
2 kpoly,p=2 = x = = = = = = = = = =
3 kpoly,p=3 = = x = = = = = = = = -
4 kRBF,γ=0.1 = = = x = = = = = = = -
5 kRBF,γ=1 = = = = x = = = = = = =
6 kRBF,γ=10 = = = = = x = = = = = -

kΠ

7 klin = = = = = = x = = = = =
8 kpoly,p=2 = = = = = = = x = = = =
9 kpoly,p=3 = = = = = = = = x = = =
10 kRBF,γ=0.1 = = = = = = = = = x = =
11 kRBF,γ=1 = = = = = = = = = = x =
12 kRBF,γ=10 + = + + = + = = = = = x

MR (ver. 2)
1 2 3 4 5 6 7 8 9 10 11 12

kΣ

1 klin x = = + = = = = = = = =
2 kpoly,p=2 = x = = = = - - = = - -
3 kpoly,p=3 = = x = = = - - = = - =
4 kRBF,γ=0.1 - = = x = = - - - - - -
5 kRBF,γ=1 = = = = x = - - = = - -
6 kRBF,γ=10 = = = = = x - - = = - -

kΠ

7 klin = + + + + + x = = = = =
8 kpoly,p=2 = + + + + + = x = = = =
9 kpoly,p=3 = = = + = = = = x = = =
10 kRBF,γ=0.1 = = = + = = = = = x = =
11 kRBF,γ=1 = + + + + + = = = = x =
12 kRBF,γ=10 = + = + + + = = = = = x

Table B.22: Detailed results of McNemar’s test of statistical significance for
kNN in MR.



242 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

B.3 Spectras of Gram Matrices
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(a) diterpenes
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(b) musk (ver. 1)
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Figure B.1: Spectra of Gram matrices of set distance substitution kernels. The
solid line denotes the r ratio from Equation 4.35 (left y-axis) and bars denote
the estimated accuracies (right y-axis). The γ parameter is fixed to 0.1.
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Figure B.2: Spectra of Gram matrices of set distance substitution kernels. The
solid line denotes the r ratio from Equation 4.35 (left y-axis) and bars denote
the estimated accuracies (right y-axis). The γ parameter is fixed to 10.
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B.4 Visualizations of distance combinations

0

0.2

0.4

0.6

0.8

1

Distances (accuracy for distance)

R
el

at
iv

e 
no

rm
al

iz
ed

 w
ei

gh
ts

 o
f d

is
ta

nc
es

 

 

SL (69.61)

CL (68.63)

AL (68.63)

SMD (75.49)

H (76.47)

RIBL (61.76)

T (61.76)

S (73.53)

FS (77.45)

L (73.53)

M (61.76)

Xing
diag

MCML
diag

NCA
diag

(a) musk (ver. 2)

0

0.2

0.4

0.6

0.8

1

Distances (accuracy for distance)

R
el

at
iv

e 
no

rm
al

iz
ed

 w
ei

gh
ts

 o
f d

is
ta

nc
es

 

 

SL (41.46)

CL (39.02)

AL (58.54)

SMD (78.05)

H (60.98)

RIBL (68.29)

T (58.54)

S (63.41)

FS (58.54)

L (73.17)

M (63.41)

Xing
diag

MCML
diag

NCA
diag

(b) duke

0

0.2

0.4

0.6

0.8

1

Distances (accuracy for distance)

R
el

at
iv

e 
no

rm
al

iz
ed

 w
ei

gh
ts

 o
f d

is
ta

nc
es

 

 

SL (77.13)

CL (79.26)

AL (65.96)

SMD (82.45)

H (78.72)

RIBL (73.4)

T (87.23)

S (79.79)

FS (81.91)

L (80.85)
M (73.4)

Xing
diag

MCML
diag

NCA
diag

(c) mutagenesis (ver. 1)

0

0.2

0.4

0.6

0.8

1

Distances (accuracy for distance)

R
el

at
iv

e 
no

rm
al

iz
ed

 w
ei

gh
ts

 o
f d

is
ta

nc
es

 

 

SL (59.31)
CL (49)

AL (58.17)

SMD (53.87)
H (59.6)

RIBL (56.73)

T (63.32)

S (52.72)

FS (55.3)

L (58.17)

M (55.01)

Xing
diag

MCML
diag

NCA
diag

(d) FM (ver. 1)

Figure B.3: Relative importance of the different set distance measures, com-
puted by METHODdiag, in musk (ver. 2), duke, mutagenesis (ver. 1) and FM
(ver. 1) datasets. The weights are computed on the full training set. For each
set distance measure we also give the corresponding performance of kNN in
parenthesis.
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Figure B.4: Relative importance of the different set distance measures, com-
puted by METHODdiag, in FR (ver. 1), MM (ver. 1) and MR (ver. 1) datasets.
The weights are computed on the full training set. For each set distance measure
we also give the corresponding performance of kNN in parenthesis.
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Figure B.5: Stability of the distance combinations techniques for diterpenes,
musk (ver. 1), duke and mutagenesis (ver. 1). Weights in each of the 10 folds
(i.e. rows) are normalized by a Frobenius norm of A (W ).
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Figure B.6: Stability of the distance combinations techniques in FM (ver. 1),
FR (ver. 1), MM (ver. 1) and MR (ver. 1). Weights in each of the 10 folds (i.e.
rows) are normalized by a Frobenius norm of A (W ).
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Figure B.7: Relative importance of the different set distance measures as these
are computed by Xingfull, for different values of λ. The weights are computed
in the diterpenes dataset and on the full training set.
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Figure B.8: Relative importance of the different set distance measures as these
are computed by METHODfull, for different values of λ. The weights are com-
puted in the duke dataset and on the full training set.
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Figure B.9: Relative importance of the different set distance measures as these
are computed by METHODfull, for different values of λ. The weights are com-
puted in musk (ver. 1) and on the full training set.
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Figure B.10: Relative importance of the different set distance measures as these
are computed by METHODfull, for different values of λ. The weights are com-
puted in musk (ver. 2) and on the full training set.
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Figure B.11: Relative importance of the different set distance measures as these
are computed by METHODfull, for different values of λ. The weights are com-
puted in FM (ver. 1 ) and on the full training set.
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Figure B.12: Relative importance of the different set distance measures as these
are computed by METHODfull, for different values of λ. The weights are com-
puted in FR (ver. 1) and on the full training set.
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Figure B.13: Relative importance of the different set distance measures as these
are computed by METHODfull, for different values of λ. The weights are com-
puted in MM (ver. 1) and on the full training set.
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Figure B.14: Relative importance of the different set distance measures as these
are computed by METHODfull, for different values of λ. The weights are com-
puted in MR (ver. 1) and on the full training set.
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Figure B.15: The estimated accuracy in musk (ver. 2), duke, mutagenesis (ver.
1) and FM (ver. 1) for Xingdiag, MCMLdiag and NCAdiag (using kNN) where l =
1, . . . , 7, 11 top ranked distance measures (according to the assigned coefficients)
are combined for computing the actual distance. Additionally, the performances
of kNNBest and kNNCV are given.
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Figure B.16: The estimated accuracy in FR (ver. 1), MM (ver. 1) and MR (ver.
1) for Xingdiag, MCMLdiag and NCAdiag (using kNN) where l = 1, . . . , 7, 11 top
ranked distance measures (according to the assigned coefficients) are combined
for computing the actual distance. Additionally, the performances of kNNBest

and kNNCV are given.
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Figure B.17: Estimated accuracy of different kernels in the proximity space
(kP,dset) vs. different decompositions for different set distance measures in the
FM and FR datasets (wl denotes walks of length l whereas th denotes trees of
height h). The last values in the plot denote the performance of kPdtuple,A (and
kPdtuple,W ) where the different decompositions are combined.
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Figure B.18: Estimated accuracy of different kernels in the proximity space
(kP,dset) vs. different decompositions for different set distance measures in the
MM and MR datasets (wl denotes walks of length l whereas th denotes trees of
height h). The last values in the plot denote the performance of kPdtuple,A (and
kPdtuple,W ) where the different decompositions are combined.
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MCML NCA
+ = - + = -

Mutagenesis 120 44 1 68 92 5
FM 17 148 0 7 158 0
FR 6 146 22 5 147 22
MM 12 151 2 12 153 0
MR 55 110 0 81 83 1

Table B.23: Significance test results comparing single decompositions vs. combi-
nation of decompositions. The values in the + and - columns denote the number
of cases when MCML (NCA) are significantly better and worse than the sin-
gle decompositions, respectively; the values in the = column correspond to the
numbers of cases when statistically significant differences were not observed.
The total number of comparisons for MCML (or NCA) is 165 (i.e. 11 walk de-
compositions x 11 set distances + 4 tree decompositions x 11 set distances).

MCML NCA
+ = - + = -

Mutagenesis 2 9 0 4 7 0
FM 1 10 0 1 10 0
FR 1 10 0 3 8 0
MM 3 8 0 3 8 0
MR 3 8 0 5 6 0

Table B.24: Significance test results comparing heterogeneous decompositions
(i.e. into both walks and tress) vs. homogeneous decompositions (i.e. either into
walks or trees). The values in the + and - columns denote the number of cases
when the heterogeneous decompositions are significantly better and worse than
the both homogeneous decompositions, respectively; the values in the = column
correspond to the numbers of cases when the performances of the heterogeneous
and both homogenious decompositions are statistically equivalent. The total
number of comparisons for MCML (or NCA) is 11 (i.e. total number of set
distances).
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Figure B.19: Estimated accuracy of different kernels in the proximity space,
kPdtuple,A (for MCMLfull) and kPdtuple,W (for NCAfull), combining only walks,
only trees and both walks and trees vs. different set distance measures in the
FM and FR datasets.
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Figure B.20: Estimated accuracy of different kernels in the proximity space,
kPdtuple,A (for MCMLfull) and kPdtuple,W (for NCAfull), combining only walks,
only trees and both walks and trees vs. different set distance measures in the
MM and MR datasets.
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Figure B.21: Various statistics represented in the form of boxplots on the car-
dinalities for decompositions into walks for the graph datasets (wl denotes de-
compositions into walks of length l). The boxes have lines at the lower quartile,
median, and upper quartile values. The whiskers extend from each end of the
box to the most extreme values in the data.
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Figure B.22: Relative importance of different decompositions (mutagenesis, FR,
MM and MR dataset) for the dSMD set distance measure both for diagonal and
full matrices A (for MCML) or W TW = A (for NCA). wl denotes walks of
length l whereas th denotes trees of height h. It is represented as normalized
weights A. Weights are normalized by a Frobenius norm of A.



264 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11
0

0.2

0.4

0.6

0.8

1

Decompositions

R
el

at
iv

e 
no

rm
al

iz
ed

 w
ei

gh
ts

 o
f d

ec
om

po
si

tio
ns

 

 
MCML

diag

NCA
diag

(a) FR

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11
0

0.2

0.4

0.6

0.8

1

Decompositions

R
el

at
iv

e 
no

rm
al

iz
ed

 w
ei

gh
ts

 o
f d

ec
om

po
si

tio
ns

 

 
MCML

diag

NCA
diag

(b) MM

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11
0

0.2

0.4

0.6

0.8

1

Decompositions

R
el

at
iv

e 
no

rm
al

iz
ed

 w
ei

gh
ts

 o
f d

ec
om

po
si

tio
ns

 

 
MCML

diag

NCA
diag

(c) MR

Figure B.23: Relative importance of different decompositions (FR, MM and MR
datasets) for the dAL set distance (wl denotes walks of length l).
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Figure B.24: Performances (using SVM) of the various weighting schemes for
FM, FR and MM datasets.
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Figure B.25: Accuracy of kPdtuple,A (using SVM) in the FR, MM, MR
datasets and for different set distance measures. The results are obtained using
MCMLdiag where feature selection in the proximity space is performed using
the CFS method (the first bar). For comparison we also report the accuracy of
the kPdtuple,A on the full set of prototypes (the second bar).



B.5. VISUALIZATIONS OF REPRESENTATION COMBINATIONS 267

SL CL AL SMD H RIBL T S FS L M
0

10

20

30

40

50

60

70

80

90

100

Set Distances

E
si

m
at

ed
 a

cc
ur

ac
y 

(%
)

 

 

Cfs
no Cfs

(a) mutagenesis

SL CL AL SMD H RIBL T S FS L M
0

10

20

30

40

50

60

70

Set Distances

E
si

m
at

ed
 a

cc
ur

ac
y 

(%
)

 

 

Cfs
no Cfs

(b) FM

SL CL AL SMD H RIBL T S FS L M
0

10

20

30

40

50

60

70

Set Distances

E
si

m
at

ed
 a

cc
ur

ac
y 

(%
)

 

 

Cfs
no Cfs
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Figure B.26: Accuracy of kPdtuple,A (using SVM) for different set distance mea-
sures. The results are obtained using MCMLdiag where feature selection in the
proximity space is performed using the CFS method (the first bar). For com-
parison we also report the accuracy of the kPdtuple,A on the full set of prototypes
(the second bar).
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Figure B.27: Number of selected features (prototypes) by the CFS algorithm
(using MCMLdiag) for the FR, MM and MR datasets and for different set dis-
tance measures. The first bar denotes the number of instances in the training
set.
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Figure B.28: Number of selected features (prototypes) by the CFS algorithm
(using NCAdiag) for different set distance measures. The first bar denotes the
number of instances in the training set.
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MCML NCA
isotropic down-weighted isotropic down-weighted

+ = - + = - + = - + = -

Mutagenesis 4 6 1 1 10 0 5 5 1 2 0 9
FM 1 10 0 0 11 0 0 11 0 0 10 1
FR 2 9 0 3 8 0 3 8 0 2 9 0
MM 0 11 0 0 11 0 0 11 0 0 11 0
MR 0 3 8 0 6 5 0 11 0 0 11 0

Table B.25: Significance test results comparing simple weighting schemes (i.e.
isotropic and down-weighted) vs. the adaptive ones (i.e. MCML and NCA).
The values in the + and - columns denote the number of cases when simple
weighting schemes were significantly better and worse than MCML (or NCA),
respectively; the values in the = column correspond to the numbers of cases
when the performances of the simple weighting schemes and the adaptive ones
were statistically equivalent. The number of comparisons is 11 (i.e. total number
of set distances).



Appendix C

List of Notation

Sets:

R the real numbers
R+ the non-negative real numbers
R+

0 the positive real numbers
N the natural numbers (without zero)
Rn×n n× n real matrices
X , X,A, . . . general sets
|X| cardinality of set X

Vectors and Matrices:

x boldface is used (column) vectors
A boldface is used to matrices
xi i-th element of vector x
Aij element of A which is in i-th row and j-th column
xT ,AT transpose of xT and AT

I square identity matrix (1’s are on the diagonal and off-diagonal elements are 0’s)
diag(a1, . . . , an) matrix whose diagonal elements are a1, a2, . . . , an (off-diagonal elements are 0’s)
K kernel (Gram) matrix
‖x‖ Euclidean norm of vector x
‖A‖F Frobenius norm of matrix A
〈·, ·〉 inner (scalar) product
1 vector of length consisting of the all 1s
K Gram (kernel) matrix

Objects:

` a list (Page 17)
`[k] k element of ` (Page 17)
|`| length of ` (Page 17)
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i sequence of indices (Page 17)
A alignment (Page 60)
c(A) cost of alignment A (Page 60)
− a gap element (Page 60)
G a graph (Page 28)
V set of vertices of a graph (Page 28)
E set of edges of a graph (Page 28)
LV set of vertex labels (Page 29)
LE set of edge labels (Page 29)
lab(·) label of a vertex or and edge (Page 29)
W a walk (in a graph) (Page 29)
T a tree (Page 29)
root(T ) root of tree (Page 30)
δ(·) neighborhood of a node or an edge (Page 30)

Distances:

dnum distance on numbers (Page 49)
dδ distance on sybolic objects (Page 49)
dtuple,p Minkowski distance measure on tuples (Page 61)
dtuple,A Mahalanobis distance measure on tuples (Page 50)
dtuple,W Mahalanobis distance measure on tuples (Page 51)
dset general distance measure on sets (Page 51)
dSL Single Linkage distance measure on sets (Page 51)
dCL Complete Linkage set distance measure (Page 52)
dAL Average Linkage set distance measure (Page 52)
dSMD Sum of Minimum Distances set distance measure (Page 52)
dH Hausdorff set distance measure (Page 53)
dRIBL RIBL set distance measure (Page 53)
dS Surjections set distance measure (Page 55)
dFS Fair Surjections set distance measure (Page 55)
dL Linkings set distance measure (Page 55)
dM Matchings set distance measure (Page 55)
dT Tanimoto set distance measure (Page 57)
dedit (normalized) edit distance measure on lists (Page 62)
dtree distance measure on trees (Page 63)

Kernels:

knorm kernel normalized in feature space (Page 94)
knum kernel on numbers (Page 95)
kδ kernel on sybolic objects (Page 95)
kΣ direct sum kernel (Page 96)
kΠ tensor product kernel (Page 96)
k< <-Convolution kernel (Page 97)
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klin linear kernel (Page 98)
kpoly polynomial kernel (Page 98)
kRBF Gaussian RBF kernel (Page 99)
kCP Cross Product kernel (Page 99)
kSL Single Linkage set kernel (Page 102)
kCL Complete Linkage set kernel (Page 103)
kSMD Sum of Maximum Kernels set kernel (Page 103)
kH Hausdorff set kernel (Page 103)
kRIBL RIBL set kernel (Page 104)
kS Surjections set kernel (Page 104)
kFS Fair Surjections set kernel (Page 104)
kL Linkings set kernel (Page 104)
kM Matchings set kernel (Page 105)
k∩ Intersection set kernel (Page 105)
kDS Distance Substitution kernel (Page 105)
kCS Contiguous Sublist kernel (Page 108)
kLCS Longest Common Sublist kernel (Page 109)
ktree tree kernel (Page 110)

Various:

iff if and only if
fnorm normalization function for Cross Product kernel (Page 100)
r(K) ratio of negative to positive eigenvalues of K (Page 113)
SVMP SVM with proximity kernels (Page 121)
SVMDS SVM with Distance Substitution kernels (Page 121)
SVMSP SVM with kernels directly based on specific pairs (Page 121)
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