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Abstract

The ontology of quantum theory, with features such as superpositions, entangle-
ment and quantum measurements, is fascinating and radically different to that of
many established physical models. It gives rise to predictions of correlations in lab-
oratory data that distinguish quantum theory in the broader landscape of physical
models. During the last three decades, the investigation of quantum correlations
has received intense research attention. In foundational research, they allow for
precise boundaries between classical, quantum and post-quantum phenomena. In
quantum information science, correlations serve as resources for enhanced infor-
mation processing, as tools physical inference and as signatures of quantum com-
munications. In quantum technologies, correlations are a powerhouse for quantum
advantages in practical tasks.

In this thesis, we present a broad investigation of quantum correlations rang-
ing from foundations to applications. We begin with an introduction to three
different forms of quantum correlations, each corresponding to a different setting
in which quantum theory eludes classical models. Firstly, we focus on quantum
correlations arising in communication experiments that cannot be modelled with
classical communication resources. We establish general connections between quan-
tum correlations and quantum communications, investigate different approaches
within quantum theory towards communication advantages, develop efficient com-
putational methods for bounding the advantages enabled by quantum theory and
present a framework for studying the relation between correlations and information
as manifested in classical and quantum models.

Secondly, we apply quantum correlations and communications towards phys-
ical inference. We introduce a framework for certification of different quantum
devices in simple experiments within the state-of-the-art implementations. We
show that key physical properties can be determined directly from the quantum
correlations subject only to weak assumptions that require no precise prior char-
acterisation of any part of the experiment. Qualitative and quantitative inference
methods are developed for a variety of quantum devices implementing i.a. qubit
ensembles, standard qubit measurements, non-projective measurements, quantum
instruments, entangled states and entangled measurements.

Thirdly, we shift our attention to a different form of quantum correlations,
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namely those that manifest contextuality. We show how quantum communication
can be systematically employed to construct tests of contextuality and how such
tests can be used to repeatedly harvest quantum correlations from a single system in
many independent experiments. Moreover, we show remarkably strong connections
to the ontology of quantum theory by proving general one-to-one relations between
quantum contextuality, the failure of joint measurability and Einstein-Podolsky-
Rosen steering.

Fourthly, we investigate quantum correlations that violate Bell inequalities. We
introduce Bell inequalities that are tailored to a key resource for quantum infor-
mation processing, namely the so-called mutually unbiased bases. We propose an
operational formulation for such bases and prove that they can be certified through
the quantum correlations. Departing from standard Bell experiments, we focus on
quantum correlations in network settings that feature many sources and observers.
For classes of such networks, we systematically derive Bell-type inequalities and
demonstrate their quantum violation. Lastly, we address the standing suspicion
that many known examples of quantum correlations in networks can be traced
back to standard Bell inequalities rather than to the network structure; leading us
to propose quantum correlations that appear to be genuine to the network struc-
ture.

The thesis serves as an overview of the selected scientific articles on which it is
based. Additional discussions, related results and detailed proofs are provided in
the original works.
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Résumé

L’ontologie de la théorie quantique — états superposés, intrication, mesures prob-
abilistes — est fascinante et radicalement différente de beaucoup d’autres modèles
physiques, et les prédictions qu’elle établit quant aux corrélations observables ex-
périmentalement l’en distinguent de façon frappante. Au cours des trois dernières
décennies, l’exploration de ces corrélations quantiques a été l’objet de nombreuses
investigations. En recherche fondamentale, elles permettent de séparer clairement
les phénomènes classiques, quantiques et post-quantiques. En information quan-
tique, elles tiennent lieu de ressources pour améliorer le traitement de l’information,
d’outils d’inférence physique et de signature des communications quantiques. En
technologie quantique, elles sont l’une des figures de proue en vue de la réalisation
d’un avantage quantique pratique.

Dans cette thèse, nous réalisons une étude poussée des corrélations quantiques,
tant d’un point de vue fondamental qu’appliqué. Nous commençons par une in-
troduction à trois formes différentes qu’elles peuvent prendre, chacune correspon-
dant à une situation dans laquelle la théorie quantique se soustrait à un modèle
classique. Premièrement, nous nous intéressons aux corrélations quantiques is-
sues d’expériences de communication et qui ne peuvent être reproduites par des
ressources classiques de communication. Nous établissons des connexions générales
entre corrélations et communications quantiques, explorons diverses approches au
sein de la théorie quantique en vue d’obtenir un avantage de communication,
développons des méthodes de calcul efficaces pour borner les avantages permis
par la théorie quantique et présentons un cadre d’étude pour l’inspection des re-
lations entre corrélation et information manifestées par les modèles classiques et
quantiques.

Deuxièmement, nous utilisons ces corrélations et communications quantiques
dans un but d’inférence physique. Nous introduisons un procédé pour certifier dif-
férents dispositifs quantiques utilisés dans des expériences simples de la recherche
actuelle. Nous démontrons que des propriétés physiques essentielles peuvent être
déterminées directement à partir des corrélations quantiques, et ce même avec
de faibles hypothèses qui ne nécessitent aucune caractérisation préalable des élé-
ments de l’expérience. Des méthodes qualitatives et quantitatives d’inférence sont
élaborées pour des dispositifs quantiques variés parmi lesquels des ensembles de
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qubits, des mesures ordinaires sur des qubits, des instruments quantiques, des
mesures non projectives, des états et des mesures intriquées.

Troisièmement, nous portons notre attention sur une forme différente de corréla-
tions quantiques: celles qui révèlent de la contextualité. Nous montrons comment
la communication quantique peut être systématiquement utilisée pour construire
des tests de contextualité et comment de tels tests peuvent être répétés afin de
collecter des corrélations quantiques à partir d’un seul système, et ce pour de nom-
breuses expériences différentes. De plus, nous tissons des liens remarquablement
étroits avec l’ontologie de la théorie quantique en prouvant une équivalence générale
entre contextualité quantique, non mesurabilité conjointe et pilotage d’Einstein-
Podolsky-Rosen.

Quatrièmement, nous nous intéressons aux corrélations quantiques qui violent
des inégalités de Bell. Nous présentons de telles inégalités adaptées à une ressource
phare du traitement de l’information quantique: les bases communément appelées
mutuellement impartiales. Nous proposons une formulation opérationnelle pour ces
bases et prouvons qu’elles peuvent être certifiées grâce aux corrélations quantiques.
Nous éloignant ensuite des expériences de Bell habituelles, nous nous concentrons
sur les corrélations quantiques dans des réseaux possédant plusieurs sources et ob-
servateurs. Pour de tels réseaux, nous dérivons systématiquement des inégalités à
la Bell et démontrons leur violation quantique. Enfin, nous confirmons le soupçon
de longue date selon lequel de nombreux exemples connus de corrélations quan-
tiques dans des réseaux doivent en réalité leur non localité à des inégalités de Bell
ordinaires plutôt qu’à leur structure en réseau, ce qui nous conduit à suggérer des
corrélations quantiques tirant véritablement profit de cette structure.

Cette thèse donne un aperçu des quelques articles scientifiques sur laquelle elle
s’appuie. Des discussions complémentaires, des résultats associés et des preuves
détaillées sont fournis dans les travaux originaux.
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Introduction

Quantum theory is perhaps the most successful physical theory ever established. It is also the
physical theory that most radically departs from the everyday human experience of nature. The
apparent collision is avoided by the fact that quantum theory only concerns nature on small scales,
i.e. atoms, electrons, photons etc. The picture of nature on these scales, as painted by quantum
theory, is remarkable. Where pre-quantum physics upholds that physical systems always have
well-defined observable properties, quantum theory withstands that they can be in so-called super-
position, i.e. that they can simultaneously be in two mutually exclusive states prior to observation
(following Schrödinger’s famous cat, both dead and alive). While pre-quantum physics represents
a measurement as an act of simply revealing an already existing property, a quantum measure-
ment is a dramatic process in which the outcome is created through interaction with the state,
leaving its future course altered. Whereas two pre-quantum particles can be fully understood by
studying them separately and adding up the knowledge, two quantum particles can be entangled
and therefore influence each other through “a spooky action at a distance“ which makes their joint
state more than the knowledge of the parts. It is therefore unsurprising that quantum theory pro-
vides novel tools for explaining and predicting physical phenomena. After roughly a hundred years
of quantum theory, there is no shortage of examples: quantum theory is relevant for everything
ranging from particle physics to spectroscopy, and quantum technologies such as microelectronics,
lasers and magnetic resonance imaging are widely established. Indeed, for a multitude of problems
in physics, quantum theory offers a physical model that has hitherto been remarkably consistent
with experimental tests.

However, the success of quantum theory notwithstanding, it appears imperative to ask how
quantum theory, being as radical and philosophically consequential as it is, distinguishes itself from
other physical models that may be conceptually less dramatic and closer to home? How can we
characterise physical phenomena as being genuinely quantum? What would such phenomena teach
us about quantum theory? And what are the ultimate limitations of a reality governed by the laws
of quantum theory? These foundational questions are key to our understanding of what quantum
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theory is and why quantum theory conceptually distinguishes itself from other theories in physics.
Frequently, in fact, the predictions of quantum theory do not distinguish themselves from other

reasonable models in the sense that the latters can be used to simulate the predictions. For
instance, say that we build a laser which we assume emits a single photon that passes through an
unbiased beam splitter. Quantum theory offers the explanation that the beam splitter puts the
path taken by the photon in a superposition of the two alternatives (reflection and transmission).
By placing a detector at the end of each path, we perform a measurement that interferes with the
superposition, thus making the path well-defined and yielding a random click in one of the detectors.
However, the uniformly random clicks that we observe could easily be explained with a classical
model. For example, imagine that the beam splitter is subject to some internal process causing it
to randomly direct the incoming photon either in the transmission path or in the reflection path.
Then, the system acts like a coin-flip rather than as a superposition; its path is always well-defined.
Nevertheless, it still produces the same outcome statistics as predicted by quantum theory. Clearly,
we cannot conclude that we are observing a genuine quantum phenomenon. Conspicuously, does
there exist situations in which the predictions of quantum theory can defy those of other model?

The matter of distinguishing quantum predictions from those of other models is naturally subject
to some assumptions. Therefore, the more precise and relevant question is under which assumptions
can quantum theory distinguish itself from other physical models? A milestone answer was given
by John Bell in 1964 with a result known as Bell’s theorem [1]. Bell considered an experiment
involving two very distant parties who each are asked independent questions by a referee. In order
to correlate their answers, the parties may share a pair of particles emitted from some source.
Once they receive a question, they measure their particle and return the outcome as their answer.
Importantly, these measurement events are space-like separated which justifies the assumption that
the question that is asked to one party cannot influence the answer of the other party. This principle
derives from the no-faster-than-light communication at the heart of relativity. Bell’s theorem is the
fact that using only this assumption, the data predicted by quantum theory cannot be reproduced
in any model which assumes that the two parties cannot influence each other due to the space-like
separation (locality)2. In a classical approach to physics, such local realist models are arguably
natural. Nevertheless, Bell’s theorem reduces the matter of distinguishing quantum theory from
all local realist models to a question of experiment. Over the years many experiments have been
performed, which to varying degree capture the rather extreme conditions required for a stringent
test of Bell’s theorem. The most rigorous tests were performed only recently and they arguably

2Notably, it is sometimes argued that Bell’s theorem also requires an assumption of realism. Whereas this concept
perhaps could be meaningful, it remains elusive to the author. Therefore, in this thesis, Bell’s theorem is presented
as the failure of a local variable model to account for quantum theory.
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settled the matter decisively in the favour of quantum theory [2, 3, 4].

In fact, the predictions of quantum theory do not only distinguish themselves in the niche
of Bell experiments. In 1967, the work of Kochen and Specker [5] showed that quantum theory
is incompatible with any model that is both deterministic and noncontextual. A deterministic
model upholds that all observable quantites are well-defined at all times and a noncontextual model
upholds that observable properties do not depend on the precise manner in which they are measured.
For instance, a measurement of the total angular momentum of an electron can be performed jointly
with a measurement of its x-component. Alternatively, we could instead measure it jointly with its
z-component. These are two different ways (contexts) of measuring the total angular momentum.
The Kochen-Specker theorem is the fact that no deterministic noncontextual model can account for
all the predictions of quantum theory. In principle, and in sharp contrast to Bell’s theorem, such
predictions can arise in experiments that involve communication. However, for a long time it was
unclear precisely how the discrepancy between quantum theory and deterministic noncontextual
models could be detected - leaving the result rather abstract. Nevertheless, in more recent years,
that matter has solved by showing that quantum predictions, known as quantum contextuality, can
be detected in the correlations seen between the outcomes of sequential measurements performed
on a single quantum system [6]. Following this breakthrough, quantum contextuality has been
experimentally demonstrated in several tests, see e.g. [7].

The predictions of quantum theory encountered in Bell’s theorem and in the Kochen-Specker
theorem are examples of quantum correlations in laboratory data. However they are only two, albeit
important, examples of quantum correlations selected from a diverse fauna that arises in different
physical scenarios and under different types of assumptions. While the foundational interest in
quantum correlations is evident and has led to many foundational insights in the last few decades,
their relevance extends well beyond the foundations of quantum theory. Quantum correlations are
conceptually and practically crucial in the rise of quantum information science seen over the past
three decades. It is the fact that they are signatures of post-classical data that make them a power-
house for quantum information science. Landmark examples include the development of quantum
technologies such as quantum computers, quantum cryptography and quantum communications
that outperform their counterparts in conventional technologies.

The connection between quantum correlations and quantum advantages in information process-
ing is not obvious (in fact it took decades before it was noticed by researchers). Let us illustrate
its general spirit through an example of how quantum correlations can improve classical commu-
nications. Imagine that a number of distributed parties each hold a piece of data. Their aim is to
collectively perform a pre-determined computation that depends on all their data pieces. Naturally,
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in order to succeed, they must communicate. What is the smallest amount of communication nec-
essary to perform the computation? It turns out there are different answers; one given by standard
information processing techniques, and one given by information processing techniques that exploit
quantum correlations. Say, for instance, that the distributed parties first perform a Bell experiment
and establish quantum correlations in the spirit of Bell’s theorem. In quantum theory, these cor-
relations themselves cannot be used for transmitting information due to the space-like separation
entering Bell’s theorem. Therefore, we cannot consider these correlations as constituting a source
for additional communication. However, they can be used to improve the efficiency of classical
communication [8]. By using the quantum correlations to select the communication strategy of the
parties, the amount of communication needed to perform the computation can be reduced beyond
anything achievable by standard techniques. The advantage thus stems from a post-classical ability
of coordinating classical resources.

In foundational science quantum correlations serve to distinguish quantum theory from other
models and in quantum information science quantum correlations are employed to enhance infor-
mation processing. However there is a third scene on which quantum correlations play a key role,
namely in physical inference. If we assume quantum theory, what conclusions can we draw about
the physical features of an experiment by inspecting its data? Such inferences are important as they
create a bridge between the ontology of quantum theory and its laboratory predictions. Also, from
a more practical point of view, they enable methods for the characterisation of quantum devices
which is crucial in quantum information science and in exploratory experimental tests of quantum
theory. A simple example of the type of inferences that quantum correlations enable is given by
Bell’s theorem. If we make no further assumption than space-like separation3, a proof of Bell’s
theorem implies that the two distant particles appearing in a Bell experiment must be entangled.
Thus, we can certify a quantum resource under minimal assumptions. However, this does not tell
us what the entangled state actually is (indeed most quantum states are entangled). Remarkably,
it turns out that the strongest forms of quantum correlations can be used to precisely infer the
underlying quantum ontology in an experiment [9], i.e. to precisely determine both the state and
the measurements that were used to obtain the data. Concretely, this means that correlations that
to a larger extent defy classical models, and therefore are close to the correlation limits allowed in
quantum theory, can be used to deduce more information about the physics of the experiment that
created them. In general, quantum correlations enable the investigation of physical inference under
weak assumption on the experiments in which the correlations are obtained.

In view of the above, the general investigation of quantum correlations is relevant to many lines
3Strictly speaking, one must also assume that there is no superdeterminism. Superdeterminism implies that the

inputs of a Bell experiment always are correlated with the system that is measured.
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of research that span from foundational considerations to applied matters. In this thesis, we explore
quantum correlations in many physical scenarios, investigate their usefulness for physical inference
and apply them as resources for quantum information processing.

Outline of the thesis
The content of this manuscript is organised as follows.

Chapter 1 is a brief review of quantum correlations. Its focus is on the three forms of quantum
correlations that will permeate this thesis, namely quantum nonlocality, quantum contextuality
and quantum communication complexity. Familiarity with basic quantum theory is assumed.

Chapter 2 focuses on quantum communication complexity i.e. how quantum resources can be
employed to better perform communication tasks as compared to classical models. It first focuses
on exploring the connection between quantum nonlocality and quantum communications. Then,
it considers quantum nonlocality as opposed to quantum communication as resources for commu-
nication complexity. Their relationship is investigated. Subsequently, the focus shifts to quantum
communication complexity powered by quantum communications. Efficient computer methods are
presented for bounding the set of quantum correlations. Finally, a new route to quantum communi-
cation complexity is introduced that is based on the information content of quantum communication
rather than the standard approach based on dimensionality.

Chapter 3 concerns certification of quantum devices. Its focus is on the so-called semi-device-
independent setting in which only the dimension of physical systems is used to deduce interesting
properties from various quantum devices. Firstly, precise and robust certification methods are devel-
oped for simple qubit states and measurements in prepare-and-measure experiments. Then, general
certification methods are discussed for generalised qubit measurements (so-called non-projective
measurements). This is followed by an extension of the experiment to a prepare-transform-measure
scenario in which one can certify more sophisticated quantum operations that produce both clas-
sical and quantum outputs. Finally, a hybrid scheme is presented that involves both quantum
communication and entanglement. This scheme is used for certification and characterisation of
high-dimensional and multipartite entangled states.

Chapter 4 is an exploration of quantum contextuality. It exclusively concerns an operational
approach to contextuality that is not limited to quantum theory. It is shown that tests of oper-
ational contextuality can be phrased as quantum communication games in which data is actively
being hidden in the communication. The framework is used to derive families of noncontextual-
ity inequalities. Next, general and powerful one-to-one relations are derived that link quantum
contextuality to the failure of joint measurability and quantum steering. Finally, we consider the
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possibility of sharing the contextuality enabled by a quantum ensemble between an indefinite num-
ber of independent observers.

Chapter 5 is devoted to Bell nonlocality. It begins with the construction of Bell inequalities
tailored to so-called mutually unbiased bases of any Hilbert space dimension. We introduce an op-
erational definition of mutually unbiased bases and prove that the quantum correlations appearing
in the Bell experiments can be used for certification of these operational mutually unbiased bases.
Subsequently, the application of these Bell inequalities to quantum key distribution is considered.
This is followed by a discussion of Bell nonlocality in networks. It is shown how standard Bell
inequalities can be systematically mapped to Bell inequalities valid on networks. Finally, we ad-
dress the long-standing suspicion that known quantum correlations in the simplest network can be
somehow traced back to standard Bell nonlocality: genuine quantum correlations in the so-called
bilocality scenario are presented that bear no resemblance to standard Bell nonlocality.
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1

Background in quantum correlations

1.1 Quantum nonlocality

Imagine an experiment in which two observers, for simplicity named Alice and Bob, are separated
by a very large distance. A referee holds a source that emits a physical system such that one
part of it is given to Alice and one part is given to Bob. In addition, the referee supplies each
of them with independent inputs labelled x and y. Each of them are drawn randomly from the
set {1, . . . , n} ≡ [n]. Upon receiving their inputs, Alice and Bob are asked to produce outputs,
belonging to the set [m], that we respectively label a and b, and return them to the referee. The
experiment is illustrated in Figure 1.1. This input/output process is repeated many times. In every
round Alice and Bob receive a shared state and random and independent inputs and return their
outputs. After a large number of rounds the process is stopped and the relative frequencies are
used to determine a conditional probability distribution p(a, b|x, y). This distribution is common
referred to as the correlations.

A priori there is only one thing that we take for granted about the correlations, namely that
the space-like separation between Alice and Bob guarantees that the input of one party cannot
influence the output of the other party. That is, if we forget about the outcome of Alice (Bob), the
output of Bob (Alice) depends only on his (her) input. This no-signaling principle is dictated by
relativity, and we formalise it as follows:

∑

a

p(a, b|x, y) = p(b|x, y) NS= p(b|y),
∑

b

p(a, b|x, y) = p(a|x, y) NS= p(a|x).

Having assumed away a clash with relativity, we now ask the following question: how do the
realisable correlations depend on the physical model used to predict them?

If we are presented with the correlations p(a, b|x, y), a broad class of reasonable physical models
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Figure 1.1: Bell experiment. Two space-like separated observers receive independent inputs x and y

respectively and are asked to produce outputs, denoted a and b, by performing local measurements on parts
of a shared physical system.

that potentially could explain the correlations are known as local hidden variable models - or for
short local models. Local models are based on the following reasoning. Since the particles created
by the source have a common origin, we may imagine that they are correlated in some way that
perhaps is unknown to us. For example, when one particle is up the other particle is down. These
correlations could also be stochastic; for instance sometimes one particle is up and the other is
down and sometimes vice versa. We denote this shared influence by λ and out lack of knowledge
about its precise nature is represented by a probability distribution p(λ). In a local model, the
influence is carried with the particles as they undergo separation and is then used by each observer
to determine the output (for every given input). This means that a local model for explaining the
correlations is written

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, λ)p(b|y, λ). (1.1)

Notice that it is sufficient to let p(λ) be a probability distribution rather than a probability density
due to the fact that λ, together with the respective inputs, determines the outputs. We can think of
it as Alice and Bob employing a different deterministic function to map their input into their output
depending on λ. There are only finitely many such functions and thus only finitely many values
of λ are required. Elaborating further on this picture, let us enumerate all deterministic functions
from [n] to [m] in the list {f1, . . . , fN} where N = mn is the total number of such functions. We
can then write the local model as a convex combination of deterministic distributions

p(a, b|x, y) =
N∑

λ1=1

N∑

λ2=1
p(λ)δa,fλ1 (x)δb,fλ2 (y), (1.2)

where λ = (λ1, λ2). In this form, it is evident that we can determine whether p(a, b|x, y) admits a
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local model through a linear program that searches for an appropriate probability distribution p(λ).
Since linear programs are easy to evaluate (at least for a small number of inputs and outputs), we
can efficiently decide whether correlations admit a local model. It is worth noticing that this also
means that the set of local correlations can geometrically be represented by a polytope where the
vertices are obtained from the deterministic distributions [10].

The outstanding question is whether the correlations explainable with local models are any
different from those predicted in quantum theory. The most insightful answer requires us to intro-
duce the concept of a Bell inequality. A Bell inequality is a criterion that is respected by all local
models. The most famous and well-studied Bell inequality is known as the Clauser-Horne-Shimony-
Holt (CHSH) inequality [11]. It applies to the simplest possible Bell experiment, corresponding the
scenario in which inputs and outputs are binary (n = m = 2). Consider the following functional
that maps the correlations p(a, b|x, y) onto a real number,

Schsh ≡ 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉, (1.3)

where 〈·〉 denotes the expectation value defined as

〈AxBy〉 ≡
∑

a,b

(−1)a+bp(a, b|x, y). (1.4)

In a local model, an expectation value can be written as

〈AxBy〉 ≡
∑

λ

p(λ)
∑

a

(−1)ap(a|x, λ)
∑

b

(−1)bp(b|y, λ) ≡
∑

λ

p(λ)〈Ãx,λ〉〈B̃y,λ〉, (1.5)

where we have denoted the sum over a and b by 〈Ãx,λ〉 and 〈B̃y,λ〉 respectively. Evaluating the
CHSH expression, we obtain that

Schsh =
∑

λ

p(λ)
[(
〈Ã1,λ〉+ 〈Ã2,λ〉

)
〈B̃1,λ〉+

(
〈Ã1,λ〉 − 〈Ã2,λ〉

)
〈B̃2,λ〉

]
. (1.6)

We want to place an upper bound on Schsh. Due to this being a convex combination over λ, we
need to find the largest possible value of the square bracket and place all the weight of p(λ) in
front of that term. Since both 〈Ãx,λ〉 and 〈B̃y,λ〉 are numbers of magnitude at most one, it is clear
that we should choose 〈B̃1,λ〉 and 〈B̃2,λ〉 to be of maximal magnitude (one) with the same sign as(
〈Ã1,λ〉+ 〈Ã2,λ〉

)
and

(
〈Ã1,λ〉 − 〈Ã2,λ〉

)
respectively. Thus, we conclude that

Schsh ≤
∣∣∣〈Ã1,λ〉+ 〈Ã2,λ〉

∣∣∣+
∣∣∣〈Ã1,λ〉 − 〈Ã2,λ〉

∣∣∣ ≤ 2, (1.7)

where the last step follows from the fact that |s+ r|+ |s− r| ≤ 2 when s, r ∈ [−1, 1]. Thus, we have
derived the CHSH inequality. The inequality itself is nothing more than an unremarkable statement
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about set theory. What is remarkable about the CHSH inequality (and with Bell inequalities in
general) is that they can be violated in quantum theory.

A violation of the CHSH inequality implies that p(a, b|x, y) cannot be explained by any local
model. In a quantum model of the correlations, the source emits some quantum state |ψ〉 that
is a ray in Hilbert space. Holding a subsystem each, Alice and Bob implement different quan-
tum measurements depending on their inputs. The measurements are labelled {Aa|x} and {Bb|y}
respectively and they satisfy

Aa|x ≥ 0,
m∑

a=1
Aa|x = I, Bb|y ≥ 0,

m∑

b=1
Bb|y = I, (1.8)

where I denotes the identity operator. Any complete set of positive operators constitutes a valid
quantum measurement and is formally known as a positive operator-valued measure (POVM)1. The
probabilities are then given by the Born rule

p(a, b|x, y) = tr
(
Aa|x ⊗Bb|y|ψ〉〈ψ|

)
. (1.9)

Let us consider that the source emits a pair of qubits in a maximally entangled state,

|ψ〉 = |00〉+ |11〉√
2

. (1.10)

When Alice receives x = 1 she measures the observable σx and when she receives x = 2 she measures
the complementary observable σz. Throughout this thesis, we denote the standard Pauli matrices
by (σx, σy, σz). Bob measures the observables (σx + σz)/

√
2 and (σx − σz)/

√
2 corresponding to

y = 1 and y = 2 respectively. From the Born rule, we compute the expectation values to be

〈A1B1〉 = 〈A1B2〉 = 〈A2B1〉 = −〈A2B2〉 = 1√
2
, (1.11)

which leads to
Schsh = 2

√
2. (1.12)

This is a violation of the CHSH inequality and it means that the correlations predicted by quantum
theory cannot be reproduced in any local model. Hence, we conclude that the set of quantum
correlations is larger than the set of local variable correlations. This fact is known as Bell’s theorem.

Let us emphasise the role of entanglement in quantum violations of Bell inequalities. Although
the above example is based on the maximally entangled two-qubit state, it appears reasonable to
ask if entanglement really is necessary for quantum correlations? The answer is yes and the reason

1It is the author’s opinion that whoever introduced this terminology to physicists should consider undertaking an
elementary course on public communication.

22



is simple. By definition, a state is separable (i.e. not entangled) if it can be written as a convex
combination of local states,

ρ =
∑

λ

qλρ
A
λ ⊗ σB

λ , (1.13)

where ρA
λ and σB

λ are quantum states local to Alice’s and Bob’s respective laboratories and {qi}i is a
probability distribution. When such a state is measured locally, the Born rule gives the probabilities

p(a, b|x, y) =
∑

λ

qλ tr
(
Aa|xρ

A
λ

)
tr
(
Bb|yσ

B
λ

)
. (1.14)

By direct comparison to Eq (1.2), we see that the correlations admit a local model by choosing
p(λ) = qλ, p(a|x, λ) = tr

(
Aa|xρA

λ

)
and p(b|y, λ) = tr

(
Bb|yσB

λ

)
. Hence, as intuition may suggest,

entanglement is a necessary condition for quantum violations of Bell inequalities.
An interesting question is the largest violation of the CHSH inequality that can be achieved in

quantum theory. This roughly corresponds to asking: to what extent does quantum correlations defy
local models? As it turns out, the obtained violation is also the largest possible. It is instructive
to see how one arrives at this conclusion. Let us define

|αx〉 = Ax ⊗ I|ψ〉 |βy〉 = I⊗By|ψ〉. (1.15)

We can now write the CHSH expression in a quantum model as

Schsh = (〈α1|+ 〈α2|) |β1〉+ (〈α1| − 〈α2|) |β2〉. (1.16)

Clearly, to make the value as large as possible, we would like that |β1〉 is aligned with (〈α1|+ 〈α2|)
and |β2〉 is aligned with (〈α1| − 〈α2|). Note that the magnitude of both |αx〉 and |βy〉 is one since
〈αx|αx〉 = 〈ψ|A2

x⊗ I|ψ〉 = 1 where the last steps follows from the fact that every binary observable
O obeys O2 = I. Hence, we have arrived at

Schsh ≤ ‖|α1〉+ |α2〉‖+ ‖|α1〉 − |α2〉‖ =
√

2
(√

1 + <〈α1|α2〉+
√

1−<〈α1|α2〉
)
. (1.17)

Consider the function f(x) =
√

1 + x+
√

1− x for x ∈ [−1, 1]. By writing

f(x) =
√
f(x)2 =

√
2 + 2

√
1− x2, (1.18)

it becomes clear that the maximum of this function is attained at x = 0. Since f(0) = 2, we have
proven that quantum theory cannot exceed Schsh = 2

√
2.

The CHSH inequality is the simplest of Bell inequality (at least in the modern sense of the
word). It turns out that in the binary input/output scenario we considered, it constitutes a face
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of the polytope of local variable correlations. Moreover, it is known that it in fact is the only
non-trivial face of that polytope. However, when more inputs and/or outputs are introduced for
Alice and Bob, the fauna of Bell inequalities rapidly grows larger and determining them all becomes
an increasingly challenging problem. For a thorough guide to the study of quantum correlations
in Bell experiments, we refer the reader to the review article [12]. In what follows, we will often
substitute the cumbersome expression “quantum violation of a Bell inequality“ with the easier (but
not uncontroversial [13]) expression “quantum nonlocality“ or “Bell nonlocality“.

1.2 Quantum contextuality

Quantum nonlocality is relevant to experiments that do not involve communication. In contrast,
quantum contextuality offers a generalisation of quantum nonlocality in such a way that it ap-
plies not only to Bell experiments but also to more general experiments that may feature explicit
communication between the involved parties. Quantum contextuality is an approach to quantum
correlations that does not privilege entangled states or space-like separation.

Quantum contextuality means that correlations in quantum theory cannot be explained by a
hidden variable model that is both deterministic and noncontextual. Such a model ascribes pre-
existing outcomes to every measurement without regard to the context in which the measurements
are performed. Here, context refers to the other possible measurements that are performed jointly
with the measurement of interest. For instance, if A and B are commuting observables and A and
C also are commuting observables, we could either measure both A and B jointly or both A and
C jointly. In the former, we say that we measured A in the context of B and in the latter we
measured A in the context of C. Noncontextual models aim to explain the outcome statistics of A
without regard to its context i.e. by ignoring which other compatible measurements that are jointly
implemented. The fact that quantum theory does not admit a noncontextual description is known
as the Kochen-Specker theorem [5]. It fundamentally traces back to quantum observables in general
being non-commutative. For instance, in our example there is no need for B and C to commute.

However, this makes contextuality inherently quantum, in the sense that it is a property that
is native to the Hilbert space formalism of quantum theory for closed systems. Depending on
one’s personal bent, this may be considered an unappealing feature. Should we not be able to talk
about contextuality in nature without assuming that quantum theory governs its laws? For such an
audience (which includes the author), it is therefore interesting that it is possible to generalise such
“Kochen-Specker“ contextuality to instead be formulated on operational grounds. In an operational
approach, contextuality is no longer a property of operators on Hilbert spaces (to which quantum
theory gives physical meaning) but instead a property of probability distributions measured in
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laboratories. Such operational contextuality, as first introduced in Ref [14], is our focus in this
thesis.

Consider a prepare-and-measure experiment, i.e. an experiment in which a sender (Alice) pre-
pares states and a receiver (Bob) measures them. In her lab, Alice implements a preparation
procedure that we denote P. This can be thought of as a set of instructions to be implemented
in a laboratory for creating a physical system. The preparation is communicated to Bob who im-
plements a measurement procedure M which returns the outcome b. After many repetitions, the
experiment generates the probability distribution p(b|P,M). We can offer to explain the observed
probabilities by employing a ontological model (hidden variable model). Such a model imagines
that the preparation corresponds to a set of ontic states whose elements we denote λ. The ontic
states represent the ontology of the system, i.e. they are not states of knowledge but in fact the
true state of nature’s affairs. A preparation may, however, correspond to a distribution over such
states, which we denote p(λ|P). Then, given only the preparation, we cannot determine the precise
underlying ontology. Nevertheless, once a specific λ has been relayed to Bob, he can stochastically
determine his measurement output. Thus, a general ontological model reads

p(b|P,M) =
∑

λ

p(λ|P)p(b|M, λ). (1.19)

An important property of this model is that a convex combination of preparation procedures implies
a convex combination of the corresponding distributions over the ontic states, i.e. if we implement P1

with probability q and P2 with probability 1−q, then the resulting procedure P′ = qP1 +(1−q)P2

corresponds to the ontic state distribution

p(λ|P′) = qp(λ|P1) + (1− q) p(λ|P2). (1.20)

Notice that every distribution can be explained through a ontological model, i.e. these models are
always successful. For example, in quantum theory the preparation procedure is simply a density
matrix P ' ρ living in Hilbert space. Ontic states in quantum theory are pure states while a
general quantum state is mixed and represented by a probability distribution over some pure states
|ψλ〉. Similarly, the measurement procedure is a POVM M ' {Mb}b and the response of Bob is
given by the Born rule, i.e. p(b|M, λ) = 〈ψλ|Mb|ψλ〉. In this manner, we can view quantum theory
as a ontological model. This also highlights the fact that this operational approach to contextuality
does not assume outcome determinism.

Matters become more interesting once we impose a non-trivial assumption on our ontological
models. In order to do that, we need to introduce operationally equivalent procedures. Consider
Alice having two preparation procedures P1 and P2. To these, we could apply any measurement
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procedure M. We say that if there exists no measurement procedure that allows us to distinguish
between P1 and P2, then the two preparation procedures are operationally equivalent. Formally,

∀M : p(b|P1,M) = p(b|P2,M) ⇔ P1 ∼ P2. (1.21)

In analogy, we say that two measurement procedures M1 and M2 are operationally equivalent if
there exists no preparation procedure that can distinguish between them:

∀P : p(b|P,M1) = p(b|P,M2) ⇔ M1 ∼M2. (1.22)

We can now formulate the notion of a context in the operational framework. All operationally
equivalent ways of realising a preparation (measurement) are said to be contexts of that prepara-
tion (measurement). We therefore say that a ontological model is noncontextual if it can model the
distribution p(b|P,M) independently of the context of the preparation and/or measurement proce-
dures. Specifically, we say that the model is preparation noncontextual if operationally equivalent
preparation procedures imply identical distributions over the ontic states, i.e.

P1 ∼ P2 ⇒ p(λ|P1) = p(λ|P2). (1.23)

Similarly, we say that the model is measurement noncontextual if operationally equivalent measure-
ment procedures imply identical response functions, i.e.

M1 ∼M2 ⇒ p(b|M1, λ) = p(b|M2, λ). (1.24)

In summary, noncontextuality is the principle that if we in principle cannot distinguish two proce-
dures then they are ontologically identical.

Let us exemplify all this in quantum theory. Assume that the preparation procedure corresponds
to ρ = I/2. We can realise it in two (or more) different contexts. In a first procedure, we flip an
unbiased coin and prepare the corresponding eigenstate of σx. In a second procedure, we flip an
unbiased coin and prepare the eigenstates of σz (see Figure 1.2). A preparation noncontextual model
takes no consideration of the choice of context and therefore has that 1

2p(λ| + x) + 1
2p(λ| − x) =

1
2p(λ| + z) + 1

2p(λ| − z). Similarly, consider three binary measurements {Mb|y} for b ∈ [2] and
y ∈ [3] as represented in Figure 1.2. We find two contexts by noticing that uniformly mixing
M1|1, M1|2 and M1|3 returns the same as uniformly mixing M2|1, M2|2 and M2|3. Therefore, a
measurement noncontextual model requires that 1

3p(b|M1|1, λ) + 1
3p(b|M1|2, λ) + 1

3p(b|M1|3, λ) =
1
3p(b|M2|1, λ) + 1

3p(b|M2|2, λ) + 1
3p(b|M2|3, λ).

With the basic concepts in place, the key question is whether quantum correlations admit
a noncontextual ontological model. As we have seen, this question is not entirely unambiguous
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Figure 1.2: Illustratation of different contexts for preparations and measurements in a disk of the Bloch
sphere. Left: realisation of the maximally mixed qubit state through the mixture of the eigenstates of σx

and σz respectively. Right: realisation of the maximally mixed measurement through the mixture of the
outcome-one and outcome-two operators respectively of three separate projective measurements.

since we could consider noncontextuality as it applies to states and measurements (or both of si-
multaneously). Let us begin with addressing measurement noncontextuality. If we assume that
measurement outcomes are deterministic, i.e. that the response function p(b|M, λ) always is either
zero or one, then there is no measurement noncontextual model that accounts for all predictions
of quantum theory. This statement is in fact just the Kochen-Specker theorem; see Ref [15] for a
considerably simpler proof than that originally given by Kochen and Specker. It serves to high-
light that by additionally imposing outcome determinism on measurement noncontextual models,
we recover standard Kochen-Specker contextuality as a limiting case of operational contextuality.
However, in the operational approach we do not assume outcome determinism. Then, the question
of noncontextuality in quantum theory becomes: does the Born rule only depends on the POVM el-
ements or also on their contexts? Clearly, it does only depends on the POVM elements. Therefore,
quantum theory admits a measurement noncontextual model.

However, while quantum theory is measurement noncontextual, it is in fact preparation contex-
tual. The simplest proof known to the author follows the example of Ref [14]. We define the six
qubit states {|ψij〉} where i ∈ {a, b, c} and j ∈ {0, 1} as follows

|ψa0〉 = |0〉 |ψb0〉 = 1
2 |0〉+

√
3

2 |1〉 |ψc0〉 = 1
2 |0〉 −

√
3

2 |1〉, (1.25)

with |ψi1〉 defined as the orthogonal complement to |ψi0〉. These six states effectively correspond
to the six Bloch vectors illustrated in Figure 1.2 (right). We write ρij = |ψij〉〈ψij |. Consider now
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the three procedures corresponding to uniformly mixing ρi0 and ρi1 for each i and denote them Pi.
Define also the two procedures corresponding to uniformly mixing ρ1j , ρ2j and ρ3j for each j and
denote them P′j . Evidently, all five procedures are operationally equivalent:

1
2I = 1

2ρ10 + 1
2ρ11 = 1

2ρ20 + 1
2ρ21 = 1

2ρ30 + 1
2ρ31 (1.26)

= 1
3ρ10 + 1

3ρ20 + 1
3ρ30 = 1

3ρ11 + 1
3ρ21 + 1

3ρ31. (1.27)

The assumption of preparation noncontextuality implies that the ontic state distribution associated
to each of these five procedures must be the same:

p(λ|P1) = p(λ|P2) = p(λ|P3) = p(λ|P′1) = p(λ|P′2). (1.28)

When combining this with the convexity of ontic state distributions, we obtain that

µ(λ) ≡ 1
2p(λ|ρ10) + 1

2p(λ|ρ11) = 1
2p(λ|ρ20) + 1

2p(λ|ρ21) = 1
2p(λ|ρ30) + 1

2p(λ|ρ31)

= 1
3p(λ|ρ10) + 1

3p(λ|ρ20) + 1
3p(λ|ρ30) = 1

3p(λ|ρ11) + 1
3p(λ|ρ21) + 1

3p(λ|ρ31). (1.29)

Now, notice that ρi0 and ρi1 are orthogonal for every i. This means that each such pair of states
is fully distinguishable. Hence, they must belong to non-overlapping ontic state distributions.
The reason is that if they had support for some common ontic variables then upon receiving such a
variable one cannot decide whether it came from ρi0 or from ρi1 and hence one could not distinguish
them. Thus, it must hold that

p(λ|ρi0)p(λ|ρi1) = 0. (1.30)

Thus, the existence of a preparation noncontextual model requires equations (1.29) and (1.30)
to be compatible. However, a straightforward inspection of these equations shows that the only
solution possible is the all-zero solution implied by µ(λ) = 0, which evidently is not a probability
distribution. This contradiction proves that there is no preparation noncontextual model for our
ensemble of quantum states.

Whereas we phrased ontological models as appearing in prepare-and-measure experiments, the
above formalism is in fact not limited to physical scenarios that involve communication. An illumi-
nating example is that Bell nonlocality can emerge as a special instance of preparation contextuality.
This fact has been noted in a number of works and proved in (perhaps) as many different ways (see
e.g. [14, 16, 17, 18, 19]). The simplest derivation is (in the author’s opinion) as follows. Consider a
Bell scenario where Alice’s and Bob’s inputs are x and y respectively and their respective outputs are
a and b. When Alice performs her measurement and registers her outcome, she remotely prepares

28



Bob in a post-measurement state. In an ontological model, we associate this remote preparation to
a distribution over ontic states p(λ|a, x). The conditional probability that Alice remotely prepares
Bob in a particular state is given by p(a|x, y). The response function of Bob reads p(b|y, λ). Hence,
the ontological model becomes

p(a, b|x, y) =
∑

λ

p(a|x, y)p(λ|a, x)p(b|y, λ). (1.31)

The no-signaling principle implies that the outcome of Alice is not influenced by Bob’s setting;
p(a|x, y) = p(a|x). Then, by applying Bayes’ rule, we have that

p(a|x, y)p(λ|a, x) NS= p(a|x)p(λ|a, x) = p(λ|x)p(a|x, λ). (1.32)

However, the no-signaling principle asserts that the convex combination of preparations associated
to {(a, x)}a for a given x are operationally equivalent (since they cannot be distinguished by Bob).
A preparation noncontextual model therefore has that ∑a p(a|x)p(λ|a, x) is independent of x. This
necessitates that p(λ|x) = p(λ). Thus, our preparation noncontextual ontological model takes the
form

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, λ)p(b|y, λ). (1.33)

This is precisely the form of a local hidden variable model. We conclude that every local model
in a Bell scenario also is preparation noncontextual and that Bell nonlocality implies preparation
contextuality.

1.3 Quantum communication complexity

Let us now focus entirely on quantum correlations arising in experiments that involve communica-
tion. Imagine that we have two separated parties who do not share any entanglement. Clearly, they
cannot produce any correlations. However, if we allow them to communicate, correlations can be
established. It appears natural that the more the parties are allowed to communicate, the stronger
correlations should they be able to create. Therefore, a natural question is: how strong correlations
can be created from a given amount of communication? This falls under the broad umbrella of com-
munication complexity problems (CCPs). CCPs can be of two kinds, 1) find the smallest amount of
communication needed to complete a task, and 2) with a given amount of communication, perform
a task as well as possible. Our focus throughout this thesis is on the latter.

The simplest form of a CCP considers two separate parties, for simplicity named Alice and
Bob, who each hold some data x and y respectively. Each party is unaware of the data held by
the other party. Their aim is to collaborate in such a way that one of them (let us say Bob) can
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Figure 1.3: Communication complexity problem. Alice (Bob) receives input x (y). She is allowed to send
Bob a restricted amount communication in order to aid his evaluation of a task function f(x, y). Alice
and Bob collaborate towards Bob outputting a guess g that as often as possible coincides with the value of
f(x, y).

evaluate some task function f(x, y) that depends non-trivially on both their data. Of course, the
only way that this could possibly happen is if Alice and Bob communicate. For example, Alice
could simply send x to Bob. Now holding both x and y, he could compute f(x, y) and the task
would be successfully completed. The more interesting setting for a CCP is when the allowed
amount of communication is quantitatively limited in such a way that Alice no longer can send all
her data to Bob. Instead, the partners must adopt a more sophisticated strategy that allows Bob
to accurately evaluate f with as high a probability as possible while respecting the allowed amount
of communication (see Figure 1.3). The essence of the task is to optimally manage communication
resources towards creating the strong correlations needed to evaluate f(x, y).

Let us illustrate this in the simple example of Ref [20]. Imagine that a referee supplies Alice
and Bob with random and independent inputs. Alice receives two bits x0, x1 ∈ {0, 1} whereas Bob
receives a single bit y ∈ {0, 1}. The referee then presents Alice and Bob with the following CCP:
Bob must compute the binary function f(x0, x1, y) = xy but Alice may communicate no more than
one bit to Bob. That is, if y = 0 Bob wants to know x0 and if y = 1 he wants to know x1. Since
Alice does not know the value of y, she must try to compress her two bits into a single bit message
from which Bob can extract as much useful information as possible. The average probability of
succeeding with the task is then given by

psuc = 1
8
∑

x0,x1,y

p(g = f |x0, x1, y), (1.34)

where g denotes Bob’s guess for the value of f(x0, x1, y). In a classical model, Alice must use some
encoding function E : {0, 1}2 → {0, 1} to encode her two bits into one bit. The encoding creates
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a message m = E(x0, x1) that is relayed to Bob. Bob now holds two bits; his input y and the
message m. He must apply some decoding function D : {0, 1}2 → {0, 1} in order to construct his
guess g = D(y,m) for the task function f(x0, x1, y). What is the best possible pair of encoding
and decoding functions? Since the size of our problem is rather small, we could easily write out all
possible encoding and decoding functions. In fact, there are only 16 different functions that map
two bits into one bit. For clarity, let us write them all out:

E1 = 0, E2 = x0, E3 = x1, E4 = x0 ⊕ x1, E5 = x0x1,

E6 = x0 ⊕ x0x1, E7 = x1 ⊕ x0x1, E8 = x0 ⊕ x1 ⊕ x0x1, (1.35)

where ⊕ denotes addition modulo 2. Note that we obtain eight more encoding functions (bringing
us to the total of 16) by simply adding 1 to each of the above eight encoding functions - but these can
be neglected since we could simply have Bob adding 1 to the message he receives before proceeding
with his decoding. Moreover, E1 and E4 are poor choices since the former is independent of x
and the latter scrambles both useful pieces of information (x0 and x1). However, E5 is a good
choice: the values x0x1 = {00, 01, 10} are all mapped to 0 whereas x0x1 = 11 is mapped to 1.
Thus, if Bob receives 1 he knows both x0 and x1 and thus outputs g = f , but if he receives 0
the best he can do is to guess on g = 0 which is correct in 2/3 of the cases. Thus, he would find
psuc = 1/4×1+3/4×2/3 = 3/4. A little inspection shows that this value cannot be improved with
any of the remaining encoding functions. Therefore, the best possible success rate in a classical
implementation of the CCP is

psuc
classical= 3

4 . (1.36)

It turns out that Alice and Bob can do better if they let their one-bit communication be
assisted by entanglement [20]. That is, we complement the picture by letting Alice and Bob share
a bipartite state |ψ〉 which Alice and Bob can locally measure. This entanglement-assisted classical
communication enables Alice and Bob to use their local outcomes as advice for how to encode and
decode the classical communication. Importantly, this does not violate the one-bit communication
limit due to the fact that entanglement alone cannot be used for communication. There is no
way for Alice to send any information to Bob by means of |ψ〉 if the classical communication is
removed. This is closely related to the no-signaling principle. However, the strong correlations that
entanglement can give rise to, in particular through the violation of a Bell inequality, constitutes a
useful aid for communications.

In what precise way can Alice and Bob exploit their shared entanglement to perform the task?
Alice and Bob will conduct a test of the CHSH inequality. First, we remind ourselves that

〈AxBy〉 = p(a⊕ b = 0|x, y)− p(a⊕ b = 1|x, y) = (−1)xy (2p(a⊕ b = xy|x, y)− 1) , (1.37)
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where we have used the normalisation of p(a, b|x, y) and for simplicity taken x, y, a, b ∈ {0, 1}. This
allows us to write the CHSH inequality (1.3) on the form

Schsh ≡
1
4
∑

x,y

p(a⊕ b = xy|x, y) ≤ 3
4 . (1.38)

The best quantum implementation that we previously saw leading to 〈AxBy〉 = (−1)xy/
√

2 trans-
lates into

Schsh
Q
≤ 1

2

(
1 + 1√

2

)
≈ 85.4%. (1.39)

In the quantum implementation of the CCP, Bob uses his bit y as his measurement setting. Alice
maps her two bits into her binary measurement setting that enters the CHSH inequality test. She
chooses her setting as x ≡ x0 ⊕ x1. Now, Alice uses her outcome together with her input x0 to
construct the binary messagem = a⊕x0 which she sends to Bob. On his side, Bob uses his outcome
b to decode the received message into his final guess for the task function, g = m ⊕ b. Thus, we
have that

g = a⊕ b⊕ x0. (1.40)

The average success probability in the task then reads

psuc = 1
8
∑

x0,x1,y

p(a⊕ b⊕ x0 = xy|x0, x1, y). (1.41)

If we have y = 0 the winning condition is a ⊕ b = 0 whereas if y = 1 the winning condition is
a ⊕ b = x0 ⊕ x1. However, we know that a quantum implementation of the CHSH inequality can
achieve p(a⊕b = xy|x, y) = 85.4% for every x and y. Since we have x = x0⊕x1, this is precisely the
same as the winning condition in the CCP. Hence, if Alice and Bob share a maximally entangled
state and perform measurements that maximally violate the CHSH inequality, their entanglement-
assisted classical communication can achieve

psuc = 1
2

(
1 + 1√

2

)
≈ 85.4%. (1.42)

Importantly, this outperforms the best possible classical implementation and thus constitutes an
example of quantum correlations p(b|x0, x1, y) in the communication task.

The specific CCP that we have considered is known as a random access code [21]. It serves to
illustrate that quantum resources can improve communication complexity beyond anything achiev-
able by purely classical means. For a more general introduction to the use of quantum nonlocality
to enhance communication complexity, we refer the reader to Ref [22].

However, quantum nonlocality is not the only approach to enhancing communication complexity
beyond classical constraints. An interesting alternative is to instead of supplying Alice and Bob
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Figure 1.4: Random access code with quantum communication. Alice’s four qubit states |ψx0x1〉 form a
square in the xz-disk of the Bloch sphere (red arrows). Bob’s two measurements form a rotated square in
the same disk (black arrows).

with shared entanglement, one substitutes the classical communication for quantum communication.
This means that instead of communicating a classical bit, Alice can communicate a qubit to Bob.
The substitution is justified because of Holevo’s theorem which implies that a quantum system of
dimension d cannot carry more than log d bits of information [23]. Let us see how well Alice and
Bob can perform the random access code when Alice sends qubits to Bob. We let Alice associate
her four possible inputs to the four qubit states {|ψx0x1〉}. We choose them as

|ψ00〉 = cos π8 |0〉+ sin π8 |1〉 |ψ01〉 = sin π8 |0〉+ cos π8 |1〉 (1.43)

|ψ10〉 = cos π8 |0〉 − sin π8 |1〉 |ψ11〉 = sin π8 |0〉 − cos π8 |1〉. (1.44)

It is more illuminating to geometrically display these states in the xz-disk of the Bloch sphere (see
Figure 1.4) where we see that Alice’s four states form a square. Bob’s decoding procedure is a
quantum measurement. We choose his observables as σx and σz for y = 0 and y = 1 respectively.
In Figure 1.4, this corresponds to the black diagonals. The probability of Bob’s output satisfying
g = xy corresponds to the illustrated overlap in the figure. Notice that this overlap is the same for
every state and measurement for the successful outcome. Therefore, we need only to consider one
of them to evaluate the success probability in the CCP. We have that

psuc = 〈ψ00|
I + σz

2 |ψ00〉 = cos2 π

8 = 1
2

(
1 + 1√

2

)
. (1.45)

By means of quantum communication, we have again outperformed the limitations of classical
communication. Moreover, we have found precisely the same advantage as we earlier found by means
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of entanglement-assisted classical communication. However, this does not mean that entanglement-
assisted classical communication in general is equivalent to quantum communication in terms of its
ability of enhancing CCPs beyond their classical limitations.
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2

Quantum communication complexity

The use of quantum resources allows distributed parties to establish stronger-than-classical correla-
tions while not communicating more information. Here, we present a broad exploration of quantum
communication complexity, i.e. the correlations that can be established through quantitatively lim-
ited communication. The first section investigates the relation between Bell inequalities and CCPs:
we show how violations of the formers enable advantages in the latters but also that not all forms of
quantum nonlocality are useful for solving CCPs [24, 25]. The second section explores the relation
between entanglement-assisted classical communication and quantum communication as resources
for quantum communication complexity: we prove that the two resources give rise to different
correlations that can be strongly dependent on the dimension of Hilbert space [26]. The third
section focuses on quantum correlations established through the communication of d-dimensional
systems and enhances previous methods for bounding their advantages in communication complex-
ity problems by introducing highly efficient computer tools [27]. In the final section, we depart from
dimension-bounded systems and instead investigate the limits of classical and quantum correlations
constrained only by communication whose information content is limited by entropic quantities.
This approach allows us to go beyond standard dimension-bounded systems and make more explicit
the connection between correlations and information [28].

2.1 Bell nonlocality as a resource for communication complexity

In section 1.3, we exemplified how violations of the CHSH inequality can be used to power better-
than-classical communication complexity in the random access code. Moreover, we even found
that every violation of the CHSH inequality can enable such improvements. This link between a
Bell inequality and a CCP is by no means an isolated incident. A multitude of works have shown
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than different types of Bell inequalities can be directly related to CCPs in such a way that their
violation implies communication advantages. For instance, this has been shown for the multipartite
Mermin Bell inequalities [8], the three-outcome Collins-Gisin-Linden-Massar-Popescu (CGLMP)
Bell inequalities [29] as well as its generalisation to any number of outcomes [30, 31], the biased
CHSH inequalities [32, 33], the Elegant Bell inequality [34] and Bell inequalities for generalised
random access codes [35, 36]. More generally, and encompassing some of the above mentioned
cases, the link between Bell inequalities and CCPs has been shown for any bipartite correlation
Bell inequality with binary outcomes1 [37]. In view of this diverse fauna of links between Bell
inequalities and CCPs, it appears relevant to ask how general the connection actually is. Our first
step towards answering this question is by showing how to map a broad class of Bell inequalities
to CCPs [25]. An appealing feature of this map is that it reproduces all the mentioned examples
as special cases.

Let us begin by outlining a model for how Bell nonlocality is used to power CCPs. For simplicity,
we restrict it to two parties but afterwards we will consider the straightforward extension to more
parties. Consider a bipartite CCP in which Alice receives an input X ∈ [NA]0 and Bob receives
an input Y ∈ [NB]0. We use the notation [s]0 to denote the set {0, . . . , s − 1}2. Alice may send
a message m ∈ [M ]0 to Bob from which he constructs an output g ∈ [G]0 which is rewarded (or
penalised) with tgX,Y points. To ensure that the game is non-trivial, we should have M < NA

since otherwise Alice can simply send her input to Bob. We say that the tuple (NA, NB,M,G)
corresponds to a scenario, i.e. it tells us the size of the inputs and outputs of all parties. Within
the scenario, Alice and Bob can consider a general (linear) CCP. It corresponds to a task function
of the form

S =
∑

g,X,Y

tgX,Y p(g|X,Y ), (2.1)

where p(g|X,Y ) is the probability distribution observed in the game.

Classical models

A classical model has Alice encoding her input into a message via an encoding function E : [NA]0 →
[M ]0 and Bob uses a decoding function D : [NB]0 × [M ]0 → [G]0 to construct g. In addition, we
allow classical models the additional resource of shared randomness. Shared randomness is a string
of pre-established classical data shared between the two parties. We denote the value of the shared

1These Bell inequalities can be written as linear combinations of expectation values. They do not involve marginal
probabilities.

2Since we frequently want to consider modular sums, it is more convenient to count from zero than from one.
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randomness by λ and its distribution by p(λ)3. Alice and Bob may use the shared randomness
to coordinate their encoding and decoding functions. Hence, for every given value of λ, Alice and
Bob will choose a specific encoding and decoding function (Eλ, Dλ) and obtain the distribution
pλ(g|X,Y ). Specifically, this becomes

pC
λ (g|X,Y ) =

∑

m

p(m|X,λ)p(g|m,Y, λ), (2.2)

where p(m|X,λ) = δEλ(X),m and p(g|m,Y, λ) = δDλ(m,Y ),g. These are deterministic distributions
that can be used to create a general classical distribution by varying the distribution of the shared
randomness. The total distribution becomes

pC(g|X,Y ) =
∑

λ

p(λ)pC
λ (g|X,Y ). (2.3)

Therefore, it also follows that the classical set of correlations arising in a given scenario can be
geometrically represented as a polytope whose vertices correspond to the deterministic distributions
pC
λ (g|X,Y ). The fact that a polytope is characterised by a set of linear inequalities is the reason

behind us focusing on linear CCPs. A quantum advantage in a nonlinear CCPs necessitates a
quantum advantage in some linear CCP.

We can now define what is meant by the best classical score in a CCP as follows: it is the
largest value of the task function obtainable by means of Alice communicating integer messages
coordinated via shared randomness, i.e.

SC = max
p(λ)
S[pC(g|X,Y )]. (2.4)

Importantly, since the task function is linear, the best classical score is obtained by a deterministic
strategy. This follows from the fact that if we use a mixed strategy, it can never perform better
than the best deterministic strategy originally used to create the mixed strategy. We can therefore
w.l.g. write

SC = max
λ
S[pC

λ (g|X,Y )]. (2.5)

In summary, the best classical score in a given CCP is obtained from finding the best pair of
deterministic encoding and decoding functions compatible with the scenario. There are only finitely
many such functions (as long as the inputs/outputs are finite) and therefore one only needs to
evaluate the list {S[pλ(g|X,Y )]}λ and choose the largest value.

3Since we will only consider scenarios with finitely many inputs and outputs, it is sufficient to only consider finite
values of λ. Therefore we can safely restrict to a probability distribution p(λ) rather than a probability density.
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Entanglement-assisted models

Let us now consider entanglement-assisted models. Here, Alice and Bob still communicate classi-
cally, but they additionally share a quantum state ρ. On this state, they may perform measurements
with respective outcomes a and b. To choose their settings, they may use their inputs for the CCP.
This process allows them to share correlations that take the form

p(a, b|X,Y ) = tr
(
Aa|X ⊗Bb|Y ρ

)
, (2.6)

where {Aa|X}a and {Bb|Y }b are the POVMs of Alice and Bob respectively for each respective input
X and Y . Notice that the outcomes of Alice and Bob could in principle be of any alphabet and the
shared state could be of any dimension. With these quantum correlations in hand, Alice and Bob
can employ a classical encoding procedure. Alice uses an encoding function E : [|a|]0×[NA]0 → [M ]0
and Bob uses a decoding function D : [M ]0 × [NB]0 × [|b|]0 → [G]0. While we could simply absorb
the shared randomness into the entangled state (and indeed, we could also have had absorbed the
inputs of Alice and Bob into a and b respectively when defining E and D) we choose to treat
it separately in order to distinguish it as a classical resource. For a given value of the shared
randomness, the quantum model reads

pQ
λ (g|X,Y ) =

∑

a,b,m

p(a, b|X,Y )p(m|a,X, λ)p(g|m, b, Y, λ).

and the total distribution becomes

pQ(g|X,Y ) =
∑

λ

p(λ)pQ
λ (g|X,Y ). (2.7)

Notice that we first perform the Bell inequality test and then communicate, i.e. once Bob receives
the message, he has already measured the entangled state. We choose this order of events since it
is more in line with the concept of space-like separation in Bell inequality tests. It is, however, also
interesting to consider models in which the message can be used to influence Bob’s setting.

From quantum nonlocality to quantum communication complexity

Let us now show how one can map any N -observer correlation Bell inequality in which each observer
has d outcomes to a CCP. To this end, we name our N observers O1, . . . , ON , label their respective
measurements x1, . . . , xN and label their respective outputs a1, . . . , aN . The class of Bell inequalities
that we consider takes the form

B =
∑

~x

∑

r

cr~xp~x

(
N∑

i=1
oi = f r~x

)
local
≤ C, (2.8)
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Figure 2.1: Map from Bell inequalities to CCPs. Left: multipartite Bell experiment with inputs (x1, . . . , xN )
and outputs (o1, . . . , oN ). Right: multipartite CCP with inputs (xk, x

(k)
0 ) for party k = 1, . . . , N − 1 and

input xN for party ON . The settings {xi} are used to perform the Bell experiment. Then, the first N − 1
parties send the respective messages mk = ok + x

(k)
0 to ON who outputs g.

where ~x = (x1, . . . , xN ), C is the local bound, f r~x ∈ [d]0 and cr~x are real coefficients. The rela-
tion ∑i oi = f r~x is evaluated modulo d. These can be understood as the d-outcome multipartite
generalisations of standard correlation Bell inequalities in the binary-outcome and bipartite setting.

In order to map such Bell inequalities to CCPs, consider the following procedure (see Figure 2.1).
For i = 1, . . . , N − 1, let Oi have an input defined as the pair Xi = (xi, x(i)

0 ) where x(i)
0 ∈ [d]0. The

parties O1, . . . , ON−1 may send a d-valued message mi ∈ [d]0 to ON . ON acts as the party who
attempts to perform the computation. Therefore, ON has a smaller input defined as XN = xN and
once the messages are received he produces a guess g ∈ [d]0 and earns a payoff cr~x/dN−1 whenever
g = f r~x +∑N−1

i=1 x
(i)
0 . We choose the score in the CCP to emulate the witness in the Bell inequality.

Specifically,

S = 1
dN−1

∑

~x,~x0

∑

r

cr~xp~x

(
g = f r~x +

N−1∑

i=1
x

(i)
0

)
, (2.9)

where ~x0 = (x(1)
0 , . . . , x

(N−1)
0 ). In order to relate the Bell inequality to the CCP, we proceed as

follows. Let the N parties share an entangled state and use their inputs ~x to perform a measurement
with outcome oi ∈ [d]. This corresponds to the Bell inequality test. Then, the parties Oi for
i = 1, . . . , N − 1 send the respective message mi = oi + x

(i)
0 mod d to ON who outputs the guess

g = oN +∑imi mod d. The intuition is that the input x(i)
0 for each of the communicating parties

acts as a scrambler that keeps ON unaware of the input xi. It is worth noticing that the parties
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O1, . . . , ON−1 only use part of their inputs for choosing a measurement setting. In this way, the
scramblers cancel in the winning condition of the CCP and we find

S = B. (2.10)

Therefore, for such additive communication strategies we classically have S ≤ C. Hence, a violation
of the Bell inequality implies S > C. This construction encompasses the many maps from specific
Bell inequalities to CCPs encountered in the literature, see e.g. Refs [8, 29, 30, 31, 33, 35, 36, 37].
In what follows we refer to it as “the map from Bell inequalities to CCPs”.

The instructive case of the CGLMP Bell inequality in CCPs

Our above presented construction rests on communication strategies that are additive. We saw
that that violation of a Bell inequality of the form (2.8) is necessary and sufficient for a better-
than-classical score under additive messages. What happens when classical messages are allowed
to be more general? A partial answer is given in Ref [37]. By choosing binary outcomes in our Bell
inequalities (d = 2), our map reduces to that derived in Ref [37]. Interestingly, it was shown that for
these binary outcomes, additive messages yield the best classical score. In other words, one cannot
hope to improve the classical score by adopting another communication strategy. This means that
Bell inequality violation is necessary and sufficient for quantum advantages over general classical
strategies. Several subsequent works have drawn on this result to establish the analogous relation
between the violation of specific many-outcome Bell inequalities and CCPs. A prominent example is
the mapping of the CGLMP inequalities to CCPs [29, 30, 31]. The CGLMP Bell inequalities [38] are
facet Bell inequalities that generalise the CHSH inequality to any number of outputs per party. For
instance, Ref [29] concluded that violation of the three-outcome CGLMP Bell inequality is necessary
and sufficient for quantum advantages in the corresponding CCP. Formally, this was shown for
additive classical communication strategies. However, as we now show, by going beyond binary-
outcome Bell inequalities, one can no longer safely consider additive communication strategies to
be optimal. By abandoning additive strategies, we disprove the main result of i.a. Ref [29] and
thereby, find an interesting lead in the exploration of the relation between Bell nonlocality and
CCPs.

Let us briefly present the CGLMP inequality. Alice and Bob receive binary inputs x, y ∈ [2]0
and are asked to return ternary outputs a, b ∈ [3]0. The Bell inequality reads

Bcglmp = 1
4
∑

x,y

[
Pxy(a+ b = f1)− Pxy(a+ b = f2)

] local
≤ 1

2 , (2.11)

where f1 = −xy, f2 = −xy + (−1)x+y and addition is modulo 3. It is well-known that quantum
theory can violate this inequality. The maximal violation is BQ

cglmp ≈ 0.729 and is obtained by Alice
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and Bob performing suitable measurements on a partially entangled state [39]. Applying the map
from Bell inequalities to CCPs, we supply Alice with a total of six inputs x ∈ [2]0 and x0 ∈ [3]0
and Bob with a binary input y ∈ [2]0. Alice may send a ternary message m ∈ [3]0 to Bob whose
guess g ∈ [3]0 aims to maximise the task function

Scglmp = 1
12

∑

x0,x,y

[p(g = x0 + f1|x, y)− p(g = x0 + f2|x, y)] . (2.12)

Notice that this is a direct application of the presented map. As we have seen, additive commu-
nication strategies necessarily lead to Bcglmp = Scglmp and hence a quantum violation of the Bell
inequality implies an advantage in the CCP.

However, let us now explore the full power of classical communication strategies. Alice’s en-
coding function maps her six inputs into a ternary message - there are 36 such functions. Bob’s
decoding maps the ternary message and the binary input into a ternary guess - there are also 36

such functions. Hence, since we know that the best classical score is achieved for a deterministic
strategy, we must consider a total of 312 communication strategies and select the best one. This can
be done by brute force. Interestingly, one finds that the additive strategy is not optimal. Instead,
we have

SC
cglmp = 2

3 . (2.13)

A strategy that achieves this optimal score is as follows. Choose

m(x0, x) = δx,0δx0,2 + 2δx,1δx0,1 mod 3 (2.14)

g(m, y) = 2δy,0m+ δy,1 (m+ 1) mod 3. (2.15)

Notice that by sending m = 1 or m = 2, Alice informs Bob of the precise value of x. This is
conceptually very different from additive strategies since these are essentially emulating a Bell
inequality test: by sending an additive message, one effectively preserves the no-signaling feature
by scrambling any information one could have sent about the input in the Bell inequality test so
that it cannot be extracted from the received message. Notably, entanglement-assisted strategies
can still outperform the classical limitation since the maximal quantum violation of the CGLMP
inequality is still larger than the classical limit of 2/3. But weak violations seem to no longer be
sufficient to create a quantum advantage.

One natural question is whether also the quantum case can be improved by Alice and Bob
maximally violating the CGLMP inequality but using another communication strategy. Numerical
searches indicated no such improvement and the author conjectures that no such improvement
exists. Moreover, if the distribution p(g|x0, x, y) obtained from violating the CGLMP inequality
and using additive communication is not always useful for improving the CCP considered here,
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could there be some other CCP for which it does offer a quantum advantage for as soon as the Bell
inequality is violated? In other words, can we find another task function that is better suited to
this entanglement-assisted strategy? To this end, we write

p(a, b|x, y) = vpcglmp(a, b|x, y) + 1− v
9 , (2.16)

where pcglmp(a, b|x, y) is the distribution that maximally violates the CGLMP inequality and v ∈
[0, 1] is the protocol visibility parameter. The distribution violates the CGLMP inequality when v >
0.6861. The probability distribution pQ

v (g|x0, x, y), obtained from using the nonlocal correlations
p(a, b|x, y) in a CCP together with an additive communication strategy, beats the classical bound
only when v > 0.9149. Is an intermediate value v ∈ [0.6861, 0.9149] useful for a quantum advantage?
We seek the largest v for which pQ

v can be simulated by a classical model. This can be solved by
means of the linear program

max
p(λ)

v s.t. p(λ) ≥ 0, ∑
λ p(λ) = 1,

and pQ
v (g|x0, x, y) = ∑

λ p(λ)pC
λ (g|x0, x, y).

(2.17)

By considering pC
λ (g|x0, x, y) for all possible deterministic strategies, we have found that the corre-

sponding polytope of classical probability distributions has 47601 vertices. We have evaluated
the linear program and found v ≈ 0.7943. Hence, probability distributions pQ

v (g|x0, x, y) for
0.7943 < v ≤ 0.9149 indeed imply an advantage over classical protocols in some CCP despite
our particular CCP failing to detect it. However, when 0.6861 < v ≤ 0.7942 the CGLMP inequal-
ity is violated, but the probability distribution pQ

v (g|x0, x, y) can be classically modeled. Hence, a
violation of the CGLMP inequality combined with additive classical communication in our scenario
does not always have the ability to outperform classical models.

Does Bell nonlocality imply communication advantages?

Although it is often believed that Bell nonlocality implies quantum advantages in CCPs, our exam-
ple of the CGLMP inequality introduces a source of doubt. Is it really the case that Bell nonlocality
always implies communication advantages? We now present evidence in favour of a negative answer.
This evidence is based on proving a stronger statement than that already shown for the CGLMP
example. We consider a specific facet Bell inequality and find a well-chosen set of correlations that
violate it. Importantly, these correlations do not violate any other facet of the local polytope. We
then fix the scenario for the CCP to be that commonly considered in the literature (and indeed also
employed in our map). This is indeed an assumption, but arguably an intuitive one. Then, we allow
Alice and Bob to employ any classical communication strategy that exploits the given quantum
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nonlocality. Under these circumstances, we show that the nonlocal probability distribution does
not have the ability of enhancing any CCP beyond its classical constraints in the scenario regardless
of the communication strategy employed.

The simplest Bell scenario is that in which Alice and Bob have binary inputs and outputs.
However, this is not useful for our purposes since the CHSH inequality is the only facet inequality
and it is known that every violation of the CHSH inequality is useful for advantages in a CCP [20].
Therefore, we consider the second simplest setting; that in which Alice and Bob have ternary inputs
and binary outputs. The facets of the local polytope are now two-fold; the lifted CHSH inequality
(which is again not useful for us) and the so-called I3322 inequality (or the Froissart inequality).
This inequality reads [40, 41]

I = −PA(0)− 2PB(0)− PB(1) +
∑

x,y

Tx,yP (x, y) ≤ 0, (2.18)

where P (x, y) is the probability of outputting a = b = 0, PA(i) = p(a = 0|x = i), PB(i) =
p(b = 0|y = i) and T = {[1, 1, 1], [1, 1,−1], [1,−1, 0]}. Importantly, the I3322 inequality is not a
correlation Bell inequality (it has marginals) and therefore is not within the scope of the map from
Bell inequalities to CCPs. Therefore, even though it has binary outcomes, it does not fall into
the broad class of binary outcome Bell inequalities whose violations are known to imply quantum
advantages in CCPs.

Following previous literature and our map, a natural scenario in which to look for quantum
advantages via violations of the I3322 inequality is that in which Alice receives a trit x ∈ [3]0 and
a bit x ∈ [2]0 while Bob receives a trit y ∈ [3]0. Alice sends a binary message m ∈ [2]0 to Bob
who outputs a binary guess g ∈ [2]0. To confirm that the scenario indeed is a natural choice, let us
consider a simple example. The maximal violation of the I3322 inequality using qubits is known to
be IQ = 1/4 [40]. It can be achieved by Alice and Bob sharing a singlet state |ψ−〉 and choosing
their measurement Bloch vectors as

~a1 = [0, 0, 1] ~a2 = [
√

3, 0, 1]/2 ~a3 = [
√

3, 0,−1]/2
~b1 = −[

√
3, 0, 1]/2 ~b2 = −[0, 0, 1] ~b3 = [

√
3, 0,−1]/2. (2.19)

The correlations are obtained from the Born rule

p3322(a, b|x, y) = 〈ψ−|I + (−1)a~ax · ~σ
2 ⊗ I + (−1)b~by · ~σ

2 |ψ−〉 (2.20)

which can be more conveniently be written as

p3322(a, b|x, y) = 1
4
[
1− (−1)a+b~ax ·~by

]
. (2.21)
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Let us now consider the one-parameter family of correlations obtained from mixing the optimal
distribution p3322(a, b|x, y) with white noise,

pv(a, b|x, y) = vp3322(a, b|x, y) + 1− v
4 . (2.22)

Inserting this into the I3322 inequality, we find that it gives a violation whenever v > 4/5.
Is it true that whenever v > 4/5, the correlations are also useful for creating a quantum

advantage in some CCP in our considered scenario? It turns out that it is sufficient to employ
the standard additive communication strategy in which Alice sends m = a ⊕ x0 and Bob outputs
g = m ⊕ b. As in our example of the CCP based on the CGLMP inequality, we can decide the
critical v for a classical simulation of the full distribution p(g|x0, x, y) in the CCP by means of linear
programming. Evaluating the relevant linear program, one finds that the critical value indeed is
v = 4/5. All distributions of the form (2.22) that violate the I3322 inequality are useful for quantum
communication complexity.

In spite of this, we now present a candidate for nonlocal correlations that cannot be used to
enhance any CCP in the scenario with any communication strategy. This distribution was first
presented in Ref [40] as an example of a distribution that can violate the I3322 inequality using a
state that can never be used to violate the CHSH inequality. The distribution is defined as follows.
Alice and Bob share the noisy state

ρ = 17
20 |φ〉〈φ|+

3
20 |0, 1〉〈0, 1| (2.23)

where |φ〉 = (2|0, 0〉+ |1, 1〉)/
√

5. Let us choose Alice’s and Bob’s Bloch vectors in the xz-plane as
~ax = [sin θx, cos θx] and ~by = [sinφy, cosφy] with

θ1 = η θ2 = −η θ3 = −π2
φ1 = −χ φ2 = χ φ3 = π

2 ,

and η = arccos
(√

7/8
)
and χ = arccos

(√
2/3

)
. This defines the candidate probability distribution

pcand(a, b|x, y) = 1
4 tr

[
(I + ~ax · ~σ)⊗ (I +~by · ~σ)ρ

]
(2.24)

which achieves the small violation I ≈ 0.0129.
Having fixed the nonlocal distribution of Alice and Bob, the set of quantum correlations in the

CCP reads

pQ(g|x, x0, y) =
∑

λ

p(λ)pQ
λ (g|x, x0, y) =

∑

λ

p(λ)
∑

a,b,m

pcand(a, b|x, y)δEλ(a,x0,x),mδDλ(m,b,y),g. (2.25)
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This is a polytope. The number of encoding/decoding strategies is 224. We have evaluated the
list of all deterministic distributions {pQ

λ (g|x, x0, y)}224
λ=1. Fortunately, we find that many pairs of

encoding/decoding functions give rise to the same distribution. Removing the duplicates, we are
left with 8192992 unique distributions which is roughly half the original number. We must show
that all these distributions can be simulated in a classical model. This is a rather painful task, since
it involves the evaluation of just over eight million linear programs4. Having evaluated all linear
programs, we found that all the distributions admit a classical simulation. Then, it immediately
follows that any convex combination of them also can be classically simulated and therefore that
there exists no CCP in the considered scenario for which pcand offers a quantum advantage.

In conclusion, Bell nonlocality does not imply advantages in communication complexity using
the standard scenario. If there nevertheless exists a way of harvesting an advantage from pcand, it
must occur within a more complicated scenario. This in itself would be interesting since it is likely
to require a construction that significantly departs from the established ones. However, it is far
from clear whether this is possible or not. In view of our negative evidence with regard to whether
Bell nonlocality implies quantum advantages in CCPs, it is and outstanding open problem to settle
the matter in full generality. One route to doing that is to attempt to generalise our argument
based on pcand to general scenarios.

2.2 Quantum communication versus entanglement-assisted classi-
cal communication

Hitherto, our approach to quantum communication complexity has been based quantum nonlocality.
However, as we have seen in section 1.3, quantum advantages in CCPs can arise from entirely
different quantum resources. We consider the setting in which parties share no entanglement and
communicate quantum systems. How does such quantum communication compare to entanglement-
assisted classical communication as a resource for CCPs? Are the resources equivalent? If not, when
is one better than the other? How do their differences manifest themselves?

Quantum communication models

Let us begin by describing quantum communication models for CCPs. We focus on bipartite
scenarios in which Alice receives the input X, Bob receives the input Y and the communication is
from Alice to Bob. In a quantum communication model, we substitute the classical message for a

4The computation was distributed on several desktop computers, a two workstations and a high-performance
cluster. It was completed in three weeks.
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quantum message. Importantly, in order to not violate the quantitative communication constraint
of the CCP, the dimension d of the quantum message must be no greater than the alphabet size
of the classical message. While it is perhaps intuitive that a quantum d-level system cannot carry
more information than a classical d-level system, this substitution is formally justified by the Holevo
theorem [23] which shows that the accessible information in both the quantum and classical systems
is no more than log d bits. Hence, Alice associates her input to a quantum state ρX living in d-
dimensional Hilbert space. This state is relayed to Bob who’s decoding procedure now corresponds
to a quantum measurement. Given his input Y , he selects a POVM {Mg|Y }g and applies it to the
incoming state. The resulting probability distribution is

p(g|X,Y ) = tr
(
ρXMg|Y

)
. (2.26)

Bob’s outcome g is his guess in the CCP. Notice that classical models also can be obtained from the
quantum models under the additional constraint that all states of Alice are diagonal in the same
basis.

From entanglement-assisted models to quantum communication models

It is many times possible to transform an entanglement-assisted model into a quantum communi-
cation model in such a way that success rate in the CCP stays the same [24]. This transformation
is based on the map from Bell inequalities to CCPs introduced in the previous section where we
found that additive message strategies in the classical communication allow a one-to-one link be-
tween (many) Bell inequalities and CCPs. The success rate in such entanglement-assisted CCP
can be reproduced in a quantum communication model provided that two additional conditions are
satisfied. These constraints are

1. The quantum state used to obtain the maximal violation of the relevant Bell inequality is of
the same local dimension on Bob’s side as the alphabet size of the classical communication.

2. The marginal distribution of Alice in the Bell experiment is uniform.

To see why these two conditions are needed, notice that when Alice applies the measurement
operator Aa|x in the Bell experiment, she remotely prepares Bob in the state

ρa|x =
trA

(
Aa|x ⊗ IρAB

)

tr
(
Aa|x ⊗ IρAB

) . (2.27)

Since we assume that Alice’s marginals are uniform, we can instead write

ρa|x = d trA
(
Aa|x ⊗ IρAB

)
. (2.28)
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In the quantum communication model, due to the fact that Alice’s outcome is uniformly random,
we can treat it as the “scrambler” input appearing in the CCP5. Therefore, we can associate the
set of states remotely prepared by Alice to the set of states explicitly communicated by Alice in
a quantum communication model. However, for this communication to be compatible with the
dimensional limitation, we must require that the optimal state for violating the Bell inequality,
ρAB, lives on CD⊗Cd for some D. Then, it must be that also ρa|x is d-dimensional. Hence, if Alice
has access to quantum communication, she can explicitly prepare this state and relay it to Bob.
Because in both the quantum communication model and the entanglement-assisted model, Bob
receives the same ensemble, his optimal action is the same in both cases. Therefore, the quantum
communication model can reproduce the entanglement-assisted CCP score.

Note that a concrete example of applying this transformation of entanglement-assisted models
to quantum communication models is implicitly presented in our example of the random access
code in section 1.3. Recall that the random access code was obtained as a mapping from the CHSH
inequality to a CCP. The CHSH inequality is compatible with both our additional assumptions;
it reaches its maximal violation with two-qubit entanglement and the corresponding correlations
have uniform marginals. Indeed, the states Alice sent in the quantum communication variant of the
random access code were precisely those that she remotely prepared for Bob in the entanglement-
assisted variant. With our present knowledge, it was therefore unsurprising that we found the same
success rate in both cases.

What happens when we start off with a correlation Bell inequality that does not respect the
two assumptions and map it to its corresponding CCP? Then matters are less clear. On the one
hand, entanglement-assisted strategies are not limited in the dimension of the entangled state.
Therefore, Alice could prepare remote states on Bob’s side that are of a dimension higher than
d. On the other hand, quantum communication allows Alice to prepare arbitrary states that
are not constrained by the no-signaling principle. It is therefore interesting to know that there
exists examples of such Bell inequalities in which entanglement-assisted classical communication
outperforms quantum communication [35]. The simplest example (known to the author) is the
so-called four-bit random access code. It is a generalisation of the random access code introduced
in section 1.3. In this variant, Alice holds a four-bit input X = x1 . . . x4 ∈ {0, 1}4 and Bob holds
Y ∈ {1, 2, 3, 4}. Alice communicates no more than one bit to Bob, who attempts to maximise the
task function

Srac = 1
64
∑

X,Y

p(g = xy|X,Y ). (2.29)

5Recall that in the considered construction, only one part of the input of each party is used as a measurement
setting in the CCP. The other part is the scrambler.
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An optimal entanglement-assisted strategy can achieve Srac = 3/4 [42] whereas a quantum commu-
nication strategy is broadly believed to be limited by Srac ≈ 74.1% [43]. Indeed, the Bell inequality
that Alice and Bob can use [36] to perform the entanglement-assisted protocol is optimally imple-
mented with entangled states of local dimension larger than two.

Quantum communcation models can outperform entanglement-assisted models

Let us now turn to our main issue, namely that of determining whether there exists scenarios in
which quantum communication models can outperform entanglement-assisted models. We answer
this in the positive. More surprisingly, we find that there even exists scenarios in which the relation
is activated once one steps over a critical dimensional threshold [31, 26].

Let us consider CCPs tailored to the d-outcome CGLMP Bell inequalities [38] - as obtained
by applying our previously presented map from Bell inequalities to CCPs. The choice to focus on
these Bell inequalities stems from the fact that these are the only known (at least to the author)
family of d-outcome Bell inequalities that are also facets of the local polytope. In the CCP, Alice
receives an input labelled by the pair x ∈ [2]0 and x0 ∈ [d]0. Bob receives an input y ∈ [2]0. Alice
may communicate no more than a d-valued message to Bob. Having received the message, Bob
constructs his guess g ∈ [d]0. Depending on his guess, he either earns a certain amount of points
or loses a certain amount of points. Specifically, consider the functions

fk = x0 − xy − (−1)x+yk mod d hk = x0 − xy + (−1)x+y(k + 1) mod d, (2.30)

for k = 0, . . . , bd/2c − 1. If Bob guesses fk he will earn ck points while if he instead guesses hk he
will lose ck points. In all other cases, no points are won or lost. We then choose

ck = 1− 2k
d− 1 . (2.31)

The average score becomes

∆d = 1
4d
∑

x0,x
y,k

ck [p(g = fk|x0, x, y)− p(g = hk|x0, x, y)] (2.32)

Clearly, the best Bob could possibly hope for is to always guess g = f1 which would earn him 1
point in every round and therefore ∆d = 1. Following our previous discussion of entanglement-
assisted models, Alice and Bob can share the state that enables the maximal violation of the
CGLMP inequalities and use their inputs x and y to obtain outcomes a and b which have the
strong correlations associated to the maximal quantum correlations. Then, Alice sends the message
m = x0 + a mod d to Bob who guesses g = m− b mod d. The entanglement-assisted strategy is

48



Figure 2.2: Quantum implementations of CCPs. a) Entanglement-assisted strategy for CCP based on the
CGLMP inequality. b) Quantum communication strategy for CCP based on the CGLMP inequality.

illustrated in Figure 2.2. Due to our previous discussion, this gives a one-to-one relation between
∆d and the violation of the CGLMP inequality. The maximal violation of the CGLMP inequalities
does not have a known analytical form as a function of d, but it is known up to large values of d
[44].

In a quantum communication model, we write Alice’s d-dimensional quantum states as ρx0x ∈ Cd

and Bob’s measurements as {Mg|y}g (see Figure 2.2). We then have that

∆d = 1
4d

∑

x0,x,y,k

ck tr
(
ρx0x

(
Mfk|y −Mhk|y

))
. (2.33)

How does the optimal quantum communication score compare to the optimal entanglement-
assisted score? To answer this question, we have conducted extensive numerics which is summarised
in Table 2.1. We have used semidefinite programs (SDPs) [45] in see-saw to optimise the quantum
communication model. This gives a lower bound on the best performance. We have evaluated
a lower bound under the additional constraint of Bob using rank-one projective measurements.
In addition, we present the known maximal violations of the CGLMP inequality up to d = 10.
Moreover, since the link between the CGLMP inequality and the score in the entanglement-assisted
CCP is not restricted to quantum violations of the CGLMP inequality, we have also considered the

49



d Lower bound QC Optimal EACC Optimal ML Lower bound QC
rank-one projective

2 0.7071 0.7071 0.7071 0.7071
3 0.7287 0.7287 0.7887 0.7287
4 0.7432 0.7432 0.8032 0.7432
5 0.7539 0.7539 0.8249 0.7539
6 0.8000 0.7624 0.8345 0.7624
7 0.8175 0.7694 0.8461 0.7814
8 0.8571 0.7753 0.8529 0.8006
9 0.8622 0.7804 0.8605 0.8188
10 0.8889 0.7849 0.8657 0.8396

Table 2.1: Lower bounds on the score in the CCP based on the CGLMP inequality using quantum commu-
nication (QC). Optimal scores via entanglement-assisted classical communication (EACC) using the maximal
quantum violation of the CGLMP inequality as well as its relaxation to macroscopic locality (ML).

CCP score attainable in the post-quantum model based on Bell nonlocality that only is required
to respect the principle of macroscopic locality [46]. The results reveal a peculiar pattern. The
lower bound for quantum communication coincides accurately (up to several more decimal places
than displayed) with the maximal violation of the CGLMP inequality for d = 2, 3, 4, 5. Since the
CGLMP inequality is a correlation Bell inequality that is maximally violated with two entangled d-
dimensional systems and the maximal violation has uniform marginals, we know due to our previous
discussion that the quantum communication must be at least as good as the maximal violation of
the CGLMP inequality. Indeed, we find that our numerically obtained quantum communication
ensembles coincide with those remotely prepared in the corresponding Bell experiment. Thus,
our results indicate that, in fact, that no better quantum communication strategy is possible for
these low dimensions. However, surprisingly, from d = 6 and beyond, this pattern is broken and
quantum communication outperforms the entanglement-assisted strategy. Dimension six appears
to act as a threshold for a qualitatively different behaviour. It is interesting to note that the lower
bound for quantum communication when Bob uses rank-one projective measurements for d = 6
still coincides with the entanglement-assisted bound. This indicates that starting from d = 6, Bob
should use degenerate quantum measurements. Moreover, starting from dimension d = 8, quantum
communication obtains an advantage large enough to even outperform the Bell nonlocality based
strategy limited only by macroscopic locality.

These results motivate the following question: does dimension six really act as a threshold, or
is quantum communication already advantageous for d = 2, 3, 4, 5 but we simply failed to detect it
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Figure 2.3: Alice and Bob receive inputs x and y of a given cardinality. Alice communicates a d-dimensional
quantum state to Bob who applies a POVM to obtain an outcome b.

with our lower bound? We resolve this matter by evaluating symmetrised semidefinite relaxations
of the set of quantum correlations [47, 27] (which is the subject of the next section). Such methods
give us upper bounds on the best possible value of ∆d achievable with quantum communication.
In this manner, we can confirm that our lower bounds for d = 2, 3, 4, 5 in fact are optimal, and
hence that the threshold at d = 6 is a genuine feature. In Ref [26] the quantum communication
advantages over both the strategy using quantum nonlocality and the strategy using macroscopic
locality were experimentally demonstrated.

This leaves a conspicuous open question: how can we understand and predict the emergence of
a dimensional discontinuity in quantum communication complexity?

2.3 Bounding finite-dimensional quantum correlations

The set of classical correlations for a given communication scenario can be characterised by a
polytope. How can we characterise the set of quantum correlations that arises from communication
of quantum d-level systems (see Figure 2.3)? We will consider this question when Alice and Bob
also have access to shared randomness. On the one hand, this is an admittedly fair comparison to
classical models. On the other hand, shared randomness introduces convexity in the set of quantum
correlations. This facilitates the analysis and allows us to employ tools for convex optimisation.

In general, it is a difficult task to evaluate the optimal score in a CCP under quantum commu-
nication of dimension d. Analytical solutions are rare. Therefore, it is relevant to develop general
methods for establishing upper bounds on any given linear task function in a quantum communi-
cation model. In general, we can write the task as follows. If Alice’s input is denoted x, Bob’s
input is denoted y and his output is denoted b, an arbitrary linear functional in a quantum model
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is written
S =

∑

x,y,b

cxyb tr
(
ρxMb|y

)
, (2.34)

where cxyb can be arbitrary real coefficients, ρx are positive semi-definite trace-one operators of size
d and {Mb|y} are POVMs of size d. The maximal quantum correlations correspond to evaluating

SQ = max
{ρx}

max
{My}

S. (2.35)

The problem of deriving upper bounds on SQ was tackled in Ref [47]. There, a hierarchy of SDPs was
the developed for establishing a series of improving bounds on SQ. Let us outline this Navascués-
Vértesi (NV) hierarchy in a simple and brief manner. The reader is referred to Refs [47, 48] for a
detailed description.

The Navascués-Vértesi hierarchy

To use the NV hierarchy, we must first choose the number of inputs and outputs present in our
problem, the dimension of Alice’s quantum communication as well as the specific objective (2.34)
that we wish to evaluate in a quantum model. Then, we can make a list X = {I, {ρx}, {Mb|y}} of all
operators that appear in the problem, namely the identity, all Alice’s states and all Bob’s POVM
elements. We are now free to choose the relaxation degree. A higher relaxation degree means a better
bound on SQ but also a more demanding computation. The relaxation degree corresponds to a list of
monomialsO which contains products of the operators that appear inX. Relaxation degree k means
that all products of at most k operators from X must appear in O. For instance, choosing k = 1 we
just have O = X. Choosing k = 2 we have O = {I, {ρ}, {M}, {ρ}{ρ}, {ρ}{M}, {M}{M}} where by
{A}{B} we mean all products between all elements in set A and set B. Having chosen the relaxation
degree, we evaluate the NV hierarchy to obtain an upper bound on the best possible quantum
implementation, i.e. Sk ≥ SQ. Below, we outline a step-by-step procedure for its implementation.

1. Sample a set of random pure states to be communicated by Alice; {|ψx〉}x ∈ Cd.

2. Sample a set of random projective measurements to be applied by Bob; {Mb|y}b,y. The
composition of the ranks in each measurement needs to be decided in advance.

3. The sampled states and measurements allow us to compute the corresponding operator list
X and subsequently also the list of monomials O. From the monomials, we can evaluate the
sampled moment matrix which is defined as

Γij = tr
(
OiO†j

)
. (2.36)
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4. Store the sampled moment matrix. Repeat the above three steps, each time storing the
sampled moment matrix. Terminate this loop when the sampled moment matrix is linearly
dependent on the previously sampled moment matrices. Then, throw away that final sample:
left is a basis for the moment matrices that we write as {Γ(1),Γ(2), . . . ,Γ(m)}.

5. Construct an affine combination of the moment matrix basis;

Γ =
m∑

i=1
ciΓ(i), (2.37)

for some arbitrary real coefficients ci that are only required to satisfy ∑i ci = 1. These
coefficients serve as our SDP variables.

6. As long as k ≥ 1, the moment matrix contains elements that correspond to the quantum
probabilities appearing in the objective (2.34). This means that we can write the objective
as a linear combination L of the moment matrix elements,

S = L[Γ]. (2.38)

We obtain an upper bound on SQ (for the given rank chosen for the measurement operators)
by evaluating the SDP

Sk ≡ max
{ci}
L[Γ], Γ ≥ 0,

∑

i

ci = 1. (2.39)

One should repeat this process for all rank combinations of the POVMs of Bob and choose the best
result obtained. By again repeating this procedure for increasing relaxation degrees, one finds a
hierarchy of bounds which obey

S1 ≥ S2 ≥ . . . ≥ SQ. (2.40)

While it is not known whether in the limit of large k one always recovers S∞ = SQ, it is sometimes
the case that already a relatively low relaxation degree is sufficient to obtain a tight bound on
the quantum correlations. Also, for practical purposes, that is often what one must hope for
since the computational requirements of evaluating this procedure grow rapidly with the number
of inputs/outputs, the dimension of the communication and the relaxation degree. In practice,
this restricts us to considering relatively small-sized problems. Since many interesting problems go
beyond the few simplest ones, it is relevant to consider the development of tools for more efficiently
bounding quantum correlations.

53



Symmetrised semidefinite relaxations

There are two tracks to reduce the computational requirements of the NV hierarchy. The first
is to reduce the number of samples needed to form the moment matrix basis. Such a reduction
means both less time and memory spent in the sampling stage and fewer variables in the final SDP.
The second is to reduce the size of the positivity constraint in the final moment matrix Γ when
evaluating the SDP. This means that instead of imposing the positivity of an |O| × |O| matrix, we
can break it up into smaller blocks and impose the positivity of each of them. The key to achieving
both these reductions is to exploit symmetries present in the problem [27].

In essence, symmetries are permutations of the indices of the monomials that leave the objective
function invariant. Consider a permutation π of the indices of the operator list X. The permutation
acts as π(Xi) = Xπ(i). In the monomial list, whose elements are products of the elements in the
operator list, we define the action of the permutation as π(XiXj . . .) = Xπ(i)Xπ(j) . . .. If the
operators are subject to additional constraints, we call the set of permutations that respect these
constraints the ambient group. Ambient transformations preserve the structure of the scenario, but
make no reference to the actual objective that we are considering. For example, a permutation
belonging to the ambient group cannot permute a state with a measurement since these are subject
to different constraints. Thus, if we apply an ambient permutation to the moment matrix, we
preserve the structure of the scenario but necessarily the structure of the specific objective. Having
established the ambient group, we now look for a subgroup that we call the symmetry group G.
This group contains all ambient permutations that also have the property that of preserving the
objective function when written as a linear combination of the moment matrix elements, i.e. π is a
symmetry if it is both ambient and respects

L(Γ) = L(π(Γ)). (2.41)

To the author’s knowledge, there is no simple and efficient method to construct the symmetry
group for general problems. There are essentially two alternative approaches: either construct
the ambient group and check all the elements and discard those that do not keep the objective
invariant or carefully inspect the objective to spot simple symmetries6. Importantly, if there are
subtle symmetries that manage go undetected, it is not a major issue. In a nutshell, the more
symmetries found in a problem, the larger the computational advantages. Sometimes, finding only
small symmetries in a problem already brings a large reduction of computational requirements.

With the symmetry group in hand, one computes the so-called Reynold’s operator. It amounts

6Often a direct inspection is both simpler and more efficient.
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to taking each sample of a moment matrix and mapping it into

Γ′ = 1
|G |

∑

π∈G
π(Γ), (2.42)

and then adding the symmetrised moment matrix Γ′ to the moment matrix basis. Note that there
are ways of rapidly evaluating this sum so that one does not need to consider all the group elements,
see Ref [27]. Also, notice that averaging over the Reynold’s operator is a standard procedure for
symmetrisation techniques, see e.g. [49]. This procedure effectively confines the sampled moment
matrices to the symmetric subspace of the space of feasible moment matrices. Often, this is a
dramatically smaller space than that originally considered in the NV hierarchy. Therefore, we
expect to require much fewer samples in order to construct a moment matrix basis.

A proper symmetrisation should combine the basis reduction with a reduction of the positivity
constraint in the final SDP. This can be achieved due to the fact that the symmetrised moment
matrix entering the SDP commutes with a representation of the symmetry group. Therefore, there
must exist a unitary transformation that block-diagonalises the moment matrix. By implementing
such a block-diagonalisation, we break up the original positivity constraint into the positivity of
many small matrices. This is typically a major reduction of computational complexity. A complete
block-diagonalisation requires one to find the irreducible components (with multiplicities) for the
symmetry group. This is achievable (see [27]), but here it is omitted in favour of a simpler procedure
that achieves a partial block-diagonalisation (it does not identify multiplicities)7. Pick a random
set of real numbers {ci}i satisfying

∑
i ci = 1. The number of elements in the sum should equal the

size of the symmetrised moment matrix basis. Evaluate the operator O = ∑
i ciΓ

′,(i) (where Γ′,(i))
are the symmetrised samples. Do a spectral decomposition O = UDU † where D is diagonal and U
is unitary. The unitary U can be applied for block-diagonalisation. This is admittedly a somewhat
dirty numerical trick, but it works rather well.

In view of the above, we can reduce the number of variables in the SDP, the size of the positivity
constraint and the time and memory spent in sampling. We note that Ref [27] presents a matlab
package for implementing these techniques. The conspicuous question now is how much reduction
all this symmetrisation actually gives us and whether it is useful in practical problems. Let us also
remark that whereas here we discussed symmetry techniques for the set of quantum correlations
obtained from dimension-bounded quantum communication, these techniques in fact apply to a
broad variety of SDPs (which need not concern physics at all). For this, we refer the reader to
Ref [49].

7The author finds that this is typically a decent first attempt that often is sufficient to evaluate the SDP. However,
if it proves insufficient, it is advisable to consider a full block-diagonalisation.
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# Basis elements SDP (+ bkldiag) time (sec)
d standard sym standard sym

2 28 6 2 2
3 545 13 15 2
4 3250 13 1900 2
5 12917 13 > 5.5× 104 3
6 - 13 - 3
10 - 13 - 15

Table 2.2: The number of basis elements the SDP evaluation time for a standard implementation of the
NV hierarchy versus a symmetrised implementation of the random access code. The symbol "−" indicates
that the computational requirements were too demanding to complete the procedure.

Exemplifying the power of symmetrised semidefinite relaxations

We give an example serving to illustrate the power of the symmetrisation of the NV hierarchy. For
a more complete set of examples and applications, see Ref [27].

We first choose a problem in which the symmetries are easy to spot, namely the d-dimensional
random access code problem [50]. This is a natural generalisation of the already discussed standard
random access code. In this problem, Alice receives one of d2 possible inputs represented by two
d-valued integers x0, x1 ∈ [d]0 and Bob receives a binary input y ∈ [2]0. Alice communicates at
most a d-dimensional system to Bob who attempts to output b = xy. In a quantum model, the
average success probability is therefore

Sd = 1
2d2

∑

x0,x1,y

tr
(
ρx0x1Mxy |y

)
. (2.43)

The random access code is one of the rare cases in which the quantum maximum is known analyt-
ically. It was first conjectured in [50] and then proven in [51]:

SQ
d = 1

2

(
1 + 1√

d

)
. (2.44)

Naturally, we do not need the NV hierarchy to bound SQ
d since we already know it analyically.

Nevertheless, since the random access code is simple and has plenty of symmetries, it serves as a
good platform for illustrating the computational advantages of symmetrisation - which then readily
extend well beyond this example.

We can easily spot several symmetries in the random access code. Firstly, we may permute
x0 with π : [d]0 → [d]0 and simulatenously permute b → π(b) when y = 0. An inspection of the
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objective shows that it remains invariant under this operation. In fact, the analogous symmetry
can also be applied when y = 1. We can also swap x0 and x1 and simultaneously flip the bit-value
of y. Each of these actions permutes states into states and measurements into measurements and
also keep the objective function invariant. For several different values of d, we have evaluated both
the standard NV hierarchy and the symmetrised variant on a standard desktop computer. The
results are displayed in Table 2.2 for the intermediate hierarchy level known as 1 + AB8. We see
that the number of basis elements rapidly increases in the standard implementation as we increase
d. At d = 6, the computer ran out of memory before finishing the sampling procedure. In contrast,
the symmetries of the random access code allow us to complete the sampling part very quickly,
using only 13 samples regardless of the considered value of d. Already at d = 5, the advantage in
the sampling reduction is a factor of a thousand. Using symmetrisation, the evaluation of the SDP
is completed in a matter of seconds. Again, for d = 5 the SDP evaluation for the standard case
was not finalised as it was terminated after roughly 15 hours.

2.4 Informationally restricted correlations

Quantum communication complexity investigates the relationship between information and correla-
tions. Hitherto, we have interpreted information as a limitation on the alphabet size of the quantum
or classical communication. However, there are reasons to doubt that such dimensional limitations
properly capture the concept of information as there are at least two conceptual inconveniences.
Firstly, imagine a very high-dimensional ensemble of classical or quantum states. Due to its large
dimension, it could carry a large amount of information. Consider now that each element of the
ensemble is mixed with a large degree of white noise. The dimension of the communication remains
unchanged, but it is evident that the information carried by the ensemble should decrease with the
amount of white noise, and in the limit approach zero. The dimension alone does not necessarily
capture the information carried in a classical or quantum ensemble. Indeed, there must exist noisy
ensembles of dimension d′ > d that carry less than log d bits of information. Secondly, since dimen-
sions are discrete, so is the associated information. However, it stands to reason that information
ought to be represented as a continuous quantity in the spirit of Shannon theory. In view of these
observations, a reasonable interpretation is that a dimensional limitation only is a sufficient, but
not necessary, condition for a classical or quantum ensemble carrying at most log d bits. A more
general concept that dissolves the raised concerns should not reference the Hilbert space dimension
but nevertheless recover the set of dimensionally dimensionally restricted ensembles as a special

8This level corresponds to level k = 1 as well as all products of the form {ρ}{M}
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case of ensembles of at most log d bits.
The correlation experiments we have considered, featuring classical or quantum communication,

are of a single-shot nature. That is, Alice sends a single system to Bob who measures it and reports
an outcome. A natural way of quantifying the information carried in Alice’s communication is
through the min-entropy. This is a conservative way of quantifying information. It rests on the
following hypothetical game played between Alice and Bob. Alice’s ensemble is denoted E =
{px, ρx}nx=1 where px is the probability distribution of her classical input represented by the random
variable X. Alice prepares the state ρx and sends it to Bob. Bob applies a single measurement
{Nz}nz=1 with the aim of guessing Alice’s classical input. Thus, he is successful if and only if b = x.
The average success probability of Bob when he uses the best possible measurement is called the
guessing probability,

Pg(X|E) = max
{Nz}

n∑

x=1
px tr (ρxNx) . (2.45)

The better Bob could (in principle, via some POVM) guess Alice’s input, the larger is the infor-
mation content of Alice’s ensemble. Importantly, this approach allows us to ask the key question:
information about what? Here, we have chosen it to be information about Alice’s classical input.
The guessing probability can be used to evaluate the conditional min-entropy,

Hmin(X|E) = − log (Pg) , (2.46)

which can be interpreted as the maximal uncertainty of Bob about X once he has received Alice’s
communication. The information is then defined as the difference in uncertainty about X when
Bob receives E and when he does not,

IX(E) = Hmin(X)−Hmin(X|E), (2.47)

where the min-entropyHmin(X) = − log maxx px is the uncertaintly of Bob when no communication
is received (naturally, Bob would just guess on the most likely value of X). We will use IX as a our
measure of the information content of a classical or quantum ensemble. Note that the classical case
simply corresponds to choosing all ρx diagonal in the same basis. We remark that it is in general
difficult to evaluate the value of IX by hand. However, such evaluation can always be achieved by
means of an SDP over Bob’s extraction measurement.

Let us now define informationally restricted correlations. This takes into account the possibility
of Alice and Bob sharing classical randomness. Therefore, in a general prepare-and-measure scenario
(see Figure 2.3) the quantum correlations read

p(b|x, y) =
∑

λ

p(λ) tr
(
ρ(λ)
x M

(λ)
b|y
)
. (2.48)
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We are interested in the correlations that can arise when Alice’s communication has bounded
information, i.e. IX ≤ α, for some α to be chosen. In the presence of shared randomness, the
information is interpreted as follows. For each strategy λ, Alice prepares the ensemble Eλ and
Bob may apply an extraction measurement depending on λ. Hence, the guessing probability is the
average of the guessing probabilities for the individual λ,

Pg(X|E) =
∑

λ

p(λ)Pg(X|Eλ). (2.49)

This averaged guessing probability is then used to compute the information. In summary, shared
randomness applies on the level of the guessing probability, not directly on the level of the infor-
mation.

Classical correlations

In a classical model, Alice sends integer messages,m, to Bob. The messages can be of any dimension
d. The correlations therefore read

p(b|x, y) =
∑

λ

p(λ)
d∑

m=1
p(m|x, λ)p(b|m, y, λ). (2.50)

In analogy with what we have already seen, for a given d the set of classical correlations is a
polytope. If we fix d, we can enumerate all encoding and decoding strategies of Alice and Bob. For
each encoding strategy of Alice, we can compute its guessing probability and denote it P (λ)

g . The
constraint IX ≤ α can then be stated in terms of the guessing probability:

∑

λ

p(λ)P (λ)
g ≤ 2α−Hmin(X). (2.51)

When phrased like this, it is clear that the information constraint for classical models is linear.
Therefore, for a given d, the set of informationally restricted classical correlations is also a polytope;
obtained from suitably cutting the unconstrained polytope with hyperplanes. However, we would
like to assume nothing about d. How can we eliminate this variable? An intuitive solution is that in
a classical model, Alice can never benefit from using a message that has a larger alphabet than the
alphabet size of her input. Otherwose, her encoding function would simply ignore some elements
in the image. It stands to reason that any correlation created with a larger message alphabet
should therefore be reproducible with a message of at most dimension d = n. In Ref [28] this
simple intuition is proven. Therefore, the full set of informationally restricted classical correlations
is identical to the polytope obtained the message dimension equals the size of Alice’s input. The
faces of this polytope are linear inequalities that constitute tight tests of informationally restricted
classical correlations.
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The simplest scenario

Let us denote the scenario by (n, l, k), where n is the number of inputs for Alice, l is the number
of inputs for Bob and k is his number of outputs. We seek the smallest scenario in which quan-
tum correlations can outperform classical constraints. We focus on the case of a uniform input
distribution px = 1/n. For instance, the scenarios (2, 1, 2) and (2, 1, 3) were found not to yield a
non-trivial facet of the polytope of classical correlations. Therefore, we consider two measurements
for Bob. Then, the simplest scenario is (2, 2, 2). In this case, solving the classical polytope one finds
that its faces are either trivial (positivity of probabilities) or correspond directly to the information
constraint, which by assumption cannot be violated in a quantum model. Notably, the analogous
is encountered for the (2, 2, 3) scenario.

The first scenario in which we find a quantum advantage is (3, 2, 2). Solving the classical
polytope, one finds the facet

F1 ≡ −E11 − E12 − E21 + E22 + E31 ≤ 2α+1 − 1 (2.52)

where Exy = p(0|x, y) − p(1|x, y) and IX ≤ α ∈ [0, log 3]. An interesting observation is that if
we choose α = 1 (i.e. one bit of information), then the inequality becomes identical to that of the
simplest classical dimension witness for bits [52]. Since the set of quantum ensembles restricted by
one bit of information is strictly larger than the set of qubit ensembles, it means that the inequality
is in fact valid for the more general ensembles given by our definition of information.

Let us see how the quantum violation emerges. To this end, we consider an explicit quantum
strategy (which probably is not optimal). Alice and Bob share a bit of randomness λ ∈ {0, 1} with
distribution q = p(λ = 0). The value of λ corresponds to two different strategies. When λ = 0,
Alice prepares three pure qubit states

|ψ1〉 = 1√
2

(|0〉+ |1〉) , |ψ2〉 = |0〉 |ψ3〉 = sin π8 |0〉 − cos π8 |1〉, (2.53)

while Bob measures −σx+σz√
2 and σz−σx√

2 . A simple calculation gives F1 = 1+2
√

2. In contrast, when
λ = 1 Alice sends white noise to Bob who always outputs b = 1. This leads to F1 = 1. Averaging out
the shared randomness, we have F1 = 1+2

√
2q. A simple calculation gives the information content

IX = log(1 + q). This strategy is valid for up to a bit of information but can be straightforwardly
extended to I ∈ [1, log 3] in a similar manner by mixing between the λ = 0 strategy and the
strategy in which Alice sends her input to Bob (which costs log 3 bits of information). The results
are displayed in Figure 2.4. We see that the quantum strategy outperforms the classical bound at
all times except at the end points. The latter is expected since the end points correspond to the
trivial cases of sending no information and and sending x respectively.
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Figure 2.4: Correlations F1 versus information content in classical, quantum and theory-independent
models.

In addition, Figure 2.4 displayes a theory-independent bound on the correlations. This bound
is valid for every physical theory used to describe the communication scenario. In order to derive
it, we allow for arbitrary p(b|x, y) subject to the constraint that there exists no post-processing
of the distribution that allows one to extract more than the allowed amount of information. This
amounts to imposing

∀y :
∑

x,b

pxp(b|x, y)p(b′ = x|y, b) ≤ 2α−Hmin(X). (2.54)

where b′ ∈ [n] is the post-processed guess of Bob for the value of x. Since the most general post-
processing p(b′|y, b) can be written as a convex combination of deterministic post-processings, it is
sufficient to impose the above relation for every deterministic post-processing. Each of them is a
linear constraint. Since there are only finitely many deterministic post-processings, we can evaluate
the theory-independent bound on F1 as a linear program over p(b|x, y). It is emphasised that the
theory-independent bounds obtained in this manner are not necessarily optimal.

Information versus dimension

Informationally restricted quantum correlations can outperform informationally restricted classical
correlations. A natural next question is how informationally restricted quantum correlations relate
to standard quantum correlations obtained from the communication of d-dimensional systems?
Naturally, the comparison is only meaningful when IX = log d bits due to the discrete nature of
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Hilbert space dimensions. It turns out that simple and general relations can be established between
the two sets of quantum correlations.

Firstly, let us give a simple proof of the fact that every quantum ensemble of d-dimensional
states, i.e. E = {px, ρx} where ρx is of size d, can carry no more than log d bits of information. To
this end, we establish a bound on the guessing probability valid for all such ensembles:

Pg = max
{Nz}

∑

x

px tr (ρxNx) ≤ max
{Nz}

∑

x

pxλmax (Nx) ≤ max
{Nz}

∑

x

px tr (Nx) ≤ dmax
x

px, (2.55)

where we have used that the best ρx is pure and aligned with the eigenvector of Nx with largest
eigenvalue, and that for positive operators it holds that λmax(A) ≤ tr (A). Inserting this bound in
the definition of information, we obtain

IX = − log
(
max
x

px
)

+ log (Pg) ≤ log d, (2.56)

which is the desired relation. Hence, we conclude that the set of quantum ensembles of information
at most log d bits is a strict superset of the set of quantum ensembles of dimension at most d. From
that, it follows that the set of quantum correlations p(b|x, y) in the former case contains that of
the latter. However, a key question is whether log d bits of information invested in d-dimensional
quantum systems is always just as good for creating correlations as investing the same amount of
information in a higher-dimensional quantum ensemble? We now prove that the answer is negative
through an explicit example. Recall the previous discussion of the four-bit random access code.
This is a communication task in which Alice receives four input bits x = x1x2x3x4 ∈ [2]4 and Bob
receives y ∈ [4]. By sending no more than one bit of information to Bob, they aim to achieve
b = xy. The average success probability is

Srac = 1
64
∑

x,y

p(b = xy|x, y). (2.57)

It is known that qubit communication must satisfy Srac < 3/4 [43, 53]. A more precise bound
that is supported by much numerics is Srac ≤ 74.1%. We show that if Alice communicates an
ensemble of four-dimensional quantum systems carrying no more than one bit of information, she
can outperform the qubit bound. To this end, we let Alice prepare states that each are uniform
mixtures of two orthogonal states

ρx = 1
8

(
2I⊗ I− (−1)x4I⊗ σy − (−1)x1σx ⊗ σx − (−1)x2σy ⊗ σx − (−1)x3σz ⊗ σx

)
. (2.58)

Then, we let Bob measure the observables B1 = σx⊗σx, B2 = σy⊗σx, B3 = σz⊗σx and B4 = I⊗σy.
A simple calculation gives Srac = 3/4. This value is greater than that achievable with qubits. In
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order to finish the proof, we need only to show that the ensemble carries no more than one bit of
information. To show this, one could use an SDP to directly evaluate the guessing probability of
the ensemble. An alternative method is to exploit the useful bound on the information derived in
Ref [28]:

IX ≤ log (d) + log
(maxx pxλmax(ρx)

maxx px

)
, (2.59)

which is valid for general ensembles. Since we have px = 1/16 and the spectra of all 16 states is
(1/2, 1/2, 0, 0), it immediately follows that IX ≤ 1. We conclude that informationally restricted
quantum correlations is a strict superset of the quantum correlations obtainable from d-dimensional
quantum systems.

Quantum communication versus entanglement-assisted classical communication

Finally, informationally restricted quantum correlations motivate a reconsideration of the previous
discussion of entanglement-assisted classical communication versus quantum communication as re-
sources for creating correlations. Previously, we found that no simple relation exists between the
two when quantum communication corresponds to a dimensional limitation. Interestingly, the rela-
tion simplifies signficantly if we instead involve informationally restricted correlations. Specifically,
we show that all correlations possible by means of classical communication of a d-valued (potentially
stochastic) message assisted by any amount o shared entanglement can be reproduced by means of
the communication of a quantum system that carries no more than log d bits of information.

In order to prove this claim, let Alice and Bob share the entangled state ρAB. This state may
be of any dimension. Alice’s measurement of her subsystem leaves Bob in the state

σa|x =
trA

(
Aa|x ⊗ IρAB

)

p(a|x) (2.60)

where p(a|x) = tr
(
Aa|x ⊗ IρAB

)
is the probability of outcome a when applying measurement x.

Alice also sends a classical message to Bob, which we for simplicity write as a d-dimensional state
µa|x. Since the messages are classical, all states {µa|x} are diagonal in the same basis. Importantly,
Alice can use both her input and her outcome to construct the message. Thus, Alice has supplied
Bob with the net state µa|x ⊗ σa|x. Bob measures this state in order to create the correlations
p(b|x, y). Here, the cost of the communication lies only in the classical message.

Now, we show that there exists a quantum communication model in which the correlations
p(b|x, y) can be reproduced while the information cost never exceeds log d bits. In this model,
Alice samples randomly from p(a|x) and locally creates the state µa|x ⊗ σa|x and sends it to Bob.
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Evidently, the dimension of this state is high but the information content turns out to be much
more restricted. The net state (averaged over a) seen by Bob is

τx =
∑

a

p(a|x)µa|x ⊗ σa|x. (2.61)

The ensemble of Alice therefore corresponds to E = {px, τx}. Since Bob is supplied with the same
ensemble as in the entanglement-assisted case, the correlations he can create are the same. The
less trivial question is whether Alice’s ensemble respects the information constraint. To this end,
we consider the guessing probability

PQC
g = max

{Nz}

∑

a,x

pxp(a|x) tr(µa|x ⊗ σa|xNx). (2.62)

We can place an upper bound on the guessing probability by using that tr(µa|x ⊗ σa|xNx) ≤
tr(σa|xNB

x ), where NB
x is the partial trace of Nx over the first system. This leads to the following

upper bound on the guessing probability

PQC
g ≤ max

{Nz}

∑

x

px tr
(∑

a

p(a|x)σa|xNB
x

)
. (2.63)

However, the no-signaling nature of the remotely prepared ensemble implies that ∑a p(a|x)σa|x =
ρB, where ρB is Bob’s share of the entangled state. Consequently,

PQC
g ≤ max

{Nz}

∑

x

px tr
(
ρBNB

x

)
≤
(
max
x

px
)

max
{Nz}

tr
(
ρB∑

x

NB
x

)
. (2.64)

Since the POVM {Nz} acts on the tensor product of a d-dimensional Hilbert space and an arbitrary-
dimensional Hilbert space, it must hold that

∑

x

NB
x =

∑

x

tr1(Nx) = tr1 (Id ⊗ I) = dI. (2.65)

Thus, it follows that
PQC
g ≤ dmax

x
px (2.66)

and that the information obeys the bound

IX = − log
(
max
x

px
)

+ log (Pg) ≤ log d. (2.67)

This concludes the proof.
Informationally restricted quantum correlations give a new take on the relation between quan-

tum correlations and communication. An outstanding open problem is to develop methods for
bounding these correlations in general quantum models. Another interesting question is to develop
their applications in quantum information processing.
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3

Certification of quantum devices

Quantum correlations that violate classical constraints can be used for physical inference. This
opens up a path to certification of quantum devices based on the correlations that they produce
in experiments on which only to weak assumptions are imposed. Here, we present a framework
for certification and characterisation of many different types of quantum devices when the only
assumption considered is a limitation on their Hilbert space dimension. This assumption is both
reasonably weak, as it does not require precise control of any part of an experiment, and it is
compatible with experiments that can be implemented with the current state-of-the-art. In the first
section, we focus on prepare-and-measure experiments and consider the certification of the states
and measurements appearing in the BB84 protocol for quantum key distribution [53]. In the second
section, we present certification methods for generalised qubit measurements that correspond to
POVMs that are non-projective [54]. The third section departs from prepare-and-measure scenarios
and instead focuses on a three-party sequential experiment in which one can certify quantum
instruments [55]. In the final section, we consider more sophisticated experiments that involve
both quantum communication and entangled states. For these scenarios, we construct a scheme
for certifying and characterising entangled states and measurements of arbitrary many subsystems
and arbitrary dimension [56].

3.1 Certification of the BB84 states and measurements

In the previous chapter, we have seen many examples of quantum correlations established in
prepare-and-measure experiments featuring d-dimensional systems. Let us change our perspec-
tive on them. Instead of focusing on how these correlations outperform classical constraints, let us
instead consider what these correlations tell us about the states and measurements that give rise
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to them. This entails that we assume the validity of quantum theory, but do not assume that we
perfectly control the experiment that generates the correlations. We consider prepare-and-measure
experiments (as in Figure 2.3) in which both Alice’s and Bob’s devices may perform general op-
erations that are only constrained by their dimension. In practice, this roughly corresponds to
experiments in which the degrees of freedom are known but their precise control is not assumed.
If we observe quantum correlations p(b|x, y), is it possible to deduce which ensemble of states {ρx}
and which set of measurements {Mb|y} that was implemented in the experiment?

To answer this question, let us again focus on the simple case of the random access code. Recall
that Alice receives two bits x ≡ x0, x1 ∈ {0, 1} and Bob receives a single bit y ∈ {0, 1}. Alice is
assumed to send qubit states to Bob who performs qubit measurements to construct his output
b ∈ {0, 1}. The score in the random access code in a quantum model reads

Srac = 1
8
∑

x,y

tr
(
ρxMxy |y

)
. (3.1)

Any value of Srac > 3/4 is a proof of quantum correlations. For simplicity, let us first consider the
extremal case of the maximal value Srac = 1/2

(
1 + 1/

√
2
)
. What does this tell us about Alice’s

states and Bob’s measurements?
Let us begin by considering Alice’s states. To this end, let us re-write the random access code

as follows
Srac = 1

2 + 1
8
∑

y

tr
(
M0|yVy

)
≤ 1

2 + 1
8
∑

y

√
tr
(
M0|yV 2

y

)
tr
(
M0|y

)
, (3.2)

where, we have used the fact that M0|y +M1|y = I to eliminate M1|y and then defined the effective
preparation operator Vy = ∑

x0,x1(−1)xyρx0x1 . In order to obtain the right-hand-side, we have used
the fact that |tr (OR)|2 ≤ tr

(
OR2) tr (O) for a positive semidefinite O and a Hermitian operator

R. Let us now exploit the following useful fact: all binary-outcome measurements can be simulated
by stochastically implementing projective binary-outcome measurements and post-processing their
outcomes. Therefore, it is sufficient to restrict Bob’s measurements to being projective. Since they
are qubits, this means that they must be rank-one projective (rank-two projective measurements
are simply the identity operator). Hence, we must have that tr

(
M0
b|y
)

= 1. Now, we must evaluate
the operator V 2

y . To this end, it is favourable to employ the Bloch sphere formalism. We write
Alice’s states as

ρx0x1 = I + ~mx0x1 · ~σ
2 , (3.3)

for some Bloch vectors {~mx0x1}. Hence, V 2
y can also be written in terms of the Bloch vectors:

finding the precise form is straightforward but somewhat tedious. The calculation gives

V 2
y = 1

2 (β + (−1)yα) I (3.4)
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where

α = (~m00 − ~m11) · (~m01 − ~m10) , (3.5)

β = 1
2
∑

x0,x1

|~mx0x1 |2 − ~m00 · ~m11 − ~m01 · ~m10. (3.6)

A pivotal property is that V 2
y is proportional to the identity. Therefore, we can use the rank-one

projective property of Bob’s measurements to evaluate tr
(
M0|yV 2

y

)
. Putting this together, we

obtain the bound
Srac ≤

1
2 + 1

8
√

2

[√
β + α+

√
β − α

]
. (3.7)

First, we determine the largest value of the right-hand-side. To do this, write f(r, s) =
√
r + s +

√
r − s for r ≥ s. The largest value of f is easily seen from writing

f(r, s) =
√
f(r, s)2 =

√
2r + 2

√
r2 − s2. (3.8)

Evidently, the maximum is 2
√
r and is found at s = 0. Therefore, by choosing α = 0 and β maximal,

we obtain a bound on the quantum random access code. The algebraically maximal value is β = 4.
Hence, we have

S ≤ 1
2

(
1 + 1√

2

)
. (3.9)

This is a proof of the already stated maximal value of Srac. In order to have β maximal, we require
that i) all states are pure (meaning that the Bloch vectors are of unit length) and that ii) Alice’s
states are pairwise antipodal on the Bloch sphere, i.e. ~m00 · ~m11 = −1 and ~m01 · ~m10 = −1. Now
we need only to determine their relative angle. This is made clear from the fact that we need to
have α = 0. We have

α = (~m00 − ~m11) · (~m01 − ~m10) = 4~m00 · ~m01
!= 0. (3.10)

Thus, the two Bloch sphere diagonals must be unbiased. Hence, we have deduced that the only
states compatible with a maximal score in the quantum random access code must necessarily form
a square in some disk of the Bloch sphere (see Figure 1.4).

Let us shift focus to the measurements. In order to derive the implications of a maximal Srac

on the measurements, we write the quantum random access code as follows.

Srac = 1
2 + 1

16
∑

x0,x1

tr
(
ρx0x1 [(−1)x0M0 + (−1)x1M1]

) ≤ 1
2 + 1

16
∑

x0,x1

λmax [(−1)x0M0 + (−1)x1M1] ,

(3.11)

67



where we have written My = M0|y−M1|y for the observable of Bob. To obtain the right-hand-side,
we have used that the best state of Alice is that aligned with eigenvector corresponding to the
largest eigenvalue of the operator (−1)x0M0 + (−1)x1M1. For qubit observables, we can precisely
evaluate the relevant eigenvalues directly in terms of the observables. The right-hand-side becomes

Srac ≤
1
2 + 1

16

(√
2µ+ 2ν − η2

+ +
√

2µ− 2ν − η2
−

)
, (3.12)

where µ = tr
(
M2

0 +M2
1
)
, ν = tr{M0,M1} and η± = tr(M0±M1). A simple calculation shows that

the optimal value of the right-hand-side corresponds to µ = 4 and ν = η± = 0. This means that
the observables must be anticommuting and correspond to projective measurements. For qubits,
this is equivalent to choosing the observables as σx and σz up to a global rotation on the Bloch
sphere.

Robust certification

The above shows a precise certification of the states and measurements only when the maximal
correlations in the quantum random access code are observed. However, no realistic implementation
of the quantum random access code perfectly achieves the maximal quantum correlations. What
can we say about the states and measurements when we observe sub-optimal quantum correlations?

Let us first focus on the states. As soon as the correlations are sub-optimal, more than a single
ensemble (up to a global unitary) becomes compatible with the observed correlations. Therefore, it
is important to specify precisely what it is that we aim to certify. One natural answer is to consider
the distance between the ensemble that would have been certified had the correlations been optimal
and the most distant ensemble still compatible with the observed correlations. In other words, how
distant (in terms of distance to the square-like ensemble) is the most distant ensemble that could
explain the quantum correlations? We employ the fidelity as our measure of distance1 The fidelity
between two quantum states is defined as

F (ρ, σ) = tr
√√

ρσ
√
ρ. (3.13)

Then, denoting the ideal (square-like) ensemble by {ρideal
x }, we write

S({ρx}) = max
Λ

1
4
∑

x0x1

F (ρideal
x ,Λ[ρx]), (3.14)

for the largest fidelity between the ensemble {ρx} and the ideal ensemble obtainable by any ex-
traction map Λ (formally a CPTP map). The extraction map plays an important role: it allows

1We note that fidelity is not a proper distance measure.
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one to perform a global operation on the ensemble in an attempt to bring it closer to the ideal
ensemble. This is non-trivial, as the following example illustrates. If our ensemble is {|0〉, |1〉} and
our ideal ensemble is {|1〉, |0〉}, we would like to enable the global bit-flip operation that makes
these ensembles identical instead of maximally distant. This is made possible by choosing Λ as a
bit-flip unitary.

Since the ideal states are pure, the fidelity simplifies to F (ρideal
x ,Λ[ρx]) = tr

(
ρideal
x Λ[ρx]

)
. Using

this, we can now write the fidelity of the most distant ensemble compatible with the quantum
correlations as

F (Srac) = min
{ρx}∈R(Srac)

S [{ρx0x1}] , (3.15)

where R(Srac) denotes all ensembles compatible with the value Srac, i.e. all ensembles for which
there exists measurements that lead to a p(b|x, y) whose value in the random access code is Srac.

The aim is to place a lower bound on F(S) which serves as a robust certification. This is
achieved with a technique based on operator inequalities inspired by Ref [57]. First, write the
quantum random access code as

Srac = 1
2 +

∑

x0,x1

tr (Wx0x1ρx0x1) (3.16)

where we have exploited the observables of Bob to define the effective measurement operator
Wx0x1 = 1

16
∑
y(−1)xyMy. Then, we seek to find operator inequalities on the form

Kx0x1(M0,M1) ≥ sWx0x1 + tx0x1(M0,M1)I, (3.17)

where the operators Kx0x1 are defined as the action of the (dual) extraction map on the ideal states,
i.e. Kx0x1(M0,M1) = Λ†(M0,M1)[ρideal

x0x1 ]. Importantly, these operator inequalities must hold for all
measurements. To make this happen, we must suitably choose the coefficients s and tx0x1 . Let us
momentarily assume that we have constructed such inequalities. It is straightforward to see how
they help towards achieving the robust certification. We have

S ≥ 1
4
∑

x0,x1

tr (Kx0x1ρx0x1) ≥ s

4
∑

x0,x1

tr (Wx0x1ρx0x1) + 1
4
∑

x0,x1

tx0x1 = s

4(Srac − 1/2) + 1
4
∑

x0,x1

tx0x1 .

(3.18)
If we minimise the right-hand-side over the measurements, the inequality becomes valid for all
preparations. Therefore, it would imply

F(Srac) ≥
s

4 (Srac − 1/2) + t ≡ L (Srac) , (3.19)

where we have defined
t = 1

4 min
M0,M1

∑

x0,x1

tx0x1 . (3.20)
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Figure 3.1: Robust certification of the fidelity of the state ensemble in the quantum random access code
with the ideal ensemble. The black line is the lower bound L(Srac). The blue region, delimited by the red
line, is reachable by single qubit strategies that do not exploit shared randomness. This region was obtained
via numerics.

Thus, one only needs to find the operator inequalities (3.17) and perform the minimisation associ-
ated with t to derive the final result L(Srac). It remains only to construct the operator inequalities.
This procedure is technical and it is detailed in Ref [53]. The main idea is pick a well-chosen CPTP
map Λ and then fit the coefficients s and tx0x1 so that the inequality is valid. How to choose Λ is a
priori not clear. For the quantum random access code, it turns out that choosing Λ as a dephasing
map (sometimes dephasing w.r.t. σx and sometimes w.r.t σz) is an optimal choice. The procedure
eventually leads to the coefficients s = 4

(
1 +
√

2
)
and t =

(
2−
√

2
)
/4 which specifies the robust

certification of Alice’s states. In Figure 3.1 we illustrate the bound on the fidelity F . We see that
whenever the quantum random access code outperforms its classical counterpart, we can certify a
non-trivial fidelity between Alice’s ensemble and the ideal ensemble. This shows that our bound
L(Srac) is optimal. Moreover, we have also illustrated the optimal F(Srac) when Alice and Bob do
not have access to shared randomness.

3.2 Certification of non-projective measurements

In the previous section, we have seen that quantum states and measurements can be certified in
prepare-and-measure experiments in which only the dimension is known. The example of the BB84
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states and measurements, certified via the quantum random access code, can be regarded as a proof-
of-principle. However, the general technique readily extends to many other qubit state ensembles
and sets of projective qubit measurements (see Ref [53] for examples). In this section, we go
beyond these systems and instead focus on the certification of generalised quantum measurements.
A generalised measurement corresponds to a POVM that is non-projective. Such non-projective
measurements substantially enrich the standard (textbook) notion of a quantum measurement as
a complete set of projectors. We develop methods for certifying any extremal non-projective qubit
measurement and extend it also to higher dimension for interesting target POVMs. Moreover, we
use both analytical and SDP techniques to investigate the robustness of the certification.

Extremal qubit non-projective measurements

The most general qubit POVM is a set of operators {Ei}Oi=1 with the properties that Ei ≥ 0 and
∑
iEi = I. Since all positive operators also are Hermitian, and all Hermitian qubit operators can

be written as a linear combination of the Pauli matrices, we can w.l.g. write

Ei = λi (I + ~ni · ~σ) , (3.21)

where ~ni is the Bloch vector of the i’th measurement operator and λi ≥ 0. In order to ensure that
operators form a POVM, we require that

O∑

i=1
λi = 1 and

O∑

i=1
λi~ni = 0. (3.22)

In principle, a qubit POVM can have any number of outcomes. However, every measurement with
more than four outcomes can be simulated by stochastically implementing measurements that have
no more than four outcomes [58]. When a measurement can be simulated in such a manner, it
is said to be non-extremal. Non-extremal measurements cannot be certified in our prepare-and-
measure experiments since one can never exclude the possibility of a stochastic simulation with
other measurements solely from inspecting the quantum correlations. Instead, our interest is in
extremal POVMs, i.e. the subset of POVMs with O = 2, 3, 4 outcomes that cannot be simulated
with other POVMs. Among these POVMs, it is known that all extremal two-outcome POVMs are
rank-one projective, i.e. standard measurements. The extremal non-projective qubit measurements
are those that have O = 3, 4 outcomes [58]. They correspond to POVM elements whose Bloch
vector is of unit length. Certifying such measurements is our goal.
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From projective measurements to non-projective measurements

We present a general method for certifying non-projective qubit measurements. It is based on
extending standard schemes focused on the certification of Alice’s preparations. Let us denote the
target non-projective measurement byMtarget and the Bloch vector corresponding to outcome b is
denoted ~vb.

Firstly, we must construct a standard correlation witness for certifying Alice’s states. We choose
a scenario in which Alice has O inputs and Bob receives an input of some cardinality y ∈ [Y ] and
produces binary outputs b ∈ {0, 1}. The task is to construct a linear correlation witness A′ for this
scenario,

A′ =
∑

x,y,b

cxybp(b|x, y). (3.23)

The witness should have the property that its maximal value certifies that Alice’s states |ψx〉 have
the following relation: their Bloch vectors ~ux form a mirror imagine of the Bloch vectors of the target
POVM, i.e. ~ux = −~vx. To find such a certificate, one needs only to employ projective measurements
which can be achieved using techniques analogous to those discussed for the quantum random access
code and the BB84 states. Notice that the witness A′ that achieves the desired certification is not
unique.

Secondly, with the standard certification achieved via the correlation witness A′, we modify
the inputs/outputs of Bob in order to accommodate the target measurementMtarget. To this end,
we supply Bob with yet another measurement setting which we denote povm. It corresponds to
a measurement that has b ∈ [O] outcomes. The modified scenario is captured by the modified
correlation witness

A = A′ − k
O∑

x=1
p(b = x|x,povm), (3.24)

for some arbitrary constant k > 0. It is clear that the maximal value of A can be no greater than
that of A′. Furthermore, the only way in which A can precisely attain the maximal value of A′
is if all terms p(b = x|x,povm) vanish. In order for this to happen, we need the state |ψx〉 to
be anti-aligned with the measurement operator corresponding to outcome b = x for the setting
povm and the Bloch vectors must be of unit length. This means that the Bloch vectors of the
measurement must be identical to those ofMtarget. Since the POVM is fully characterised by its
Bloch vectors (the coefficients λi are fixed by normalisation and positivity), it follows that we have
certified the target measurementMtarget. The procedure is illustrated in Figure 3.2.
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Figure 3.2: Method for certification of extremal non-projective measurements. In the first step, we find
a standard prepare-and-measure scenario in which projective measurements are used to certify a specific
relation on Alice’s states. In the second step, we extend Bob’s settings with one more input and exploit the
property tailored in the first step to certify the additional setting as the target measurement.

Falsifying projective implementations

A maximal value of A certifies precisely the target non-projective measurement. However, if the
observed correlations are sub-optimal, is it possible to simulate the measurement setting povm
with stochastic projective measurements? Notice that the other, binary, settings of Bob always
are optimally chosen as projective since such measurements are extremal. We show how to derive
bounds on A valid for all projective measurements such that a violation therefore certifies the
necessity of a non-projective measurement even for sub-optimal quantum correlations.

For all y, we label Bob’s observable byMy and denote the measurement corresponding to povm
by {M b

povm}. If this measurement is a convex combination of projective measurements, the largest
value of A occurs for a deterministic choice of {M b

povm}. Taken as a projective measurement,
we may assign two of the O outcomes to rank-one projectors and the rest of the measurement
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operators to the zero-operator. When O = 3 this can be done in three different ways. When
O = 4, there are six choices. In general, all combinations of rank assignments must be considered.
For the optimal implementation, we can associate the observable MY+1 for Bob based on the two
non-trivial outcomes of the povm setting. Now, it is possible to write the correlation witness on
the form

A = C(k) +
∑

x

tr
[
ρxL(k)

x ({My})
]
, (3.25)

where C(k) is a constant, and L(k)
x ({My}) is a linear combination of the observables {M1, . . . ,MY+1}.

If we now apply the Cauchy-Schwarz inequality, we have that

A ≤ C(k) +
∑

x

√
tr
[
ρxL(k)

x ({My})2
]
. (3.26)

Consider the effective operator L(k)
x ({My})2. We can write each observable on the Bloch vector form

My = ~ny · ~σ. Then, L2 is a linear combination of anti-commutators of the observables. However,
for qubits we have that {Mk,Ml} = 2~nk · ~nlI. This means that L2 is proportional to the identity,
i.e. we can write

L(k)
x ({My})2 = t(k)

x ({~ny}) I, (3.27)

for some scalar function t
(k)
x of the measurement Bloch vectors. Since tr ρx = 1, we obtain the

expression
A

Proj
≤ C(k) + max

{~ny}

∑

x

√
t
(k)
x ({~ny}) ≡ B(k). (3.28)

Specifically, we have eliminated the states from the evaluation of the bound on projective mea-
surements. Hence, in order to compute the projective bound B(k), we need only to compute the
maximisation of the right-hand-side over the observable Bloch vectors. Whereas this evaluation is
hard in the general form presented here, it can be analytically evaluated for many specific witnesses
of interest.

Case study: the qubit SIC-POVM

Let us apply the above to the case of the four-outcome qubit SIC-POVM (symmetric informationally
complete [59]). This is an extremal POVM corresponding to λb = 1/4 and Bloch vectors that form
a regular tetrahedron on the Bloch sphere. For instance, we can write the Bloch vectors as

~v1 = 1√
3

(1, 1, 1) ~v2 = 1√
3

(1,−1,−1) (3.29)

~v3 = 1√
3

(−1, 1,−1) ~v4 = 1√
3

(−1,−1, 1) . (3.30)
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We begin by constructing a prepare-and-measure scenario and a correlation witness in which
the states of Alice can be certified as pointing to the mirrored tetrahedron {−~vx}. To this end,
supply Alice with inputs x ∈ [4] and Bob with three inputs y ∈ [3] and binary outcomes b. We
choose the following correlation witness

A′ = 1
12
∑

x,y

p(b = Sx,y|x, y), (3.31)

where Sx,y = 0 if element number y in ~vx is equal to one, and otherwise Sx,y = 1. Using techniques
analogous to those employed in our investigation of the quantum random access code, one can prove
the tight bound

A′ ≤ 1
2

(
1 + 1√

3

)
(3.32)

and that the maximum is saturated if and only if Alice’s states are pure and form a tetrahedron on
the Bloch sphere. Following the general recipe, we supply Bob with one more input povm which
has four possible outcomes b ∈ [4]. The modified witness reads

A = 1
12
∑

x,y

p(b = Sx,y|x, y)− k
4∑

x=1
p(b = x|x,povm). (3.33)

By observing A = 1/2(1 + 1/
√

3) we therefore certify that the setting povm corresponds to a
SIC-POVM.

Let us now employ A to derive a certificate for Bob’s setting povm corresponding to a non-
projective measurement. To this end, we follow the above procedure. The chosen witness simplifies
the calculation of B(k) since it is symmetric with respect to Alice’s inputs. That is, we may assign
the projective operators to any two of the four measurement operators of Alice for the setting povm.
Choosing the first two, we define Mpovm ≡ M4 = M1|povm −M2|povm. A simple calculation then
gives

L(k)
x=0,1({My}) = 1

24
[
1, (−1)x, (−1)x, (−1)x+112k

]
· ~M (3.34)

L(k)
x=2,3({My}) = 1

24
[
−1, (−1)x, (−1)x+1, 0

]
· ~M, (3.35)

where ~M = [M1,M2,M3,M4], with My = ~ny · ~σ. If we now use the fact that √z1 + √z2 ≤√
2(z1 + z2) for z1, z2 ≥ 0, a fair share of simplification and optimal alignment choices for the Bloch

vectors yields the bound

A ≤ 1− 2k
2 +

√
2

24
√

6− 4q +
√

2
24

√
2rk + 4q + 48k

√
2
√

1 + q ≡ fk(q), (3.36)
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Figure 3.3: Critical visibility v for Alice’s states in order to certify Bob’s measurement as non-projective
and genuine four-outcome respectively, as a function of k. The best choice of k is found at k = 1/5.

where rk = 3 + 144k2 and q = ~n1 · ~n2. Hence, we find a bound on all projective measurements by
evaluating

B(k) = max
q∈[−1,1]

fk(q). (3.37)

This is an optimisation in a single variable and therefore straightforwardly solved. However, the
final analytical expression is unwieldy. In this manner, we can choose any k and obtain a certificate
of non-projectiveness for Bob’s setting povm. It is interesting to note that this final bound appears
to be tight for all values of k.

An even finer form of certification is relevant to the considered SIC-POVM example. A max-
imal value of A certifies a qubit SIC-POVM and correlations violating the bound B(k) certify a
non-projective measurement which implies that the measurement must have had more than two
outcomes. The natural question is, can we also derive a bound on A that is respected by all three-
outcome measurements? Then, a violation would certify a genuine four-outcome measurement. To
this end, the analytical method presented above no longer applies (we cannot work with observ-
ables). However, we can employ the symmetrised NV hierarchy discussed in the previous chapter
to evaluate upper bounds on the maximal witness value attainable under ternary measurement.
Recall, however, that the NV hierarchy only applies to projective measurements. In order to over-
come this obstacle, one can embed the qubit states in a three-dimensional Hilbert space in which
the ternary outcome non-projective qubit measurements can be represented as projective measure-
ments on a three-level system. Hence, we obtain a bound valid for all ternary qubit measurements
through an SDP.

Finally, the discussion is completed by a word about how to choose the coefficient k. The answer
depends on circumstance. One simple example is the following. Consider that Alice’s states are
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noisy so that with probability v she prepares the optimal ensemble and with probability 1− v she
communicates white noise. We can then calculate the critical v for certifying Bob’s setting povm
as a non-projective measurement and genuine four-outcome measurement respectively. However,
this bound will depend on k. In Figure 3.3 we plot the critical v for both certifications as a function
of k. We see that in general, a high value of v is needed to achieve the certification. Nevertheless,
the best choice is found at k = 1/5.

Certification of d-dimensional SIC-POVMs

Let us now go beyond qubit systems and show how one can robustly certify higher-dimensional
non-projective measurements. A prominent example of such measurements is the d-dimensional
symmetric informationally complete POVM [59]. This is a measurement with d2 outcomes whose
POVM elements correspond to sub-normalised projectors that are equiangular lines in Hilbert
space. In other words, the POVM elements read Ei = 1

d |ψi〉〈ψi| where

|〈ψi|ψj〉|2 = 1
d+ 1 , (3.38)

for i 6= j where the constant on the right-hand-side is fixed by normalisation. SIC-POVMs are
useful in many tasks in quantum information processing.

Let us show how they can be certified in prepare-and-measure experiments. The spirit of
the certification is analogous to that presented for qubits. We begin with a prepare-and-measure
scenario in which Bob only performs binary-outcome measurements. We prove that in this scenario,
there exists a suitable witness whose maximal value certifies Alice’s states to form a SIC. Then, we
give an additional setting to Bob with d2 possible outcomes and show that the modified scenario
can be used to certify this setting as a SIC-POVM.

The scenario is as follows. Alice receives an input x ∈ [N ], where N = d2, and Bob receives
an input written as (y, y′) that represents all ordered pairs of integers in the set [N ]. Hence, Bob
has

(N
2
)
settings. The outcome is denoted b ∈ {0, 1} and the corresponding distribution becomes

p(b|x, (y, y′)). Our correlation witness will only consider the events in which we either have x = y

or x = y′. Specifically, we define

A′d =
∑

x<x′

[
p(b = 0|x, (x, x′)) + p(b = 1|x′, (x, x′))] . (3.39)

In order to evaluate its maximal value under d-dimensional systems and evaluate its implications
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on Alice’s states, we have

A′d = max
{ρ},{M}

∑

x<x′

[
p(b = 0|x, (x, x′)) + p(b = 1|x′, (x, x′))] (3.40)

= max
{ρ},{M}

∑

x<x′
tr
[
(ρx − ρx′)M0|(x,x′)

]
+
(
N

2

)
= max
{ρx}

∑

x<x′
λ+ [ρx − ρx′ ] +

(
N

2

)
. (3.41)

We have used thatM0|(x,x′) +M1|(x,x′) = I to eliminateM1|(x,x′) and then optimally chosenM0|(x,x′)
to be the projector onto the positive eigenspace of ρx − ρx′ . By λ+ we denote the sum of positive
eigenvalues. From linearity, we know that the optimal preparations must be pure. Therefore, we
can write ρx ∼ |ψx〉. Since ρx − ρx′ therefore becomes a rank-2 operator with only one positive
eigenvalue, we can replace λ+ with the largest eigenvalue λmax. This gives

A′d = max
{ψx}

∑

x<x′
λmax [|ψx〉〈ψx| − |ψx′〉〈ψx′ |] +

(
N

2

)
. (3.42)

Every pair of two pure d-dimensional states can be viewed as pair of qubits embedded in a larger
Hilbert space (they only span a qubit subspace). For two pure qubit states |φ1〉 and |φ2〉, it is
straightforwardly shown that

λmax [|φ1〉〈φ1| − |φ2〉〈φ2|] =
√

1− |〈φ1|φ2〉|2. (3.43)

Consequently, it holds that

A′d = max
{ψx}

∑

x<x′

√
1− |〈ψx|ψx′〉|2 +

(
N

2

)
. (3.44)

Now, we exploit a simple inequality that follows from the concavity of the square-root function: for
a real numbers zi ≥ 0 and i = 1, . . . , N it holds that

N∑

i=1

√
zi ≤

√√√√N
N∑

i=1
zi, (3.45)

with equality if and only if all the zi are equal. Applying this concavity inequality, we end up with

A′d ≤ max
{ψx}

√√√√
(
N

2

)2

−
(
N

2

) ∑

x<x′
|〈ψx|ψx′〉|2 +

(
N

2

)
. (3.46)

From here, we see that the maximal witness is obtained from evaluating the minimum of the sum
under the square-root. Let us trivially re-write it by changing the domain of the summation

∑

x<x′
|〈ψx|ψx′〉|2 = 1

2


∑

x,x′
|〈ψx|ψx′〉|2 −N


 . (3.47)
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The sum on the right-hand-side is known as the frame-potential and its lowest value is known to
be N2/d [60]. We have therefore arrived at an upper bound on the witness,

A′d ≤
√
N3 (N − 1) (d− 1)

4d +
(
N

2

)
. (3.48)

Let us now examine the conditions under which this bound is tight. In fact, the only condition for
tightness is saturating of the inequality (3.45). This happens if and only if all overlaps |〈ψx|ψx′〉|2
are equal (for x < x′). This is precisely the defining characterisitic of the SIC-POVM. Hence, we
conclude that our bound on A′d can be saturated if and only if a SIC-POVM exists. In summary,
observing a saturation of the bound implies that Alice’s states form a SIC.

Now, we can immediately extend this to certify also the SIC-POVM. We supply Bob with the
additional setting povm whose outcome is b ∈ [N ]. The modified correlation witness becomes2

Ad = A′d +
N∑

x=1
p(b = x|x,povm). (3.49)

Now, let us denote the latter sum by R. Evaluating its maximum, we find

R = max
{ρ},{Mpovm}

N∑

x=1
p(b = x|x,povm) = max

{ρx},{Mpovm}

N∑

x=1
tr
(
ρxMx|povm

)
(3.50)

≤ max
{Mpovm}

N∑

x=1
λmax

[
Mx|povm

]
≤ max
{Mx|povm}

tr
[
N∑

x=1
Mx|povm

]
= d. (3.51)

Equality in the first inequality requires that ρx is pure and aligned with Mx|povm. Equality in the
second inequality requires that Mx|povm is rank-one. Combine this fact with the maximal value of
A′d implying that {ρx} forms a SIC, it follows that {Mx|povm} must be a SIC-POVM. We conclude
that

Ad ≤
√
N3 (N − 1) (d− 1)

4d +
(
N

2

)
+ d ≡ AQ

d , (3.52)

is a tight bound on Ad (provided a SIC exists in dimension d) and that saturating it implies both
that Alice prepares an ensemble of states forming a SIC and that Bob’s setting povm corresponds
to an aligned SIC-POVM.

Finally, we can ask the same question as we did for qubits: how much sub-optimality can
we tolerate in the quantum correlations before we a simulation with stochastic projective mea-
surements becomes possible? In other words, can we derive a non-trivial bound on Ad valid for

2Notice that in contrast to the qubit case we use a plus sign instead of a minus sign here. In fact, the sign does
not matter too much: one can modify the expression p(b = x|x,povm) somewhat and put a minus sign instead.
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d 2 3 4 5 6

LB: APd 12.8484 70.0961 231.2685 578.7002 1219.0129
UB: APd 12.8484 70.1133 231.2685 578.7987 1219.2041
AQ
d 12.8990 70.1769 231.3313 578.8613 1219.2667

Table 3.1: Upper bounds (UB) and lower bounds (LB) on Ad when measurements are constrained to be
projective and d-dimensional. The lower bounds are obtained via SDPs in see-saw and the upper bounds
are obtained via symmetrised semidefinite relaxations.

all projective measurements? The technique previously described for qubits is not useful in this
higher-dimensional scenario. However, we can use the NV hierarchy (which per default uses projec-
tive measurements) to evaluate such a bound. The challenge is that our problem has many settings,
many outputs and high-dimension. Therefore, the NV hierarchy in its standard form is unlikely
to do the job. It is therefore imperative to make use of the symmetrisation techniques described
in the previous chapter. In this manner, we have efficiently obtained bounds. The results (both
upper bounds via the hierarchy and lower bounds via SDPs in see-saw) are presented in Table 3.1.

Moreover, this also serves as an illuminating example of the power of the symmetrised NV
hierarchy in a practically motivated problem. We present some important computational parame-
ters in Table 3.2. We compare the evaluation using i) no symmetries (standard implementation),
ii) only reduction of the number of SDP variables (symmetry in the sampling stage), and iii) full
symmetrisation (both reduction of SDP variables and block-diagonalisation). We see that the case
i) is too demanding (on our standard desktop) already at d = 3. However, the advantages in the
number of variables are very large already at that stage. Using ii), we can successfully evaluate the
SDP up to d = 4 within a few minutes. However, using iii) we keep all the advantages in variable
reduction but also obtain very substantial advantages via block-diagonalisation. It allows us to
evaluate the case of d = 6 in just 1.2 seconds.

3.3 Certification of quantum instruments

A quantum measurement is a process that transforms a quantum system into a set of classical
outputs. Consequently, there are many ways of implementing the same POVM. For instance, we
could implement a binary-outcome identity measurement via the POVM {1

2I,
1
2I} or equally well

by flipping an unbiased coin and measure σz for heads and −σz for tails. We will see the same
outcome statistics, but the procedures are inherently different; the former is a deterministic non-
interacting measurement and the latter is a stochastic projective measurement. How could we tell
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d 2 3 4 5 6
#samples 221 >12000 - - -
bl. sizes 1[43] 1[229] 1[741] 1[1831] 1[3823]

Non-
sym

SDP [s] 2.0 - - - -
#samples 65 134 137
bl. sizes 1[43] 1[229] 1[741] 1[1831] 1[3823]

Sym
no BD

SDP [s] 0.5 19 500 - -
#samples 65 134 137
bl. sizes 4[6,16] 7[3,16] 8[3,16]

Sym
+BD

SDP [s] 0.3 0.6 1.2

Table 3.2: Comparison between computational parameters for the task of bounding Ad under projective
measurements using a standard implementation, symmetrisation to reduce the number of SDP variables,
and symmetrisation to also perform block-diagonalisation (BD). The notation D[a, b] means that there are
D blocks with the smallest being of size a and the largest of size b. The symbol − means that the evaluation
was too demanding.

these operations apart? The answer is not to look at the POVM itself (which is indeed the same)
but at the quantum instrument.

A quantum instrument is a process that maps a quantum system to a pair of outputs; one
classical output and one quantum output. The classical output is a measurement outcome while
the quantum output can be viewed as a post-measurement state (see Figure 3.4). In other words,
a quantum instrument gives a broader picture than a POVM; we now care about what quantum
state is left once the measurement is performed. Indeed, our above example corresponds to two
very different quantum instruments. The former is the identity instrument. We can think of it as
the state |ψ〉 being subjected to this process: the instrument flips a coin and outputs the classical
result while |ψ〉 remains untouched and exits the instrument as its quantum output. Our stochastic
measurements of ±σz are different. In this case, the state that exits the instrument is either |0〉
or |1〉 in every instance. Averaging out the stochastic element, the average state outputted by the
instrument becomes 1

2 |0〉〈0| + 1
2 |1〉〈1| = I/2. Clearly, the two instruments are very different, but

produce the same classical outcome statistics.

We consider the task of certifying quantum instruments operating on qubits solely from the
statistics they produce in experiment. However, it is clear that our previously considered prepare-
and-measure experiments are insufficient for the task since they make no regard to Alice’s states
after they have been measured by Bob. In order to enable the certification of instruments, we
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Figure 3.4: A quantum instrument transforms a quantum input state into a classical outcome and a
quantum output state.

must add yet another party. We consider a prepare-transform-measure scenario as illustrated in
Figure 3.5. Alice receives four inputs in the shape of two bits x ≡ x0, x1 ∈ {0, 1}. She prepares a
qubit state ρx that is sent to Bob. Bob receives an input y ∈ {0, 1} and implements a quantum
instrument with binary classical outcomes b ∈ {0, 1} and a qubit output ρy,bx . The latter is sent to
Charlie who receives an input z ∈ {0, 1} and implements a POVM {Cc|z} with binary outcomes
c ∈ {0, 1}.

Bob’s instrument is represented by a set of Kraus operators {Kb|y}. These operators correspond
to the POVM elementsMb|y = K†b|yKb|y. Since the POVM is complete, we require∑bK

†
b|yKb|y = I.

The post-measurement state sent from Bob to Charlie reads

ρy,bx =
Kb|yρxK

†
b|y

tr
(
ρxK

†
b|yKb|y

) . (3.53)

Therefore, we can write the probability distribution for the prepare-transform-measure experiment
as

p(b, c|x, y, z) = tr
[
Kb|yρxK

†
b|yCc|z

]
. (3.54)

We use this distribution towards a specific correlation witness. We will once again employ the
quantum random access code. This time, however, we will implement it twice: once between Alice
and Bob and once between Alice and Charlie. Thus, we have a pair of witnesses that are defined
as

WAB = 1
8
∑

x,y

p(b = xy|x, y) (3.55)

WAC = 1
8
∑

x,z

p(c = xz|x, z). (3.56)
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Figure 3.5: Prepare-transform-measure scenario. Alice receives inputs x0, x1 and prepares qubit states
ρx0x1 that are transformed by Bob, using input y, into ρy,b

x0x1
with classical output b and finally measured by

Charlie, using input z, returning the outcome c.

In the quantum model, the two quantum random access codes read

WAB = 1
8
∑

x,y

tr
[
ρxMxy |y

]
, (3.57)

WAC = 1
16

∑

x,y,b,z

tr
[
Kb|yρxK

†
b|yCxz |z

]
. (3.58)

The intuiton behind these witnesses is the following. If Bob performs measurements that
strongly interact with Alice’s states, then he can have strong correlations meaning a large value
of WAB. However, the strong interaction means that he substantially disturbs Alice’s state, hence
washing out much of her encoded information. This will ensure that Charlie does not manage to
have strong correlations with Alice, i.e. he finds WAC small. Conversely, Bob could weakly interact
with Alice’s states such that much of her information remains to be harvested by Charlie. This
would mean a large value of WAC. However the weak interaction means that Bob chooses to not
extract much information from the incoming states, thus suggesting a small WAB. In summary, we
expect there to be a non-trivial trade-off between the two quantum random access codes.

Therefore, it is interesting to characterise the region in the (WAB,WAC)-plane attainable by
quantum models. To this end, we consider the largest value of WAC possible for a given value of
WAB. Formally, we can write this problem as

Wα
AC = max

ρ,U,M,C
WAC

such that ∀x : ρx ∈ C2, ρx ≥ 0, tr ρx = 1,

∀z, c : Cc|z ≥ 0, C0|z + C1|z = I

∀y, b : Uyb ∈ SU(2), Mb|y ≥ 0, M0|y +M1|y = I,

and WAB = α, (3.59)
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where we have used that the Kraus operators can be decomposed as Kb|y = Uyb
√
Mb|y for some uni-

tary Uyb. Evaluating this optimisation is not straightforward and quite lengthy (the full derivation
appears in Ref [55]). We directly present the solution, which is

Wα
AC = 1

8
(
4 +
√

2 +
√

16α− 16α2 − 2
)
. (3.60)

It turns out that up to global unitaries (or collective unitaries for Bob and Charlie), this optimal
value is achieved if and only if Alice prepares the four states optimal in the quantum random access
code (1.43). Bob performs weak measurements M0 = ησx and M1 = ησz where

η =
√

2 (2WAB − 1) (3.61)

and Charlie performs projective measurements of σx and σz. Here η is the sharpness of Bob’s
POVM. Importantly, whereas Bob’s POVMs are non-extremal and can therefore be simulated with
stochastic projective measurements, this result shows that Bob’s instruments are extremal and in
fact implied by the pair of quantum random access codes. On a simple form, we can write the
boundary of the quantum region as

WAB = 1
4
(
2 + η

√
2
)

(3.62)

WAC = 1
8

(
4 +
√

2 +
√

2− 2η2
)
. (3.63)

We illustrate the quantum region in Figure 3.6. All along the boundary of the quantum region
(its non-trivial part is marked by the solid red line), we can precisely certify the quantum instru-
ments whose POVM component is a weak measurement of σx and σz respectively. The classically
attainable correlations is much simpler: we already know that the best classical implementation
of the random access code has a success rate of 3/4. Since classical measurements simply reveal
pre-existing properties, they do not disturb the system. Since the random access code between
Alice and Charlie does not benefit from information held by Bob, it is clear that the best strategy
is for Alice and Bob to perform the standard random access code and for Bob to relay his unper-
turbed state to Charlie who again performs the standard random access code with Alice. Then, we
have WAB = WAC = 3/4. The classical region of correlations therefore becomes a rectangle in the
(WAB,WAC)-plane.

What can be said about the instruments when the quantum correlations are sub-optimal,
i.e. when they are not on the boundary? It turns out that one may establish bounds on the
sharpness η. For simplicity, assuming that both Bob’s settings correspond to the same sharpness,
we can confine η to an interval whose upper and lower delimitation is determined by (WAB,WAC).
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Figure 3.6: Quantum region of correlations attainble in the prepare-transform-measure experiment of
two parallel quantum random access codes. The boundary (solid red) certifies Alice’s preparations, Bob’s
instruments and Charlie’s POVMs.

By the same type of procedure that initially led to (3.60), one finds that

η ≥
√

2 (2WAB − 1) , η ≤ 2
√(

2 +
√

2− 4WAC
)

(2WAC − 1). (3.64)

The latter relation is valid when 4+
√

2
8 ≤ WAC ≤ 2+

√
2

4 , otherwise the bound is trivialised. Along
the boundary of the quantum region, the upper and lower bounds coincide and thus η is precisely
determined. The closer the quantum correlations are to being on the boundary, the smaller is the
width of the interval to which one can confine η. Hence, we see that the quality of the certification
improves as the quantum correlations approach the boundary of the quantum region. These results
have been experimentally demonstrated in Refs [61, 62].

3.4 Certification of entanglement

The experiments we have hitherto considered in this chapter have been based on single quantum
systems. However, quantum correlations can also be used to certify composite quantum states.
Among such states, the prominent resource of interest is entanglement. The strongest form of
certification of entangled states is based on quantum nonlocality since it achieves the certification
under what is arguably the smallest possible assumptions (quantum theory and the no-signaling
principle). However, many entangled quantum states are not known to violate any Bell inequality.
Even more problematically, many entangled quantum states are known to never violate any Bell
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inequality [63]. This is a conceptual obstacle for entanglement certification based on Bell inequal-
ity violations. Also, for practical purposes, it is many times not motivated to make such weak
assumptions in a certification protocol. Here, we continue on the theme of certifying quantum
devices when only assuming their Hilbert space dimension. In order to extend these ideas to the
certification of entanglement, we consider hybrid experiments that both involve entanglement and
quantum communication. Importantly, it is many times the case that certification of entanglement
is restricted to the entanglement of states. However, the certification of entangled measurements
is conceptually at least as compelling. We present a scheme which works for both the certification
of entangled states and entangled measurements subject to a dimension assumption. The scheme
has the advantage of being versatile (applying to systems of any dimension d and any number of
subsystems N) and it detects many entangled states that cannot be detected via Bell inequalities.
For important families of entangled states and measurements, it can even detect every entangled
system.

Scenario for entanglement certification

We outline the scenario in which we perform the entanglement certification. It is parameterised
by the local dimension d and the number of subsystems in the state n. The state ρ is emitted by
a source such that its subsystems are distributed to n separate parties named A1, . . . , An. Each
party receives a random input denoted xk, yk ∈ [d]20 and implements a corresponding transformation
T (k)
xkyk that maps the incoming d-dimensional system into an outgoing d-dimensional system. The

quantum state outputted by each party is then sent to a final party B who performs a measurement
{Mb} and records the outcome b ≡ b1 . . . bn ∈ [d]n0 . The scenario is illustrated in Figure 3.7.

The probability distribution is denoted p(b|x, y) where x = x1, . . . , xn and y = y1, . . . , yn. It is
given by

P (b|x, y) = tr
[(

n⊗

k=1
T (k)
xkyk

)
[ρ] ·Mb

]
. (3.65)

It is used towards evaluating a specific correlation witness that can be phrased as a game. Whenever
the following conditions are satisfied, the game is won

b1 =
n∑

i=1
xi ≡ C1(x) and bk = yk − y1 ≡ Ck(y), (3.66)

for k = 2, . . . , N where computations are modulo d. We compactly write the winning condition as
b = C(x, y). The average score in the game becomes

An,d = 1
d2n

∑

x,y

P (b = C(x, y) |x, y) . (3.67)
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Figure 3.7: Scenario for entanglement certification. A state of n subsystems of local dimension d is shared
between parties A1, . . . , An who use their respective inputs (xk, yk) to locally output a d-dimensional system.
The subsystems are relayed to B who performs a measurement with outcome b.

We use the value of An,d to certify and characterise the entanglement in the state ρ and the
measurement {Mb}.

Entanglement of the state

Entanglement comes in many forms. Our interest is genuine multipartite entanglement (GME). A
state is said to be GME when there exists no partition of its subsystems {1, . . . , n} into two sets
{S, S̄} for which the state can be written on the form

ρ =
∑

S

∑

i

pS,iρ
S
i ⊗ ρS̄i , (3.68)

where pS,i is a probability distribution. A state that can be written on this form is said to be
biseparable. In order to witness GME through our entanglement certification scheme, we must
derive the largest possible value of An,d attainable for biseparable states. Then, any value of An,d
larger than that limit certifies that the state is GME.

Let us first notice the following simple classical strategy for the game. Each party A1, . . . , An

simply discards the received state and instead sends yk to B over the channel. Hence, B has access
to {y1, . . . , yn}. This allows B to output bk = Ck(y) for k = 2, . . . , n. The only remaining winning
condition to be satisfied is the first one, i.e. ∑i xi = C1(x). However, since no information is held
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Figure 3.8: Relaxation of the entanglement certification scheme. The parties are grouped into two sets.
The parties in the first set S are allowed to send their entire input to B. Parties in the complementary set
S̄ are grouped together into a single party R who is allowed to communicate with knowledge of the inputs
of all these parties.

about x, the best option is to guess the sum ∑
i xi. That guess is correct with probability 1/d.

Therefore, we have found that An,d = 1/d. Since classical strategies also are biseparable, we know
that the biseparable bound on An,d must be at least 1/d.

As it turns out, biseparable models cannot do better than this simple classical strategy. Let us
prove this statement. Firstly, any value of An,d attainable in a stochastic biseparable model (i.e. a
non-trivial pS,i) is also attainable in a deterministic biseparable model. This follows from linearity.
Hence, we may w.l.g. consider an arbitrary partition of the subsystems {S, S̄} and ascribe the state
|χ〉 = |ψ〉S ⊗ |φ〉S̄ . We must evaluate

Abisep
n,d = max

|χ〉,{T },{M}
An,d. (3.69)

In order to place an upper bound on this quantity, let us relax some constraints in the game.
We allow the parties {Ak}k∈S to communicate all their information to B. The remaining parties
{Ak}k∈S̄ are grouped together, forming an effective party R who holds the collection of all their
inputs. This party is allowed to send the same amount of communication as the sum of the
communication allowed for the original parties {Ak}k∈S̄ , i.e. |S̄| d-dimensional systems. This is
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equivalent to a quantum system of dimension d|S̄|. We illustrate this relaxed scenario in Figure 3.8
In this relaxed scenario, we can easily calculate the biseparable bound on the correlation witness.

The relaxed scenario has effectively turned matters into a prepare-and-measure scenario between
R and B. In order to win, R needs to relay ∑i∈S̄ xi as well as {yi}i∈S̄ . However, this corresponds
to |S̄|+1 d-valued messages. That is one d-valued message too many to be sent over the channel to
B. There is no strategy in which the average probability of B to recover all relevant information is
more than 1/d. This statement follows from the fact that the guessing probability of N quantum
signals of dimension D respects

psuccess ≡ 1
N

N∑

x=1
p(b = x|x) = 1

N

N∑

x=1
tr (ρxMx) ≤ 1

N

N∑

x=1
λmax (Mx) (3.70)

≤ 1
N

N∑

x=1
tr (Mx) = 1

N
tr
(

N∑

x=1
Mx

)
= D

N
. (3.71)

In our case, we have D = d|S̄| and N = d|S̄|+1. This gives psuccess = 1/d. We conclude that

Abisep
n,d = 1

d
. (3.72)

How well can the game be performed with states that are GME? Consider the following quantum
strategy. Let the state be the Greenberger-Horne-Zeilinger state

|GHZn,d〉 = 1√
d

d−1∑

i=0
|i〉⊗n. (3.73)

We let each party A1, . . . , An perform a unitary transformation

UAkxkyk = ZxkXyk , (3.74)

for k = 1, . . . , n where we have defined the so-called clock and shift operators

Z =
d−1∑

j=0
e2iπj/d|j〉〈j| X =

d−1∑

j=0
|j + 1〉〈j|. (3.75)

The measurement of B is defined in terms of how the clock and shift operators act on the GHZ
state. A basis of “GHZ-like states” for (Cd)⊗n is obtained by defining

|Mb〉 = Zb1 ⊗Xb2 ⊗ · · · ⊗Xbn |GHZn,d〉. (3.76)

This can be thought of as a generalised (multipartite and high-dimensional) Bell State Measurement
[64]. This strategy is tailored to give

AQ
n,d = 1, (3.77)
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which coincides with the algebraically largest value of A. Hence, this represents the quantum
maximum. We see that by employing GME, we can outperform the biseparable bound. We remark
that this protocol can be thought of a semi-device-independent scheme for superdense coding [65].

Let us illustrate the power of this scheme in an example. Consider the depolarisation of the
GHZ state, defined as

ρGHZ
n,d (v) = v |GHZn,d〉〈GHZn,d|+

1− v
dn

I (3.78)

for some v ∈ [0, 1]. What is the critical v for certifying GME? Using the same unitaries and the
same measurement as above, we arrive at a certification of GME whenever

v >
dn−1 − 1
dn − 1 . (3.79)

This result features some important special cases.

• If we have two subsystems (n = 2), then we find

v >
1

d+ 1 . (3.80)

This condition is identical to the condition for the state ρ2,d being entangled [66]. These
states, known as Werner states, are broadly studied and applied in quantum information
processing. For these states, the entanglement certification is optimal. Notably, many of
these states cannot be certified in a Bell experiment [67].

• If we have many qubits (d = 2), we find

v >
2n−1 − 1
2n − 1 . (3.81)

This condition is again identical to the condition for the state ρn,2 being GME [68]. Hence
the entanglement certification is again optimal.

For systems of many higher-dimensional systems, the certification is not optimal. An interesting
feature to note here is that states that cannot even be used for Einstein-Podolsky-Rosen steering3

can still be detected in this scheme subject only to a dimension bound. A simple example is that
the state ρ2,2 is steerable only when v > 1/2 [69] but certified in our scheme when v > 1/3.

3A test of steering takes place in a Bell experiment in which the measurements one party are assumed to be
perfectly controlled and known a priori.
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Certifying the extractable GHZ fraction

The scheme can reveal more about the state than solely whether it is GME: a more precise charac-
terisation of ρ is possible. Consider the following quantum strategy. The transformations of parties
A1, . . . , An correspond to first implementing a CPTP map Λk[ρ] and then implementing the above
defined unitaries UAkxkyk . Hence, the transformation becomes

T (k)
xkyk

= UAkxkykΛk[ρ]
(
UAkxkyk

)†
. (3.82)

Using the same measurement as outlined above and optimising over the extraction channels Λk
leads to

An,d(ρ) = EGFn,d(ρ), (3.83)

where we have defined the extractable GHZ fraction as

EGFn,d(ρ) = max
Λ1,...,Λn

tr
((

n⊗

k=1
Λk
)

[ρ] · |GHZn,d〉〈GHZn,d|
)
. (3.84)

This can be interpreted as “the amount of GHZ state” that can be extracted from ρ via local
operations. It is a straightforward generalisation of the concept of a singlet fraction encountered
in quantum teleportation [66]. This merely shows that every quantum state has the ability of
creating correlations in the game that are equal to the extractable GHZ fraction. However, most
interestingly, substantial numerical evidence obtained from many samples of states with reasonably
small n and d strongly indicates that the extractable GHZ fraction in fact is the largest achievable
score in the game for any given state. As it presently stands, it is a conjecture that allows us to
certify a lower bound on the extractable GHZ fraction directly from the observed value of An,d.
Proving it is an open problem.

Certification of entangled measurements

The arguably most interesting aspect about the entanglement certification scheme is that it does
not only apply to states but also to measurements. Specifically we certify qualitative properties in
the dn-outcome measurement performed by B directly from the value of An,d.

We say that a measurement is entangled if at least one of the operators {Mb} are entangled.
Naturally, knowing that a measurement is entangled is interesting since it does not have a classical
counterpart. However, from a quantum perspective, it tells us quite little about the measurement. It
does not tell us how strong the entanglement is, nor to what extent it is present in the measurement
- it may very well be that out of thousands of measurement operators, only one is entangled. This
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obstacle is remedied by the proposed scheme. Specifically, by inspecting An,d, we can determine
a bound on the number of measurement operators that must be entangled in the set {Mb}. The
larger the value of An,d is, the larger is the number of measurement operators that can be certified
as entangled. The specific bounds for this certification are given by

At least k separable measurement operators =⇒ An,d ≤
1
dn

(
dn − k + k

d

)
. (3.85)

Thus, violating this inequality certifies dn − k + 1 entangled measurement operators. The proof of
this result is of technical nature and it is detailed in Ref [56].

As an example, consider a joint measurement of two d-dimensional systems. We implement the
Bell State Measurement subject to noise, i.e. the measurement operators read

Mb1b2(v) = v |Mb1b2〉〈Mb1b2 |+
1− v
d2 I. (3.86)

What is the critical visibility v for certifying entanglement in the measurement? Using the state
|GHZ2,d〉 and the optimal unitaries previously discussed, one finds that the condition for witnessing
at least one entangled measurement operator is

v >
1

d+ 1 , (3.87)

which is also the condition for the measurement operators being entangled. In the other end, in
order to witness that all measurement operators must be entangled, we require

v >
d2 + d− 1
d(d+ 1) . (3.88)

For qubit systems, this corresponds to a visibility of v = 5/6.
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4

Operational contextuality

This chapter investigates correlations that reveal operational contextuality. It is known that con-
textuality can be tested through quantum communication games. In the first section, we make this
connection systematic and apply it to derive families of many-outcome noncontextuality inequalities
[17]. In the second section, we prove general one-to-one connections between both quantum con-
textuality and measurement incompatibility as well as between quantum contextuality and steering
[19]. In the third section, we explore how the ability of state ensembles to generate quantum
contextuality can be independently harvested by several independent observers [70].

4.1 Communication games reveal contextuality

In section 1.2, we have seen that quantum contextuality is the failure of explaining quantum corre-
lations in an ontological model that assigns equal ontology to operationally distinguishable prepa-
ration and/or measurement procedures. We also exemplified a quantum ensemble that enables
preparation contextuality. Here, we discuss the systematic link between tests of contextuality and
quantum communication games of the prepare-and-measure type encountered in previous chapters.
Then, we apply the framework to derive families of preparation noncontextuality inequalities that
can be robustly tested in experiment.

Again, our quantum communication games feature two parties, Alice and Bob. Alice receives
an input x sampled from a space IA with probability pA(x) and Bob receives an input y sampled
from a space IB with probability pB(y). Alice encodes her input into a state and Bob uses his input
to choose a measurement to apply to said state. The outcome b is rewarded with cxyb points. Then,
the average score reads

A =
∑

x,y,b

cxybpA(x)pB(y)p(b|x, y). (4.1)
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Figure 4.1: Alice’s inputs (here represented by ten circles) are divided into L sets. Then an operational
equivalence is imposed: Bob cannot distinguish to which set a any given preparation belongs.

In order to connect such a prepare-and-measure game to a test of contextuality, we must impose
suitable communication constraints. These constraints must require Alice’s preparations to con-
stitute different contexts of the same preparation procedure. This can be achieved by imposing a
data hiding constraint as follows. Take Alice’s input space IA and construct L non-empty subsets
of it. We call them Sk ⊂ IA for k = 1, . . . , L (see Figure 4.1). We would like to ensure that there
exists no measurement that Bob could possibly perform that allows him to gain information about
to which set his received preparation belongs. In other words, Alice must hide the set-membership
of her preparations. We can write this data hiding constraint on the form

∀y, b, k, k′ : 1
qk

∑

x∈Sk
p(x|b, y) = 1

qk′

∑

x∈Sk′
p(x|b, y), (4.2)

where we have defined the normalisation qk = p(x ∈ Sk) = ∑
x∈Sk pA(x) as the prior probability

that Alice’s state is a member of Sk. Notice that since the sets {Sk}k do not need to be a partition
of IA, it is in general not the case that the qk sum to one. Importantly, the way to interpret the
above constraint is that it must hold for every measurement that Bob could make - not just the
measurements he happens to make in the game. Presently, this condition is intuitive since Bob
uses his data (b, y) to try to guess the membership of x. However, it is more handy to phrase
the data hiding constraint in terms of the conditional probabilities p(b|x, y) that appear in the
communication game. Therefore, we apply Bayes’ rule to write

p(x|b, y) = p(b|x, y)p(x|y)
p(b|y) = p(b|x, y)pA(x)

p(b|y) , (4.3)
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where we used that x and y are independent. Now, we can write the data hiding constraint on the
form

∀y, b, k, k′ :
∑

x∈Sk
p(b|x, y)pA(x)

qk
=
∑

x∈Sk′
p(b|x, y)pA(x)

qk′
. (4.4)

Notice that {pA(x)
qk
}x∈Sk is a probability distribution over the inputs that belong to Sk. From

convexity, we have that
p(b|x ∈ Sk, y) =

∑

x∈Sk
p(b|x, y)pA(x)

qk
. (4.5)

Our data hiding constraint therefore amounts to

∀y, b, k, k′ : p(b|x ∈ Sk, y) = p(b|x ∈ Sk′ , y). (4.6)

We have recovered the definition of to preparation procedures (associated to sets Sk and Sk′) being
operationally equivalent. Thereby, we confirm that our imposed data hiding condition link our
communication games to tests of contextuality. However, in order to address noncontextual models,
we must first recall that the hidden variable models that we are interested in have the property that
the hidden variable distribution of a convex combination of preparation procedures is the convex
combination of the hidden variable distributions associated to those preparation procedures. For
our purposes, this means that

p(λ|x ∈ Sk) =
∑

x∈Sk
p(b|x, y)pA(x)

qk
. (4.7)

By the assumption of preparation noncontextuality, we impose that indistinguishable preparation
procedures are ontologically equivalent, meaning that

∀k, k′ : p(λ|x ∈ Sk) = p(λ|x ∈ Sk′). (4.8)

Again, we use Bayes’ rule to write this as
p(x ∈ Sk|λ)

qk
= p(x ∈ Sk′ |λ)

qk′
, (4.9)

which gives a simple interpretation: even if we know the hidden variable, the preparation procedures
still remain indistinguishable to Bob. This is precisely the notion of preparation noncontextuality.
With the noncontextual constraints in hand, we now know that there must exist a bound on the
score in the game,

A
PNC
≤ APNC, (4.10)

that is respected by all preparation noncontextual models but can in principle be violated by
contextual theories. Furthermore, the evaluation of this bound is a linear program and therefore
also viable for practical purposes.
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Preparation noncontextuality inequalities for high-dimensional systems

Let us put the above to use by deriving a family of high-dimensional preparation noncontextuality
inequalities based on a simple communication game. We will employ the generalised random access
code introduced in Ref [50]. In this game, Alice receives an input string x = x1 . . . xn ∈ [d]n0 ≡ IA.
Bob receives an input y ∈ [n] ≡ IB. The sampling of the inputs is uniform, i.e. pA = 1/dn and
pB = 1/n. The aim of Alice and Bob is to maximise the score function

A = 1
ndn

∑

x,y

p(b = xy|x, y). (4.11)

Thus, the score is the same as in a standard random access code [50]. The key difference between
our game and a standard random access code is the communication conditions under which the
score is evaluated. The standard random access code is limited by the dimension of the physical
system (as discussed in earlier chapters) whereas in our case, we will impose data hiding constraints
while allowing for arbitrary high-dimensional systems. The data hiding constraints that we choose
are as follows. Let r be a string r ∈ [d]n0 and let Z(r) count the number of zeros that appear in the
string. For every r that corresponds to Z(r) ≤ d − 2, define the following subsets of Alice’s input
space,

Srk = {x|x · r ≡
n∑

i=1
xiri = k mod d}, (4.12)

i.e. Srk contains all x such that the modular sum with r equals k. Since all these sets are of the
same size and all priors are uniform, we can simply state the data hiding constraint as

∀k, k′, r, r′ :
∑

x∈Sr
k

p(b|x, y) =
∑

x∈Sr′
k′

p(b|x, y). (4.13)

From our previous discussion, we know that when subjected to these data hiding constraints, there
exists a bound on the score A that is respected by all preparation noncontextual models. However,
since we are attempting to solve the problem for general d and n, we cannot simply run a linear
program. The preparation noncontextual bound is obtained through a technical analysis based on
Fourier expansions that is presented in the supplementary material of Ref [17]. It leads to the
following family of preparation noncontextuality inequalities

A = 1
ndn

n∑

y=1

∑

x∈{0,...,d−1}n
p(b = xy|x, y) ≤ n+ d− 1

nd
. (4.14)

These inequalities hold for general operational theories and can be violated in quantum theory. We
note that the special case of d = 2 reduces to the preparation noncontextuality inequalities origi-
nally derived in Ref [71]. In Ref [17] some numerical examples were given for quantum violations
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for some specific low values of d and n. However, no systematic investigation of quantum violations
was conducted. In particular, an interesting open problem is to investigate the maximal quantum
violations and the Hilbert space dimensions required for achieving them. It is the author’s specu-
lation that since the data hiding constraints in this task impose strong collective constraints on the
preparation ensemble of Alice, a large quantum violation will typically require a high-dimensional
Hilbert space (i.e. significantly larger than d) that can accommodate the large symmetries required
to fulfill the constraint.

4.2 Contextuality, steering and measurement incompatibility

A fundamentally important question is how quantum contextuality relates to the ontology of quan-
tum theory. For instance, incompatible measurements are necessary for Kochen-Specker contextu-
ality, but not necessarily all incompatible measurements can give rise to such contextuality. In op-
erational contextuality, does there exist one-to-one connections between quantum correlations and
a nonclassical ontology? Here, we present two different links between contextuality and fundamen-
tal features of nonclassicality appearing in quantum theory, namely measurement incompatibility
and steering. We show that measurement incompatibility is necessary and sufficient for preparation
contextuality and that steering is necessary and sufficient for full contextuality in a Bell experiment.
However, let us begin with briefly introducing measurement incompatibility and steering.

Briefly: measurement incompatibility

Measurements in quantum theory can be incompatible. Famously, one cannot precisely measure
both position and momentum. For standard quantum measurements, corresponding to complete
sets of projectors on Hilbert space, the definition of incompatibility is simple. Standard quantum
measurements are incompatible if and only if they do not commute. However, as we have previously
seen in our discussion of non-projective POVMs, general quantum measurements do not need to be
projective. How can we define the compatibility of general sets of quantum measurements [72, 73]?
The standard answer is that if for every x we have a POVM {Aa|x}a, the full set of measurements is
called compatible (or jointly measurable) if it can equally well be realised with just a single POVM
{Gλ} whose outcome λ is post-processed into the outcome a of our original POVMs. In other
words, a set of POVMs is jointly measurable if and only if it can be simulated with a single POVM.
Formally, we write this as

Aa|x =
∑

λ

p(a|x, λ)Gλ, (4.15)
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for some probability distribution p(a|x, λ). Consequently, if no such simulation is possible, the
POVMs {Aa,x}a,x are said to be incompatible. Notice that deciding whether a given set of POVMs
is jointly measurable can be achieved with an SDP.

Briefly: quantum steering

Steering in quantum theory [69] is the ability of one observer to remotely prepare states for another
observer that cannot be simulated classically. This formalises the famous “spooky action at a
distance“ concept. Steering takes place in Bell experiments in which a bipartite state ρ is shared
between two observers Alice and Bob. If Alice is going to steer Bob, she will randomly choose a
measurement and apply it to her part of the state. Denoting her measurements by {Aa|x}, for each
choice of setting x and each observed outcome a, she will remotely prepare Bob’s system in the
state

ρa|x =
trA

(
Aa|x ⊗ Iρ

)

tr
(
Aa|x ⊗ Iρ

) . (4.16)

For a given setting x, the probability of rendering Bob in ρa|x is given by p(a|x) = tr
(
Aa|x ⊗ Iρ

)
.

For simplicity, one can describe the local states of Bob through a so-called assemblage, which is
simply the collection of unnormalised states on Bob’s side, {σa|x} where

σa|x = trA
(
Aa|x ⊗ Iρ

)
. (4.17)

The assemblage is said to be unsteerable if it can be simulated in a so-called local hidden state
model. This model attempts to reproduce the assemblage through a source that emits a quantum
state ρλ with probability p(λ). When the state is given to Bob, he can post-process it with some
distribution p(a|x, λ) in order to simulate {σa|x}. If this is successful, we have that

σa|x =
∑

λ

p(λ)p(a|x, λ)ρλ. (4.18)

If a local hidden state model is not possible, the assemblage is said to be steerable.

Preparation contextuality is necessary and sufficient for measurement incompat-
ibility

It is remarkably straightforward to show a one-to-one connection between preparation contextuality
and measurement incompatibility. Let us assume that the set of POVMs {Aa|x}a,x when applied
to a quantum state ρ give outcome statistics that is preparation noncontextual. This is written as

p(a|x,P) =
∑

λ

p(λ|ρ)p(a|x, λ), (4.19)
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where the preparation noncontextuality assumption is embodied in the fact that the hidden variable
distribution only depends on the density matrix and not on its context. Thus, the above equality
must hold for every context of the density matrix. That is, it holds true for every way of decomposing
the density matrix into a convex combination of other states.

We must now characterise the hidden variable distribution p(λ|ρ) as a convexity-preserving
map from the full quantum state space to the real interval [0, 1]. The Riesz representation theorem
provides us with a simple characterisation [74]. Every such map can be written as an inner product
between the state ρ and some positive semidefinite operator Gλ,

p(λ|ρ) = tr (ρGλ) . (4.20)

In order to obey normalisation, we must require that 0 ≤ Gλ ≤ I. Moreover, we need p(λ|ρ) to be
a probability distribution for every ρ. This means that

∀ρ :
∑

λ

p(λ|ρ) = 1 =⇒
∑

λ

Gλ = I. (4.21)

Thus, we see that the operators {Gλ} must form a POVM. Consequently, our preparation noncon-
textual probability distribution takes the form

p(a|x,P) =
∑

λ

p(a|x, λ) tr (ρGλ) . (4.22)

We have recovered the outcome statistics corresponding to applying a set of jointly measurable
observables to the state ρ. Conversely, if we assume that {Aa|x}a,x is jointly measurable, then the
outcome statistics of measuring ρ is again given by (4.22) which is a preparation noncontextual
model. We conclude the following

Preparation contextual outcome statistics implies measurement incompatibility. Con-
versely, every incompatible measurement can reveal preparation contextuality.

In other words, preparation contextuality is necessary and sufficient for measurement incompati-
bility. An immediate corollary of this result is that every incompatible measurement is useful to
obtain a quantum advantage in a communication task.

Contextuality is necessary and sufficient for steering

An essentially equally straightforward one-to-one connection can be established between quantum
contextuality and quantum steering. Here, it is important to note that by quantum contextuality we
mean the failure of an ontological model that is both preparation noncontextual and measurement
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noncontextual. Thus, this “full“ contextuality is a stronger constraint than the above considered
preparation noncontextuality.

Consider a Bell experiment in which Alice remotely creates the assemblage {σa|x} on Bob’s side.
We assume that if Bob applies any measurement M to the assemblage, the outcome statistics is
measurement noncontextual. This means that

p(b|a, x,M)p(a|x) = p(a|x)
∑

λ

p(λ|a, x)p(b|M,λ). (4.23)

Here, the noncontextuality is embodied in the fact that Bob’s response function does not depend
on the measurement procedure M but only on the POVM elements M . Hence, this relation must
hold for all measurement procedures compatible with M . Notice that we have not yet imposed
preparation noncontextuality. We shall do so shortly.

Consider now the response of Bob. For every given λ, it is a map from the space of all POVMs
to a probability distribution. All such maps were characterised by the works of Gleason [75] and
Busch [76]. The Gleason-Busch theorem upholds that we can write

p(b|M,λ) = tr (ρλMb) , (4.24)

for some quantum state ρλ. Notably, the quantum state is unique for each map. Equiped with this,
the noncontextual distribution becomes

p(b|a, x,M)p(a|x) = p(a|x)
∑

λ

p(λ|a, x) tr (ρλMb) . (4.25)

From Bayes’ rule, we have that

p(a|x)p(λ|a, x) = p(a|x, λ)p(λ|x). (4.26)

Now, let us invoke preparation noncontextuality. Since we work in a Bell experiment, Alice’s
preparations (a, x) are already obeying the no-signaling principle. This means that her average
preparations (for each x) are operationally equivalent. Therefore a preparation noncontextual
model would impose their ontological equivalence, i.e. p(λ|x) = p(λ). Putting it togther, we have
that the outcome statistics in a fully noncontextual model reads

p(b|a, x,M)p(a|x) =
∑

λ

p(λ)p(a|x, λ) tr (ρλMb) . (4.27)

If we view p(λ)ρλ as a subnormalised state, then this is precisely the outcome statistics obtained
from applying a measurement to an unsteerable assemblage. Conversely, let us assume that the
assemblage prepared by Alice for Bob is unsteerable. Then, it is immediately clear that the outcome
statistics obeys a noncontextual model. Therefore, we conclude that
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Figure 4.2: Contextuality test in a Bell scenario. Alice and Bob receive 2n−1 and n inputs respectively
and produce binary outputs. Alice’s measurements are constrained by operational equivalences; for every
r ∈ {0, 1}n with at least two instances of “1“ the mixture Mr,i = 1

2n−1

∑
a,x|r·x̄=i Ma|x is independent of i.

An assemblage is unsteerable if and only if its statistics admits a preparation and mea-
surement noncontextual model for all measurements.

Thus, every steerable state is useful for a test of contextuality while every unsteerable state can
never be used for the same purpose.

Application: tight steering inequalities for n projective qubit measurements

We apply the one-to-one link between contextuality and steering to tackle a concrete question in
quantum steering. Imagine that Alice and Bob are given the two-qubit Werner state

ρv = v|ψ−〉〈ψ−|+ 1− v
4 I, (4.28)

where |ψ−〉 = |01〉−|10〉√
2 is the singlet state. Alice applies n projective qubit measurements on her

system and thereby prepares an assemblage on Bob’s side consisting of 2n states. What is the
smallest value of v for which there exists such measurements for Alice that she can steer Bob’s
state? We take the route through contextuality to answer this question.

In the previous section, we showed a family of preparation noncontextuality inequalities based
on the quantum random access code. If we focus on the case of d = 2, we can re-cast them as
noncontextuality inequalities in a Bell experiment. The scenario is illustrated in Figure 4.2. Instead
of Alice preparing 2n possible states, she receives one of 2n−1 possible inputs (x) and measures her
part of the shared state, obtaining a binary outcome a. Bob acts in the same way as in the original
scenario: he receives y ∈ [n] and outputs a binary b. Preparation noncontextuality is imposed on
the operational equivalences associated to the no-signaling condition. The operational equivalences
on which we imposed measurement noncontextuality stem from those used in the preparation
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noncontextuality inequality (4.14). Specifically, define the bit string r ∈ {0, 1}n−1. For every r

with at least two instances of “1“, we impose the operational equivalence
∑

a,x|r·x̄=0
Ma|x =

∑

a,x|r·x̄=1
Ma|x, (4.29)

where we have defined x̄ = (a, x⊕a). Whenever r has an even number of “1s“ then this constraint is
trivially satisfied due toM0|x+M1|x = I. Imposing preparation and measurement noncontextuality
in this manner, a straightforward adaption of our inequality (4.14) to the Bell scenario1 gives

An = 1
n2n−1

∑

x,y

p(a⊕ b = x̄y|x, y)
NC
≤ n+ 1

2n . (4.30)

Our previous results guarantee that every violation of this noncontextuality inequality certifies
that the shared state is steerable. However, it is not necessarily the case that every steerable state
violates this inequality. The reason is that although we have shown that every steerable state does
violate some noncontextuality inequality, it could very well not be our specific noncontextuality
inequality. However, as it turns out, our inequality is useful towards finding the critical v for
revealing the steerability of the state ρv using n projective measurements. We have used SDPs
in see-saw to optimise over the measurements of Alice and Bob respectively in order to find the
critical v below which a violation no longer is possible. We find the following results

v2 = 0.7071 v3 = 0.5774 v4 = 0.5547

v5 = 0.5422 v6 = 0.5270 v7 = 0.5234. (4.31)

Interestingly, Ref [77] considered the steerability of ρv under n projective measurements using
methods not based on contextuality. The numbers we have obtained precisely coincide with those
presented in Ref [77]. This is a strong indication that our noncontextuality inequalities also serve
as tight steering inequalities.

4.3 Harvesting contextuality in multiple sequential experiments

The typical tests of quantum correlations, be it quantum communication complexity, quantum
nonlocality or quantum contextuality, aim to generate strong correlations in scenarios in which a
state undergoes a single measurement. By this, we mean that parties measure a state (or a part of
it) and have no regard for what happens to the state after the measurement. Practically speaking,

1Recall that the Bell scenario and the Bell correlation witness can be found by reversing the map from Bell
inequalities to CCPs discussed in chapter 2.
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Figure 4.3: Sequential tests of preparation contextuality from a single ensemble. Alice implements a
quantum random access code with each Bob in a a way that the quantum output of one Bob is the quantum
input of the next Bob.

they typically even demolish the physical carrier during the measurement and the state ceases to
exist. Here, we ask a very different question: is it possible for many independent observers to each
harvest the contextuality enabled by a single ensemble of quantum states? That is, can we use the
same quantum system to create many sequential proofs of contextuality separately obtained by
observers conducting independent experiments? We will focus on the preparation noncontextuality
inequalities based on the quantum random access code discussed in the first section of this chapter
(specifically the inequality (4.14)). We choose to focus on the case of d = 2 in which the preparation
noncontextuality inequality reduces to those derived in Ref [71]:

An = 1
n2n

∑

x,y

p(b = xy|x, y)
PNC
≤ n+ 1

2n , (4.32)

subject to the data hiding constraint (in a quantum model)

∀r :
∑

x·r=0
ρx =

∑

x·r=1
ρx, (4.33)

for each string r ∈ {0, 1}n with at least two instances of “1“. Using these contextuality tests, we
investigate the possibility of sharing contextuality between many independent observers.

Consider the following scenario. Alice receives a random bit string x ∈ {0, 1}n and prepares the
state ρx which she communicates to a receiver Bob1. Bob1 receives a random input y ∈ [n] and
produces a binary output b1 ∈ {0, 1}. The post-measurement state is relayed to another observer
Bob2 who receives a random input y2 ∈ [n] and outputs b2 ∈ {0, 1}. Again, the post-measurement
state is relayed to an analogous observer Bob3 etc. This continues until the state is received by the
final observer Bobm who receives a random input ym ∈ [n] and produces the output bm ∈ {0, 1},
see Figure 4.3. We are interested in whether Alice can demonstrate contextuality independently
with each of the receivers Bob1, . . . , Bobm. Clearly, if she demonstrates a strong violation of the
noncontextuality inequality with Bob1, this will lead to weaker correlations with Bob2 etc. Each
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time a party measures the state to create correlations, the coherence of Alice’s initial ensemble
decreases - at some point it must not longer enable contextuality. Is there a critical number of
observers that can harvest the contextuality of Alice’s state ensemble? We prove that for any given
number of sequential observers, there exists an ensemble of preparations for Alice such that they
all can share its contextuality. In order to arrive to this result, we benefit from first deriving the
maximal quantum value of An in a standard (non-sequential) scenario.

Maximal quantum contextuality

The problem of deriving the largest quantum violation of (4.32) was solved in Ref [78]. Here, we
summarise the optimal measurements of Bob and the optimal preparations of Alice.

We can characterise Bob’s measurement through an observable GTn,y. The easiest way to present
it is through a recursive definition. The recursion starts from G2,1 = σx, G2,2 = σy, and G3,1 = σx,
G3,2 = σy and G3,3 = σz. All the subsequent observables are obtained from

n even: Gn,k = Gn−1,k ⊗ σx ∀k ∈ {1, . . . , n− 1},
n odd: Gn,k = Gn−2,k ⊗ σx ∀k ∈ {1, . . . , n− 2} (4.34)

with Gn,n = I⊗ σy if n > 3 is even, and Gn,n = I⊗ σz and Gn,n−1 = I⊗ σy if n > 3 is odd.
Alice has 2n states. We write each of them as a state of bn/2c qubits. For simplicitly, we

can phrase it as the subsystems of a collection of bn/2c entangled state as obtained after a local
operation:

ρx = trA
[
(I +Ax)⊗ I (|φmax〉〈φmax|)⊗bn/2c

]
, (4.35)

where

Ax = 1√
n

n∑

i=1
(−1)xiGn,i (4.36)

|φmax〉 = 1√
2

(|0, 0〉+ |1, 1〉) (4.37)

and the trace is taken over the first system in every entangled pair. Interestingly, these states are
mixed and their purity is only tr

(
ρ2
x

)
= 1/2. Notice, however, that no entanglement is present in the

actual problem - this is merely a convenient way of writing Alice’s states. It is not straightforward
to compute the probabilities p(b = xy|x, y); one finds that they are all equal. The maximal quantum
violation becomes

An = 1
2

(
1 + 1√

n

)
, (4.38)

for all n ≥ 2.
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Sequential decoherence of the ensemble

In the sequential scenario, the actions of each Bob corresponds to a quantum instrument that is
represented by Kraus operators {Kbk

yk
}. The state received by Bobk is then determined by Alice’s

input x and the list of all previous inputs and outputs, (y1, . . . , yk−1) and (b1, . . . , bk−1). Impor-
tantly, Bobk does not know the previous inputs and outputs because the observers are assumed
to be independent. Therefore, although in each instance Bobk receives a state that depends on
all these parameters, the effective state that is visibile to him is their average. This effective state
ρ̃x

(k) determines his correlations and it is written recursively as

ρ̃(k)
x = 1

n

∑

yk−1,bk−1

K
bk−1
yk−1 ρ̃

(k−1)
x (Kbk−1

yk−1 )†, (4.39)

where we define ρ̃(1)
x = ρx. Then, the probability distribution between Alice and Bobk, that is used

to evaluate the k’th independent contextuality test, is given by

p(bk|x, yk) = tr
(
ρ̃(k)
x (Kbk

yk
)†Kbk

yk

)
. (4.40)

Let us now specify a simple and useful strategy for the encoding of Alice’s states and the instru-
ments of all the Bobs. It will draw substantially on the optimal quantum strategy for the previously
discussed standard (non-sequential) scenario. We let Alice prepare the same states as those that
were optimal in the non-sequential scenario. The Bobs, however, cannot perform the same mea-
surements as in that scenario since the first Bob would end up harvesting all the contextuality for
himself, leaving only noncontextual correlations for all the subsequent Bobs. Instead, we define
their observables GTn,yk as corresponding to the projectors Πb

n,y = I+(−1)bGTn,y
2 . We will let each Bob

perform a weaker variant of this measurement, in which the projectors are modified to

I + (−1)bηkGTn,y
2 (4.41)

for some sharpness parameter ηk ∈ [0, 1] that can be taken differently for each Bob. These POVM
elements are realised with the following choice of Kraus operators:

Kbk
yk

=
√

1 + ηk
2 Πbk

n,yk
+
√

1− ηk
2 Πb̄k

n,yk
, (4.42)

where the bar-sign denotes a bit-flip. Hence, this family of quantum strategies is parameterised by
the collection of sharpness parameters {ηk}mk=1.

What is the effective state ρ̃(k)
x as seen by Bobk for a given choice of sharpness parameters {ηk}?

The answer can be recursively phrased as follows. The effective state received by Bobk takes the
form

ρ̃(k)
x = vkρx + (1− vk) ρmix, (4.43)
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where vk ∈ [0, 1] is a visibility parameter and ρmix is the maximally mixed state in the relevant
dimension. The larger this visibility parameter is, the lesser has the state been decohered from the
original preparation ρx of Alice. Hence, a larger vk enables stronger correlations. It turns out that
the precise value of vk can be recursively written as

vk = vk−1fk−1 =
k−1∏

j=1
fj , (4.44)

where v1 = 1 by definition, and the “quality factor“ fk of the measurement of Bobk is defined from
the sharpness ηk as

fk =
1 + (n− 1)

√
1− η2

k

n
. (4.45)

Before we proceed any further, let us give a proof for these claims.

Proof of state decoherence lemma

This section reproduces the proof originally given in Ref [70]. The state prepared by Alice is defined
as

ρx = trA
[
(I +Ax)⊗ I (|φmax〉〈φmax|)⊗bn/2c

]
, (4.46)

where (|φmax〉〈φmax|)⊗bn/2c is bn/2c copies of the two-qubit maximally entangled state, and the
partial trace is taken over all the first qubits in each pair. Consider that the sequence of Bobs,
labelled by {1, 2, ...,m−1}, apply measurements of intermediate sharpness to the state above, each
denoted by ηk = sin θk. We proceed to prove that the average state ρ̃(m)

x received by Bobm will be
of the form

ρ̃(m)
x = trA

[
(I + vmAx)⊗ I (|φmax〉〈φmax|)⊗bn/2c

]
, (4.47)

where vm (the “visibility" of the state) is given by

vm = vm−1fm−1 =
m−1∏

j=1
fj , (4.48)

where fj = 1 + (n− 1) cos θj
n

. (4.49)

We call fj the “quality factor" of the measurement of the jth Bob. The visibility of the first Bob is
v1 = 1, since he possesses the undisturbed state received directly from Alice.

The proof is inductive. For the first Bob, the statement holds trivially. Consider that it holds
true for m−1 Bobs, so that the average state ρ̃(m)

x received by Bobm is given by (4.47). Then using
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the Kraus operators, the average state ρ̃(m+1)
x (averaging over all Bobm’s possible and equiprobable

inputs, and with no knowledge of his outcome), is given by

ρ̃(m+1)
x = 1

n

∑

y,b

Kb
yρ̃

(m)
x (Kb

y)† = 1
n

∑

y,b

trA
[
(I + vmAx)⊗Kb

y (|φmax〉〈φmax|)⊗bn/2c I⊗ (Kb
y)†
]
,

(4.50)

where the Kraus operators are acting on the part of the Hilbert space complementary to that being
traced out. First, using the property of the maximally entangled state that (I⊗O) |φmax〉〈φmax|

(
I⊗O†

)
=(

OT ⊗ I
)
|φmax〉〈φmax| (O∗ ⊗ I), and then using the cyclicity of the trace, we obtain

ρ̃(m+1)
x = 1

n

∑

y,b

trA
[
(I + vmAx) (Kb

y)T ⊗ I (|φmax〉〈φmax|)⊗bn/2c (Kb
y)†T ⊗ I

]
(4.51)

= 1
n

∑

y,b

trA
[
(Kb

y)†T (I + vmAx) (Kb
y)T ⊗ I (|φmax〉〈φmax|)⊗bn/2c

]
. (4.52)

Splitting the above into the sum of the two terms from the (I + vmAx), the contribution of the
identity part is

1
n

∑

y,b

trA
[
(Kb

y)†T (Kb
y)T ⊗ I (|φmax〉〈φmax|)⊗bn/2c

]
= 1
n

∑

y

trA
[
I⊗ I (|φmax〉〈φmax|)⊗bn/2c

]

= trA
[
(|φmax〉〈φmax|)⊗bn/2c

]
, (4.53)

where we have used that theKb
y are Hermitian and that measurements are complete i.e.,∑b(Kb

y)†T (Kb
y)T =

I. For the term involving Ax, we calculate the sum using the Kraus operators, denoting by
ηm = sin θm the sharpness of the measurement of Bob m,

Kb
y =

√
1 + ηm

2 Πb
n,y +

√
1− ηm

2 Πb̄
n,y =

(
cos θm2 I + (−1)b sin θm

2 Gn,y√
2

)
, (4.54)

which results in
1
n

∑

y,b

(Kb
y)†TAx(Kb

y)T = 1
n

∑

y,b

(
cos θm2 I + (−1)b sin θm

2 Gn,y√
2

)
Ax

(
cos θm2 I + (−1)b sin θm

2 Gn,y√
2

)

= 1
2n
∑

y,b

cos2
(
θm
2

)
Ax + (−1)b cos

(
θm
2

)
sin
(
θm
2

)
{Gn,y, Ax}

+ sin2
(
θm
2

)
Gn,yAxGn,y (4.55)

= 1
n

∑

y

(1 + cos θm
2

)
Ax +

(1− cos θm
2

)
Gn,yAxGn,y

=
(1 + cos θm

2

)
Ax +

(1− cos θm
2

) 1
n

∑

y

Gn,yAxGn,y. (4.56)
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Wemay now use the expansion Ax = 1√
n

∑
i(−1)xiGn,i, together with the anti-commutation relation

{Gn,j , Gn,k} = 2δj,kI (4.57)

to simplify the calculation into
1
n

∑

y

Gn,yAxGn,y = 1√
n

∑

i

(−1)xi 1
n

∑

y

Gn,yGn,iGn,y

= 1√
n

∑

i

(−1)xi 1
n

∑

y

(2δi,yGn,y −Gn,i)

= 1√
n

∑

i

(−1)xi 1
n

(2− n)Gn,i

= 2− n
n

Ax. (4.58)

Inserting this into Eq. (4.56), we obtain

1
n

∑

y,b

(Kb
y)†TAx(Kb

y)T = fmAx, (4.59)

where fm =
(1 + (n− 1) cos θm

n

)
=
(

1 + (n− 1)
√

1− η2

n

)
, (4.60)

is the quality factor of the measurement of Bobm. Putting it all together, we find the final expression
for the average state after Bobm’s measurement:

ρ̃(m+1)
x = trA

[
(|φmax〉〈φmax|)⊗bn/2c

]
+ trA

[
vmfmAx ⊗ I (|φmax〉〈φmax|)⊗bn/2c

]
(4.61)

= trA
[
(I + vmfmAx)⊗ I (|φmax〉〈φmax|)⊗bn/2c

]
. (4.62)

This is the desired relation stated in the previous section.

Sharing contextuality between any number of observers

We are now ready to show that for any given number of observers m, there exists a choice of n so
that the outlined quantum strategy allows all observers to independently violate the preparation
noncontextuality inequality. It is now a straightforward calculation to show that the correlations
seen by Bobk correspond to the witness value

A(k)
n = 1

2

(
1 + vkηk√

n

)
. (4.63)

Comparing this to the preparation noncontextual bound, we have a proof of contextuality whenever

ηk >
1

vk
√
n
. (4.64)
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Starting from v1 = 1, we can recursively calculate the critical values of ηk and vk. Then, it is
sufficient for each Bob to given an infinitesimal perturbation to the positive of ηk in order to
witness preparation contextuality. Let us write the sharpness parameters as ηk = sin θk for some
angle θk ∈ [0, π2 ]. The condition for contextuality therefore reads

sin θk >
1

vk
√
n
. (4.65)

Keeping this in mind, let us also put the following (entirely trivial) lower bound on the quality
factor

fk = 1 + (n− 1) cos θk
n

≥ cos θk. (4.66)

Putting these two together, we can square both sides to obtain

f2
k ≥ cos2 θk = 1− sin2 θk ≥ 1− 1

v2
kn
. (4.67)

Similarly, we can bound the visibility of the subsequent Bob by using that vk+1 = vkfk and the
analogous squaring gives

v2
k+1 = v2

kf
2
k ≥ v2

k

(
1− 1

v2
kn

)
. (4.68)

In this manner, we can bound the difference in visibility in any two sequential steps as

v2
k − v2

k+1 ≤
1
n
. (4.69)

Since we start from v1 = 1, it implies that

v2
k+1 ≥ 1− k

n
. (4.70)

Choosing k + 1 = n, we therefore obtain that

vn ≥
1√
n
. (4.71)

In conclusion, the visibility of the n’th Bob must obey precisely the condition required for violating
the preparation noncontextuality inequality. Thus, in order to have m sequential violations, we
must choose at least n = m in our protocol. Furthermore, we can obtain proofs of contextuality
that are robust to noise (for each and every Bob) simply by increasing n to be suitably larger than
m.

Finally, let us mention that the analogous sharing of nonlocality has been investigated in Ref [79].
It was found that only two sequential observers can share the nonlocality of one part of a singlet
state in a CHSH Bell experiment subject to uniformly random inputs. This stands in sharp contrast
to the unbounded sequence of contextuality shown here.
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5

Quantum nonlocality

In this chapter, we depart entirely from correlation experiments featuring communication and
focus on quantum correlations arising in Bell-type experiments. In the first section, we present
Bell inequalities that are tailored to one of the most celebrated, elegant and useful discrete Hilbert
space structures encountered in quantum theory, namely mutually unbiased bases (MUBs) [80].
We then introduce an operational definition of mutual unbiasedness and prove that a maximal
quantum violation certifies such measurements [81]. In the third section, we depart from standard
Bell experiments and instead consider quantum nonlocality in networks. We discuss a method in
which standard Bell inequalities can be systematically mapped to network Bell inequalities in such
a way that their local bounds and quantum violations are preserved [82]. In the final section, we
focus on the simplest network Bell scenario known as the bilocality scenario. A commonly held
suspicion is that the known examples of Bell inequalities for the bilocality scenario can be traced
back to quantum violations of standard Bell inequalities. We investigate quantum correlations in
the bilocality scenario that have no resemblance to standard Bell nonlocality and present a network
Bell inequality that is inspired by quantum correlations rather than standard Bell inequalities [83].

5.1 Bell inequalities and mutual unbiasedness

Mutually unbiased bases (MUBs) are some of the most intriguing and well-researched discrete
structures in quantum theory. They also appear in many quantum information protocols such as
for random number generation and quantum key distribution. Here, we place these structures in
the context of Bell experiments where we investigate both their ability to maximally violate Bell
inequalities and the possibility of certifying them in a device-independent framework. Towards
this, we first define the concept. Let {|ej〉}dj=1 and {|fk〉}dk=1 be two orthonormal bases of the
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d-dimensional Hilbert space Cd. The two bases are mutually unbiased if

|〈ej |fk〉|2 = 1
d

(5.1)

for all j and k, where the constant on the right-hand-side is fixed by normalisation. A simple
interpretation for MUBs is that if a state is prepared in an eigenstate of one basis and measured in
the other basis, all outcomes are equally probable. Indeed, such bases always exist in any Hilbert
space dimension; for instance one can consider the computational basis and its Fourier transform.
Moreover, in dimension two that would amount to the Pauli matrices σz and σx.

In what follows, we first derive a family of Bell inequalities whose maximal quantum violation
is obtained with pairs of MUBs. Then, we show that the maximal quantum violation also can be
used for device-independent certification of a operational MUBs (which we introduce and define).
Finally, we apply the Bell inequalities for device-independent quantum key distribution. Notably,
the original work on which this chapter is based also develops Bell inequalities, device-independent
certification and random number generation based on symmetric informationally complete mea-
surements [81]. However, these results are omitted here in the interest of space and accessibility.

Bell inequalities for MUBs

Consider a bipartite Bell experiment involving Alice and Bob. Alice randomly receives one of d2

possible inputs denoted by the two-dit stringt x ≡ x1x2 ∈ [d]2 and is asked to return a ternary
output a ∈ {1, 2,⊥}. Bob receives a binary input y ∈ [2] and returns a d-valued output b ∈ [d].
The Bell scenario is illustrated in Figure 5.1.

We let Alice and Bob play a game in which they collectively win or lose points depending on
their collective inputs and outputs. Their aim is to cooperate to play the game as well as possible.
Alice can singlehandedly decide that no points will won or lost in a round by deciding to output
a =⊥. Instead, if she wants to play for points, she outputs a ∈ {1, 2}. In these cases, points are
only won or lost if Bob’s output satisfies the relation b = xy. Specifically, a point is won if a = y

but lost if a = ȳ (the bar-sign denotes a bit flip). The total score in the game can therefore be
written as

RMUB
d ≡

∑

x,y

p(a = y, b = xy|x, y)− p(a = ȳ, b = xy|x, y). (5.2)

Now, it may seem as if the outcome a =⊥ is artificial. Why would Alice ever decide to output
a =⊥? Presently, there is no good answer. In order to make the ⊥ outcome relevant, we must
modify the game. We explain this modification through a simple intuition.
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Figure 5.1: Bell experiment tailored to pairs of d-dimensional MUBs. Alice receives a d2-valued input and
returns a ternary output. Bob receives a binary input and returns a d-valued output.

Let us imagine that Alice and Bob share the maximally entangled state of local dimension d,

|ψmax
d 〉 = 1√

d

d∑

k=1
|k, k〉. (5.3)

We want that Alice remotely prepares Bob in a pure state whenever she decides that a round should
play for points (i.e. when a ∈ {1, 2}). The reason for this is that pure states allow for the strong
correlations that will be needed for Alice and Bob to obtain high scores. In order to prepare pure
states for Bob, we need that Alice’s measurement operators correspond to rank-one projectors.
When d > 2 this cannot fill the full space of Cd. Therefore, we consider that the outcome ⊥
corresponds to a projection on the complementary d−2 dimensional Hilbert space. Moreover, since
the local states of Alice and Bob are both the maximally mixed state, it would then follow that
p(a = 1|x) = p(a = 2|x) = 1/d. Therefore, we wish to motivate Alice to employ a strategy in which
she only outputs a = 1 and a = 2 with probability 1/d respectively. Consequently, we want her to
render the round moot by outputing a =⊥ with probability p(a =⊥ |x) = 1− 2/d. This is clearly
different from what is expected to be a good strategy to earn a large value of RMUB

d : evidently it
appears better for Alice to always output a ∈ {1, 2}. In order to tailor the game to our goal, we
introduce a tunable penalty. Specifically, Alice will lose γd points whenever she decides to output
a ∈ {1, 2}. It stands to reason that by tuning the penalty, the optimal rate of outputing a ∈ {1, 2}
should change accordingly. Outputing a ∈ {1, 2} contributes to RMUB

d but simultaneously costs γd
points. Our total score now reads

SMUB
d ≡ RMUB

d − γd
∑

x

(
p(a = 1|x) + p(a = 2|x)

)
. (5.4)

This serves as our Bell functional.
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We are now faced with some natural questions. Firstly, how do we choose the penalty γd to
establish the connection to MUBs? Secondly, what is the local bound and the quantum bound of
the resulting Bell functional? We can answer these questions in one swoop. For this purpose, we
define an observable for Alice as Ax = A1|x − A2|x. We also define {Pb} to be Bob’s POVM for
y = 1 and {Qb} to be his POVM for y = 2. The shared state can without loss of generality be
assumed pure. Then, we can write

RMUB
d =

∑

x

〈ψ|Ax ⊗ (Px1 −Qx2) |ψ〉. (5.5)

If we apply the Cauchy-Schwarz inequality to each term in the sum, we obtain an upper bound on
the form

RMUB
d ≤

∑

x

√
〈ψ|A1|x +A2|x|ψ〉

√
〈ψ| (Px1 −Qx2)2 |ψ〉, (5.6)

where we used that Alice’s measurements w.l.g. can be assumed as projective, for which it holds
that (Ax)2 = A1|x +A2|x. Next, we use the elementary inequality

∑

i

√
si
√
ri ≤

√∑

i

si

√∑

i

ri (5.7)

which is valid for non-negative si and ri and which gives equality if and only if si = kri for some
proportionality constant k. Our new upper bound then reads

RMUB
d ≤

√∑

x

〈ψ|A1|x +A2|x|ψ〉
√∑

x

〈ψ| (Px1 −Qx2)2 |ψ〉. (5.8)

To proceed further, we note the following useful property of projective measurements:
∑

x

(Px1 −Qx2)2 =
∑

x

Px1 +Qx2 − {Px1 , Qx2} = 2 (d− 1) I. (5.9)

This allows us to write
SMUB
d ≤

√
2(d− 1)t− γdt, (5.10)

where we have defined t = ∑
x〈ψ|A1|x + A2|x|ψ〉. We can now find the maximal value of the

right-hand-side by differentiating w.r.t. t and setting the derivative equal to zero. That equation
gives

t = d− 1
2γ2

d

. (5.11)

Now, we recall that our goal is to have p(a = 1|x) = p(a = 2|x) = 1/d. This would mean that we
aim for t = 2d. Imposing this constraint determines the penalty to be

γd = 1
2

√
d− 1
d

. (5.12)
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With this fixed penalty, our Bell functional is fully defined. Then, we can turn to the local bound
and the quantum bound. We have essentially already done the main work for both of them. In the
quantum case, we just insert our value of t into (5.10) which immediately gives the bound

SMUB
d

Q
≤
√
d(d− 1). (5.13)

As we will prove soon, this bound is tight.
The local bound requires a only a simple calculation which we include for completeness. Recall

that it suffices to optimise over deterministic strategies to determine the bound. Moreover, once
the strategy of Bob is fixed, finding the optimal strategy of Alice is easy. If Bob outputs b = u1 for
y = 1 and b = u2 for y = 2, the Bell functional becomes

SMUB
d =

∑

x

(δx1,u1 − δx2,u2) 〈ψ|A1|x −A2|x|ψ〉 −
1
2

√
d− 1
d

∑

x

〈ψ|A1|x +A2|x|ψ〉. (5.14)

We define R± = {x ∈ [d]2|δx1,u1− δx2,u2 = ±1} and R0 = [d]2 \ (R+∪R−). By expanding the above
expression for SMUB

d into the separate sums over R+, R− and R0 it becomes clear that the optimal
choice of Alice is to choose A1|x = I and A2|x = A⊥|x = 0 (always output a = 1) when x ∈ R+,
choose A2|x = I and A1|x = A⊥|x = 0 (always output a = 2) when x ∈ R− and choose A⊥|x = I and
A1|x = A2|x = 0 (always output a =⊥) when x ∈ R0. Since |R±| = d − 1, this leads to the local
bound

SMUB
d

local
≤ 2 (d− 1)


1− 1

2

√
d− 1
d


 . (5.15)

Let us now return to the MUBs. We have attempted to tailor the Bell inequality in such a
way that the maximal quantum value is achieved with any pair of MUBs of dimension d. It can
be confirmed that this is indeed the case. To this end, we let Alice and Bob share the maximally
entangled state |ψmax

d 〉 and let Bob’s measurements {Pb} and {Qb} be a pair of MUBs, i.e. we define
Pb = |φb〉〈φb| and Qb = |ϕb〉〈ϕb| such that |〈φb|ϕb〉|2 = 1/d. Finally, we choose Alice’s observables
as

Ax =
√

d

d− 1(Px1 −Qx2)T, (5.16)

where the pre-factor is fixed by normalisation. Then, we have that

SMUB
d =

∑

x

〈ψ|Ax ⊗ (Px1 −Qx2)− γd
(
A1|x +A2|x

)
⊗ I|ψ〉 (5.17)

=
√

d

d− 1
∑

x

〈ψ|I⊗ (Px1 −Qx2)2 |ψ〉 −
∑

x

〈ψ|γd
(
A1|x +A2|x

)
⊗ I|ψ〉 (5.18)

=
√

d

d− 12(d− 1)− 2dγd =
√
d(d− 1). (5.19)
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Indeed, our quantum strategy based on MUBs can saturate the maximal quantum violation of the
Bell inequality.

Certification of mutually unbiased measurements

Any pair of MUBs can saturate the maximal quantum violation of the Bell inequalities. However,
what can be deduced from the observation of correlations that achieve the maximal violation? The
answer to this question will lead us to introduce the concept of mutually unbiased measurements
and prove that such structures can be certified by the quantum correlations.

Previously, we used the Cauchy-Schwarz inequality to obtain a tight upper bound on the quan-
tum violation of the Bell inequality. Saturating the Cauchy-Schwarz inequalities implies the relation

Ax|ψ〉 = µx (Px1 −Qx2) |ψ〉, (5.20)

where µx is some constant. We need to determine the value of µx. To do this, we left-multiply by
〈ψ|(Px1 −Qx2) which tells us that µx is real and non-negative. The above relation implies that

〈ψ|(Ax)2|ψ〉 = µ2
x〈ψ| (Px1 −Qx2)2 |ψ〉. (5.21)

We have already seen that the left-hand-side is constant in x for the maximal violation, and therefore
we must have µ1 = µ2 = . . . = µd2 ≡ µ. Then, it follows from our previous analysis that

µ =
√

d

d− 1 . (5.22)

This is indeed the normalisation constant used in our specific quantum strategy based on pairs of
MUBs. We conclude that the following cross-relation must hold

Ax|ψ〉 =
√

d

d− 1 (Px1 −Qx2) |ψ〉. (5.23)

This relation can be manipulated into the certification statement that we aim to derive concerning
only Bob’s pair of measurements.

The spectrum of Alice’s observables is {+1,−1, 0}. Therefore, it must be that (Ax)3 = Ax.
Using this, we can eliminate Alice’s operators from the cross-relation and write it as

√
d

d− 1 (Px1 −Qx2) |ψ〉 =
(

d

d− 1

)3/2
(Px1 −Qx2)3 |ψ〉. (5.24)

Now, we trace-out Alice’s system. If we assume that Bob’s local state is full-rank, then we can
right-multiply by its inverse to obtain a relation that only concerns Bob’s operators:

Px1 −Qx2 = d

d− 1 (Px1 −Qx2)3 , (5.25)
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Recalling that Bob’s POVMs can be assumed projective, expanding the right-hand-side leads to
the simple relation

Px1 −Qx2 = d (Px1Qx2Px1 −Qx2Px1Qx2) . (5.26)

If we sum over either x1 or x2, we obtain the two final relations

Px1 = dPx1Qx2Px1 and Qx2 = dQx2Px1Qx2 . (5.27)

We conclude that a maximal quantum violation of the Bell inequalities implies that Bob’s two
measurements must obey these relations. However, what do these relations actually mean? It is
clear that if Bob’s two POVMs are MUBs, then relations (5.27) are satisfied, as expected. What is
the physics of this certification?

As it turns out, the relation between Bob’s measurements that we have certified corresponds
to a natural development of the concept of mutual unbiasedness. In the standard definition, which
we gave in the beginning of this chapter, MUBs are native to a specific Hilbert space dimension.
If we assume the Hilbert space dimension, we could describe them entirely in terms of operational
quantities (probabilities): if every state for which the outcome a d-outcome measurement is deter-
ministic yields a uniform distribution when measured in another basis, then the two measurementes
are MUBs. However, Hilbert space dimension is not an observable quantity. Can one determine
the notion of mutual unbiasedness on fully operational grounds? This leads us to introduce the
concept of mutually unbiased measurements (MUMs). We say that two n-outcome measurements
{Pa}na=1 and {Qb}nb=1 are mutually unbiased if they are projective and the following implications
hold:

〈ψ|Pa|ψ〉 = 1⇒ 〈ψ|Qb|ψ〉 = 1
n

〈ψ|Qb|ψ〉 = 1⇒ 〈ψ|Pa|ψ〉 = 1
n
, (5.28)

for all a and b. That is, two projective measurements are mutually unbiased if the eigenvectors of one
measurement give rise to a uniform outcome distribution for the other measurement. Importantly,
this concept is strictly different from the concept of MUBs since all MUBs indeed are MUMs but
there also exists MUMs that are not MUBs (see Ref [81] for an exploration of MUBs versus MUMs).

It is relevant to address the question of how one can characterise pairs of MUMs. Interestingly,
one can show that a necessary and sufficient condition for two measurements to be MUMs is
precisely the condition that we have derived as an implication of the maximal quantum violation
of the Bell inequalities, namely Eq (5.27). This means that the obtained certification in fact has a
natural physical interpretation in terms of MUMs. For the sake of completeness, we reproduce the
proof of this statement originally given in Ref [81].
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Let us first assume that the relations (5.27) hold. By summing over the middle index, one finds
that both measurements are projective. Moreover, if |ψ〉 is an eigenvector of Pa, then 〈ψ|Qb|ψ〉 =
〈ψ|PaQbPa|ψ〉 = 1

n〈ψ|Pa|ψ〉 = 1
n . By symmetry, the analogous property holds if |ψ〉 is an eigenvector

of Qb. Conversely, let us show that MUMs must satisfy the relation (5.27). Since ∑a Pa = I
we can choose an orthonormal basis of the Hilbert space composed only of the eigenvectors of
the measurement operators. Let {|eaj 〉}a,j be an orthonormal basis, where a ∈ [n] tells us which
projector the eigenvector corresponds to and j labels the eigenvectors within a fixed projector (if
Pa has finite rank, then j ∈ [trPa], otherwise j ∈ N). By construction for such a basis we have
Pa|ea′j 〉 = δaa′ |eaj 〉. To show that Pa = nPaQbPa it suffices to show that the two operators have the
same coefficients in this basis. Since

〈ea′j |nPaQbPa|ea
′′
k 〉 = nδaa′δaa′′〈eaj |Qb|eak〉, (5.29)

〈ea′j |Pa|ea
′′
k 〉 = δaa′δaa′′δjk (5.30)

it suffices to show that n〈eaj |Qb|eak〉 = δjk. For j = k this is a direct consequence of the definition
in Eq. (5.28). To prove the other case, define |φθ〉 =

(
|eaj 〉+ eiθ|eak〉

)
/
√

2, for θ ∈ [0, 2π). Since
Pa|φθ〉 = |φθ〉, we have 〈φθ|Qb|φθ〉 = 1/n. Writing this equality out gives

1
n

= 1
2

( 2
n

+ eiθ〈eaj |Qb|eak〉+ e−iθ〈eak|Qb|eaj 〉
)
. (5.31)

Choosing θ = 0 implies that the real part of 〈eaj |Qb|eak〉 vanishes, while θ = π/2 implies that the
imaginary part vanishes. Proving the relation Qb = nQbPaQb proceeds in an analogous fashion.

Application in quantum key distribution

To conclude our discussion of Bell inequalities tailored to MUBs, we outline their application
towards the task of quantum key distribution (QKD). QKD is the task of distributing shared data
between two separate parties in such a way that an eavesdropper cannot gain knowledge of the
data. Many of the most well-known protocols for QKD rely on the implementation of MUBs;
examples include the BB84 protocol and the six state protocol. However, these are protocols in
which both Alice and Bob are assumed to operate characterised quantum devices. In contrast,
quantum nonlocality enables device-independent protocols for QKD in which neither Alice nor Bob
are assumed to operate a priori characterised devices. In these low-trust schemes, both the key rate
and its security is derived directly from the Bell inequality violation. Since our Bell inequalities
offer a device-independent approach to MUBs, it appears natural to consider their application for
device-independent QKD.
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In our QKD protocol, we give Alice an additional input x∗ that is perfectly correlated with
the first setting (y = 1) of Bob. From these settings, the parties can extract a shared key. Note
that the correlations will be perfect if the shared state is maximally entangled. Alice and Bob run
the Bell experiment. In most rounds, they both choose the settings from which they extract the
key while in a few rounds they implement the actual Bell experiment (i.e. measurement settings x
and y). From the fewer rounds they can estimate the Bell functional SMUB

d which serves as their
security parameter from which they also decide the key rate K. It is well-known that the key rate
can be lower bounded via the following formula [84]:

K ≥ − log
(
P βg

)
−H(By=1|Ax∗), (5.32)

where H(By=1|Ax∗) is the conditional Shannon entropy and P βg is the guessing probability of
an eavesdropper. Specifically, the guessing probability is the largest probability of guessing the
outcome of, say, Bob that is still compatible with the observed value of the Bell functional β =
SMUB
d . We write it as

P βg ≡ sup
{ d∑

c=1
〈ψABE|I⊗ Pc ⊗ Ec|ψABE〉

}
, (5.33)

where we have denoted the POVM of the eavesdropper by {Ec} and allowed Alice, Bob and the
eavesdropper to share some arbitrary tripartite state |ψABE〉. Thus, we need to evaluate this
guessing probability as a function of the Bell functional. This is in general difficult. However,
interestingly, the case of a maximal quantum violation of the Bell inequality admits a simple
solution.

In order to present the analysis, we must first add two important pieces of knowledge. We
already know that if we observe the maximal quantum value SMUB

d =
√
d(d− 1), then the mea-

surements of Bob must be a pair of MUMs. Importantly, the maximal violation actually contains
even more information about the experiment. The following two additional pieces of information
were derived in Ref [81]

• From the shared state, it is possible to extract a maximally entangled d-dimensional state by
means of local extraction maps.

• There is only a single probability distribution p(a, b|x, y) that is compatible with the maximal
quantum violation.

Equipped with these results, we first conclude that a maximal SMUB
d implies perfect correlations

between Alice and Bob (for the settings x∗ and y = 1) which means H(By=1|Ax∗) = 0. Moreover,
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it must be that Pg = 1/d. To prove the latter, let us denote the state after the eavesdropper’s
measurement by

ρ
(c)
AB = 1

p(c) trC
[
(I⊗ I⊗ Ec)|ψABE〉〈ψABE|

]
, (5.34)

where p(c) is the probability of the outcome c. Alice and Bob are performing their Bell inequality
test on the state ρ(c)

AB. Therefore, since they are unaware of c, they will obtain different distributions
pc(a, b|x, y). Since we have assumed the maximal value of SMUB

d and we know that only a single
distribution is compatible with it, it must follow that pc(a, b|x, y) is independent of c. Then,
recalling that the marginals of Bob are uniformly random, it follows that

Pg =
d∑

c=1
p(c)pc(b = c|y = 1) = 1

d
. (5.35)

We conclude that the maximal value of SMUB
d implies the largest possible key rate in any experiment

in which the key is extracted from a d-outcome measurement, namely

K = log d. (5.36)

Matters become more complicated when we deal with values of SMUB
d that are not maximal. In

these cases, one must first choose a noise model in which to evaluate H(By=1|Ax∗) and then bound
P βg . Regarding the former, we consider the simple case of depolarising noise, namely

ρv = v|ψmax
d 〉〈ψmax

d |+ 1− v
d2 I. (5.37)

The visibility v relates to the observed Bell functional as

v = 1
2

(
1 + SMUB

d√
d(d− 1)

)
. (5.38)

This enables a straightforward calculation of the conditional entropy H(By=1|Ax∗) as a function of
v.

An exact computation of P βg is challenging, we resort to placing an upper bound on this quantity
which then translates into a lower bound on the key rate. One way of achieving this is through a
semidefinite relaxation. Importantly, the precise computation of the guessing probability is not an
SDP since it involves three unknown sets of operators that multiply each other; the state, Bob’s
measurement and the eavesdropper’s measurement. Nevertheless, an upper bound on Pg can be
obtained via SDP since it is known that the set of quantum correlations can be approximated from
above by such means. We implement the (tripartite) hierarchy of quantum correlations [85]. We
focus on the case of d = 3 for which we implement the associated SDPs using an intermediate

119



Figure 5.2: Certified key rate versus Bell functional SMUB
d for the case of d = 3. The result is obtained via

symmetrised semidefinite relaxations of the quantum set of correlations.

level corresponding to 532 monomials. The corresponding SDP has 15617 variables which makes
the evaluation computationally demanding. Fortunately, we can employ the SDP symmetrisation
techniques discussed in earlier chapters for the NV hierarchy. It is worth pointing out that those
methods readily also apply to Bell scenarios (they are arguably easier to apply in Bell scenarios).
To perform a symmetrisation of the SDP, we need to find some symmetries. Importantly, these
symmetries must preserve both the objective (the guessing probability) and its constraints (the Bell
functional). A simple symmetry that does the job is the following: let π be any permutation of
three elements, then a symmetry is to permute Bob’s output b→ π(b) conditioned on y = 1 while
simultaneously permuting the outcome of the eavesdropper c→ π(c) and the first input trit of Alice
x1 → π(x1). A straightforward inspection of the guessing probability and the Bell functional shows
that the transformations indeed keep both of them invariant. Exploiting these symmetries, the
number of variables in the moment matrix reduces to 2823 which allows for a fast SDP evaluation1.
The resulting lower bound on the key rate as a function of the Bell functional is displayed in
Figure 5.2. We see that for a maximal value, we indeed have K = log 3. Then, the key rate falls
of and reaches one bit around SMUB

d ≈ 2.432 and eventually reaches zero around SMUB
d ≈ 2.375.

Notice that the local bound SMUB
d ≈ 2.367 is not far from the zero key rate threshold.

1In this specific case, the evaluation time was reduced by a factor 60 and the memory use was reduced by a factor
55.
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Figure 5.3: Examples of network Bell experiments. a) is a standard Bell experiment. b) is the simplest
network Bell scenario and is commonly called the bilocality scenario. c) is an example of a star-network (and
so is b). d) is a more elaborate network.

5.2 Bell inequalities for star-networks

Recent years have seen an increased interest in generalisations of the standard Bell experiment to
network Bell experiments [86]. Whereas the former features a number of observers that share a
physical system emitted by a source, the latter features many independent sources that emit states
whose subsystems are distributed between the observers. A few examples are illustrated in Fig-
ure 5.3. As a consequence, two observers may receive subsystems of different states, and thereby a
priori lack the ability of establishing correlations. Such network Bell scenarios are interesting from
the point of view of quantum theory since they enable processes such as entanglement swapping to
be used by some observers to distribute entanglement to initially independent observers throughout
the network. Naturally, such procedures do not have a classical analogy. However, network Bell
experiments also pose technical challenges since the assumption of independent sources means that
the notion of local correlations now features several independent local hidden variables. Conse-
quently, the set of local correlations is no longer convex. This makes it more difficult to derive
network Bell inequalities for witnessing quantum correlations.

Here, we focus on a class of networks that are shaped like a star. A star-network features N
independent sources and N + 1 observers. We call one observer “the node”. The node receives an
input y and produces an outcome b. This party has a special status since he independently shares
a bipartite state with each of the other N “edge observers”. Thus, the edge observers are only
connected to the node and therefore independent of each other. Edge observer number k receives
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Figure 5.4: Bell experiment in a star-network. The node observer B independently shares a bipartite state
with each of the N edge observers Ak. In a local model, each source is associated to an independent local
hidden variable.

an input xk and produces an output ak. We illustrate the star-network in Figure 5.4.
In a local model, each of the N sources is associated to an independent local hidden variable

λk. The response function of each of the k’th edge observer is therefore determined by the input
xk and λk. For the node, having access to all the hidden variables, the output is determined by y
and ~λ = (λ1, . . . , λN ). A local model therefore reads

p(a1 . . . aNb|x1 . . . xNy) =
∫ ( N∏

k=1
dλkqk(λk)p(ak|xk, λk)

)
p(b|y,~λ). (5.39)

Notice that if we choose N = 1, this reduces to a standard Bell experiment featuring only one
source. However, whenever N ≥ 2 the geometry of the set of local correlations becomes non-
convex due to the products q1(λ1) . . . qN (λN ). Therefore, Bell inequalities in the network scenario
no longer corresponds linear inequalities constituting faces of some local polytope. Instead, they
must be nonlinear in order to capture features of this more complicated set of local correlations.

From Bell inequalities to star inequalities

We present a method for systematically constructing Bell inequalities for the star-network (star
inequalities). The main idea is to start from the familiar Bell inequalities for standard Bell exper-
iments and then transform them into star inequalities. Therefore, let us begin with considering a
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general correlation Bell inequality of the form

SbsM ≡
nA∑

x=1

nB∑

y=1
Myx〈Absx Bbs

y 〉 ≤ C, (5.40)

where Myx is a real number, nA is the number of settings for Alice, nB is the number of settings
for Bob and (Absx , Bbs

y ) are the observables of Alice and Bob that take values ±1. By specifying the
matrix M , one can determine the local bound C. It is favourable to re-write the Bell inequality on
the following simple form

SbsM =
nB∑

y=1

(
nA∑

x=1
MyxA

bs
x

)
Bbs
y =

nB∑

y=1
Âbsy B

bs
y , (5.41)

where we have defined Âbsy = ∑nA
x=1MyxA

bs
x . The local bound can now be calculated as follows;

C = max
A1...AnA∈{±1}

nB∑

y=1

∣∣∣∣∣

nA∑

x=1
MyxA

bs
x

∣∣∣∣∣ = max
A1...AnA∈{±1}

nB∑

y=1

∣∣∣Âbsy
∣∣∣ . (5.42)

In order to transform these Bell inequalities into star inequalities, consider the following ansatz.
Consider binary outputs for all edge parties but not necessarily for the node. Then, we define the
global expectation value for all parties involved in the network by

〈A1
x1 . . . A

N
xN
Bi〉 =

∑

a1...aN=0,1

∑

b

(−1)a1+...+aN+fi(b) × p(a1 . . . aNb|x1 . . . xNyi), (5.43)

where i = 1, . . . , nB and fi(b) is some binary-valued function for each i. These expectation values
are applied to define the correlation quantities

Ii =
nA∑

x1...xN=1
Mix1 . . .MixN 〈A1

x1 . . . A
N
xN
Bi〉 = 〈Â1

i . . . Â
N
i Bi〉.

Using the quantities {Ii}nBi=1, we define the following Bell functional for the network,

SnetM,{fi} ≡
nB∑

i=1
|Ii|1/N . (5.44)

Notice that for each choice of coefficient matrix M and each choice of functions {fi}i, we have a
different Bell functional. Our aim is to prove a bound on SnetM,{fi} valid for all local correlations.

Assuming a local model, the correlation quantities can be written on the form

Ii =
∫ [ N∏

k=1
dλkqk(λk)Âki (λk)

]
Bi(~λ). (5.45)
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Taking the absolute value of both sides and using that |Bi| ≤ 1, we obtain the bound

|Ii| ≤
N∏

k=1

∫
dλkqk(λk)

∣∣∣Âki (λk)
∣∣∣ . (5.46)

Inserting this into the chosen Bell functional and applying the Hölder inequality, we find that

Snet{M},{fi} =
nB∑

i=1
|Ii|1/N ≤

[
N∏

k=1

∫
dλkqk(λk)

nB∑

i=1

∣∣∣Âki (λk)
∣∣∣
]1/N

. (5.47)

The sum inside the square bracket is precisely the expression that previously appeared when we
established the local bound of the standard Bell inequality. We can therefore use that result to
conclude that

SnetM,{fi} ≡
nB∑

i=1
|Ii|1/N

local
≤ C, (5.48)

is a star inequality.
In this manner, the original Bell inequality can be mapped to a star inequality in which the

local bound is the same as in the original Bell inequality. It is interesting to point out that some
previous examples of star inequalities [87, 88] can be reproduced by the above by choosing the
standard Bell inequality to be the CHSH inequality.

In fact, it is not only the local bound that carries over from the Bell inequality to the star
inequality. Quantum strategies that yield a violation of the Bell inequality can also be used to
obtain violations of the star inequality. Give the node the same observables as Bob has in the Bell
inequality test, but not presented as an N -fold tesor; B = (Bbsy )⊗n. Similarly, give each of the edge
observers the same measurements as Alice has in the Bell inequality test; A1

x = . . . ,= ANx . Finally,
the state used in the Bell inequality test is distributed in each of the N sources in the star-network.
This somewhat trivial quantum strategy now gives a factorisation of the expectation values:

〈A1
x1 . . . A

N
xN
By〉ρ⊗N = 〈A1

x1 . . .ANxNBy〉ρ⊗N = 〈Absx1Bbsy 〉ρ . . . 〈AbsxNB
bs
y 〉ρ. (5.49)

Consequently, the correlation quantities take on the simple form

Ii =
(
nB∑

x=1
Mix〈Absx Bbsi 〉ρ

)N
=
(
〈Âbsi Bbsi 〉ρ

)N
, (5.50)

which when inserted into the Bell functional evidently leads to

Snet = Sbs. (5.51)

Therefore, every state that can violate the standard Bell inequality can also violate the star in-
equality in a quantum model.
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5.3 Quantum violations of bilocality

It is interesting that Bell inequalities systematically can be mapped to star-inequalities and that
the most well-known network Bell inequalities are instances of this map. Nevertheless, the fact that
such a map is possible strongly suggests that the star-inequalities nor their quantum violations will
conceptually differ from that encountered in standard Bell experiments. Indeed, we saw that the
quantum violations simply amounted to conducting several coordinated violations of standard Bell
inequalities. Notably, there are star-inequalities that employ an entangled collective measurement
in the node [87, 88]. Commonly, this measurement is a Bell State Measurement, projecting the
qubits into a basis of GHZ-like states. However, such Bell State Measurements turn out to effectively
correspond to simultaneous measurements of σx⊗σx and σz⊗σz, which therefore allows a simulation
of Bell inequality violations by coordinated separate violations of the CHSH inequality (again, via
the map from the previous section) [89]. However, one of the main motivations for studying network
Bell nonlocality is quantum correlations that in some sense are genuine to a network and do not
bear any resemblance to standard Bell nonlocality.

Here, we consider the simplest star-network which corresponds to N = 2. This is known as the
bilocality scenario and correlations attainable in local models are said to be bilocal. We investigate
quantum correlations arising in this network from the node implementing a measurement that is
different from the Bell State Measurement. This leads us to quantum correlations and bilocality
inequalities that admit no apparent resemblance to standard Bell nonlocality.

The bilocality scenario

In a bilocality scenario, we have three observers named Alice, Bob and Charlie. Alice and Bob
share a state while Bob and Charlie share an independent state. Hence, this can be viewed as the
simplest star-network featuring only two edge observers (Alice and Charlie). Since we eventually
will choose the states to be entangled qubits, it appears natural to consider a setting in which Alice
and Charlie have binary outcomes a = ±1 and c = ±1 respectively and Bob has four possible
outcomes b ∈ [4]. The choice for Bob is based on him jointly measuring his two independent
particles, which will correspond to a rank-one projective measurement on C2 ⊗ C2. For simplicity,
we let Bob only perform a single measurement (he has no input). Then, the bilocal model for the
correlations p(a, b, c|x, z) reads

pbiloc(a, b, c|x, z) =
∑

α,γ

q1(λ1)q2(λ2)p(a|x, λ1)p(c|z, λ2)p(b|λ1, λ2). (5.52)

Any distribution that does not admit this form is said to be non-bilocal.
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The elegant joint measurement in the bilocality scenario

How should we choose Bob’s four-outcome measurement on his two qubits? Our intention is to
depart from the well-studied Bell State Measurement and instead introduce a different measurement
that gives rise to qualitatively different quantum correlations. To this end, we consider to so-called
elegant joint measurement (EJM) [90]. This measurement features four rank-one projectors that
are equally entangled {|Φj〉}4j=1. They can be written as

|Φj〉 =
√

3 + 1
2
√

2
|~mj ,−~mj〉+

√
3− 1
2
√

2
| − ~mj , ~mj〉, (5.53)

where the qubit states |~mj〉 correspond to Bloch vectors that form a tetrahedron on the Bloch
sphere. It is easier to write the Bloch vectors in cylindrical coordinates

~mj =
(√

1− η2
j cosφj ,

√
1− η2

j sinφj , ηj
)
. (5.54)

We choose them to correspond to the four Bloch vectors that form a tetrahedron. Namely,

~m1 = 1√
3

(1, 1, 1) ~m2 = 1√
3

(1,−1,−1)

~m3 = 1√
3

(−1, 1,−1) ~m4 = 1√
3

(−1,−1, 1) , (5.55)

from which we obtain the state vector

|~mj〉 =
√

1− ηj
2 eiφj/2|0〉+

√
1 + ηj

2 e−iφj/2|1〉. (5.56)

Then, | − ~mj〉 denotes the unique state orthogonal to |~mj〉. The EJM has the following nice
property. If we trace-out the first system, then the four local states of the other system correspond
to a tetrahedron on the Bloch sphere (now shrunk by a factor 1/2). Similarly, if we trace-out the
second system, then the four local states of the first system correspond to a mirror image of that
tetrahedron.

In view of this property, it appears most reasonable to allow Alice and Charlie to perform three
measurements (see Figure 5.5). That is, because the tetrahedron spans all three dimensions of
the Bloch sphere, Alice and Charlie ought to benefit from not ignoring a subspace of the Bloch
sphere. Hence, we choose x, z ∈ [3]. The most natural choices for the measurements of Alice and
Charlie are to let them be σx, σy and σz, because these are symmetric with respect to the two local
tetrahedra. Choosing the shared states to be maximally entangled, i.e. |ψ−〉 = (|01〉 − |10〉)/

√
2,

we can calculate that the joint expectation value of Alice and Charlie conditioned on the outcome
of Bob is

EAC
b (x, z) ≡

∑

a,c

ac · p(a, c|b, x, z) = −m̃b,xm̃b,z

2 (1− δx,z), (5.57)
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Figure 5.5: Bilocality scenario based on the elegant joint measurement. Bob performs the EJM while Alice
and Charlie perform one of three measurements with binary outcomes. In quantum (classical) implementa-
tion, the network features two independent singlet states (hidden variables).

where m̃j,k is the sign of the k’th component in ~mj . Similarly, we can compute the conditional
single party expectation values to be

EA
b (x) = 1

2m̃b,x EC
b (z) = −1

2m̃b,z. (5.58)

Using these expectation values, we can write the full distribution as

pQ(a, b, c|x, z) = 1
16
(
1 + aEA

b (x) + cEC
b (z) + acEAC

b (x, z)
)
. (5.59)

A relevant generalisation of this strategy is that in which each of the states are subjected to
depolarising noise. Then the state becomes

ρi = Vi|ψ+〉〈ψ+|+ 1− Vi
4 I, (5.60)

for i ∈ {1, 2} where Vi ∈ [0, 1] denotes the visibility. In similar spirit, the probability distribution
takes the same form as above now the expectation values are now modified to

EA
b (x) = V1

2 m̃b,x, EC
b (z) = −V2

2 m̃b,z,

EAC
b (x, z) = −V1V2

2 m̃b,xm̃b,zδx 6=z, (5.61)

We proceed to investigate whether the distribution pQ is bilocal.

Bilocal simulation

To what extent can bilocal models simulate the quantum correlations? The answer is much less
trivial than in standard Bell nonlocality. To tackle the problem, we can w.l.g. restrict the cardinality
of the hidden variables to be eight since the number of ways of mapping Alice’s (Charlie’s) three
inputs to her (his) binary output is eight. For simplicity, we rename the hidden variables as λ1 ≡ α
and λ2 ≡ γ (as in Figure 5.5). We define α, γ ∈ {−4, . . . ,−1, 1, . . . , 4} and write their respective
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distributions as q(A)
α and q(C)

γ . The list of binary answers to the three questions of Alice and Charlie
can be written as a three-element tuple. We associate these tuples to the hidden variable by defining
wj =

√
3~mj and w−j = −

√
3~mj , where ~mj are point to the tetrahedron as given in Eq (5.55). Now,

we can write the bilocal model on the form

pbiloc(a, b, c|x, z) =
∑

α,γ

q(A)
α q(C)

γ δa,wαxδc,wγzp(b|α, γ). (5.62)

Note that the response of Bob, p(b|α, γ), is unconstrained.
We have employed a numeber of methods to decide whether the correlations generated via the

EJM admit a bilocal model. Firstly, we define the distance between the quantum distribution and
the bilocal distribution by

D ≡
√ ∑

a,b,c,x,z

(pQ(a, b, c|x, z)− pbiloc(a, b, c|x, z))2. (5.63)

Considering the case of v ≡ v1 = v2, one can use matlab’s fmincon function to find the largest v
for which one can up to numerical precision satisfy D = 0. Hence, this minimisation takes places
over the response of Bob and the two hidden variable distributions. Repeating this optimisation
many times reveals an interesting pattern. We find that the optimum occurs for hidden variable
distributions that are uniform over each of the tetrahedral configurations present in the eight tuples
(±1,±1,±1). In other words, all entries associated to α, γ = 1, . . . , 4 and α, γ = −1, . . . ,−4 are
respectively equal. This leads us to an ansatz of tetrahedral symmetry.

q(A) = 1
4 [u, u, u, u, 1− u, 1− u, 1− u, 1− u] (5.64)

q(C) = 1
4 [r, r, r, r, 1− r, 1− r, 1− r, 1− r] , (5.65)

for some u, r ∈ [0, 1]. Let us extend this tetrahedral symmetry also to Bob’s response function.
Specifically, let π be a permutation of {1, 2, 3, 4}. We impose that

∀π : p (π(b)|π(α), π(γ)) = p(b|α, γ), (5.66)

where π(−α) = −π(α). This assumption appears natural given the tetrahedral symmetries present
in the quantum probability distribution and in the hidden variable distribution. Exploiting it,
one can reduce the existence of a bilocal model to only eight equations involving 24 variables.
These variables are (u, r, V1, V2) and an additional 20 variables associated to the response of Bob.
Considering the case of V ≡ V1 = V2, solving these equations leads us to

18V 2 + 6V +
√

3
√

4V 2 + 12V − 9 = 19. (5.67)
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Figure 5.6: The set of bilocal correlations in the plane of visibilities (v1, v2). The dashed line represents
the product of the visibilites on the boundary of the bilocal set (solid blue curve).

The critical visibility is therefore the solution to this equation. It has an analytical form, but it is
unwieldy. Approximately, it reads

V ≈ 79.09%. (5.68)

Thus, under the tetrahedral assumption, this is the best bilocal simulation possible. Furthermore,
we can characterise general pairs (V1, V2) in this manner. Solving the symmetrised system of
equations, one finds that

V2 = 58 + 9V1 − 4
√

18V1 − 8
27 + 54V1

, (5.69)

which is valid when V1 ≥ V2. Due to symmetry, for the region V1 ≤ V2, one may simply interchange
V1 and V2 in the above formula. Notice that choosing V1 = V2 returns the equation (5.67).

One can reproduce the critical visibilities (up to numerical precision) without the tetrahedra
assumption on Bob’s response. To this end, notice that for a fixed value of (u, r), the existence of a
bilocal model is a linear program over Bob’s response function. We have made a fine-grained grid
of the values of (u, r) and evaluated the corresponding linear program for each case. This allows
us to reliably find the largest value of V2 (for a given V1) for which there is a bilocal model. In
Figure 5.6 we present the critical pairs (V1, V2) for the existance of a bilocal model. Importantly,
notice that the product of the critical pairs is not constant (as displayed in the Figure). If the
quantum correlations were based on wiring two separate standard Bell experiments, one would
expect the critical pairs to factor (this has been the case in previous bilocality inequalities). This
is yet another indication that the quantum correlations are not based on wiring of standard Bell
experiments. This leaves a natural open problem to prove the bilocal set in the (V1, V2) plane in
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full generality (i.e. to prove the tetrahedral assumption on the hidden variable distributions).

Bilocality inequality

The bilocal simulation applies only to our target distribution pQ. It is, however, natural to consider
the construction of Bell inequalities for the bilocality scenario that both bear no resemblance
to standard Bell inequalities and apply to general probability distributions. Our results for the
simulation of pQ suggests a natural candidate for such a bilocality inequality. Consider the Bell
expression

A ≡
∑

x 6=z,b

√
p(b)

(
1− m̃b,xm̃b,zE

AC
b (x, z)

)
+
∑

j,b

(√
p(b)

(
1 + m̃b,jE

A
b (j)

)
+
√
p(b)

(
1− m̃b,jE

C
b (j)

))
.

This expression is tailored to pQ. When V1 = V2 = 1, the quantum value becomes A = 12
√

6 ≈
29.39. Under the assumption of qubit states and rank-one projective measurements for Bob, nu-
merical searches found no quantum strategy that improves on this result.

What is the largest value of A achievable in a bilocal model? We have again employed the
tetrahedral symmetry to write the problem as a nonlinear maximisation (of A) which depends on
14 variables. Of these variables, 12 characterise the symmetric response of Bob and the remaining
two are (u, r). Then one finds the bilcal maximum

A = 2
√

3
(
6 +
√

5
)
≈ 28.53. (5.70)

Thus, under the tetrahedral assumption, the bilocality inequality admits a quantum violation.
Notably, we have also searched for the bilocal maximum by numerical means without imposing
tetrahedra symmetry and in that manner independently recovered the above bound. We conjecture
that the obtained bilocal result is optimal.

Finally, we remark that the bilocality inequality does not successfully detect all non-bilocal pQ.
Nevertheless, it does manage to detect quantum correlations at a reasonable visibility. Choosing
V ≡ V1 = V2, one finds the critical visibility

V = 88.0% (5.71)

This should make the bilocality inequality applicable to experimental demonstrations.
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Conclusions

Motivation

Quantum theory describes a reality that is radically different from that encountered in established,
pre-quantum, physical theories such as classical mechanics, electrodynamics, thermodynamics and
even the theory of relativity. The essence of the quantum world is its remarkable ontology in
which physical states can lack definite properties (Schrödinger’s cat is both dead and alive), the
act of observation changes the future of a physical system (nature changes when observed), the
outcomes of measurements can be intrinsically random2 and knowledge is subject to fundamental
uncertainty3. It appears that quantum theory is describing a world that is very different from
everyday experience. Nevertheless, most of us firmly believe that there is only one reality. How do
we reconcile this with the remarkable (and arguably unparalleled) success of quantum theory, in
terms of explaining and predicting nature, witnessed over the last hundred years of physical science?
In order to find an answer, we must truly understand quantum theory. We must understand what
makes it so different from the more familiar physics of everyday experience. We must understand
why nature seems to follow the predictions of quantum theory, rather than some other (potentially
even more conceptually radical) theory. We must understand which concepts of a quantum theory
are essential in nature and which, perhaps, could be different in an even more sophisticated post-
quantum theory of physics. And we must understand what are the ultimate limitations of a reality
governed by quantum theory so that we can probe and explore its most extreme predictions in
state-of-the-art experiments [91, 92, 93].

However, it is an astonishing fact that such research in the conceptual foundations of the quan-
tum world constitutes only one side of a coin. The era in which we can individually control and

2Intrinsic randomness is to be distinguished from randomness that arises simply from lack of knowledge. Many
processes in everyday life feature the latter form of randomness. For instance, a coin toss appears random but it
could be predicted if the appropriate knowledge about the toss, the coin and its environment is provided.

3That uncertainty is fundamental means that nature, rather than technological limitations, hinder us from elimi-
nating the uncertainty.
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manipulate atoms and sub-atomic particles is presently unfolding. Aptly capturing its magnitude
of impact, it is often referred to as the second quantum revolution [94] which makes research in
quantum theory not only a matter of conceptual development but also a matter of technological
applications. These quantum technologies either promise to dramatically improve on conventional
technologies or to offer solutions to tasks that are not known to have any solution with technologies
based on pre-quantum physics. This is possible due to the close interplay with advances in our
foundational understanding of quantum theory. Let us give three examples of this pivotal connec-
tion. 1) In order to encode, say, a million different objects in a computer, we need to construct
all bit-strings of length roughly 20 (since 220 is approximately a million). However, since quan-
tum systems can occupy many different states at the same time, we could probabilistically find all
one million different cases by measuring just a single string of 20 quantum bits. This possibility
is harvested towards the construction of quantum computers. Very recently, the first demonstra-
tion of quantum supremacy over present super computers has been achieved [95]. 2) The field of
quantum cryptography rests on the fact that quantum systems change when they are observed.
Practically, this means that the presence of adversaries attempting to read a secret message can
be detected. Therefore, powered by the laws of the quantum world, the security of cryptography
is no longer based on the assumption that adversaries do not have strong enough computers to
break the encryption but, instead, directly on the laws of nature. In recent years, the quantum
distribution of cryptographic keys has been achieved over very long distances [96, 97]. 3) One of the
most remarkable fundamental features of quantum theory is that it predicts laboratory data that
cannot be accounted for in any (perhaps unknown) physical theory based on local hidden variables.
If such data is observed, we can exclude the possibility that some unknown influence is governing
its output, even without knowing how the device precisely operates. Therefore, quantum theory
opens an avenue to random number generators whose security is certified independently by the
inner workings of the device. Such quantum random number generators, operating at the highest
security levels, have been achieved in recent experiments [98, 99, 100].

Summary

In view of the above, it is evident that the many crucial questions surrounding the foundational
and applied aspects of quantum theory demand research attention. This thesis is a contribution
to that ongoing research effort. The work that has been presented here places particular emphasis
on the study of quantum correlations, i.e. the study of predictions made by quantum theory that
cannot be explained by classical physical models. Topics that have been investigated in the above
chapters are
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• Understanding the creation and limitations of quantum correlations in communication exper-
iments.

• Exploring how quantum correlations arise in network of distant observers.

• Investigating and developing the relationship between quantum correlations and information.

• Studying the relationship between different quantum resources and their applications in dis-
tributed computation.

• Finding methods for deducing the precise properties of a quantum resource based on the
correlations it produces in simple experiments.

While the precise character of the contributions of this thesis is to be found in the above chapters,
they span a number of qualitatively different types including the introduction of novel concepts (see
e.g. section 2.4), exploring already established but poorly understood concepts (see e.g. sections 2.1
and 5.3), developing connections between different fundamental features of quantum theory (see
e.g. sections 4.2 and 5.1), solving practically motivated tasks (see e.g. section 3) and developing
computational tools for quantum information processing (see section 2.3). Notably, while these
contributions are theoretical, many of them have motivated recent experimental works focused on
the realisation of different forms of quantum correlations (see e.g. Refs [26, 61, 101, 70]).

Outlook

Naturally, on the topic of quantum correlations, many questions remain open and many new ques-
tions are made relevant due to more recent theoretical or experimental advances. I shall highlight
three avenues of research that I find particularly interesting and promising.

Quantum correlations in large systems.— Naively, it may appear as if modern physics does
not describe a single reality, but rather a quantum world of the microscopic and a classical world of
the macroscopic. However, nature does (probably) not draw a sharp border between what we call
quantum and what we call classical. This suggests that the borderland between the microscopic and
the macroscopic should witness a natural merge of the quantum and classical phenomena. In other
words, as systems grow larger, we would expect quantum properties to degrade and finally vanish
in favour of a classical description. Theoretically [102] and experimentally [103, 104, 105] exploring
the emergence of classicality in a quantum world is a fundamental and intriguing question.

Semi-device-independent quantum information processing.— Quantum theory can en-
hance many practical task beyond the limitations of conventional technologies. However, within the
realm of quantum technologies, there is a multitude of qualitatively different paths to developing
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protocols for the same task. Often, a desirable feature of a quantum technology is that it can achieve
its purpose while making small and reasonable assumptions. The most rigorous path is known as
device-independent quantum information processing in which tasks are completed with minimal
assumptions on the quantum devices. However, the price to pay for this is that implementations
become very demanding. Therefore, a compromise becomes important: how can quantum tech-
nologies run efficiently while operating only under mild and well-chosen assumptions? A breadth
of different answers are possible and they are collectively referred to as semi-device-independent
quantum information processing. In recent years, a number of different paradigms for such an
approach to quantum technologies has been proposed. Important examples are based on physical
dimension [106], energy [107] and overlap [108]. Notably, this thesis laid out the foundations for
the development of another approach to semi-device-independent quantum information processing
based on the information carried in physical ensembles (see section 2.4). This diversity in semi-
device-independent quantum information processing is both interesting and necessary due to the
many different types of applications, and physical platforms for their realisation, that are relevant
to the field. The theoretical and experimental development of semi-device-independent protocols
for practically useful tasks is a promising route towards high-performing and efficient quantum
technologies.

Entanglement in measurements.— Entanglement is perhaps the most puzzling feature of
quantum theory: it is the impossibility of understanding a quantum system by examining only its
parts. This remains true even if parts of the system are separated by a huge distance. Entangle-
ment has been studied intensively over many decades and the state-of-the-art knowledge is rather
advanced. The research focus has largely been on classifying, quantifying and detecting entangle-
ment in physical states. However, entanglement in quantum theory is as relevant to measurements
as it is to states. Entanglement in measurements is arguably a more complex phenomenon since
quantum measurements are composed of collections of operators and entanglement may arise both
individually and collectively among them. In comparison, the entanglement of measurements is
much less explored. Nevertheless, it appears reasonable to believe that it should carry an equally
crucial signficance for the understanding of quantum theory as do entangled states. Therefore, a
research effort devoted to the exploration of entangled measurements is interesting and relevant.
Furthermore, studying more sophisticated forms of entanglement is also timely due to experimental
advances seen over the last few years. Entangled states of both many particles [109, 110] and of high
dimension [111] has been realised, as well as entangled measurements beyond qubit systems [112].
In view of these experimental advances, it is also intriguing to investigate quantum correlations
phenomena that is native to more sophisitcated forms of entangled states and/or measurements.
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Communication complexity problems (CCPs) are tasks in which separated parties attempt to compute a
function whose inputs are distributed among the parties. Their communication is limited so that not all inputs
can be sent. We show that broad classes of Bell inequalities can be mapped to CCPs and that a quantum violation
of a Bell inequality is a necessary and sufficient condition for an enhancement of the related CCP beyond its
classical limitation. However, one can implement CCPs by transmitting a quantum system, encoding no more
information than is allowed in the CCP, and extracting information by performing measurements. We show that
for a large class of Bell inequalities, the improvement of the CCP associated with a quantum violation of a Bell
inequality can be no greater than the improvement obtained from quantum prepare-transmit-measure strategies.

DOI: 10.1103/PhysRevA.95.042305

I. INTRODUCTION

Bell’s theorem asserts that measurements on separated
entangled quantum states can give rise to outcome correlations
that have no local realistic model [1]. This fact can be used to
break classical limits in communication complexity problems
(CCPs) [2]. However, quantum protocols for CCPs violating
classical bounds, that are based on prepare-transmit-measure
schemes involving just a single quantum system, are also
possible [3]. This can be certified by a violation of an inequality
bounding the strength of the classical counterpart of such a
protocol.

Nonclassical features of various quantum predictions are
an essential tool in many quantum information tasks such
as (semi) device-independent cryptography [4,5], randomness
generation [6–8], and dimension witnesses [9,10]. However,
in terms of studying the fundamental physical phenomena,
correlations due to the entanglement of two or more systems
have been given significantly more attention than those
obtained from preparing and measuring a single quantum
system. Indeed, little is known about the relation between the
strength of the two general types of nonclassical correlations
enabled by quantum theory, and their comparative applicability
in quantum protocols violating classical bounds in information
processing tasks. For instance, it was shown in Ref. [11]
that in some tasks entanglement is as least as good a
resource as transmission of a single qubit. Examples in which
entanglement is strictly better were given in [12]. In contrast,
Ref. [13] showed that there are tasks in which a single-
quantum system is a better resource than entanglement. Also,
Ref. [14] showed that single-quantum systems can exhibit a
discontinuous jump at dimension seven when performing an
information processing task, while no such jump occurs for
entanglement-based strategies.

Here, we aim to construct a framework based on games in
which one can, on equal footing, compare the communication
complexity reduction power of entanglement-based protocols
and single-quantum system approaches. For this purpose, we
will use a class of information-theoretic games related in fact
to CCPs.

In CCPs, a number of parties, say N , attempt to jointly
compute a task function f (X1, . . . ,XN ). However, the input
Xi is only known to party i. The task the N parties attempt to
solve is either (i) to minimize the communication required
for one of them to compute f , or (ii) to maximize the
probability of one party to correctly compute f when the
communication between the parties is limited by some rule,
which does not allow one to transmit all the data contained in
any Xi . In this work we consider the latter. On the one hand,
since single-system protocols are based on measurements on
a transmitted quantum system of a specific dimension d,
which constrains its information-carrying capacity to log d

bits, appropriate CCPs are a natural habitat in which the
quantum strength of such CCP protocols can be studied. On
the other hand, Bell inequalities are known to exhibit links to
games [15]. The relation between CCPs and correlations due
to entanglement has been extensively studied [2,16,17].

We will show that for every bipartite Bell inequality, we can
formulate a CCP such that the reduction of communication
complexity obtained from using classical communication
assisted by correlations due to shared entanglement directly
corresponds to the ability of quantum theory to violate the
original Bell inequality. However, the CCP can also be imple-
mented in quantum theory by the preparation, transmission,
and measurement of a single-quantum system. Using such
CCPs as a framework for both types of quantum resources,
we will show that for large classes of Bell inequalities,
correlations due to measurements on entangled states cannot
beat the performance of quantum prepare-transmit-measure
protocols.

II. THE STUDIED CLASS OF BELL INEQUALITIES

In a bipartite Bell inequality, observers Alice and
Bob perform measurements x ∈ {0, . . . ,mA − 1} and y ∈
{0, . . . ,mB − 1}, respectively, with a distribution p(x,y). Each
measurement has an outcome a,b ∈ {0, . . . ,d − 1}, respec-
tively. Such Bell inequalities can in a general way be written

2469-9926/2017/95(4)/042305(6) 042305-1 ©2017 American Physical Society
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as

∑

x,y

p(x,y)
d−1∑

a,b=0

K∑

k=0

ck
ab|xyP (a,b|x,y) � B. (1)

B is the classical bound, ck
ab|xy are real numbers, and k is

an index with some range k ∈ {0, . . . ,K} for some natural
number K . This index will allow us to put the inequalities in
a form which generalizes the form of the CGLMP inequalities
[18]. Note that we can without loss of generality assume that
∀ a,b,x,y, there exists at most one k ∈ {0, . . . ,K} such that
ck
ab|xy �= 0. To see this, simply note that if ck

ab|xy and ck′
ab|xy

with k �= k′ were both nonzero, then in Eq. (1) we would
encounter the terms ck

ab|xyP (a,b|x,y) + ck′
ab|xyP (a,b|x,y) =

(ck
ab|xy + ck′

ab|xy)P (a,b|x,y) where the prefactor is again just
some real number.

The Bell inequalities of our interest have the following
structure. First, we draw inspiration from a variety of known
Bell inequalities in which correlations between Alice’s and
Bob’s local outcomes are quantified using their sum a + b

mod d. With this in mind, for any given pair of measurements
(x,y), we construct the set Sxy = {∀ (a,b,k) such that ck

ab|xy �=
0}. We we require that Sxy admits a partition of the form
{Si,k

xy }i,k for i = 1, . . . ,N and k = 0, . . . ,K , for some integers
N,K , with Si,k

xy = {(a,b)|a + b = F i
xy(k) mod d} for some

functions F i
xy(k), i.e.,

∀ x ∀ y : Sxy =
N⋃

i=1

K⋃

k=0

Si,k
xy ,

and Si,k
xy ∩ Si ′,k′

xy = ∅ for (i,k) �= (i ′,k′). (2)

Remark: since the sets Si,k
xy are disjoint for i = 1, . . . ,N and

k = 0, . . . ,K it follows that there can be no set (a,b) that
simultaneously satisfies both a + b = F

j
xy(k) and a + b =

F
j ′
xy(k′) for (j,k) �= (j ′,k′). This implies that the range of F

j
xy

is disjoint with that of F
j ′
xy for j �= j ′. Also, since a + b

mod d can have at most d different values it follows that
(K + 1)N � d.

Second, we restrict the structure of ck
ab|xy such that we later

can make the connection to a related family of CCPs. To see
why this restriction is necessary, we remind ourselves that in
CCPs, Alice and Bob attempt to compute the value of some
function from which they earn some payoff. Although the
local outcomes produced from measurements on a (perhaps)
entangled state may assist Alice and Bob in performing the
computation, the values of these local outcomes are per se
of no interest in the CCP. Therefore, we require that the Bell
inequality is such that the same coefficient ck

ab|xy is assigned
to any pair (a,b) ∈ Si,k

xy , i.e., we may write ck
ab|xy = ci,k

xy .
Thus, the Bell inequalities we will consider are written

IBell ≡
∑

x,y

p(x,y)
K∑

k=0

N∑

i=1

ci,k
xy Pxy[a + b = F i

xy(k)] � B.

(3)

By B, we will denote some arbitrary Bell inequality of
this form. This class can be viewed as a generalization of
the inequalities considered in Ref. [16], from two-outcome

to many-outcome Bell scenarios. A simple example of a
well-known Bell inequality that can be written in the form (3) is
the CHSH inequality [19]. In fact, every Bell inequality using
correlation functions admits this form [16]. Several known Bell
inequalities with arbitrary many outcomes and/or arbitrary
many settings admit the form (3), see Refs. [13,18,20–22].
Also, known families of full-correlation two-outcome Bell
inequalities with nonuniform input distributions [23] fall
into the class (3). However, Bell inequalities with marginal
probabilities are not taken into account. For example, the
Clauser-Horne inequality [24] and the noncorrelation parts of
the inequalities presented in [25] do not admit the form (3). To
include also those inequalities, a further generalization would
be necessary.

III. REPRESENTING BELL INEQUALITIES B AS PAYOFF
BOUNDS FOR A CLASSICAL CCP

Consider the following family of CCPs, which we labelGB.
Alice is given one input x0 ∈ {0, . . . ,d − 1} with p(x0) = 1/d,
and one input x ∈ {0, . . . ,mA − 1}, while Bob receives one
input y ∈ {0, . . . ,mB − 1}. The inputs x of Alice and y of Bob
are distributed according to a joint probability distribution
p(x,y). There is a communication channel from Alice to Bob
over which Alice may send at most log d bits of information
in the form of a message m(x0,x) ∈ {0, . . . ,d − 1}. Having
received the message, Bob outputs his guess G(y,m) ∈
{0, . . . ,d − 1}. If G coincides with the value of one of the
functions fi,k(x0,x,y) = x0 + F i

xy(k) mod d, then Alice and
Bob jointly earn a payoff ci,k

xy . The average earned payoff in
GB is

I cc
GB

= 1

d

∑

x0,x,y

p(x,y)
K∑

k=0

N∑

i=1

ci,k
xy Pxy[G = fi,k(x0,x,y)].

(4)

In a quantum version of such a CCP, to assist Alice
and Bob’s attempts to perform optimally, they may perform
measurements on their subsystems in an entangled state.
Alice performs a local measurement of a setting labeled by
x and obtains the outcome a ∈ {0, . . . ,d − 1}. Similarly, Bob
performs a local measurement labeled by y and obtains the
outcome b ∈ {0, . . . ,d − 1}. Alice sends a message which
depends on x0 and a. The other method is that Alice sends to
Bob a quantum system of dimension d in a state which depends
on x0 and x, upon which Bob performs a measurement of his
choice, and somehow produces a guess.

There are many possible ways of implementing GB

by choosing different ways of coding the message m and
outputting the guess G. However, we shall limit the strategies
under consideration to only those in which Bob’s guess is of
the form m + b(y) mod d. In particular, we call any strategy
linear, both in the case of classical and entanglement assisted
CCPs, if m = x0 + a(x) mod d. Any other strategy of Alice
we call nonlinear. We shall state and prove a theorem about
the optimality of such linear strategies in GB. Before that, we
provide two useful lemmas.

Lemma 1. Take a function R(x0), where x0 = 0,1, . . . ,d −
1, such that its values are only in the set ω0,ω, . . . ,ωd−1.
The discrete Fourier transform of R, defined as K(l,R) =

042305-2
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1
d

∑d−1
x0=0 ω−lx0R(x0), has the following property: either it is

such that (a) only for one value of l, say l = s, one has
K(s,R) �= 0, and then K(s,R) is a power of ω; or (b) for
every l the value K(l,R) is some convex combination of some
subsets of numbers ω0,ω, . . . ,ωd−1.

Proof. The values of R(x0), are in the form ωn(x0), where n

is an integer function of x0. Its discrete Fourier transform is
K(l,R) = 1

d

∑d−1
x0=0 ωn(x0)ω−lx0 , which for every l is exactly

such a convex combination. In particular, if K(l,R) are
not proper convex combinations then only one of them
is nonzero. If this is the case for K(l = s,R), then this
is if, and only if, R(x0) = ωtωsx0 , where s,t are integers,
and K(l = s,R) = ωt . �

Lemma 2. The Fourier expansion coefficients of powers of
function R(x0), that is, R(x0)r where r is an integer, have the
following form. Assume that for the function R the Fourier
transform K(l = 1,R) is in the form of the following convex
combination: K(1,R) = ∑d−1

ν=0 λνω
ν . Then the l = r value

of the Fourier transform of Rr is given by K(l = r,Rr ) =∑d−1
ν=0 λνω

rν . That is, it is a convex combination of rth powers
of ων , with the same coefficients λν , as K(1,R).

Proof. The convex combination coefficients of K(1,R), that
is, λν’s, in fact, are equal to kν

d
, where each kν = 0,1, . . . ,d

tells us how many times the number ων appears in K(1,R) =
1
d

∑d−1
x0=0 ωn(x0)ω−x0 . Because ωln(x0)ω−lx0 = (ωn(x0)ω−x0 )l and

K(r,Rr ) = 1
d

∑d−1
x0=0 ωrn(x0)ω−rx0 , we see that if ων appears kν

times in K(1,R), so does ωrν in K(r,Rr ). �
Theorem 1. The optimal performance in classical GB is

achieved with a linear strategy. Moreover, the performance
of any nonlinear strategy is a probabilistic mixing of the
performances of linear strategies.

Proof. We first rewrite our Bell inequalities in Eq. (3). The
discrete Fourier transform of P (a + b|x,y) can be defined as
E(l|x,y) = ∑d−1

z=0 ωlzP (a + b = z|x,y) where ω = e
2πi
d . Its

inverse reads

P (a + b = z|x,y) = 1

d

d−1∑

l=0

ω−lzE(l|x,y). (5)

Therefore we get

P
(
a + b = F i

xy(k)|x,y
) = 1

d

d−1∑

l=0

ω−lF i
xy (k)E(l|x,y). (6)

By direct insertion into Eq. (3), we may write any Bell
inequality B in the form

IBell ≡
∑

x,y

p(x,y)

d

d−1∑

l=0

N∑

i=0

K∑

k=0

ci,k
xy ω−lF i

xy (k)E(l|x,y) � B.

(7)

Next, notice that E(l|x,y) is the average value of the products
of the local results, each represented by specific powers of ω,
for local settings x, y. Namely, E(l|x,y) = 〈ωlaωlb〉x,y . Thus,
for each l we have a different form of correlation function.

Having written B in terms of correlators, it is now
straightforward to write down the performance (4) in GB

in this terminology. The property of the dth roots of unity∑d−1
l=0 ωl(z−q) = dδz,q , where z,q are integers, allows one to

put the logical value of the question of whether a guess G

equals fi,k in the form of 1
d

∑d−1
l=0 ωl(G−fi,k ). Thus the payoff

of a GB class game, if the answer is G, is given by

I cc
B = 1

d

∑

x,y

p(x,y)
d−1∑

x0=0

d−1∑

l=0

N∑

i=1

K∑

k=0

× ci,k
xy ω−lF i

xy (k)ω−lx0G̃∗(x0,x,y)l , (8)

where G̃ = ωG represents the guess output by Bob, trans-
formed into a power of ω. Representation of the guess and the
message in the form of powers of ω will play an important
technical role in what follows.

Assume now that Alice and Bob apply some general
strategy in GB, i.e., G = G(m(x0,x),y) = m(x0,x) + b(y).
The guess G̃xy(x0) = ωGxy (x0) = M̃x(x0)ωb(y) where M̃x(x0) =
ωm(x0,x) is always equal to some integer power of ω. We shall
analyze the function M̃ by treating x as an index for fixed
values of which M̃x(x0) is a function of x0 only.

Notice that the part of the expression in Eq. (8) which
depends on x0 is 1

d

∑d−1
x0=0 ω−lx0M̃∗

x (x0)l . We see that we have
here the lth value of a discrete Fourier transform of (M̃x)l . In
Lemmas 1 and 2 we saw that the Fourier transforms of powers
of functions, which can have values only in the form of powers
of ω, have very specific properties.

Using the lemmas, one can replace in Eq. (8) the expression∑d−1
x0=0 ω−lx0M̃∗

x (x0)l by K(l,Ml
x) = ∑d−1

ν=0 λν(x)ωlν . Thus any
strategy which is different from the linear one is effectively
in terms of payoffs equivalent to a probabilistic strategy in
which Alice with probabilities λν(x) chooses the value of the
message to be sent to Bob. Such probabilistic strategies are
never better than the optimal deterministic one. In the case of
a linear strategy we have situation (a) of Lemma 1, and thus
it is deterministic. Obviously the bound for such a strategy is
given by B. �

Let us now move to the quantum strategies which use
classical communication and correlations due to entanglement
as a source for information processing, which supplies the
partners with partially correlated random noise. The following
theorem holds.

Theorem 2. The optimal quantum strategy based on classical
communication assisted by entanglement for GB employs the
linear strategy of messaging. It achieves its best performance
identical to the maximal quantum violation for the associated
Bell inequality B.

Proof. Using a linear strategy, Bob effectively outputs G =
x0 + a + b mod d. In order to compute fi,k , note that G =
fi,k ⇔ a + b = F i

xy(k). In particular, this strategy eliminates
the dependence in Eq. (4) on x0. Therefore, the average payoff
becomes

I cc
GB

=
∑

x,y

p(x,y)
K∑

k=0

N∑

i=1

ci,k
xy Pxy

[
a + b = F i

xy(k)
]
. (9)

However, this is precisely the same as the left-hand side of
Eq. (3). Since Theorem 1 asserts that linear strategies are
optimal for implementing GB, it follows from Eq. (3) that

I cc
GB

� B, (10)
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and that the performance in GB with a strategy based on
classical communication assisted by entanglement can achieve
the maximal quantum violation of B.

But is the linear classical messaging strategy also optimal
in the entanglement-assisted protocol? Notice that in the case
of a quantum protocol, we have to introduce an “answer”
observable Q̂(x0,x,y) of eigenvalues which are powers of
ω. This is because Alice, if she follows a deterministic
messaging strategy based on her measurement results, the
setting of which are determined by her local data x, as well
as directly on her data, must act as follows. She measures
an observable Â(x), and if her ith detector fires, she gets an
eigenvalue ξi(x), whatever it is. Therefore her message will be
a function of ξi and x0,x, in the form of m(x0,x,ξi(x)). But
this can be treated as a direct measurement of an observable
m̂ = m(x0,x,Â(x)), which as we know always commutes with
Â(x). Nondegenerate commuting observables differ only by
their eigenvalues, but share projectors onto eigenstates. Any
degenerate observable can always be put in a form which also
has the above features.

The performance of the entanglement-assisted protocol is
therefore measured by

I cc
B = 1

d

∑

x,y

p(x,y)
d−1∑

x0=0

d−1∑

l=0

N∑

i=1

K∑

k=0

× ci,k
xy ω−lF i

xy (k)ω−lx0 Tr[Q̂(x0,x,y)lρAB], (11)

where ρAB is the state. With the assumption that the guess of
Bob has the structure m + b(y), the structure of Q̂xy(x0) must
be as follows:

Q̂xy(x0) = ωm̂(x0,x) ⊗ ωb̂(y), (12)

where we have dropped Â(x) in the argument of m̂. The hats
denote here local observables of integer eigenvalues. Just as in
the classical case, the crucial point is the analysis of the opera-
tors given by the expression M̂(l,x) = 1

d

∑d−1
x0=0 ω−lx0ωm̂(x0,x)l .

The message observable ωm̂(x0,x) can be split into sum of
projectors 	i(x) multiplied by the associated eigenvalues
ωηi (x0,x1,ξi ). Each ηi can be a different function of integer
values. This represents the possible strategies of Alice, of how
to form the message, once the result of her measurement of
m̂ is a collapse of the state given by the projector 	i(x).
This reflects all possible value assignments to the obtained
measurement results, represented by the projectors. Of course∑d

i=1 	i(x) = Î , where Î is the local identity operator. With
all that, one has

M̂(l,x) = 1

d

d−1∑

x0=0

ω−lx0

d∑

i=1

ωlηi (x0,x,ξi )	i(x). (13)

Therefore our analysis now moves to the properties of the
“effective eigenvalue” 1

d

∑d−1
x0=0 ω−lx0ωlηi (x0,x,ξi ). The messag-

ing protocol strategies are defined the by the structure of the
functions ηi . If one has ωηi (x0,x,ξi ) �= ωx0ωξi (x), then just as in
the classical case the effective eigenvalue which survives the
summation over x0 is a convex combination

∑d−1
ν=0 λν(x,i)ωlν ,

where as before λν = kν/d, and kν tell us how many times
in the sums ων is repeated in the sum

∑d−1
x0=0 ω−lx0ωlηi (x0,x,ξi ).

The convex combination can be interpreted as a probabilistic
mixture of eigenvalues which are powers of ω. Thus, it
represents a probabilistic mixture of eigenvalue strategies.
However, a mixture of strategies is never better than some
deterministic strategy, which thus can give the upper bound
of Eq. (11). Thus, the eigenvalues should read ωx0ωξi (x).
In such a case, our message observable ωm̂(x0,x) factorizes
to ωx0

∑d
i=1 ωξi (x)	i(x). We get a linear strategy and the

message, if detector i fires, is x0 + ξi(x). �
Essentially, the linear strategy allows us to interpret x0 as

a scrambler that Alice uses to randomize her message, as
Bob has no information whatsoever on a(x) for the classical
case or ξi(x) for the quantum one. It is never unscrambled;
however, the linear strategy allows Bob to guess effectively the
functions fi,k . This places the original Bell inequality B and
the performance of the linear strategy in GB on equal footing:
whenever quantum correlations can be used to achieve some
value of IBell [Eq. (3)], they can be used to assist classical
communication in GB such that I cc

GB
= IBell, and vice versa.

IV. IMPLEMENTING COMMUNICATION COMPLEXITY
REDUCTION PROTOCOLS WITH QUANTUM
PREPARE-TRANSMIT-MEASURE STRATEGY

We now turn our attention to quantum implementations
of GB with prepare-transmit-measure protocols. In such a
scenario, Alice uses her input data (x0,x) to prepare a physical
state of information content at most log d bits, i.e., a density
matrix ρx0x of a d-dimensional system. She sends the system
to Bob who performs a measurement on it using an observable,
the choice of which is dictated by y, and obtains an outcome
by . We can easily transform the performance metric of GB in
Eq. (4) to this alternative implementation in a prepare-transmit-
measure scenario. Whenever the output of Bob satisfies by =
fi,k(x0,x,y) the partnership earns a payoff ci,k

xy . The average
earned payoff is

I
qc

GB
= 1

d

d−1∑

x0=0

∑

x,y

p(x,y)
N∑

i=1

K∑

k=0

ci,k
xy P (by = fi,k|ρx0x,y).

(14)

Thus, since GB implemented with entanglement and classical
communication always can be implemented also with a
prepare-transmit-measure quantum scenario, we can use the
considered CCPs as a framework in which we can speak about
the two types of quantum protocols on equal footing.

V. ENTANGLEMENT VS TRANSMISSION
OF A QUANTUM SYSTEM

We make two limiting assumptions: AI, for any Bell
inequality B we consider situations in which it is violated
by quantum predictions, which are achievable with some sets
of d-outcome measurements of Alice and Bob on entangled
systems in a state ρAB ∈ CD ⊗ Cd for some integer D � d;
and AII, we consider only such measurements and states
used to achieve the maximal violation of the classical bound
of the inequality B for which the following holds: local
measurements of whichever observable in Alice’s set give
uniformly random local results.
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Theorem 3. Assume AI and AII. With any given correlation
due to entanglement we can associate a prepare-transmit-
measure protocol which achieves I cc

GB
= I

qc

GB
.

Proof. We have already shown that in quantum theory, for
given sets of measurements and a given state, the maximal
value of IBell is the same as that of I cc

GB
. Thus, let us study

quantum violations of the Bell inequality B. Consider the
state, ρAB , and the measurements used to achieve a violation
of B. The projector 	i(x) of Alice is associated with her
measurement setting x and her outcome i. Now, in the prepare-
transmit-measure protocol of GB, we define the preparations
of Alice as the local states of Bob in the Bell scenario after
Alice’s local measurement, i.e.,

�i,x = d TrA(	i(x) ⊗ 1ρAB). (15)

Note that because of assumption AI, communication of the
states in Eq. (15) is always possible. Because of assumption
AII, we have p(i|x) = 1/d. Remember that p(x0|x) = 1/d

was a premise when we defined GB. Therefore in the prepare-
transmit-measure scenario we define the set of Alice’s states
as ρx0x = �i=x0,x . If Bob performs the same measurements
as those used to achieve the violation of B it follows by
construction that there is an analogous violation of Eq. (14)
yielding I cc

GB
= I

qc

GB
. �

However, the opposite of Theorem 3 need not be true.
Simply by giving some suitable alterations to some particular
states in the set of preparations {ρx0x}, we would not be able to
reproduce the communicated states by local measurements on
an entangled state. This leads to a qualitative relation between
the two types of quantum resources:

AI and AII ⇒ I
qc

GB
� I cc

GB
. (16)

For any Bell inequality satisfying the given assumptions,
prepare-transmit-measure methods are at least as powerful
as correlations due to entanglement. Of course, from our
discussion so far, it is not necessarily the case that a strict
inequality can be observed. However, case studies [13,14]
based on two different families of Bell inequalities satisfying
assumptions AI and AII have revealed multiple such examples.

However, if we are given a Bell inequality that does not ful-
fill both AI and AII, we may find that quantum correlations due
to entangled states are more powerful than prepare-transmit-
measure protocols. In fact, for any Bell inequality B with
binary outcomes that achieves its maximal quantum violation
for an entangled state of two D-level quantum systems with
D > 2, entanglement is a strictly stronger resource than the
preparation-transmission-measurement method with a qubit
in GB. To show this, note that it was shown in Ref. [11] that
for any CCP with binary answers, entanglement is as least
as good a resource as transmission of a single qubit. Note
also that GB are such CCPs when B has binary outcomes,
i.e., when d = 2. When the maximal quantum violation of
B is obtained from an entangled state with D > 2, a strict
inequality follows immediately from the fact that the state
of Bob after Alice’s measurement cannot be reproduced by
sending a qubit. Explicit examples of such Bell inequalities
in which prepare-transmit-measure protocols are weaker than
their entanglement-assisted counterparts have been given in
Refs. [12,26].

VI. DISCUSSION

We have introduced a framework based on games for
studying the ability of quantum correlations obtained from
entangled states to assist information processing tasks, as com-
pared to that of prepare-transmit-measure protocols involving
only a single-quantum system. Importantly, concerning the
former resource, we showed that the performance in our CCPs
is analogous to the ability of quantum theory to violate a
Bell inequality. This opens the door for systematic studies
of the comparative nonclassical abilities of the two quantum
resources. In particular, we show that for CCPs corresponding
to a large class of Bell inequalities, the degree of achievable
nonclassicality using a prepare-transmit-measure protocol is as
least as much as an entanglement-assisted strategy. Previous
case studies [12–14] further support the potential richness of
the relation between the two types of quantum protocols.
Furthermore, the part of our work concerning correlations
due to entanglement can be understood as a generalization of
the results of Ref. [16] from two-outcome to many-outcome
Bell inequalities. Additionally, we presented a proof of the
optimality of linear messaging strategies, which was missing
in Ref. [16].

From the point of view of possible applications, we
note that using our mapping between Bell inequalities
and CCPs one can systematically transform many certifi-
cates of genuine nonclassical behavior in device-independent
entanglement-assisted protocols to analogous semi-device-
independent prepare-transmit-measure protocols. Typically,
such semi-device-independent protocols are somewhat less
secure but more efficient than their device-independent coun-
terparts. However, due to our relation in Eq. (16), one may
obtain further advantages in the efficiency of semi-device-
independent information processing tasks from the fact that
CCPs in a prepare-transmit-measure scheme can to a further
extent outperform the classical bound as compared to Bell
inequality violations.

Our work leaves multiple open questions of which we
mention some of the more challenging ones: (1) Further
qualitative and quantitative characterization of the relation
between correlations due to entanglement and protocols based
on preparations and measurements of single-uantum systems
is a key open problem in understanding the extent of nonclassi-
cality enabled by quantum theory. (2) We have only considered
bipartite Bell inequalities. Can the mapping between Bell
inequalities and CCPs be extended to multipartite scenarios?
How will prepare-transmit-measure protocols behave in such
scenarios when intermediate partners appear in the chain
of communication? (3) In recent years, much effort has
been directed at characterizing Bell-type quantum correlations
from information-theoretic principles. Our results suggest
that similar attempts to understand the correlations due to
single-quantum systems may be of interest.
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All entangled pure quantum states violate the bilocality inequality
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The nature of quantum correlations in networks featuring independent sources of entanglement remains
poorly understood. Here, focusing on the simplest network of entanglement swapping, we start a systematic
characterization of the set of quantum states leading to violation of the so-called “bilocality” inequality. First, we
show that all possible pairs of entangled pure states can violate the inequality. Next, we derive a general criterion
for violation for arbitrary pairs of mixed two-qubit states. Notably, this reveals a strong connection between the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and the bilocality inequality, namely, that any entangled
state violating CHSH also violates the bilocality inequality. We conclude with a list of open questions.

DOI: 10.1103/PhysRevA.96.020304

Introduction. Quantum nonlocality, in the sense of violation
of a Bell inequality, was considered as a mere curiosity—when
not entirely ignored—during several decades after Bell’s
seminal work [1]. Things changed dramatically in the early
1990s when Ekert showed that nonlocality can be exploited
to establish cryptographic keys between two remote observers
[2]. How could one ignore something useful for cryptography,
especially in our information-based society? Moreover, also in
the early 1990s, experiments showed that the violation of Bell
inequalities can be demonstrated over several kilometers using
special optical fibers [3] and even outside the controlled labo-
ratory environment using standard telecom fibers [4]. This led
to rapid developments, both conceptually and for applications.
Today, Bell inequality violation is routinely used in order to
demonstrate the presence of entanglement in some physical
systems. This demonstrates quantumness beyond any doubt.

In the context of applications, quantum nonlocality led to
the development of the field of device-independent quantum
information processing [5], a way of processing information
requiring no assumption about the details of the physical
implementation; not even the dimension of the Hilbert space in
which the quantum systems are represented. The measurement
statistics suffice to guarantee security for generating, e.g., cryp-
tographic keys [6], or random numbers [7,8]. It is impressive
that NIST has already made available online a beta version of a
randomness beacon that will soon be offered to the public [9].

In the conceptual context, novel developments in quantum
nonlocality have been inspired by experimental work on quan-
tum networks. In such networks, there is not just one source
of entanglement (the resource exploited for Bell inequal-
ity violation), but several sources distributing entanglement
between different nodes, which can perform joint quantum
measurements [10]. This leads to strong correlations across
the entire network. The understanding of such correlations is
highly desirable, although still very limited at the moment.

The simplest example of a joint quantum measurement
is the so-called Bell state measurement (BSM), a central
ingredient in quantum teleportation [11] and in entanglement
swapping [12]. Formally, the BSM is represented by its four
eigenvectors, namely, the Bell states:

|φ±〉 = 1√
2

(|0,0〉 ± |1,1〉), (1)

|ψ±〉 = 1√
2

(|0,1〉 ± |1,0〉), (2)

hence referred to as a joint (or entangled) measurement.
Since all Bell states are maximally entangled, their marginals
are given by the maximally mixed state. Consequently, when
one performs a BSM on independent qubits, all four results
are equally likely, i.e., 25% probability for each.

Figure 1 illustrates the simplest quantum network, with
only three observers and two sources. This is the scenario we
consider in this Rapid Communication. In the standard analysis
of this scenario, i.e., following Bell locality, one would contrast
the correlations achievable with quantum resources, e.g., two
sources of entangled pairs and the BSM in the middle, with
classical resources, i.e., all three parties share some common
local hidden variable (LHV). Note that “local hidden variable”
is the old terminology, going back to Einstein et al. [13]
and Bell [1]. Nowadays one refers to shared randomness,
a terminology closer to cryptography, although technically
synonymous. Hence, all three parties—named Alice, Bob, and
Charlie—would share a common classical random variable.

However, looking at Fig. 1, it is arguably much more natural
to contrast quantum correlations with classical correlations
achievable via two independent sources of shared randomness.
More precisely, Alice and Bob would share some variable
λ (originating from the source between them), while Bob
and Charlie would share another variable μ (originating
from the second source). Importantly the variables λ and μ

should be uncorrelated, as the two sources are independent.
This independence assumption is very natural, given that the
quantum network of Fig. 1 features two fully independent
sources of entanglement. There is thus no reason to assume that
λ and μ are correlated. This very natural assumption changes
everything.

This new scenario has been studied under the name of
2-locality (2- because of the two sources) or merely bilocal-
ity. More formally, 2-local correlations are characterized as
follows. Consider that Alice receives measurement setting (or
input) x, while Bob gets input y, and Charlie z. Upon receiving
their inputs, each party should provide a measurement result
(an output), denoted A for Alice, B for Bob, and C for Charlie.
In this context, the observed statistics is said to be 2-local
when

p(ABC|xyz)

=
∫

dλ dμ q1(λ)q2(μ)p(A|xλ) p(B|yλμ) p(C|zμ),
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FIG. 1. Scenario of bilocality, the network we consider in this
work. In the quantum setting, two independent sources distribute
entangled states, ρAB and ρBC , between three distant observers—
Alice, Bob, and Charlie. In order to compare the resulting quantum
correlations to classical ones, we discuss 2-local correlations obtained
by two independent sources of shared classical random variables, λ

and μ. For the bilocality inequality we consider, Alice and Charlie
perform two dichotomic measurements, while Bob performs a fixed
measurement with four possible outcomes. In the quantum setting,
Bob’s measurement is taken to be the Bell state measurement.

where λ and μ are the independent shared random variables
distributed according to the densities q1(λ) and q2(μ), re-
spectively. The set of 2-local correlations (i.e., the set of all
correlations of the above form) is nonconvex [14], rendering
its analysis challenging. In particular, in order to efficiently
characterize the 2-local set, nonlinear Bell inequalities are
required. Note that this is in stark contrast to the set of
Bell-local (or 1-local) correlations which is convex and can
thus be fully characterized by linear Bell inequalities [5].

In Refs. [14,15], first nonlinear inequalities that allow one
to efficiently capture 2-local correlations (better than any linear
inequality) were derived. Here we focus on an inequality
presented in [15], which we will refer to as the bilocality
inequality (for simplicity). Consider that Alice and Charlie
receive binary inputs, x = 0,1 and z = 0,1, and must give
binary outputs, denoted Ax = ±1 and Cz = ±1, respectively.
The middle party Bob always performs the same measurement
(hence receives no input y) with four possible outcomes, as,
e.g., the BSM. Denote Bob’s outcome by two bits B0 = ±1
and B1 = ±1. The bilocality inequality reads

Sbiloc ≡
√

|I | +
√

|J | � 2, (3)

where

I ≡ 〈(A0 + A1)B0(C0 + C1)〉, (4)

J ≡ 〈(A0 − A1)B1(C0 − C1)〉. (5)

The bracket 〈·〉 denotes the expectation value of many
experimental runs.

Interestingly, this inequality can be violated by certain
quantum correlations [15], which would have to be consid-
ered local in the usual Bell approach (i.e., when all three
parties could have common shared randomness). In particular,
consider the case where Alice-Bob, as well as Bob-Charlie,
share a noisy Bell state (with visibility V ), a so-called Werner
state, of the form ρ = V |φ+〉〈φ+| + (1 − V )14 . Conditioned
on one outcome of Bob’s BSM, the state shared by Alice and
Charlie is again a Werner state, but with lower visibility V 2.
The bilocality inequality can be violated whenever V 2 > 1/2.
This is in strong contrast with the usual Bell approach, where
in order to detect quantum nonlocality, one would require a
visibility V > 1/

√
2 using the Clauser-Horne-Shimony-Holt

(CHSH) [16] Bell inequality,1 while for visibilities up to
V � 0.682 the Werner state admits a LHV model [18] and
can thus not violate any Bell inequality.2

The above results demonstrated the relevance of the
2-locality approach for detecting quantum correlations in
networks. This triggered further research. On the theory
side, novel nonlinear inequalities were derived and more
sophisticated networks were considered (see, e.g., [19–27]).
On the experimental side, violations of the bilocality inequality
were demonstrated [28,29]. However, the extent of quantum
correlations in networks remains poorly understood. This is
precisely the goal of the present work, where we start a
systematic characterization of the class of quantum states
leading to violation of the bilocality inequality (3).

All pairs of pure entangled states. We start our analysis by
considering that both sources emit pure entangled states. De-
note |ψAB〉 = c0|00〉 + c1|11〉 and |φBC〉 = q0|00〉 + q1|11〉
the two normalized (two-qubit) pure states shared by Alice
and Bob and by Bob and Charlie, respectively, written in
the Schmidt basis, with real and positive coefficients cj

and qj . Note that if these Schmidt bases would differ from
the computational basis in which the BSM (1) is written,
then it would suffice to add local unitary rotations on each
qubit to recover the case we discuss here. Define c = 2c0c1

and q = 2q0q1; |ψAB〉 (|φBC〉) are entangled whenever c > 0
(q > 0). Note that we can restrict to two-qubit entangled states
here. If the states are of larger dimension, Alice, Bob, and
Charlie can first project them onto qubit subspaces, hence our
setting is fully general for the case of two pure states [30].

Let Alice’s inputs correspond to projective measurements
in the Z-X plane of the Bloch sphere. Thus each measurement
can be characterized by one angle; in fact, it is straightforward
to see that optimal settings are given by angles ±α symmetric
with respect to the Z axis. The observable corresponding to
the first input reads �a · �σ , where �a = [sin(α),0, cos(α)] and
�σ = (σx,σy,σz) denotes the vector of Pauli matrices. Similarly
for Charlie, we have angles ±γ . Bob performs the usual BSM.
For all x,z = 0,1 one gets

〈AxB0Cz〉 = 〈[cos(α)σz + (−1)x sin(α)σx] ⊗ (σz ⊗ σz)

⊗[cos(γ )σz + (−1)z sin(γ )σx]〉ψAB⊗φBC

= cos(α) cos(γ ). (6)

Hence I = 4 cos(α) cos(γ ). A similar calculation gives J =
4 sin(α) sin(γ )cq.

Maximizing expression (3) with respect to α and γ leads to

cos(α) = cos(γ ) = 1√
1 + cq

(7)

1Note that one could do marginally better (V � 0.705) by using an
inequality introduced by Vértesi [17].

2Notice that this does not allow one to reveal the nonlocality of
a Werner state ρ with V � 1/

√
2 by distributing two copies of

ρ in the considered network and violate the bilocality inequality
(see discussion in the Conclusions) However, it does constitute
a significant advantage as compared to entanglement swapping
experiments based on the CHSH Bell inequality.
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and the maximum takes the value

Smax
biloc =

√
4 cos(α) cos(γ ) +

√
4 sin(α) sin(γ )cq

= 2
√

1 + cq . (8)

Accordingly, for all possible pairs of entangled pure states, i.e.,
when c > 0 and q > 0, we get violation the standard bilocality
inequality (3) and thus nonbilocal correlations.

Note that if |ψAB〉 = |φBC〉, then the optimal settings α and
γ for bilocality are the same as the optimal settings for the
CHSH inequality. Furthermore, Smax

biloc takes the same value as
the maximum CHSH value for |ψAB〉 [30].

Interestingly, if the states differ, then Alice’s optimal
settings depend on the state |φBC〉 shared by Bob and Charlie,
and similarly Charlie’s optimal settings depend on |ψAB〉, as
can be seen from Eq. (7).

Note that if one would now consider noisy states of
the form VAB |ψAB〉〈ψAB | + (1 − VAB)1/4 and similarly for
VBC |φBC〉〈φBC | + (1 − VBC)1/4, then one can characterize
the critical visibilities (V biloc

AB and V biloc
BC ), i.e., the minimum

visibilities for which violation of the bilocality inequality is
still possible, which are in general related. More precisely,
one finds that the product of the critical visibilities (for
bilocality) is larger than the product of the visibilities for Bell
locality (i.e., 1-locality): V biloc

AB V biloc
BC = 1

1+cq
� V loc

ABV loc
BC =√

1
1+c2

√
1

1+q2 , with equality holding only when c = q, i.e., when
the two states are equal, |ψAB〉 = |φBC〉.

Criterion for arbitrary pairs of mixed states. We now move
to mixed states, and start our analysis with the case of two-qubit
density matrices. Let

ρAB = 1

4

⎛
⎝1 + �mA · �σ ⊗ 1 + 1 ⊗ �mB · �σ +

∑
ij

tAB
ij σi ⊗ σj

⎞
⎠

be the state shared by Alice and Bob, expressed in the Pauli
basis; here the vector �mA ( �mB) represents the Bloch vector of
Alice’s (Bob’s) reduced state, while tAB

ij (with i,j ∈ {x,y,z})
is the correlation matrix. Similarly we express ρBC , the state
shared by Bob and Charlie, in the Pauli basis.

Alice’s settings are represented by Bloch vectors �a and �a′,
and similarly for Charlie �c and �c ′

. Assume Bob performs a
BSM in a well chosen basis to be defined below. The quantity
I in Eq. (4) can be expressed as follows:

I = Tr[(�a + �a′) · �σ ⊗ σz ⊗ σz ⊗ (�c + �c ′
) · �σ ρAB ⊗ ρBC]

= Tr[(�a + �a′) · �σ ⊗ σz ρAB] Tr[σz ⊗ (�c + �c ′
) · �σ ρBC]

=
∑

i

(ai + a′
i)t

AB
iz

∑
k

tBC
3k (ck + c′

k). (9)

Using the polar decomposition, the correlation matrix can be
written as tAB = UABRAB , where UAB is a unitary matrix and
RAB =

√
tAB† tAB � 0. Denote ξ1 � ξ2 � ξ3 � 0 the three

non-negative eigenvalues of RAB . Similarly denote ζ1 � ζ2 �
ζ3 � 0 the non-negative eigenvalues of the corresponding
matrix RBC .

This allows us to characterize Bob’s BSM. Specifically,
the Bell states [as given in Eq. (1)] has been defined such
that the Z and X Bloch directions (on the first subsystem,

connected to Alice) are given by the eigenvectors of the matrix
RAB corresponding to the two largest eigenvalues, ξ1 and ξ2,
respectively. Similarly we use RBC for aligning the second
subsystem of Bob, connected to Charlie. Note that the Z and
X axes Bob uses with Alice may differ from those he uses
with Charlie, i.e., Bob may have to apply different unitaries to
the two qubits he shares with Alice and with Charlie before
performing a standard BSM.

Next our goal is to maximize Sbiloc with respect to
the Bloch vectors �a, �a′, �c, and �c ′

. It is clear that they
should lie within the two-dimensional subspace spanned
by the two eigenvectors with largest eigenvalues: �a =
(sin α,0, cos α), �a′ = (sin α′,0, cos α′), �c = (sin γ,0, cos γ ),
and �c′ = (sin γ ′,0, cos γ ′). The maximum is easily found by
imposing ∂αS = 0, ∂α′S = 0, ∂γ S = 0, and ∂γ ′S = 0. One
finds α′ = −α, γ ′ = −γ and

cos α = cos γ =
√

ξ1ζ1

ξ1ζ1 + ξ2ζ2
, (10)

and the maximal value of the left-hand side of the bilocality
inequality

Smax
biloc = 2

√
ξ1ζ1 + ξ2ζ2. (11)

Consequently, a pair of states ρAB and ρBC can violate the
bilocality inequality (3) if and only if ξ1ζ1 + ξ2ζ2 > 1. Note
that for the case of two pure states considered previously,
ξ1 = ζ1 = 1, ξ2 = 2c0c1 = c, and ζ2 = 2q0q1 = q; hence (11)
reduces to (8), as it should.

The above criterion is analogous to the Horodecki criterion
for violation of the CHSH Bell inequality [31]. In fact, there is
a direct connection between the two criteria. According to the
Horodecki criterion the maximal CHSH value for ρAB is given
by Smax

AB = 2
√
ξ 2

1 + ξ 2
2 = 2‖�ξ‖ where �ξ = (ξ1,ξ2). Similarly,

for ρBC we have Smax
BC = 2

√
ζ 2

1 + ζ 2
2 = 2‖�ζ‖ with �ζ = (ζ1,ζ2).

From Eq. (11) it follows that

Smax
biloc = 2

√
�ξ · �ζ � 2

√
‖�ξ‖ ‖�ζ‖ =

√
Smax

AB Smax
BC . (12)

Hence, violation of the bilocality inequality implies that either
ρAB or ρBC (or both) must violate CHSH. Moreover, when the
two states are the same, i.e., ρAB = ρBC = ρ, the criterion of
Eq. (11) reduces to the Horodecki criterion. This is easily seen
from Eq. (12), where the inequality becomes an equality when
the vectors �ξ and �ζ are the same. Therefore, CHSH violation
implies violation of the bilocality inequality in the sense
that

ρ violates CHSH → ρ ⊗ ρ violates Sbiloc. (13)

Note that under the assumption that Bob performs the BSM, the
reverse link also holds. In this case activation of nonlocality
is thus impossible for two-qubit entangled states using the
bilocality inequality (see discussion below). Note also that the
connection (13) holds true for arbitrary bipartite mixed states
ρ, not only for two-qubit states [33].

Conclusion. In quantum networks involving several inde-
pendent sources of entangled states, it is natural to contrast the
obtained quantum correlations with “classical” correlations
that can be realized using independent sources of shared
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randomness between the observers. Indeed, this picture is
arguably a natural generalization to networks of John Bell’s
original intuition [1,32]. In the simplest case, i.e., with
two independent sources as in entanglement swapping, we
analyzed the standard bilocality inequality and proved that
all pairs of entangled pure states can violate it, in analogy to
the case of the CHSH-Bell inequality which can be violated by
any pure entangled state. Moving to mixed entangled states, we
then derived a general criterion for violation of the bilocality
inequality, providing a natural extension of the Horodecki
criterion for violation of CHSH. In particular, this reveals a
strong connection between CHSH and the bilocality inequality,
namely, that any entangled state violating CHSH can also be
used to demonstrate violation of the bilocality inequality.

While the results presented in this Rapid Communication
were obtained analytically, we conclude with a list of open
questions that we could so far tackle only numerically:

(1) Here we assumed that Bob performs a BSM, defined
in local basis depending on the shared entangled states. One
may expect that this is always optimal, which is confirmed
numerically for any pair of pure states. However, numerical
evidence suggests that there are cases, in which one or both
states are mixed, for which no BSM is optimal. So far, we
could not find any structure in the optimal joint measurements
and leave it for future work.

(2) The bilocality inequality (3) used here assumes a
scenario in which Bob has no choice of input and four possible
outcomes. However, an inequality formally identical to (3) is
also valid for the scenario in which Bob has a choice between

two inputs with binary outcomes: it suffices to label B0 and
B1 the outcomes corresponding to the two inputs, respectively.
The bilocal bound of the inequality remains the same (because
classically Bob could always compute and output both the
value of B0 and of B1). However, quantum mechanically, Bob’s
two joint measurements may be incompatible, leading possibly
to larger violations. We could confirm this possibility, although
only numerically so far.

(3) It would be interesting to generalize the present results to
the case of more sophisticated networks, such as star networks
[21] with an arbitrary number of branches.

(4) A central open question is the possibility to activate the
nonlocality of certain entangled quantum states—admitting a
LHV model in the usual Bell scenario—by placing several
copies of them in a network. While such effect is possible
even when considering the standard Bell approach [34] (see
also Ref. [35]), intuition suggests that the notion of N

locality should be very useful in this context. However, no
examples have been reported so far. Here, we have proven that
activation is impossible for the bilocality inequality when Bob
performs the BSM. We also performed intensive numerical
search considering more general measurements for Bob. The
results suggest that activation is impossible for the bilocality
inequality. A formal proof of this statement would be desirable.
A counterexample would be even more interesting.
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Abstract
The problemof characterizing classical and quantum correlations in networks is considered. Contrary
to the usual Bell scenario, where distant observers share a physical system emitted by one common
source, a network features several independent sources, each distributing a physical system to a subset
of observers. In the quantum setting, the observers can perform jointmeasurements on initially
independent systems, whichmay lead to strong correlations across thewhole network. In this work,
we introduce a technique to systematicallymap aBell inequality to a family of Bell-type inequalities
bounding classical correlations on networks in a star-configuration. Also, we show that whenever a
given Bell inequality can be violated by some entangled state ρ, then all the corresponding network
inequalities can be violated by consideringmany copies of ρ distributed in the star network. The
relevance of these ideas is illustrated by applying ourmethod to a specificmulti-setting Bell inequality.
We derive the corresponding network inequalities, and study their quantum violations.

1. Introduction

Bell inequalities bound the strength of correlations between the outcomes ofmeasurements performed by
distant observers who share a physical systemunder the assumption of Bell-like locality. Famously, quantum
theory predicts correlations,mediated by entangled states, that violate Bell inequalities [1]. Such nonlocal
quantum correlations are central formany quantum information tasks aswell as foundational challenges [2].
Classical and quantum correlations in the standard Bell scenario, i.e., where distant observers share a physical
systemproduced by a single common source, have been intensively studied and are by now relatively well
understood.

In comparison, only very little is known about classical and quantum correlations in networks. The latter are
generalizations of the Bell scenario tomore sophisticated configurations featuring several independent sources.
Each source distributes a physical system to a subset of the distant observers. In the classical setting, each physical
system is represented by a classical randomvariable. Importantly, random variables fromdifferent source are
assumed to be independent. In the quantum setting, each source can produce an entangled quantum state.
Moreover, each observer can perform joint (or entangled)measurements on systems coming fromdifferent
sources—e.g., as in entanglement swapping [3]—thus potentially creating strong correlations across the entire
network. Understanding the strength of quantum correlations in networks is a challenging problem, but of clear
foundational interest. In addition, practical developments of quantumnetworksmake these questions timely,
see e.g. [4, 5].

One of themain hurdles for solving the above problem, is tofirst characterize classical correlations in
networks. This turns out to be a challenging problem.Due to the assumption that the sources are independent,
the set of classical correlations does not form a convex set anymore, as it is the case in the usual Bell scenario.
Therefore, in order to efficiently characterize classical correlations, one should nowderive nonlinear Bell-type
inequalities. Only a handful of these inequalities have been derived so far. First works derived inequalities for the
simplest network of entanglement swapping [6, 7], for which experimental violations were recently reported
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[8, 9]. Then inequalities for networks in the star-configurationwere presented [10]. There exists alsomethods
for deriving nontrivial Bell-type inequalities for other classes of networks [11–13]. Entropic Bell inequalities has
also been derived for several networks [14], but are usually not very efficient at capturing classical correlations.
Furthermore, another approach to study correlations in networks is from the point of view of Bayesian inference
[15–21].

In this workwe aim to establish a direct link between thewell-developedmachinery of Bell inequalities, and
themuch less developed study of Bell-type inequalities for networks. Here, we focus on star-networks.We
introduce a technique that allows one tomap any full-correlation two-outcome bipartite Bell inequality into a
family of Bell-type inequalities for star-networks (henceforth referred to as star inequalities). Specifically,
starting from any suchBell inequality, we construct star inequalities for any possible star-network, which
efficiently capture classical correlations. As a special case, this allows us to recover previously derived star
inequalities [7, 10] by starting from theCHSHBell inequality [22]. In general, our approach has three appealing
features. First, the star inequalities we derive can have any number of settings for all observers. Second, our star
inequalities efficiently capture the non-convex set of classical correlations, as there exist probability distributions
violating our inequalities that would not violate any standard Bell inequality. Third, their quantumviolations
can be directly related to the quantumviolation of the initial Bell inequality.More precisely, we show that
whenever an entangled state ρ violates a Bell inequality, then all the corresponding star inequalities can be
violated by placingmany copies of ρ in the star-network. Conversely, we show that certain quantum correlations
in star-networks can be used to infer bounds on independent Bell tests. Finally, we illustrate the relevance of this
method by an explicit example inwhichwe start from aBell inequality withmore than two settings and
construct themapping to a particular star inequality and study its violation in the simplest network of
entanglement swapping.

2. Star networks andN-locality

Star-networks are a class of networks parametrized by the number of independent sourcesN. The network thus
involves N 1+ observers:N so-called edge observers each of whom independently shares a state with one
common central observer called the node observer. See figure 1 for an illustration.

The k’th edge observer performs ameasurement labeled by xk (chosen among afinite set) returning a binary
outcome ak. Depending on the context, to be consistent with previous work, we label it either 0, 1{ } (sections 4,
6 and 7) or 1, 1- +{ } (as soon as correlators are involved). The node observer performs ameasurement labeled
by y returning an outcome b. The resulting statistics is given by a conditional probability distribution of the
outcomes of all observers given their inputs. This probability distribution is calledN-local if it admits the
following form:

P a a b x x y q P a x P b yd , 1N N
k

N

k k k k k k1 1
1

ò  l l l l¼ ¼ =
=

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )

wherewe have used the short-hand notation N1l l lº ¼


. In anN-localmodel (which is the analogue of a
localmodel in the Bell scenario), each independent source emits a randomvariable kl which is shared between a

Figure 1. Star-networkwith a node observerB andN edge observers A AN1 ¼ each independently sharing a bipartite physical system
with the node observer.

2
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subset of the observers. In particular, for the star network, each edge observer shares a kl (possibly encoding an
unlimited amount of shared randomness)with the node observer. Importantly, the sources are assumed to be
independent from each other, and thus the variables kl are uncorrelated. Since the node observer holds l


, he

can create correlations among all observers. Notice that ifN= 1we recover the definition of classical correlations
in the Bell scenario. If the probability distribution cannot bewritten on the above form, it is said to be nonN-
local. Inequalities bounding the strength ofN-local correlations arising in a star network are called star
inequalities.

3.MappingBell inequalities to star inequalities

Consider a bipartite Bell scenario, where two observers Alice and Bob each performone of nA respectively nB
measurements on a shared physical system. Eachmeasurement returns a binary outcome, nowdenoted
A B, 1x y =  for convenience, where x and y indicate the choice ofmeasurement of Alice and Bob respectively.
Any full-correlation Bell inequality can bewritten

S M CA B , 2M
x

n

y

n

yx x y
bs

1 1

bs bs
A B

å åº á ñ
= =

( )

whereMyx are real numbers, andC is the local bound.Note that A Bx y
bs bsá ñdenotes the expectation value of the

product of the outcomes of Alice and Bob. In equation (2) the superscript bs only serves as a label for the Bell
scenario. Importantly, one can fully characterize the Bell inequality by specifying thematrix M n nB AÎ ´ , from
which the local boundC can be computed as follows. It is sufficient to consider deterministic strategies of Alice
and Bob, due to the fact that the set of local correlations in the Bell scenario is a polytope [2]. Hence, we canwrite

S M A B A B , 3M
y

n

x

n

yx x y
y

n

y y
bs

1 1

bs bs

1

bs bs
B A B

å å å= =
= = =

⎛
⎝⎜

⎞
⎠⎟

ˆ ( )

where MA Ay x
n

yx x
bs

1
bsA= å =

ˆ . Fromnowon, we use this notation for a linear transformationM of Alice’s set of

correlators. Tomaximize SbsM, we choose B Asigny y
bs bs
= ( ˆ ), which allows us towrite the classical bound as

C Mmax A 4
y

n

x

n

yx x
A A 1 1 1

bs

n1 A

B A

å å=
¼ Î  = =

( )
{ }

max A . 5
y

n

y
A A 1 1

bs

n1 A

B

å=
¼ Î  =

∣ ˆ ∣ ( )
{ }

Wenow showhow any Bell inequality of the form (2) can bemapped into a family of star inequalities for
star-networks withN sources.

Theorem3.1. For any full-correlation Bell inequality represented by thematrix M n nB AÎ ´ with corresponding
classical bound C , we can associate star inequalities as follows:

S I C, 6M f
i

n

i
N

,
net

1

1
i

B

åº
=

∣ ∣ ( ){ }

where

I M M B BA A A A , 7i
x x

n

ix ix x x
N

i i i
N

i
... 1

1 1

N

N N

1

A

1 1å= ¼ á ¼ ñ = á ¼ ñ
=

ˆ ˆ ( )

and

A A B P a a b x x y1 , 8x x
N

i
a a b

a a f b
N N

1

0,1
1 1N

N

N i
1

1

1å åá ¼ ñ = - ´ ¼ ¼
¼ =

+¼+ +( ) ( ∣ ) ( )( )

for some boolean functions fi i
n

1
B
={ } . Thus, specifying the real-valuedmatrix M and the functions fi i

n
1

B
={ } returns a

specific star inequality for a star-network with N sources.

The proof is rather technical hencewe defer it to appendix A, wherewe prove a generalized version of the
above theorem inwhich the star inequality is obtained as amapping of up toN different full-correlation Bell
inequalities, each characterized by a real-valuedmatrix M k( ) for k N1, ,= ¼ . The only restriction on theNBell
inequalities is that one observer (the one that by theorem 3.1 ismapped to the node observer) in each inequality
chooses between the same number ofmeasurements. For sake of simplicity, we have in the above taken all these

3
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NBell inequalities to be represented by the samematrix, namelyM. Furthermore, we note that generalizations of
our theorem to networks of the type studied in [23], inwhich each source emits amultiparty physical system, are
possible1.

An important feature of the star inequalities generated via the above construction is that they give a better
characterization of theN-local set compared to standard Bell inequalities. That is, there exist certain probability
distributions that are notN-local (aswitnessed by the violation of some of our inequalities) that are nevertheless
local in the usual Bell scenario (i.e. 1-local), and thus cannot violate any standard Bell inequality. This ismade
explicit in the next section.

4. Recovering the inequalities of [7, 10]

As an example of our technique, consider theCHSH inquality [22]which corresponds to the 2× 2matrix
M 1xy

xychsh 1

2
= -( ) for x, y= 0, 1. The local bound (4) is straightforwardly evaluated toC= 1. Choosing a star-

networkwith two sources (N= 2), and letting the node observer performone complete two-qubitmeasurement
with outcomes b b b 0, 11 2

2= Î Ä{ } , we can define f b b bi i1 2 =( ) and immediately recover the inequality of [7]:

I I 1, 91 2 +∣ ∣ ∣ ∣ ( )

where I1 and I2 are defined via equation (7). Also, by letting the node observer have twomeasurement settings
(y 0, 1Î { }), one associated to I1 and one associated to I2, returning an output bit b 0, 1Î { }, we recover the
other inequality of [7]with f b bi =( ) (this example will be studied inmore detail in appendix B3). Similar
mappings of theCHSH inequality also return the star inequalities of [10] valid for an arbitrary number of
sources:

I I 1. 10N N
1

1
2

1 +∣ ∣ ∣ ∣ ( )

In this scenario, all observers have two settings and two outcomes, and f b b bi i1 2 =( ) . ForN= 1 this reduces to
theCHSH inequality.

Importantly, the above star inequalities are nonlinear, and thus give a better characterization of theN-local
set compared to standard (linear)Bell inequalities. In particular, there exist quantum correlations admitting a
local description (hence not violating any standard Bell inequality) that nevertheless violate these star
inequalities [7, 10].

5.Optimal classical strategies and tightness

Wenowdemonstrate a property of optimalN-local strategies regarding our star inequalities.We show that for
any star inequality obtained from theorem3.1, anyN-local strategy achieving S Cnet = with given values Ii{ }
can be replacedwith anotherN-local strategy achieving the same Ii{ } inwhich the node observerB acts trivially
i.e. gives a deterministic output depending on the input.Moreover, this is achievedwith the same strategy for
each edge observerAk.More precisely, we have the following:

Proposition 5.1. For any N -local strategy A B: ,x
k

k yk
 l l


( ) ( ) reaching the the N -local bound in equation (6) with

I0 i , there is a reduced strategy A B: ,x
k

k yk
 l l¢ ¢ ¢


( ) ( ) such as:

1. The node observer B has a deterministic output: Bi l¢


( ) is independent from l

and only depends on i. We note it

bi: this is the deterministic output of B for input y i= . Thus each source of randomness kl can be considered as
local and held by the edge observer Ak.

2. Each edge observer Ak chooses her output according to the same strategy: the functions x A,k k x
k

kk
l l¢( ) ( ) are

independent from k (thenwewrite Ax kk
l¢ ( )).

3. The quantities Ii remain unchanged:

A A B A A B b Ai i
N

i i i

N

i i i
N1 1

á ¼ ñ = á ¢ ¼ ¢ ¢ñ = á ¢ ñˆ ˆ ˆ ˆ ˆ .

This proposition is proven in appendix B, inwhichwe also illustrate it by applying it to a particular example.
Another question is whether any set Ii{ } saturating the inequality (6) can be obtained by anN-local strategy.

We see in appendix C that this is not the case and give away tofind and enumerate all the sets Ii{ } satisfying this
property.

1
Also, onemay consider variations of theorem 3.1 inwhich one constructsmore than nB quantities Ii i{ } .
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So far, we have shownhow the limitations of classical correlations in the Bell scenario can bemapped to
analog limitations in networks. Next, we explore if an analogous statement can bemade for quantum
correlations.

6.Quantumviolations

We shall relate the quantumviolation of the initial Bell inequality to the quantum violation of the corresponding
star inequalities. Specifically, wewill see that for any state ρ violating the initial Bell inequality, taking a sufficient
number of copies of ρ distributed in the networkwill lead to violation of the corresponding star inequality. Also,
the robustness towhite noise of every quantum state violating a Bell inequality (2), is the same as that ofN copies
of the same state violating a star inequality.

Consider a Bell scenario where Alice and Bob share an entangled state ρ and perform nA and respectively nB
binary localmeasurements represented by observables x

bs and y
bs . This leads to violation of some full-

correlation Bell inequality, i.e. achieving S Cbs > . Thenwe obtain a quantum strategy for violating the
corresponding star inequalities as follows.

Let the node observer in the star-network perform nB differentmeasurements. Each one is represented by an
observable which is simply theN-fold tensor product of themeasurements performed byBob in the Bell
scenario: y : y y y

bs bs  " º Ä¼ Ä , and let all the edge observers perform the same nAmeasurements as Alice

in the Bell scenario: x: x x
N

x
1 bs  " = ¼ = º . Finally, let allN sources emit the same bipartite state ρ as in the

Bell scenario. This causes the factorization x x
N

y x y x y
1 bs bs bs bs

N
N

N1 1
      á ¼ ñ = á ñ ¼ á ñr r rÄ which implies

I M . 11i
x

n

ix x i

N

i i
N

1

bs bs bs bs
B

   å= á ñ = á ñr r
=

⎛
⎝⎜

⎞
⎠⎟ ( ˆ ) ( )

Inserting this into equation (6)we recover S S Cnet bs= > .We conclude that

violates Bell inequality violates star inequality. 12Nr r Ä ( )

Note the generality of the above statement, which holds true for any full-correlation Bell inequality and all its
corresponding star inequalities (in particular for all possible choices of functions fi(b)).Moreover, the statement
holds for an entangled state ρ of arbitraryHilbert space dimension.

The case of CHSHBell inequality deserves to be discussed. The above statement implies that any entangled
state violating CHSHwill violate all its corresponding star inequalities when enough copies are distributed in the
network. In particular, this is case for any pure entangled bipartite state [24], andmore generally for any two-
qubit state detected by theHorodecki criterion [25] (necessary for CHSHviolation). Note that the latter
statement was recently derived in [26] for the caseN= 2, however, with the important difference that there the
node observer performed a Bell statemeasurement whereas in our case we consider productmeasurements.

Conversely, if the node observer performs someproductmeasurement, i.e., ameasurement of the form
y : y y y

N1  " = Ä¼ Ä , with otherwise arbitrary choices ofmeasurements for all edge observers andN
arbitrary states distributed in the network, then the achieved value of Snet is upper bounded by the geometric
average of Sbs as obtained inN independent Bell tests. Due to the separability of y , we have

Ii k
N

i
k

i1

bs, bs
k

 =  á ñr=
ˆ . Inserting this into equation (6)wefind

S . 13
i

n

k

N

i
k

i
N

k

N

i

n

i
k

i

N

net

1 1

bs, bs 1

1 1

bs, bs
1

k k

B B

   å   å= á ñ á ñr r
= = = =

⎡
⎣⎢

⎤
⎦⎥∣ ˆ ∣ ∣ ˆ ∣ ( )

To obtain the upper bound, we have used lemmaA.1 stated in appendix A, whichmay be regarded as a
generalization of theCauchy–Schwarz inequality. The expression on the right-hand-side of equation (13) is the
geometric average of S i i

Nbs
1={ ( )} as obtained inN independent Bell testsM, each performed on the state kr with

settings of Alice and Bob determined by the settings used to achieve Snet in the star-network. This upper bound
coincides with Snet onlywhen allNBell tests yield the same value S S i inet bs= "( ) .

So far, we have only considered productmeasurements of the node observer, whichwere sufficient tomap
quantum strategies in Bell inequalities to analog strategies in networks. Next, we consider an explicit example of
amultisetting Bell inequality fromwhichwe construct a star inequality forN= 2 and study the quantum
violations using product and jointmeasurements.

5
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7. Example: quantumcorrelations fromentanglement swapping

Weconsider the full-correlation Bell inequality presented in [27] 2. It is represented by the followingmatrix;

M
1 1 1 1
1 1 1 1
1 1 1 1.

. 143 4 =
- -

- -
- -

´
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

Wecan calculate the classical bound using equation (4), andwrite the associated Bell inequality, inwhichAlice
has four settings and Bob has three settings, as follows:

M A B 6. 15
x y

yx x y
1

4

1

3

å å á ñ
= =

( )

Themaximal quantum violation of this inequality is given by 4 3 6> , obtainedwith amaximally entangled
two-qubit state 00 1100

1

2
y ñ = ñ + ñ∣ (∣ ∣ ). Alice’smeasurements are characterized by Bloch vectors forming the

vertices of a tetrahedron on the Bloch sphere:

m m m m
1

3
1, 1, 1

1

3
1, 1, 1

1

3
1, 1, 1

1

3
1, 1, 1 . 161 2 3 4= = - - = - - = - -¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ( )

Bob’smeasurements are simply given by the three Paulimatrices ,1 2s s , and 3s . If we consider themixture of

00y∣ withwhite noise, i.e. aWerner state of the form

v
v

1
1

4
, 17v 00 00r y y= ñá +

-∣ ∣ ( )

the inequality can be violatedwhenever v 3 2 1 2> - / . Note that a sufficiently high violation of this inequality
implies that themeasurements settings do not lie in a plane of the Bloch sphere, i.e. they feature complex
phases [28].

Next, we obtain a particular star inequality forN= 2 inwhichwe let each edge observer performone of four
measurements x x, 1, 2, 3, 41 2 Î { }, whereas the node observer performs a singlemeasurement (i.e. no input y)
with four possible outcomes b b b 0, 11 2

2= Î Ä{ } . This is illustrated in figure 2. To this end, we apply our
theorem1.We define three quantities

I M M A A B , 18i
x x

ix ix x x i
, 1

4
1 2

1 2

1 2 1 2å= á ñ
=

( )

where

A A B P a a b x x1 . 19x x i
a a b

a a f b1 2

, ,
1 2 1 2i

1 2

1 2

1 2åá ñ = - + +( ) ( ∣ ) ( )( )

Wechoose the functions fi(b) for i 1, 2, 3= as: f f f b b b b, , , 1,1 2 3 1 1 2 2= + +( ) ( ). Hence, our star inequality
reads

S I I I 6. 20net
1 2 3 º + +∣ ∣ ∣ ∣ ∣ ∣ ( )

Nextwe discuss quantum violations. Both sources in the network emit the Bell state 00y ñ∣ . The two edge
observers perform the four tetrahedronmeasurements given in equation (16). The node observer performs the
Bell statemeasurement projecting her two systems onto the basis ofmaximally entangled two-qubit states:

b b
b b
3 1 001 2

1 2y s s yñ = Ä ñ∣ ∣ . Such a Bell statemeasurement typically causes the joint state of the subsystems of the
two edge observers to become entangled, with its exact formdepending on the outcome of the node observer.
The resulting expectation values are

Figure 2.The node observer performs a singlemeasurement with four possible outcomes and the two edge observers each perform
one of fourmeasurements with binary outcomes.

2
This inequality is referred to in [27] as the ‘elegant Bell inequality’ due to the high symmetry of the observables leading to itsmaximal

quantumviolation.

6
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A A B m m
M M

tr
3

, 21x x i x i i x
ix ix1 2

00 001 2 1 2
1 2r r s s s sá ñ = Ä Ä Ä Ä =[( ) ¯ · ¯ ( ) ¯ · ¯ ] ( )

where 00 00 00r y y= ñá∣ ∣. This leads to I I I 16 31 2 3= = = which inserted into equation (20) returns
S 4 3 6net = > . Hence, quantum correlations generated in an entanglement swapping scenario violate the
considered star inequality. If both sources are noisy and each emits aWerner state vr , then one can violate the
inequality (20)whenever v 3 2> . This coincides with the critical noise level of the Bell inequality in
equation (14).

Furthermore, note that we canwithminormodification re-cast our inequality (20) so that the node observer
performs three differentmeasurements, eachwith a binary outcome b. In this scenario, one can again obtain the
quantumviolation S 4 3net = . Note in this case the node observer uses three productmeasurements of the
form i is sÄ , i.e. a product of Paulimatrices. It turns out that these threemeasurements are compatible (they
commute). They can thus bemeasured jointly, which is done via the Bell statemeasurement.

Finally, we point out that we can swap the roles of Alice and Bob in the Bell inequality equation (15) so that
whenmapped to the star inequality, the node observer has four settings and the edge observers each have three
settings. That inequality reads

I I I I 6, 221 2 3 4 ¢ + ¢ + ¢ + ¢∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

where I M M A A By x x yx
T

yx
T

x x y, 1
3 1 2

1 2 1 2 1 2
¢ = å á ñ= , where A A B P a a b x x y1x x i a a b

a a b1 2
, , 1 2 1 21 2 1 2

1 2á ñ = å - + +( ) ( ∣ ). By letting
the node observer performproducts of themeasurements in equation (16) and the edge observers perform the
Paulimeasurements is for i 1, 2, 3= , we again find a violation S 4 3net = , for which the critical visibility
again is v 3 2= .

8. Conclusions

Ourmain result is amethod for systematicallymapping anymulti-setting full-correlation Bell inequality into a
family of inequalities bounding the strength of classical correlations in star networks. This construction also
allows us to show that quantum strategies for Bell inequalities can bemapped into analogous quantum strategies
on star-networks. Specifically, for any entangled state ρ violating the initial Bell inequality, it follows that by
taking enough copies of ρ in the star network one obtains a quantumviolation of the corresponding star
inequalities. Finally, we considered an explicit scenario involvingmore than two settings and show that
quantum correlations in an entanglement swapping experiment can violate our inequalities.

To conclude, wemention some open problems: (1)Canour technique be extended to also includemappings
of Bell inequalities withmarginals, i.e. not only full-correlation terms as in equation (2).Whether the technique
can be adapted to full-correlation Bell inequalities withmore than two outputs (see e.g. [29]) is also relevant. (2)
In particular, our technique allows us to explore quantum correlations in entanglement swapping experiments
withmany settings. Exploring the ability of these correlations to violate the inequalities would be of interest. (3)
Howcan one extend our technique to involve networks that are not of the star configuration? (4)Can one
construct star inequalities analogous to the one in equation (22) inwhich the node observer performs a single
jointmeasurementwith four outcomes? Towhat extent can quantum theory violate these inequalities? (5) It
appears, after considering several particular examples, that all star inequalities derived by the presented
technique cannot outperform the original Bell inequality in terms of noise tolerancewhenmixedwith the
maximallymixed state. Is this the case for any jointmeasurement?Or on the contrary, can one find an example
where the use of an adequate jointmeasurements allows for activation of nonlocality. That is, while the
entangled state ρwould not violate the initial Bell inequality,many copies of ρ distributed in the networkwould
lead to violation of the star inequality.While such activation phenomena are proven to exist evenwhen
considering the standard definition of Bell locality [30, 31], we expect that the effect of activation should become
much stronger when consideringN-locality.
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AppendixA. Proof ofmain theorem

In this appendixwe prove a generalized version of theorem3.1, inwhich the star inequality is obtained as
mapping of up toN different full-correlation Bell inequalities in all of which at least one observer has the same
number of settings. However, wefirst state a useful lemma thatwas presented and proven in [10]:

LemmaA.1. Let xi
k be non-negative real numbers and let n N, 1B  be integers. Then, the following relation holds:

x x , A1
k

n

i

N

i
k

N

i

N

k

n

i
k

N

1 1

1

1 1

1
B B

å   å
= = = =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

with equality if and only if k x x: k
N
k

1" = ¼ = .

Equippedwith this lemma, we state and prove ourmain theorem.

TheoremA.2.Consider any set of N full-correlation Bell inequalities such that in every Bell scenario Bob has nB

measurement settings, whereas in the k’th Bell scenario Alice has nA
k( ) measurement settings. The k’th Bell inequality is

represent by thematrix M k n nB A
k Î ´( ) ( )
with associated classical bound Ck. To every set of suchmatrices,

M k
k
N

1={ }( ) , we can associate a family of star inequalities as follows:

S I C C , A2M f
i

n

i
N

N
N

,
net

1

1
1

1
i

B

åº ¼
=

∣ ∣ ( ) ( ){ } { }

where

I M M BA A A3i
x

n

x

n

ix ix
N

x x
N

i
1 1

1 1

N

N

N N

1

A
1

A

1 1å å= ¼ ¼ á ¼ ñ
= =
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A A B , A4i i
N

i
1

=á ¼ ñˆ ˆ ( )

and

A A B P a a b x x y1 , A5x x
N

i
a a b

a a f b
N N

1

0,1
1 1N

N

N i
1

1

1å åá ¼ ñ = - ´ ¼ ¼
¼ =

+¼+ +( ) ( ∣ ) ( )( )

for some boolean functions fi i
n

1
B
={ } . Thus, specifying the real-valuedmatrices M k

k{ }( ) and the functions fi i
n

1
B
={ }

returns specific star inequality for the star-network with N sources.

Proof. Impose a classicalmodel (1) on the probabilities in the quantities Ii defined in equation (7). This gives

I q A Bd . A6i
k

N

k k k i
k

k i
1

ò  l l l l=
=

⎡
⎣⎢

⎤
⎦⎥( ) ˆ ( ) ( ) ( )

Applying an absolute value to both sides allows for the following upper bound;

I q Ad . A7i
k

N

k k k i
k

k
1

 ò l l l
=

∣ ∣ ( )∣ ˆ ( )∣ ( )

Each integral in the product series is a non-negative number.Hence, the quantity Ii
N1∣ ∣ can be upper

bounded by a geometric average of such integrals. Applying the lemmaA.1 to put an upper bound Snet, which is a
sumof such quantities, we obtain the following:

S I q Ad . A8M f
i

n

i
N

k

N

k k k
i

n

i
k

k

N

,
net

1

1

1 1

1
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B B

 òå  ål l l=
= = =

⎡
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⎤
⎦⎥∣ ∣ ( ) ∣ ˆ ( )∣ ( ){ } { }

Remember that each correlator of Alice obeys A1 1x
k

kk
 l- ( ) and hence, using the classical bound (4) of the

Bell inequality associated to M k( ) to substitute in the integrand, wefind

S q Cd . A9M f
k

N

k k k k

N

,
net

1

1

i
 ò l l

=

⎡
⎣⎢

⎤
⎦⎥( ) ( ){ } { }

Using that k q: d 1k k kò l l" =( ) , we obtain thefinal result

S C C . A10M f N
N

,
net

1
1

i
 ¼( ) ( ){ } { }

+
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Remark.By choosing all theNBell inequalities to be the same, i.e. setting M M M N1º = ¼ =( ) ( ), we obtain
the special case of this theorem considered in themain text.

Appendix B. Redundancy of node observer in classical strategies

Herewe prove proposition 5.1 and illustrate it on a simple example.

Proof. Let us consider thatwe already have a strategy  reaching the bound in equation (6)with given Ii.  is
defined by the correlators of each edge observerAk (resp. node observerB) given x,k kl( ) (resp. y,l


( )) i.e.

Ax
k

kk
l( ) (resp. By

k l


( )). These correlators are such as:

I A A B B1i i i
N

i
1

= á ¼ ñˆ ˆ ( )

q A Bd . B2
k

N

k k k i
k

k i
1

ò  l l l l=
=

⎡
⎣⎢

⎤
⎦⎥( ) ˆ ( ) ( ) ( )

Aswe have equality in equation (6), going back in the proof of theorem 3.1,  must be such as equation (A7) and
equation (A8) are equalities. From the equality condition of equation (A7), wewill deduce a ¢ satisfying
condition 1. and 2. of the proposition.We then improve it in a strategy  satisfying 3., using the equality
condition of equation (A8).

Equation (A7) is the continuous triangle inequality. Aswe have equality, for any i, the integrand
A Bk

N
i
k

k i1l l l =




ˆ ( ) ( )must be of constant sign (theweights qk are positive). Then, any change in the sign of

some Ai
k

klˆ ( ) at a specific j
0l must be compensated by a change of the sign of Bi l


( ) at the same j

0l , whatever are

the otherλjʼs (seefigure 3). As B 1i l = 


( ) , we have that:

B B , B3i
k

i
k

kl l=


( ) ( ) ( )

where Bi
k

kl( ) depends on the sign of Ai
k

klˆ ( ).
We now can define the new strategy ¢:

• A A Bx
k

k x
k

k k kk k
l l l¢ º( ) ( ) ( )

• B 1.i l¢ º


( )

Through the transformation induced byM, this corresponds to corresponding A A Bi
k

k i
k

k k kl l l¢ =ˆ ( ) ˆ ( ) ( ).

Figure 3. Illustration of the argument for two edge observers. As A A Bi i i
1

1
2

2l l l


( ) ( ) ( ) is of constant sign (here positive) and
B 1i l = 


( ) , the sign of Ai
1

1l( ) and Ai
2

2l( ) totally determine Bi l


( ), which is of the form given by (B3).
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As A B A Bk
N

i
k

k i k
N

i

k
k i1 1l l l l =  ¢ ¢= =

 ˆ ( ) ( ) ˆ ( ) ( ), the new Ii¢ corresponding to strategy ¢ are equal to the Ii
corresponding to strategy  . Then 1. and 2. of 5.1 are satisfied by ¢.Moreover, we have:

I A A . B4i i i
N1

= á ¢ ñ ¼ á ¢ ñˆ ˆ ( )

Wenowuse the equality condition of lemmaA.1 and equation (A8) to prove 3. It is a convexity inequality
which now reads:

I A A , B5
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i
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i
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i
k N
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i
k N

1
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1
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= = = = =

∣ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ( )

were here the inequality is an equality. The condition for the convexity inequality in lemmaA.1 to be an equality

is that A i

k
á ¢ ñ∣ ˆ ∣ is independent of k: we have here that for each k A A, k i

1 1
á ¢ ñ = á ¢ ñ∣ ˆ ∣ ∣ ˆ ∣. Replacing each the strategy and

local random source of each edge observerAk by a copy of thefirst edge observerA1 strategy and random source
in ¢ (we then leave the exponent k), wemay only change the sign of Ii. This can be compensate by an appropriate
choice of B b 1i il = = 


( ) . Then, we do not change 1. and 2. and obtain 3., with:

I b A . B6i i i
N= á  ñˆ ( )

+
To illustrate the proposition, let us recall the proof of the tightness of an inequality (already introduced in

section 4) presented in [7], for a star networkwithN edges, two inputs and two outputs for each observer. As
illustrated in the sectionRecovering the inequalities of ([7, 10]), the inequality can be seen as a direct application of
theorem3.1, taking amatrixM corresponding to a renormalized CHSH inequalitie, M 1xy

xy1

2
= -( ) . Then

A A A
k k k

1
1

2 1 2= +ˆ ( ) and A A A
k k k

2
1

2 1 2= -ˆ ( ) and I I,1 2( ) in equation (B2) is (I, J) in [7], with an inequality which
writes:

I I 1. B7N N
1

1
2

1 +∣ ∣ ∣ ∣ ( )

The authors obtained the classical bound (restricting to I I0 ,1 2 ) for each possible I r I r, 1N N
1 2= = -( )

with the following strategy:

A x , 1 1 B8x
k

k k
x

k
k k kl = - -l m( ) ( ) ( ) ( )

B 1 , B9y
k

kl = - l


( ) ( ) ( )

where the 0, 1kl Î { }are uniform shared variables between each of the edge observer and the node observer
and the 0, 1km Î { } ( 0km = with probability r) are sources of local randomness for each edge observer.We see
here, as shown by the proposition, that all edge observer have the same strategy and that the node observer’s
strategy factorizes in B By k y

kl l= 


( ) ( )with B 1y
k

k
kl =  - l


( ) ( ) . Then, as suggested by the proposition,

defining:

A x A x B, , 1 B10x
k

k k x
k

k k y
k

k
x

k k
k kl l l¢ = = - m( ) ( ) ( ) ( ) ( )

B 1, B11y l¢ =


( ) ( )

we see that the Ii are unchanged by the transformation, and obtain a reduced strategy inwhich all the conditions
of the proposition are satisfied. The proposition states that such a transformation is always possible.

AppendixC. Partial tightness of star inequalities

Wenow study the tightness of the bound in equation (4):

I C. C1
i

n

i
N

1

1
B

å
=

∣ ∣ ( )

In the following, using proposition 5.1, we find all the sets of Ii{ }which are reachable byN-local strategies and
saturate (C1).

We start by enumerating all the possible deterministic strategies for each edge observer:
X A A 1r r r

n
n

1 A
A= ¼ Î ( ) { } for r 1 2nA= ¼ . For each one, we note Y A Ar r r

n1 B
= ¼( ˆ ˆ ) the vector obtained

after transformation ofX byM:

Y M X. C2r r= ( )

Suppose that a given set Ii{ } satisfying condition (C1) can be obtainedwith anN-local strategy. Then, by
proposition 5.1, we can suppose that it is obtainedwith a strategy inwhich the node observerB has deterministic
strategy B b 1i il = = 


( ) and all edge observersAk play the same strategy (we then leave the exponent k) based
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on a shared random variable.Hence,

I A A B b A . C3i i i
N

i i i
N1

= á ¼ ñ = á ñˆ ˆ ˆ ( )

AsA has only 2nA possible deterministic strategies, there exists probabilities p p... 1n1 A
+ + = such that the

strategy of eachA is ‘play deterministic strategyXrwith probability pr’.Then:

pA A . C4i
r

r
r

i
1

2nA

åá ñ =
=

ˆ ˆ ( )

We then have:

I p p CA A max A , C5
i

i
N

i r
r

r
i

i r
r

r
i

s i

s
i

1

1

2

1

2n nA A

 å å å åå å= =
= =

∣ ∣ ˆ ∣ ˆ ∣ ∣ ˆ ∣ ( )

where the inequalities are equalities, which implies:

• p pA Ar r
r

i r r
r

i1
2

1
2n nA A

å = å= =∣ ˆ ∣ ∣ ˆ ∣ i.e. for any i, the sign of all Ar
i

ˆ such as p 0r ¹ is the same (butmay differ fromone
i to the other).

• r" such as p A C0, .r i
r

i¹ å =∣ ˆ ∣

Then, this proves that any distribution of Ii{ } such as (C1) can be generated from the followingmethod:

1. Enumerate all the possible X Y,r r( )

2. Keep the one such as A Ci
r

iå =∣ ˆ ∣ .

3. Sort them in different sets Sν of size sν, each Sν containing X Y,r r( ) where sign Yr
i( ) is constant over r (but

may differ depending on i).

4. The set of all Ii{ } such as the condition (C1) is fulfilled is :

I , C6
b p

p

i
p p b

1
1

, , ,

i

s

s i

1

1

n= +
+ =

¼

n

n


⋃ ⋃ ⋃ { } ( )

where Ii
p p b, , ,s i1 ¼ n{ }are obtainedwhen eachA ‘play deterministic strategy X Sr Î n with probability pr’ andB

deterministically answer bi : I b p Ai
p p b

i r r
r

i
N, , ,s i1 = å

¼ n ( ˆ ) . Conversely, this gives a strategy proving that any
distribution of Ii{ }given by (C6) can be obtain by anN-local strategy.
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A communication game consists of distributed parties attempting to jointly complete a task with
restricted communication. Such games are useful tools for studying limitations of physical theories. A
theory exhibits preparation contextuality whenever its predictions cannot be explained by a preparation
noncontextual model. Here, we show that communication games performed in operational theories reveal
the preparation contextuality of that theory. For statistics obtained in a particular family of communication
games, we show a direct correspondence with correlations in spacelike separated events obeying the no-
signaling principle. Using this, we prove that all mixed quantum states of any finite dimension are
preparation contextual. We report on an experimental realization of a communication game involving three-
level quantum systems from which we observe a strong violation of the constraints of preparation
noncontextuality.

DOI: 10.1103/PhysRevLett.119.220402

Introduction.—Communication games are tools by
which one can study fundamental limiting features of
physical theories in terms of their ability to process
information [1–3]. In these games, a number of parties
intend to jointly solve a task despite the amount and type of
communication being constrained by some rules. Thus, the
task can be solved only with some probability, which
depends on the theory by which they are assumed to
operate. Therefore, communication games are frequent
tools for identifying and quantifying quantum advantages
over classical theories [4–10].
Interestingly, there are known examples of communica-

tion games in which the better-than-classical performance
constitutes a certificate of the system lacking a preparation
noncontextual ontological model [11–13]. An ontological
model is a way of explaining the physics of an operational
theory, by assuming that there are independent and objec-
tive (ontic) states subject to experiment. However, speci-
fying a preparation does not necessarily specify the ontic
state. A preparation may be represented by a distribution μ
over the ontic states. Let two preparations P1 and P2

associated to distributions μ1 and μ2 be indistinguishable,
i.e., satisfy pðbjP1;MÞ ¼ pðbjP2;MÞ for any measure-
ment M with outcome b. The assumption of preparation
noncontextuality asserts that no additional features (called
contexts) influence the physics of the preparations and,
therefore, asserts that both preparations have equivalent
representation in the ontological model: μ1 ¼ μ2 [14]. If a
theory does not satisfy this assumption, it is said to be
preparation contextual. Preparation contextuality has been
shown relevant for many foundational topics [3,15–18].
Here, we show that the performance of an operational

theory in communication games constitutes a certificate

of that theory exhibiting preparation contextuality.
Specifically, we introduce communication constraints
which keep the receiver oblivious about subsets of the
information held by the sender. Preparation noncontextual-
ity imposes a bound on the performance of any communi-
cation game executed under such an obliviousness
constraint. This bound is violated by preparation contextual
theories. Subsequently, we show how to understand no-
signaling correlations from spacelike separated measure-
ments (perhaps violating a Bell inequality) through a
subclass of communication games. In particular, we find
that quantum preparation contextuality manifested in com-
munication games imposes a quantitative bound on quantum
nonlocality (i.e., Bell inequality violations). Furthermore,
we apply this result to resolve an open problem in this field:
Which quantum states are preparation contextual? We show
that all mixed quantum states in any finite dimension are
preparation contextual. Finally, we present an experimental
implementation of a quantum strategy in a specific com-
munication game, inspired by the Collins-Gisin-Linden-
Massar-Popescu (CGLMP) Bell inequality, in which three-
level quantum systems are communicated.We certify a large
violation of a preparation noncontextuality inequality.
Communication games.—In a two-player communication

game, a party Alice (Bob) holds a set of data denoted x ∈ IA
(y ∈ IB) with associated probability distribution pAðxÞ
[pBðyÞ]. Alice encodes x by preparing a state which is sent
toBob,whoattempts to decode itwith ameasurement labeled
y. This returns anoutcomeb. Subsequently, a payoffCbx;y ∈ R
is awarded. The average payoff earned by the partnership is

A≡X

x∈IA

X

y∈IB

Cbx;ypAðxÞpBðyÞpðbjx; yÞ: ð1Þ
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Equation (1) quantifies the performance in the game.
However, the content of Alice’s communication to Bob is
restricted by some communication constraints. These ensure
that the game is nontrivial; i.e., Alice cannot simply send x to
Bob. A suitable choice of these constraints enables the
connection to tests of preparation contextuality.
Communication games as tests of preparation

contextuality.—An operational theory is said to be prepa-
ration noncontextual [14] if operationally equivalent prep-
arations imply equivalent distributions over the ontic states:

∀y ∀ b∶ pðbjx; yÞ ¼ pðbjx0; yÞ ⇒ pðλjxÞ ¼ pðλjx0Þ;
ð2Þ

where λ is a hidden variable, x and x0 are two preparations,
and y denotes a measurement.
We will now define a class of communication constraints

which enables a connection to the premise of Eq. (2). The
assumption of preparation noncontextuality then leads to a
preparation noncontextuality inequality in which the per-
formance in the communication game is the operator.
Construct L subsets of the space IA; Sk ⊂ IA for

k ¼ 1;…; L. Now, choose communication constraints as
follows: Impose an obliviousness constraint

∀ y; b; k; k0∶
1

qk

X

x∈Sk

pðxjb; yÞ ¼ 1

qk0

X

x∈Sk0
pðxjb; yÞ: ð3Þ

Here qk ¼ pðx ∈ SkÞ ¼
P

x∈SkpAðxÞ serves as a normali-
zation. In other words, Eq. (3) states that, no matter the
performed measurement and observed outcome, Bob gains
no information, as compared to what he knew before the
communication, about to which set Sk the data x of Alice
belong. Let us now apply Bayes’ rule to the above
summands: pðxjb; yÞ ¼ pðbjx; yÞpðxjyÞ=pðbjyÞ. Since x
and y are independent, Eq. (3) becomes

∀y ∀ b∶
X

x∈Sk

pðbjx; yÞpAðxÞ
qk

¼
X

x∈Sk0
pðbjx; yÞpAðxÞ

qk0
:

ð4Þ

Note that each side is a convex combination, since
fpAðxÞ=qkgx∈Sk is a probability distribution over the set
Sk. Now, note that the probability that the outcome b
was obtained from a measurement on a preparation
associated to Sk is the convex mixing of its constitutes:
pðbjx ∈ Sk; yÞ ¼

P
x∈Skpðbjx; yÞpAðxÞ=qk. Similarly, the

distribution of the hidden variable is pðλjx ∈ SkÞ ¼P
x∈SkpðλjxÞpAðxÞ=qk. Putting it all together, we have

∀y ∀ b∶ pðbjx ∈ Sk; yÞ ¼ pðbjx ∈ Sk0 ; yÞ, which takes
the form of the premise of the preparation noncontextuality
statement in Eq. (2). Thus, preparation noncontextuality
imposes that pðλjx ∈ SkÞ ¼ pðλjx ∈ Sk0 Þ. Using Bayes’

rule, we find that pðx ∈ SkjλÞ=qk ¼ pðx ∈ Sk0 jλÞ=qk0 .
This means that, despite knowledge of the hidden variable,
Eq. (3) remains satisfied.
Given any λ, Alice encodes x classically knowing that the

obliviousness constraint is satisfied. Therefore, the prepa-
ration noncontextual bound ppnc of Eq. (1) is obtained from
maximizing Eq. (1) over all classical encodings respecting
the obliviousness constraint. Hence, A ≤ ppnc is a prepa-
ration noncontextuality inequality. ▪
Clearly, for a given communication game, there are a

plethora of ways in which one can choose the obliviousness
constraint and construct the associated preparation non-
contextuality inequality. In what follows, we will examine
some interesting cases of the presented framework.
Communication games based on Bell inequalities.—

Consider a general bipartite Bell experiment in which
Alice and Bob share a two-particle state with each of them
choosing measurements X ∈ f1;…; mAg, for some pos-
itive integer mA, and Y ∈ f1;…; mBg, for some positive
integer mB, sampled from a distribution pAðXÞ and pBðYÞ,
respectively. Each measurement returns an outcome
a; b ∈ f1;…; dg. From the resulting probability distribu-
tion pða; bjX; YÞ, one constructs a general Bell inequality

Ib ≡
X

abXY

Ca;bX;YpAðXÞpBðYÞpða; bjX; YÞ ≤ C; ð5Þ

where C is the local realist bound and Ca;bX;Y are real
coefficients.
In the following, we construct a family of communica-

tion games and obliviousness constraints inspired by
such Bell experiments. Alice is given inputs ðx; x0Þ ∈
f1;…; mAg × f1;…; dg admitting the distribution
pðx0; xÞ ¼ pgðx0jxÞpAðxÞ, with pAðx ¼ iÞ ¼ pAðX ¼ iÞ
whereas pgðx0jxÞ is yet to be specified. Bob has an input
y ∈ f1;…; mBg with distribution pBðy ¼ iÞ ¼ pBðY ¼ iÞ.
The inputs ðx0; x; yÞ in the communication game, respec-
tively, correspond to ða; X; YÞ in the Bell experiment.
Having received Alice’s communication, Bob earns a
payoff Cx0;bx;y if he outputs b given a measurement of y
and that Alice held ðx0; xÞ. The performance is written

Ig½fpgðx0jxÞgx�
≡ X

x0xyb

Cx0;bx;y pAðxÞpBðyÞpgðx0jxÞpðbjx0; x; yÞ: ð6Þ

Notice that, for every choice of fpgðx0jxÞgx, we have a
different communication game.
Alice’s communication must satisfy the following oblivi-

ousness constraint. Partition Alice’s mAd possible inputs
into mA sets each containing d elements; we define Sk ¼
fx0xjx ¼ kg for k ¼ 1;…; mA. The obliviousness con-
straint requires that Bob gains no information about to
which Sk the data ðx0; xÞ belong. Inserting this into Eq. (4)
with qk ¼ pAðx ¼ kÞ and using Bayes’ rule, we obtain
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∀ b;y;k;k0∶
Xd

x0¼1

pðx0;bjx¼ k;yÞ ¼
Xd

x0¼1

pðx0;bjx¼ k0;yÞ:

ð7Þ
This constraint is an analogy of the directed no-signaling
principle imposed by special relativity on correlations in
spacelike separated measurement events: The probability of
Bob’s outcome marginalized over Alice’s input x0 is
independent of Alice’s other input x. One needs only to
relabel x0 by a and ðx; yÞ by ðX; YÞ to recover the
corresponding statement in Bell experiments.
On the one hand, imagine we run a Bell experiment and

achieve some value of Ib. Using Bayes’ theorem and the
obliviousness constraint (7), it is straightforwardly shown
that if we choose the communication game in which pg

coincides with the observed marginals of Alice, pðajXÞ,
one finds Ig ¼ Ib. We explicitly consider the case of the
quantum theory. In a Bell experiment, when Alice performs
her measurement X, she renders Bob’s local state in one of
d possible states labeled ϱXl for l ¼ 1;…; d. The probability
of Bob’s local state being ϱXl is the probability of Alice
obtaining outcome l, i.e., pða ¼ ljXÞ. No signaling implies
that the average state of Bob is independent of the
measurement choice X of Alice. We associate for every
X the set fϱXl gdl¼1 to the states in SX prepared by Alice in
our communication game. As shown, these will necessarily
satisfy the obliviousness constraint (7) while by construc-
tion returning the same performance in the communication
game (6) as in the Bell experiment, namely, Ig ¼ Ib.
On the other hand, imagine we have not specified

pgðx0jxÞ. Let λ index all functions fλðxÞ∶f1;…; mAg →
f1;…; dg. By choosing a suitable probability distribution
μðλÞ, we can write pgðx0jxÞ ¼

P
λμðλÞDAðx0jxλÞ, where

DAðx0jxλÞ ¼ δfλðxÞ;x0 . Alice then communicates λ, which
contains no information about x, to Bob, who decodes the
message using some strategy DB. We find

Ig¼
X

x0xyb

Cx0;bx;y pAðxÞpBðyÞ
X

λ

μðλÞDAðx0jxλÞDBðbjyλÞ: ð8Þ

This is precisely the notion of local realistmodels for theBell
experiment (5). Hence, if we choosepgðx0jxÞ such that there
is a local hidden variable strategy that both (i) has
pgðx0jxÞ ¼ pðajXÞ as a marginal of Alice and (ii) saturates
the local realist bound C of (5), the preparation noncontex-
tuality inequality Ig ≤ C will be tight. Of particular interest
is to choose pgðx0jxÞ such that it coincides with Alice’s
marginals in a maximal violation of a Bell inequality given
someoperational no-signaling theory. Then,we assert that Ig
can witness a violation of preparation noncontextuality
corresponding to the maximal Bell inequality violation.
Note that only very particular obliviousness constraints

and communication games retain the analogy to the
no-signaling principle through our construction. In
Ref. [19], we present a family of games that is not of the

type presented in this section. The corresponding preparation
noncontextuality inequalities are many-outcome generaliza-
tionsof the those based onparity-obliviousmultiplexing [11].
Quantum preparation contextuality limits maximal

quantum nonlocality.—If Alice and Bob share entangled
states, all mixed states can be prepared on Bob’s side by
considering the average of his local state computed over the
outcomes of Alice obtained from some measurement. Thus,
due to our previous discussion, it follows that the maximal
quantum violation of a bipartite Bell inequality is a limi-
tation imposed by the preparation contextuality allowed in
the quantum theory. This generalizes the result of Ref. [3],
showing this statement for the Clauser-Horne-Shimony-
Holt inequality [20]. We exemplify this generalization by
shining light on the numerical quantum violations of the
preparation noncontextuality inequalities considered in
Ref. [13]. These inequalities were based on communication
games which happen to admit an obliviousness constraint of
the form considered in the above section. The corresponding
Bell inequalities were in fact studied in Ref. [21] in a
different context. Comparing the numerics for quantum
preparation contextuality [13] and the quantum nonlocality
[21], one indeed finds that these agree very accurately.
All mixed states are preparation contextual.—The max-

imally mixed quantum state of dimension d ¼ 2, 3, 4, 5 is
known to be preparation contextual [13,14]. So is every
mixed qubit state [22]. Our mapping between communi-
cation games and Bell inequalities allows us to straight-
forwardly show that all mixed quantum states of any
dimension d are preparation contextual. For this purpose,
consider the CGLMP Bell inequality [23], which is a
bipartite facet Bell inequality with d outcomes for both
observers. For any d, this inequality can be violated by all
pure bipartite entangled states of dimension d [24]. Hence,
all possible mixed quantum states of dimension d can
appear as the average state of Bob after either of Alice’s
measurements. That average state is just the state of Bob’s
part of the entangled system. Since quantum strategies in
the Bell scenario can be mapped to quantum strategies in a
communication game (of the form previously discussed)
testing preparation contextuality, it follows that all mixed
quantum states of dimension d are preparation contextual.
A specific communication game.—Let us focus on the

CGLMP Bell inequality with d ¼ 3 and construct the
preparation noncontextuality inequality based on the asso-
ciated communication game. Following our previous dis-
cussion, we let Alice hold x ¼ x0x ∈ f0; 1; 2g × f0; 1g
with pðx0; xÞ ¼ 1=6 and Bob hold y ∈ f0; 1g with
pðyÞ ¼ 1=2. In order to satisfy the obliviousness constraint,
Alice’s communication ρx0x must in the quantum theory
obey

P
2
x0¼0 pðx0jx ¼ 0Þρx00 ¼

P
2
x0¼0 pðx0jx ¼ 1Þρx01.

Since the preparation noncontextual bound coincides with
the local bound of the CGLMP inequality (which achieves
its maximal quantum violation with uniform marginals on
Alice), our preparation noncontextuality inequality reads
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A3 ≡ 1

12

X

x0xyk

ð−1Þkpðb ¼ Tkjx0; x; yÞ ≤ 1=2; ð9Þ

where Tk ¼ x0 − ð−1Þxþyþkk − xy mod 3 for k ¼ 0, 1. The
maximal quantum violation of the CGLMP Bell inequality
is A3 ¼ ð3þ ffiffiffiffiffi

33
p Þ=12 ≈ 0.7287 [25], which immediately

translates into an equal quantum violation of the inequality
(9). In Ref. [19], we give the details of the corresponding
quantum strategy in the communication game.
Experiment.—We experimentally confirm the above

prediction of quantum preparation contextuality. The
experimental implementation of the communication game
uses three-path encoding for preparing qutrits. Single
photons are initially prepared in the jHi polarization state
by the use of polarization fiber controllers in a single-mode
fiber (SMF). The qutrit state is prepared using the two
spatial modes of three polarization beam splitters (PBSs)
(see Fig. 1). The states required for the game, jψ ini ¼
cosð2χ1Þj0i þ sinð2χ1Þ sinð2χ2Þj1i þ sinð2χ1Þ cosð2χ2Þj2i,
are prepared by suitably orienting the half-wave plates
(HWPs) χ1 and χ2. Details are given in Ref. [19].
We use a heralded single-photon source generating twin

photons at 780 nm by spontaneous parametric down-
conversion. In this process, a nonlinear crystal type II
(β-barium borate) is pumped using a high-power femto-
second laser such that a pump photon probabilistically
converts into two lower-energy photons, called the signal
and idler. The twin photons pass through a 3 nm filter and
are coupled into single-mode fibers to have well-defined

spatial and spectral properties. A detection of the idler then
heralds the signal photon.
The corresponding experimental setup consists of three

subsequent interferometers comprising of single-photon
interferometers between all three paths followed by a stable
and compact Sagnac interferometer, such that, while per-
forming a measurement in a given measurement basis, the
state is projected into basis vectors of the chosen basis. The
protocol requires measurements in the computational basis
and a second basis defined in Ref. [19]. Moreover, state
tomography is performed using measurements in four
mutually unbiased bases (MUBs), so that the total set of
measurements is informationally complete [26]. For this
purpose, the choice of a givenmeasurement basis is enabled
by suitable orientations of the HWPs θ1, θ2, and θ3 (see
Table I in Ref. [19]) and by the introduction of a phase
(ϕi; i ∈ 1; 2; 3) between the special modes by employing a
set of three wave plates QWP-HWP-QWP (phase shifter
box) geometries at different tilding positions [27].
A measurement projects the state onto the basis vectors.

These are represented by the spatialmodes of the twoPBSs in
the Sagnac interferometer (denoted by jαi, jβi, and jγi). In
our experiment, the photons arriving at jαi, jβi, and jγi are
collected by multimode fibers that are in turn coupled
to single-photon silicon avalanche photodiodes from
Excelitas Technologies with an effective detection efficiency
ηd ¼ 0.55. A home-built field-programmable gate array-
based timing system records the coincidence events between
the arriving and trigger (idler) photons with a detection time
window of 1.7 ns. The number of detection events at each
detector is used to compute the respective probabilities. In
each measurement round, approximately 60000 photons
were detected per second. The measurement time was 10 s.
From the measured probabilities, we computed Apri

3 ≈
0.7172� 0.0365, which is in good agreement with the
theoretical prediction. We reconstructed the states using
variational quantum tomography [26,28] and the exper-
imental results from four MUBs. We found the following
fidelities for the six states: jψ11i ∼ 0.9826, jψ12i ∼ 0.9804,
jψ13i ∼ 0.9893, jψ21i∼0.9838, jψ22i∼0.9876, and jψ23i∼
0.9840. These small imperfections cause the obliviousness
constraint not to be perfectly satisfied. Next, we shall see
how to overcome this issue.
Data analysis.—Reference [29] constructed a method in

which one maps measured outcome probabilities (primary
data), which does not perfectly satisfy a strict equivalence
constraint, into another set of probabilities (secondary data)
that satisfies that equivalence constraint. Then, one uses the
secondary data to calculate the parameter of interest in the
experiment. We will use this method to strictly enforce
the obliviousness constraint and then compute A3.
The primary data in our experiment consist of six 2 × 3

matrices [one for each preparation ðx0; xÞ] with elements
Px0x
i;j ≡ Plabðjjx0; x; iÞ corresponding to performing meas-

urement i in the laboratory and obtaining outcome j. Wewill

FIG. 1. Experimental setup. Suitable settings of χ1 and χ2 allow
us to produce the desired qutrit states for the task. Measurement
basis selection is implemented by appropriate settings of HWPs
θ1, θ2, and θ3 and by setting the total experimental phase
(ϕi; i ∈ 1; 2; 3) between path modes by employing a phase shifter
box (QWP-HWP-QWP) inside the setup. Detection events in
detectors jαi, jβi, and jγi are used to obtain the respective
probabilities.
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assume that the underlying physical theory governing
the system is linear, allowing us to search for secondary
data in the form of six other matrices fP0x0xgx0;x that are in
the convex hull of fPx0xgx0;x. That is, we let ∀x0;x∶P0x0;x¼P

2
x0
0
¼0

P
1
x0¼0

wx0x
x0
0
;x0P

x0
0
;x0 , where ∀ x0; x∶ wx0x

x0
0
;x0 is a proba-

bility distribution. We seek secondary data which (i) satisfy
the obliviousness constraint and (ii) on average are as close
to the primary data as possible. This corresponds to a linear
program:

S≡max
fwg

1

6

X2

x0¼0

X1

x¼0

wx0;x
x0;x;

such that
X

x0

P0x00 ¼
X

x0

P0x01: ð10Þ

We find S ≈ 0.9938, indicating that the secondary data are
close to the primary data. Using the secondary data to
compute A3, we obtain Asec

3 ≈ 0.7118� 0.0365. This is only
marginally smaller than Apri

3 . It is in good agreement with the
theoretical prediction of the quantum theory and strictly
satisfies the obliviousness constraint.
Conclusions.—We have established relations between

operational statistics in a class of communication games
and tested preparation contextuality. We showed close
relations between quantum nonlocality and quantum corre-
lations in such communication games and also shown all
mixed quantum states of finite dimension to be preparation
contextual. Furthermore, we provided an experimental dem-
onstration of a quantum communication game showing a
large violation of a preparation noncontextuality inequality.
We conclude with some open problems: (i) Do commu-

nication games without obliviousness constraints admit a
connection to some operational physical assumption in the
same spirit as presented here for games respecting an
obliviousness constraint? (ii) Are generalizations of the
presented framework to more than two players possible?
(iii) Can the considered communication games be used in
one-sided device-independent cryptography protocols?
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We consider an ideal experiment in which unlimited nonprojective quantum measurements are sequentially
performed on a system that is initially entangled with a distant one. At each step of the sequence, the measurements
are randomly chosen between two. However, regardless of which measurement is chosen or which outcome is
obtained, the quantum state of the pair always remains entangled. We show that the classical simulation of the
reduced state of the distant system requires not only unlimited rounds of communication, but also that the distant
system has infinite memory. Otherwise, a thermodynamical argument predicts heating at a distance. Our proposal
can be used for experimentally ruling out nonlocal finite-memory classical models of quantum theory.

DOI: 10.1103/PhysRevA.97.032131

I. INTRODUCTION

It has been shown recently that an experiment in which
a single quantum system is subjected to many sequential
measurements, each randomly chosen among n alternatives,
cannot be simulated with a classical system that has access only
to finite memory. Such a classical simulation has an additional
cost, namely, that after sufficiently many measurements the
system dissipates heat. Specifically, the amount of heat per
measurement tends to infinity and the divergence is linear
in n [1].

Such finite-memory classical simulations can be put in
one-to-one correspondence with interpretations of quantum
theory in which measurement outcomes are governed by
intrinsic properties and, in addition, satisfy some assumptions
[1]. Therefore, an experiment testing the presence or absence
of such heat would rule out some interpretations of quantum
theory. However, such an experiment is exposed to the practical
problem of the implementation of the sequential measurements
themselves producing heat, making it difficult to distinguish
the hypothetical heat emitted by the finite-memory classical
systems. Therefore, an interesting problem is whether a similar
phenomenon can be demonstrated using sequential measure-
ment that are not performed on the same physical system
as from which the heat would originate. Such an experiment
would require at least two systems, one that is being repeatedly
measured and one in which the heat could appear.

In order for measurements on one system to influence
the quantum state of the other, the joint state of the two
systems must have some entanglement. A complete projective
local measurement performed on an entangled state renders
the postmeasurement state separable. Thus, a second local
measurement can no longer change the quantum state of the

*armin.tavakoli@unige.ch
†adan@us.es

distant system. Therefore, the local measurements must nec-
essarily be nonprojective positive-operator-valued measures
(POVMs) in order to both induce a change in the local state
of the distant system and retain this ability in a subsequent
measurement. Sequential nonprojective local measurements
have previously been shown useful in Bell experiments [2] and
random number generation [3]. Here we show that sequential
measurements can also be used to distinguish the predictions of
quantum theory from classical simulations with finite memory
in experiments involving two distant entangled systems.

In Sec. II, we introduce a protocol in which entanglement
is preserved indefinitely for all measurement choices. Then, in
Sec. III, we compute the cost of classically simulating some
possible predictions of quantum theory for this experiment.
We show that, in addition to an always increasing (but finite)
amount of communication required for simulating entangle-
ment in standard Bell experiments [4,5], a thermodynamical
analysis imposes an additional and qualitatively different cost:
infinite local memory. Otherwise, an experiment would be able
to detect the heat emitted by the system that is not measured.

II. PROTOCOL

A. Scenario

We consider two parties, Alice and Bob, who at time t0 share
two qubits in a maximally entangled state

|ψ0〉 = 1√
2

(|00〉 + |11〉). (1)

At later times t1 < t2 < · · · < tN , Alice randomly chooses
between two measurements xk and x̄k and performs this
measurement on her qubit. Each measurement has two possible
outcomes denoted by 0 and 1. The two measurements between
which Alice measures are not preestablished but depend on the
previous measurements and outcomes. Bob does not perform
any operation over the course of the protocol. However,
at any time, the parties can stop the protocol and perform
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measurements (including Bob) to test some predictions of
quantum theory.

Any of Alice’s measurement at time tk , denoted by jk ∈
{xk,x̄k}, will be a two-outcome POVM which has, associated
with outcome 0, the POVM element Ejk

k = Kn̂jk
(μk)Kn̂jk

(μk)†,
where Kn̂jk

(μk) is the Kraus operator [6]

Kn̂jk
(μk) = cos(μk)|n̂jk

〉〈n̂jk
|

+ sin(μk)| − n̂jk
〉〈−n̂jk

|, (2)

where n̂jk
is a vector on the Bloch sphere that will be specified

later. This POVM is a noisy version of the measurement
represented by a Pauli matrix along n̂jk

. The amount of noise is
controlled by the value of μk ∈ [0,π/2] and will be specified
later. If μk ∈ {0,π/2}, the measurement is projective. If μk =
π/4, thenKn̂jk

= 1/2, implying a noninteractive measurement.
Other values of μk correspond to weak measurements.

In addition, we assume that the time evolution is trivial, that
is, that the state of Alice’s and Bob’s qubits just after Alice’s
measurement at tk is the state just before Alice’s measurement
at tk+1, and is determined by Alice’s sequence of measurements
and outcomes at {t1, . . . ,tk}. The list of measurements and
outcomes of Alice from t1 to tk will be denoted by lk .

B. Choosing sequential measurements that always enable Bell
inequality violation

One of the features of the protocol that we are about to
introduce is that, at each tk , for each pair of measurements of
Alice, there exist two measurements that Bob could perform
(if the parties agreed to stop the protocol at this particular
tk) such that the outcome statistics of Alice and Bob would
violate the Clauser-Horne-Shimony-Holt (CHSH) inequality
[7]. Recall that in a CHSH experiment, Alice and Bob perform
measurements Ai and Bj , respectively, with i,j ∈ {0,1}, on
shared pairs of systems. The measurement on each system is
chosen independently and randomly. Any local realistic model
of the outcome statistics must satisfy the CHSH inequality

SCHSH ≡ 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 � 2, (3)

where 〈·〉 denotes expectation value.
The following lemma (which is a corollary of the main result

of Ref. [8]) explains why it is possible to achieve the feature
described above.

Lemma. Consider any pure entangled state |�η〉 =
cos(η)|00〉 + sin(η)|11〉, with η ∈ (0,π/2). For every |�η〉,
Alice can find measurements associated with Kraus operators
(2) with n̂jk

equal to (0,0,1) and (1,0,0), respectively (i.e., noisy
measurements of σz and σx), for which she can choose a noise
parameter μ /∈ {0,π/2} such that there exist two projective
measurements for Bob leading to outcome statistics violating
the CHSH inequality (3).

Proof. The Bloch vectors associated with the measurements
A0 and A1 of Alice are [0,0, cos(2μ)] and [cos(2μ),0,0],
respectively. These are unnormalized for μ /∈ {0,π/2}. Let
us choose the Bloch vectors representing Bob’s measure-
ments B0 and B1 to be of the form [cos(θ ),0, sin(θ )] and
[− cos(θ ),0, sin(θ )], respectively, for some θ . These Bloch
vectors are normalized and hence correspond to projective

measurements. A direct computation of SCHSH in (3) gives

SCHSH = 2 cos(2μ)[sin(θ ) + sin(2η) cos(θ )]. (4)

We choose θ so that SCHSH is maximal, i.e., we solve the
equation ∂SCHSH/∂θ = 0. The solution of our interest is θ =
arctan[1/ sin(2η)], which is independent of μ. Inserting this in
Eq. (4), we find

SCHSH =
√

6 − 2 cos(4η) cos(2μ). (5)

The minimal value of the square root is 2 and is achieved for
product states. Therefore, for every entangled state correspond-
ing to η /∈ {0,π/2}, the square root is larger than 2. Hence, if
Alice chooses her noise parameter μ such that

0 < μ <
1

2
arccos

[
2√

6 − 2 cos(4η)

]
≡ F (η), (6)

then the outcome statistics of Alice and Bob will violate the
CHSH inequality (3).

C. Protocol

Let us now describe the protocol itself.
(0) At time t0, Alice and Bob share the maximally entangled

state |ψ0〉 given in Eq. (1).
(1a) At t1 > t0, Alice chooses some nonzero μ1 <

F (π/4) = π/8. Then she randomly chooses betweenx1 and x̄1,
each of them associated with a Bloch vector (0,0,1) and (1,0,0),
respectively. Alice’s choice is denoted by j1. Then Alice
performs the measurement {Ej1

1 ,1−E
j1
1 }. The Lemma ensures

that, for the state before the measurement and Alice’s two
possible measurements, there are two possible measurements
on Bob’s system violating the CHSH inequality.

(1b) From her observed outcome, Alice calculates the
postmeasurement state |ψl1

1 〉 of the two qubits. This state is
necessarily pure and entangled and can be written in the form∣∣ψl1

1

〉 = U
l1
A ⊗ U

l1
B [cos(θ l1 )|00〉 + sin(θ l1 )|11〉], (7)

where θ l1 /∈ {0,π/2} and U
l1
A and U

l1
B are unitary operators.

Here θ l1 does not refer to an actual operation but is a hypothet-
ical angle which would maximize Eq. (5). Then Alice applies
on her qubit the unitary (Ul1

A )†, which cancels the unitary U
l1
A

in Eq. (7). After Alice’s actions at t1, the reduced state of Bob’s
qubit is one of four possible states (see Fig. 1).

(2a) At t2, Alice again chooses some positive μ2 < F (θ l1 ).
She makes a random choice of measurement j2 ∈ {x2,x̄2}
associated with Bloch vectors (0,0,1) and (1,0,0), respec-
tively, and performs the measurement {Ej2

2 ,1−E
j2
2 }. Again,

the Lemma ensures that, for the state before the measurement
and Alice’s two possible measurements, there are two possible
measurements on Bob’s system violating the CHSH inequality.

(2b) From her observed outcome, Alice calculates the new
postmeasurement state |ψl2

2 〉 of the two qubits. Just as in (1b),
Alice rotates her reduced state back to the computational basis
by applying a suitable unitary. After Alice’s actions at t2, the
reduced state of Bob’s qubit is one of 16 possible states (see
Fig. 1).

Alice continues this process of measuring, recording the
outcome, and choosing the next measurement indefinitely. That
is:
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FIG. 1. (a) From left to right, Alice’s sequential measurements at times t1 < t2 < t3, respectively. At each tk , Alice performs a measurement,
either xk or x̄k . Each measurement has two possible outcomes: 0 and 1. Alice’s measurements are such that the state of the two qubits after
her measurement is always entangled. (b) From left to right, possible reduced states of Bob’s qubit after Alice’s measurements at t1 < t2 < t3,
respectively. States are represented by nonunit arrows in the equatorial plane of the Bloch sphere. For example, 1̄ denotes the state when Alice
measured x̄1 at t1 and obtained outcome 1; 1̄0 denotes the state when Alice measured x̄1 at t1 and x2 at t2 and obtained outcomes 1 and 0,
respectively. Bob’s states highlighted in purple are those produced in the particular sequence of Alice’s measurements and outcomes shown in
(a).

(ta) At tk , she chooses some positive μk < F (θ lk−1 ), ran-
domly chooses a measurement jk ∈ {xk,x̄k} associated with
Bloch vectors (0,0,1) and (1,0,0), respectively, and performs
the measurement {Ejk

k ,1−E
jk

k }. The Lemma guarantees that,
for the state before the measurement and Alice’s two possible
measurements, there are two possible measurements on Bob’s
system violating the CHSH inequality.

(tb) From her observed outcome, Alice calculates the
postmeasurement state |ψlk

k 〉, which takes the form∣∣ψlk
k

〉 = U
lk
A ⊗ U

lk
B [cos(θ lk )|00〉 + sin(θ lk )|11〉] (8)

for some angle θ lk /∈ {0,π/2}. Subsequently, she undoes the
rotation of her local state by applying (Ulk

A )†. This renders the
reduced state of Bob’s qubit in one of 4k possible states (see
Fig. 1).

D. Properties of the protocol

At each time tk , Alice’s alternative measurements are
both nonprojective and depend on Alice’s previous choices

of measurements and also on the outcomes of the previous
measurements. This way, the initial entanglement is never
consumed regardless of Alice’s performed measurements and
observed outcomes and Alice’s two measurement options
enable a violation of the CHSH inequality.

To illustrate the properties of the protocol, in Table I we
display data from the first few steps of one possible execution
of the protocol. There we can see that at each time step, the
measurement of Alice becomes stronger without ever becom-
ing projective. Furthermore, the entanglement, quantified by
the negativity [9], remains nonzero. From t2 onward, not all
of the 4k possible states just after tk contain the same amount
of entanglement and therefore we must consider the weakest
possible entanglement. As displayed in Table I, the negativity
of the weakest entangled state quickly decreases. However,
some entanglement is always present. When choosing her noise
parameter μk , Alice ensures that even the weakest entangled
state violates the CHSH inequality (3). That this is indeed
the case can be seen from the corresponding smallest values
of SCHSH in Table I. In contrast, from the largest possible

TABLE I. Data from the first four timesteps in one possible execution of the quantum protocol: choices of the noise parameter for Alice’s
measurement at tk , the number of different local states of Bob just after tk , the smallest and largest negativity of the 4k possible global states
just after tk , and the smallest and largest values of SCHSH achieved with the 4k−1 possible states. The choices of μ carry no special significance
other than that they satisfy the relation 0 < μk < F (θ lk−1 ) for all k.

Number of possible Smallest Largest Smallest Largest
Time μ states of Bob’s qubit negativity negativity value of SCHSH value of SCHSH

t0 1 0.5 0.5
t1 π/9 4 0.3214 0.3214 2.1667 2.1667
t2 π/12 16 0.0966 0.4774 2.0590 2.0590
t3 π/40 64 0.0077 0.4887 2.0119 2.7313
t4 π/500 256 0.00005 0.4902 2.00008 2.7965
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negativity we see that the protocol sometimes, albeit with small
probability, acts as a probabilistic entanglement amplification
scheme [10,11].

III. CLASSICAL SIMULATION OF BOB’S LOCAL STATE

A. Cost 1: Unlimited rounds of communication

We now consider the cost of classically simulating the
evolution of the quantum reduced state of Bob’s system
induced by Alice’s sequential measurements on her distant
system. A classical simulation of Bob’s local state must be
able to, at any time tk , account for the statistical outcomes
of every possible quantum measurement that Bob may apply.
We will not consider this problem in its full generality, as it
is not the emphasis of our work. For our purposes, it suffices
to show that after each of Alice’s sequential measurements,
the classical simulation needs to be supplemented with some
amount of communication.

Since the postmeasurement state just after tk and the two
measurement options Alice has at time tk+1 could always be
used, in conjunction with suitable measurements of Bob, to
violate the CHSH inequality, any local realist model aiming
to simulate these quantum predictions has to be supplemented
with some communication [4,5]. Therefore, there must be a
round of communication between Alice and Bob after every
measurement performed by Alice. In this round, depending
on her measurement and the resulting local realistic state of
her system, Alice communicates some information to Bob.
Communication from Bob to Alice is of no use since Bob does
not perform any operations on his qubit over the course of the
protocol.

The critical observation is that the communication required
to simulate the quantum predictions just after tk will not be
enough to reproduce the quantum predictions after tk+1. The
reason is that, at tk+1, the new quantum predictions could
again be use to violate the CHSH inequality. Thus, regardless
of Alice’s measurement choice and observed outcome, any
simulation of the predictions of quantum theory for the ex-
periment based on a local realistic model complemented with
communication requires unlimited rounds of communication.

Note that the total amount of communication required
to simulate the ability of the state to violate the CHSH
inequality at each time step is finite. To show this, we use
that the average amount of communication C required to
simulate a nonsignaling probability distribution achieving the
value SCHSH is given by C = SCHSH/2 − 1 [5]. Let us denote
the average communication over all possible postmeasurement
states at time tk by Ck . The total amount of communication
is finite if C̄ ≡ ∑∞

k=1 Ck is finite. To show that C̄ is finite,
we consider the states |ψη〉, which are unitarily equivalent to
the states shared by Alice and Bob. Applying the Horodecki
criterion [12] to |ψη〉, we find the maximal value of SCHSH at
time tk . It is a straightforward calculation to show that this
quantity is an upper bound on the sum of the CHSH value
(5) of |ψη〉, as obtained when applying a noisy measurement
in our protocol at time tk , and the average maximal CHSH
value, obtained from applying the Horodecki criterion to the
four possible postmeasurement states at tk+1 weighted by the
respective probability of obtaining each state. This argument

can be repeated throughout the protocol and consequently
C̄ <

√
2 − 1, which is the communication cost of simulating a

maximal violation of the CHSH inequality achieved with |ψ0〉.

B. Cost 2: Unbounded local memory

At each time step in the protocol, Alice chooses with
uniform probability between two measurement options. After
each measurement of Alice, the number of possible reduced
states of Bob’s qubit quadruples. Any classical simulation must
account for this exponentially increasing number of possible
states. Since each of Alice’s measurement choices is random,
any classical simulation requires having at least the same
number of local realist states as the number of pure quantum
states achieved during the experiment. The proof is as follows.

A stochastic process is a one-dimensional chain of discrete
random variables that attains values in a finite or countably
infinite alphabet. An input-output process [13] is a collection
of stochastic processes in which each such process corresponds
to all possible output sequences given a particular infinite input
sequence. The experiment is an example of an input-output
process. It has input alphabet {xk,x̄k} and output alphabet {0,1}.
As shown in Ref. [13], for any input-output process there is a
unique finite-state machine, i.e., an abstract machine that can
be in exactly one of a finite number of states at any given time,
with the following property: It has minimal entropy over the
state probability distribution and maximal mutual information
with the future output of the process given the past choices
of inputs and past observed outputs, and the future input of
the process. This machine is called the ε transducer [13] of
the input-output process. It consists of the input and output
alphabets, a set of causal states, and the set of conditional
transition probabilities between the causal states. Each causal
state is associated with the set of input-output pasts producing
the same probabilities for all possible input-output futures.
Thus, the causal states constitute equivalence classes for the set
of input-output pasts. A causal state stores all the information
about the past needed to predict the future output but as little as
possible of the remaining information overhead contained in
the past. The Shannon entropy over the stationary distribution
of the causal states represents the minimum internal entropy
needed to be stored to optimally compute future outputs. It
depends on how Alice’s measurements are chosen; here we
have assumed that they are selected from a uniform probability
distribution with entropy one bit at each time step.

The number of causal states of the ε transducer corre-
sponding to our experiment is infinite. This implies that the
classical system that simulates the experiment has to store
new information in its memory. This leads to two possibilities:
Either the memory is infinite and additional information can
always be stored without needing to erase previous infor-
mation or the memory is finite and the system has to erase
a part of it to allocate new information. However, due to
Landauer’s principle [14], the erasure of information has a
thermodynamical cost. Landauer’s principle states that the
erasure of information in an information-carrying degree of
freedom is accompanied by an associated increase of entropy
in some non-information-carrying degree of freedom. There is
strong evidence supporting the validity of Landauer’s principle
in both the classical and quantum domains [15–21]. Since
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we are assuming a local realistic model supplemented by
communication, the memory should be allocated in the lo-
cal systems. Since Bob’s quantum state and its classical
counterpart (represented by a causal state of the ε trans-
ducer) are changing after each of Alice’s measurements, this
implies that there should be some information erasure in
the local memory associated with Bob’s system. Therefore,
after sufficiently many measurements of Alice, Bob’s system
begins to emit heat. Such heating at a distance is a form of
signaling.

IV. CONCLUSION

We have introduced a protocol in which sequential nonpro-
jective measurements are performed on one of two entangled
systems while no measurements are performed on the other
distant system. Regardless of which local measurements are
chosen and which outcomes are obtained, both entanglement
and the possibility of violating a Bell inequality never vanish.
We showed that, to simulate the predictions of quantum theory
for the local state of the distant system, it is not sufficient
to supplement finite-memory classical models with unlimited
rounds of communication. In addition, the distant system must
have infinite memory. Whenever the distant system fails to
have infinite memory, a thermodynamical argument implies

that it will be heated at a distance after sufficiently many local
measurements on its companion.

Our protocol shows that (i) there is a way for experimentally
ruling out nonlocal finite-memory classical models without
measuring the system that will, hypothetically, emit heat and
(ii) there are problems whose solution would require classical
systems with infinite memory and communication but which
can be solved combining sequential quantum measurements
and entanglement.
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We present a scheme for dissipatively
generating maximal entanglement in a her-
alded manner. Our setup requires in-
coherent interactions with two thermal
baths at different temperatures, but no
source of work or control. A pair of
(d+1)-dimensional quantum systems is first
driven to an entangled steady state by the
temperature gradient, and maximal entan-
glement in dimension d can then be her-
alded via local filters. We discuss exper-
imental prospects considering an imple-
mentation in superconducting systems.

1 Introduction
Entanglement is a key phenomenon distinguish-
ing quantum from classical physics, and is the
paradigmatic resource enabling many applica-
tions of quantum information science. Gener-
ating and maintaining entanglement is therefore
a central challenge. Decoherence caused by un-
avoidable interactions of a system with its en-
vironment generally degrades entanglement, and
significant effort is invested in minimising the ef-
fect of such dissipation in experiments.

However, dissipation can also be advantageous,
and may indeed be exploited for the generation
of entangled quantum states under the right con-
ditions [11–88]. In particular, it is possible for dis-
sipative processes to drive the system into an en-
tangled steady state [99–1313]. This was studied in
a variety of physical systems [1414–2020] and demon-
strated experimentally for atomic ensembles [2121],
trapped ions [2222, 2323], and superconducting qubits
[2424]. The main ingredients are engineered decay
processes and quantum bath engineering [2525–2727],
and coherent external driving is employed, which,
from a thermodynamic point of view, can be con-

sidered a source of work.

More generally, it is natural to look for the
minimal setting in which dissipative entangle-
ment generation is possible. In particular, one
may ask if entanglement can be generated from
purely thermal processes alone, without the need
for work input or external control. This can in
principle be achieved in equilibrium situations,
as any entangled state can be obtained as the
ground state of a specific Hamiltonian. However,
this requires highly nonlocal Hamiltonians which
may be extremely difficult to implement in prac-
tice.

On the other hand, it was shown that steady-
state entanglement can be obtained in systems
out of thermal equilibrium. This was first dis-
cussed for an atom coupled to two cavities driven
by incoherent light [2828], and later for many-body
systems [2929, 3030], interacting spins [3131, 3232], atoms
in a thermal environment [3333, 3434], and mechan-
ical oscillators [3535]. In this context, Ref. [3636]
discussed what is arguably the simplest setting,
namely a two-qubit system, where one qubit is
connected to a hot bath and the other to a cold
bath. This setup is promising for implementa-
tions in superconducting systems and quantum
dots. Overall, the out-of-equilibrium approach
thus opens interesting perspectives for dissipa-
tive entanglement generation. However, its main
drawback so far is the fact that the generated en-
tanglement is typically very weak, and thus not
directly useful for applications.

Here we offer a solution to this problem, pre-
senting a scheme in which maximal entanglement
can be generated in a heralded manner, through
incoherent interactions with thermal baths alone.
Specifically, a pair of (d+1)-dimensional systems
is first driven to an entangled steady state, from
which maximal entanglement in dimension d can
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Figure 1: (a) Qutrit thermal machine. Two qutrits are
coupled to each other and to hot and cold thermal baths.
The interaction with the baths drives the qutrits into
a steady state featuring weak entanglement. Local fil-
ters project onto qubit subspaces on each side (dashed
boxes). Upon success, the system is projected into a
strongly entangled two-qubit state. Failure leaves the
qutrits in a separable state, and the process must be
restarted. (b) Level structure for the two qutrits. Ar-
rows indicate the transitions involved in the interaction
Hamiltonian.

then be heralded via local filters. The procedure
is implemented by a simple quantum thermal ma-
chine, operating out of equilibrium between two
heat baths at different temperatures. Moreover,
for d = 2, 3 we prove that any pure entangled
state can be obtained without additional filter-
ing, indicating that this holds for any d. Finally,
we discuss experimental prospects considering an
implementation in superconducting systems.

2 Two-qutrit thermal machine
The setup we consider is illustrated in Fig. 11(a).
Two three-level systems (i.e. qutrits) interact
with each other, and independently with two
thermal baths at different temperatures TA and
TB (in the following, TA > TB will be the rele-
vant setting for entanglement generation). This
out-of-equilibrium situation drives the two-qutrit
system into a steady state, which is weakly entan-
gled. A local filter is then applied to each qutrit,
projecting the system onto a two-qubit subspace
(as indicated by the dashed boxes). If the filter
succeeds, the final state is arbitrarily close to a

target two-qubit state. This target state can be
any pure, entangled state, and in particular may
be maximally entangled. If the filter fails, the
system is left in a product state with no entan-
glement, and the process is restarted.

Each qutrit is described by a Hamiltonian HA,
HB, and their interaction by Hint. We take the
energy level structure illustrated in Fig. 11(b)

HA = (|1〉A〈1|+ (1 + ε)|2〉A〈2|)⊗ 1B, (1)
HB = 1A ⊗ (ε|1〉B〈1|+ (1 + ε)|2〉B〈2|), (2)

where, without loss of generality, we set the
ground state energies to zero and the first gap
of qutrit A to 1 (throughout the paper, we work
in units where ~ = kB = 1). We are interested
in autonomous processes, which require no exter-
nal work input. This means that Hint must be
time independent and preserve the total energy,
i.e. [Hint, HA + HB] = 0. There are three possi-
ble energy-preserving transitions. Hence, writing
|ij〉 = |i〉A|j〉B, the most general form of the in-
teraction is

Hint = g1|02〉〈20|+ g2|11〉〈20|+ g3|11〉〈02|
+ h.c.,

(3)

where g1, g2, and g3 denote the interaction
strengths.

To enable a fully analytical treatment, we first
describe the evolution of the system in contact
with the thermal baths by a simple reset model
[3737]. When considering potential implementa-
tions below, we confirm that our results hold also
under a Lindblad-type description of the open
system. The reset model leads to the following
master equation 11

∂ρ

∂t
= i[ρ,H] + pA (τA ⊗ TrA ρ− ρ)

+ pB (TrB ρ⊗ τB − ρ) ,
(4)

where H = HA + HB + Hint is the total
Hamiltonian, pA, pB are coupling constants,
and τA, τB are thermal states, that is, τi =
exp(−Hi/Ti)/Tr[exp(−Hi/Ti)] for i = A,B.

1Note that we are using a local master equation, where
the dissipation induced by each bath acts locally on
the subsystem connected to that bath. Recent works,
analysing thermal machines similar to those employed
here, have shown such a local approach to provide very
good agreement with the exact dynamics for weak cou-
pling, which is the regime of interest here [3838, 3939].
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Figure 2: Optimal negativity (solid, left axis) and CHSH
value (dashed, right axis) vs. postselection success prob-
ability. The dotted line shows the local bound above
which the CHSH Bell inequality is violated.

One can interpret (44) as describing a process
where, at each instance of time, each qutrit is
either left unchanged or reset to a thermal state
at the temperature of the bath, with resets hap-
pening at rates pA, pB. To ensure validity of our
master equation, we always work in the pertur-
bative regime where g1, g2, g3, pA, pB � 1, ε.

To understand how the machine can generate
entanglement, first note that the two-qubit sub-
space selected by the filters is spanned by the
states {|01〉, |12〉, |11〉, |12〉}. Clearly, the transi-
tion g3 generates coherence if the system is al-
ready in this subspace, between |11〉, and |02〉
thus creating entanglement. Interaction with the
cold bath will tend to drive the cold qutrit to-
wards the ground state, taking the system out of
the filtered subspace. Transition g3 cannot bring
the system back, but transitions g1 and g2 do.
In addition, the combination of these two transi-
tions also generates entanglement because

[Hg1, Hg2] = g1g2 (|02〉〈11| − |11〉〈02|) , (5)

where Hg1 = g1|02〉〈20| + h.c. etc. If the cold
bath temperature is low, the cold qutrit will tend
to be in the ground state, and the system will
only get excited into the filtered subspace when-
ever the joint state is |20〉. The interaction will
then generate a pure, entangled state. Resets in-
duced by the cold bath drive the system out of
the filtered subspace and hence do not degrade
the purity of the filtered state. Resets induced
by the hot bath, on the other hand, do destroy
coherence there, reducing the purity. Neverthe-
less, some hot resets are necessary to populate
the state |20〉. We thus expect the best entan-
glement to be generated when TA is large, TB is
close to zero, and pA � pB.

We have derived the steady-state solution ρ̄
of (44) in the limit of a maximal temperature

gradient, TA → ∞, TB → 0 (see App. AA).
To obtain the final state, a local filter is ap-
plied to each qutrit, defined by projectors ΠA =
|0〉A〈0|+ |1〉A〈1| and ΠB = |1〉B〈1|+ |2〉B〈2|. The
normalised, postselected state is

ρ′ = 1
psuc

(ΠA ⊗ΠB)ρ̄(ΠA ⊗ΠB), (6)

where psuc = Tr[(ΠA ⊗ ΠB)ρ̄] is the probability
for the filtering to succeed. We take all the inter-
action strengths equal, g1 = g2 = g3 = g. In this
case, the state after filtering becomes

ρ′ =




pA
4pA+6pB

0 0 0
0 pA+3pB

4pA+6pB

3pB
4pA+6pB

0
0 3pB

4pA+6pB

pA+3pB
4pA+6pB

0
0 0 0 pA

4pA+6pB



.

(7)
As expected, the highest purity of ρ′ is obtained
when the ratio µ = pA/pB is small. For µ → 0,
the state ρ′ tends to a pure, maximally entan-
gled state (relabelling the basis states of the qubit
subspace to |0〉, |1〉)

|ψ+〉 = 1√
2

(|01〉+ |10〉). (8)

Thus our machine can generate entanglement ar-
bitrarily close to maximal. In addition, it is in-
teresting to note that different choices for the
interaction strengths enable the generation of
other entangled states. Specifically, as shown
in App. AA, taking g1 = g cos(θ), g2 = g sin(θ),
g3 = 0 generates any partially entangled state
of the form |ψθ〉 = sin(θ)|01〉 + cos(θ)|10〉. We
note that (77) holds for any value of g. Hence the
limit µ→ 0 can be taken while keeping the ratio
of g/pA fixed, retaining the validity of the local
master equation.

There is a trade-off between the probability for
successful filtering and the quality of ρ′. The suc-
cess probability tends to zero for both small µ
(for fixed g) and small g (for fixed µ). In the two
cases, respectively

psuc ≈
1
3
pA
pB
, and

psuc ≈
2(2pA + 3pB)

9pB(pA + pB)2 g
2.

(9)

Adjusting the coupling parameters to increase
psuc results in a final state ρ′ with a smaller
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Figure 3: Entanglement generation for finite tempera-
tures. The numbers given for each curve are (TB , ε)
(in units of the first energy gap of qutrit A equal to
1). To make optimisation over the coupling parameters
tractable, we maximise the off-diagonal element of the
output state rather than the negativity directly. The
curves therefore represent lower bounds.

overlap with the target pure state (88). Never-
theless, states of high quality can be generated.
In Fig. 22 we show the maximal negativity [4040] as
well as the value of the Clause-Horne-Shimony-
Holt (CHSH) quantity [4141] for varying psuc (we
optimise over g, pA, and pB, while imposing the
perturbative regime). The negativity is an entan-
glement monotone ranging from 0 (separable) to
1/2 (maximally entangled) for qubits. Twice the
negativity is a lower bound on the concurrence
(which ranges from 0 to 1) [4242]. We see that ρ′

remains entangled up to psuc ≈ 0.25 and nonlocal
up to psuc ≈ 0.12.

The machine thus provides a heralded source of
entangled states: running the machine continu-
ously, the system remains in the steady state un-
til the entangled state is needed, at which point
the filtering is performed. If filtering fails, the
machine is allowed to return to the steady state,
and another attempt can be made. A quasi-
deterministic source can be constructed by run-
ning several machines in parallel. With n ma-
chines, the probability for obtaining a success-
ful projection in at least one of them scales as
1−(1−psuc)n. Failure is exponentially suppressed
in n.

In addition to the trade-off between success
probability and quality of the postselected state,
controlled by the coupling parameters, the tem-
peratures also influence the generated entangle-
ment. So far, we have taken a maximal temper-
ature gradient, TA → ∞, TB → 0. In Fig. 33 we
plot attainable negativity for finite temperatures.
We see that, as might be expected, it is always
better to take the hot bath temperature as large

as possible, maximising the temperature gradi-
ent. As the cold bath temperature increases or
the gap size ε decreases, the hot bath tempera-
ture required to generate entanglement increases,
and the maximal amount of attainable entangle-
ment decreases. So, to maximise the entangle-
ment, it is desirable to make TB small and ε large
(note though, that psuc decreases with increasing
ε).

3 Two-qudit thermal machine
The scheme considered above can be generalised
to create entangled states of two d-level systems,
using a (d+ 1)-level thermal machine. The setup
is the same as in Fig. 11(a), with the qutrits re-
placed by (d+ 1)-level systems, with level struc-
tures as illustrated in Fig. 44. Denoting the en-
ergy gaps by εk (with ε1 = 1), and setting
EAk = ∑k

l=1 εl and EBk = ∑k
l=1 εd−l+1, the free

Hamiltonians are

HA =
d∑

k=1
EAk |k〉A〈k| ⊗ 1,

HB =
d∑

k=1
1⊗ EBk |k〉B〈k|,

(10)

and the interaction Hamiltonian is

Hint =
d∑

k=1
gk|d, 0〉〈k − 1, d− k + 1|+ h.c., (11)

corresponding to the transitions indicated on
Fig. 44. The evolution is again described by the
master equation (44).

We will focus on the generation of a maximally
entangled qudit state

|Sd〉 = 1√
d

d∑

k=1
|k − 1, d− k〉. (12)

In that case, it suffices to set all the interac-
tion strengths equal, gk = g/

√
2 (the

√
2 ensures

consistency with the qutrit case). In the limit
TA → ∞, TB → 0, the steady state solution of
(44) can then be derived analytically for any value
of d. It is given in App. BB. In analogy with the
qutrit case, we consider local projections onto d-
dimensional subsystems on each side, given by
ΠA = 1− |d〉A〈d| and ΠB = 1− |0〉B〈0|, and the
state after successful filtering is again computed
as in (66). We find that, as before, high purity
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Figure 4: Level structure of the two (d + 1)-level sys-
tems in the qudit thermal machine. Arrows indicate the
transitions involved in the interaction Hamiltonian. The
dashed boxes indicate the d-dimensional subspaces to
which the steady state is filtered to obtain the final state.

is attained when pA � pB, and the state tends
to |Sd〉, as desired. Thus, our scheme is able to
generate maximally entangled states in any di-
mension. The success probability is given by

psuc = (d− 1)g2pA((d− 1)pA + dpB)
d2 (g2ξ + pApB(pA + pB)2) , (13)

where ξ =
(
2(d− 1)pApB + (d− 1)p2

B + p2
A

)
.

One can check that this agrees with (99) for d = 3.
Note that psuc scales like 1/d for large d, unless
g ∼ 1/

√
d.

From |Sd〉, any pure two-qudit state can be
obtained via biased filtering and local operations
[4343]. However, given that any pure, entangled
state of two qubits can be generated directly us-
ing the qutrit machine by adjusting the coupling
strengths, it is natural to ask whether the same
holds for qudits. In App. CC, we prove this for
d = 3, suggesting that it generalises to arbitrary
d. Note that such direct generation can be ad-
vantageous in terms of success probability.

4 Implementation
A variety of physical platforms might be consid-
ered for implementation of our scheme, includ-
ing trapped atoms, ions, or solid-state artificial
atoms. A promising platform is superconducting,
circuit QED systems, which are generally good
candidates for realizing quantum thermal ma-
chines [3636, 4444–4646]. Here, we discuss prospects for
a circuit QED implementation of the qutrit ma-

Figure 5: (a) Implementation of the qutrit machine in
circuit QED. Each fluxonium qutrit, depicted by their
quantum circuit made of Josephson junctions [4747], is
capacitively coupled to a transmission line that plays
the role of a thermal reservoir, see main text and Ref.
[3636]. The flip-flop type interaction Hamiltonian be-
tween the two qutrits can be implemented either in
the dispersive regime or by direct inductive coupling.
(b) Negativity computed from the Lindblad model for
(ΓA,ΓB , γ, g, ε) = (10−4, 5 × 10−3, 3.5 × 10−5, 1.6 ×
10−3, 3) and ΓB,12 = ΓB/50, see App. DD for the full
Lindblad equation. All temperatures and energies are
given in units of the first energy gap of qutrit A, taken
to be 1 GHz. Near-maximal entanglement is generated
in the bright region for experimentally relevant parame-
ter values.

chine in more detail, and provide numerical ev-
idence that strong entanglement generation can
be achieved with parameter settings correspond-
ing to state-of-the-art experimental capabilities,
see Fig. 55.

Considering that the interaction (33) requires
the transition |0〉 ↔ |2〉, fluxonium qutrits are
good candidates for realizing the machine. In
contrast to transmon qubits, for which selection
rules forbid this transition, tuning of the mag-
netic quantum flux away of the sweet spot breaks
quantum parity without inducing additional de-
coherence [4848, 4949]. Consequently, simple selec-
tion rules are absent and the transition |0〉 ↔
|2〉 is allowed. Fluxomium artificial atoms have
also recently shown outstanding performances in
the context of quantum information processing
thanks to their high tunability. In particular,
their transition frequencies are in the range of
hundreds of MHz to 30 GHz and the couplings
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to the baths can also be tuned from several kHZ
to a few MHz [5050–5252]. In [5252], it was even shown
that complete decoupling from the environment
is achievable.

With respect to the implementation of the in-
teraction Hamiltonian, several coupling mecha-
nisms are already available with fluxonium sys-
tems. First, similarly to transmon qubits [5353–5555],
fluxonium qutrits can be coupled capacitively or
inductively via a cavity bus in the dispersive
regime characterized by a strong frequency de-
tuning of the qutrits and cavity with respect to
their respective coupling strength to the cavity
[5050, 5656]. Second, a possibly advantageous al-
ternative is provided by a direct mutual induc-
tive coupling as described in [5757] and proposed
for fluxonium qutrits in [5050]. Technicalities will
depend on the actual frequencies that can be
achieved experimentally.

Regarding the description of coupling mecha-
nisms of each qutrit to a thermal bath, as well as
the nature of the thermal baths in this setup, we
refer to [3636]. It is also worth mentioning that
fluxonium qutrits allow for flux-resolved spec-
troscopy, a technique to precisely determine all
system frequencies [5252].

Finally, the filtering procedure requires binary
projective measurements onto a single energy
level for each qutrit. That is, measurements
which reveal whether or not the qutrit is in the
corresponding state, but do not distinguish the
remaining two states. This can be achieved by
dispersive read-out in the regime where the dis-
persive shift is larger than the readout cavity line
width (the photon-resolved regime) [5858]. The
shifts corresponding to each qutrit state will then
be well separated and the transmittivity of the
cavity at a frequency corresponding to, say, state
|0〉 will be significant only when the qutrit is in
this state, allowing for a binary projective mea-
surement. A recent experiment operating in this
regime was reported in [5959]. Alternatively, two of
the three shifts can be tuned to be identical. A
binary projective measurement on qutrits using
this technique was demonstrated in Ref. [6060].

To model a circuit-QED implementation of the
two-qutrit thermal machine and determine how
much entanglement can be generated for reason-
able parameter values, we use a master equation
on standard Lindblad form. It describes dissipa-
tion due to coupling to bosonic baths, as well as

pure dephasing, which is usually present in ex-
periments. We note that it is possible to exactly
map the reset model of Sec. 22 to a Lindblad mas-
ter equation of the form described here. This is
discussed in App. DD. The equation (which re-
places (44)) can be written

∂ρ

∂t
= i[ρ,H] + LA(ρ) + LzA(ρ) + LB(ρ) + LzB(ρ).

(14)
Here, the dissipators LA and LB describe the ef-
fect of the thermal baths while LzA(ρ) and LzB(ρ)
describe pure dephasing. We define

D[O]ρ = OρO† − 1
2{O

†O, ρ} (15)

to denote a standard Lindblad-type dissipator.
Then

LA(ρ) =
∑

l=±

∑

k∈{01,12,02}
ΓlA,kD[σlk ⊗ 1]ρ , (16)

LB(ρ) =
∑

l=±

∑

k∈{01,12,02}
ΓlB,kD[1⊗ σlk]ρ , (17)

and

LzA(ρ) =
∑

k∈{01,12,02}
γA,k D[σzk ⊗ 1]ρ , (18)

LzB(ρ) =
∑

k∈{01,12,02}
γB,k D[1⊗ σzk]ρ . (19)

Here, σ±mn describe jumps between states |m〉 and
|n〉 while σzmn describe phase flips between these
states. Specifically,

σ+
mn = |n〉〈m| , σ−mn = |m〉〈n| , (20)

and
σzmn = |m〉〈m| − |n〉〈n|. (21)

The jump rates follow bosonic statistics (j =
A,B)

Γ+
j,mn = Γj,mn nB(∆Emn, Tj) , (22)

Γ−j,mn = Γj,mn [1 + nB(∆Emn, Tj)] . (23)

In principle, the bath coupling constants ΓA,k,
ΓB,k, and the pure dephasing rates γA,k, γB,k
could be different for each possible transition.
For simplicity, here we take γA,k = γB,k = γ to
be the same for all transitions for both qutrits,
and we take the bath couplings to be the same
for all transitions ΓA,k = ΓA, ΓB,k = ΓB with
one exception. Jumps beteween states |1〉B and
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|2〉B of the cold qubit degrade coherence within
the filtered subspace. Good entanglement gener-
ation therefore requires that ΓB,12 < ΓB. This
can be achieved by coupling through a bandpass
filter centered away from the relevant transition
frequency, reducing environmental damping for
such transitions more strongly relative to jumps
between the ground and excited states. The use
of bandpass filtering to suppress environmental
damping has been experimentally demonstrated
[6161, 6262].

We numerically solve (1414) in the steady state
and compute the amount of entanglement gen-
erate by our scheme. Values for the different
parameters (interaction strength g, qutrit ener-
gies ε, bath coupling rates ΓA, ΓB, and pure de-
phasing rate γ) are taken from recent experimen-
tal achievements in circuit-QED architectures us-
ing fluxonium qutrits [5050, 5959, 6363]. The result is
shown in Fig. 55(b). We see that near-maximal en-
tanglement can be obtained. Thus, the scheme is
a promising approach to demonstrating heralded
entanglement using incoherent couplings to ther-
mal baths. It is interesting to note in Fig. 55(b)
that for fixed couplings, it is not optimal to max-
imise the temperature gradient. Maximal entan-
glement is obtained at a finite gradient.

5 Conclusion
We have demonstrated that combining incoher-
ent couplings to thermal baths out of equilib-
rium with local filtering enables heralded gener-
ation of maximally entangled states in any di-
mension. The generated states can be made ar-
bitrarily pure, at the price of lowering the filter-
ing success probability. We have discussed an
implementation of our scheme for qubit entan-
glement in superconducting systems, and found
that prospects for a proof-of-principle experiment
are good, with significant amounts of entangle-
ment generated in the presence of decoherence
and with limited temperature gradients. Inter-
esting future perspectives include thermal gen-
eration of multipartite entanglement, and states
useful for quantum computation or metrology.
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Appendices

In Secs. AA and BB, we provide details of the derivations steady-state solutions of the two-qutrit and
two-qudit master equations. In Sec. CC we show how to generate any pure, entangled qutrit state.
Finally, in Sec. DD we provide details of the implementation of our scheme in circuit QED.

A Finding the steady state and filtered state for the two-qutrit machine

Here, we explain how to derive the steady-state solution of the reset model master equation, Eq. (44)
of the main text, for two qutrits, and how to obtain the filtered two-qubit state Eq. (77).

The problem of finding an analytical solution is significantly simplified by the following observation:
unless the interaction Hamiltonian induces transitions between |k, j〉 and |k′, j′〉, there can be no
coherence between these states in the steady state and the corresponding element in the density
matrix vanishes, i.e., 〈k, j|ρ|k′, j′〉 = 0. This is because the dissipative processes locally reset each
qutrit to a thermal state, which is diagonal, and hence do not generate any coherence. In the absence
of the interaction Hamiltonian, dissipation would drive the system to a product of thermal states with
no coherence. Note that, as seen in the previous section, in addition to the transitions directly present
in Hint, it also induces second order transitions which need to be taken into account. Following such
reasoning, one finds that there are only three non-zero off-diagonal elements in ρ. The density operator
then takes the form:

ρ =
2∑

k,l=0
qkl|k, l〉〈k, l|+ c0|0, 2〉〈2, 0|+ c1|1, 1〉〈2, 0|+ c2|0, 2〉〈1, 1|+ h.c (24)

where qkl are non-negative numbers that sum to one, and c0, c1 and c2 are complex numbers which
we can write as ck = vk + iuk with vk, uk real. Plugging this ansatz into the master equation and
requiring ∂ρ/∂t = 0, we obtain three independent equations for the off-diagonals terms. Solving the
real and imaginary parts of this equation system returns vk and uk in terms of the qkl. We are now
faced with solving the system of equations corresponding to the diagonal of the right-hand-side of the
master equation. This system of eight independent linear inhomogeneous equations can be written in
the form 0 = AX+W where X = (q00, q01 . . . , q21)T and A is a 8×8 matrix depending on g1, g2, g3, pA
and pB, and W is a 8× 1 row-matrix accounting for the inhomogeneous part of the equation system.
The solution can then be written X = −A−1W . We note that, as the dissipation induced by resets
leaves no subspace invariant, A is always invertible when the rates pA, pB are non-zero, and there
exists a unique steady state. For maximal temperature gradient, TA → ∞, TB = 0, the solution can
be computed analytically, although the expression is too unwieldy to display here.

To obtain the state given in the main text, one sets g1 = g2 = g3 = g. Applying the local filters
to the steady state, as explained in the main text, and renormalising, one directly obtains Eq. (77).
Interestingly, the filtered state in this case is independent of g.

Interestingly, the scheme can also be adapted to generate any pure, entangled two-qubit state. This
can be achieved by setting g3 = 0 and taking g1 = g cos(θ) and g2 = g sin(θ). In this case, the filtered
state becomes

ρ′ =




r1 0 0 0
0 r2 t 0
0 t∗ r3 0
0 0 0 1− r1 − r2 − r3


 , (25)
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with

r1 = 2pA cos2(θ)
(−g2pA cos(2θ) + g2(pA + 3pB) + 3pB(pA + pB)2)

(2pA + 3pB) (−g2pA cos(4θ) + g2(pA + 6pB) + 6pB(pA + pB)2) (26)

r2 = 2 sin2(θ)(pA + 3pB)
(
g2pA cos(2θ) + g2(pA + 3pB) + 3pB(pA + pB)2)

(2pA + 3pB) (−g2pA cos(4θ) + g2(pA + 6pB) + 6pB(pA + pB)2) (27)

r3 = 2 cos2(θ)(pA + 3pB)
(−g2pA cos(2θ) + g2(pA + 3pB) + 3pB(pA + pB)2)

(2pA + 3pB) (−g2pA cos(4θ) + g2(pA + 6pB) + 6pB(pA + pB)2) (28)

t = 3pB sin(2θ)
(
g2(pA + 3pB) + 3pB(pA + pB)2)

(2pA + 3pB) (−g2pA cos(4θ) + g2(pA + 6pB) + 6pB(pA + pB)2) . (29)

To first order in the ratio µ = pA/pB, when additionally g � pB, one finds the simple expression

ρ′ =




1
3µc

2
θ 0 0 0

0 (1− 1
3µ)s2

θ (1− 2
3µ)cθsθ 0

0 (1− 2
3µ)cθsθ (1− 1

3µ)c2
θ 0

0 0 0 1
3µs

2
θ


 , (30)

where cθ = cos(θ), sθ = sin(θ). For µ → 0, the state ρ′ thus tends to the pure state (relabelling the
basis states of both qubit subspaces to |0〉, |1〉)

|ψθ〉 = sin θ|0, 1〉+ cos θ|1, 0〉. (31)

Hence, any pure, entangled two-qubit state can be obtained from the qutrit thermal machine (up to
local unitaries). In particular, for θ = π/4 (i.e. g1 = g2), we again get a maximally entangled state.

The filtering success probability is given by

psuc = 2g2pA(2pA + 3pB)
(
g2pA cos(4θ)− g2(pA + 6pB)− 6pB(pA + pB)2)

9A− 9 (B + C +D) , (32)

where

A = g4pA cos(4θ)(pA + pB)(pA + 2pB), (33)

B = g4
(
p3
A + 11p2

ApB + 26pAp2
B + 12p3

B

)
, (34)

C = 2g2pB(pA + pB)2
(
4p2
A + 15pApB + 6p2

B

)
, (35)

D = 6pAp2
B(pA + pB)4. (36)

We note that for small pA or g, the success probability depends only weakly on θ.

B Finding the steady state and filtered state for the qudit machine
In the following, we give the steady-state solution of the master equation, Eq. (4) in the main text,
for any d ≥ 3, with the interaction Hamiltonian Eq. (10). We work in the limit TA →∞ and TB → 0.
That is, we solve

0 = i[ρ,Hint] + pA

(
1

d+ 1 ⊗ TrA ρ− ρ
)

+ pB (TrB ρ⊗ |0〉〈0| − ρ) . (37)

Note that we have ignored the free Hamiltonian. We can do that since ρ commutes with the free
Hamiltonian in the steady state. This is because Hint is energy preserving and can only generate
coherence between states of the free Hamiltonians which are degenerate in energy (c.f. the previous
section).
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We show that the following state solves (3737) for any d ≥ 3.

ρd+1 = 1
N

[
d∑

k,l=0
2g2p2

A|k, l〉〈k, l|+
d−1∑

k=0
c1|k, 0〉〈k, 0|+ c2|d, 0〉〈d, 0| (38)

+
d−1∑

k=0
2(d+ 1)g2pApB|k, d− k〉〈k, d− k|+

d−1∑

k=0
c3|d, 0〉〈k, d− k|+ h.c

+
d−1∑

k=1

d−k∑

l=1
2(d+ 1)g2pApB|k + l − 1, d− k − l + 1〉〈k − 1, d− k + 1|+ h.c

]
,

where we have defined coefficients

c1 = (d+ 1)pApB (pA + pB)2 + 2g2
(
(d+ 1)2p2

B + 2d(d+ 1)pApB
)

c2 = pA
(
(d+ 1)pB (pA + pB)2 + 2(d+ 1)g2dpB

)

c3 = i(d+ 1)gpApB(pA + pB)

N = (d+ 1)2
(
pApB(pA + pB)2 + 2g2

(
p2
A + 2dpApB + dp2

B

))
.

(39)

First we compute the following partial traces

TrA (ρ) = 1
N

[
d∑

l=0
2(d+ 1)g2p2

A|l〉〈l|+ (dc1 + c2) |0〉〈0|+
d−1∑

k=0
2(d+ 1)g2pApB|d− k〉〈d− k|

]
(40)

TrB (ρ) = 1
N

[
d∑

k=0
2(d+ 1)g2p2

A|k〉〈k|+
d−1∑

k=0
c1|k〉〈k|+ c2|d〉〈d|+

d−1∑

k=0
2(d+ 1)g2pApB|k〉〈k|

]
. (41)

Subsequently, one can show that

pA

(
1

d+ 1 ⊗ TrA ρ− ρ
)

+ pB (TrB ρ⊗ |0〉〈0| − ρ) =

− 1
N

[
− 2d(d+ 1)g2pApB(pA + pB)|d, 0〉〈d, 0|+ 2(d+ 1)g2pApB(pA + pB)

d−1∑

k=0
|k, d− k〉〈k, d− k|

+ c3(pA + pB)
d−1∑

k=0
|d, 0〉〈k, d− k|+ c∗3(pA + pB)

d−1∑

k=0
|k, d− k〉〈d, 0|

+2(d+1)g2pApB(pA+pB)
d−2∑

k=1

d−1−k∑

l=1

(|k+l−1, d−k−l〉〈k−1, d−k|+|k−1, d−k〉〈k+l−1, d−k−l|).

(42)

Similarly, extensive simplification of the commutator in (3737) gives

[ρ,Hint] =
d−1∑

k=0

(
c2g − 2d(d+ 1)g3pApB

)
|d, 0〉〈k, d− k|+ 2idgIm (c3) |d, 0〉〈d, 0|

+
d−1∑

k=0

(
− c2g + 2d(d+ 1)g3pApB

)
|k, d− k〉〈d, 0| − 2igIm (c3)

d−1∑

k,l=0
|k, d− k〉〈l, d− l|. (43)

Inserting (4242) and (4343) back into (3737), the verification reduces to two equations

i
(
gc2 − 2d(d+ 1)g3pApB

)
= c3(pA + pB) (44)

i (2dgiIm(c3)) = −2d(d+ 1)g2pApB(pA + pB) (45)
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From the definition of c2 and c3, it is easily shown that both these equations are satisfied. Hence, the
state (3838) is the steady-state of the thermal machine.

Finally, we show that by applying suitable local filters to ρ, we obtain two maximally entangled
d-level systems. The local projectors are

ΠA =
d−1∑

k=0
|k〉〈k| ΠB =

d∑

l=1
|l〉〈l|. (46)

The filtered state becomes

ρ′ = ΠA ⊗ΠBρΠA ⊗ΠB

Tr [ΠA ⊗ΠBρ] =

1(
2g2p2

Ad
2 + 2d(d+ 1)g2pApB

)
[ d−1∑

k=0

d∑

l=1
2g2p2

A|k, l〉〈k, l|+
d−1∑

k=0
2(d+ 1)g2pApB|k, d− k〉〈k, d− k|

d−2∑

k=1

d−k−1∑

l=1
2dg2pApB

(|k + l − 1, d− k − l〉〈k − 1, d− k|+ |k − 1, d− k〉〈k + l − 1, d− k − l|)
]
. (47)

In the limit pA � pB this indeed reduces to the maximally entangled state of two d-level systems

ρ′ = |Sd〉〈Sd|+O(pA
pB

). (48)

C Generating all pure, entangled states of two qutrits

All pure entangled two-qutrit states can be written using the Schmidt-decomposition as

|ψ3
λ1,λ2,λ3〉 =

2∑

i=0
λi|i, i〉, (49)

with λ ≥ 0 and λ2
0 + λ2

1 + λ2
2 = 1. Here, we show that any such state can be generated using a

two-ququart thermal machine and local filtering.

The machine consists of two ququarts (four-level systems) with an interaction Hamiltonian

Hint = g0(|0, 3〉〈3, 0|+ |3, 0〉〈0, 3|) + g1(|1, 2〉〈3, 0|+ |3, 0〉〈1, 2|) + g2(|2, 1〉〈3, 0|+ |3, 0〉〈2, 1|). (50)

Where we choose gi = gλi for some small constant g. In the limit of maximal thermal gradient,
TA → ∞ and TB = 0, the steady-state solution of the master equation can be derived using the
method outlined in Sec. AA. The steady state ρ is then filtered to a space of two qutrits corresponding
to the projectors ΠA = 1−|3〉〈3| and ΠB = 1−|0〉〈0|. The filtered state ρ′ depends on λ0, λ1, λ2, pA, pB
and g. We consider the limit in which pA � pB. This eliminates the dependence on g and pB. The
resulting state is found to be

ρ′ = |ψ3
λ0,λ1,λ2〉〈ψ3

λ0,λ1,λ2 |+O(pA
pB

). (51)

Thus, we can generate any pure entangled state of two qutrits.

Based on this result, and the corresponding case for qubits in the main text, we conjecture that any
pure entangled state in any dimension can be generated by a generalisation of this thermal machine.
Specifically
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Conjecture

Let the autonomous thermal machine of two d + 1-level systems coupled to baths of temperature
TA →∞ and TB = 0 respectively, operate with an interaction Hamiltonian of the form

Hint =
d−1∑

k=0
gk|d, 0〉〈k, d− k|+ h.c. (52)

where we take gi = gλi for some small constant g, and where {λi}i are the Schmidt coefficients of
any pure entangled state of two systems of dimension d. Applying the projectors ΠA = 1− |d〉〈d| and
ΠB = 1 − |0〉〈0| to the steady-state of the system, and considering the limit pA � pB, the filtered
state becomes

|ψdλ0,...,λd−1〉 =
d−1∑

i=0
λi|i, i〉. (53)

In this work, we have shown this conjecture to be true for d = 2 and d = 3. In addition, we have
checked numerically that the conjecture holds for d = 4 and d = 5 for 100 randomly chosen pure
entangled states. Note that the number of adjustable paramters (the gk) exactly match the number
of Schmidt coefficients required to describe a pure state of two systems of dimension d.

D Reset vs Lindblad master equation
The reset model considered in the main text is intuitive, amenable to analytical analysis, and captures
the essential physics of a multipartite quantum system in contact with thermal baths. However,
instantaneous thermal resets are a simplification with respect to realistic implementations. In this
appendix, we first show that a reset master equation is exactly equivalent to a master equation on
standard Lindblad form and derive an explicit mapping between the two. The corresponding Linblad
master equation describes dissipation due to local coupling with bosonic thermal baths combined with
additional pure dephasing. We then discuss how the optimal conditions for entanglement generation
derived for the reset model translate to the Lindblad model.

D.1 Equivalence for single qutrits
Since a reset master equation generates Markovian (specifically semi-group) dynamics, there must
exist a master equation of standard Gorini-Kossakowski-Sudarshan-Lindblad form which generates
the same dynamics [6464, 6565]. Here, we give an explicit mapping between these two forms.

We first consider a single qutrit and show that any reset master equation of the form

∂ρ

∂t
= i[ρ,H] + Lres(ρ) = i[ρ,H] + p (τ − ρ) , (54)

where p is a positive rate and τ is a thermal state, is equivalent to a master equation on standard
Lindblad form given by

∂ρ

∂t
= i[ρ,H] + Llin(ρ) = i[ρ,H] +

∑

k∈{01,12,02}

(
Γ+
k D[σ+

k ]ρ+ Γ−k D[σ−k ]ρ+ γkD[σzk]ρ
)
. (55)

where the label k runs over the three possible qubit subspaces of the qutrit, Γ±k and γk are positive
rates, and σ±k and σzk are jump operators acting on the qubit subspace labeled by k. Specifically

σ+
mn = |n〉〈m| , σ−mn = |m〉〈n| , σzmn = |m〉〈m| − |n〉〈n|. (56)

The dissipators take the standard Lindblad form

D[A]ρ = AρA† − 1
2{A

†A, ρ}. (57)
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Having established a mapping between (5454) and (5555), we generalise it to two coupled qubits below.
By a mapping between (5454) and (5555) we mean a set of relations defining Γ±k and γk in terms of p

and the elements of τ such that the right-hand sides of the two equations become equal. Since the
Hamiltonian parts of (5454) and (5555) are the same, we only need to match the dissipators

Lres(ρ) = p (τ − ρ) , (58)

and
Llin(ρ) =

∑

k∈{01,12,02}

(
Γ+
k D[σ+

k ]ρ+ Γ−k D[σ−k ]ρ+ γkD[σzk]ρ
)
. (59)

The space of 3 × 3 hermitian matrices is spanned by the projectors |m〉〈m|, m = 0, 1, 2 and off-
diagonals |m〉〈n| + |n〉〈m| and i|m〉〈n| − i|n〉〈m| with m,n = 0, 1, 2, m < n. The two dissipators
will therefore act the same on any state ρ if they act the same on each of these basis elements.
By demanding Lres(|m〉〈m|) = Llin(|m〉〈m|) we obtain a set of six equations (plus three redundant
ones) which determine the Γ±k in terms of p and τ . Similarly, by requiring Lres(|m〉〈n| + |n〉〈m|) =
Llin(|m〉〈n|+ |n〉〈m|) for the three off-diagonals we obtain three more equations which determine the
γk. Specifically, the solution is

Γ−01 = pτ0 , Γ+
01 = pτ1 , γ01 = 1

9p(2− 3τ2) ,
Γ−02 = pτ0 , Γ+

02 = pτ2 , γ02 = 1
9p(2− 3τ1) ,

Γ−12 = pτ1 , Γ+
12 = pτ2 , γ12 = 1

9p(2− 3τ0) .
(60)

where τ0, τ1, τ2 are the populations of the states |0〉, |1〉, |2〉 in the thermal state (i.e. the diagonal
elements of τ). One can check that indeed using (6060) one has Llin(ρ) = Lres(ρ) for any arbitrary
qutrit state ρ. Explicitly, at a given temperature T , the populations are given by

τm = e−Em/T

∑2
n=0 e

−En/T
, (61)

where Em is the energy of state |m〉, m = 0, 1, 2. It follows that the jump rates in the Lindblad master
equation satisfy detailed balance, as one would expect

Γ+
mn

Γ−mn
= e−(En−Em)/T (62)

We can then understand these jumps as being induced by a bosonic bath [6666–6868]

Γ+
mn = ΓmnnB(En − Em, T ) , (63)

Γ−mn = Γmn[1 + nB(En − Em, T )] , (64)

where

nB(E, T ) = 1
eE/T − 1

(65)

is the Bose-Einstein distribution, and the coupling constant Γmn for transitions between states |m〉
and |n〉 is given by

Γmn = p
τn

nB(En − Em, T ) . (66)

D.2 Equivalence for two qutrits
The mapping derived between the single-qutrit master equations (5454) and (5555) can be applied directly
to a system of two weakly coupled qutrits, as considered in the main text. Specifically, the reset
master equation

∂ρ

∂t
= i[ρ,H] + pA(τA ⊗ TrA(ρ)− ρ) + pB(TrB(ρ)⊗ τB − ρ) (67)
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is equivalent to the following local Lindblad master equation

∂ρ

∂t
= i[ρ,H] +

∑

k∈{01,12,02}

(
Γ+
A,kD[σ+

A,k]ρ+ Γ−A,kD[σ−A,k]ρ+ γA,kD[σzA,k]ρ
)

+
∑

k∈{01,12,02}

(
Γ+
B,kD[σ+

B,k]ρ+ Γ−B,kD[σ−B,k]ρ+ γB,kD[σzB,k]ρ
)
, (68)

where the jump operators are defined analogously to (5656) above for each qutrit A and B locally. That
is σ+

A,k = σ+
k ⊗ 1 and σ+

B,k = 1 ⊗ σ+
k , and similarly for the other jump operators. The mapping

which makes the two master equations equivalent is given by (6060) applied to each system A and B
individually, as one can check.

Just as in the single-qutrit case, the jump rates in the Lindblad master equation correspond to
bosonic baths.

Γ+
A,mn = ΓA,mnnB(EAn − EAm, TA) , Γ+

B,mn = ΓA,mnnB(EBn − EBm, TB) ,
Γ−A,mn = ΓA,mn[1 + nB(EAn − EAm, TA)] , Γ−A,mn = ΓB,mn[1 + nB(EBn − EBm, TB)]. (69)

When considering potential implementations of our scheme in the main text, we use a master equation
of the form (6868) for the numerical simulation, taking values for the bath coupling strengths ΓA,mn,
ΓB,mn and pure dephasing rates γA,mn, γB,mn based on recent experimental works, as explained in the
text.

D.3 Optimal settings for generating maximal entanglement
In the main text, we identified conditions under which our scheme generates a pure, maximally en-
tangled state, using the reset model. Using the mapping above, we can translate these conditions to
the Lindblad model.

The ideal temperatures for entanglement generation in the reset model are TA → ∞ and TB → 0.
This means that the thermal populations become τA0 = τA1 = τA2 = 1/3 and τB0 = 1, τB1 = τB2 = 0. In
turn, for the Lindblad jump rates, using (6060) this implies that

Γ+
A,mn = Γ−A,mn, (70)

and
Γ−B,01 = Γ−B,02 , Γ−B,12 = Γ+

B,mn = 0. (71)

The former condition is satisfied in the Lindblad model also in the limit TA →∞ since then nB(EAn −
EAm, TA)� 1. The latter condition can be satified in the limit TB → 0, where nB(EBn −EBm, TB)→ 0,
if the coupling strength ΓB,12 also vanishes.

Thus, we see that the Lindblad model is in principle compatible with the ideal limit for entanglement
generation identified using the reset model, and one can thus expect entanglement generation to be
possible also under such a more realistic model. We stress that it is not necessary to go to the ideal
limit to achieve near-perfect entanglement generation. As shown in Fig. 55 in the main text, using
parameter values which are reasonable in the context of the current experimental state of the art,
entanglement close to maximal can be attained.
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The goal of self-testing is to characterize an a priori unknown quantum system based solely on measurement
statistics, i.e., using an uncharacterized measurement device. Here we develop self-testing methods for quantum
prepare-and-measure experiments, thus not necessarily relying on entanglement and/or violation of a Bell
inequality. We present noise-robust techniques for self-testing sets of quantum states and measurements,
assuming an upper bound on the Hilbert space dimension. We discuss in detail the case of a 2 → 1 random
access code with qubits, for which we provide analytically optimal self-tests. The simplicity and noise robustness
of our methods should make them directly applicable to experiments.
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I. INTRODUCTION

Predicting the results of measurements performed on a
given physical system has traditionally been the main concern
of physics. However, with the advent of device-independent
quantum information processing [1–3], the opposite question
has become relevant. More specifically, given an initially
unknown system and an uncharacterized measurement device,
what can be inferred about the physics of the experiment based
solely on the observed measurement statistics? Despite the
apparent generality of this question, certain cases do allow for
a precise characterization of the system. This is referred to as
self-testing [4,5].

The possibility to self-test quantum states and measure-
ments usually relies on quantum nonlocality. Consider two
distant observers performing local measurements on a shared
quantum state. When the resulting statistics leads to violation
of a Bell inequality [6], it is necessarily the case that the
shared quantum state is entangled and, moreover, that the local
quantum measurements are incompatible; see, e.g., Ref. [7].
Furthermore, for specific Bell inequalities, maximal violation
(i.e., the largest possible value in quantum theory) implies
that the quantum state and the measurements can be uniquely
identified (up to local isometries). For instance, a maximal
violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell
inequality [8] implies maximally incompatible measurements
(two anticommuting Pauli observables) and a shared maxi-
mally entangled two-qubit state [9–12]. More recently, it has
been demonstrated that all bipartite pure entangled states can
be self-tested [13], as well as certain multipartite entangled
states [14–16]. Another important progress is the development
of self-testing methods robust to noise [17–23]. For instance,
given a certain level of violation of a Bell inequality (but
not necessarily maximal), the fidelity between the initially
unknown state and a given target state can be lower bounded.

Self-testing thus offers promising perspectives for the
certification of quantum systems in experiments (see, e.g.,

Ref. [24]), as well as for device-independent quantum infor-
mation protocols [25]. It is therefore natural to ask whether
the concept of self-testing can be applied to more general
quantum experiments, beyond those based on entanglement
and nonlocality.

In the present work, we develop self-testing methods tai-
lored to the prepare-and-measure scenario. This covers a
broad class of experiments, where quantum communication
schemes [e.g., the BB84 quantum key distribution (QKD) pro-
tocol] are prominent examples. In this setting, a preparation
device initially prepares a quantum system in different possi-
ble states. The system is then transmitted to a measurement
device, which performs different possible measurements on
it. While it is still possible in this case to characterize certain
physical properties of the system based only on statistics,
this requires in general an assumption on the devices. One
possibility, which we will follow here, is to assume that the set
of quantum states and measurements admit a full description
in a Hilbert space of given dimension [26–28]. Intuitively this
means that the amount of information communicated from
the preparation device to the measurement device is assumed
to be upper bounded. Such a scenario considering quantum
systems of fixed dimension, but otherwise uncharacterized, is
referred to as semi-device-independent, and opens interesting
possibilities for quantum information processing [29–33].

Here we demonstrate techniques for robustly self-testing
sets of prepared quantum states, as well as sets of quantum
measurements. These methods allow one to (i) assess the com-
patibility of given sets of preparations and measurements with
the observed statistics and (ii) lower bound the average fidelity
between the unknown preparations (measurements) and a set
of ideal quantum states (measurements). We discuss in detail
a simple prepare-and-measure scenario, namely the 2 → 1
random access code (RAC). This allows us to provide ana-
lytically optimal self-tests for a pair of anticommuting Pauli
observables, and for a set of four qubit states corresponding
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to the eigenstates of two anticommuting Pauli observables.
We then generalize these results to other prepare-and-measure
scenarios. The simplicity and robustness of our methods
should make them directly applicable to experiments. We
conclude with a number of open questions.

II. SCENARIO

We consider a quantum prepare-and-measure experiment.
Upon receiving input x, a preparation device emits a physical
system in a quantum state ρx . The system is then transmitted
to a measurement device, which, upon receiving an input y,
performs a quantum measurement returning an outcome b.
Formally, the measurement is described by a set of positive
operators Mb

y , that equal identity when summed over b. Im-
portantly both the specific states ρx and measurements Mb

y

are a priori unknown to the observer. The statistics of the
experiment is then given by P (b|x, y) = tr(ρxM

b
y ). In this

setting, any possible probability distribution can be obtained,
given that the prepared states ρx can be taken in a sufficiently
large Hilbert space. This is however no longer the case when
we limit the Hilbert space dimension; specifically we impose
that ρx ∈ L(Cd ) for some given d < |x| (where |x| denotes
the number of possible inputs x). In this case, limits on the set
of possible distributions can be captured via inequalities of the
form

A =
∑
x,y,b

αxybP (b|x, y) � Qd, (1)

where αxyb are real coefficients. These “dimension witnesses”
allow one to place device-independent lower bounds on the
dimension of the quantum system [26].

Subsequently, one can ask what the limitations are on the
set of distributions P (b|x, y) given that the preparations admit
a classical d-dimensional representation, i.e., there exists a d-
dimensional basis such that all states ρx are diagonal in this
basis. We denote by Cd the maximal value of the quantity A in
this case. Interestingly, for well-chosen quantities A, one finds
that Cd < Qd . Thus, for a given system dimension d, quantum
systems outperform classical ones, in the sense that certain
quantum distributions cannot be reproduced classically [26].
This quantum advantage can be viewed as the origin for the
possibility of developing self-testing methods for the prepare-
and-measure scenario, in analogy to Bell inequality violation
being the root for self-testing entangled states.

In the following we present robust self-testing techniques
based on specific dimension witnesses A. Based only on the
value of A, which is directly accessible from the experiment
statistics, we characterize the (initially unknown) prepared
states and measurements. In particular, when the maximal
value of the witness is obtained, i.e., A = Qd , then a specific
set of pure states ρx = |ψx〉〈ψx | and a specific set of projec-
tive measurements Mb

y must have been used (up to a unitary).
Moreover, when a nonmaximal value A < Qd is obtained, the
compatibility of given sets of preparations and measurements
can be assessed. Finally, one can efficiently lower bound the
fidelity between the prepared states and measurements and the
ideal (or target) states and measurements leading to A = Qd .

Note that a recent series of works followed a related though
conceptually different approach, based on hypothesis testing
[34–36]. This method does however not allow for self-testing.

III. 2 → 1 RANDOM ACCESS CODE

We discuss in detail a simple prepare-and-measure ex-
periment. This involves four possible preparations, denoted
by x = (x0, x1) (where xj ∈ {0, 1}), and two possible binary
measurements, y ∈ {0, 1} and b ∈ {0, 1}. The score is given
by

A2 = 1

8

∑
x0,x1,y

P (b = xy |x0, x1, y). (2)

This means that, upon receiving input y, the measurement
device should return the output b = xy , i.e., the yth bit of the
input bit-string x received by the preparation device. Hence
the name of a 2 → 1 RAC [37–39]. Note that all inputs are
assumed to be chosen uniformly at random. Indeed, this task
is nontrivial only when d < 4; here we will consider the case
d = 2, i.e., qubits. In this case, one finds the tight bounds
C2 = 3/4 and Q2 = (1 + 1/

√
2)/2 ≈ 0.85 [37]. The classi-

cal bound C2 can be obtained by simply always sending the
bit x0. The quantum bound Q2 is obtained via the following
“ideal” strategy. The four qubit preparations correspond to the
pure states

ρ ideal
jj = 1 + (−1)j σx

2
, ρ ideal

j j̄
= 1 + (−1)j σz

2
(3)

for j ∈ {0, 1} and j̄ = 1 − j . These are simply the eigenstates
of the Pauli observables σx and σz. Next, the measurements
are projective and given by two anticommuting Pauli observ-
ables

M ideal
y = (

M0
y

)ideal − (
M1

y

)ideal = σx + (−1)yσz√
2

. (4)

These qubit preparations and measurements represent
the ideal situation, where the maximal value A2 = Q2 is
achieved. In the following we will determine what restrictions
apply to the possible preparations and measurements, given
that a particular value of A2 is observed. In particular, when
the maximal value A2 = Q2 is attained, both the states and
the measurements must be the ideal ones as given above (up
to a unitary).

IV. SELF-TESTING PREPARATIONS

Here we find restrictions on the set of prepared states
given an observed value of A2. For convenience, we write the
qubit preparations as ρx0x1 = (1 + �mx0x1 · �σ )/2, where �mx0x1

denotes the Bloch vector (satisfying | �mx0x1 | � 1) and �σ =
(σx, σy, σz) denotes the vector of Pauli matrices.

The first step consists in reexpressing

A2 = 1

2
+ 1

8

∑
y

tr
(
M0

yVy

)

� 1

2
+ 1

8

∑
y

√
tr

(
M0

yV 2
y

)
tr

(
M0

y

)
, (5)
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where Vy = ∑
x0,x1

(−1)xy ρx0x1 . In the second step we used
that for a positive semidefinite O and a Hermitian operator
R, it holds that | tr (OR)|2 � tr (OR2) tr (O ) [23]. Without
loss of generality, we can restrict ourselves to extremal qubit
measurements, which are here projective rank-one operators.
Consequently, we have that tr (M0

y ) = 1. Next, we obtain
V 2

y = 1
2 [β + (−1)yα]1, where β = 1

2

∑
x0,x1

| �mx0x1 |2 − �m00 ·
�m11 − �m01 · �m10 and α = ( �m00 − �m11) · ( �m01 − �m10). Finally,
we find that Eq. (5) reduces to

A2 � 1

2
+ 1

8
√

2
[
√

β + α +
√

β − α]. (6)

This provides a tight self-test of the prepared states (in
terms of their Bloch vectors), for any given value of A2. Let
us start with the case A2 = Q2. Since

√
β + α + √

β − α =√
2β + 2

√
β2 − α2, we see that Eq. (6) is maximal iff α = 0

and β is maximal. This turns out to be achievable. In order
to maximize β, we need (i) ∀x0x1 : | �mx0x1 | = 1, i.e., that all
preparations are pure states, and (ii) that �m00 · �m11 = �m01 ·
�m10 = −1, i.e., the states correspond to (pairwise) antipodal
Bloch vectors. We define �r0 = �m00 = − �m11 and �r1 = �m01 =
− �m10. Consequently, we find α = 4�r0 · �r1. Therefore, in order
to have α = 0, we must choose �r0 · �r1 = 0. This implies
that the right-hand side of Eq. (6) is upper bounded by Q2.
Therefore, we conclude that when observing maximal value
A2 = Q2, the set of four prepared states must be equivalent
(up to a unitary rotation) to the set of four ideal states; we note
that this was also shown in Ref. [40] in the context of QKD.

More generally, for any value A2, one can find a set of
preparations (and corresponding measurements) such that the
inequality (6) is saturated; see Appendix A. For the case of
classical preparations (i.e., diagonal in a given basis), the
Bloch vectors can simply be replaced by numbers mx0x1 ∈
[−1, 1], and we get A2 � C2.

V. SELF-TESTING MEASUREMENTS

Let us now consider self-testing of measurements. Using
that My = M0

y − M1
y , we write

A2 � 1

2
+ 1

16

∑
x0,x1

λmax[(−1)x0M0 + (−1)x1M1], (7)

where λmax[X] is the largest eigenvalue of the (Hermitian)
operator X. Since the upper bound corresponds to choosing
the optimal preparations for a fixed pair of observables, it
simply quantifies the optimal performance achievable using
these observables. If M0 and M1 are qubit observables the
upper bound can be evaluated exactly (see Appendix A) to
give

A2 � 1
2 + 1

16 (
√

2μ + 2ν − η2+ +
√

2μ − 2ν − η2−), (8)

where μ = tr (M2
0 + M2

1 ), ν = tr{M0,M1}, and η± =
tr(M0 ± M1). The right-hand side reaches the optimal
value Q2 iff μ = 4, η± = 0, and ν = 0, which implies
anticommuting projective observables (i.e., projective
measurement operators). In other words, observing A2 = Q2

implies that the measurements are unitarily equivalent to the
ideal ones. Moreover, note that inequality (8) is tight; for any

value of A2 one can find measurements (and corresponding
states) such that inequality is saturated (see Appendix A). It
follows that any pair of projective, rank-one observables that
is incompatible (|ν| < 4) can lead to A2 > C2.

VI. ROBUST SELF-TESTING OF THE PREPARATIONS

We now discuss the problem of characterizing the fidelity
between the realized preparations and the ideal ones. This
will allow us to quantify the distance of the prepared states
with respect to the ideal ones. Again, we want to develop
self-testing methods which are based only on the value of A2.

More formally, given an arbitrary set of preparations, we
define the average fidelity with the ideal preparations to be
S({ρx0x1}) = max�

∑
x0,x1

F (ρ ideal
x0x1

,�[ρx0x1 ])/4, where � is a
quantum channel, i.e., a completely positive trace-preserving
map. Here the fidelities F (ρ, σ ) = tr (

√√
ρσ

√
ρ) simplify to

F (ρ ideal
x0x1

,�[ρx0x1 ]) = tr (�[ρx0x1 ]ρ ideal
x0x1

), as the ρ ideal
x0x1

are pure
states. We derive lower bounds on the smallest possible value
of S given a value of A2, i.e.,

F (A2) = min
{ρx0x1 }∈R(A2 )

S[{ρx0x1}]. (9)

Note that this involves a minimization over all sets of four
preparations R(A2) that are compatible with an observed
value A2.

In order to lower bound F , we use an approach in-
spired by Ref. [22]. From Eq. (7), we have A2 = 1

2 +∑
x0,x1

tr (Wx0x1ρx0x1 ), where Wx0x1 = 1
16

∑
y (−1)xy My . We

define operators corresponding to some suitably chosen chan-
nel acting on the ideal preparations:

Kx0x1 (M0,M1) = �†(M0,M1)
[
ρ ideal

x0x1

]
, (10)

where �† is the channel dual to �. We aim to construct
operator inequalities of the form

Kx0x1 (M0,M1) � sWx0x1 + tx0x1 (M0,M1)1, (11)

for all inputs (x0, x1), for any given measurements, where s

and tx0x1 (M0,M1) are real coefficients. Finding such inequali-
ties, as well as a suitable channel �, allows us to lower bound
S as follows:

S � 1

4

∑
x0,x1

tr
(
Kx0x1ρx0x1

)
� s

4

∑
x0,x1

tr
(
Wx0x1ρx0x1

)

+ 1

4

∑
x0,x1

tx0x1 = s

4
(A2 − 1/2) + 1

4

∑
x0,x1

tx0x1 . (12)

Applying a minimization over M0 and M1 to the right-hand
side, the above inequality becomes valid for all preparations.
Consequently,

F (A2) � s

4
(A2 − 1/2) + t ≡ L(A2), (13)

where t ≡ 1/4 minM0,M1

∑
x0,x1

tx0x1 (M0,M1). In
Appendix B, we construct explicitly the channel and derive
an operator inequality leading to a lower bound, given by
s = 4(1 + √

2) and t = (2 − √
2)/4.

This provides a robust self-testing for the preparations. A
maximal value A2 = Q2 implies F = 1, i.e., the preparations
must be the ideal ones (up to a unitary). For A2 = C2, i.e.,
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FIG. 1. Average fidelity F (F ′) for prepared states (measure-
ments), as a function of the observed value of A2. The black line is
our analytical lower bound of Eq. (13). The blue region is accessible
via single qubit strategies without shared randomness, as confirmed
by strong numerical evidence (see Appendixes). When allowing
for shared randomness between the devices, the accessible region
(obtained by taking the convex hull of the blue region) now also
includes the gray area, and our analytic lower bound is tight in
general.

a maximal value given a set of classical states, we get that
F � 3/4. This bound can be attained via the set of pure states
ρx0x1 = [1 + (−1)x0x1σz]/2 (diagonal in the same basis, hence
classical), combined with the measurements M0 = M1 = σz.
Therefore, we see that our bound F (A2) � L(A2) is optimal,
as far as linear inequalities are concerned (see Fig. 1). It
is then interesting to consider the intermediate region C2 <

A2 < Q2. First, focusing on strategies involving a single set
of states and measurements, we observe numerically that the
linear bound F (A2) � L(A2) cannot be saturated anymore,
and conjecture the form of optimal states and measurements;
see red curve in Fig. 1 and Appendix C for details. Second,
allowing for shared randomness between the preparation and
measurement device (such that convex combinations of qubit
strategies are now possible), the linear bound becomes tight,
a direct consequence of the linearity of F and A2 in terms of
the states and measurements.

VII. ROBUST SELF-TESTING OF THE MEASUREMENTS

Similarly, we can quantify the average fidelity of the
measurements with respect to the ideal ones: S ′({Mb

y }) =
max�

∑
y,b F ((Mb

y )ideal,�[Mb
y ])/4, where � must be a unital

channel (i.e., mapping the identity to itself), in order to ensure
that measurements are mapped to measurements. In analogy
with the case of preparations, our goal is to lower bound the
following quantity:

F ′(A2) = min
{Mb

y }∈R′(A2 )
S ′({Mb

y

})
, (14)

where R′(A2) represents all sets of measurements compatible
with a certain value of A2.

We first rewrite A2 = ∑
y,b tr(Mb

y Zyb ), where Zyb =
1
8

∑
x0,x1

ρx0x1δb,xy
. Next, we construct operator inequalities

Kyb({ρx0x1}) � sZyb + ty ({ρx0x1})1, (15)

given the unital channel Kyb = �†[(Mb
y )ideal]. Similar to the

case of preparations, strong operator inequalities can be

derived by choosing carefully the channel; all details are given
in Appendix D. Finally, this leads to a lower bound on the
average fidelity

F ′(A2) � min
{ρx0x1 }

1

4

∑
y,b

tr
(
KybM

b
y

)
� L(A2). (16)

That is, we find that F ′ can be lower bounded by a linear
expression in terms of A2, which turns out to be the same
as for the case of preparations.

This provides a robust self-test for the measurements.
Observing A2 = Q2 implies that F ′ = 1; hence the measure-
ments are equivalent to the ideal ones (up to a unitary). For
A2 = C2, we have that F � 3/4. This lower bound can be
attained by choosing M0 = σz and M1 = 1, with the states
ρ00 = ρ01 = (1 + σz)/2 and ρ10 = ρ11 = (1 − σz)/2. For
C2 < A2 < Q2, we find numerically that the inequality (16)
cannot be saturated using a single set of measurements and
states (see Fig. 1). Details, in particular a conjecture for the
form of the optimal measurements, are given in Appendix C.
Similarly as for the case of states, when allowing for convex
combinations of qubit strategies, our linear bound is tight.

VIII. GENERALIZATIONS

The above results can be generalized in several direc-
tions. First, a generalization of the 2 → 1 RAC enables
self-testing of any pair of incompatible Pauli observables
(see Appendix E). Secondly, we consider the N → 1 RAC,
where the preparation device receives as input an N -bit string
x = (x1, . . . , xN ) and the measurement device gets input y ∈
{1, . . . , N}. The average score is then given by

AN = 1

N2N

∑
x,y

P (b = xy |x, y). (17)

The methods discussed above (for N = 2) can be generalized
and lead to self-testing conditions for states and measure-
ments; details are given in Appendix F. The case of N = 3
is of particular interest. Here, the best possible score with
qubits is A3 = (1 + 1/

√
3)/2; see, e.g., Ref. [39]. In this

case, our self-testing conditions can certify that (i) the eight
prepared states correspond to Bloch vectors forming a cube
on the Bloch sphere and (ii) the measurements correspond to
three mutually unbiased bases (i.e., three pairwise anticom-
muting Pauli observables). Thirdly, we self-test qutrit prepa-
rations and projective measurements in the 2 → 1 RAC (see
Appendix G).

Finally, we present a numerical method for robust self-
testing of preparations applicable in scenarios beyond RACs.
The method is based on semidefinite programing and com-
bines (i) the swap method [21] used for self-testing in Bell sce-
narios with (ii) the hierarchy of finite-dimensional quantum
correlations [41–43]. The idea is to first construct a swap op-
erator, based on the measurement operators, which maps the
state of the preparation onto an ancilla. The average fidelity
between the ancilla and the ideal states can then be expressed
in terms of strings of products of measurement operators and
the extracted states. The last step is to miminize this average
fidelity over all quantum realizations that are compatible with
a given witness value, using the hierarchy of Refs. [41–43].
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Although typically returning suboptimal bounds on F , this
method is widely applicable. In Appendix H, we describe in
detail the methodology and apply to two examples, including
the 2 → 1 RAC.

IX. OUTLOOK

We presented methods for self-testing quantum states and
measurements in the prepare-and-measure scenario. These
techniques demonstrate strong robustness to noise, and should
therefore be directly amenable to experiments, providing
useful certification techniques in a semi-device-independent
setting. Moreover, these ideas should find applications in
quantum communications. Our methods apply to the states
and measurements used in QKD (e.g., in BB84), as well as
in semi-device-independent QKD and randomness generation
protocols [29–33].

It would be interesting to develop robust self-testing
techniques for more general scenarios, e.g., for higher-
dimensional quantum systems. Another direction would be to
consider scenarios beyond prepare and measure, for instance,
adding between the preparation and measurement devices a
transformation device [44,45] and self-testing the latter.

Finally, while we have focused here on self-testing based
on an assumption on the dimension, one could develop meth-
ods based on different assumptions, such as a bound on the
mean energy [46], the overlap [47], or the entropy [48].
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APPENDIX A: SELF-TESTING RELATIONS FOR
PREPARATIONS AND MEASUREMENTS

In this section we provide a simple example of preparations
that saturate the compatibility bound for A2 given in the main
text. Moreover, we derive the upper bound for compatibility
of measurements given in the main text.

First, we consider the case of preparations. Consider prepa-
rations such that ρ00 and ρ11, and ρ01 and ρ10 correspond to
antipodal Bloch vectors with a relative angle θ , the maximal
quantum value of A2, is obtained from

A2 = 1

2
+ 1

8

∑
y

λmax[Vy], (A1)

where Vy = ∑
x0,x1

(−1)xy ρx0x1 . We represent the preparations
on the Bloch sphere as ρx0x1 = 1/2(1 + �mx0x1 · �σ ),
where �m00 = [cos(θ/2), 0, sin(θ/2)] and �m01 =
[cos(θ/2), 0,− sin(θ/2)], with �m11 = − �m00 and �m10 =

− �m01. This gives V0 = 2 cos(θ/2)σx and V1 = 2 sin(θ/2)σz.
The respective largest eigenvalues are λmax[V0] = 2 cos(θ/2)
and λmax[V1] = 2 sin(θ/2), leading to

A2 = 1

2
+ 1

4
√

2
[
√

1 + cos θ + √
1 − cos θ ]. (A2)

It is straightforward to see that this achieves the upper bound
in the main text; indeed the above choice of preparations leads
to β = 4 and α = 4 cos θ .

In order to derive the upper bound on A2 for compatibility
of measurements in the main text we evaluate∑

x0,x1

λmax[(−1)x0M0 + (−1)x1M1] (A3)

for arbitrary qubit observables M0,M1. We take advantage of
the fact that

λmax[T ] + λmax[−T ] = λmax[T ] − λmin[T ], (A4)

which for a 2 × 2 matrix can be evaluated analytically. More
specifically, if T is a 2 × 2 Hermitian matrix with eigenvalues
λ0 � λ1, let

χ := tr T = λ0 + λ1,

ζ := tr T 2 = λ2
0 + λ2

1

and then

λ0 − λ1 =
√

2ζ − χ2. (A5)

Evaluating this expression for T = M0 ± M1 gives the desired
upper bound.

APPENDIX B: OPERATOR INEQUALITIES FOR ROBUST
SELF-TESTING OF PREPARATIONS

In this section we provide a detailed derivation of the lower
bound on the average fidelity F (A2). For a real constant
s > 0, to be chosen later, consider for each pair (x0, x1) the
operator Kx0x1 − sWx0x1 , where Wx0x1 = 1

16

∑
y (−1)xy My and

Kx0x1 = �†[ρ ideal
x0x1

], for some channel �. Suppose now that
tx0x1 ∈ R is a lower bound on its eigenvalues, or, equivalently,
that the operator inequality

Kx0x1 � s Wx0x1 + tx0x1 1 (B1)

holds. Then, computing the trace of this inequality with ρx0x1

and averaging over inputs leads to

S � 1

4

∑
x0,x1

F
(
ρ ideal

x0x1
,�[ρx0x1 ]

)
� s

4

(
A2 − 1

2

)
+ t,

t ≡ 1

4

∑
x0,x1

tx0x1 , (B2)

where the first inequality holds because S is defined as
maximization over all possible channels, and the � used
there is one possible choice. In turn, if (B1) holds as an
operator inequality, it is valid for any set of preparations
{ρx0x1}, and thus F (A2) � s

4 (A2 − 1
2 ) + t . Note that (B1) has

a dependence on M0, M1 through Wx0x1 . If (B1) holds for a
particular choice of measurement operators M0, M1, then the
bound on F (A2) holds for all preparations, for that particular
choice of M0, M1. However, if (B1) holds for all possible
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M0, M1, then the bound on F (A2) is valid for all quantum
setups and is thus a robust self-testing inequality. To derive
the appropriate constants s and tx0x1 , we first allow tx0x1 and
� to have a dependence on M0 and M1. We then minimize
over M0 and M1 the constants tx0x1 , for a suitable choice of s,
such that, at the end, Eq. (B1) holds regardless of the choice
of measurement operators.

We choose a dephasing channel of the form

�θ (ρ) = 1 + c(θ )

2
ρ + 1 − c(θ )

2
�(θ )ρ�(θ ), (B3)

where for 0 � θ � π/4 we use � = σx , while for π/4 <

θ � π/2 we use � = σz. The function c(θ ) ∈ [−1, 1] will be
specified later.

In the interval 0 � θ � π/4, the action of the channel
leads to

K00 = 1 + σx

2
, K01 = 1 + c(θ )σz

2
,

K10 = 1 − c(θ )σz

2
, K11 = 1 − σx

2
, (B4)

whereas in the interval π/4 < θ � π/2, we have

K00 = 1 + c(θ )σx

2
, K01 = 1 + σz

2
,

K10 = 1 − σz

2
, K11 = 1 − c(θ )σx

2
. (B5)

As discussed in the main text, for any given set of prepara-
tions, the optimal measurements are projective and rank-one.
Furthermore, any two such measurements can be represented
on an equator of the Bloch sphere. Due to the freedom of
setting the reference frame, we can without loss of generality
represent the two measurements in the xz plane, i.e.,

M0 = cos θ σx + sin θ σz,

M1 = cos θ σx − sin θ σz.

We can therefore write Wx0x1 as

W00 = 1
8 cos θσx, W01 = 1

8 sin θσz,

W10 = − 1
8 sin θσz, W11 = − 1

8 cos θσx. (B6)

We can reduce the number of operator inequalities (B1) by
exploiting the apparent symmetries in the expressions for
Wx0x1 and Kx0x1 : we restrict ourselves so that to ≡ t01 = t10

and te ≡ t00 = t11. Thus we have to consider two operator
inequalities in each interval θ ∈ [0, π/4] and θ ∈ (π/4, π/2].
In the first interval, the two operator inequalities are

1 + σx

2
− s

8
cos θσx − te1 � 0,

1 + c(θ )σz

2
− s

8
sin θσz − to1 � 0. (B7)

In the second interval, the two operator inequalities are

1 + c(θ )σx

2
− s

8
cos θσx − te1 � 0,

1 + σz

2
− s

8
sin θσz − to1 � 0. (B8)

We now focus on the former interval. Solving the two inequal-
ities for to and te we obtain

te � 1 − s

8
cos θ, to � 1

8
[4 + 4c(θ ) − s sin θ ], (B9)

te � s

8
cos θ, to � 1

8
[4 − 4c(θ ) + s sin θ ]. (B10)

Any choice of to and te satisfying these constraints gives rise
to valid operator inequalities. In order to obtain the strongest
bound, we choose the largest values of to and te consistent
with their respective constraints, i.e.,

te = min
{

1 − s

8
cos θ,

s

8
cos θ

}
,

to = min

{
1

8
[4 + 4c(θ ) − s sin θ ],

1

8
[4 − 4c(θ ) + s sin θ ]

}
.

(B11)

A similar procedure for the interval θ ∈ (π/4, π/2] leads to

te =min

{
1

8
[4 + 4c(θ ) − s cos θ ],

1

8
[4 − 4c(θ ) + s cos θ ]

}
,

to = min
{

1 − s

8
sin θ,

s

8
sin θ

}
. (B12)

It is worth pointing out that the two intervals only differ by
exchanging te ↔ to and sin θ ↔ cos θ . Hence, for any given
θ , we have constructed operator inequalities of the form (B1).

As shown in the main text, we obtain our lower bound on
the average fidelity from

F (A2) � s

4
(A2 − 1/2) + min

M0,M1

t (M0,M1) ≡ L(A2),

(B13)

where t (M0,M1) = (te + to)/2. To compute this quantity we
fix the value of s to be

s = 4(1 +
√

2) (B14)

and choose the dephasing function as c(θ ) = min{1, s
4 sin θ}

whenever θ ∈ [0, π/4] and c(θ ) = min{1, s
4 cos θ} whenever

θ ∈ (π/4, π/2]. It is easy to see that c(θ ) ∈ [0, 1], which
ensures that �θ is a valid quantum channel, and that c(θ ) is
continuous at θ = π/4. A simple calculation shows that in this
case

t = 2 − √
2

4
, (B15)

which gives the lower bound

F (A2) � (1 +
√

2)A2 − 3

2
√

2
≡ L(A2). (B16)

One can check that choosing distinct values of s will not lead
to improved lower bounds.

APPENDIX C: TIGHTNESS OF FIDELITY BOUNDS

In the main text, we have derived fidelity bounds for both
the preparations and the measurements, based on operator
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inequalities. Specifically, we obtain a lower bound on the
average fidelity F of the prepared states (with respect to the
ideal ones) given by the linear expression

F (A2) � (1 +
√

2)A2 − 3

2
√

2
≡ L(A2). (C1)

For measurements, a similar bound is obtained on the average
fidelity F ′ with respect to the ideal ones. In the present
appendix, we discuss the tightness of these bounds.

We start with our bound on the fidelity of the states. As
discussed in the main text, obtaining A2 = Q2 implies F = 1,
i.e., the states are the ideal ones (up to a unitary). Let us refer
to the optimal strategy (with the ideal states) as strategy S1.
Then, for A2 = C2, our bound gives F � 3/4. This bound is
tight and can be obtained via the set of pure states ρx0x1 = [1 +
(−1)x0x1σz]/2 (diagonal in the same basis, hence classical),
combined with the measurements M0 = M1 = σz. Let us refer
to this strategy as S2.

The above shows that our bound (C1) is tight as far as linear
inequalities are concerned. More generally, the bound is in
fact tight in general, when shared randomness between the
preparation and measurement devices is taken into account.
In this case, taking a convex combination between strategies
S1 and S2 allows us to get any point on the line (i.e., pair of
values F and A2) between S1 and S2.

It is also interesting to understand what happens when
shared randomness between the devices is not taken into
account. In this case, the end points (A2 = Q2,F = 1) and
(A2 = C2,F = 3/4) can still be obtained. To understand
what happens in the intermediate region C2 < A2 < Q2, we
first performed a numerical analysis. Specifically, we choose
randomly four qubit states, and compute (i) the maximal
value of A2 (optimizing over the measurements) and (ii) the
average fidelity F (where the optimization over channels is
restricted here to unitaries). The resulting points are shown on
Fig. 2 (blue circles). This indicates that, for C2 < A2 < Q2,
the bound (C1) cannot be saturated anymore. Moreover, we
conjecture that an optimal class of strategies is given by the
pure states

|ψ00〉 = |0〉, |ψ11〉 = |1〉, |ψ01〉 = cos θ |0〉 + sin θ |1〉,
|ψ10〉 = cos θ |0〉 − sin θ |1〉 (C2)

and the measurements My = cos(ϕ)σz + (−1)y sin(ϕ)σx .
Straightforward calculations show that taking tan ϕ = sin 2θ

leads to

A2 = 1
2 + 1

4

√
1 + tan2(ϕ), F = 1

4 (3 + tan ϕ). (C3)

This gives a parametric curve, as a function of ϕ ∈ [0, π/4],
given by the red curve in Fig. 2. This curve is in excellent
agreement with the numerical results obtained before. Note
that this class of strategies interpolates between the strategies
S1 (setting ϕ = 0) and S2 (setting ϕ = π/4).

Next we discuss the bound on the average fidelity of
measurements. As discussed in the main text, the linear bound
F ′(A2) � L(A2) is optimal as far as linear inequalities are
concerned. Moreover, when allowing for shared randomness
the bound is tight in general for C2 � A2 � Q2. This is

obtained by considering convex combinations of strategy S ′
1

(defined as the optimal strategy S1, up to a rotation of π/8
around the y axis; see below), and the following strategy
(referred to as S3): take M0 = σz and M1 = 1, with the states
ρ00 = ρ01 = (1 + σz)/2 and ρ10 = ρ11 = (1 − σz)/2.

Similar to the case of states, we now consider the situ-
ation where shared randomness between the devices is not
allowed. Performing a numerical analysis similar to the one
described above (except that measurements are now generated
randomly), we observe that the accessible region (in terms
of F ′ vs A2) appears to be exactly the same as for the case
of states (i.e., the blue region in Fig. 2). We conjecture that
the lower bound is given by the following class of optimal
strategies: take the measurements

M0 = σz, M1 = ησx + (1 − η)1, (C4)

with the states |ψ00〉 = cos θ |0〉 + sin θ |1〉, |ψ01〉 =
cos θ |0〉 − sin θ |1〉, |ψ10〉 = cos θ |1〉 + sin θ |0〉, and
|ψ11〉 = cos θ |1〉 − sin θ |0〉. Setting η = tan 2θ , we get

A2 = cos2(θ )

2
+ 1

4
+ sin2(2θ )

cos(2θ )
, F = 1

4
[3 + tan(2θ )].

(C5)

This gives a parametric curve, as a function of θ ∈ [0, π/8],
given by the red curve in Fig. 2. This curve is in excellent
agreement with the numerical results obtained before. Also,
this curve turns out to be exactly the same as the curve we
obtained above for the case of states. Note that this class of
strategies interpolates between the strategies S ′

1 (setting θ =
π/8) and S3 (setting θ = 0).

Finally, note that the numerics also suggests that there
is a linear upper bound on the average fidelities F (F ′) as
a function of A2 (see Fig. 2); specifically F � 1−Q2

Q2−3/4A2 +

FIG. 2. Black line is the analytic lower bound on the average
fidelity F (F ′) for prepared states (measurements), as a function of
the observed value of A2. To characterize the region accessible via
pure qubit strategies (i.e., without shared randomness), we perform
numerics generating randomly sets of qubit preparations (blue circles
and crosses); here we show the numerical results for the case of
states, but similar results are obtained for the case of measurements.
In the region C2 < A2 < Q2, we conjecture that the class of strate-
gies given in the text (corresponding to the red curve) are optimal,
both for F and F ′. Finally, the green dashed line is our conjectured
upper bound on the average fidelity.
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Q2
2−3/4

Q2−3/4 and similarly for F ′. It would be interesting to provide
a proof of these upper bounds.

APPENDIX D: OPERATOR INEQUALITIES FOR ROBUST
SELF-TESTING OF MEASUREMENTS

In this section, we account for the detailed derivation of
the lower bound on the average fidelity of the measurements
F ′(A2). The approach bears significant resemblance to the
case of robustly self-testing preparations, as outlined in Ap-
pendix B.

We aim to derive operator inequalities of the form

Kyb({ρx0x1}) � sZyb + ty ({ρx0x1})1, (D1)

where Zyb = 1
8

∑
x0,x1

ρx0x1δb,xy
and Kyb({ρx0x1}) =

�†[(Mb
y )ideal]. For the sake of simplicity, we first apply a

unitary channel to (Mb
y )ideal to align these operators with the

eigenstates of σx and σz. Then, we adopt the same (unital,
trace-preserving) channel � as specified in the main text,
with the same coefficients as used to robustly self-test the
preparations: c(θ ) = min{1, s

4 sin θ} when θ ∈ [0, π/4] and
c(θ ) = min{1, s

4 cos θ} when θ ∈ (π/4, π/2].
It is straightforward to see that, for any given pair of mea-

surements, the optimal choice of preparations are four pure
qubit states, such that ρ00 and ρ11, and ρ01 and ρ10, respec-
tively, correspond to antipodal vectors on the Bloch sphere.
Therefore, we can without loss of generality restrict to such
preparations since these impose the weakest constraints on the
measurements of our interest. We can therefore parametrize
the preparations ρx0x1 = 1/2(1 + �mx0x1 · �σ ) by Bloch vectors

�m00 = [cos θ, 0, sin θ ], �m11 = −[cos θ, 0, sin θ ],

�m01 = [cos θ, 0,− sin θ ], �m10 = [− cos θ, 0, sin θ ]. (D2)

Expressing Zyb in terms of these preparations gives

Z00 = 1
8 (1 + cos θσx ), Z01 = 1

8 (1 − cos θσx ),

Z10 = 1
8 (1 + sin θσz)σz, Z11 = 1

8 (1 − sin θσz). (D3)

Due to symmetries, we restrict ourselves so that to ≡ t01 =
t10 and te ≡ t00 = t11. Thus we have to consider two operator
inequalities in each interval θ ∈ [0, π/4] and θ ∈ (π/4, π/2].
In the first interval, the two operator inequalities are

1 + σx

2
− s

8
(1 + cos θσx ) − te1 � 0,

1 + c(θ )σz

2
− s

8
(1 + sin θσz) − to1 � 0. (D4)

In the second interval, the two operator inequalities are

1 + c(θ )σx

2
− s

8
(1 + cos θσx ) − te1 � 0,

1 + σz

2
− s

8
(1 + sin θσz) − to1 � 0. (D5)

Just as in Appendix B, we solve these inequalities for te and
to, and choose the largest value compatible with the solutions.

In the first interval, this gives

te = min

{
1

8
(8 − s − s cos θ ),

s

8
(cos θ − 1)

}
,

to = min

{
1

8
[4c(θ ) − s sin θ − s + 4],

1

8
[−4c(θ ) + s sin θ − s + 4]

}
. (D6)

A similar procedure for the interval θ ∈ (π/4, π/2] leads to

te = min

{
1

8
[4c(θ ) − s cos θ − s + 4],

1

8
[−4c(θ ) + s cos θ − s + 4]

}
,

to = min

{
s

8
(sin θ − 1),

1

8
(8 − s − s sin θ )

}
. (D7)

For any choice of θ , we have constructed operator inequalities
of the form (D1).

In order to obtain our lower bound on F ′, we must min-
imise the quantity t (θ ) = (te + to)/2 for a specific choice of s.
In analogy with the procedure in Appendix D, we choose s =
4(1 + √

2), which returns minθ t (θ ) = −3/(2
√

2). Hence we
have obtained the lower bound

F ′(A2) � (1 +
√

2)A2 − 3

2
√

2
= L(A2). (D8)

APPENDIX E: SELF-TESTING ALL PAIRS OF
INCOMPATIBLE PAULI OBSERVABLES

Consider a generalization of the 2 → 1 RAC, in which
we introduce a bias on the score associated to certain inputs.
Specifically, whenever the game is successful, i.e., b = xy ,
the awarded score is q/2 if x0 ⊕ x1 = 0, and (1 − q )/2 if
x0 ⊕ x1 = 1, for some q ∈ [0, 1]. The average score reads

Aq

2 = 1

2

∑
x0,x1,y

r (x0, x1)P (b = xy |x0, x1, y), (E1)

where r (x0, x1) = q/2 if x0 ⊕ x1 = 0 and r (x0, x1) = (1 −
q )/2 if x0 ⊕ x1 = 1. Note that, for q = 1/2, we recover the
standard 2 → 1 RAC. Based on the quantity Aq

2 , we will now
see how to derive a self-testing condition for any pair of in-
compatible Pauli observables, i.e., any pair of noncommuting
projective rank-one qubit measurements.

We start by expressing Aq

2 for a quantum strategy:

Aq

2 = 1

2
+ 1

4

∑
x0,x1

r (x0, x1) tr{ρx0x1 [(−1)x0M0 + (−1)x1M1]}

� 1

2
+ 1

4

∑
x0,x1

r (x0, x1)λmax[(−1)x0M0 + (−1)x1M1].

(E2)

Denoting μk = λmin[M0 + (−1)kM1] and νk =
λmax[M0 + (−1)kM1], for k = 0, 1, we obtain

Aq

2 � 1
2 + 1

8 [q(μ0 − ν0) + (1 − q )(μ1 − ν1)]. (E3)
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Following a derivation analogous to that appearing in
Appendix A to obtain, we obtain

Aq

2 � 1
2 + 1

8 [q
√

β + α + (1 − q )
√

β − α], (E4)

where β = 2 tr (M2
0 + M2

1 ) − tr (M0)2 − tr (M1)2 and α =
2 tr ({M0,M1}) − 2 tr (M0) tr (M1). Treating α and β as in-
dependent variables, we obtain the largest value of the right-
hand side of Eq. (E4) by demanding that the derivative with re-
spect to α equals zero, and checking that the second derivative
is negative at this point. We obtain the optimality constraint

α = 2q − 1

1 − 2q + 2q2
β. (E5)

Inserting this value back into Eq. (E4), we find an upper bound
on Aq

2 as obtained by independent variables α and β. It turns
out that this bound can be saturated by the de facto coupled
variables α and β. From Eq. (E4), it is clear that a necessary
condition for optimality is to maximize β. This amounts to the
observables M0 and M1 being traceless and such that M2

0 =
M2

1 = 1, leading to β = 8. This implies that the observables
represent projective rank-one measurements. Hence we can
write My = �ny · �σ where the Bloch vector satisfies |�ny | = 1.
Hence we have α = 8�n0 · �n1. Thus Eq. (E5) becomes

�n0 · �n1 = 2q − 1

1 − 2q + 2q2
, (E6)

which has a solution for any choice of q. Note that setting
q = 1/2 reduces the above to �n0 · �n1 = 0, which we recognize
as the optimality constraint for the standard 2 → 1 random
access code. In conclusion, for any pair of incompatible Pauli
observables (characterized by the scalar product �n0 · �n1), we
have a game Aq

2 (where q is chosen in order to satisfy
the above equation), such that the maximal score can only
be attained by using that specific pair of Pauli observables.
We thus obtain a general class of self-tests for any pair of
Pauli observables, corresponding to saturating the maximal
quantum value of Aq

2 for a given value of q:

Aq

2 � 1
2 (1 +

√
1 − 2q + 2q2). (E7)

APPENDIX F: SELF-TESTING FOR THE N → 1 RANDOM
ACCESS CODE

In this appendix, we extend the results presented in the
main text to self-test the preparations and measurements in an
N → 1 RAC. The latter is a straightforward generalization of
the 2 → 1 RAC considered in the main text. The input of the
preparation device is a random N -bit string x ≡ (x1, . . . , xN ),
while the input of the measurement device is y ∈ {1, . . . , N}.
The average score is

AN = 1

N2N

∑
x,y

P (b = xy |x, y). (F1)

Considering qubit states ρx , and measurement observables
My , we get

AN = 1

2
+ 1

N2N+1

∑
x,y

(−1)xy tr(ρxMy ). (F2)

1. Compatibility of measurements

We determine whether a set of measurements can explain
(i.e., are compatible with) a given value of AN . Since rank-one
projective measurements are optimal for any set of prepara-
tions, we choose for simplicity to restrict our consideration to
such measurements. However, it is straightforward to consider
general measurements using the method outlined in the main
text and Appendix A.

Specifically, we first write

AN = 1

2
+ 1

N2N+1

∑
x

tr (ρxWx )

� 1

2
+ 1

N2N+1

∑
x

λmax[Wx], (F3)

where Wx = ∑
y (−1)xy My .

Note λmax[Wx] = λmin[Wx̄], where x̄ = (x̄1, . . . , x̄N ) is the
bit string obtained from x by flipping all bits. Thus it is
sufficient to only calculate eigenvalues for the strings not
obtainable from each other under a full bit-flip operation. To
this end let z = x1 . . . xN−1, 0 and λz,0 (λz,1) be the largest
(smallest) eigenvalue of Wz. Thus we write

AN � 1

2
+ 1

N2N+1

∑
z

[λz,0 − λz,1]. (F4)

Since λ2
z,0 and λ2

z,1 are eigenvalues of W 2
z , we have λ2

z,0 +
λ2

z,1 = tr (W 2
z ), which is equivalent to

λ2
z,0 + λ2

z,1 =
N∑

y=1

tr
(
M2

y

) +
∑
k<l

(−1)zk+zl tr ({Mk,Ml}).

(F5)

This equation, together with the relation (λz,0 − λz,1)2 �
2(λ2

z,0 + λ2
z,1), imply that Eq. (F4) becomes

AN � 1

2
+

√
2

N2N+1

∑
z

[ N∑
y=1

tr
(
M2

y

)

+
∑
k<l

(−1)zk+zl tr ({Mk,Ml})

]1/2

. (F6)

This provides a robust self-testing condition, allowing
one to determine whether a given set of measurements is
compatible with the observed value of AN . Furthermore, we
can derive an upper bound on the maximal value of AN by
assuming (incorrectly for N > 3) that there exists N mutually
unbiased bases in C2. This means that all measurements are
maximally incompatible, i.e., that tr ({Mk,Ml}) = 0 for k �= l.
Consequently, Eq. (F6) reduces to

AN � 1

2

(
1 + 1√

N

)
. (F7)

We emphasize that only three mutually unbiased bases exist
in C2 and hence this bound is only tight for N = 2, 3. For
N = 2, we recover the result presented in the main text. For
N = 3, this implies that a maximal value of A3 (i.e., achieving
the right-hand side of the above inequality) ensures that the
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measurements are three mutually unbiased qubit observables,
such as the three Pauli observables σx , σy , and σz.

Going one step further, we can then also self-test the
preparations (still assuming maximal value of A3). Indeed,
each preparation ρx must be pure, and correspond to the
eigenvector of Wx associated to its largest eigenvalue. Such
a set of preparations corresponds to a set of Bloch vectors
forming a cube on the surface of the Bloch sphere.

2. Compatibility of preparations

We ask whether a given value of AN can be explained by
a particular set of preparations. We suitably express (F2) in a
quantum model and subsequently apply the Cauchy-Schwarz
inequality for operators to obtain

AN = 1

2
+ 1

N2N

N∑
y=1

tr

[
M0

y

∑
x

(−1)xy ρx

]

� 1

2
+ 1

N2N

N∑
y=1

√√√√√tr

⎡
⎣M0

y

(∑
x

(−1)xy ρx

)2
⎤
⎦. (F8)

In the last expression, the squared operator is evaluated to(∑
x

(−1)xy ρx

)2

=
∑

x

ρ2
x +

∑
k<l

(−1)ky+ly {ρk, ρl}. (F9)

If necessary, the anticommutators can be evaluated using
Bloch sphere representation with the relation {ρk, ρl} =
1/2[(1 + �mk · �ml )1 + ( �mk + �ml ) · �σ ]. However, it is more
convenient to consider a basis-independent representation.
Importantly, note that since an equal number of positive
and negative terms appear inside the square, the operator∑

x (−1)xy ρx is a linear combination of {σx, σy, σz} and hence
its square is proportional to the identity operator. Therefore,
when reinserting Eq. (F9) into Eq. (F8), we find

AN � 1

2
+ 1

N2N

N∑
y=1

[ ∑
x

tr
(
ρ2

x

)

+
∑
k<l

(−1)ky+ly tr ({ρk, ρl})

]1/2

. (F10)

This is a self-testing condition for preparations, assessing
whether a given set of preparations is compatible with a
given value of AN . In particular, a classical strategy in which
the preparations are binary messages corresponds to ∀x :
tr (ρ2

x ) = 1 and tr ({ρk, ρl}) = 2δE(k),E(l), where E is the spe-
cific classical encoding strategy, i.e., a function E : {0, 1}N →
{0, 1}.

APPENDIX G: SELF-TESTING
WITH THREE-LEVEL SYSTEMS

In the main text, we have considered self-testing in the
2 → 1 random access code when the physical system trans-
mitted from Alice to Bob is a qubit. Clearly, if that system
is allowed to carry two bits of information, the task is trivial
since Alice can send both her inputs to Bob. Here, we consider

the remaining nontrivial case of Alice communicating a three-
level quantum system. To simplify the analysis we restrict
ourselves to projective measurements for which all possible
arrangements admit a compact characterization. We show
that the optimal quantum value equals A2 = (5 + √

5)/8 ≈
0.9045 and find all the optimal arrangements of observables
(we argue that the optimal value is achieved only if both
measurements are projective). Our argument is robust in the
sense that we are able to certify incompatibility of M0 and M1

whenever the success probability exceeds the classical bound
for three-level systems, which turns out to be A2 � 7/8.

To obtain a statement which only depends on the observ-
ables we follow the main text and evaluate the sum

∑
x0,x1

λmax[(−1)x0M0 + (−1)x1M1]. (G1)

Jordan’s lemma states that any two projective observables can
be simultaneously diagonalized such that the resulting blocks
are 1 × 1 or 2 × 2. For observables acting on a qutrit, we only
need to consider two cases: (a) three one-dimensional sub-
spaces or (b) one subspace of each type. Case (a) corresponds
to classical strategies and it is easy to check that these satisfy
A2 � 7/8. In case (b) the observables (up to a unitary) can be
written as

M0 =
(

cos α σx + sin α σz

r

)
,

M1 =
(

cos α σx − sin α σz

s

)
(G2)

for some angle α ∈ [0, 2π ] and r, s ∈ {±1}. A simple calcu-
lation yields

λmax[M0 + M1] = max{2|cos α|, r + s},
λmax[M0 − M1] = max{2|sin α|, r − s},

λmax[−M0 + M1] = max{2|sin α|,−r + s},
λmax[−M0 − M1] = max{2|cos α|,−r − s}

and, therefore,

∑
x0,x1

λmax[(−1)x0M0 + (−1)x1M1]

=
{

2 + 4|sin α| + 2|cos α| if r = s,

2 + 2|sin α| + 4|cos α| if r �= s.
(G3)

For r = s the right-hand side is maximized for α ∈ {c1, c1 +
π,−c1 + π,−c1 + 2π}, where c1 is the unique solution
to tan c1 = 2 in the interval [0, π/2]. Similarly, for r �= s

the right-hand side is maximized for α ∈ {c2, c2 + π,−c2 +
π,−c2 + 2π}, where c2 is the unique solution to tan c2 = 1/2
in the interval [0, π/2].

While the different optimal arrangements are not unitarily
equivalent, they are of similar form. The optimal arrangement
characterized by r = s = 1 and α = c1 yields the following
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optimal preparations:

ρ00 =
(

0
1

)
, ρ01 =

(
(1 + σz)/2

0

)
,

ρ10 =
(

(1 − σz)/2
0

)
, ρ11 =

(
(1 − σx )/2

0

)
.

(G4)

Indeed, it is always the case that one preparation lives in the
1 × 1 subspace, whereas the other three occupy the 2 × 2
subspace (two of them form a basis to which the last one
is unbiased). To see that the optimal winning probability
requires projective measurements, note that for every set of
preparations the optimal observables can be chosen projec-
tive. However, all sets of preparations optimal for projective
observables are of the form given above and one can check
that for these preparations the optimal measurements must be
projective (a direct consequence of the fact that the opera-
tors ρ00 + ρ01 − ρ10 − ρ11 and ρ00 − ρ01 + ρ10 − ρ11 are full
rank).

It is the presence of multiple inequivalent maximizers that
prevents us from writing down a simple self-testing state-
ment. However, Eq. (G3) allows us to deduce the range of
α compatible with the observed value of A2 (note that the
conclusion will be stronger if we know whether r = s or
r �= s). In particular, any value exceeding the classical bound
of 7/8 implies a lower bound on the incompatibility between
M0 and M1 on the 2 × 2 subspace.

APPENDIX H: NUMERICAL METHOD
FOR ROBUST SELF-TESTING

In the main text, we focused on the RAC and derived
an optimal robust self-test. However, robust self-testing is
relevant also for many other tasks that are not RACs. Here, we
outline a numerical method based on semidefinite program-
ming for inferring lower bounds on the worst-case average
fidelity of preparations F in more general tasks. Specifically,
we adapt the so-called swap method of [21] (constructed for
Bell scenarios) to prepare-and-measure scenarios by combin-
ing it with the hierarchy of dimensionally bounded quantum
correlations [41]. For sake of instruction, we first present
the method by applying it to the RAC, and then use it to
robustly self-test preparations in another prepare-and-measure
scenario.

The preparations in the random access code are self-
tested up to a collective unitary transformation. A robust

self-test must therefore be valid under this degree of freedom.
However, one can only consider the fidelity of the unknown
preparations with respect to the optimal states in some chosen
basis. Therefore, in order to achieve a robust self-test, one
needs to find a way to avoid the possibility of a collective
unitary misaligning the bases. This can be done by supplying
Bob’s measurement device with an auxillary system, say it is
initialized in the state |0〉A, into which the unknown received
preparations can be swapped [21]. In the RAC, the opti-
mal measurements are anticommuting Pauli measurements.
Therefore, with inspiration from this ideal case, Bob’s swap
operator S can be composed as follows: S = UV U , where

U = 1 ⊗ |0〉〈0| + B1 ⊗ |1〉〈1|,
(H1)

V = 1 + B0

2
⊗ 1 + 1 − B0

2
⊗ σx,

where B0 and B1 denote the observables of Bob. If B0 and B1

correspond to σz and σx , respectively, the above returns the
two-qubit swap operator. Bob applies S to the joint system of
received preparation (labeled B) and ancilla (labeled A). The
state swapped into Bob’s ancilla reads

ρSWAP
x0x1

= trB[S(ρx0x1 ⊗ |0〉AA〈0|)S†]. (H2)

Consequently, the worst-case average fidelity of Alice’s
preparations with her optimal preparations is

F (A∗
2 ) = min

ρ∈R(A∗
2 )

max
�

1

4

∑
x0x1

tr
[
�

[
ρ ideal

x0x1

]
ρSWAP

x0x1

]

= min
ρ∈R(A∗

2 )
max

�

1

4

∑
x0x1

tr
[
S(�[ρx0x1 ] ⊗ |0〉AA〈0|)

S†(1 ⊗ ρ ideal
x0x1

)]
, (H3)

where R(A∗
2 ) is the set of all preparations that are compatible

with the value A∗
2 and � is the extraction channel, the duality

of which is used above.
We may write the operator S in terms Bob’s observables as

follows:

S = 1

2

∑
ij

sij ⊗ |i〉AA〈j |, (H4)

where

s00 = 1 + B0, s01 = B1 − B0B1,

s10 = B1 − B1B0, s11 = 1 + B1B0B1. (H5)

Inserting this into (H3) we find

F (A∗
2 ) = min

ρ∈R(A∗ )
max

�

1

16

∑
x0x1

∑
ijkl

tr
[
(sij ⊗ |i〉AA〈j |)(�[ρx0x1 ] ⊗ |0〉AA〈0|)(skl ⊗ |k〉AA〈l|)†(1 ⊗ ρ ideal

x0x1

)]

= min
ρ∈R(A∗

2 )
max

�

1

16

∑
x0x1

∑
ijkl

tr[sij�[ρx0x1 ]s†
kl] tr

[|i〉〈j |0〉〈0|l〉〈k|ρ ideal
x0x1

]

= min
ρ∈R(A∗

2 )
max

�

1

16

∑
x0x1

∑
ik

tr[s†
k0si0�[ρx0x1 ]]〈k|ρ ideal

x0x1
|i〉

= min
ρ∈R(A∗

2 )
max

�

1

16

∑
x0x1

∑
ik

tr[Tik�[ρx0x1 ]]〈k|ρ ideal
x0x1

|i〉, (H6)
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where we defined Tik = s
†
k0si0. The four elements of T are

straightforwardly computed to

T00 = 2(1 + B0), T01 = B1(1 − B0) + B0B1(1 − B0),
(H7)

T11 = 2(1 − B0), T10 = B1(1 + B0) − B0B1(1 + B0).
(H8)

In the calculation of the fidelity, the same channel is
applied to all Alice’s preparations. We may simply con-
sider that as four other valid preparations ρ̄x0x1 = �[ρx0x1 ].
The fidelity in (H6) is then a linear combination of vari-
ables {tr (ρ̄x0x11), tr (ρ̄x0x1B0), . . . , tr (ρ̄x0x1B0B1B0)}. There-
fore, we may establish a lower bound on (H6) using the
dimensionally bounded hierarchy of quantum correlations
[41]. The accuracy of this bound depends on the level of
the hierarchy employed. We choose to consider the following
level: we define a moment matrix

χijkl = tr[R†
jQ

†
i QkRl], where

Q = (1, B0, B1, B0B1, B1B0),

R = (1, ρ̄00, ρ̄01, ρ̄10, ρ̄11), (H9)

for i, j, k, l = 1, . . . , 5. From the moment matrix we calculate
all terms needed to evaluate the average fidelity (H6), using
the labels x = 2x0 + x1 + 2,

tr
[
T00ρ̄x0x1

] = 2χ111x + 2χ112x,

tr
[
T11ρ̄x0x1

] = 2χ111x − 2χ112x, (H10)

tr
[
T01ρ̄x0x1

] = χ113x + χ114x − χ115x − χ215x,

tr
[
T10ρ̄x0x1

] = χ113x − χ114x + χ115x − χ215x. (H11)

In order to enforce that the average fidelity is extremized for
a particular value A∗

2 of the random access code, we write
the probability distribution of Bob’s outcomes in terms of the
moment matrix as

P (b|x0, x1, y) = 1 + (−1)bχ1,1,y+2,x

2
. (H12)

Thus we can evaluate A2 as a linear combination of moment
matrix elements. Fixing the value of A2 corresponds to intro-
ducing an affine constraint on the moment matrix. Therefore,
the following semidefinite program establishes a lower bound
on F (A2):

F (A∗
2 ) � min

χ

1

16

∑
x0x1

1∑
i,k=0

tr
(
Tikρ̄x0x1

)〈k|ρ ideal
x0x1

|i〉 (H13)

such that χ � 0, A2 � A∗
2.

We have implemented the semidefinite program and the re-
sults are presented in Fig. 3, together with the lower bound on
F (A2) obtained from the analytical method presented in the
main text. Evidently, the swap method returns a suboptimal
but still nontrivial result. Using the swap method, we find
a higher-than-classical value of F (A2), i.e., F (A2) > 3/4,
whenever A2 > 0.802.

The advantage of the swap method is that it applies also
to other prepare-and-measure scenarios beyond RACs. The
drawback of the method is that the self-tests are typically

FIG. 3. Lower bound on F (A2) as obtained by the swap method
and by analytical technique.

not optimal, and that the complexity of evaluating the dimen-
sionally bounded hierarchy of quantum correlations increases
exponentially with the number of preparations and measure-
ments, thus making more complicated scenarios infeasible to
study.

To exemplify the usefulness of this method also for other
prepare-and-measure scenarios, we present a second example.
Consider a prepare-and-measure scenario in which Alice has
a random input x ∈ {0, 1, 2} and Bob has a random input
y ∈ {0, 1}. Alice may only communicate a qubit to Bob. The
objective of the scenario reads

A =
∑
x,y

cx,yE(x, y), (H14)

where E(x, y) = p(b = 0|x, y) − p(b = 1|x, y) and cx,0 =
[1, 1,−1] and cx,1 = [

√
3,−√

3, 0]. One straightforwardly
finds that the maximal classical value is A = 1 + 2

√
3. We

wish to robustly self-test Alice’s preparations solely based on
the value of A. From numerical brute-force maximizations of
A, we find that its maximal value is A = 5 and that this value
is saturated using anticommuting Pauli measurements and
preparations forming an equilateral triangle in a disk of the
Bloch sphere. Such preparations can up to a unitary be written

ρ ideal
0 = 1

2
(1 + σx ), ρ ideal

1 = 1

2

(
1 +

√
3

2
σz − 1

2
σx

)
,

ρ ideal
2 = 1

2

(
1 −

√
3

2
σz − 1

2
σx

)
. (H15)

We make the ansatz that this constitutes a self-test of the
preparations. We supply Bob with an ancilla state and
define the swap operator as done in the RAC. Performing
calculations fully analogous to the case of the RAC, we
obtain a semidefinite program that gives a lower bound on the

FIG. 4. Lower bound on F (A) as obtained by the swap method.
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worst-case average fidelity

F (A) = min
ρ∈R(A)

max
�

1

3

∑
x

tr
[
�

[
ρ ideal

x

]
ρx

]
, (H16)

where R(A) is the set of preparations compatible with the
value A and � is the extraction channel. We have used
an intermediate level of the hierarchy of dimensionally
bounded quantum correlations (sometimes referred to as

1+AB+BB+BBA) corresponding to an SDP matrix of size
20. The corresponding lower bound on F (A) is presented
in Fig. 4. We first see that the maximal value A = 5 indeed
self-tests (up to numerical precision) the preparations of
Alice to form an equilateral triangle on the Bloch sphere
(the fidelity is one). For nonmaximal values of A, we still
obtain a nontrivial bound on the average fidelity of Alice’s
preparations with the optimal ones.
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3Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
4Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland

(Received 27 March 2018; published 4 December 2018)

Device-independent dimension witnesses (DWs) are a remarkable way to test the dimension of a quantum
system in a prepare-and-measure scenario imposing minimal assumptions on the internal features of the devices.
However, as the dimension increases, the major obstacle in the realization of DWs arises due to the requirement
of many-outcome quantum measurements. In this article we propose a variant of a widely studied communication
task (random access code) and take its average payoff as the DW. The presented DW applies to arbitrarily large
quantum systems employing only binary-outcome measurements.

DOI: 10.1103/PhysRevA.98.062305

I. INTRODUCTION

Realizing higher-dimensional quantum systems with full
control is one of the crucial barriers towards implementing
many quantum information processing protocols and testing
the foundations of physics. While the process of quantum
tomography allows us to reconstruct a quantum system, it re-
quires the assumption of fully characterized measurement de-
vices. The device-independent framework [1,2] in a prepare-
and-measure experiment provides a methodology to obtain a
lower bound on the dimension without assuming the internal
features of the devices. Moreover, quantum advantages in
information processing, for example, quantum communica-
tion complexity [3,4], are linked to this approach. Despite
its merits, implementing device-independent dimension wit-
nesses (DWs) for higher-dimensional quantum systems [5–9]
faces several complications.

One of the problems in many existing protocols is the
requirement of d-outcome measurements. As the dimension
increases, performing many-outcome measurements [10] be-
comes practically difficult due to the facts that (a) mea-
surement outcomes turn coarse grained and (b) the system
becomes more prone to decoherence. In some cases, one
may impose additional assumptions, for instance, simulating
d-outcome measurements by many binary-outcome measure-
ments. However, this approach fails to fulfill the requirements
of DWs in the strict sense.

Another difficulty arises from the fact that the number
of different preparations and measurements (i.e., the total

*mczechlewski@inf.ug.edu.pl
†saha@cft.edu.pl
‡armin.tavakoli@unige.ch
§dokmpa@univ.gda.pl

number of inputs in the devices) also increases as one seeks
to certify a higher-dimensional system. As a result, the exper-
imental errors grow large due to the finite number of trials and
imperfections in the experiment.

Furthermore, the applicability of a desired figure of merit,
used as a DW, should not be limited by a particular dimension.
Rather, it should be applicable to test systems of an arbitrarily
high dimension.

In this article we overcome these challenges by proposing a
class of DWs based on random access codes (RACs) [11] for
quantum systems of an arbitrary dimension. In the simplest
scenario, a DW can be interpreted as a task carried out
by two parties. In each run of the task, the sender Alice
obtains an input in the form of a classical variable a and
communicates a system to the receiver Bob. Apart from the
communicated message, Bob also receives an input y and
produces an output b. The figure of merit, denoted by T , of the
task could be an arbitrary linear function of the statistics T =∑

a,y,b p(a, y)T (a, y, b)p(b|a, y), where p(b|a, y) refers to
the probability of obtaining the output b given the inputs
a and y, and T (a, y, b) denotes the payoff to that event.1

Assuming that the dimension of the communicated system
is d, one can obtain the optimal value of the figure of merit,
denoted by T

c
, for a classical implementation. Obtaining a

value greater than T
c

from the observed statistics certifies
the communicated quantum system to be of at least dimen-
sion d. Quantum random access codes (QRACs), a primitive
quantum communication protocol [12–14], can be used for
this purpose. The original study of QRACs was restricted to
two-dimensional systems [11] and was later generalized to

1Note that p(a, y ) could be absorbed into T (a, y, b). Nevertheless,
the stated form provides a simple intuition.
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Alice

a0a1,...,an−1 ∈ {0, 1, ..., d − 1}n
y ∈ {0, 1, ..., n − 1}

b = ay

m ∈ {0, 1, ..., d − 1}

Bob

FIG. 1. Scheme of the dRAC. Alice gets the input a0, . . . , an−1

and sends a message m to Bob. Besides the message, Bob also
receives the input y ∈ {0, . . . , n − 1}. His task is to give the output
b, which obeys the relation b = ay .

higher dimensions [15–17], yielding several interesting results
in quantum communication [18–21].

There are advantages of using RAC as DWs. The upper
bound on T

c
can be obtained for any d. In addition, the

number of inputs in the devices increases polynomially with
d. Note that one can exploit the quantum communication
complexity tasks [4], which involve binary-outcome measure-
ment for dimension witnessing, but in that case, the input
size grows exponentially with d. However, the generalized
RAC requires d-outcome measurements. To tackle this issue
we introduce a version of RAC, namely, binary RAC. This
involves only binary-outcome measurements and provides
a method to obtain the upper bound of T

c
applicable to

arbitrary d.
The paper is organized as follows. First, we describe the

generalization of the d-dimensional RAC, along with the
proof of optimal classical protocols and bounds. Next, we
propose the binary version (i.e., the outcome b is binary) of
the d-dimensional RAC, taking into account a wider class of
payoff function. Then, we derive a condition on the payoff
function such that the optimal classical protocol is the same
as in a standard RAC. Further, we provide the classical bound
and a quantum protocol that violates the proposed DW for
arbitrary d.

II. STANDARD d-DIMENSIONAL RANDOM ACCESS CODE

Standard d-dimensional random access codes (dRACs) are
a natural generalization of the two-dimensional random access
code [11,17]. Alice receives n numbers a0, . . . , an−1, where
ai ∈ {0, . . . , d − 1}. Then she sends a d-valued (one dit2)
message m ∈ {0, . . . , d − 1} to Bob. Bob gets an input y ∈
{0, . . . , n − 1}. He needs to give the output b, which obeys
the relation b = ay (Fig. 1). Specifically, we are interested in
the average success probability in the case of the inputs a and
y being uniformly distributed and T (a, y, b) = δb,ay

,

T S = 1

ndn

∑
a,y

p(b = ay |a, y). (1)

Since the communicated message m is constrained to be d

valued, it is evident that achieving average success probability

2By dit we mean a d-dimensional classical system.

equal to 1 is impossible. The aim is to find an optimal strat-
egy for the parties, which gives the largest average success
probability.

Following the result in [11] for d = 2, it was mentioned
in [17] and shown later in [22] that coding by majority and
identity decoding is an optimal strategy for dRACs. In the
next two sections, we demonstrate an alternative shorter proof
of this fact and subsequently provide an expression of the
optimal average success probability.

A. Optimal classical strategy

Due to the linearity of the figure of merit, it is sufficient to
consider only deterministic encoding and decoding strategies
to maximize the average success probability. Let us denote
the dit-string a0, . . . , an−1 by a. Any encoding strategy can be
described by a function E : {a} ≡ {0, . . . , d − 1}n �→ {m} ≡
{0, 1, . . . , d − 1} and the probability of sending m for input a

is δm,E(a). In contrast, any decoding for Bob’s input y is de-
scribed as a function Dy : {m} ≡ {0, 1, . . . , d − 1} �→ {b} ≡
{0, 1, . . . , d − 1} and δb,Dy (m) is the probability of outputting
b when message m is received. Thus, the classical average
success probability in the standard RAC is

T
c

S = 1

ndn

∑
a,y

p(b = ay |a, y)

= 1

ndn

∑
m

∑
a,y

δm,E(a)δay,Dy (m)

= 1

ndn

∑
m,a

δm,E(a)

(∑
y

δay,Dy (m)

)

� 1

ndn

∑
a

max
m

(∑
y

δay,Dy (m)

)
. (2)

From this expression, we can observe that for given decoding
strategy Dy (m), the optimal encoding will be

δm,E(a) = 1 if, ∀m′ ∈ {0, . . . , d − 1},∑
y

δay,Dy (m) �
∑

y

δay,Dy (m′ ). (3)

We can reduce the possibility of all decoding functions into
two ways: (a) identity decoding, i.e., ∀y,m, Dy (m) = m, and
(b) not identity decoding, ∃y,m such that D(m) 	= m. Here
the mapping Dy could be one to many in general.

Lemma. There exists an optimal classical strategy with
identity decoding (a).

Proof. We will show that for the case described in (b),
there exists a strategy obtaining the same average success
probability as for the identity decoding (a). Let D←

y (b) be
the domain of b, i.e., the set of m such that Dy (m) = b. If
b does not exist in the range of Dy , we define D←

y (b) = b.
We denote by D←

y (a) the set of a dit string a′ ≡ a′
0, . . . , a

′
n−1

such that Dy (a′
y ) = ay . Thus, D←

y (a) acts on the yth dit of
the dit string. If there is a classical strategy having an encoding
function E and decoding functions Dy [where Dy (m) 	= m for
some y,m], we can construct different encoding and decoding
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functions

E′(D←
0 D←

1 · · ·D←
n−1(a)) = E(a)

∀y,m, D′
y (m) = m. (4)

Now, if the strategy (E,Dy ) gives the correct answer for the
input (a, y), then the modified strategy (E′,D′

y ) gives the cor-
rect answer for at least one of the inputs (D←

0 · · · D←
n−1(a), y).

Thus, the average success probability for the modified strategy
(E′,D′) is equal to or greater than the strategy (E,D). �

From (3) we conclude that optimal encoding is

δm,E(a) = 1 such that,

∀m′ ∈ {0, . . . , d − 1},
∑

y

δay,m �
∑

y

δay,m′ . (5)

In other words, the optimal strategy for Alice is to communi-
cate the majority dit of the input string and b = m.

B. Average success probability

Now we calculate the classical average success probability
for an n-dit string. The total number of possible inputs is
ndn. In the n-dit string, which is given to Alice, the ith dit
(i ∈ {0, 1, 2, . . . , n − 1}) appears ni times in the string a. The
number of ways it may occur is the same as the number of
solutions in non-negative integers of the equation

n0 + n1 + n2 + · · · + nd−1 = n. (6)

The Equation (6) is a special case of the equation

c0n0 + c1n1 + c2n2 + · · · + cd−1nd−1 = n, (7)

with all coefficients {c0, c1, c2, . . . , cd−1} equal 1. Equa-
tion (7) is known in number theory as the Diophantine
equation of Frobenius and it is connected to the Frobenius
coin problem and the Frobenius number [23,24]. The total
number of possible solutions of (6) is

(
n+d−1
d−1

)
[25]. For

each solution Alice will communicate max{n0, n1, . . . , nd−1}
to Bob. So the number of successful inputs is given by

n!
n0!n1!···nd−1! max{n0, n1, . . . , nd−1}, as n!

n0!n1!···nd−1! is the num-
ber of possible combinations for an n-dit string with a given
set of ni’s and max{n0, n1, . . . , nd−1} is the number of times
where Bob will guess the correct dit. Therefore, the average
success probability is given by

T
c

S = 1

ndn

∑ n!

n0!n1! · · · nd−1!
max{n0, n1, . . . , nd−1}, (8)

where the summation is over all
(
n+d−1
d−1

)
possible solutions

of (6).

III. BINARY RANDOM ACCESS CODE

A binary random access code (Fig. 2) is a communica-
tion complexity problem based on the standard dRAC. Two
parties, Alice and Bob, are given the following task. Alice
receives n dits a = a0, . . . , an−1, the same as in the standard
dRAC. She sends a d-valued message to Bob. However, Bob
gets two inputs y ∈ {0, 1, . . . , n − 1} and k ∈ {0, 1, . . . , d −
1}. He needs to answer the following question: Is ay = k? Bob
encodes his answer in a variable G, which is 0 when his guess
is yes and 1 for no.

Alice

a0a1,...,an−1 y, k

G ∈ {0, 1}

m ∈ {0, 1, ..., d − 1}

Bob

FIG. 2. Scheme of the binary RAC. Alice gets the input
a0, . . . , an−1 and sends the message m to Bob. Besides the
message Bob receives two inputs y ∈ {0, 1, . . . , n − 1} and k ∈
{0, 1, . . . , d − 1}. His task is to guess whether ay = k or not. His
answer is encoded in G, which is 0 when his guess is yes and 1 when
it is no.

A. Defining the average payoff function

We are free to reward the parties with any number of points,
specified by a payoff function T (a, y, k,G). Therefore, for
simplicity, we assume that this function does not depend on
the values of numbers ai in the input a with indices different
from y. Hence, we assign T only two values

T (ay, k,G) =
{
Tyes when G = 0, ay = k

1 when G = 1, ay 	= k.
(9)

We are interested in the average payoff function, which is a
linear combination of payoffs for all possible uniformly dis-
tributed inputs. Without loss of generality, we can normalize
the average payoff such that it takes a value within [0,1]. Thus,
for the binary RAC with payoffs defined in (9) we have

T B = 1

ndnTd

[ ∑
a,y,k

[p(G = 0|a, y, k, ay = k)Tyes

+p(G = 1|a, y, k, ay 	= k)]

]
, (10)

where Td = Tyes + d − 1 such that T B is normalized.

B. Optimal classical strategy for Bob

To find the optimal classical strategy for Bob, first we split
him into two parts: BI (initial Bob) and BF (final Bob). Here
BI gets the message m from Alice, receives input y, and
forwards a d-long-bit string b = b0, . . . , bd−1 to BF . Each of
the bits in the string represents the given answer of BF for a
different question ruled by k. Thus, when BF gets k and the
bit string b he returns G = bk (Fig. 3). This splitting in no
way reduces the generality of Bob’s behavior since the whole
information processing part is done locally by BI ; BF only
returns one of the values from a table provided by BI .

Notice that before receiving Alice’s message Bob knows
nothing about the string a, so his entropy H (a) = n log2 d (we
assume that Alice’s inputs are uniformly distributed). After
receiving the message, Bob’s entropy for each ai is reduced
to Hm

i = H (ai |m). These two entropies are related by the
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Alice

a0a1,...,an−1 k

G

m

BobF

y

BobI

b0,...,bd−1

FIG. 3. Scheme of the binary RAC. Bob is split into two parts:
BI (initial Bob) and BF (final Bob).

information causality principle [26]

H (a) −
n−1∑
i=0

Hi � C, (11)

where Hi = ∑d−1
m=0 p(m)Hm

i is the averaged conditional
Shannon entropy and C is the capacity of a classical channel.
Hence, from (11) we obtain the lower bound for Hi , which is
determined by two established quantities: entropy H (a) and
the channel capacity C.

Besides the message m, BI receives the input y, which
makes him interested in the particular dit ay from the string
a. Let us introduce the probability distribution pj = p(ay =
j |m, y), where j ∈ {0, . . . , d − 1}, which represents BI ’s
knowledge about dit y. First, we see that the entropy Hm

i=y

can be presented in terms of this probability distribution

Hm
i=y = −

d−1∑
j=0

pj log2 pj . (12)

Second, we notice that, depending on the payoff function,
there exists a critical value of probability (pcrit) such that if
pj > pcrit, then sending bj = 0 leads to larger average payoff
than bj = 1. We derive a formula for pcrit in the following
way. We know that sending bj = 0 leads to the answer G = 0
for j = k. This gives Tyes points with probability pj . For
bj = 1 we get one point with 1 − pj . The first option is better
if Tyespj � 1 − pj , so

pj � 1

Tyes + 1
= pcrit. (13)

Furthermore, let us analyze the average payoff T =
T (m, y) for a message set m, given encoding strategy E, the
input y and Td defined in (10),

T = 1

Td

d−1∑
j=0

[Tyesp(bj = 0|m, y)p(ay = j |m, y)

+ p(bj = 1|m, y)p(ay 	= j |m, y)]. (14)

We introduce a variable x as the number of bits in the string
b for which the optimal strategy is set to 0 for the probability
distribution p(bj |m, y). In other words, x is the number of pj

that are greater than pcrit. Using x we can rewrite the entropy
Hm

i=y [Eq. (12)] as

Hm
i=y = −

x−1∑
j=0

pj log2 pj −
d−1∑
j=x

pj log2 pj . (15)

Additionally, without loss of generality, we may assume that
pj are ordered in such way that pj � pj+1. Then the average
payoff becomes

T = 1

Td

[ x−1∑
j=0

Tyespj +
d−1∑
j=x

(1 − pj )

]
. (16)

Because the value of T [Eq. (16)] depends only on the sums∑x−1
j=0 pj and

∑d−1
j=x pj and not on the individual elements of

the sums, we can choose that all the elements in each sum
are equal because this makes the entropy Hm

i=y [Eq. (15)] the
largest without changing T . In other words, the probability
distribution pj becomes a step function: The values of all
pj for j = {0, . . . , x − 1} are uniform (denoted by p) and
the values of the remaining pj for j = {x, . . . , d − 1} are
uniform as well and, according to the normalization condi-
tion

∑
j pj = 1, they must be equal to 1−xp

d−x
. Obviously, we

assume that the encoding strategy E reaches p > 1
d

. Due to
the above assumptions, we can express T as a function of x

and p,

T = 1

Td

{x[Tyes p − (1 − p)] + d − 1}. (17)

The entropy (15) (henceforth denoted by Hx) can also be
expressed by these parameters

Hx = −xp log2 p − (1 − xp) log2
1 − xp

d − x
. (18)

Imposing (13), we substitute Tyes in (17) and find

p = T + pcrit[d(T − 1) − 2T + x + 1]

x
. (19)

One can further plug the above expression into (18) to get the
entropy Hx as a function of d, T , x, and pcrit.

C. Optimal x for our case

It has been shown in Sec. II A that the majority of the
encoding is optimal in the standard RAC scenario, where
Alice is allowed to send only one dit of information to Bob.
To employ this result in the binary RAC protocol (in this case
BI sends to BF a bit string b0, . . . , bd−1 with exactly one 0
in the established position and 1’s in the others) we must set
the restriction that for any T , the probability p for x = 1 is
always greater than any p for x 	= 1 [Eq. (19)]. To do this we
must find a lower bound of pcrit such that the entropy Hx=1 is
always greater than any entropy Hx 	=1 for any given value of
T from the relevant range. Hence, in the beginning, we define
a function �i in the following way:

∀i 	= 1, �i = Hx=1 − Hx=i . (20)

Notice that the symmetry of the entropy Hx = Hd−x for x ∈
{1, . . . , d − 1} makes it sufficient to check the condition (20)
only for �i , i ∈ {2, 3, . . . , � d

2 �}.
Let us outline the methodology of obtaining the minimum

value of pcrit for which �i > 0. Clearly, �i is a function of d,
T , and pcrit. We first find the range of T in terms of d and pcrit

within which �i is well defined. After that, we fix the value
of d and pcrit and obtain the minimum value of �i within the
relevant range of T for all i. If the minimum value of �i is
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T TTT

FIG. 4. Dependence of H on T for d = 8, x = 1, 2, 3, 4, and
pcrit = 0.14. We note that the entropy for the strategy with x = 1
is not always the largest in the established ranges of T . According to
the numerical procedure, this is an example in which, at step III C,
�i � 0 and our algorithm skips from step III C to step III C. Vertical
lines indicate the limits of the ranges [T0, T

x=i
1 ].

nonpositive for some i ∈ {2, . . . , � d
2 �}, we know that such a

value of pcrit is not suitable. We repeat the evaluation of �i for
another value of pcrit increased by a small interval than before.
Once we find that �i is positive for all i ∈ {2, . . . , � d

2 �}, we
conclude that the taken value of pcrit is approximately the
same as the desired value.

For every �i we must determine the range of T . The lower
limit of the range is the value of T for which Hx=1 is maximal.
According to (18), Hx=1 takes a maximum for p = 1

d
. Putting

it in (19) gives an analytical expression for the lower limit

T0 = 1 + (d − 2)dpcrit

d + (d − 2)dpcrit
. (21)

On the other hand, the upper limit of the range is the value
of T > T0 for which Hx takes the bound. The bound is
established by setting xp = 1 in (18) so that it strictly depends
on x. Hence, setting p = 1

x
in (19) gives

T x=i
1 = 1 + pcrit(d − i − 1)

1 + (d − 2)pcrit
. (22)

Thus, for every �i there is a different range [T0, T
x=i

1 ].
We have found pcrit numerically using a method described

by the following algorithm.
1. For a chosen dimension d, set pcrit = 1

d
and εpcrit , which

is its numerical increase.
2. Substitute pcrit := pcrit + εpcrit .
3. Calculate T0 from (21).
4. Set the variable i := 2.
5. Calculate T x=i

1 from (22).
6. Calculate �i for T0 and T x=i

1 and find the minimal value
of �i in the range [T0, T

x=i
1 ] (if the minimal value does not

exist do not take it into account). If �i � 0 for at least one of
these three (or two) points, then go to point III C. Otherwise,
i := i + 1.

7. Check if i � � d
2 �. If it is fulfilled then go to step 5.

Otherwise return pcrit.
Obviously, the accuracy of our method depends strictly

on εpcrit . The smaller it is, the more precise the result is.
Additionally, it is noteworthy that the criterion for optimal

T TTT

FIG. 5. Dependence of H on T for d = 8, x = 1, 2, 3, 4, and
pcrit = 0.184 95. The largest entropy is obtained with exactly one
strategy for which x = 1. According to our procedure, this is an
example in which, at step 6, �i > 0 for every i ∈ {2, 3, . . . , � d

2 �}
and our algorithm returns pcrit. Vertical lines indicate the limits of
the ranges [T0, T

x=i
1 ].

encoding is derived from Hm
i=y [Eq. (12)], which is valid for

all y ∈ {0, . . . , n − 1} and thus it is independent of n.
To illustrate the procedure described above we plot the

dependence of H on T for some small pcrit and different
values of x in Figs. 4 and 5. Obtained values of pcrit along with
their corresponding Tyes are shown in Fig. 6 and the values for
some particular dimensions are given in Table I.

D. Average classical and quantum payoff function
for n = 2 and arbitrary dimension

Now we calculate the average classical and quantum pay-
off (10) for binary RAC. First, for a given dimension d, we
must determine the value of Tyes corresponding to x = 1 as
it was presented in the preceding section. It follows that the
optimal encoding strategy is sending the majority dit, which
is the same as for the standard dRAC [Eq. (5)]. Further, it
can be readily seen that, given an encoding E, the optimal

200 400 600 800 1000 d

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pcrit

200 400 600 800 1000 d
2

4

6

8

10

12

Tyes

FIG. 6. Numerical calculation of values of the minimal pcrit and
the corresponding maximal Tyes as a function of dimension with
accuracy εpcrit = 10−5.
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TABLE I. Values of minimal pcrit and the corresponding maxi-
mal Tyes for chosen dimensions d .

d pcrit Tyes

3 0.33340 1.99940
8 0.18495 4.40687
10 0.17021 4.87510
50 0.11180 7.94454
200 0.08885 10.25490
700 0.07524 12.29080
1000 0.07121 13.04300

decoding is

G =
{

0 if
∑

a|ay=k δm,E(a) � ∑
a|ay 	=k δm,E(a)

1 otherwise.
(23)

Therefore, in the case of majority encoding, Bob returns G =
0 if the received message m = k; otherwise 1. Given an input
a, the total payoff over all possible y and k is

Tdñ + (d − 2)(n − ñ), (24)

where we define ñ = max{n0, n1, . . . , nd−1}. This is due to
the fact that if y is such that ny is the maximum, i.e., ay is
the majority dit, then Bob gives the correct answer for all k,
obtaining the maximum payoff Td . Such an event occurs ñ

times. In the other n − ñ cases Bob returns the correct answer
only if k 	= ay and k 	= E(a), obtaining the d − 2 payoff.
Subsequently, the average payoff is given by

T
c

B = 1

ndnTd

∑ n!

n0!n1! · · · nd−1!

× [ñ(Tyes + 1) + n(d − 2)], (25)

where the summation is over all
(
n+d−1
d−1

)
possible solutions

of (6). Imposing the expression of the average payoff of the
dRAC [Eq. (8)], T

c

B simplifies to

T
c

B = (Tyes + 1)T
c

S + d − 2

Tyes + d − 1
. (26)

For n = 2 we can find T
c

S = 1
2 + 1

2d
, and substituting this

in (26) leads to

T
c

B = 1

Td

[
Tyes + 1 + d(2d + Tyes − 3)

2d

]
. (27)

Let us consider a quantum strategy based on the quantum
dRAC presented in [17]. Alice codes her input a0a1 in a
d-dimensional quantum state as

|ψa0a1〉 = 1

N2,d

(
|a0〉 + 1√

d

d−1∑
j=0

ωja1 |a1 + j 〉
)

, (28)

where N2,d =
√

2 + 2√
d

is the normalization factor and ω =
e2πi is the quantum Fourier transform factor. For the decoding
Bob uses the projective measurements M

y

k , depending on
inputs y and k,

M0
k = {

P 0
k , I − P 0

k

}
, M1

k = {
P 1

k , I − P 1
k

}
. (29)

Here P 0
k = |k〉〈k| and P 1

k = |k̄〉〈k̄|, where |k̄〉 =
1√
d

∑d−1
k=0 ωkk̄|k〉 corresponds to the outcome G = 0. Simple

calculations lead to the quantum average payoff

T
q

B = 1

Td

[
Tyes + 1 + √

d(2d + Tyes − 3)

2
√

d

]
. (30)

The difference between (30) and (27) is given by

T
q

B − T
c

B = 1

Td

[
(Tyes + 1)(

√
d − 1)

2d

]
, (31)

which is always greater than zero for d � 2. Thus, the binary
version of the RAC provides a device-independent way to
test an arbitrary-dimensional quantum system employing only
binary-outcome measurements.

IV. SUMMARY

The primary feature of this article was to present a DW
applicable to test arbitrarily large quantum systems imple-
menting only binary-outcome measurements. We proposed a
variant of the RAC and took the average payoff of this com-
munication task as the indicator of the dimension. We have
provided the optimal classical bound for the binary version
of the generalized RAC. In contrast to the other quantum
communication complexity problems in which the number
of prepared states grows exponentially with dimension, the
proposed DW requires d2 different preparations and 2d mea-
surements. In the future, it would be interesting to prove the
optimality of the quantum strategy for binary RAC and look
for more robust DWs retaining the aforementioned significant
features.
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The semi-device-independent framework allows one to draw conclusions about properties of an unknown
quantum system under weak assumptions. Here we present a semi-device-independent scheme for the char-
acterization of multipartite entanglement based around a game played by several isolated parties whose
devices are uncharacterized beyond an assumption about the dimension of their Hilbert spaces. Our scheme
can simultaneously certify that an n-partite high-dimensional quantum state features genuine multipartite
entanglement, and that a joint measurement on n subsystems is entangled. Moreover, it provides a lower bound
on the number of entangled measurement operators. These tests are strongly robust to noise, and even optimal for
certain classes of states and measurements, as we demonstrate with illustrative examples. Notably, our scheme
allows the certification of many entangled states admitting a local model, which therefore cannot violate any
Bell inequality.

DOI: 10.1103/PhysRevA.98.052333

I. INTRODUCTION

Entanglement represents a central feature of quantum the-
ory and a key resource for quantum information process-
ing [1]. Therefore, the task of characterizing entanglement
experimentally is of fundamental significance. In particular,
the development of quantum networks, multiparty cryptogra-
phy, quantum metrology, and quantum computing necessitates
certification methods tailored to multipartite entangled states,
as well as to entangled joint measurements.

Standard methods for the certification of multipartite en-
tanglement rely on entanglement witnesses [2], as quantum
tomography quickly becomes infeasible as the number of
subsystems increases. Entanglement witnesses can also be
used for the particularly important subcase of certifying gen-
uine multipartite entanglement (GME), the strongest form
of multipartite entanglement, where all subsystems are gen-
uinely entangled together; see, e.g., Refs. [1–3]. In practice,
the main drawback of entanglement witnesses is that they
crucially rely on the correct calibration of the measurement
devices, as a set of specific observables must be measured.
Importantly, even small alignment errors can have undesirable
consequences, e.g., leading to false positives [4], and it is
generally cumbersome to estimate these errors and take them
into account rigorously.

This motivates the development of certification methods
that require minimal assumptions on the measurement de-
vices and in particular do not rely on their detailed charac-
terization. This is the spirit of the device-independent (DI)
approach to entanglement characterization, which also leads
to interesting possibilities for quantum information processing
[5–7]. The idea is to use the violation of Bell inequalities, as
these necessarily imply that the state is entangled even with-
out any knowledge about the measuring devices. Moreover,
GME can also be detected via Bell-like inequalities [8–15].
Experimentally, however, this approach is very demanding

as high visibilities are typically required. More generally, a
broad range of entangled states (including many GME states
[16–18]) cannot violate any Bell inequality [19] as they admit
local hidden variable models [20,21]. Finally, although Bell
inequalities can in principle be used for the certification of
entangled joint measurements [22], no practical scheme has
been reported thus far.

This motivates the exploration of partially DI scenarios,
in between the fully DI case of Bell inequalities and the
device-dependent case of entanglement witnesses. Here, only
weak assumptions about the devices are typically made. One
possibility is to consider that a subset of parties perform well-
characterized measurements, while the others are uncharacter-
ized [23–25]. Another option is to consider Bell experiments
with quantum inputs, leading to the so-called measurement-
device-independent characterization of entanglement [26,27].
While experimental demonstrations have been reported, both
of these approaches have the drawback of requiring certain
parts of the experiment to be fully characterized.

In the present work, we follow a different approach for
entanglement characterization. Specifically, we will assume
only an upper bound on the Hilbert space dimension of the
subsystems of interest, but require no detailed characterization
of any of the devices. Roughly speaking, this assumption
means that all the relevant degrees of freedom are described
in a Hilbert space of given dimension [28–30], and that
other potential side channels can be neglected. This scenario,
usually referred to as the semi-DI (SDI) setting, has been
considered for the characterization of entanglement in the
simplest setting of two-qubit states [31,32], as well as the
detection of two-qubit entangled measurements [33,34].

Here, we present a versatile scheme for characterizing mul-
tipartite entanglement in both states and measurements simul-
taneously in a semi-DI setting that significantly improves pre-
vious approaches. Our scheme allows one to simultaneously
certify that (I) an n-partite quantum state (of arbitrary local
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FIG. 1. An n-partite state is distributed between parties
A1, . . . , An who perform transformations on their local systems
depending on their random inputs (xk, yk ). Each party sends their
transformed d-dimensional system to B who performs a measure-
ment and obtains an outcome b.

dimension) is GME, and that (II) a measurement performed on
the n subsystems is entangled. Furthermore, we obtain a finer
characterization for the measurement, namely, a lower bound
on the number of entangled measurement operators. In general
our scheme is strongly robust to noise, and even optimal in
certain cases. It certifies all noisy qubit Greenberger-Horne-
Zeilinger (GHZ) states that are GME, and, in the bipartite
case, all entangled isotropic states of arbitrary dimension.
Other classes of GME states, e.g., Dicke states, can also be
certified, although not optimally. For the case of entangled
measurements, we give two illustrative examples. In partic-
ular, we optimally certify the presence of entanglement in a
noisy Bell-state measurement. Finally, we conclude with a list
of open questions.

II. SCENARIO

The scenario we consider consists of a state being initially
prepared, then transformed by several separated parties, and
finally measured. Since we operate within the SDI framework
no assumptions are made on the internal workings of any of
these parties’ devices, other than a bound on their local Hilbert
space dimensions, see Fig. 1.

Let an uncharacterized source distribute a state ρ of ar-
bitrary dimension between n parties A1, . . . , An, each of
which receives a subsystem. Each party Ak receives uniformly
random inputs xk, yk ∈ {0, . . . , d − 1}. Subsequently, they
perform local transformations T (k)

xkyk
[some completely positive

trace-preserving (CPTP) map] which map their local states
into a d-dimensional state. The transformed state is sent to a
final party denoted by B who performs a measurement {Mb}b
(i.e., Mb � 0 and

∑
b Mb = 1) which produces an outcome

string b = b1 . . . bn ∈ {0, . . . , d − 1}n (see Fig. 1).The exper-
iment generates a probability distribution P (b|x, y), where
x = x1 . . . xn and y = y1 . . . yn, given by

P (b|x, y) = tr

[(
n⊗

k=1

T (k)
xkyk

)
[ρ]Mb

]
. (1)

The goal of the task we consider is for the parties to cooperate
so that B’s output satisfies the conditions

b1 =
n∑

i=1

xi ≡ C1(x) and bk = yk − y1 ≡ Ck (y), (2)

for k = 2, . . . , n, where all quantities are computed modulo
d. Compactly, we write C(x, y) for the (unique) string b satis-
fying all the above conditions. Note that these conditions are
not totally symmetric (except when n = 2). Given a strategy
leading to a probability distribution P (b|x, y), the probability
of winning the task (or if a win is rewarded with a point, the
average score) is thus given by

An,d = 1

d2n

∑
x,y

P (b = C(x, y) | x, y). (3)

We now show how, from the value of an observed average
score An,d , one can make inferences about the entanglement
of the state ρ and the measurement {Mb}b.

III. CHARACTERIZING ENTANGLEMENT OF STATES

We first consider certifying the GME of the shared state.
A state is said to be GME if it is not biseparable, i.e., if it
cannot be written in the form ρ = ∑

S

∑
i pS,iρ

S
i ⊗ ρS̄

i , for
any possible bipartition {S, S̄} of the subsystems {1, . . . , n},
where

∑
S,i pS,i = 1 and pS,i � 0.

We now show that the value of An,d can be nontrivially
upper bounded for any n-partite biseparable state. This will
allow us to certify GME of many states of interest.

Result 1. Let ρ be a state of n subsystems. For any
measurement {Mb}b and any transformations {T (k)

xkyk
}k , it holds

that

ρ is biseparable ⇒ An,d � 1/d. (4)

Hence, whenever An,d > 1/d, ρ is certified to be GME. More-
over, this inequality is tight and the bound can be saturated
with fully separable states.

Proof. The full details of the proof are given in Ap-
pendix A. In order to prove the upper bound in Eq. (4),
we consider a relaxed SDI task in which any distribution
P (b|x, y) obtainable in the original task is also possible in the
relaxed setting, but not vice versa. The relaxation is chosen
so that the average score An,d can easily be upper bounded
using a result of Ref. [35]. By construction, the upper bound
obtained in the relaxed scenario is also valid for the original
task.

To see that the bound is tight, we give a strategy that utilizes
only product states and saturates the bound (4). Let Ak (for
k = 1, . . . , n) send yk to party B. B then outputs bi = yi −
y1, satisfying condition Ci , for i = 2, . . . , n. However, this
strategy forces B to guess b1 in order to satisfy condition C1.
Any such guess succeeds, on average, with probability 1/d,
thus saturating the bound. �

To show the relevance of the relation in Eq. (4), we show
that it can be violated by GME states. In particular, we
first consider the largest achievable value of An,d . It turns
out that the algebraically maximal value, i.e., An,d = 1, can
be achieved for all n and d via the following strategy. A
GME state of n subsystems of local dimension d, namely,
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the generalized GHZ state, |GHZn,d〉 = 1/
√

d
∑d−1

i=0 |i〉⊗n, is
distributed among the parties A1, . . . , An. Each party then
performs the unitary transformation UAk

xkyk
= ZxkXyk for k =

1, . . . , n, where

Z =
d−1∑
j=0

e2iπj/d |j 〉〈j |, X =
d−1∑
j=0

|j + 1〉〈j | (5)

are the usual clock and shift operators. Finally, B performs a
joint projective measurement in the basis of generalized GHZ
states given by

|Mb〉 = Zb1 ⊗ Xb2 ⊗ · · · ⊗ Xbn |GHZn,d〉. (6)

Note that in the simplest case of two qubits (n = d = 2),
the four unitaries are simply the three Pauli matrices and
the identity matrix, while the measurement is the Bell-state
measurement [36].

Let us now consider noisy GHZ states: ρGHZ
n,d (v) =

v |GHZn,d〉〈GHZn,d | + (1 − v)1/dn, where v ∈ [0, 1] is the
visibility of the state. For the above strategy, one has
An,d (1/dn) = 1/dn. Hence, from the linearity of An,d in ρ,
it follows that a violation of Eq. (4) is obtained whenever
v + (1 − v)/dn > 1/d, that is, when v > (dn−1 − 1)/(dn −
1). We discuss the implications of this result in three separate
cases of interest.

(I) For two d-dimensional systems (n = 2), the criterion
is v > 1/(d + 1), which is precisely the condition for the en-
tanglement of ρGHZ

2,d (v) [37]. Hence, every entangled isotropic
bipartite state is certified by our protocol. Interestingly, such
certification is impossible using Bell inequalities; for instance,
we note that the state ρGHZ

2,2 (v) has a local hidden variable
model (for projective measurements) when v < 0.6829 [38],
and it will therefore not violate any Bell inequality. For large
d, such models are known for v � ln d/d [39], while Bell
inequality violations are possible for v ∼ ln d/

√
d [40]. In

contrast, our protocol can certify entanglement for v ∼ 1/d.
(II) In the case of a system of many qubits (d = 2), our

visibility criterion coincides with the condition for ρGHZ
n,2 (v) to

be GME [41]. Hence our scheme can certify all noisy qubit
GHZ states that are GME. Again, this would not be possible
using Bell inequalities, as (for instance) the state ρGHZ

3,2 (v =
1/2) is GME but admits a biseparable model reproducing all
correlations from projective measurements [10]. Furthermore,
the GME of ρGHZ

3,2 (v) is known to be certifiable via a Bell
inequality when v > 0.64 [11], whereas our criterion reads
v > 3/7.

(III) When considering many high-dimensional systems
(n > 2 and d > 2), our setup is no longer optimal since there
exist generalized GHZ states that are GME below the critical
visibility of our scheme [42]. Nevertheless, choosing, for
instance, n = d = 3, the criterion is v > 4/13 which substan-
tially outperforms the certification obtainable via known Bell
inequalities, which is possible when v > 0.81 [10,14].

More generally, we derive a lower bound on the max-
imal value of An,d achievable for an arbitrary state ρ. To
this end, consider the following strategy. Let B perform the
measurement given by Eq. (6), and let each party Ak perform
the transformation T (k)

xkyk
[ρ] = (UAk

xkyk
) �k[ρ] (UAk

xkyk
)†, where

UAk
xkyk

= ZxkXyk and the �k , for k = 1, . . . , n, are CPTP maps.

Evaluating the score with this strategy and optimizing over the
CPTP maps �1, . . . ,�n straightforwardly leads to

An,d (ρ) = EGFn,d (ρ), (7)

where we have defined the quantity EGFn,d (ρ) = max�1,...,�n

tr [(
⊗n

k=1 �k )[ρ]|GHZn,d〉〈GHZn,d |]. If one instead maxim-
izes only over unitary maps �k[ρ] = VkρV

†
k one

obtains An,d = GFn,d (ρ), where GFn,d (ρ) = maxV1,...,Vn

tr [(
⊗n

k=1 Vk )ρ(
⊗n

k=1 Vk )†|GHZn,d〉〈GHZn,d |] is the GHZ
fraction [43], a multipartite generalization of the singlet
fraction [37,44]. EGFn,d (ρ) can then be seen as the
“extractable” GHZ fraction, an important generalization
since, even in the bipartite case, local CPTP maps can
increase the singlet fraction of an entangled state [45].

To determine whether one can obtain a better score than
that given by Eq. (7) by considering arbitrary transformations
and measurements, we conducted extensive numerical tests.
Focusing on the cases (n, d ) ∈ {(2, 2), (2, 3), (3, 2)} and opti-
mizing numerically An,d starting from randomly chosen trans-
formations and measurements, we were unable to obtain a
better score than EGFn,d (ρ). We note also that when restricted
to unitary transformations, we were similarly unable to obtain
a score larger than GFn,d (ρ). Motivated by this numerical
evidence, we make the following conjecture:

Conjecture. Let ρ be an n-partite state of local dimension
d. Then the maximal value of An,d achievable for any mea-
surement {Mb}b and transformations {T (k)

xkyk
}k is EGFn,d (ρ),

i.e.,

max
{T (k)

xkyk
}
k
,{Mb}b

An,d (ρ) = EGFn,d (ρ). (8)

Proving this conjecture would be particularly interesting
in the bipartite case, as violation of our witness would then
certify an extractable singlet fraction greater than 1/d, which
implies that maximal entanglement can be distilled from the
state ρ [37].

Finally, we discuss other classes of GME states that
are qualitatively inequivalent to GHZ states. First, consider
noisy W states of three qubits, i.e., W (v) = v |W 〉〈W | + (1 −
v)1/8, where |W 〉 = 1√

3
(|001〉 + |010〉 + |100〉). Numerical

optimization gives a (seemingly optimal) strategy obtaining
A3,2 = 1

8 (1 + 5v). This implies that our scheme certifies the
GME of W (v) for v > 3/5. This is relatively close to the
optimal visibility for GME of v > 0.48 [46]. In comparison,
known DI schemes based on Bell inequalities would require
v > 0.72 [10].

Second, consider a noisy four-qubit Dicke state
D(v) = v |D〉〈D| + (1 − v)1/16, where |D〉 = 1√

6
(|0011〉 +

|0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉). Numerically,
the best strategy we find certifies the GME of D(v)
for v > 7/11 ≈ 0.64, while it is known to be GME for
v > 0.46 [46].

IV. CHARACTERIZING ENTANGLEMENT
OF MEASUREMENTS

Next, we consider characterizing the entanglement of the
joint measurement performed by B. A measurement {Mb}b is
said to be entangled if at least one measurement operator Mb
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does not have a fully separable decomposition Mb = ∑
i Mb,i ,

where Mb,i � 0 and each Mb,i has the tensor product form
Mb,i = ⊗n

k=1 M
(k)
b,i . We will see that the separability of {Mb}b

imposes a nontrivial bound on An,d which will allow us to
certify the entanglement of the measurement used. However, it
is sufficient for a single measurement operator to be entangled
in order for the measurement to be entangled. This qualitative
property rules out a classical description, but reveals little
about the extent to which entanglement is present in the mea-
surement. Interestingly, we can go a step further and show that
the value of An,d implies a bound on the minimum number
of the dn measurement operators that are entangled. This
provides a much finer characterization of the joint entangled
measurement performed by B.

Result 2. Let {Mb}b be a joint measurement of an n-partite
system of local dimension d with at least k ∈ {0, . . . , dn} fully
separable measurement operators. For any n-partite state ρ

and any transformations {T (k)
xkyk

}k it holds that

At least k separable
measurement operators ⇒ An,d � 1

dn

(
dn − k + k

d

)
. (9)

Hence, a violation of this inequality for a particular k implies
that at least dn − k + 1 measurement operators are entangled.

The proof of this result is given in Appendix B.
In the extremal case of a fully separable measurement

(k = dn), the bound (9) reduces to An,d � 1/d, and observing
a violation of this bound certifies the entanglement of the
measurement. In the other extreme of witnessing a measure-
ment whose operators are all entangled [i.e., violating Eq. (9)
for k = 1], the bound (9) is An,d � 1 − (d − 1)/dn+1. In
Appendix C we give some partial results on the tightness of
Eq. (9).

To demonstrate the usefulness of Result 2, we now discuss
two illustrative examples in the bipartite case. First, consider
a noisy version of a generalized Bell-state measurement (for
arbitrary d), which is a joint measurement of two d-level
systems given by the projection onto a basis of d2 maximally
entangled states {|Mb1b2〉}b1b2 . To this end, we consider the
measurement operators Mb1b2 (v) = v |Mb1b2〉〈Mb1b2 | + (1 −
v)1/d2. Note that each of these measurement operators is
equivalent (up to local unitaries) to an isotropic state ρGHZ

2,d (v),
and is thus entangled precisely when v > 1/(d + 1). To cer-
tify the entanglement of this measurement, consider again the
strategy used previously in which the parties share a maxi-
mally entangled state of two d-level systems, and perform the
unitary transformations UAk

xkyk
= ZxkXyk . Note that the score

obtained here is the same as when considering a shared noisy
isotropic state ρGHZ

2,d (v), combined with an ideal Bell-state
measurement. It thus follows from the previous results that we
can certify the entanglement of the measurement whenever
v > 1/(d + 1). Hence, we certify entanglement whenever
the level of noise is low enough to keep the measurement
operators entangled. Nevertheless, note that in this case our
witness certifies only that at least one measurement operator
is entangled, while all the measurement operators are in fact
entangled. To certify the entanglement of all d2 measure-
ment operators, a much higher visibility of v > (d2 + d −
1)/(d2 + d ) is required.

Second, we consider a two-qubit Bell-state measurement
subjected to colored noise for the case n = d = 2. Defin-
ing the usual Bell basis |φ±〉 = 1√

2
(|00〉 ± |11〉), |ψ±〉 =

1√
2
(|01〉 ± |10〉), and �± = |φ±〉〈φ±|, �± = |ψ±〉〈ψ±|, con-

sider the measurement given by the operators

E00 = v�+ + 1 − v

4
(�+ + 2�− + �+), (10)

E01 = v�+ + 1 − v

4
(�+ + �− + 2�+), (11)

E10 = v�− + 1 − v

4
(2�+ + �− + �+), (12)

E11 = �−, (13)

for some visibility v ∈ [0, 1]. When 1/3 < v � 1, all four
operators are entangled; when 0 < v � 1/3, only E01 and E11

are entangled; and when v = 0, only E11 is entangled.
Considering the same strategy as in the previous example

(i.e., sharing a maximally entangled state and applying the
transformations UAk

xkyk
), we find A2,2 = (1 + v)/2. By virtue

of Eq. (9), this certifies the presence of four entangled mea-
surement operators when v > 3/4, at least three when v >

1/2, at least two when v > 1/4, and at least one when v > 0.

V. CONCLUSION

We presented a scheme for the semi-DI characterization
of high-dimensional and multipartite entanglement. It can
simultaneously certify that states are GME and provide a
lower bound on the number of measurement operators that
are entangled. It is highly robust to noise and even certifies
the entanglement of some families of states and measure-
ments optimally. Since many entangled states admitting a
local model can be certified in our scheme, it overcomes the
fundamental limitations of entanglement certification using
Bell inequalities at the price of a bound on Hilbert space
dimension.

The noise robustness of our setup makes it promising for
experimental tests, in particular for atomic and solid-state
systems where both entangled states and entangled mea-
surements have been demonstrated [47,48]. An interesting
question is whether our scheme could be adapted to optical
setups, where only partial entangled measurements are typi-
cally available.

We conclude with some relevant open questions. (I) Does
Eq. (9) hold also for biseparable measurement operators,
thereby allowing the number of GME measurement operators
to be bounded? (II) Can a more sophisticated semi-DI scheme
certify the entanglement of all GME states (not just particular
classes of states, as shown here)? (III) Can our scheme be used
as a dimension witness for both states and measurements?
(IV) Note that a score An,d = 1 implies that all the rela-
tions (2) are satisfied. This makes the scheme a good candidate
for multiparty cryptographic tasks (e.g., secret sharing of
classical data with quantum resources). Exploring this pos-
sibility would be interesting. (V) Can the scheme be used
for self-testing states, measurements, and transformations in
prepare-and-measure experiments [49]?
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APPENDIX A: PROOF OF RESULT 1

In this Appendix, we prove result 1. Specifically, we bound
the maximal value of An,d that can be obtained by bisepa-
rable states, regardless of the choice of transformations and
measurements. Since An,d depends linearly on ρ, no mixed
biseparable state can be used to obtain a larger score than
some pure biseparable state. Hence, we need only consider
pure states of the form |χ〉S ≡ |ψ〉S ⊗ |φ〉S̄ , for any nontrivial
bipartition {S, S̄} of the set of subsystems {1, . . . , n}.

Consider |χ〉S for a particular bipartition {S, S̄}. To give an
upper bound on An,d , we will relax some of the constraints
in the scenario considered by the scheme and then evaluate
the maximal average score in this less restrictive setting.
In particular, we consider the scenario in which the parties
{Ak}k∈S are permitted to communicate unbounded informa-
tion to B, while the remaining parties {Ak}k∈S̄ are grouped
into a single “effective” party R, and which receives all their
inputs. The party R is allowed to send |S̄| d-level quantum
systems (equivalently, a system of dimension d |S̄|) to B. This
scenario is illustrated in Fig. 2.

It is clear that any probability distribution P (b|x, y) ob-
tainable in the original scenario on a state |χ〉S (i.e., with
some choice of transformations and measurements) is also
obtainable in the relaxed scenario, but not vice versa. Since,
by assumption, there is no entanglement over the bipartition
{S, S̄}, the parties {Ak}k∈S cannot do better than to simply send
all their inputs to B. To win the game, R therefore needs to
communicate to B the values of

∑
i∈S̄ xi and all {yi}i∈S̄ for the

conditions C1, . . . , Cn to be satisfied. However, this amounts
to (|S̄| + 1) log2 d bits of information, while R can generally

FIG. 2. Modified scenario (cf. Fig. 1). Parties {Ak}k∈S are al-
lowed unlimited communication to B, whereas the remaining parties
{Ak}k∈S̄ are grouped into a single party, R, allowed S̄ log2 d bits of
communication. The case shown is for S = {1, . . . , |S|}.

only send |S̄| log2 d bits using a d |S̄|-level system, and must
therefore employ a nontrivial optimal communication strat-
egy. As we demonstrate more formally below, there is no
quantum strategy that allows B to know this information with
a probability higher than 1/d, and therefore cannot win the
game with a probability better than this either. Consequently,
the desired bound follows.

To this end, let us consider the following general setting
for an information compression task between two parties,
Alice and Bob. Let Alice receive a uniformly distributed input
x ∈ {1, . . . , N} which she must communicate to Bob. She
encodes this input into a quantum state ρx of dimension at
most d, with N > d (if N � d then Alice can simply send x).
This amounts to Alice compressing her input into a smaller
message to send. This message is then sent to Bob, who
must attempt to retrieve the value of x from the state ρx

by performing a suitable measurement {Mb}Nb=1. What is the
average probability of success for Bob to correctly obtain x

following this measurement? As is shown, e.g., in Ref. [35],
any quantum strategy must obey the following bound:

psuccess ≡ 1

N

N∑
x=1

P Q(b = x|x) = 1

N

N∑
x=1

tr (ρxMx )

� 1

N

N∑
x=1

λmax(Mx ) � 1

N

N∑
x=1

tr (Mx )

= 1

N
tr

(
N∑

x=1

Mx

)
= d

N
, (A1)

where we have used the fact that the optimal state ρx max-
imizing tr(ρxMx ) is the eigenvector of Mx corresponding to
its largest eigenvalue, and that λmax(Mx ) � tr (Mx ). In the
last step we used that

∑
x Mx = 1d for any positive-operator

valued measure (POVM) {Mx}x .
Moreover, there is no quantum advantage over classical

approaches to encode and decode this information. This is
straightforwardly seen by noting that the quantum bound (A1)
can be saturated with a classical strategy as follows. Let
Alice send the classical message m(x) = x whenever x =
1, . . . , d, and m(x) = d if x ∈ {d + 1, . . . , N}. Bob always
outputs the message he receives, i.e., b = m(x). Whenever
x ∈ {1, . . . , d}, it is indeed true that b = x and Bob correctly
obtains x; when x ∈ {d + 1, . . . , N}, Bob never succeeds.
The average success probability of this simple classical strat-
egy reads

psuccess ≡ 1

N

N∑
x=1

P C(b = x|x) = d

N
. (A2)

Hence, quantum theory provides no advantage over classical
coding for the stated task. Note that the above bears resem-
blance to the Holevo bound, with the difference that we are
probabilistically accessing the information.

We can now apply this result to the relaxed scenario under
consideration in the proof of Result 1. There, the effective
party R plays the role of Alice and has to transmit to Bob
which of the d |S̄|+1 possible inputs they received by encoding
it in a d |S̄|-dimensional quantum system. From the above
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result, the average success probability of B correctly guessing
the inputs of R—and therefore winning the game—cannot be
better than 1/d, which is indeed the desired result.

APPENDIX B: PROOF OF RESULT 2

Here we present the proof of result 2. We begin with a
useful lemma, which is straightforward:

Lemma 1. Let σAB be a bipartite density matrix in HA ⊗
HB and 0 � M � 1 (N ) be a symmetric operator on HA

(HB). Let σA = trB [σAB]. Then the following inequality
holds:

trAB [σAB (M ⊗ N )] � trA [σAM]λmax[N ]. (B1)

Proof. Let N = ∑
i ni |i〉〈i| be the spectral de-

composition of N . Remark that σ
(i)
A = 〈i|σAB |i〉 is

an (unnormalized) positive semidefinite operator. We
then have trAB [σAB (M ⊗ N )] = ∑

i ni trA [σ (i)
A M] �

λmax[N ] trA [
∑

i σ
(i)
A M] = λmax[N ] trA [σAM]. �

Equipped with this lemma, we can now prove the state-
ment of result 2. Party B performs a measurement with
dn different possible outcomes, described by measurement
operators {Mb}b with Mb � 0 and

∑
b Mb = 1. Let SEP be

the set of strings b for which Mb is a separable measure-
ment operator, with |SEP| � k; for b ∈ SEP we thus have

Mb = ∑
i

⊗n
k=1 M

(k)
b,i . We will initially assume for simplicity

that these separable POVM elements have the simpler tensor
product form Mb = ⊗n

k=1 M
(k)
b ; we will see later that because

of the linearity of An,d , the proof nonetheless holds for
arbitrary separable operators.

The parties A1, . . . , An may perform arbitrary transfor-
mations T (k)

xkyk
, which are formally represented by completely

positive trace-preserving (CPTP) maps. Such transformations
can always be written as a unitary U (k)

xkyk
applied jointly to

the local system and some environment state ξEk
, with the

environment being subsequently traced out. Formally, we
have

T (k)
xkyk

: σ �→ trEk

[
U (k)

xkyk
(σ ⊗ ξEk

)U (k)†
xkyk

]
. (B2)

We denote the Hilbert space for each party by Sk and the total
Hilbert space of the parties by S = ⊗n

k=1 Sk . Similarly, we
denote the local and total Hilbert spaces of the environment
by Ek and E = ⊗n

k=1 Ek , respectively. The total initial envi-
ronment state is thus ξE = ⊗n

k=1 ξEk
. (Note that in our SDI

scheme we only assume a bound on the dimension of the
output space of each party so, a priori, this may be different
from that of the input spaces so that the U (k)

xkyk
instead map

S i
k ⊗ E i

k → Sf

k ⊗ Ef

k . For simplicity we assume the input and
output spaces have the same dimensions in the proof below;
the argument generalizes trivially to the more general case.)

Evaluating explicitly An,d , we have

An,d = 1

d2n

∑
x, y, b :

b = C(x, y)

trS

[(
n⊗

k=1

T (k)
xkyk

)
[ρ]Mb

]

= 1

d2n

∑
x, y, b :

b = C(x, y)

trSE

[(
n⊗

k=1

U (k)
xkyk

)
(ρ ⊗ ξE )

(
n⊗

k=1

U (k)†
xkyk

)
(Mb ⊗ 1E )

]

= 1

d2n

∑
x, y, b ∈ SEP :

b = C(x, y)

trSE

[
(ρ ⊗ ξE )

n⊗
k=1

{
U (k)†

xkyk

(
M

(k)
b ⊗ 1Ek

)
U (k)

xkyk

}]

+ 1

d2n

∑
x, y, b /∈ SEP :

b = C(x, y)

trSE

[
(ρ ⊗ ξE )

(
n⊗

k=1

U (k)†
xkyk

)
(Mb ⊗ 1E )

(
n⊗

k=1

U (k)
xkyk

)]
. (B3)

Restricting ourselves to the first term above, we have

T ≡ 1

d2n

∑
x, y, b ∈ SEP :

b = C(x, y)

trSE

[
(ρ ⊗ ξE )

n⊗
k=1

{
U (k)†

xkyk

(
M

(k)
b ⊗ 1Ek

)
U (k)

xkyk

}]

� 1

d2n

∑
x, y, b ∈ SEP :

b = C(x, y)

trS1E1

[
(ρS1 ⊗ ξE1 )

{
U (1)†

x1y1

(
M

(1)
b ⊗ 1E1

)
U (1)

x1y1

}] n∏
k=2

λmax
[
M

(k)
b

]
, (B4)

where ρS1 = trS2...Sn
[ρS ] and we have used Lemma B n − 1 times, together with the identity λmax[U (k)†

xkyk
(M (k)

b ⊗ 1Ek
)U (k)

xkyk
] =

λmax[M (k)
b ].
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Since {Mb}b is a valid POVM it must satisfy
∑

b Mb = ∑
b∈SEP

⊗n
k=1 M

(k)
b + ∑

b/∈SEP Mb = 1S . Tracing out subsystems
{2, . . . , n}, we see that

∑
b∈SEP

M
(1)
b

n∏
k=2

tr
[
M

(k)
b

] = dn−11S1 −
∑

b/∈SEP

trS2···Sn
[Mb]. (B5)

By noting that, given the values of y1, x1, . . . , xn−1, b, the condition b = C(x, y) fixes the values of the remaining variables
and that these remaining variables do not appear in the summand in Eq. (B4), we can rewrite the summation simply over
y1, x1, . . . , xn−1, b. Noting also that 0 � λmax[P ] � tr [P ] for any positive semidefinite operator P and using Eq. (B5) we have

T � 1

d2n

∑
y1, x1, . . . , xn−1,

b ∈ SEP

trS1E1

[(
ρS1 ⊗ ξE1

){
U (1)†

x1y1

(
M

(1)
b

n∏
k=2

λmax
[
M

(k)
b

] ⊗ 1E1

)
U (1)

x1y1

}]

� 1

d2n

∑
y1,x1,...,xn−1

trS1E1

[(
ρS1 ⊗ ξE1

){
U (1)†

x1y1

( ∑
b∈SEP

M
(1)
b

n∏
k=2

tr
[
M

(k)
b

] ⊗ 1E1

)
U (1)

x1y1

}]

= 1

d2n

∑
y1,x1,...,xn−1

trS1E1

[(
ρS1 ⊗ ξE1

){
U (1)†

x1y1

(
dn−11S1E1 −

∑
b/∈SEP

trS2···Sn
[Mb] ⊗ 1E1

)
U (1)

x1y1

}]

� 1

d
− 1

d2n
λmax

[ ∑
y1,x1,...,xn−1

U (1)†
x1y1

( ∑
b/∈SEP

trS2···Sn
[Mb] ⊗ 1E1

)
U (1)

x1y1

]
. (B6)

We note briefly that one also obtains Eq. (B6) if one considers general separable operators of the form Mb = ∑
i

⊗n
k=1 M

(k)
b,i

(rather than simple tensor products). This follows readily from the linearity of both Eqs. (B4) and (B5), so that the sum over
separable measurement operators can be eliminated in the same way as above.

Continuing with the proof, note that for a positive semidefinite operator P in a d-dimensional Hilbert space, λmax[P ] �
1
d

tr [P ]. Hence, letting D be the dimension of E1, we have

T � 1

d
− 1

Dd2n+1
trS1E1

[ ∑
y1,x1,...,xn−1

U (1)†
x1y1

( ∑
b/∈SEP

trS2···Sn
[Mb] ⊗ 1E1

)
U (1)

x1y1

]

= 1

d
− 1

Ddn+1

∑
b/∈SEP

trSE1 [Mb ⊗ 1E1 ]

� 1

d
− 1

dn+1

∑
b/∈SEP

λmax[Mb], (B7)

where, in the last step, we used the relation trSE1 [Mb ⊗ 1EA
] = D trS [Mb] � Dλmax[Mb].

Substituting this back into the expression (B3) for An,d and noting that

trSE

[
(ρ ⊗ ξE )

(
n⊗

k=1

U (k)†
xkyk

)(
Mb ⊗ 1Ek

)( n⊗
k=1

U (k)
xkyk

)]
� λmax[Mb] � 1, (B8)

we have the bound

An,d � 1

d
+

(
1

dn
− 1

dn+1

) ∑
b/∈SEP

λmax[Mb] � 1

d
+

(
1

dn
− 1

dn+1

)
(dn − k) = 1

dn

(
dn − k + k

d

)
, (B9)

as desired.

APPENDIX C: PARTIAL TIGHTNESS OF RESULT 2 FOR TWO PARTIES

In this Appendix we consider the tightness of the inequality derived in result 2 for the bipartite case, which gives a lower
bound on the number of entangled measurement operators compatible with a given average score A2,d . Specifically, we present
a simple strategy that saturates the bound using a measurement for which there are k = md separable measurement operators,
for m = 0, . . . , d.

Consider the following projective joint measurement of two d-dimensional quantum systems, in which the measurement
operators Mb = |Mb〉〈Mb| are separable for all (b1, b2) satisfying b2 − b1 ∈ {0, . . . , m − 1}, and entangled otherwise (where, as
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always, b2 − b1 is computed modulo d). Hence, there are md separable operators and (d − m)d entangled operators. Specifically,

|Mb1b2〉 =
{|b1, b2〉 for b2 − b1 ∈ {0, . . . , m − 1},
Zb1 ⊗ Xb2−b1 |φmax〉 for b2 − b1 /∈ {0, . . . , m − 1}. (C1)

To see that this is a valid measurement, note that all the inner products of two different separable basis elements is zero. Similarly,
the entangled basis elements constitute a subset of the Bell basis and are thus orthonormal. To show that the inner products
between the separable basis elements and entangled basis elements are all zero, consider the straightforward calculation

〈b′
1, b

′
2|Zb1 ⊗ Xb2−b1 |φmax〉 = 1√

d

d−1∑

=0

ω
b1〈b′
1, b

′
2|
, 
 + b2 − b1〉 = ωb′

1b1

√
d

δb′
2−b′

1,b2−b1 . (C2)

Since all the separable basis elements have b′
2 − b′

1 ∈ {0, . . . , m − 1} while all entangled basis elements have b2 − b1 /∈
{0, . . . , m − 1}, the final Kronecker delta function is zero. Hence, Eq. (C1) defines an orthonormal basis.

Consider thus the following strategy. Let A1 and A2 share a maximally entangled state, and apply (a relabelled variant of) the
transformation strategy exploited several times in the main text, namely, take the unitary transformations UA1

x1y1
= Zx1Xy1+x1 and

UA2
x2y2

= Zx2Xy2−x2 . It follows straightforwardly that

A2,d = d − m

d
+ m

d2
, (C3)

which saturates the upper bound described in result 2 for any m. We leave it as an open question whether a similar partial
tightness result holds in the more general n partite case.
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Quantum resources can improve communication complexity problems (CCPs) beyond their classical
constraints. One quantum approach is to share entanglement and create correlations violating a Bell
inequality, which can then assist classical communication. A second approach is to resort solely to the
preparation, transmission, and measurement of a single quantum system, in other words, quantum
communication. Here, we show the advantages of the latter over the former in high-dimensional Hilbert
space. We focus on a family of CCPs, based on facet Bell inequalities, study the advantage of
high-dimensional quantum communication, and realize such quantum communication strategies using
up to ten-dimensional systems. The experiment demonstrates, for growing dimension, an increasing
advantage over quantum strategies based on Bell inequality violation. For sufficiently high dimensions,
quantum communication also surpasses the limitations of the postquantum Bell correlations obeying only
locality in the macroscopic limit. We find that the advantages are tied to the use of measurements that are
not rank-one projective, and provide an experimental semi-device-independent falsification of such
measurements in Hilbert space dimension six.

DOI: 10.1103/PhysRevLett.121.150504

Introduction.—Communication complexity problems
(CCPs) are tasks in which distant parties hold local data,
the collection of which is needed for a computation of their
interest. To make the computation possible, the parties
communicate with each other. However, the amount of
communication is limited, and therefore, not all data can be
sent. The CCPs consist in parties adopting an efficient
communication strategy which allows them to perform the
desired computation with a probability as high as possible.
Efficient use of quantitatively limited communication is a
broadly relevant matter [1], which provides fundamental
insights on physical limitations [2,3].
The ability to process information depends on the choice

of the physical system into which the information is
encoded [4]. Consequently, quantum entities without a
classical counterpart can be regarded as tools for quantum
information processing. The most famous example is
entanglement. In a quantum CCP, parties may share an
entangled state on which they perform local measurements,
generating strongly correlated data which violate a Bell
inequality. That data can then be used to assist a classical
communication strategy [5]. In fact, Bell inequalities have
been systematically linked to CCPs [6–8], and their
violation enables better-than-classical communication
efficiencies [7–15].

Nevertheless, quantum theory also presents a second
approach to CCPs: substituting classical communication
with quantum communication. Such a substitution must
ensure that no more than the allowed amount of classical
information can be extracted from the quantum commu-
nication, i.e., that the constraints of the CCP are respected.
Since the Holevo theorem [16] implies that no more
information can be extracted from a quantum d-level
system than from a classical d-level system, a valid
quantum communication strategy may encode information
in quantum states of a specified limited Hilbert space
dimension, and subsequently extract it by a measurement.
The ability of quantum communication to outperform
classical constraints in CCPs is well established [17–25].
Many quantum communication tasks can be successfully

completed both by means of local measurements on an
entangled state followed by classical communication, or by
the communication of a single quantum system [26–28].
For two-party CCPs with both binary communication and
outcomes, classical communication assisted by correlations
violating a Bell inequality is always at least as good as an
implementation based on quantum communication [29].
Explicit examples in which the advantage is strict are
known [30,31]. However, examples also exist of two-party
CCPs with more than two outcomes in which quantum
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communication holds an advantage over the Bell inequality
based approach [32,33].
In this Letter, we theoretically explore and experimen-

tally demonstrate advantages of performing CCPs with
quantum communication in high-dimensional Hilbert
space, as compared to exploiting the violation of a Bell
inequality. To this end, we focus on a family of CCPs
[12,13] based on the (to the best of our knowledge) only
known family of bipartite facet Bell inequalities. Facet
inequalities optimally bound correlations with a local
hidden variable model [34]. We consider the Collins-
Gisin-Linden-Massar-Popescu (CGLMP) inequalities,
involving any d number of outcomes [35,36]. We demon-
strate the advantage of quantum communication over
strategies based on violations of the CGLMP inequalities,
which we show to be even larger than previously thought
[33]. In particular, while resolving two conjectures of [33],
we show that, below dimension six, both quantum CCP
implementations are equally efficient, whereas above (and
including) dimension six, they are not. In this sense,
dimension six acts as a threshold for revealing the advan-
tages of quantum communication. To understand the
suddenly emerging discrepancy between the two quantum
CCP implementations, we evidence that optimal quantum
communication strategies in high-dimensional Hilbert
space require projective measurements that are not rank
one. Subsequently, we present an experimental realization.
Using high-dimensional photonic systems, specifically up
to dimension ten, we outperform strategies based on
violating the CGLMP inequalities, emerging from dimen-
sion six, by means of quantum nonlocal correlations.
Furthermore, we also outperform strategies based on
superquantum violations of said inequalities respecting
only no-signaling and macroscopic locality [37]. Finally,
we prove that the experimental data cannot be simulated
with any rank-one projective measurement without addi-
tional postprocessing of the data. Since only a dimensional
bound on the relevant Hilbert space is assumed, this
constitutes a semi-device-independent [38] falsification
of said property.
The communication complexity problems.—Every quan-

tum implementation of a Bell experiment that leads to a
violation of a Bell inequality can be mapped to a particular
strategy in an associated CCP. The corresponding CCP
strategy leads to an advantage over classical methods
analogous to the violation of the Bell inequality [7,8]. A
natural candidate for such mappings are optimal (facet)
Bell inequalities. The CGLMP inequalities [35] constitute a
family of facet Bell inequalities for two parties, each with
two choices of measurements and with d ≥ 2 possible
outcomes.
The construction of CCPs based on the CGLMP inequal-

ities has been developed in [12,13]. In this family of CCPs
(parametrized by d), a party Alice is given random inputs
x0 ∈ f0;…; d − 1g and x ∈ f0; 1g, and another party, Bob,

is given a random input y ∈ f0; 1g. Alice may communicate
nomore than log d bits toBob, afterwhich he outputs a guess
g ∈ f0;…; d − 1g. If g coincides with the value of a
function fkðx0; x; yÞ ¼ x0 − xy − ð−1Þxþykmod d, for
some k ¼ 0;…; bd=2c − 1, the partnership is awarded ck ¼
1–2k=ðd − 1Þ points. However, if g coincides with
hk ¼ x0 − xyþ ð−1Þxþyðkþ 1Þmod d, the partnership
loses ck points. The task is to efficiently communicate such
that the average number of points earned is large. The payoff
function is given by

ΔBell
d ¼ 1

4d

X
x0 ;x
y;k

ck½Pðg ¼ fkjx0; x; yÞ − Pðg ¼ hkjx0; x; yÞ�:

On the one hand, in an approach based on Bell inequal-
ities, Alice and Bob share an entangled state and perform
local measurements x and y with d-valued outcomes a and
b, respectively. In order to exploit the fact that the CCP is
tailored to the CGLMP inequalities, Alice encodes the
classical communicationmða; x0; xÞ ∈ f0;…; d − 1g using
m ¼ x0 þ amod d, and Bob subsequently decodes it using
g ¼ m − bmod d (see Fig. 1). It was shown [12,13,33] that
the resulting value of ΔBell

d is in one-to-one correspondence
with the quantity evaluated from the statistics pða; bjx; yÞ
in a test of the CGLMP inequalities. In this sense, the
efficiency in the CCP is determined by the amount of
nonlocality present in the distribution pða; bjx; yÞ. In
particular, if pða; bjx; yÞ generates a maximal violation
of the (suitably normalized) CGLMP inequalities, then by
the outlined communication strategy, it can be used to
achieve an equally large value of ΔBell

d . The maximal
quantum value achievable in a test of the CGLMP inequal-
ities lacks a simple analytical form but is known up to large
d and achieved with nonmaximally entangled states [39].

FIG. 1. (a) Quantum CCP implementation based on the
violation of the CGLMP inequalities. (b) Quantum CCP imple-
mentation based on communicating a single d-level quantum
system.
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Violations have been experimentally observed for high-
dimensional systems [40–42].
On the other hand, these CCPs can also be implemented

without exploiting entanglement and Bell inequality vio-
lations [33]. Instead, Alice and Bob can use single quantum
systems for direct quantum communication. In such an
implementation, Alice associates her random inputs ðx; x0Þ
to a d-dimensional quantum state, ρx0x ∈ Cd, which is sent
to Bob who performs a measurement fMg

ygd−1g¼0, the out-
come g of which determines his output guess (see Fig. 1). In
a quantum model, the performance of the CCP reads

ΔQS
d ¼ 1

4d

X

x0;x;y;k

cktr½ρx0xðMfk
y −Mhk

y Þ�: ð1Þ

An efficient quantum communication strategy, i.e., a
suitable choice of state preparations and measurements,
aims to find the largest value of ΔQS

d . In the Supplemental
Material [43], we discuss the advantages and limitations of
the two quantum CCP implementations, partly based on the
results of Ref. [44]. In Ref. [33], it was shown that the
optimal performance of the two different quantum
approaches is equal, i.e., ΔQS

d ¼ ΔBell
d , when d ¼ 2, 3, 4.

Numerical results also suggested the same relation for
d ¼ 5, 6. However, for d ≥ 7, lower bounds on ΔQS

d were
shown to outperform the maximal value of ΔBell

d . Next, we
revisit this analysis, show improved quantitative results,
establish the precise dimension revealing the inequivalence,
and provide insight to the qualitative differences between
the two quantum implementations of the CCPs.
The efficiency of quantum communication.—We begin

by quantifying the advantage of quantum communication
over strategies based on the violation of the CGLMP
inequalities. Specifically, we numerically infer lower
bounds on the maximal value of ΔQS

d for d ≤ 10. This
has been done by running two optimizations in seesaw
[45,46]: first optimizing over the states of Alice, and then
over the measurements of Bob, repeatedly. Each such
optimization constitutes a semidefinite program [47].
The best found states and measurements are listed in
Supplemental Material [43]. The results are presented in
Table I together with the known [33,39] optimal CGLMP-
based values of ΔBell

d as obtained both in quantum theory,
and by the superquantum principle of macroscopic locality
[37]. The latter correlations are only constrained by the
inability of violating a Bell inequality when the measure-
ments are macroscopic, i.e., that a large number of particles
are collectively measured instead of microscopic measure-
ments on single particles. The results substantially improve
on the lower bounds for ΔQS

d obtained in [33] and, thus,
establish an increased quantitative advantage of high-
dimensional quantum communication over strategies based
on Bell inequality violation. In particular, note that, for
d ¼ 8, 9, 10, quantum communication can even outperform

the Bell inequality based approach when the correlations
established are only required to be macroscopically local;
i.e., the violation of the CGLMP inequalities is larger-than
quantum.
Furthermore, we rectify the main result of [33] by

resolving two of its conjectures: that the optimal quantum
communication strategy performs equally well as that
based on the quantum violation of the CGLMP inequalities
when d ¼ 5 and when d ¼ 6. For d ¼ 5, we have used the
second hierarchy level of dimensionally bound quantum
correlations [48] combined with symmetrization techniques
[49]. We obtain a tight bound on the efficiency of quantum
communication matching that obtained through a maximal
violation of the CGLMP inequalities. This proves the
conjecture. For d ¼ 6, the presented lower bound on
ΔQS

d shows that quantum communication outperforms
the analogous Bell inequality based result. Thus, the
improved lower bound falsifies the conjecture. This estab-
lishes dimension six as the dimension revealing the
quantitative inequivalence between the two quantum imple-
mentations of the CCPs.
A relevant question is whether the breaking of the

equivalence of the two quantum implementations, emerg-
ing when d ≥ 6, is linked to qualitatively different proper-
ties in the optimal use of the respective quantum systems.
Below the critical dimension six, the optimal found
preparations of Alice can be effectively prepared by
Alice locally measuring an entangled state, and then
considering the post-measurement state of Bob for her
given outcome. The collection of Bob’s post-measurement
states is then identical to the collection of states commu-
nicated over a quantum channel in an optimal strategy.
Consequently, there is no advantage over Bell inequality
based strategies. Furthermore, the optimal measurements
coincide with the rank-one projective measurements

TABLE I. Lower bounds for the maximal value of ΔQS
d as

compared to the maximal value of ΔBell
d obtained via the maximal

quantum (and macroscopically local, i.e., ΔML
d ) violation of the

CGLMP inequalities. The final column was obtained through
optimization over unit-trace measurement operators and optimal
measurements were always found to be rank-one projective.

d

Lower
bound
ΔQS

d

Lower
bound ΔQS

d
from [33] ΔBell

d ΔML
d

Lower bound
ΔQS

d rank-one
projective

2 � � � 0.7071 0.7071 0.7071 0.7071
3 � � � 0.7287 0.7287 0.7887 0.7287
4 � � � 0.7432 0.7432 0.8032 0.7432
5 � � � 0.7539 0.7539 0.8249 0.7539
6 0.8000 0.7624 0.7624 0.8345 0.7624
7 0.8175 0.7815 0.7694 0.8461 0.7814
8 0.8571 0.8006 0.7753 0.8529 0.8006
9 0.8622 0.8622 0.7804 0.8605 0.8188
10 0.8889 0.8778 0.7849 0.8657 0.8396
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optimal for violating the CGLMP inequalities. However,
when d ≥ 6 our numerical calculations for d ¼ 6;…; 10
suggest that (I) the states fρx0xg cannot be prepared
remotely with entanglement in a test of the CGLMP
inequalities, and that some inputs may be associated to
the same state, and (II) one of Bob’s measurements is rank-
one projective, whereas the other is higher-rank projective;
i.e., some measurement operators are zero operators,
meaning that the associated outcomes never can occur.
Degenerate measurements are known to be optimal for
some quantum information problems [50,51]. They can be
viewed as rank-one projective measurements with addi-
tional postprocessing by which some outcomes remain
untouched and other outcomes are given new labels. To
further evidence the suboptimality of rank-one projective
measurements (without postprocessing), we have numeri-
cally optimized ΔQS

d over measurements in which all
measurement operators are of trace one. Since all rank-
one projectors are of trace one, and we always find the
optimal measurement to be rank-one projective, the results
constitute a lower bound valid for such measurements. The
results (see Table I) show that, although rank-one projective
measurements are sufficient to outperform strategies based
violating the CGLMP inequalities, they are not optimal.
Experimental demonstration of high-dimensional

quantum communication advantage.—We present an
experimental demonstration of the advantages of single-
system quantum communication in the considered CCPs
for d ¼ 6;…; 10. In our experiment, d-dimensional quan-
tum systems are encoded into the linear transverse momen-
tum of single photons transmitted by programmable
diffractive apertures [52–64].
The experimental setup is presented in Fig. 2. It is

composed of two main parts: one for the state preparation
and another for performing projective measurements on the
prepared system. Each part is controlled by a field
programmable gate array (FPGA) electronics. In the state
preparation, a 690 nm single mode laser modulated with an
acousto-optic modulator (AOM) and optical attenuators
(not shown in Fig. 2) prepare weak coherent states with an
average number of 0.9 photons per pulse. This source can
be seen as an approximation to a nondeterministic single-
photon source, since pulses with a single-photon account
for 62.3% of the generated non-null pulses. Accidental
counts are strongly suppressed by using a detection
window that matches the optical pulse duration of 45 μs.
To encode the quantum states in the linear transverse

momentum of single photons, we exploit the pixel pro-
grammability of spatial light modulators (SLMs) [52,53].
The state preparation and measurement stages have two
fundamental blocks: an amplitude-modulation only SLM1
(SLM3), built with two linear polarizers and a liquid crystal
display (LCD), and a phase-modulation only SLM2
(SLM4), composed of two linear polarizers, two quarter
wave plates, and an LCD [65]. Each SLM is placed in the

image plane of its predecessor. In order to experimentally
generate ρx0x ¼ jψx;x0ihψx;x0 j, a set of d slits with a width of
64 μm and equal center to center separation are displayed
on SLM1 and SLM2. The individual transmittances tl and
phases ϕl of each slit “l” are set to reconstruct the real
and imaginary parts of jψx;x0i. The state vector of the
transmitted photon after the SLM2 is given by jψi ¼
ð1= ffiffiffiffi

N
p ÞPd=2

l¼−d=2
ffiffiffi
tl

p
eiϕl jli, where N is a normalization

constant. The coefficients tl and the phases ϕl are inde-
pendently controlled by the SLM 1 and SLM 2, respec-
tively. To implement the desired measurements, different
amplitude and phase sets of the d slits are used at the SLM3
and SLM4. The transmittances and phases of each set are
chosen to postselect for detection one of the required state
vectors jφy;byi. In the final part of the setup, a “pointlike”
avalanche single-photon detector (APD) with a 10 μm
pinhole is placed at the center of the far field plane of
the SLM4. In this case, the probability of single-photon
detection Pðx; x0; y; bÞ is proportional to jhφy;bjψx;x0ij2
[53–56]. However, since one of the targeted protocol
measurements is rank-two projective (see Supplemental
Material [43]), we postprocess the experimental data to
emulate the statistics of such a measurement. This is done
by suitably relabeling the outcomes of the relevant mea-
surements whenever, in the raw data, it is associated to an
outcome which never occurs in the desired rank-two
projective measurement.
After several rounds of the experiment, an experimental

value of ΔQS
d is obtained, namely ΔExp

d . Since the meas-
urement uncertainty of ΔExp

d decreases with the total
number of counts, the repetition of the experimental rounds
for each dimension were chosen such that ΔExp

d violates the
bounds for Bell inequality based strategies with at least 6

FIG. 2. Experimental setup for implementing the CCPs with
quantum communication. d-dimensional quantum systems are
encoded into the linear transverse momentum of single photons.
The experiment is composed of two main parts: one for the state
preparation and another for performing measurements on the
prepared system. Both parts rely on the programmability of
spatial light modulators for preparing the required states and
measurements.
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standard deviations for each d considered. Hence, any
explanation in terms of an arbitrary entangled quantum
system is excluded by at least 6 standard deviations, which
corresponds to a p value of 1 × 10−9.
For d ¼ 6;…; 10, we obtain the results

ΔExp
6 ¼ 0.7893� 0.0026; ΔExp

7 ¼ 0.8082� 0.0034;

ΔExp
8 ¼ 0.8453� 0.0041; ΔExp

9 ¼ 0.8427� 0.0051;

ΔExp
10 ¼ 0.8773� 0.0018: ð2Þ

In Fig. 3, we compare the experimental results to the
theoretical predictions for quantum communication, as well
as with the limitations of both quantum and macroscop-
ically local Bell correlations. The results are in good
agreement with the theoretical predictions, surpassing
the values associated to the maximal violation of the
CGLMP inequalities. In particular, in the case of
d ¼ 10, the results also surpass the limitations of the
postquantum Bell correlations obeying only macroscopic
locality.
Finally, we revisit the previously numerically evidenced

hypothesis of rank-one projective measurements being
suboptimal. Focusing on the case of d ¼ 6, we have
considered whether the experimental data can be repro-
duced by some quantum communication strategy utilizing
only such measurements. To this end, we have used an
intermediate level [66] of the hierarchy of dimensionally
bound quantum correlations [48], and additionally imposed
upper and lower bounds on the particular probabilities
measured in the lab corresponding to ðx0; xÞ ¼ ð4; 0Þ and
y ¼ 0. In order to respect the errors of the measured
probabilities, they were constrained to an interval twice
larger than the experimental errors of each measurement
outcome. In this manner, we have obtained the bound
0.7830 on ΔQS

6 which is smaller than the experimentally

measured value. This demonstrates that, under the
assumption of a six dimensional Hilbert space, there exists
no quantum communication strategy based on rank-one
projective measurements which can reproduce the exper-
imental results.
Conclusion.—We have theoretically and experimentally

studied the efficiency of high-dimensional quantum com-
munication in a family of CCPs, as opposed to classical
communication assisted by nonlocal correlations violating
the facet Bell inequality to which the CCPs were originally
tailored. We demonstrated significant advantages of quan-
tum communication which increase with Hilbert space
dimension and showed that they stem from degenerate
measurements. Our work shows the usefulness and strength
of quantum correlations generated via the communication
of a high-dimensional quantum system and the practicality
of experimentally realizing them.
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Abstract
We study the entanglement generated in the steady state of two interacting qubits coupled to
thermal reservoirs. We show that the amount of steady-state entanglement can be enhanced by
the presence of a third thermal reservoir which is common to both qubits. Specifically, we find
that entanglement can be enhanced as long as the temperature of the common reservoir is below
the thermalisation temperature of the qubits, whenever a single temperature can be assigned to
the steady state of the qubits in the absence of the common reservoir. Moreover, the amount of
entanglement generated with the common reservoir present can be significantly larger than that
which can be obtained without it for any temperature of the individual reservoirs. From the
perspective of thermodynamics, we find that enhancement of entanglement is associated with
heat absorption by the common reservoir. We propose a possible implementation of our scheme
in superconducting circuits and find that a significant enhancement of steady-state entanglement
should be observable under experimentally realistic conditions.

Keywords: quantum thermodynamics, entanglement enhancement, steady-state entanglement

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum entanglement is a fundamental concept in quantum
mechanics as well as a key resource in quantum information
science, e.g.for quantum communication, computation, and
metrology [1, 2]. Entanglement is notoriusly fragile in the
presence of environmental noise, complicating the realisation
of practical applications. Hence, understanding how to gen-
erate, protect, and enhance entanglement in different envir-
onments is important both fundamentally and for enabling
quantum information technologies.

A large body of work has been devoted to enhancing and
protecting entanglement via direct manipulation, for example
through entanglement purification [3–5], quantum error cor-
rection [6, 7], dynamical decoupling [8–10], or exploiting the

quantum Zeno effect [11, 12], or weak measurements
[13–16]. In addition to these strategies, which aim to counter
the effects of noise, it turns out that dissipation can also be
beneficial under certain conditions, and can be exploited for
entanglement generation in both transient and steady regimes
[17–22] in various physical contexts [23–29]. Driven dis-
sipative preparation of entangled states has been demon-
strated experimentally for atomic ensembles [30], trapped
ions [31, 32], and superconducting qubits [33].

Entanglement can also be generated thermally, without
any driving. In a composite, interacting quantum system, the
energetic ground state may be entangled, and hence cooling
the system sufficiently will generate entanglement. In thermal
equilibrium at higher temperatures, entanglement may still be
present. In fact, the topic of how entanglement varies with
temperature has long been a concern of condensed-matter
physicists [34–40]. In particular [34–37] studied the variation
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of entanglement with temperature and magnetic field in spin
chains in thermal equilibrium.

Interestingly, entanglement can be enhanced by moving
out of thermal equlibrium where temperature gradients induce
energy currents among the interacting subsystems. [41] found
increase in entanglement due to an energy current in a spin
chain. [42] studied changes in steady-state entanglement in a
model of two interacting qubits coupled to different heat
baths. The temperature gradient was shown to enhance or
suppress entanglement depending on the internal coupling
strength between the qubits. The dynamics of nonequilibrium
thermal entanglement in a similar model was studied in [43]
with particular attention to the case of non-resonant qubits,
and [44, 45] studied chains of three qubits out of equilibrium.
[46–49] demonstrated that entanglement can enhance the
performance of quantum thermal machines, and that such
machines can be harnessed for entanglement generation. In
particular, in [48] a simple two-qubit thermal machine was
presented which generates steady-state entanglement by
operating between heat reservoirs at different temperatures. A
similar two-qudit machine combined with filtering enables
generation of maximal entanglement in any dimension when
the temperature gradient is maximal [49]. All of these works
confirm that there are strong connections between thermal
entanglement and quantum thermodynamics.

While a lot can be learned from and achieved with
coupled qubits in contact with independent heat reservoirs, in
practical situations there will often be coupling to a common
environment as well, and it is also interesting theoretically to
understand the effects of such a shared reservoir. In fact, a
common reservoir may itself enable entanglement generation.
It was shown that entanglement between two qubits could be
induced by a common, thermal, single-mode field [50].
Similarly, qubits in a common heat bath can become entan-
gled when evolving through a purely noisy mechanism
[51, 52], and steady-state entanglement is found for qubits
immersed in a common thermal reservoir [40]. A common
environment out of thermal equilibrium could lead to many-
body entangled steady states [53, 54] and protect entangle-
ment during evolution [55].

Here, we study thermal entanglement generation when
both independent and common heat reservoirs are involved.
We consider two interacting qubits coupled to individual heat

reservoirs, as in the thermal machine of [48], as well as to a
common reservoir. We show that the steady-state entangle-
ment can be enhanced by the presence of this common
reservoir, and that the lower the temperature of the common
reservoir, the larger the enhancement. The maximal critical
temperature of the common reservoir enabling entanglement
growth is the thermalized temperature of the coupled qubits if
thermalization is achieved. Entanglement enhancement is
accompanied by a thermodynamics process where heat is
dissipated into the common reservoir. We also present a
possible implementation of our scheme in superconducting
circuits. We find that for experimentally accessible parameter
settings, a significant improvement of steady-state entangle-
ment can be realized.

2. Model

The system we consider, as depicted in figure 1, consists of
two coupled qubits A and B interacting with two independent
heat reservoirs RA and RB, respectively, and potentially also to
a common heat reservoir RC. The Hamiltonian of the two
qubits H H HS 0 int= +ˆ ˆ ˆ with the free Hamiltonian

H 1 1 1 1 , 1A A B B A B0   = ñ á Ä + Ä ñ áˆ ∣ ∣ ∣ ∣ ( )

and the interaction Hamiltonian

H , 2A B A B
int s s s s= W Ä + Ä+ - - +

ˆ ( ˆ ˆ ˆ ˆ ) ( )

where 0ñm∣ and 1ñm∣ are the ground and excited states of qubit
μ ä {A, B} with energy gap , m m denotes the identity
operator, 1 0s = ñ ám

m+ˆ ∣ ∣ and 0 1s = ñ ám
m-ˆ ∣ ∣ are the raising and

lowering operators for qubit μ, and Ω is qubit–qubit coupling
strength.

The bosonic reservoirs are assumed to be thermal at
temperatures TA, TB, and TC. They are described by the
Hamiltonian

H a a b b c c . 3R
l

a l l l
m

b m m m
n

c n n n, , ,å å åw w w= + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † †

Here, alˆ† and alˆ are creation and annihilation operators for
mode l of reservoir RA, with frequency ωa,l, and similarly for
RB and RC. The interaction between the qubits and reservoirs

Figure 1. Schematic diagram of the physical model under consideration. Two qubits are coupled to each other with a strength Ω and to two
independent heat reservoirs with temperatures TA and TB, respectively. A common reservoir with temperature TC is introduced to improve the
entanglement of the qubits.
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is given by

4

H g a a g b b

g g c g g c ,

SR
l

A l
A

l
A

l
m

B m
B

m
B

m

n
A n

A
B n

B
n A n

A
B n

B
n

, ,

, , , ,

å å

å

s s s s

s s s s

= + + +

+ + + +

+ - + -

+ + - -

( )

ˆ (ˆ ˆ ˆ ˆ ) (ˆ ˆ ˆ ˆ )

[( ˆ ˆ ) ˆ ( ˆ ˆ ) ˆ ]

† †

†

where g g,A l B m, , are the coupling strengths of qubit A, B with
mode l, m of reservoir RA, RB respectively, while gA,n and gB,n
denote that of qubit A and B respectively with mode n of RC.
Here, we have used the rotating-wave approximation in
equation (4) since the system-reservoir coupling strengthes
are assumed to be much smaller than the system energy scale.

Based on the model given by H H,S R
ˆ ˆ , and HSR

ˆ , we pro-
ceed to construct a master equation for the evolution of the
system qubits in the presence of the thermal reservoirs. We
will work in the regime of weak system-baths interaction,
where all system transition frequencies are large compared to
the bath couplings. The reservoirs then couple to the delo-
calized eigenstates of the total system Hamiltonian HS, and
we will obtain a global master equation where each reservoir
affects both qubits. For weak inter-system coupling one
should instead employ a local master equation when each
qubit is affected only by its local baths, as used e.g.in [48].
The global approach is valid as long as the secular approx-
imation holds, as detailed in [56] where the validity regime
for local and global master equations for a thermal machine of
two qubits or two harmonic oscillator was studied.

We construct the master equation in the basis of the
eigenstates HS

ˆ . In terms of the free Hamiltonian eigenstates, i.e.
 11 , 10 , 011 2 3h h hñ = ñ ñ = ñ ñ = ñ∣ ∣ ∣ ∣ ∣ ∣ , and 004h ñ = ñ∣ ∣ , the
eigenstates of HS

ˆ can be expressed as 1 1l hñ = ñ∣ ∣ , 2l ñ =∣
cos sin

2 2 2 3h hñ + ñq q∣ ∣ , sin cos3 2 2 2 3l h hñ = - ñ + ñq q∣ ∣ ∣ , and

4 4l hñ = ñ∣ ∣ , and the corresponding eigenvalues as E A1 = +

B , E 4m2
2 2 = + D + W , E 4m3

2 2 = - D + W ,
E4=0 with òm=(òA+òB)/2 and A B  D = - . The para-
meter θ is defined by tan 2 q = W D .

In terms of eigenstates of HS
ˆ , the total Hamiltonian

H H H HS R SRtot = + +ˆ ˆ ˆ ˆ can be rewritten using

H E H H, and , 5S
i

i i i SR
j

SR j
1

4

1

2

,å ål l= ñá = ~

= =

ˆ ∣ ∣ ˆ ˆ ( )

where

H g V a V a g V b

V b g V g V c

g V g V c . 6

SR j
l

A l A j l A j l
m

B m B j m

B j m
n

A n A j B n B j n

A n A j B n B j n

, , , , , ,

, , , , ,

, , , ,

å å

å

= + +

+ + +

+ +

~ + +

+ +

ˆ ( ˆ ˆ ˆ ˆ ) ( ˆ ˆ

ˆ ˆ ) [( ˆ ˆ ) ˆ

( ˆ ˆ ) ˆ ] ( )

†

†

†

In this expression,V j,m̂ andV j,m
ˆ †

are jump operators corresponding
respectively to processes where the system looses an excitation
to a bath or receives one from it. They are eigenoperators of HS

ˆ ,
such that H V V,S j j j, ,w= -m m[ ˆ ˆ ] ˆ where the eigenfrequencies ωj

determine the energy lost or recieved by the system. They are
given by E E E E 4m1 3 4 1 2

2 2 w = - = - = - D + W ,
corresponding to transitions 1 2l lñ « ñ∣ ∣ and 3 4l lñ « ñ∣ ∣ , and

E E E E 4m2 1 3 2 4
2 2 w = - = - = + D + W corresp-

onding to transitions 1 3l lñ « ñ∣ ∣ and 2 4l lñ « ñ∣ ∣ . Explicitly,
the V j,m̂ are constructed as follows

V

V

V

V

sin
2

,

cos
2

,

cos
2

,

sin
2

. 7

A

A

B

B

,1 2 1 4 3

,2 3 1 4 2

,1 2 1 4 3

,2 3 1 4 2

q
l l l l

q
l l l l

q
l l l l

q
l l l l

= ñá - ñá

= ñá + ñá

= ñá + ñá

= - ñá + ñá

ˆ (∣ ∣ ∣ ∣)

ˆ (∣ ∣ ∣ ∣)

ˆ (∣ ∣ ∣ ∣)

ˆ ( ∣ ∣ ∣ ∣) ( )

With the jump operators V j,m̂ , one can derive a master
equation on standard Lindblad form in the Born–Markov regime
of weak coupling to the thermal reservoirs combined with a
secular approximation, valid for strong inter-system coupling.
Details of deriving a master equation from the system, bath, and
interaction Hamiltonians can be found e.g.in [57] chapter 3 and
[56, 58, 59]. A derivation with a common reservoir, as con-
sidered here, can be found in [40]. One assumes a stationary
state of the baths—i.e. that the baths are sufficiently large to
remain unaffected by the interaction with the system—and
neglects the Lamb shift, which is small compared to the qubit–
qubit coupling strength Ω [57, 58, 60] (see also the appendix).
We arrive at

Hi , , 8S A B C  r r r r r= - + + +˙ [ ˆ ] [ ] [ ] [ ] ( )

where ,A B r r[ ] [ ], and C r[ ] describe the dissipative effect
on the qubits’ dynamics due to coupling with the reservoirs RA,
RB, and RC respectively. We note that, as we are working in the
Born–Markov regime, the dissipators are additive [61] and so
we can obtain the dynamics in the absence of RC simply by
omitting the last term above. The dissipators arising from the
independent baths are given by

n V V V V

n V V V V

1 2 ,

2 , ,

9

A
j

A j A j A j A j A j A j

A j A j A j A j A j

, , , ,

, , , ,

 år w w r r

w r r

= G + -

+ -

[ ] ( )[( ( ) )( ˆ ˆ { ˆ ˆ })

( )( ˆ ˆ { ˆ ˆ })]
( )

† †

† †

and

n V V V V

n V V V V

1 2 ,

2 , .

10

B
j

B j B j B j B j B j B j

B j B j B j B j B j

, , , ,

, , , ,

 år w w r r

w r r

= G + -

+ -

+ +

+ +

[ ] ( )[( ( ) )( ˆ ˆ { ˆ ˆ })

( )( ˆ ˆ { ˆ ˆ })]
( )

In each case, the first line corresponds to stimulated and spon-
taneous emission, while the second line corresponds to absorp-
tion. A jwG ( ) and ΓB(ωj), characterize the damping rates due to
interactions with the reservoirs RA and RB respectively. Their
exact forms depend on the spectral densities of the reservoirs.
Each reservoir is assumed to be in a thermal state, and the
occupation number (the average number of photons) at energy
ωj of reservoir Rν (ν ä {A, B, C}) is given by the Bose–Einstein
distribution

n
1

exp 1
. 11j

T

j
w =

-
n w

n

¯ ( )
[ ]

( )

3
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In contrast to RA and RB, the reservoir RC is common to the
two qubits A and B, and we see from (6) that it will introduce
dissipative terms both of the forms (9) and (10) as well as cross
terms Therefore, we have C C

A
C
B  r r r= + +[ ] [ ] [ ]( ) ( )

C
AB r[ ]( ) , in which C

A r[ ]( ) and C
B r[ ]( ) indicate dissipative

effects due to qubit A and B coupling individually to RC, while
the term C

AB r[ ]( ) reflects the collective coupling. Thanks to the
collective effect of the common reservoir, the steady-state
entanglement induced by independent reservoirs can be further
enhanced. Explicitly

n V V

V V

n V V V V

1 2

,

2 , , 12

C
A

j
C
A

j C j A j A j

A j A j

c j A j A j A j A j

, ,

, ,

, , , ,

 år w w r

r

w r r

= G +

-

+ -

+

+

+ +

[ ] ( )[( ( ) )( ˆ ˆ

{ ˆ ˆ })

( )( ˆ ˆ { ˆ ˆ })] ( )

( ) ( )

n V V

V V

n V V V V

1 2

,

2 , , 13

C
B

j
C
B

j C j B j B j

B j B j

C j B j B j B j B j

, ,

, ,

, , , ,

 år w w r

r

w r r

= G +

-

+ -

+

+

+ +

[ ] ( )[( ( ) )( ˆ ˆ

{ ˆ ˆ })
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( ) ( )

and

n V V

V V

n V V V V
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n V V V V

1 2
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2 ,
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B j A j
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-

+ -
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+
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( ( ) )( ˆ ˆ { ˆ ˆ })

( )( ˆ ˆ { ˆ ˆ })]
( )

( ) ( )

The collective damping rate fulfils C
AB

jwG =( )( )

C
A

j C
B

jw wG G( ) ( )( ) ( ) . For simplicity, in the remainder of the paper
we will suppose that all the spectral densitites can be taken to be
flat in the relevant energy range such that the damping rates are
frequency independent, , ,A j A B j B C

A
jw w wG = G G = G G =( ) ( ) ( )

C
AG( ) and C

B
j C

BwG = G( )( ) ( ).
We are interested in the steady-state entanglement

between the two qubits. The steady state is found by setting
the left hand side of equation (8) to zero, i.e.by solving

0Sr =˙ . The entanglement of the resulting two-qubit state can
then be quantified by the concurrence [62]. We obtain the
steady state in the eigenbasis of HS with the density matrix
elements ii

S
i

S
il l r l= á ñ¢ ¢∣ ∣ . The state can then be reexpressed

in the eigenbasis of the free Hamiltonian with density matrix
elements ii

S
i

S
ih h r h= á ñ¢ ¢∣ ∣ using

,

cos
2

sin
2

,

sin
2

cos
2

,

,

1

2
sin . 15

S S

S S S

S S S

S S

S S S S

11 11

22
2

22
2

33

33
2

22
2

33

44 44

23 32 22 33

h l

h
q
l

q
l

h
q
l

q
l

h l

h h q l l

=

= +

= +

=

= = -( ) ( )

The only mechanism, which can generate coherence, is the
inter-qubit interaction described by the Hamiltonian (2). In
fact, if there were no interaction between the qubits, there
would be no process generating off-diagonal terms in the free
Hamiltonian eigenbasis. The bath-induced dissipation tends to
destroy coherence. Thus, only coherences induced by the
interaction can survive in the steady state, and ρ S will
therefore be of the form

0 0 0

0 0

0 0

0 0 0

. 16S
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S S

S S
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h
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⎝
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⎠

⎟⎟⎟⎟⎟
( )

This is a so-called ‘X state’ for which the concurrence reduces
to the simple expression [63]

2 max 0, . 17S S S S
23 11 44 r h h h= -( ) { ∣ ∣ } ( )

The state is entangled whenever 0S r >( ) and maximally
entangled for 1S r =( )

In addition to the entanglement, it also interesting to look
at the heat currents in the system. The introduction of a
common reservoir with its own associated temperature will
influence both the entanglement and heat current, and we will
investigate this link below. The heat current associated with
reservoir Rn can be defined as4 [57, 65]

Q Tr H . 18S
S r=n n{ [ ] ˆ } ( )

In equation (18), S rn[ ] represents the change in the system
state induced by the bath ν and the trace of it with the system
Hamiltonian hence represents the associated change in the
system energy. From the perspective of reservoir, a positive
heat current means heat release from the reservoir, while a
negative value implies heat absorption by the reservoir.
Therefore, a sign change of the heat current indicates a cross-
over between heat absorption and heat release or vice versa.

3. Results

We now analyse how steady-state entanglement generation and
heat currents are influenced by the introduction of the common
heat reservoir RC. We first consider the case where the two
independent reservoirs RA and RB are in thermal equilibrium,
i.e.TA= TB, and then turn to the out-of-equilbrium case below.
We will compare the amount of steady-state entanglement with
RC present with the amount when the system is decoupled from
RC, and also examine the heat currents.

3.1. Independent reservoirs at thermal equilibrium

In this section, we consider RA and RB to be in the thermal
equilibrium with TA=TB=T. We will also focus on the

4 Note that while a master equation of global type and employing a secular
approximation, as we do here, can lead to zero predictions for the inter-
system energy current between the qubits [64], there are no inconsistencies
associated with evaluating the currents between the system and reser-
voirs [56].

4
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case where the qubits are resonant, òA=òB=ò (i.e. θ=
π/2). In the absence of the third reservoir RC, the system will
relax into a thermal equilibrium state with temperature T
which may contain thermal entanglement [34–40]. We are
interested in how the amount of entanglement varies when
the common reservoir with temperature TC is introduced and
the entanglement depends on T and TC. That is, denoting the
concurrence what the system is decoupled from RC by AB and
the concurrence in the presence of RC by ABC , we want to
compare TAB ( ) with T T,ABC C ( ).

In figure 2(a), we plot the difference T T,ABC C D = -( )
TAB ( ) as a function of the temperatures. This is the change in

steady-state entanglement induced by introducing the common
reservoir at temperature TC. As might be expected, we observe
that when TC=T (red, dashed line in the figure) there is no
change, because the system retains the same thermal equilibrium
state with temperature T. The concurrence increases when
TC<T, while it decreases for TC>T. Thus, the common
reservoir enhances the steady-state entanglement when it effec-
tively cooling the system. In figure 2(b), we plot the steady-state
entanglement as a function of T without the common reservoir,
i.e. TAB ( ) as well as with, T T,ABC C ( ) for different TC. We
clearly see that the maximum of ABC can be significantly higher
than that of AB . While entanglement vanishes for large T without
RC, it can be recovered by adding the common reservoir. When
the common reservoir is cold (low TC), the steady-state entan-
glement can retain a finite nonzero value for larger T, indicating
that the thermal gradient induced by different T and TC assists the
entanglement generation. This can be further corroborated by
studying the heat current QC out of the reservoir RC, which we
plot in figure 3. When TC goes from being larger than T to being
smaller, the current changes sign from positive to negative
meaning that the reservoir RC begins to absorb heat. The
enhancement of steady-state entanglement is thus accompanied
by heat absorption of the common reservoir from the indepen-
dent ones.

The enhancement of entanglement is due to the collective
effect of the common reservoir, represented by the collective
dissipator C

AB r[ ]( ) in equation (14). To visualise this, in
figure 4 we compare the steady-state concurrence when

C
AB r[ ]( ) is removed from the qubits’ dynamics (blue curve) to

that with it (black curve) as well as to that when the common
reservoir is completely decoupled (red curve). Clearly, in
absence of C

AB r[ ]( ) , the introduction of a common reservoir
instead suppresses the concurrence for most T compared to
the situation without a common reservoir. Hence we see that
it is the collective action which generates the entanglement
enhancement. As we have shown above, to efficiently exert
the collective effect, the temperature of the common reservoir
should be lower than that of the independent reservoirs in the
thermal equilibrium case. Intuitively, the dissipators C

A( ) and

C
B( ) have a similar effect as the independent reservoirs. If the

common reservoirs is warmer than the independent ones, they
tend to heat the system, making it more mixed and destroying
entanglement. This effect competes with the enhancement
induced by C

AB( ). Also, note that the enhancement cannot be
obtained without the common bath by simple cooling using
the individual baths, i.e. by lowering their temperature. This

can be seen since it is also present for temperatures below the
peak of the red curve in figure 4.

3.2. Independent reservoirs out of thermal equilibrium

We now turn to the case where the two independent reservoirs
RA, RB are not necessarily at thermal equilibrium, T TA B¹ . In
the regime of weak qubit–qubit interaction, where there is
negligible entanglement at equilibrium, such a temperature
gradient can be harnessed for entanglement generation, as
shown for thermal machines [46–49]. In [48, 49] entangle-
ment was maximised when the temperature difference was as
large as possible, e.g.for TA approaching zero and TB large.
Here, we are interested in how the addition of a common
reservoir RC affects the amount of steady-state entanglement.
In particular, we saw above that in equilibrium TA=TB=T,

Figure 2. (a) Difference in steady-state concurrence D with and
without the common bath versusthe temperatures T=TA=TB and
TC. The red dashed curve indicates TC=T where 0D = . (b)
Steady-state concurrence versusT without the common reservoir AB
(red curve) and with ABC for different Tc (black curves). Arrows
label the crossing points where T=TC. In both plots, the remaining
parameters are given by ,A B C

A
C
B

A B G = G = G = G = G = =( ) ( )

20G, and Ω=10Γ.
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the addition of RC enhances the entanglement whenever
TC<T. We would like to understand how this finding gen-
eralises to the nonequilibrium setting.

Since the qubit–qubit interaction is strong, where the
reservoirs coupled to the delocalised eigenstates of the system
Hamiltonian HS, we can be regard our model as describing an
effective four-level system connected with two independent
reservoirs (in the absence of RC). Out of equilibrium, the
steady state of this system is not generally a Gibbs state, and
so it is not possible to assign it a temperature in an unam-
biguous manner. Nevertheless, we can characterize the state

of the effective four-level system via the following two
effective temperatures [40, 66–68] as

T T
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denote effective transition rates between the eigenstates of HS

(see e.g. [40] for details). When the two independent reser-
voirs are in thermal equilibrium, T T TA B= = , both effective
temperatures reduce to T, consistent with the fact that the two
coupled qubits eventually reach a thermal equilibrium state.
By contrast, out of equilibrium, T TA B¹ , the effective tem-
peratures are generally different, both in the range between

T Tmin ,A B{ } and T Tmax ,A B{ }. Depending on the reservoir
temperature and the detuning between the qubits Δò, one or
the other effective temperature may be larger. There thus exist
some special conditions under which the two effective tem-
peratures become equal even when reservoirs RA and RB are
not in equilibrium, in which case we can assign a definite
temperature to the system. We will now see that in these
special situations, the result obtained in the equilibrium case
above still holds.

From (19) and (20), for a given temperature gradient, we
can derive a suitable energy detuning Δò of the two qubits
such that Teff(ω1)=Teff(ω2)=Teff. This is illustrated in
figure 5, where we plot the two effective temperatures Teff(ω1)
and Teff(ω2) as functions of the detuning Δò for different
temperature gradients. For the points of thermalisation in
figure 5, where Teff(ω1)=Teff(ω2)=Teff, we now consider
the effect of adding the common reservoir RC. In figure 6 we
show the concurrence and heat current QC as functions of TC.
The values in the absence of RC are also indicated. We see
that the amount of entanglement is enhanced with respect to
that obtained in the absence of RC whenever TC<Teff. Thus
our statement from the equilibrium case above generalises
with T replaced by Teff. As before, the lower TC the higher the
concurrence. Again, enhancement of entanglement is asso-
ciated with heat absorption by the common reservoir (QC

becomes negative).
For the particular nonequilibrium conditions under which

the qubits can be assigned a single effective temperature, we
have thus shown that entanglement can be improved for TC up
to Teff. In the general nonequilibrium case where there is no

Figure 3. Heat current QC out of the common reservoir RC (top panel)
and steady-state concurrence (bottom panel) versusTA=TB=T
for different Tc (black curves). The red line indicates the concurrence
in the absence of RC. Arrows label the points where T TC= . The
remaining parameters are 6 , 20 ,A B A B W = G = = G G = G =

C
A

C
BG = G = G( ) ( ) .

Figure 4. A comparison of the steady-state concurrence versusT=
TA=TB when the collective dissipator C

AB r[ ]( ) (14) is removed from
the qubits’ dynamics (blue curve) to that with it (black curve) as well as
to that when the common reservoir is decoupled (red curve). The
parameters are set as T , 20 , 10C A B = G = = G W = G and

A B C
A

C
BG = G = G = G = G( ) ( ) .
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single thermalisation temperature, T Teff 1 eff 2w w¹( ) ( ), the
addition of a common reservoir with suitable temperature can
still improve the steady-state entanglement. Although we
could not explicitly determine an upper bound on TC below
which entanglement is increased in this general case, we
numerically verify that such upper bound lies in between the
two effective temperatures Teff(ω1) and Teff(ω2) of the system.
To be visualized, in figure 7 we exhibit the concurrence
versusthe temperature of the common reservoir RC for this
case. Based on the findings in figure 5 on the relations of
effective temperatures and the detuning Δò, here we choose
Δò=3Γ so that an effective temperature cannot be assigned
to the system being contrary to the choice in figure 6. We can
see from figure 7 that the entanglement promotion can still be
achieved when the temperature TC of the common reservoir is
less than a value bing in between the two effective tempera-
tures Teff (ω1) and Teff (ω2).

4. Implementation

Before we conclude, in this section we propose a possible
implementation of our scheme in circuit quantum electro-
dynamics (QED) and compute the achievable improvement in
steady-state entanglement for experimentally accessible
values of the coupling parameters. A number of physical

platforms could potentially enable implementations of the
scheme, including trapped atoms, ions, and solid-state artifi-
cial atoms such as nitrogen-vacancy centres in diamond.
However, here we focus on superconducting systems in
which experimental studies of quantum thermodynamics have
already been realised [69–72] and which are good candidates
for implementing quantum thermal machines [48, 49, 73–75].

In circuit QED, a Hamiltonian of the form HS
ˆ can be

realised by two transmon or fluxonium qubits [76], as shown in
figure 8. The level spacing of fluxonium qubits is accurately
tunable in a wide range from hundreds of MHz to tens of GHz.
Several coupling mechanisms are available for realising the
qubit–qubit interaction. Both transmon qubits [77–79] and
fluxonium qubits can be coupled capacitively or inductively via
a cavity in the dispersive regime (of strong detuning of the
qubits and cavity from the strength of the qubit–cavity cou-
pling) [76]. Second, an alternative is direct mutual inductive
coupling as described in [80] and proposed for fluxonium
qutrits in [76]. We note that while achieving strong inter-qubit
coupling as considered here is certainly challenging, the dis-
persive regime is not a strict limitation [81, 82]. It only requires
that the detuning between the qubit frequency and the cavity
frequency be larger than each qubit-resonator frequency.

The qubits are naturally coupled to thermal baths due to
the presence of thermal Johnson Nyquist noise in the sur-
rounding circuitry. Effective thermal baths for each qubit can

Figure 5. Plot of the effective temperatures Teff (ω1) (solid lines) and Teff (ω2) (dashed lines) in the absence of the common reservoir
versusthe detuning Δò/Γ for TB=8Γ and (a) TA=5Γ, (b) TA=4Γ, (c) TA=3Γ, and (d) TA=2Γ. The remaining parameters are
Ω=6Γ, òm=20Γ, and ΓA=ΓB=Γ.
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be implemented by controling the electronic noise coupling to
each qubit. E.g.the effective temperature can be increased by
increasing the noise level in particular transmission lines. A
common bath coupling to both qubits can be realised simi-
larly. Specifically, a transmission line coupling to the cavity
which mediates the qubit–qubit interaction will couple to both
qubits and can provide a common bath. If we model the
thermal environments of the qubits by bosonic thermal
reservoirs, their effect on the system is already captured by
the Lindblad-type master equation (8). The system-bath
coupling strengths can vary in a range of about 0.1–10MHz.
Imperfections in external control parameters, such as magn-
etic flux noise, will lead to additional pure dephasing [83].
We account for this phenomenologically by adding another
dissipative term on the right-hand-side of (8), given by

D D D D 2 21A A B Bdep r g r r r= + -[ ] ( ˆ ˆ ˆ ˆ ) ( )† †

where DA z s= Äˆ ˆ and DB z s= Äˆ ˆ with zŝ the Pauli
operator, and γ is the pure dephasing rate which we take to be
the same for both qubits. Based on the relaxation (T1) and
Ramsey dephasing (T2) times measured for fluxonium qubits
in [84], we take the pure dephasing rate to be T2

1g = --

T2 3.5 10 MHz1
1 2» ´- -( ) .

Solving for the steady state of the modified master
equation, we can compute the attainable concurrence for

experimentally relevant parameter settings. We obtain the
result shown in figure 9, where the temperatures are given in
units of the qubit transition frequency, which is set to 1 GHz.
As can be seen from figure 9(a), a significant amount of
entanglement can be generated in a realistic setting, even in
the presence of pure dephasing. From figure 9(b) we also note
that the conclusion from above is still valid: More entangle-
ment can be generated when the common bath temperature is
below the individual bath temperatures, and hence the system
is out of equilibrium. The improvement in steady-state
entanglement depends on the qubit–qubit interaction strength,
as well as the strength of the bath couplings, as shown in
figure 9(c). When the bath coupling is weaker, the improve-
ment peaks at higher interaction strengths. Substantial
improvements can be obtained for accessible parameter
values.

5. Conclusion

In conclusion, we have shown that it is possible to improve
the steady-state entanglement of two interacting qubits cou-
pled to independent thermal reservoirs by simply introducing
common thermal reservoir coupling to both qubits. We find
that it is advantageous for the common reservoir to be cold,

Figure 6. Each panel shows the heat current QC (top) and concurrence (bottom) versusthe temperature of the common reservoir RC for the
thermalisation points found in figure 5, namely (a) TA=5Γ, Δò=0.95Γ, (b) TA=4Γ, Δò=1.43Γ, (c) TA=3Γ, Δò=1.86Γ, and (d)
TA=2Γ, Δò=2.08Γ. Red, dotted lines indicate the concurrence in the absence of RC. Dashed lines indicate the zero point for the heat
currents, and arrows mark the points where the current changes direction. At these points, the concurrence in the presence of RC is the same
as that without it. When TC<Teff the concurrence is enhanced due to the involvement of the common reservoir. The remaining parameters
are the same as that in figure 5.
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and that there is a maximal temperature of this reservoir up to
which entanglement is enhanced. When the two qubits in the
absence of the common reservoir thermalise to a definite
temperature—either because the two independent reservoirs
are at thermal equilibrium or because an effective temperature
can be assigned to the qubits in the steady state—then this
upper bound is simply equal to the thermalisation temper-
ature. In all cases where entanglement is enhanced, the

enhancement is associated with heat absorption by the com-
mon reservoir which is thus effectively cooling the system. In
the equilibrium case, we observe that with the common
reservoir present, entanglement can be generated for larger
temperatures of the individual reservoirs than otherwise
possible. We have proposed and analysed an implementation
of our scheme using superconducting qubits and have seen
that even in the presence of additional dephasing and for

Figure 7. Each panel shows the concurrence versusthe temperature of the common reservoir RC when an effective temperature cannot be assigned
to the system. The parameters in the present four panels are the same as that in figures 5 and 6 but with a choice of Δò=3Γ so that an effective
temperature cannot be reached. The entanglement promotion can still be achieved when T T T6.60 6.97 , 6.51C eff 1 eff 2w w< G Î = G = G{ ( ) ( ) }
in (a), T T T6.38 6.72 , 6.29C eff 1 eff 2w w< G Î = G = G{ ( ) ( ) } in (b), T T T6.28 6.55 , 6.21C eff 1 eff 2w w< G Î = G = G{ ( ) ( ) } in (c) and TC <

T T6.25 6.48 , 6.20eff 1 eff 2w wG Î = G = G{ ( ) ( ) }, namely, the temperature TC of the common reservoir is less than a value bing in between the two
effective temperatures Teff (ω1) and Teff (ω2).

Figure 8. Possible circuit QED implementation of the scheme. Two fluxonium qubits are coupled via a microwave resonater detuned from the
energy spacing of the qubits, to realise a system Hamiltonian HS given in (1)–(2). Each qubit is coupled to effective baths with variable
temperatures, corresponding to noise in external circuits which have a finite impedance. A common bath affecting both qubits is realised in
the same manner. Imperfect control over external control parameters and other noise sources leads to additional pure dephasing.
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experimentally accessible parameter settings, a pronounced
improvement of steady-state entanglement is possible, and a
signficant amount of entanglement can be generated.
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Appendix: Sketch of master equation derivation

In this appendix, we sketch the derivation of the master
equation (8) in the presence of a common bath. A detailed
derivation can be found in [40] (see in particular appendix).

From equation (4), the interaction between the systems
and the common reservoir is

H g g c g g c ,
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which can be reformulated in the interacting picture with
respect to free Hamiltonians of the system and the common
reservoir as
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Under the standard Born–Markov approximation, we

obtain the master equation for the systems as
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where ρB is the state of the common reservoir (which we will take
to be a thermal state) and TrB denotes the trace over this reservoir.
If we further adopt a rotating-wave approximation, we find
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where the first sum runs over (i, j)=(1, 2), (1, 3), (2, 3),
and (2, 4), while the second runs over (ij, kl)=(12, 34),
(13, 42), (31, 24), and (43, 12). The bath correlation functions,

Figure 9. (a) Steady-state entanglement as measured by the concurrence versusthe temperatures of the individual (taken equal T=TA=TB)
and common baths. The qubit transition and interaction frequencies are òA=òB=1 GHz and Ω=0.7 GHz. The bath coupling strengths are

10 MHzA B C
A

C
BG = G = G = G =( ) ( ) , and the pure dephasing rate is 3.5 10 MHz2g = ´ - . The red, dashed line indicates thermal equilibrium

T=TC. (b) The relative improvement in concurrence D for the same parameters as in (a). (c) Ratio of the maximal steady-state concurrence
out of equilibrium Cneq to the maximum in equilibrium Ceq for the same energy gaps and pure dephasing rate as in (a). For the orange, dashed
curve, the bath couplings are as in (a) while for the solid, blue curve 0.1 MHzA B C

A
C
BG = G = G = G =( ) ( ) .
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appearing under the integrals, are defined as X t Y tá ¢ ñ =( ) ( )
X t Y tTrB Br¢[ ( ) ( ) ].
The real part of the integrals of the correlation functions

determine the dissipation rates entering in the final master
equation, while the imaginary parts contribute Lamb-type
shifts to the Hamiltonian entering in the master equation. As
we argue below, the latter are small and can be neglected, as
we do in the main text. First, we give an example of the
derivation of a dissipation rate.

Consider the correlation function T t T 012 12á - ¢ ñ( ) ( )† . We
have
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As shown in [40], the real parts of the four integrals on the
right-hand side of equation (A.6) can be obtained by using the
formula
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where P denotes the Cauchy principal value integral. For a
reservoir in a thermal state, one obtains
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Here, the rates on the right-hand side fulfil C
AB

1wG =( )( )

C
A

C
B

1 1w wG G( ) ( )( ) ( ) and are determined by the reservoir den-
sity of states and the system-bath coupling coefficients gA,n,
gB,n.

The imaginary part of the one-sided Fourier transform
integrals is related to the real part by a Cauchy principal value
integral of the form

f
f

d , A.9I
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w w
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¥
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where fR and fI stand for the real and imaginary parts of
integrals over the correlation functions as in the expressions
above. In the master equation, they enter in the Hamiltonian
part, as shifts of the system energy levels (i.e. Lamb shifts).
Provided that the system-bath couplings (and hence the dis-
sipation rates γk) are small, these imaginary parts will be
small relative to the system energy splittings, and so can be
neglected.
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We present a technique for reducing the computational requirements by several orders of magnitude in
the evaluation of semidefinite relaxations for bounding the set of quantum correlations arising from finite-
dimensional Hilbert spaces. The technique, which we make publicly available through a user-friendly
software package, relies on the exploitation of symmetries present in the optimization problem to reduce
the number of variables and the block sizes in semidefinite relaxations. It is widely applicable in problems
encountered in quantum information theory and enables computations that were previously too demanding.
We demonstrate its advantages and general applicability in several physical problems. In particular, we use
it to robustly certify the nonprojectiveness of high-dimensional measurements in a black-box scenario
based on self-tests of d-dimensional symmetric informationally complete positive-operator-valued
measurements.

DOI: 10.1103/PhysRevLett.122.070501

Introduction.—Finite-dimensional quantum systems are
common in quantum information theory. They are standard
in the broad scope of quantum communication complexity
problems (CCPs) [1] in which quantum correlations are
studied under limited communication resources. Further-
more, they are widely used in semi-device-independent
quantum information protocols [2] in which systems are
fully uncharacterized up to their Hilbert space dimen-
sion. Also, studying correlations obtainable from finite-
dimensional systems is critical for device-independent
dimension witnessing [3,4].
In view of their diverse relevance, it is important to bound

quantum correlations arising from dimension-bounded
Hilbert spaces. To this end, semidefinite programs (SDPs)
[5] constitute a powerful tool. Lower bounds on quantum
correlations are straightforwardly obtained using alternating
convex searchers (SDPs in see-saw) [6,7]. However,
obtaining upper bounds valid for any quantum states and
measurements is more demanding. A powerful approach to
this problem is to relax some well-chosen constraints of
quantum theory so that the resulting super-quantum corre-
lations easily can be computed with SDPs, thus returning
upper bounds on quantum correlations. Such approaches are
commonplace in various problems in quantum information
theory [8–10]. A hierarchy of semidefinite relaxations for
upper-bounding quantum correlations on dimension-
bounded Hilbert spaces was introduced by Navascués and
Vértesi (NV) [10,11]. This is an effective tool for problems
involving a small number of states and measurements, and
low Hilbert space dimensions. However beyond simple
scenarios, the computational requirements of evaluating
the relaxations quickly become too demanding.

It is increasingly relevant to overcome the practical
limitations of the NV hierarchy, i.e., to provide efficient
computational tools for bounding quantum correlations
in problems beyond small sizes and low Hilbert space
dimensions. This is motivated by both theoretical and
experimental advances. Dimension witnessing has been
experimentally realized far beyond the lowest Hilbert space
dimensions [12,13]. Furthermore, increasing the dimension
can activate unexpectedly strong quantum correlations
[14], a phenomenon that has been experimentally demon-
strated [15]. Also, quantum correlations obtained from a
sizable number of states and measurements are interesting
for studying mutually unbiased bases [16]. Moreover,
large problem sizes naturally appear in multipartite
CCPs involving single particles [17–19]. Similarly sized
problems also appear in multipartite CCPs for the charac-
terization of entangled states and measurements [20]. In
addition, efficiently evaluating the NV hierarchy many
times can improve randomness extraction from experimen-
tal data [21].
In this work we develop techniques for efficiently

bounding quantum correlations under dimension con-
straints. The technique is powered by the exploitation of
symmetries, i.e., relabelings of optimization variables that
leave a figure of merit invariant. The use of symmetries for
reducing the complexity of SDPs was first introduced in
Ref. [22] and was shown to lead to remarkable efficiency
gains. These efficiency gains have also been harvested in
several specific quantum information problems relying on
SDPs. These include finding bounds on classical [23] and
quantum [24,25] Bell correlations, quantifying entangle-
ment [9,26], and finding symmetric Bell inequalities [27].
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Note that symmetries in Bell scenarios also have been
studied without application to SDPs [28–31]. In dimension-
bounded scenarios, symmetries have been considered for
CCPs tailored for studying the existence of mutually
unbiased bases [16].
We describe a powerful, generally applicable, and easy-

to-use technique for symmetrized semidefinite relaxations
for dimension-bounded quantum correlations. We show
how to automatize searches for symmetries in general Bell
scenarios and CCPs, and how these can be exploited to
reduce computational requirements in all parts of the NV
hierarchy. This amounts to reducing the number of vari-
ables in an optimization, and reducing block sizes beyond
previous approaches. We make these techniques readily
available via a user-friendly software package supporting
general correlation scenarios. Subsequently, we give exam-
ples of problems that can be solved faster (several orders of
magnitude), and other previously unattainable problems
that can now be computed. We focus on the usefulness of
symmetrization for the problem of certifying that an
uncharacterized device implements a nonprojective meas-
urement using only the observed correlations. To this end,
we introduce a family of CCPs, prove that they enable self-
tests of d-dimensional symmetric informationally complete
(SIC) positive-operator-valued measurements (POVMs),
then use symmetrized semidefinite relaxations to bound
the correlations attainable under projective measurements.
This allows us to go beyond previously studied qubit
systems [32–36] and robustly certify the nonprojectiveness
of SIC-POVMs subject to imperfections.
Bounding finite-dimensional quantum correlations.—

We begin by summarizing the NV hierarchy [10,11] for
optimizing dimensionally constrained quantum correla-
tions. For simplicity, we first describe CCPs, and later
consider Bell scenarios.
Consider a CCP in which a party, Alice, holds a random

input x and another party, Bob, holds a random input y. Alice
encodes her input into a quantum state ρx of dimension d and
sends it to Bob. Bob performs a measurement fMb

ygb with
outcome b. The resulting probability distribution is used to
evaluate a functional FðPÞ¼P

x;y;b c
b
x;yPðbjx;yÞ, where cbx;y

are real coefficients. The problem of interest is to compute
the maximal quantum value of F when the probabilities are
given by the Born rule Pðbjx; yÞ ¼ trðρxMb

yÞ, where the
measurement operators are taken to be projectors. The NV
hierarchy presents the following semidefinite relaxations.
Sample a random set of states and measurements fρxg and
fMb

yg of dimension d, which we collect in the set of operator
variables fXig. Then, generate all strings, fsjðXÞgj, of
products of at most L of these operators. The choice of L
determines the degree of relaxation, i.e., the level of the
hierarchy. Construct a moment matrix

Γj;k ¼ hsjðXÞ†skðXÞi; ð1Þ

where, for the present CCP, the expectation value of an
operator product S is hSi ¼ trS. Repeat this process many
times, each time obtaining a new moment matrix. Terminate
the process when the sampled moment matrix is linearly
dependent on the collection of those previously generated.
Hence, fΓð1Þ;…;ΓðmÞg identifies a basis for the feasible
affine subspace F of such matrices under the given dimen-
sional constraint. The semidefinite relaxation amounts to
finding an affine combination Γ ¼ P

m
l¼1 clΓðlÞ ∈ F , with

Γ ≥ 0, that maximizes the functional F (which can be
expressed as a linear combination of entries of Γ). Hence,
the relaxation reads

max
c⃗∈Rm

FðΓÞ s:t: Γ ≥ 0;
Xm
l¼1

cl ¼ 1: ð2Þ

In summary, the problem consists in first sampling a
basis enforcing the dimensional constraint and then evalu-
ating a SDP. Crucially, the complexity of solving the SDP
hinges on the number of basis elements, m, needed to
complete the basis and the size of the final SDP matrix, n.
For a single iteration of primal-dual interior point solvers,
the required memory scales as Oðm2 þmn2Þ while the
CPU time scales as Oðm3 þ n3 þmn3 þm2n2Þ [37].
Without exploitation of the problem structure, medium-
sized physical scenarios, as well as small-sized scenarios
with high relaxation degree, practically remain out of reach
for current desktop computers. We have performed all
computations using a machine of 32 GB RAM and i5-6500
3.2 GHz CP.
Symmetric relaxations.—The key to reducing the com-

putational requirements for the NV hierarchy is twofold:
First reducing the number of elements needed to form the
basis in the sampling step, i.e., decreasing the dimension of
F , and then shrinking the size of the positivity constraints
in the subsequent SDP by block-diagonalizing Γ. Here, we
show how such a reduction can be systematically achieved
by identifying and exploiting the set of symmetries of the
problem.
Recall that fXig collects all the operators (states,

measurements etc.) present in the formulation of the
problem, where i ∈ I is an index. Consider a permutation
of elements of I , i.e., a bijective function π∶ I → I . We
write πðXiÞ ¼ XπðiÞ and define the action of the permuta-
tion on the strings s ¼ XiXj… of products of operators
Xi appearing in the NV hierarchy as πðXiXj…Þ ¼
XπðiÞXπðjÞ…. We call π an ambient symmetry if it is a
transformation of the scenario which preserves its structure,
as expressed by implicit or explicit constraints on the
operators fXig. The set of those symmetries form the
ambient groupA ¼ fπg. In the Supplemental Material [38]
(SM, including Refs. [39–54]), we describe the ambient
groups for general Bell scenarios and CCPs. Given a
moment matrix Γ and π ∈ A, we consider the relabeled

PHYSICAL REVIEW LETTERS 122, 070501 (2019)

070501-2

248



matrix πðΓÞ where ðπðΓÞÞj;k ¼ Γπ−1ðjÞ;π−1ðkÞ, according to
the convention of Eq. (1). By construction, π preserves the
constraints of the problem: for a feasible moment matrix
Γ ∈ F we have πðΓÞ ∈ F for any π ∈ A. Moreover, the
feasible set F is convex, so any convex combination of
those πðΓÞ is feasible as well.
However, not all elements of A leave the objective FðΓÞ

invariant. We write G ¼ fπ ∈ A∶FðπðΓÞÞ ¼ FðΓÞg the
symmetry group of the optimization problem. One can
straightforwardly find the elements of G by enumerating the
elements of A and filtering those that leave FðπðΓÞÞ ¼
FðΓÞ invariant. Then, following a standard procedure
[16,22,24,27] we can average any optimal solution Γ under
the Reynolds operator, defined as

Γ0 ≡RðΓÞ ¼ 1

jGj
X
π∈G

πðΓÞ; ð3Þ

where jGj is the size of G and obtain an optimal solution of
the problem, which now satisfies πðΓ0Þ ¼ Γ0 for all π ∈ G.
Since the set Γ0 is characterized by the relationRðΓ0Þ ¼ Γ0,
instead of searching the optimal Γ in the full feasible set, it
is sufficient to only consider the symmetric subspaceRðF Þ
given by the image of the feasible set under R. As
discussed above, the basis of F is found by sampling.
To sample RðF Þ instead, we simply apply R on each
sample during the construction of the basis, thus obtaining
fΓ0ð1Þ;…;Γ0ðm0Þg. As a result, the size of the basis, m0,
decreases due to the smaller dimension of RðF Þ. In the
SM, we discuss methods for speeding up the compu-
tation of R.
Moreover, a second major reduction is obtained: As the

symmetrized moment matrices Γ0 commute with a repre-
sentation of the group G, there exists [22] a unitary matrix
that block diagonalizes the moment matrix. This reduces
the size of the positivity constraint on the final SDP matrix.
A complete symmetry exploitation is obtained when the
decomposition of the representation of G into irreducible
components with multiplicities is known. We achieve this
via an efficient general block diagonalization method
detailed in the SM. Moreover, we make available a user-
friendly MATLAB package [55] for symmetrization of
semidefinite relaxations in the NV hierarchy applicable
to general correlation scenarios encountered in quantum
information. The package automates both a search for the
symmetries of a problem (if these are unknown) and the
construction of symmetry-adapted relaxation.
Robust certification of nonprojective measurements

based on SIC-POVMs.—We now exemplify the usefulness
of symmetrization in a physical application. We certify,
solely from observed data, that an uncharacterized device
(“black-box”) implements a nonprojective measurement.
Nonprojective measurements have diverse applications in
quantum theory [32,56–62]. This has motivated interest in
their black-box certification [32–36]. Using semidefinite

relaxations (whose complexity scales quickly with dimen-
sion) as a primary tool, these works limit themselves to
qubits. We use symmetrization to overcome this limitation
and certify the nonprojectiveness of higher-dimensional
measurements of physical interest. Since such certificates
are typically only useful for nonprojective measurements
that are close (e.g., in fidelity) to a particular targeted
nonprojective measurement (corresponding to the optimal
quantum correlations) [33], it is important to ensure that the
targeted measurement is well motivated.
One of the most celebrated nonprojective measurements

is the SIC-POVM. These are sets of d2 subnormalized rank-
one projectors fð1=dÞjψxihψxjgd2x¼1 with jhψxjψx0 ij2 ¼
1=ðdþ 1Þ when x ≠ x0. Higher-dimensional SIC-POVMs
have been of substantial interest for both fundamental (see,
e.g., Ref. [63] for a review) and practical considerations
[64–68] in quantum information theory. We introduce a
family of CCPs and prove that optimal quantum correla-
tions imply a d-dimensional SIC-POVM. However, due
to unavoidable experimental imperfections, such optimal
correlations will never occur in practice. Therefore, we use
symmetrization to certify the nonprojectiveness of mea-
surements close to SIC-POVMs, that achieve nearly opti-
mal correlations. Moreover, as noted in Ref. [33], the
dimension-bounded scenario is well-suited for black-box
studies of nonprojective measurements since said property
is only well-defined on Hilbert spaces of fixed dimension.
Consider a CCP in which Alice encodes her input x into

a d-dimensional system sent to Bob, who associates his
input y to a measurement producing an outcome b.
A general witness can be written

W ¼
X
x;y;b

αxybPðbjx; yÞ; ð4Þ

where αxyb are real coefficients. By tuning the coefficients,
one can construct CCPs in which the optimal correlations
WQ are uniquely realized with a particular nonprojective
measurement. This is known as a self-test [69]. Conse-
quently, there must exist some WP < WQ which bounds
the correlations under all projective measurements. Thus,
observing W > WP certifies that Bob implements a non-
projective measurement.
We construct a family of CCPs (inspired by Refs. [33,70])

tailored to self-test d-dimensional SIC-POVMs. Alice and
Bob each receive inputs x ∈ ½N� and ðy; y0Þ ∈ ½N� with
y < y0, respectively, for some N > d and ½N� ¼ f1;…; Ng.
Bob outputs b ∈ f0; 1g. Bob also possesses another meas-
urement setting labeled povm which returns an outcome
o ∈ ½N�. The witness of interest is
Wd ¼

X
x<x0

P(b ¼ 0jx; ðx; x0Þ)þ P(b ¼ 1jx0; ðx; x0Þ)

þ
XN
x¼1

Pðo ¼ xjx; povmÞ: ð5Þ
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The scenario is illustrated in Figure 1.
Theorem 1: For N ¼ d2, the maximal quantum value

of the witness is

WQ
d ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d5ðd − 1Þ2ðdþ 1Þ

q
þ
�
d2

2

�
þ d: ð6Þ

This value self-tests that Alice prepares a SIC ensemble and
that Bob’s setting povm corresponds to a SIC-POVM
(Note that SIC-POVMs are not proven to exist in all
dimensions).
The proof is given in the SM. To enable the certification

of a nonprojective measurement producing nearly optimal
correlations, we must obtain a bound WP

d on Wd respected
by all projective measurements. To this end, we use
symmetrized semidefinite relaxations.
The symmetries of the witness [Eq. (5)] correspond to

coordinated permutations of the inputs of Alice and inputs
and outputs of Bob. We permute x among its N possible
values. This requires us to compensate the permutation by
also applying it to o. Furthermore, to preserve the prob-
abilities appearing in the first summand of Eq. (5), we must
apply a permutation to the indices ðy; y0Þ and the outcome
b. Moreover, since we are interested in boundingWd under

projective measurements, said property must be explicitly
imposed on Bob’s setting povm. This means that at most d
of the POVM elements fMx

povmgd2x¼1 are nonzero, corre-
sponding to rank-one projectors. This must be accounted
for in the symmetries of the problem. In the SM we discuss
the symmetries in detail.
Using the general recipe, we have implemented the

symmetrized NV hierarchy. We use the relaxation degree
corresponding to monomials f1; ρ;M;Mpovm; ρρg and also
all the monomials ρxMb

ðx;x0Þ appearing in the first summand

of Eq. (5). In Table I we present the upper bounds WP
d . We

have also obtained lower bounds for Wd under projective
measurements by considering SDPs in an alternate convex
search, enforcing only d nonzero elements of trace one.
These lower bounds were verified to be achieved with
projective measurements up to machine precision. The
results show that the obtained upper bounds are either
optimal or close to optimal, depending on d. In analogy
with previous works [32–36], we find that the gap between
optimal quantum correlations and those obtained under
projective measurements is small.
Consider the role of symmetrization in obtaining the

above results. In Table II we present the number of samples
needed to complete the basis in the NV hierarchy, the
size of the final SDP matrix, and the time required to
evaluate the SDPs. We compare these parameters for a

FIG. 1. Illustration of the CCP [Eq. (5)]. Bob has (N
2
) settings

labeled by ðy; y0Þ and one additional setting labeled povm. Alice
and Bob aim to satisfy the following relations: o ¼ x for the
setting povm, and b ¼ 0 when x ¼ y and b ¼ 1 when x ¼ y0,
respectively, for the settings ðy; y0Þ.

TABLE I. Upper bounds (UBs) and lower bounds (LBs) on
quantum correlations under projective measurements with
N ¼ d2. The lower bounds are obtained via SDPs in an alternate
convex search and the upper bounds via symmetrized semi-
definite relaxations.

d 2 3 4 5 6

LB: WP
d 12.8484 70.0961 231.2685 578.7002 1219.0129

UB: WP
d 12.8484 70.1133 231.2685 578.7987 1219.2041

WQ
d

12.8990 70.1769 231.3313 578.8613 1219.2667

TABLE II. Comparison between computational parameters for the task of bounding Wd under projective
measurements using a standard implementation, symmetrization to reduce the number of samples [using only
Eq. (3)], and symmetrization to also perform block diagonalization (BD). The notation D½a; b� means that there are
D blocks with the smallest being of size a and the largest of size b.

d 2 3 4 5 6

Non-sym No. of samples 221 >12 000 � � � � � � � � �
Block sizes 1[43] 1[229] 1[741] 1[1831] 1[3823]
SDP [s] 2.0 � � � � � � � � � � � �

Sym no BD No. of samples 65 134 137
Block sizes 1[43] 1[229] 1[741] 1[1831] 1[3823]
SDP [s] 0.5 19 500 � � � � � �

Symþ BD No. of samples 65 134 137
Block sizes 4[6,16] 7[3,16] 8[3,16]
SDP [s] 0.3 0.6 1.2
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standard implementation, a symmetrized implementa-
tion only reducing the number of samples, and a the full
symmetrization developed to also exploit block diagonal-
ization of the SDP matrix. Without symmetries, we are
unable to go beyond qubit systems (d ¼ 2), since already
for d ¼ 3 we have over 12 000 samples. Interestingly, this
rapid increase in complexity can be completely overcome
via symmetrization: The number of samples becomes
constant when d ¼ 4, 5, 6. In addition, the size of the
SDP matrix increases polynomially in d, causing symmet-
rization that only addresses the number of samples to still
be too demanding already when d > 4. However, using the
block-diagonalization methods detailed in the SM, we can
reduce the size of the SDP matrix to be constant for d ¼ 4,
5, 6. This allows us to straightforwardly solve the semi-
definite relaxations in less than two seconds.
Further applications.—The general symmetrization

technique applies to many problems in quantum informa-
tion theory. In the SM, we consider four different examples.
For each, we demonstrate the remarkable computational
advantages of symmetrization, both in terms of reducing
the number of basis elements and in terms of block
diagonalization. This enables us to obtain improved bounds
on previously studied physical quantities. The problems we
consider are (high-dimensional and many-input) random
access codes [71,72], I3322-like Bell inequalities [11,73], a
sequential communication in multipartite CCPs (in the
spirit of Refs. [17,18]), and CCPs exhibiting dimensional
discontinuities [14,15]. In the latter, we also exemplify the
advantages in automatizing the search for the symmetries
in problems in which these are not easily spotted by
inspection.
Moreover, we previously observed that the complexity

of the evaluation for bounding WP
d can be reduced to be

constant for d ¼ 4, 5, 6 via symmetries. This suggests that
similar reductions may occur for other CCPs as well. In the
SM we have focused on the CCPs known as random access
codes and proven that symmetries enable us to evaluate the
NV hierarchy with constant complexity for any Hilbert
space dimension. In this sense, the computational advan-
tages over standard implementations, as well as over
symmetrization that does not utilize block diagonalization,
increase with d.
Conclusions.—We presented a technique for efficiently

evaluating semidefinite relaxations of finite-dimensional
quantum correlations using symmetries present in the pro-
blem. We applied it to robustly certify higher-dimensional
nonprojective measurements by considering CCPs that self-
test d-dimensional SIC-POVMs. The scheme could be
implemented in photonics experiments using, e.g., encod-
ings in path [64,68], path and polarization [65], and orbital
angular momentum [66,67]. Measuring a value ofWd above
the upper bounds (UBs) stated in Table I completes the
certification. A broadly relevant open problem in this topic
[32–36] is making the certification more tolerant to

experimental imperfections (i.e., larger gaps between WP
d

(UB) and WQ
d in Table I).

We conclude with two more open problems. Can the
sampling approach be adapted to semidefinite relaxations
in Bell inequalities without dimensional bounds? How does
the symmetrization technique adapt to physical problems
that do not concern quantum resources; e.g., cardinality of
hidden variables [74] and the dimension of post-quantum
resources?
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Bancal. This work was supported by the Swiss National
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Research at Perimeter Institute is supported by the
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Note added.—Recently, we became aware of a work-in-
preparation by E. Aguilar and P. Mironowicz to generalize
the results of Ref. [16].
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Abstract
Quantum randomaccess codes (QRACs) are key tools for a variety of protocols in quantum
information theory. These are commonly studied in prepare-and-measure scenarios inwhich a sender
prepares states and a receivermeasures them.Here, we consider a three-party prepare-transform-
measure scenario inwhich the simplest QRAC is implemented twice in sequence based on the same
physical system.Wederive optimal trade-off relations between the twoQRACs.We apply our results
to construct semi-device independent self-tests of quantum instruments, i.e.measurement channels
with both a classical and quantumoutput. Finally, we showhow sequential QRACs enable inference of
upper and lower bounds on the sharpness parameter of a quantum instrument.

1. Introduction

Randomaccess codes (RACs) are an important class of communication tasks with a broad scope of applications.
In a RAC, a party Alice holds a set of randomly sampled data and another party Bob attempts to recover some
randomly chosen subset of Alice’s data. This ismade possible byAlice communicating with Bob. Therefore, this
corresponds to a prepare-and-measure scenario inwhichAlice encodes her data into amessage that she sends to
Bobwho aims to decode the relevant information. Naturally, this taskwould be trivial if Alice is allowed to send
unlimited information. Therefore, a RAC requires that themessage is restricted in its alphabet, so that it cannot
encode all of Alice’s data. Interestingly however, the probability of Bob to access the desired information can be
increased if Alice substitutes her classicalmessage with a quantummessage of the same alphabet. Such quantum
randomaccess codes (QRACs) have been introduced and developed for qubit systems [1, 2] aswell as higher-
dimensional quantum systems [3]. They are primitives for network coding [4], randomnumber generation [5]
and quantumkey distribution [6]. QRACs are also common in foundational aspects of quantum theory;
examples include the comparison of different quantum resources [7, 8], dimensionwitnessing [9], self-testing
[10–12] and attempts at characterising quantum correlations from information-theoretic principles [13].

Here,wepresentRACsbeyond standardprepare-and-measure scenarios. Specifically,we consider a ‘prepare-
transform-measure’ scenario involving three parties, Alice, Bob andCharlie, in a line configuration. Inour scenario,
bothBobandCharlie are interested in randomly accessing some informationheld byAlice, i.e. they individually
implement aRACwithAlice. In a classical picture, such sequential RACs are trivial since any informationmade
available toBobviaAlice’s communication also canbe relayedbyBob toCharlie. In this sense, there is no trade-off
betweenhowwell Bob andCharlie canperform theirRACs. In aquantumpicture however,Alice communicates a
qubit system that isfirst sent toBobwhoapplies a quantum instrument (a completely positive trace-preservingmap
withboth a classical andquantumoutput)whose classical output is recorded andwhose quantumoutput is relayed to
Charliewhoperforms ameasurement. Importantly, Bob’s instrumentdisturbs thephysical state ofAlice’s qubit, and
thereforehe cannot relayAlice’s original quantummessage toCharlie. In otherwords,Charlie’s ability to access the
desired informationdependsonBob’s preceding interaction.Consequently, one expects a trade-off in the ability of
BobandCharlie to perform their separateQRACs.Here,we considerBobandCharlie the simplestRAC for qubits
(sometimes referred to as a 2 1 RAC) in sequence, andderive the optimal trade-off relationbetween the two
QRACs. Inparticular,wefind that bothQRACs canoutperform thebest possible classicalRAC.
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Subsequently, we apply our results to self-test a quantum instrument. Self-testing [14] is the task of inferring
physical entities (states, channels,measurements) solely from correlations produced in experiments i.e.
identifying the unique physical entities that are compatible with observed data. Self-testing is typically studied in
Bell experiments where notablymethods for self-testing quantum instruments have been developed [15, 16].
Recently however, self-testingwas introduced in the broad scope of prepare-and-measure scenarios [10], and
was further developed usingQRACs to robustly self-test both preparations andmeasurements [10–12]. Notably
however, prepare-and-measure scenarios do not enable self-tests of general quantumoperations. In particular,
it does not enable self-tests of quantum instruments since the quantum system after themeasurement is
irrelevant to the outcome statistics produced in the experiment.We show that our prepare-transform-measure
scenario overcomes this conceptual limitation.Wefind that optimal pairs of sequential QRACs self-test
quantum instruments. However, such optimal correlations require idealised (noiseless) scenarios which are
never the case in a practical implementation. Therefore, we also showhow sequential QRACs allow for inference
of noise-robust bounds on the sharpness parameter in a quantum instrument. This ismakes our results
applicable to experimental demonstrations. Finally, we discuss relevant generalisations of our results.

2. Sequential RACs

We focus on a prepare-transform-measure scenario that involes three parties. The first party (Alice) receives a
uniformly random four-valued input x=(x0, x1)ä{0, 1}2. For a given input, she prepares a quantum state ρx.
This state is uncharacterised, up to the assumption of it being ofHilbert space dimension two, i.e. it is a qubit.
The state is transmitted to the second party (Bob)who receives a randombinary input yä{0, 1}. Depending on
his input, Bob applies an instrument characterised byKraus operators Kb y{ }∣ to ρxwhich produces a classical
binary outcome bä{0, 1} and a qubit post-measurement state

K K

K Ktr
. 1x

y b b y x b y

x b y b y

,r
r

r
=

( )
( )

∣ ∣
†

∣
†

∣

Notably, since the instrument realises ameasurement, the Kraus operators of Bobmust satisfy the completeness
relation y M M: y y0 1 " + =∣ ∣ , where M K Kb y b y b y=∣ ∣

†
∣ are the corresponding elements of the positive

operator-valuedmeasures (POVMs). The post-measurement state x
y b,r is relayed to the third party (Charlie)

who receives a randombinary input zä{0, 1} towhich he associates POVMs Cc z{ }∣ with a binary outcome
cä{0, 1}. The scenario is illustrated infigure 1.

In the limit of repeating the experimentmany times, the results are described by the probability distribution

p b c x y z K K C, , , tr . 2b y x b y c zr=( ∣ ) [ ] ( )∣ ∣
†

∣

To enable a simple and qualitative treatment of the information stored in the distribution, onemay employ a
correlationwitness, i.e. amap from p b c x y z, , ,( ∣ ) to a single real number.We are interested in two separate
correlationwitnesses, each corresponding to a RACThefirst RAC is considered betweenAlice and Bob. In this
task, the partners are collectively awared a point if and only if Bob can guess the y’th bit of Alice input (x0, x1). The
correlationwitness is the average success probability. It reads

W p b x x y M
1

8
,

1

8
tr , 3

x y
y

x y
x x yAB

, ,
yå å r= = =( ∣ ) [ ] ( )∣

where in the second stepwe have assumed a quantumdescription. In a classical picture (inwhich all states are
diagonal in the same basis), this witness obeysW 3 4AB  (whichwe further discuss later). The physical
properties of {ρx} and Mb y{ }∣ when theQRAC exceeds its classical boundwere studied in [10]. It was shown that
an optimalQRAC for qubits

Figure 1.A three-party prepare-transform-measure scenario. Alice samples qubit states from an ensemble of four preparations. Bob
performs one of two instruments with a binary classical register and qubit output. Charlie performs one of two binary-outcome
measurements.
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self-tests that Alice’s four preparations form a square in some disk of the Bloch sphere. Up to a choice of
reference frame these are written
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where , ,x y zs s s s=
 ( ) denotes the Paulimatrices.Moreover, an optimalQRAC also self-tests Bob’s observables

(defined as M M My y y0 1= -∣ ∣ ) to be anticommuting. In the stated frame, the observables are written

M M . 6x z0 1s s= = ( )

Evidently however, theQRAC (3) is independent of bothCharlie and of the choice of instrument for
realising the POVMs Mb y{ }∣ . To also take these into account, we consider an additionalQRAC implemented
betweenAlice andCharlie. Analogously, the partners are awarded a point if and only if Charlie can guess the z’th
bit of Alice’s input x x,0 1( ). The correlationwitness corresponding to thisQRAC reads

W p c x x z
1

8
, . 7

x z
zAC

,
å= =( ∣ ) ( )

ThisQRAC is not independent of Bob since he applies an instrument to the preparation of Alice before they
arrive toCharlie. In a quantummodel, the effective state xr̃ received byCharlie is the post-measurement state of
Bob averaged over Bob’s inputs and classical outputs, i.e.

p b y K K
1

2

1

2
. 8x

y b
x
y b

y b
b y x b y

,

,

,
å år r r= =˜ ( ∣ ) ( )∣ ∣

†

Therefore, we have

W C K K C
1

8
tr

1

16
tr . 9

x z
x x z

x y b z
b y x b y x zAC

, , , ,
z zå år r= =[ ˜ ] [ ] ( )∣ ∣ ∣

†
∣

Weare interested in the values attainable for the pair ofQRACs W W,AB AC( ).We remark that the interesting
range is when bothWAB andWAC are confined to the interval 1 2, 1 1 2 2+[ ( ) ] since either witness being
1 2 - for some 0 > is equivalent to awitness value of1 2 + by classically bit-flipping the outcomes.

Typically, we expect there to be a trade-off between the twoQRACs. The reason is as follows. In order for
WAB to be large, Alicemust prepare states that are close to the ones in equation (5) andBobmust implement
instruments that realise POVMs that are close to the ones in equation (6). Thismeans that Bob’smeasurements
must be reasonably sharp. This leads to a large disturbance in the state of themeasured systemwhich causes the
effective ensemble of states xr{˜ }arriving toCharlie to lesser reflect the ensemble xr{ }originally prepared by
Alice. Therefore, the value ofWAC is expected to be small. Conversely, if Bobmakes a very unsharpmeasurement
(almost noninteracting), he could almost completely avoid disturbing the state of Alice’s system and thuswe
wouldfind that xr{˜ }closely approximates xr{ }which allowsCharlie tofind a large value ofWAC. However, the
weak interaction of Bob thenwould imply a correspondingly small value ofWAB.

In view of the above, characterising the set of pairs W W,AB AC( ) that can be attained in quantum theory is a
nontrivialmatter. Byfinding such a characterisation and by understanding the trade-off between the two
QRACs, we enable self-tests of Bob’s instrument, alongwith self-tests of Alice’s preparations andCharlie’s
measurements. Note that onemay also consider alternative generalisations ofQRACs to sequential
scenarios [17].

3.Quantum correlations in sequential RACs

Which values of the pair ofQRACs W W,AB AC( ) can be realised in a quantummodel based on qubit systems?
Before addressing thismatter, let usfirst examine the substantially simpler situation inwhich the physical
devices are classical, i.e. the state at all times is diagonal in the same basis. In such situations, Bob can interact
with the preparations of Alice without disturbing their state. Therefore, a large value ofWAB constitutes no
obstacle for alsofinding a large value ofWAC. Classically, one can optimally achieveW 3 4AB = . Clearly, as the
interactionwith Bob cannot contribute towards increasing the value ofWAC, it also holds thatW 3 4AC  . This
value is saturated byAlice sending x0 to Bobwho outputs b x0= and relays x0 toCharlie who outputs c x0= .
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Thus, the set of classically attainable correlations is W W1 2 , 3 4AB AC ( ) . This classically attainable set is
illustrated infigure 2.Notice that there is no trade-off betweenWAB andWAC in a classical picture.

In a quantummodel, the characterisation of the attainable set of witnesses is less straightforward.We phrase
the problem as follows: for a given value (denotedα) ofWAB, what is themaximal value ofWAC possible in a
quantummodel? Answering this question for every 1 2, 1 1 2 2a Î +[ ( ) ]provides the optimal trade-off
between the twoQRACs. Equivalently, it can be viewed as the nontrivial part of the boundary of the quantum set
of correlations in the space of W W,AB AC( ). Formally, the optimisation problem reads

W W

x

z c C C C

y b U M M M
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max

such that : , 0, tr 1,

, : 0,

, : SU 2 , 0, ,
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r

( )
( )

∣ ∣ ∣

∣ ∣ ∣

i.e. it is an optimisation of Charlie’s witness over all preparations, instruments andmeasurements that canmodel
the observation ofWAB a= . In the above, we have used the polar decomposition towrite the Kraus operators as
K U Mb y yb b y=∣ ∣ for some unitary operatorUyb and some POVM Mb y{ }∣ . Kraus operators of this form
correspond to extremal quantum instruments in the considered scenario [18].

We solve the problem (10) by first giving a lower bound onWAC
a and thenmatching it with an upper bound.

To this end, consider a quantum strategy inwhichAlice prepares the ensemble of states given in equation (5) and
Charlie performs themeasurements in equation (6).We let Bob perform anunsharp Lüdersmeasurement (the
Kraus operators haveUyb = ) of the observables in equation (6), i.e. his observables correspond to M x0 hs=
and M z1 hs= for some sharpness parameter 0, 1h Î [ ] (whichwewill later self-test). Evaluating the pair of
witnesses with this quantum strategy gives

W

W

1

4
2 2

1

8
4 2 2 2 . 11

AB

AC
2

h

h

= +

= + + -

( )

( ) ( )

Parameterising the latter in terms of the former returns a lower bound onWAC
a . Importantly, this bound is

optimal since it can be saturatedwith an upper bound onWAC
a , thus solving the optimisation problem (10). This

leads us to our first result.

Result 1.The optimal trade-off between the pair ofQRACs W W,AB AC( ) corresponds to

W
1

8
4 2 16 16 2 , 12AC

2a a= + + - -a ( ) ( )

where 1 2, 1 1 2 2a Î +[ ( ) ]. That is, the optimal witness pairs are of the form W W W, ,AB AC ACa= a( ) ( ).
This characterises the nontrivial boundary of the quantum set in the space of witness pairs.

The proof is analytical, of technical character and detailed in appendix B. It relies on (i) treating the
maximisation in (10) over the unitaries Uyb{ } andmeasurements Cc z{ }∣ as an eigenvalue problem, (ii) using the

Figure 2.The correlations attainable in the space of the twowitnesses W W,AB AC( ) in a classical and quantummodel respectively. The
nontrivial part of the boundary of the quantum set is highligted by a solid red line. Its right-end extremal point is W W,AB AC =( )

,2 2

4

4 2

8

+ +( ). The extremal point for equal witnesses is W W 3 4AB AC
5 2 2

10
= = >+ .

4
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Bloch sphere parameterisation for the preparations and instruments, and (iii)noticing that themaximisation
over the preparations can be relaxed to amaximisation over two pairs of antipodal pure states in some disk of the
Bloch sphere.

Infigure 2, we have illustrated the set of sequential QRACs attainable in a quantummodel. Notice that a
maximal value (4) ofWAB does not imply thatWAC is no better thanwhat is obtained by randomguessing. In

contrast, one can achieve W W, ,AB AC
2 2

4

4 2

8
= + +( )( ) . The reason is that the ensemble relayed toCharlie

corresponds to that originally prepared byAlice butwith Bloch vectors of half the original length. In addition,
there exists a subset of the quantum set inwhich bothWAB andWAC exceed the classical bound.

4. Self-testing

Finding the optimal trade-off between the twoQRACs (Result 1) allows for self-testing. To obtain a self-test, one
must additionally show that the optimalQRACpairs only admit a realisationwith unique preparations,
instruments andmeasurements (up to collective unitary transformations). That is, we need to identify the
unique physical entities xr{ }, Kb y{ }∣ , and Cc z{ }∣ necessary for optimal correlations.

Such a self-testing argument can be established largely from the proof of Result 1 (see appendix B). The
reason is that our approach to deriving Result 1 successively identifies the formof the physical entities required
for optimality. To turn the statement into a self-test, we identify key inequalities used to upper boundWAC

a and
instead impose strict equality constraints. This allows us to pinpoint the states,measurements and instruments
one by one. These additional arguments are discussed in appendix B. This leads us to the following self-test
statement based on optimal sequential QRACs.

Result 2.Anoptimal pair ofQRACs W W W, ,AB AC ACa= a( ) ( ), as in equation (10), self-tests that

• Alice’s states are pure and pairwise antipodal on the Bloch sphere, onwhich they form a square. These
correspond to the states given in equation (5).

• Bob’s instruments are Kraus operators K U Mb y yb b y=∣ ∣ that correspond to unsharpmeasurements along
the diagonals of Alice’s square of preparations followed by a collective unitary. Specifically, y b U U, : yb" = ,

M x0 hs= and M z1 hs= where W2 2 1ABh = -( ).

• Charlie’smeasurements are rank-one projective along the diagonals of the square formed byAlice’s
preparations, up to the unitary of Bob. That is, C U Ux0 s= † and C U Uz1 s= †.

The self-tests are valid up to a collective choice of reference frame.

This result applies to optimal pairs ofQRACs (highlighted by a solid red line infigure 2). An interesting
question is how tomake this result noise-tolerant so that it applies to suboptimal pairs ofQRACs that
nevertheless lack a classicalmodel. Naturally, when theQRACs are suboptimal, one can no longer pinpoint the
physical entities as done in Result 2.However, it is possible to give qualitative statements about the quantum
strategies that in principle couldmodel the observed correlations.We consider thismatter for the sharpness
parameter in Bob’s instruments. Since any binary-outcome qubit observable can bewritten on the form
M c cy y y0 s= +

 · , we define the sharpness parameter of Bob’s instrument as the length of the Bloch vector cy

.

For simplicity, we take both his instruments to have the same sharpness c c0 1h º =
 ∣ ∣ ∣ ∣.

We can place a lower bound on η from thewitnessW ;AB it corresponds to the smallest η for which there exists
preparations and instruments that canmodelWAB. In appendix C,we show that this lower bound reads

W2 2 1 . 13ABh -( ) ( )

This lower bound is nontrivial wheneverW 1 2AB > . Notice also that an optimalQRAC (4)necessitates a sharp
measurement ( 1h = ). Similarly, we can place an upper bound on η from thewitnessWAC, corresponding to the
largest η for which there exists preparations, instruments andmeasurements that canmodelWAC. In appendix C
we show that such a bound reads

W W2 2 2 4 2 1 , 14AC ACh + - -( )( ) ( )

when W4 2

8 AC
2 2

4
 + + (otherwise the bound is trivial). The lower bound (13) and the upper bound (14)

are tight, i.e. they can be saturatedwith an explicit quantum strategy.Notice that the upper bound (14)
conincides with the lower bound (13) for optimalWAC (i.e. whenW WAC AC= a ) as given in equation (12). In
addition, the bound (14) reduces to the trivial 1h whenW 4 2 8 0.6767AC = + »( ) .
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As a simple example, consider an experiment that attempts to implement the quantum strategy (11) for the
optimal witness pair W W,AB AC( ) corresponding to 1 2h = . However the experiment is subject to losses. For
example, take a 95% visibility1 in Alice’s preparations, 90% visibility in Bob’s instruments, and 95% visibility in
Charlie’smeasurements. Instead offinding the optimal witness pair W W, 3 4, 5 2 8AB AC = +( ) ( ( ) ), one
finds W W, 0.7138, 0.7826AB AC »( ) ( ). Therefore, wefind that ηmust be confined to the interval
0.6047 0.8010 h . The interval is fairly wide, which emphasises the need for high-quality practical
realisations in order to confine η to a reasonably small interval.

5.Generalisations

Above, we have thoroughly considered the scenario inwhich a sequence of three observers implement a pair of
the simplestQRAC. This is arguably the simplest scenario inwhich to study sequential QRACs. It would be
interesting to considermore general scenarios; both involving higher-dimensional [3] andmany-inputQRACs,
as well as sequences ofmore than three observers.

Consider for example the above considered RACplayed betweenAlice and a sequence ofN parties.We
denote the RACbetweenAlice and sequential party number k byWk. Let Alice prepare the optimal states in
equation (5).We know that if the first party performs optimal projectivemeasurements (6) (withKraus
operators K Mb y b y=∣ ∣ ), he willfind the optimalQRACgiven in equation (4).Moreover, if the second party

performs the sameKraus operators we findW 1 1 2 2 23 = +( ( )) . The reason is that the effective state
ensemble (8) relayed by thefirst party is identical the the preparations of Alice except that their Bloch vectors
have shrunk to half the unit lenght. Similarly, the effective ensemble relayed by the second partywill be identical
to that relayed by the first party, except that the Bloch vectors will again by shrunk to a quarter of unit length.
Continuing the sequence in thismanner, the square formed in the Bloch sphere by the effective post-
measurement ensemblewill at each step have its half-diagonal reduced by a factor 1/2, andwefind

W
1

2
1

2

2
. 15k k

= +
⎛
⎝⎜

⎞
⎠⎟ ( )

Moreover, one can askwhat is the longest sequence ofQRACs such that all of them can exceed the classical

bound. The number is at least two, sincewe foundW W 0.7828 3 4AB AC
5 2 2

10
= = » >+ . However, a third

sequential violation is unlikely to be possible, i.e. tofindW W W 3 41 2 3= = > . The reason is based on the
possibility of relatingwitnesses in dimension-bounded prepare-and-measure scenarios to Bell inequalities
[19–21]. Via suchmethods, the considered RAC can be related to theCHSH inequality [19]. However,
sequential violations of theCHSH inequality were studied in [22] and it was found that nomore than twoCHSH
inequality violations are possible when inputs are uniformly distributed [23, 24].

6. Conclusions

Wehave studied sequential QRACs and characterised their optimal trade-off. This ties inwith the recent interest
in sequential quantum correlations obtained in various forms of tests of nonclassicality [22, 24–30].We applied
our results to show that quantum instruments can be semi device-independently self-tested. Notably, since all
quantum instruments also realise some POVM, our results trivially implies a certification of unsharp
measurements. Our results complement themany recent self-tests of preparations andmeasurements in
standard prepare-and-measure scenarios with amethod for self-testing quantum instruments. In addition, we
showed how to robustly certify the sharpness parameter of quantum instruments based on noisy correlations.
Thismakes our results readily applicable to experimental applications. Such tests arewell within the state-of-
the-art experiments [30–32].Moreover, we notice that the class of quantum instruments self-tested in this work
are precisely those implemented by the experimental realisations in [30–33].

We concludewith some open questions. Firstly, it would be interesting to generalise our results to cover
higher-dimensional QRACs and longer sequences of observers. Secondly, a possible further development is to
characterise the optimal trade-off between sequential QRACs encountered in tests of preparation contextuality
[30]. Thirdly, in the spirit of [15], it would be interesting to develop noise-robust self-testing of quantum
instruments. Typically, such a robust self-test address the closeness (based on observedwitness values) between
the unknown laboratory instrument and the ideal instrument thatwould have been self-tested in case
correlationswere optimal. Finally, one could consider the task of self-testing quantum instruments based on the
sequential correlation experiments in the fully device-independent scenario (see [22]).

1
Here, visibility corresponds to a parameter v 0, 1Î [ ] andmeans that the ideal physical entity is implementedwith probability v andwith

probability v1 -( ) the implemented physical entity ismaximallymixed.

6
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Note added
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AppendixA. Proof of results 1 and 2

Wefirst prove Result 1 and then develop the argument further to also prove Result 2.
Consider themaximisation of thewitness

W K K C
1

16
tr A1

x y b z
b y x b y x zAC

, , ,
zå r= [ ] ( )∣ ∣

†
∣

under the constraint that

W K K
1

8
tr . A2

x y
x x y x yAB

,
y yåa rº = [ ] ( )∣

†
∣

The optimisation is relevant for every 1 2, 1 1 2 2a Î +[ ( ) ], ranging from the trivial witness value to the
maximal witness value.

To contendwith this, wefirst use the polar decomposition K U Mb y yb b y=∣ ∣ , whereUyb are arbitrary
unitary operators.We can then use the cyclicity of the trace alongwith the substitution C Cz z1 0= -∣ ∣ towrite
equation (A1) as

W M M U C U
1

2

1

16
1 tr . A3

x y b z

x
b y x b y yb z ybAC

, , ,
0

zå r= + -( ) [ ] ( )∣ ∣
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∣

The sumover x can bemoved inside the trace; we define 1z x
x

x
zg r= å -( ) .Moreover, we also define

A U C Uzyb yb z yb0= †
∣ .We can now consider the optimisation over Uyb{ }and Cc z{ }∣ as a single optimisation over

Azyb. To this end, we note that the set ofmeasurements Cc z{ }∣ is convex. Therefore, every nonextremal (interior
point)measurement can bewritten as a convex combination of extremalmeasurements (on the boundary). Due
to linearity, no nonextremal POVMcan lead to a larger value ofWAC than some extremal POVM.The extremal
binary-outcome qubitmeasurements are rank-one projectors. Therefore, we can consider the optimisation over
Azyb as an optimisation over general rank-one projectors. This gives
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M M
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2
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16
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wherewe havemade the optimal choice of lettingAzyb project onto the eigenvector of M Mb y z b yg∣ ∣ with the
largest eigenvalue (denoted by maxl ).

To proceed further, wemake use of the fact that qubit operations can be parameterised on the Bloch sphere.
Wewrite the preparations as n 2x xr s= +

 ( · ) for someBloch vectors nx
3Î


with n 1x ∣ ∣ . This leads to

n n n n1 . A5z
z

00 11 01 10g s= - + - -
    [( ) ( ) ( )] · ( )

Wedefine the effective (unnormalised)Bloch vectors m n n n n1z
z

00 11 01 10= - + - -
    ( ) ( ) ( ). Consequently,

the dependence ofWAC on the preparations can be reduced to its dependence on m m,0 1
 ( ). However, given any

set of preparations nx
{ }, we can consider other preparations nx¢

{ }choosen such that n n00 11¢ = - ¢ 
and n n01 10¢ = - ¢ 

with n n n2 00 00 11¢ = -
  

and n n n2 01 01 10¢ = -
  

. The both ensembles nx
{ }and nx¢

{ } imply the same vectors
m m,0 1
 ( ).Moreover, it is evident that if not all preparations are pure, one cannot obtain optimal correlations

(since impurity corresponds to decreasing themagnitude of m m,0 1
 ( )). Thismeans that the Bloch vectors are of

unit lenght and therefore that the optimal preparationsmust be of the type nx¢
{ } (i.e. two antipodal pairs). Notice

that purity also implies that m m 00 1 =
 · .

W.l.g. we can choose a reference frame inwhich m 1, 0, 00 µ
 ( ) and m 0, 0, 11 µ

 ( ).We denote the relative
angle between the two pairs of antipodal preparation pairs by θä [0,π/2]. This gives

m m2 1 cos and 2 1 cos .0 1q q= + = -
 ∣ ∣ ( ) ∣ ∣ ( )
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Wecan further place an upper bound on equation (A4) by using the following relation
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with equality if and only if a
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with mz


, we apply it

twice to equation (A4) corresponding to the terms inwhich z y= . This gives
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where ȳ denotes a bit-flip.We turn our attention to the sumdenoted by S in equation (A7).We define
the observable M M My y y0 1= -∣ ∣ and apply the Bloch sphere parameterisation.Wemaywrite My =
c cy y0 s+

 · where c c c c, ,y y y y1 2 3=
 ( )with c 1y ∣ ∣ and c c c1 1y y y0 - -

 ∣ ∣ ∣ ∣. These constraints ensure
positivity. Hence
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Firstly, this allows us towrite the constraint (A2) as

m c m c
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8
4 . A100 01 1 13a = + +
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Secondly, we can now solve the characteristic equation M m Mdet 0b y y b y s m- =
 ( ( · ) )∣ ¯ ∣ , and after some

simplifications obtain
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¯

where m m m=
 ˆ ∣ ∣.We can now consider the optimisation over cy0 by separately considering the two terms

corresponding to y 0= and y 1= respectively. This amounts tomaximising expressions of the form

x K x K1 12 2+ - + - -( ) ( ) , for some positive constantK. It is easily shown that such functions are
uniquelymaximised by setting x 0= . Thus, we require c c 000 10= = .Moreover, since m m,0 1

 ( ) have no
component along the y-axis, it is seen from (A10) and (A11) that one optimally chooses c c 002 12= = . This
simplifiesmatters to

S m c c c m c c cmax 1 1 1 1 . A120 11
2

13
2

11
2

1 01
2

03
2

03
2= - + - + - + -

 ∣ ∣ ( )( ) ∣ ∣ ( )( ) ( )

Note that c03 and c11 do not appear in the constraint (A10), that they are associated to different settings of Bob
and that they appear in different terms in equation (A12). Therefore, we can separatelymaximise search square-
root expression above by standard differentiation. This returns that the uniquemaximum is attained for
c c 003 11= = . Hence, we have

W m m m c m c W
1

2

1

16
1 1 . A13AC 0 1 0 13

2
1 01

2 + + + - + - º
   (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

Denoting c cos01 0f= and c cos13 1f= for , 0, 21 2f f pÎ [ ], we can re-write the right hand side on themore
convenient form

W
1

2

1

8
cos

2
sin

2
cos

2
sin sin

2
sin A141 0

q q q
f

q
f= + + + +⎜ ⎟⎛

⎝
⎞
⎠ ( )

and the constraint (A10) as

1

8
4 cos

2
cos sin

2
cos . A150 1a

q
f

q
f= + +⎜ ⎟⎛

⎝
⎞
⎠ ( )

TomaximiseW over , ,0 1q f f( ), we use the following lemma.

Lemma1. For every tuple , ,0 1q f f( ) corresponding to W,a( ), there exists another tuple , ,0 1q f f =( )
2, ,p f f( ) that produces W,a ¢( )withW W¢ .Moreover, 2q p= and 0 1f f= is necessary for an

optimalW ¢.

8
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Toprove this statement, wemust show that for all , , 0, 20 1q f f pÎ [ ] there exists a 0, 2f pÎ [ ] such that

cos
2

cos sin
2

cos 2 cos

cos
2

sin
2

cos
2

sin sin
2

sin 2 2 sin . A16

0 1

1 0 

q
f

q
f f

q q q
f

q
f f

+ =

+ + + + ( )

Proof. It trivially holds that cos sin 2
2 2

+q q with equality if and only if 2q p= .We eliminate this part

from the second equation in (A16). Then, by squaring both equations, we can combine them into a single
equation inwhichf is eliminated. The statement reduces to the inequality

cos cos cos sin cos 1. A172
0

2
1 0 1 q f f q f f- + -( ) ( ) ( )

Using differentiationw.r.t. 0f onefinds that the optimumof the left hand side is attained for 1 0f f= , which
proves the relation (A17). +

By virtue of lemma 1, we can reduce our consideration of (A14) and (A15) to 2q p= and c c c01 13= º .
Therefore equation (A10) reduces to

c 2 2 1 A18a= -( ) ( )

andwe also haveW c1 11

2

1

4 2
2= + + -( ). Thus, we have arrived to the upper bound

W
1

8
4 2 16 16 2 . A19AC

2 a a+ + - -a ( ) ( )

As shown in themain text, this upper bound could be saturatedwith an explicit quantum strategy. This proves
Result 1.

Let us now extend this to a proof of Result 2 bymore closely examining the above steps needed to arrive at
equation (A19). Firstly, we have already shown that the preparationsmust be pure, pairwise antipodal and by
lemma 1 theymust have a relative angle of 2p . Thus, this corresponds to a square in a disk of the Bloch sphere.
The above arguments fully characterise Alice’s preparations up to a reference frame.

For Bob’s instrument, we have shown that the Bloch vectors c c,0 1
 ( ) only can have non-zero components in

the x- and z-directions respectively and that the length of the Bloch vector is given by equation (A18). This fully
characterises the Bloch vectors.Moreover, in equation (A4)we required thatAzyb is alignedwith the eigenvector
of M Mb y z b yg∣ ∣ corresponding to the largest eigenvalue. However, we nowhave that x0g s= and z1g s=
whereas M x0 sµ and M z1 sµ . Therefore, we have that y b A, : yb0" = +ñá+∣ ∣and y b A, : 0 0yb1" = ñá∣ ∣.
Therefore, we have that

yb U C U: , A20yb yb0 0" = +ñá+∣ ∣ ( )†
∣

yb U C U: 0 0 . A21yb yb0 1" = ñá∣ ∣ ( )†
∣

This implies that all unitaries are equal;U Uyb = . Therefore, Charlie’s observables C C Cz z z0 1= -∣ ∣ satisfy
C U Ux0 s= † and C U Uz1 s= †.

Appendix B. Bounding the sharpness parameter fromnoisy correlations

In order to bound the sharpness of Bob’s instrument, consider first thewitnessWAB. Using the notations from
the previous appendix, we have that

W c m m c c m m c
1

8
4 . B1AB 0 0 0 0 1 1 1 1= + +

   ( ∣ ∣∣ ∣ ˆ · ˆ ∣ ∣∣ ∣ ˆ · ˆ ) ( )

We focus on the simplified case inwhich the sharpness parameter is the same in Bob’s two settings, i.e.
c c0 1h º =
 ∣ ∣ ∣ ∣. Re-arranging gives

W

m m c m m c

8 4
. B2AB

0 0 0 1 1 1

h =
-

+
 ∣ ∣ ˆ · ˆ ∣ ∣ ˆ · ˆ

( )

Tofind the smallest possible η, wemaximise the denominator. That corresponds to setting
m c m c 10 0 1 1= =ˆ · ˆ ˆ · ˆ and m m 20 1= =

 ∣ ∣ ∣ ∣ . That gives the lower bound

W2 2 1 . B3ABh -( ) ( )

Consider now thewitnessWAC. In the previous appendix, we have shown that its optimal value for a given
choice of c c0 1h º =

 ∣ ∣ ∣ ∣ is upper bounded as follows

9
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W
1

2

1

4 2
1 1 . B4AC

2 h+ + -( ) ( )

Solving this inequality for η gives

W W2 2 2 4 2 1 . B5AC ACh + - -( )( ) ( )
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Contextuality is a signature of operational nonclassicality in the outcome statistics of an experiment. This
notion of nonclassicality applies to a breadth of physical phenomena. Here, we establish its relation to two
fundamental nonclassical entities in quantum theory; measurement incompatibility and steering. We show that
each is necessary and sufficient the failure of operational contextuality. We exploit the established connection to
contextuality to provide a novel approach to problems in measurement incompatibility and steering.
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I. INTRODUCTION

The nonclassical nature of quantum theory has a variety
of different manifestations. On the one hand, quantum theory
postulates theoretical entities with properties that lack a coun-
terpart in classical physics. On the other hand, the nonclas-
sicality of quantum theory is also present on the observable
level, i.e., in the outcome statistics of experiments. Evidently,
if an experiment takes the reality of the quantum formalism
for granted, every nonclassical entity of quantum theory can
be experimentally detected. However, if the assumption of
nature being quantum is dropped, the outcome statistics can
frequently be reproduced with some classical model. Matters
become more interesting when the nonclassicality of outcome
statistics can be operationally determined in the spirit of
device independence [1], that is, in experiments that demon-
strate nonclassicality while making weak assumptions on the
underlying physical nature.

The strongest form of operational inference is encountered
in tests of Bell inequalities [2]. These experiments statistically
analyze the correlations between the outcomes of measure-
ments performed in space-like separated events. If the corre-
lations violate a Bell inequality, it follows that the outcome
statistics cannot be explained by any classical (local hidden
variable) theory. Famously, by sharing entangled states and
performing incompatible measurements that together steer
the remote partner system, quantum theory can violate these
inequalities and therefore provide an unequivocal demon-
stration of nonclassicality [3,4]. Surprisingly however, not
all incompatible measurements, nor all steerable ensembles,
enable Bell inequality violations [5–7]. This motivates the
question: Is nonclassicality at the level of theoretical entities
both necessary and sufficient for some form of operational
nonclassicality?

*These authors have contributed equally to this work.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

We focus on two fundamental theoretical entities in quan-
tum theory: the incompatibility of quantum measurements
and the ability to steer another system by local measure-
ments and classical communication (a feature of quantum
theory originating from Schrödinger’s remarks [8] on the
Einstein-Podolsky-Rosen paradox [9]). These two features
of quantum theory have been thoroughly researched, see,
e.g., Refs. [10–13] and Refs. [14,15] respectively. We show
that both measurement incompatibility and steering admit
a generally valid one-to-one connection with a family of
physical tasks which in turn correspond to tests of operational
contextuality.1 Contextuality in quantum theory has for long
been researched in its own interest and is closely related to,
e.g., advantages in quantum computation [19–22], advantages
in particular communication tasks [23–26], quantum zero-
error communication [27], and anomalous weak values [28].

The established general connection between the theoretical
entities of measurement incompatibility and steering on the
one hand and operational contextuality on the other, enables
us to approach relevant problems in the former ones using
tools originally developed for the latter. We exploit this to
present a family of noncontextuality inequalities and provide
numerical evidence that these are necessary and sufficient
conditions for certifying the incompatibility of any set of
binary qubit observables, and that they also constitute optimal
tests of the steerability of a pair of qubits in a singlet state
subject to noisy environments. Moreover, since our task-
oriented characterization of measurement incompatibility and
steering makes reasonably weak assumptions on the charac-
terization of physical devices, such applications make possible
more stringent experimental certificates of all incompatible
measurements and steerable states via experimental proofs of
contextuality.

1As originally introduced by Bell, Kochen, and Spekker [16,17],
contextuality is a property of projective measurements in quantum
theory. However, the concept has seen a generalization that applies
on the level of ontological models, and therefore to general opera-
tional theories used to model outcome statistics [18].

2643-1564/2020/2(1)/013011(7) 013011-1 Published by the American Physical Society
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II. CONTEXTUALITY

Contextuality in an operational theory [18] is devel-
oped within the framework of ontological models [29]. An
ontological model describes a preparation procedure P by
an ontic state (hidden variable) λ with a distribution p(λ|P).
When a measurement procedure M is applied, the ontological
model determines the probability of an outcome b with some
response function p(b|M, λ). Therefore, the outcome statistics
reads

p(b|P, M) =
∑

λ

p(λ|P)p(b|M, λ). (1)

Furthermore, ontological models are linear in the sense that
convex combinations of preparation and measurement proce-
dures are represented by convex sums of the relevant ontic
state distributions and response functions respectively. See
Ref. [18] for a discussion of this property.

In quantum theory, preparations are represented by density
matrices ρ and measurements are positive operator-valued
measures (POVMs) M = {Mb}, i.e., Mb � 0 and

∑
b Mb = 1.

Outcome statistics is given by the Born rule p(b|ρ, M ) =
tr [ρMb]. A state (measurement) can be realized in as many
ways as it can be decomposed into mixtures of other states
(decomposed into element-wise mixtures or coarse-graining
of other measurements). Different ways of preparing the same
state (performing the same measurement) are called contexts
for ρ (M). An ontological model is said to be preparation
noncontextual if the ontic state distribution is independent
of the context, i.e., if p(λ|P) = p(λ|ρ). Similarly, an on-
tological model is said to be measurement noncontextual
if the response functions are context independent, i.e., if
p(b|M, λ) = p(b|M, λ). These notions embody the idea that
if two laboratory procedures are indistinguishable, then they
are also indistinguishable on the level of ontic states. We
remark that to ensure that two procedures truly are indis-
tinguishable, one needs to be able to perform measurements
(prepare states) that span the measurement (state) space. In
contrast, if outcome statistics cannot be reproduced with any
preparation (measurement) noncontextual model, it is said to
be preparation (measurement) contextual. See Ref. [18] for a
detailed discussion of operational contextuality.

III. MEASUREMENT INCOMPATIBILITY

Measurement incompatibility [10–13] is the impossibility
of jointly measuring a set of (at least two) POVMs by employ-
ing only a single measurement and classical postprocessing of
its outcomes. More precisely, let {Aa|x} be a set of POVMs,
with a labeling the outcome and x labeling the measurement.
The set is called compatible (jointly measurable) if there exists
a POVM {Gλ} which allows us to recover the set {Aa|x} via
some postprocessing probability distribution p(a|x, λ):

Aa|x =
∑

λ

p(a|x, λ)Gλ. (2)

If such a model does not exist, the set {Aa|x} is called incom-
patible (not jointly measurable). This extends the textbook
concept of commutativity in the sense that mutually commut-
ing POVMs are jointly measurable, but the converse does not
hold in general. The converse holds, however, for textbook

observables, i.e., projective measurements. It is worth noting
that joint measurability can be characterized as the existence
of a common Naimark dilation in which the projective mea-
surements commute.

IV. STEERING

Steering [7] is a qualitative property of some entangled
quantum states regarding the set of ensembles that can be re-
motely prepared with local measurements and classical com-
munication. Specifically, one considers a pair of entangled
systems in state ρ and performs a set of measurements {Aa|x}
on the first system. Given the choice of x, this renders the sec-
ond system in the state ρa|x = trA [Aa|x ⊗ 1ρ]/ tr [Aa|x ⊗ 1ρ]
with probability p(a|x) = tr [Aa|x ⊗ 1ρ]. It is important to
underline the fact that classical communication is necessary
for the steered party to be able to distinguish between dif-
ferent local states ρa|x. These local states can be effectively
described with a set of unnormalized states (called an assem-
blage) {σa|x} where σa|x = trA [Aa|x ⊗ 1ρ]. Such assemblages
are no-signaling, i.e.,

∑
a σa|x = ∑

a σa|x′ . In this work all
assemblages are assumed to be no-signaling. We remark that
the Gisin-Hughston-Josza-Wootters theorem [30,31] ensures
that every assemblage can be prepared by a distant party’s
local measurements (supported by classical communication)
on a properly chosen entangled state. An assemblage is said
to be unsteerable if it admits a so-called local hidden state
model. Such models use (a, x) as information toward a post-
processing p(a|x, λ) of a set of local states ρλ appearing with
probability p(λ) to explain the assemblage {σa|x}. Hence, if
the state is unsteerable, it can be written as

σa|x =
∑

λ

p(λ)p(a|x, λ)ρλ. (3)

If no local hidden state model is possible, the assemblage is
called steerable.

V. MAIN RESULTS

We begin by proving a one-to-one relation between mea-
surement incompatibility and preparation contextuality.

Theorem 1. A set of measurements is compatible if and
only if their statistics admit a preparation noncontextual
model for all states.

Proof. Assume that the set of POVMs {Aa|x} when applied
to any quantum state ρ returns outcome statistics that is prepa-
ration noncontextual. We denote as Pρ the set of preparation
procedures (contexts) in which ρ can be prepared. Then, using
the label x to denote the measurement procedure, it holds that

∀ P ∈ Pρ : p(a|x, P) =
∑

λ

p(λ|ρ)p(a|x, λ). (4)

For each λ, the object p(λ|ρ) is a convexity-preserving map
from the space of quantum states to the interval [0,1]. The
Riesz representation theorem [13,32] asserts that such maps
can be written as an inner product p(λ|ρ) = tr [Gλρ] for
some unique operator 0 � Gλ � 1. Moreover, since ∀ ρ :∑

λ p(λ|ρ) = 1, it follows that
∑

λ Gλ = 1. Inserting this into
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Eq. (4), we have

∀ P ∈ Pρ : p(a|x, P) =
∑

λ

p(a|x, λ) tr [Gλρ]. (5)

We have recovered the outcome statistics obtained from mea-
suring ρ with a compatible set of POVMs.

Conversely, assume that {Aa|x} is a compatible set of
POVMs. Then, the statistics obtained from measuring any
state ρ prepared with a procedure P is given by Eq. (5).
By defining p(λ|ρ) = tr [Gλρ], we recover the definition of
outcome statistics being preparation noncontextual. �

It is interesting to note that tests of preparation contex-
tuality can be formulated as communication tasks between
two separated parties, in which the receiver is kept oblivious
about parts of the sender’s input [23–25]. Such oblivious-
ness corresponds to different contexts for the states. From
Theorem 1, we can therefore infer the following corollary:

Corollary. Every set of incompatible measurements en-
ables a quantum-over-classical advantage in an oblivious
communication task.

We remark that the advantages of all incompatible
sets of measurements have recently been shown in vari-
ous measurement-device-independent communication tasks
[33–36].

In a spirit similar to that of Theorem 1, we prove a one-to-
one relation between steering and measurement contextuality.

Theorem 2. An assemblage is unsteerable if and only if its
statistics admits a preparation and measurement noncontex-
tual model for all measurements.

Proof. Assume that the assemblage {σa|x} when measured
with any POVM M returns outcome statistics that is measure-
ment noncontextual. We denote the set of measurement pro-
cedures (contexts) in which M can be realized by MM . Due to
assemblages being no-signaling, we have that p(a, b|x, M) =
p(b|a, x, M)p(a|x) and that

∀ M ∈ MM : p(b|a, x, M)p(a|x)

= p(a|x)
∑

λ

p(λ|a, x)p(b|M, λ), (6)

where (a, x) labels the preparation procedure. For every λ,
the object p(b|M, λ) is a map from the space of POVMs to
the space of probability distributions. Such maps are charac-
terized by the works of Gleason [37] and Busch [38]. The
Gleason-Busch theorem asserts that p(b|M, λ) = tr [ρλMb]
for some unique state ρλ. Inserting this into Eq. (6), we have

∀ M ∈ MM : p(b|a, x, M)p(a|x)

= p(a|x)
∑

λ

p(λ|a, x) tr [ρλMb ]. (7)

Using Bayes’ rule and the fact that x and λ are inde-
pendent,2 one straightforwardly finds that p(a|x)p(λ|a, x) =
p(λ)p(a|x, λ). Inserting this in (7), we recover the outcome

2The independence of x and λ follows from the fact that λ cannot
carry information about the oblivious variable x (the obliviousness
comes from no-signaling), i.e., the assumption of preparation non-
contextuality. See, e.g., Refs. [23,25] for an elaboration.

FIG. 1. Orange arrows illustrate Theorems 1 and 2. Measurement
incompatibility and steering each enable a proof of a form of con-
textuality provided that one possesses a proper catalyst preparation
or measurement procedure. Conversely, having observed prepara-
tion contextuality, one infers measurement incompatibility. Simi-
larly, having observed measurement contextuality in a bipartite no-
signaling scenario, one infers steerability of the shared state. The
grey arrow indicates the previously known relation that a set of
measurements is incompatible if and only if it enables steering with
a proper catalyst state [39,40]. It is worth noting that this connection
can also be seen as a mapping between the problems in measurement
incompatibility and steerability [41].

statistics obtained from applying M to an unsteerable assem-
blage (3).

Conversely, if the assemblage has a local hidden state
model, then for every POVM the outcome statistics reads

∀ M ∈ MM : p(b|a, x, M)

= 1

p(a|x)

∑

λ

p(λ)p(a|x, λ) tr [ρλMb]. (8)

From Bayes’ rule and the independence of x and λ, we
have that p(λ)p(a|x, λ)/p(a|x) = p(λ|a, x). Note that said
independence implies preparation noncontextuality. Inserted
into Eq. (8) we find the outcome statistics obtained in a
measurement noncontextual model. �

We have illustrated the theorems in Fig. 1. Notice that
Theorems 1 and 2 give a characterization of the ontic vari-
ables using quantum theory. Whereas this characterization
is relevant for noncontextual models covering all states or
measurements, it would be interesting to see whether such
characterization exists in the case of fragments of quantum
theory, i.e., for noncontextual models covering subsets of
states and measurements.

Also, it is worth noting that a number of works have (in dif-
ferent ways) shown that outcome statistics that violate a Bell
inequality is proof of preparation contextuality [18,23,24,42].
In Appendix A, we note that this fact follows immediately
from ontological models and the no-signaling principle (see
also Ref. [43] for similar results).3

VI. NONCONTEXTUALITY INEQUALITIES FOR QUBIT
MEASUREMENT INCOMPATIBILITY AND STEERING

We proceed to use the established connection to con-
textuality to address two relevant problems in measurement

3This result was shown originally in the unpublished note Ref. [44].
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incompatibility and steering: (i) Can one find a preparation
noncontextuality inequality whose violation is both neces-
sary and sufficient for certifying measurement incompatibility
for interesting families of measurements? Note that despite
Theorem 1 this is a nontrivial matter since any single test
of preparation contextuality is only a sufficient condition
for measurement incompatibility (and the full characteriza-
tion of all tests of preparation contextuality is a demanding
problem). (ii) Can one find a measurement noncontextuality
inequality (in a no-signaling scenario) that for an interesting
class of states optimally certifies their steerability? In analogy
to the previous, this is nontrivial since any single test of
measurement contextuality in a no-signaling scenario is only
a sufficient condition for steering.

To answer these questions, we present a family of correla-
tion inequalities (parametrized by an integer n � 2) inspired
by the works of Refs. [25,45,46]. Consider a Bell-like (no-
signaling) experiment in which two separated observers, Alice
and Bob, share parts of a physical system. Alice (Bob) per-
forms measurements labeled by her (his) uniformly random
input x ∈ {0, 1}n−1 (y ∈ {1, . . . , n}). The outcome is denoted
by a ∈ {0, 1} (b ∈ {0, 1}). Alice’s measurement procedures
are constrained by operational equivalences. That is, her out-
come statistics always upholds suitable indistinguishability
relations which enable us to consider the statistics of different
contexts for her measurements. Specifically, for every bit
string r ∈ {0, 1}n, we require that the measurement procedures
Mr,0 and Mr,1 corresponding to a uniform mixing of all (a, x)
satisfying r · x̄ = 0 and r · x̄ = 1 respectively [where x̄ =
(a, x + a)], are indistinguishable from each other. In quantum
theory, this means that

∑

a,x|r·x̄=0

Ma|x =
∑

a,x|r·x̄=1

Ma|x. (9)

Note that whenever r has an even number of ones, this
condition is always satisfied since M0|x + M1|x = 1. For odd
strings r, Eq. (9) is a nontrivial constraint. Now, let Alice and
Bob play a game in which they aim to maximize the probabil-
ity of finding a + b = x̄y mod 2. When Alice is considered
the sender of Bob’s remotely prepared local states, we can
consider the scenario as a test of preparation contextuality.
In contrast, when Bob is considered the sender of Alice’s
remotely prepared local states, we can consider the scenario
as a test of preparation and measurement contextuality. In
the case of either being noncontextual, the average success
probability is bounded by

An ≡ 1

n2n−1

∑

x,y

p(a + b = x̄y|x, y) � n + 1

2n
. (10)

The proof of this result is a simple modification of the
arguments presented in Ref. [25] and is discussed in
Appendix B. A violation of the inequality (10) means that
Bob’s measurements (which are unconstrained) are incom-
patible (by Theorem 1) and that Alice’s local assemblage
(prepared by Bob) is steerable (by Theorem 2). We now
study the usefulness of the inequality (10) for certifying qubit
measurement incompatibility and two-qubit steerability.

For the case of n = 2 the inequality (10) reduces to the
Clauser-Horne-Shimony-Holt Bell inequality [4] for which it

is known that all pairs of incompatible measurements enable a
violation [47]. For n > 2 (specifically studying n = 3, . . . , 7)
we have numerically obtained support (10 000 examples for
each n) for the following conjecture:

Conjecture 1. Every set of n incompatible two-outcome
qubit measurements enable a proof of preparation contextu-
ality by a violation of the inequality (10).

In Appendix C, we describe the numerical procedure em-
ployed to motivate this conjecture.

Consider now the case of steering. For simplicity, let Alice
and Bob share the noisy singlet state ρv = v|ψ−〉〈ψ−| + (1 −
v)1/2, where |ψ−〉 = (|01〉 − |10〉)/

√
2 for some visibility

v ∈ [0, 1]. What is the critical value of v = vn so that Bob
can steer Alice using n projective measurements? Although
this question is well studied (see, e.g., Refs. [48–50]) an ana-
lytical formula is lacking. However, Ref. [48] presented nearly
matching upper and lower bounds on vn for n = 2, . . . , 13 and
n = 2, . . . , 5 respectively. Using our inequality (10), we have
numerically implemented alternating convex searches to find
an upper bound on the critical vn (below which we can no
longer find a quantum violation). This returns

v2 = 0.7071, v3 = 0.5774, v4 = 0.5547,

v5 = 0.5422, v6 = 0.5270, v7 = 0.5234. (11)

Interestingly, these numbers coincide precisely with those
presented in Ref. [48] (up to the number of decimals presented
in Ref. [48]). This motivates the conjecture

Conjecture 2. The inequality (10) is a tight steering in-
equality for the noisy singlet state under n projective measure-
ments.

Finding a conclusive proof of Conjectures 1 and 2 would be
interesting. We remark that although the above considerations
are straightforwardly analyzed with a computer, the criterion
(10) can be treated in a fully analytical manner.

VII. DISCUSSION

We have shown that every set of incompatible measure-
ments and every steerable assemblage can be operationally
certified as nonclassical in a test of operational contextuality,
and that the latter also implies the formers. A direct conse-
quence is that problems of joint measurability and steering can
be viewed through the lens of contextuality, as we illustrated
through our conjectures. In this sense, our results bridge the
two research directions of quantum measurements and quan-
tum steering with the line of research focused on quantum
contextuality.

Moreover, since tests of operational contextuality only
rely on weak characterization of the experimental devices
[51], our results can also be considered as semi-device-
independent certificates of measurement incompatibility and
steering. Naturally, fully device-independent certificates are
found by violating a Bell inequality. However, in addition to
such tests being experimentally demanding, it is importantly
also the case that not all incompatible measurements nor all
steerable ensembles violate any Bell inequality [5–7]. This
makes tests of operational contextuality relevant for practical
considerations when no fully device-independent certificate is
either possible or known.
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APPENDIX A: BELL NONLOCALITY IMPLIES
PREPARATION CONTEXTUALITY

We give a simple argument for every probability distri-
bution that violates a Bell inequality also being a proof of
preparation contextuality (see also Ref. [43]). We show this
immediately from ontological models supplemented with the
no-signaling principle encountered in Bell inequality tests.

To see this, we write a general ontological model for a Bell
experiment as

p(a, b|x, y) =
∑

λ

p(a|x, y)p(λ|a, x)p(b|y, λ). (A1)

If we also impose no-signaling, then Alice’s local marginals
are independent of Bob’s input. Therefore,

p(a, b|x, y) =
∑

λ

p(a|x)p(λ|a, x)p(b|y, λ). (A2)

Bayes’ rule together with the independence of x and λ

gives that p(a|x)p(λ|a, x) = p(λ)p(a|x, λ). Inserting this into
Eq. (A2), we obtain

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, λ)p(b|y, λ). (A3)

This is a local hidden variable model, i.e., the notion of classi-
cality in Bell inequality tests. The assumption of preparation
noncontextuality is enforced due to the assignment of the
same ontic-state distribution for the preparation procedures
corresponding to the remotely prepared state on Bob’s side
when averaged over Alice’s outcomes, i.e., the principle of
no-signaling. Therefore, whenever p(a, b|x, y) has no local
hidden variable model, it also has no preparation noncontex-
tual model.

APPENDIX B: NONCONTEXTUAL BOUND

In the main text, we considered a scenario in which sepa-
rated parties Alice and Bob share a state and perform local
measurements with binary outcomes a, b ∈ {0, 1}. Alice’s
measurement settings are labeled by a bit string x ∈ {0, 1}n−1

and Bob’s measurement settings are labeled by y ∈ {1, . . . , n}.
Alice and Bob aim to satisfy the relation a + b = x̄y mod 2
where x̄ = (a, a + x) is an n-bit string. The notation x̄y labels
the yth bit in the string x̄. Their average success probability is

An ≡ 1

n2n−1

∑

x,y

p(a + b = x̄y|x, y). (B1)

Alice and Bob are restricted by two constraints. First, they
obey the no-signaling principle. This means that the prepa-
rations of Alice on Bob’s side (denoted Pa,x), effectively
achieved by a local measurement on her system, realize the
same preparation in different contexts. That is, the following

operational equivalences hold:
∑

a Pa,x ∼ ∑
a Pa,x′ . The anal-

ogy holds in the other direction, i.e., by the preparations of
Bob on Alice’s side achieved by him locally measuring his
system. Second, Alice’s measurements are required to uphold
certain operational equivalences. In quantum theory, these are
written

∑

a,x|r·x̄=0

Ma|x =
∑

a,x|r·x̄=1

Ma|x, (B2)

for every n-bit string r ∈ {0, 1}n with at least two instances
of ′1′. For clarity, we give as an example the case of n = 3.
There exists eight three-bit strings of which four have at least
two instances of ′1′. Those are r = 011, r = 101, r = 110,
and r = 111. For each r we have the relation in Eq. (B2). In
the case of, for example, r = 011 we find

M0|00 + M1|00 + M0|11 + M1|11

= M0|01 + M1|01 + M0|10 + M1|10. (B3)

However, this is trivially satisfied since ∀ x : M0|x + M1|x = 1.
Similarly, one finds that the constraint (B2) is trivial also for
r = 101 and r = 110. However, for r = 111 we obtain

M0|00 + M0|11 + M1|01 + M1|10

= M0|01 + M0|10 + M1|00 + M1|11, (B4)

which is a nontrivial constraint.
Imagine now that instead of performing local measure-

ments on a shared state, Alice directly prepares the would-
have-been post-measurement states of Bob’s system [labeled
by the pair (a, x)] and sends them to Bob, who then measures
the system and records b ∈ {0, 1}. This represents a prepare-
and-measure scenario in which Alice has 2n inputs (a, x) with
some prior distribution p(a, x) = p(a|x)/2n−1. Alice’s prepa-
rations are required to satisfy the operational equivalence
which in quantum theory reads

∀ r :
∑

a,x|r·x̄=0

p(a|x)ρa,x =
∑

a,x|r·x̄=1

p(a|x)ρa,x. (B5)

Notice first that in the original scenario, every assemblage
prepared by Alice on Bob’s side can also be directly sent
in this prepare-and-measure model; simply define ρa,x =
trA [Ma|x ⊗ 1ρ]/ tr [Ma|x ⊗ 1ρ], and the prior distribution as
p(a|x) = tr [Ma|x ⊗ 1ρ]. Conversely, every ensemble that
Alice can communicate to Bob in the prepare-and-measure
scenario can also be realized in the original scenario via local
measurements on an entangled state and classical communi-
cation. This follows from the Gisin-Hughston-Josza-Wootters
theorem [30,31] and the fact that Eq. (B5) enforces a no-
signaling-like preparation ensemble.

In Ref. [25] it was shown that when p(a|x) = 1/2, the con-
sidered prepare-and-measure scenario serves as the following
test of preparation contextuality: the inequality

1

n2n−1

∑

a,x,y

p(a|x)p(b = (a, x)y|a, x, y) � n + 1

2n
(B6)

holds for every preparation noncontextual model. Moreover, it
is a trivial modification of the arguments of Ref. [25] to show
that the same bound holds regardless of the prior distribution
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p(a|x). Therefore, due to the connection between the prepare-
and-measure scenario and the original scenario, it also holds
that

An � n + 1

2n
(B7)

in a preparation noncontextual model, in which we view Alice
as effectively preparing the local states of Bob.

Moreover, in the original scenario, we can equally well
consider Bob as the effective sender of Alice’s local states.
If we impose measurement noncontextuality, the response
function of Alice takes no regard of the different contexts
of her measurement (related to r). Note that preparation
noncontextuality is still present due to Alice and Bob being
no-signaling.

APPENDIX C: NUMERICAL EVIDENCE
IN SUPPORT OF CONJECTURE 1

The numerical evidence behind Conjecture 1 was obtained
as follows. We used the prepare-and-measure variant (dis-
cussed in Appendix B, based on Ref. [25]) for the numerics.
We sample a set of n random two-outcome qubit POVMs
M = {Bb|y}n

y=1. The sampling is done by using the Bloch
sphere parametrization of the most general two-outcome qubit
measurement, i.e.,

∀ y : B0|y = αy1 + ηy�ny · �σ
2

, (C1)

B1|y = (2 − αy)1 − ηy�ny · �σ
2

(C2)

for some random unit vectors �ny, some random numbers ηy ∈
[0, 1], and some random numbers ηy � αy � 2 − ηy.

For the sampled M, we evaluate the largest possible value
of the witness An via a semidefinite program optimizing over
the state ensemble of Alice. This returns the maximal value
of An(M) attainable with M. We denote the optimal en-
semble returned by the semidefinite program by P . Provided
that An(M) violates the noncontextuality inequality (in its
prepare-and-measure form), we construct new measurements
B′

b|y = vBb|y + (1 − v)1/2 where v ∈ [0, 1]. We write M′ =
{B′

b|y}. For the states P we have that

An(M′,P ) = vAn(M) + (1 − v)An({1/2},P ). (C3)

We choose the value of v for which An(M′,P ) saturates the
noncontextual bound, i.e.,

v = Cn − An({1/2},P )

An(M) − An({1/2},P )
, (C4)

where Cn = (n + 1)/(2n) is the noncontextual bound. Then,
via a semidefinite program, we check whether M′ is jointly
measurable. Evidently, any perturbation of v to the positive
renders M′ incompatible since it implies a violation of the
preparation noncontextuality inequality. We have repeated the
procedure 10 000 times ]postselected on the cases in which
An(M) constitutes a proof of preparation contextuality] for
n = 3, 4, 5, 6, 7 respectively. Without exception, we have
found that M′ is jointly measurable.
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The generation of genuine multipartite entangled states is challenging in practice. Here we explore an
alternative route to this task, via autonomous entanglement engines which use only incoherent coupling to
thermal baths and time-independent interactions. We present a general machine architecture, which allows for
the generation of a broad range of multipartite entangled states in a heralded manner. Specifically, given a target
multiple-qubit state, we give a sufficient condition ensuring that it can be generated by our machine. We discuss
the cases of Greenberger-Horne-Zeilinger, Dicke, and cluster states in detail. These results demonstrate the
potential of purely thermal resources for creating multipartite entangled states useful for quantum information
processing.
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I. INTRODUCTION

Quantum thermal machines combine quantum systems
with thermal reservoirs at different temperatures and exploit
the resulting heat flows to perform useful tasks. These can
be work extraction or cooling, in analogy with classical heat
engines and refrigerators, but may also be of a genuinely
quantum nature. In particular, it is possible to devise en-
tanglement engines—thermal machines generating entangled
quantum states. Entanglement is a key resource for quantum
information processing but is generally very fragile and easily
destroyed by environmental noise. It is nevertheless possible
to exploit dissipation to create and stabilize entanglement
[1–13]. This was studied in a variety of settings and physi-
cal systems [14–24] and dissipative entanglement generation
using continuous driving was experimentally demonstrated,
mainly for bipartite states [25–28].

Autonomous entanglement engines represent a particularly
simple case. Here, entanglement can be generated dissipa-
tively with minimal resources, using only time-independent
interactions and contact to thermal reservoirs at different
temperatures. No driving, coherent control, or work input is
required. For the bipartite case, a two-qubit entangled state
can be generated in a steady-state, out-of-thermal-equilibrium
regime [29]. Although the entanglement produced by such
machines is typically weak, it can be boosted via entangle-
ment distillation [30], or by coupling to negative-temperature
[31] or joint baths [32]. In fact, applying a local filtering
operation to the steady state of a bipartite entanglement engine
can herald maximal entanglement between two systems of
arbitrary dimension [33].

These first results show that using dissipative, out-of-
equilibrium thermal resources offers an interesting per-
spective on entanglement generation. A natural question is
whether this setting could also be used to generate more
complex forms of entanglement, in particular entanglement
between a large number of subsystems. It is of fundamental
interest to understand the possibilities and limits of thermal

entanglement generation. In addition, such multipartite entan-
gled states represent key resources, e.g., for measurement-
based quantum computation, quantum communications, and
quantum-enhanced sensing and metrology. The creation and
manipulation of complex entangled states is therefore of
strong interest for many experimental platforms, although
typically very challenging in practice.

Here, we propose autonomous entanglement engines as
an alternative route to the generation of multipartite entan-
glement and explore their potential. A first question con-
cerns which types of multipartite entangled states can be
created. We present a sufficient condition for a given target
N-qubit state to be obtainable. Specifically, for any target
state satisfying our criterion, we construct an autonomous
entanglement engine that will generate this state. The engine
consists of N interacting qutrits (three-level systems), each
qutrit being locally connected to a thermal bath. From the
resulting steady state, a local filtering operation then leads to
the desired target state. In particular, our scheme can generate
important classes of genuine multipartite entangled states,
including Greenberger-Horne-Zeilinger (GHZ), Dicke, and
cluster states, which we discuss in detail. We show that these
states can be generated with high fidelities and good heralding
probabilities.

II. ENTANGLEMENT ENGINE

We begin by describing the entanglement engine. The
structure of the machine is determined by the choice of sub-
space, energy spectrum, and bath temperature for each qutrit,
as well as the form of the interaction, all of which generally
depend on the N-qubit target state |ψ〉. This state is obtained
in a heralded manner from the steady state of the machine by
projection of each qutrit to a qubit subspace. Figure 1 shows
an example targeting a GHZ state.

The machine evolution consists of a Hamiltonian contri-
bution and a dissipative contribution due to the heat baths.
The evolution is autonomous in the sense that both the
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FIG. 1. Autonomous thermal machine for the generation of N-
qubit GHZ states. One qutrit is coupled to a hot thermal bath, while
N − 1 qutrits are coupled to cold thermal baths at equal temperatures.
The energy-level structure is such that transitions in the hot qutrit are
resonant with collective transitions of the cold qutrits, as indicated by
arrows. All the cold systems have the same structure, i.e., �(1)

k = �(1)
c

and �
(2)
k = �(2)

c for k = 2, . . . , N , and �(1)
c = (�(2)

h − �
(1)
h )/(N −

1) and �(2)
c = �

(2)
h /(N − 1). Local filters project the qutrits onto the

qubit subspaces enclosed in dashed, gray boxes.

Hamiltonians and the bath couplings are time independent,
and the machine thus requires no work input to run. Denoting
the energy basis states of qutrit k by {|0〉k , |1〉k , |2〉k} and tak-
ing the corresponding energies to be {0,�

(1)
k ,�

(2)
k }, the free

Hamiltonian of each qutrit is Hk = �
(1)
k |1〉k〈1| + �

(2)
k |2〉k〈2|.

The free Hamiltonian of the machine is

Hfree =
N∑

k=1

Hk =
N∑

k=1

(
2∑

l=1

�
(l )
k |l〉k〈l|

)
. (1)

In addition, the qutrits interact via a time-independent Hamil-
tonian Hint, specified below.

We model the machine evolution including the heat-bath
induced dissipation with a master equation of the form

dρ

dt
= −i[Hfree + Hint, ρ] + L(ρ). (2)

For simplicity, we adopt a local reset model in which the
dissipator L corresponds to spontaneous, probabilistic, in-
dependent resets of each qutrit to a thermal state at the
corresponding temperature [8,34]. That is,

L(ρ) = Lk (ρ) =
N∑

k=1

γk[τk ⊗k Trk (ρ) − ρ], (3)

where γk is the reset rate for qutrit k, τk =
exp(−Hk/Tk )/ Tr[exp(−Hk/Tk )] is a thermal state of qutrit k,
and ⊗k denotes tensoring at position k. For such a Markovian
master equation description to be valid, the system-bath
couplings γk must be small relative to the system energy
scale �

(l )
k . In addition, each dissipator acts only on the

corresponding qutrit, i.e., they are local. This requires that
the strength of the interaction between the qutrits is at most
comparable to the bath couplings γk [35,36]. We note that
the reset model can be mapped to a standard Lindblad-type
model which can be derived from a microscopic, physical
model of the baths [33].

The goal of the machine is to produce the N-qubit target
state by local filtering of the N-qutrit steady state of (2). The
steady state ρ∞ is obtained by solving dρ/dt = 0, and the
filter is defined by a local projection �k = 1 − |Rk〉〈Rk| of
each qutrit onto the chosen qubit subspace. The state of the

machine after filtering and the probability for the filtering to
succeed are given by

ρ ′ = �ρ∞�

Tr(ρ∞�)
, psuc = Tr(ρ∞�), (4)

where � = ⊗N
k=1 �k . The temperatures, filters, bath cou-

plings γk , and interaction must be chosen appropriately for
the heralded state ρ ′ to approach the target state.

Here, for a given N-qubit target |ψ〉, we focus on the
following choice for the interaction

Hint = g(|ψ̄〉〈R| + |R〉〈ψ̄ |), (5)

where g > 0 is the interaction strength, and the states |ψ̄〉
and |R〉 are defined by the choices of filtered qubit subspace
for each qutrit. For qutrit k, we let Rk = 0, 1, 2 label the
level which is not part of the qubit, i.e., qubit k is spanned
by the two levels complementary to |Rk〉. Then |ψ̄〉 is the
embedding of the target |ψ〉 into these qubit subspaces, and
|R〉 = |R1 . . . RN 〉. That is, Hint swaps the target state and the
state in which every qutrit is outside the filtered subspace.

We furthermore focus on the regime of weak intersystem
coupling, where g is small relative to the free energies �

(l )
k

(where the local master equation is valid). For there to be
any nontrivial evolution in this regime, the interaction needs
to be energy conserving, i.e., [Hint, Hfree] = 0. This restricts
which target states can be generated. However, that is the only
restriction. Our main result is that

any state |ψ〉, for which the Hamiltonians Hfree and Hint of
Eqs. (1) and (5) can be constructed to satisfy [Hint, Hfree] = 0,
can be generated by an entanglement engine as described
above.

Specifically, one may choose a single qutrit to be connected
with coupling strength γh to a hot bath at temperature Th and
all other qubits to be connected with coupling strength γc to
cold baths at Tc. For the hot qutrit, one chooses Rk = 2, while
for all the cold qutrits Rk = 0. The target |ψ〉 is then obtained
in the limit of extremal temperatures Tc = 0, Th → ∞, and
small coupling-strength ratios g � γh � γc. A full proof is
given in Appendix A. However, one can intuitively understand
why the machine works well in this regime. When Tc = 0,
resets of the cold qutrits will take them to the ground state
|0〉k . Since for the cold qutrits Rk = 0, the ground state is not
part of the filtered subspace. Therefore, cold resets will only
lower the filtering success probability but will not affect the
overlap of the filtered state with the target state |ψ〉. Once
a cold qutrit is in the ground state, the only process which
can bring it back into the filtered subspace is Hint, and this
can only happen once all qutrits are in the state |Rk〉. The hot
qutrit must then be in state |2〉, which can happen via a hot
reset. Hot resets also degrade the quality of the filtered state,
and hence must be much less frequent than cold reset. This
way, the system is most likely to be found outside the filtered
subspace (making psuc small), but if found inside it is likely
to be in state |ψ〉 (because it is unlikely a hot reset happens
before a cold one drives the system back out).

We note that, even if a given target |ψ〉 does not admit
any choice of Hfree and Hint satisfying [Hint, Hfree] = 0, it may
happen that by applying local unitaries to each qubit one can
obtain another state |ψ ′〉 which does. Since entanglement is
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preserved under local unitaries, one may then first generate
|ψ ′〉 and simply apply the inverse local unitaries to obtain
|ψ〉. Thus, effectively, the set of states which can be generated
using the entanglement engine above consists of all states
within the local unitary orbit of those |ψ〉 for which energy
conservation can be satisfied.

III. ENERGY CONSERVATION

We now derive conditions for |ψ〉 to admit choices of
Hfree and Hint such that [Hint, Hfree] = 0. This holds if and
only if every transition generated by Hint is energy conserving
with respect to Hfree. From (5), these transitions depend on
the target state and on the choice of |R〉. We can write
the target N-qubit state as |ψ〉 = ∑

n∈Sψ
cn|n〉 where Sψ =

{n ∈ {0, 1}N | 〈ψ |n〉 
= 0} determines the set of basis states on
which |ψ〉 has support, and cn ∈ C. Denoting the embedding
of |n〉 into the N qutrits by |n̄〉, both |n̄〉 and |R〉 are eigenstates
of Hfree with respective eigenvalues En̄ and ER. The conditions
for energy conservation are then En̄ = ER for every n ∈ Sψ .
This can be expressed as

1

2

N∑
k=1

{
Rknk�

(1)
k + (2 − Rk )

[
(1 − nk )�(1)

k + nk�
(2)
k

]}

− 1

2

N∑
k=1

[
Rk�

(2)
k

] = 0, (6)

where we have restricted ourselves to cases where the qubit
states are either {|1〉k, |2〉k} or {|0〉k, |1〉k} for each qutrit (i.e.,
Rk = 0 or 2) [37]. Given a target state |ψ〉, the question is thus
whether there exist choices of Rk , �

(1)
k , and �

(2)
k which fulfill

(6) for all n ∈ Sψ .
Although (6) depends only on Sψ and not on the coeffi-

cients cn, a general solution is not easy to obtain, because
the number of variables increases with N . Nevertheless, (6)
can be significantly simplified. In Appendix B, we show that
whenever (6) has a solution it has a solution with Rk = 0 for
all but a single k. For a given |ψ〉 it is thus sufficient to check
whether there exist choices of k′ ∈ {1, . . . , N}, �

(1)
k , and �

(2)
k

fulfilling

nk′�
(1)
k′ +

∑
k 
=k′

[
(1 − nk )�(1)

k + nk�
(2)
k

] − �
(2)
k′ = 0. (7)

If there do, then it follows from the proof in Appendix A that
the machine defined by these choices, with bath k′ hot and all
other baths cold, can generate states arbitrarily close to |ψ〉.

Below, we consider several families of genuine multipartite
entangled states, important in quantum information process-
ing, namely, GHZ, Dicke, and cluster states. We show that
they admit solutions to (7) and hence can be generated. Fur-
thermore, we consider the tradeoff between heralding success
probability and the quality of the generated states, as well
as the effect of finite temperatures, and show that they can
be robustly generated also away from the ideal limit of the
entanglement engine.

IV. GHZ STATES

We start with N-qubit GHZ state |GHZ〉 =
1√
2
(|10 . . . 0〉 + |01 . . . 1〉). This state admits a solution to (7)

FIG. 2. Fidelity of the generated state with the GHZ state vs the
probability of successful filtering for different numbers of qutrits
with one hot bath (solid lines) and two hot baths (dashed line). The
curves are obtained by numerical optimization over the coupling
parameters under the constraint g, γk � 10−2�min where �min is the
smallest energy gap in each case.

(see Fig. 1). We take the first bath to be hot and the rest cold,
and let the free Hamiltonians of the hot qutrit and each of the
N − 1 cold qutrits be Hh = �

(1)
h |1〉〈1| + �

(2)
h |2〉〈2| and Hc =

[(�(2)
h − �

(1)
h )|1〉〈1| + �

(2)
h |2〉〈2|]/(N − 1), respectively.

To construct an energy-conserving interaction Hamiltonian,
we follow the recipe above. Writing 0̄ for a string of N − 1
zeros 0 . . . 0, and similarly for 1̄ and 2̄, we have |R〉 = |20̄〉.
Embedding |GHZ〉 in the qutrit space, from (5) we get

Hint = g(|20̄〉〈11̄| + |20̄〉〈02̄| + |11̄〉〈20̄| + |02̄〉〈20̄|). (8)

Once the steady state of the dynamics (2) is obtained, we
apply the filter �h = |0〉〈0| + |1〉〈1| to the hot system and
the filter �c = |1〉〈1| + |2〉〈2| to each of the cold systems.
Successful filtering heralds the generation of |GHZ〉.

As explained above, the perfect GHZ state is obtained only
under idealized conditions (maximal temperature gradient and
coupling strength ratios tending to zero). We now consider
the quality of the generated state in case of varying filtering
success probabilities (4) and then for finite temperatures.

As argued above, in the ideal limit, γh � γc, the system
is most likely found outside the filtered subspace, causing
psuc → 0 as γh/γc → 0. However, away from this idealized
limit, we find that the state ρ ′ after filtering (considered
as an N-qubit state) may still have a high fidelity F =
〈GHZ|ρ ′|GHZ〉 with the GHZ state. Figure 2 shows the
tradeoff between F and psuc for N = 2, 3, 4 systems. We see
that fidelities above 90% are obtained for psuc at the 5% level.
Note that psuc is bounded, even when the fidelity is allowed to
degrade. The maximal psuc decreases with increasing N , how-
ever the corresponding fidelity also increases. E.g., for N = 4,
the fidelity does not reach F = 1/2 before psuc reaches its
maximal value of psuc = 1/9. This suggests that, as N grows,
the fidelity achievable up to the maximal psuc increases. In
Appendix C, we derive the maximal value of psuc for any N .
Finally, we have also considered an analogous autonomous
entanglement engine for N = 3 with two hot systems and one
cold system, but found that the performance is worse (see
Fig. 2).

We remark that, for the states considered here which
have only two nonzero off-diagonal elements, a GHZ fidelity
F > 1/2 implies genuinely multipartite entanglement [38]
which can also be semi-device-independently certified via
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FIG. 3. Fidelity of the filtered state with the GHZ state vs
the bath temperatures, for N = 3 and g = 1.6 × 10−3, γh = 10−4,
γc = 5 × 10−3, �(1) = 1, �(2) = 2.5. The units are dimensionless
(Boltzmann’s constant kB = 1).

the scheme of Ref. [39]. In Appendix D we have studied
when the entanglement of the generated state can be device-
independently certified by violating a Bell inequality.

Next, we consider the effect of finite temperatures, i.e.,
Tc > 0 and Th < ∞. We keep the interaction and bath cou-
pling strengths fixed (thus also avoiding the idealized limit
of vanishing couplings). The results are presented in Fig. 3.
We note that even for temperatures far from the ideal limit
fidelities close to unity are possible.

Thus, our entanglement engine functions well not only in
the ideal limit but also for finite temperatures and coupling
strengths. In Appendix E, we further show that qualitatively
similar results can be obtained when the simple reset model is
replaced by a master equation in standard Lindblad form.

V. DICKE STATES

As a second example, we consider N-qubit Dicke states.
The Dicke state with l excitations is given by |DN

l 〉 =
( N

l )−1/2 ∑
s σs[|1〉l ⊗ |0〉N−l ], where the sum is over all per-

mutations σs of the subsystems. Notably, setting l = 1 returns
the well-known W states. Again, one finds that all such states
admit solutions to (7). Hence, every Dicke state can be gener-
ated by an autonomous entanglement engine. For instance, we
choose the first qutrit hot (Hh) and the rest cold (Hc), and ener-
gies �

(1)
h = �(2)

c − �(1)
c and �

(2)
h = l�(2)

c + (N − l − 1)�(1)
c .

For the case (N, l ) = (3, 1), we have analytically solved the
reset master equation in terms of g, γh, and γc and computed
the fidelity F = 〈D3

1|ρ ′|D3
1〉. Similarly, we have analytically

evaluated psuc in Eq. (4). The tradeoff between F and psuc

is shown in Fig. 4. As for the GHZ case, we find that high
fidelities can be reached with success probabilities at the few-
percent level. We have also checked that increasing the num-
ber of hot systems (to two) does not improve performance.

VI. CLUSTER STATE

Finally, we consider a linear four-qubit cluster state |C〉 =
1
2 (|0110〉 + |0101〉 + |1010〉 − |1001〉). A solution to (7) is
obtained with one hot system and three cold systems by
choosing �

(1)
h = �(2)

c − �(1)
c and �

(2)
h = 2�(2)

c + �(1)
c . In

analogy with the previous, we consider the tradeoff between
the F = 〈C|ρ ′|C〉 of the generated state ρ ′ with the cluster
state and filtering success probability psuc. We have evaluated

FIG. 4. Fidelity vs the filtering success probability for generation
of W states using one and two hot baths (solid) and cluster states
using one hot bath (dashed). The results are obtained by constrained
optimization over γh, γc, g � 10−2�min, where �min is the smallest
energy gap in each case.

both F and psuc analytically for a single hot bath, and opti-
mized over the couplings g, γh, and γc to obtain the results in
Fig. 4. Again, high-fidelity cluster states can be generated with
success probabilities at the few-percent level. Furthermore,
in Appendix D, we have considered the device-independent
certification of ρ ′ via Bell inequalities tailored for cluster
states [40] at varying psuc. We find that large Bell inequality
violations can be obtained for every psuc up to its maximal
value of psuc ≈ 0.085, demonstrating that the entanglement
engine works well over a wide regime.

VII. CONCLUSION

We have given a general recipe for autonomous entan-
glement engines which enable heralded generation of mul-
tipartite entangled states between any number of parties. As
demonstrated by several examples, a wide range of states can
be targeted, including GHZ, Dicke, and cluster states. While
pure target states are only generated perfectly for infinite
temperature gradients and vanishing heralding success prob-
abilities, we have explored finite temperatures and heralding
probabilities as well and have found that high fidelities can be
attained also away from the ideal regime.

Thus, probabilistic generation of high-quality multipar-
tite entanglement is possible using only incoherent, thermal
processes and energy-preserving interactions, requiring no
work input. It would be interesting to understand if strong
entanglement could be generated by an autonomous engine in
a deterministic manner, i.e., without filtering. Finally, perspec-
tives for experimental implementation could be explored. In
that context, a natural question is whether genuine multipartite
entangled states can be generated autonomously using only
two-body Hamiltonians.
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FIG. 5. Flow diagram for population entering and leaving the
state |o〉. Hot resets take the system from |o〉 to state |o′〉 or |n̄〉, while
cold resets take it to other states outside the support Sψ̄ . The transition
rates due to hot and cold resets are indicated.

APPENDIX A: AUTONOMOUS GENERATION
OF TARGET STATES

We prove that any state |ψ〉 which admits a solution to
the energy-conservation condition can be generated by an
autonomous entanglement engine. Following the main text,
we write the target state as

|ψ〉 =
∑
n∈Sψ

cn|n〉 (A1)

where cn ∈ C,
∑

n |cn|2 = 1, and Sψ is the set of binary
strings s = {0, 1}N such that |ψ〉 has support of |s〉. We show
that the state ρ ′ returned by the machine described in the main
text (after heralding) is indeed the target state. To this end, we
must characterize ρ ′. For simplicity, we will first focus on the
diagonal elements of ρ ′ and then on its off-diagonal elements.

1. Diagonal elements

We aim to show that the diagonal elements of ρ ′ corre-
spond to the populations |cn̄|2, where |n̄〉 are the computa-
tional basis states on which the embedded target state |ψ̄〉
has support. To enable the characterization of the diagonal
elements of ρ ′, we use flow diagrams as illustrated in Fig. 5.
Such a diagram represents the transitions induced by the
influence of hot and cold resets, along with the rate of said
transitions, on a given support state |n̄〉. As illustrated, by a hot
reset on |n̄〉 one can reach two other states, denoted by |o〉 and
|o′〉. Importantly, neither of these two states can be members
of Sψ̄ since it is otherwise at odds with the conditions for an
autonomous Hamiltonian. From the flow diagram, we obtain
the following steady-state condition when considering the
flow into and out of the state |o〉:

Po

[
2
γh

3
+ γc(N − 1)

]
= γh

3
(Pn̄ + Po′ ), (A2)

where we have adopted the simplified notation Ps = 〈s|ρ|s〉.
However, since |o〉, |o′〉 /∈ Sψ̄ (nor do they equal the state
|R〉), they do not appear in the interaction Hamiltonian and
are treated equally by the dissipation. Hence, it follows that
Po = Po′ . This leads us to rewrite (A2) as

Po

Pn̄
= γh

3(N − 1)γc + γh
. (A3)

Let us now consider the filtered subspace, i.e., the space
in which the heralded state ρ ′ lives. Since the filtering corre-
sponds to projecting each qutrit onto a qubit subspace, there
are consequently 2N computational basis states spanning the
filtered subspace. Of these, ν = |Sψ̄ | are members of Sψ̄ ,
whereas another ν are reachable by a hot reset to each element

in Sψ̄ . Denote the latter set of states by Gh. The remaining
2N − 2ν states have no population (diagonal element equal to
zero) since they cannot be reached either via the interaction
Hamiltonian or via resets. Let P̄o denote renormalized Po after
filtering, i.e., P̄o = 〈o|ρ ′|o〉. Normalization requires that∑

o∈Sψ̄

P̄o +
∑
o∈Gh

P̄o = 1. (A4)

However, due to the symmetries of the interaction Hamilto-
nian and the linearity of the dynamics, we may write P̄o =
|co|2P̄S for o ∈ Sψ̄ for some constant population P̄S inde-
pendent of o. Similarly, we may write P̄o = |co|2P̄G for o ∈
Gh for some constant population P̄G independent of o. The
normalization condition reduces to

P̄S

(
1 + P̄G

P̄S

)
= 1, (A5)

which together with (A3) gives

P̄S =
(

1 + P̄G

P̄S

)
=

[
1 + γh

3(N − 1)γc + γh

]−1

. (A6)

In the limit γh � γc we have P̄S → 1, and therefore also
P̄G → 0. Consequently, we have found that in the given limit,
for n̄ ∈ Sψ̄ ,

P̄n̄ = 〈n̄|ρ ′|n̄〉 = |cn̄|2. (A7)

These are the desired diagonal elements.

2. Off-diagonal elements

We now aim to show that the off-diagonal elements of
ρ ′ correspond to cnc∗

n . Due to hermiticity, it is sufficient
to consider the upper triangle in the matrix of ρ ′. Among
these off-diagonal entries, there are ( ν

2 ) that correspond to
coherences generated between the computational basis states
associated to n, n′ ∈ Sψ̄ [we have dropped the notation in bold
(n̄) since in this section n will sometimes be a member of Sψ̄ ].
Another ν off-diagonals correspond to coherences generated
between the computational basis states associated to n ∈ Sψ̄

and the state |R〉. The remaining off-diagonal elements are
not reachable by the dynamics (neither via resets nor via
the Hamiltonian) and are therefore equal zero. We use the
short-hand notation ρn,n′ = 〈n|ρ|n′〉 to write the reset master
equation in the steady state as

0 = ρ̇n,n′

= −i〈n|[H, ρ]|n′〉 + γh

3
〈n|1 ⊗ Tr1(ρ)|n′〉

+
N∑

k=2

γc〈n|[|0〉〈0| ⊗k Trk (ρ)]|n′〉 − (γh + γc)ρn,n′ .

(A8)

For the first term in Eq. (A8) we have that

〈n|[H, ρ]|n′〉
= g〈n|(|ψ̄〉〈R| + |R〉〈ψ̄ |)ρ − ρ(|ψ̄〉〈R| + |R〉〈ψ̄ |)|n′〉
= g(〈n|ψ̄〉〈R|ρ|n′〉 + 〈n|R〉〈ψ̄ |ρ|n′〉

− 〈n|ρ|ψ̄〉〈R|n′〉 − 〈n|ρ|R〉〈ψ̄ |n′〉). (A9)

012315-5

276



TAVAKOLI, HAACK, BRUNNER, AND BRASK PHYSICAL REVIEW A 101, 012315 (2020)

Taking n, n′ 
= R, the two middle terms vanish. Moreover, if
n, n′ /∈ Sψ̄ also the first and fourth terms vanish. If n, n′ ∈
Sψ̄ then we have 〈n|ψ̄〉 = cn and 〈ψ̄ |n′〉 = c∗

n′ and therefore
〈n|[H, ρ]|n′〉 = g(cnρR,n′ − c∗

n′ρn,R). Thus,

〈n|[H, ρ]|n′〉

=
{

g(cnρR,n′ − c∗
n′ρn,R) if n, n′ ∈ Sψ̄

0 if n, n′ /∈ Sψ̄ and n, n′ 
= R
.

(A10)

For the second term in Eq. (A8) a direct calculation gives

〈n|1 ⊗ Tr1(ρ)|n′〉 = δn1,n′
1

∑
j

ρ jn̄, jn̄′ , (A11)

where the bar sign denotes s̄ = s2 . . . sN . Moreover, the third
term in Eq. (A8) straightforwardly evaluates to

〈n|[|0〉〈0| ⊗k Trk (ρ)]|n′〉 = δnk ,0δn′
k ,0

∑
jk

ρ←−n jk
−→n ,←−n ′ jk

−→n ′ ,

(A12)

where ←−s = s1 . . . sk−1 and −→s = sk+1 . . . sN . Notice that this
term vanishes for k = 2, . . . , N if either n or n′ is a member
of Sψ̄ . In conclusion, for n, n′ ∈ Sψ̄ , we can rewrite (A8) as

0 = ρ̇n,n′

= −ig(cnρR,n′ − c∗
n′ρn,R)

+ γh

3
δn1,n′

1

∑
j

ρ jn̄, jn̄′ − (γh + γc)ρn,n′ . (A13)

When n 
= n′ (since one cannot transition between
two support states by a hot reset) Eq. (A11) becomes
δn1,n′

1

∑
j ρ jn̄, jn̄′ = δn1,n′

1
ρn,n′ . Furthermore, by hermiticity we

have that ρR,n′ = ρ∗
n′,R, and due to the symmetries of the

Hamiltonian it also holds that ρn,R = cnL where L is a constant
related to the population in the steady state that is independent
of n. With this in hand, we consider the three equations
obtained from (A13):

0 = ρ̇n,n′

= −igcnc∗
n′ (L∗− L) + γh

3
δn1,n′

1
ρn,n′− (γh + γc)ρn,n′ , (A14)

0 = ρ̇n,n = −ig|cn|2(L∗ − L) + γh

3

∑
j

ρ jn̄, jn̄−(γh + γc)ρn,n,

(A15)

0 = ρ̇in̄,in̄ = γh

3

∑
j

ρ jn̄, jn̄ − (γh + γc)ρin̄,in̄, (A16)

where in the first equation we have taken n, n′ ∈ Sψ̄ with n 
=
n′; in the second equation we have taken n, n′ ∈ Sψ̄ with n =
n′; and in the third equation we have taken n, n′ ∈ Sψ̄ with
n = n′ but then replaced n1 with the index i which runs over
the two values i 
= n1. Summing over i in Eq. (A16) gives∑

i 
=n1

ρin̄,in̄ = 2γh

3γc + γh
ρn,n. (A17)

Inserted into Eq. (A15) we obtain

ig(L∗ − L) = − ρn,n

|cn|2
3γc(γh + γc)

3γc + γh
. (A18)

Finally, when inserted into Eq. (A14), we can obtain the
off-diagonal elements from the diagonal elements of ρ ′. We
obtain

ρn,n′ = −3γc(γh + γc)

3γc + γh

[
γh

3
δn1,n′

1
− (γh + γc)

]−1 cnc∗
n′

|cn|2 ρn,n.

(A19)

However, the ratios between the off-diagonal terms are con-
served after filtering if they belong to the filtered subspace.
We use the notation ρ̄s,s′ = 〈s|ρ ′|s′〉. Then, taking the relevant
limit of γh � γc, we obtain

lim
γh�γc

ρ̄n,n′ = cnc∗
n′

|cn|2 lim
γh�γc

ρ̄n,n. (A20)

The right-hand side features a diagonal element which was
evaluated in Eq. (A7). In the relevant limit, we obtain the final
result:

lim
γh�γc

ρ̄n,n′ = cnc∗
n′ . (A21)

In conclusion, we have shown that the heralded state ρ ′ is the
target state.

APPENDIX B: SIMPLIFIED CONDITIONS
FOR ENERGY CONSERVATION

1. A single hot system is sufficient

Here, we show that if the conditions for the interaction to
be energy conserving can be solved using q hot systems (i.e.,
systems with Rk = 2) and N − q cold systems (i.e., systems
with Rk = 0) then there also exists a solution with just a single
hot system and N − 1 cold systems.

To prove this, we show that any set of valid energies �
(1)
k ,

�
(2)
k fulfilling the energy-conservation condition for q hot

systems allows one to define another set of energies {ε(1)
k ,

ε
(2)
k } which fulfill the corresponding condition with a single

hot system. Without loss of generality (as one may always
permute the parties), we can take the hot systems to be the
first ones. Then the energy-conservation condition with q hot
systems reads

∀n ∈ Sψ :
q∑

k=1

(
nk�

(1)
k − �

(2)
k

)

+
N∑

k=q+1

[
(1 − nk )�(1)

k + nk�
(2)
k

] = 0, (B1)

while the corresponding condition with a single hot system
(q = 1) becomes

∀n ∈ Sψ :
(
n1ε

(1)
1 − ε

(2)
1

) +
N∑

k=2

[
(1 − nk )ε(1)

k + nkε
(2)
k

] = 0.

(B2)
Note that the energies must satisfy �

(2)
k > �

(1)
k > 0 and sim-

ilarly ε
(2)
k > ε

(1)
k > 0. To construct a solution to (B2) given a

solution to (B1), we choose

ε
(1)
k = �

(1)
k (B3)

for k = q + 1, . . . , N,

ε
(2)
k = �

(2)
k (B4)
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and

ε
(1)
k = tk − �

(2)
k (B5)

for k = 2, . . . , q,

ε
(2)
k = tk − �

(2)
k + �

(1)
k (B6)

for some tk satisfying tk > �
(2)
k . Note that with these choices

we have ε
(2)
k > ε

(1)
k > 0 for k = 2, . . . , N , as desired. Insert-

ing in Eq. (B2), we get

∀n ∈ Sψ :

(
n1ε

(1)
1 − ε

(2)
1 +

q∑
k=2

tk

)
+

q∑
k=2

(
nk�

(1)
k − �

(2)
k

)

+
N∑

k=q+1

[
(1 − nk )�(1)

k + nk�
(2)
k

] = 0. (B7)

This reduces to (B1) provided that

∀n1 :

(
n1ε

(1)
1 − ε

(2)
1 +

q∑
k=2

tk

)
= n1�

(1)
1 − �

(2)
1 , (B8)

which is solved by

ε
(1)
1 = �

(1)
1 , (B9)

ε
(2)
1 = �

(2)
1 +

q∑
k=2

tk . (B10)

It is easy to see that ε
(2)
1 > ε

(1)
1 > 0. We thus have a valid

choice of energies ε
(1)
k , ε

(1)
k for which (B2) reduces (B1).

Hence, any solution with q hot systems also implies the
existence of a solution with a single hot system, as claimed.

2. Identical energy structures for all hot and all cold systems

If the energy spectra of all hot systems (i.e., all systems
with Rk = 2) are identical, and similarly those of cold systems
(with Rk = 0) are identical, then the energy-conservation con-
ditions can be simplified. Note that all the examples given in
the main text (for GHZ, Dicke, and cluster states) belong to
this setting.

Specifically, here we show that if �
(1)
k and �

(2)
k depend

only on Rk then the existence of R ∈ {0, 2}N and a choice of
energies fulfilling the energy-conservation conditions in the
main text is equivalent to the existence of a vector r ∈ {0, 1}N

such that r 
= 0, 1 and for each pair of vectors n, n′ ∈ Sψ

either

(n − n′) · r = (n − n′) · (1 − r) = 0 (B11)

or

(n − n′) · r
(n − n′) · (1 − r)

= c (B12)

where c < 0 is a constant independent of n, n′, and 0 =
(0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). That is, the interaction
Hamiltonian can be made energy conserving if and only if an
r 
= 0, 1 exists fulfilling (B11) and (B12).

Before we proceed with the proof, we illustrate (B11)
and (B12) and the notation introduced above in the simplest
setting of two parties. We take the maximally entangled state
|�+〉 = (|01〉 + |10〉)/

√
2 as the target and choose |R〉 =

|20〉. The target has support on just two states, Sψ = {n, n′},
where

n = (0, 1) and n′ = (1, 0). (B13)

It is straightforward to verify that (B12) is satisfied for r =
(1, 0), with c = −1. Hence, |�+〉 can indeed be generated
autonomously. Looking at the energy conditions in the main
text, we see that the conditions on the energies coming from
n and n′ are, respectively,

�
(2)
2 = �

(2)
1 (B14)

and

�
(1)
2 = �

(2)
1 − �

(1)
1 . (B15)

Thus, the two qutrits have the same maximal energy but
inverted level structures. The gap between the two lower levels
for the second qutrit equals the gap between the upper two
levels for the first qutrit. This corresponds exactly to the
entanglement engine of Ref. [33].

The conditions (B11) and (B12) can be defined as follows.
If we define a vector r ∈ {0, 1}N such that rk = 0 if Rk = 0
and rk = 1 for Rk = 2, then for each n ∈ Sψ the condition
En = ER̄ from the main text can be expressed as

N∑
k=1

{
rknk�

(1)
k + (1 − rk )

[
(1 − nk )�(1)

k + nk�
(2)
k

] − rk�
(2)
k

}
= 0. (B16)

The question is whether there exist choices of r, �(1)
k , and �

(2)
k

which fulfill this. Rewriting, we have

∑
k s.t. rk=0

[
(1 − nk )�(1)

k + nk�
(2)
k

] +
∑

k s.t. rk=1

[
nk�

(1)
k − �

(2)
k

]
= 0. (B17)

Now, if the energy structures of all qutrits with the same Rk are
the same, then the energies appearing under each sum become
independent of k. Let us denote the energy gaps of qutrits with
Rk = 0 by δ1 = �

(1)
k and δ2 = �

(2)
k − �

(1)
k and those of qutrits

with Rk = 2 by δ3 = �
(1)
k and δ4 = �

(2)
k − �

(1)
k . Then (B17)

becomes

∑
k s.t. rk=0

[δ1 + nkδ2] +
∑

k s.t. rk=1

[(nk − 1)δ3 − δ4] = 0, (B18)

which is equivalent to

(N − |r|)δ1 + (1 − r) · n δ2 − r · (1 − n)δ3 − |r|δ4 = 0,

(B19)

where 1 = (1, . . . , 1) and |r| is the number of 1’s in r. This
must hold for every n ∈ Sψ , and thus we have a set of linear
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equations: ⎛
⎜⎜⎜⎜⎝

N − |r| (1 − r) · n(1) −r · (1 − n(1) ) −|r|
N − |r| (1 − r) · n(2) −r · (1 − n(2) ) −|r|

...

N − |r| (1 − r) · n(ν) −r · (1 − n(ν) ) −|r|

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

δ1

δ2

δ3

δ4

⎞
⎟⎟⎟⎠ = 0, (B20)

where ν is the number of elements of Sψ . Regarding δ =
(δ1, . . . , δ4) as a variable, we would like to know when there
exists r ∈ {0, 1}N such that (B20) has a solution over (R+)4,
i.e., a positive solution. Given such a solution, for any l =
1, . . . , ν we must have

(1 − r) · n(l ) δ2 − r · (1 − n(l ) )δ3 = |r|δ4 − (N − |r|)δ1,

(B21)

where the right-hand side is independent of l . Note that this
condition can never be fulfilled if r = 0 or 1, because the two
sides of the equation then have opposite signs. However, if
the condition is satisfied, then for any pair l, l ′ = 1, . . . , ν we
have

(1 − r) · (n(l ) − n(l ′ ) ) δ2 − r · (n(l ′ ) − n(l ) )δ3 = 0. (B22)

Hence, for a positive solution to exist, for each pair of support
states either n(l ) and n(l ′ ) has an equal number of 1’s in
positions where r has zero and an equal number of 1’s in
positions where r has 1, or

r · (n(l ) − n(l ′ ) )

(1 − r) · (n(l ) − n(l ′ ) )
= −δ2

δ3
< 0 (B23)

is a negative constant independent of l , l ′. On the other hand,
if an r 
= 0, 1 exists fulfilling these conditions, then a positive
solution of (B20) is guaranteed to exist. This is because the
left-hand side of (B21) is then independent of l and thus one
can always find positive δ1 and δ4 which make the equality
true.

APPENDIX C: MAXIMAL FILTERING PROBABILITY
IN THE GHZ-STATE MACHINE

Naturally, since N local filters are performed on the steady
state of an N-qutrit autonomous thermal machine, the proba-
bility of a successful filtering decreases with N . It is therefore
reasonable to ask what this maximal possible success prob-
ability is. This can be determined analytically by considering
the flow of population in the steady state of the GHZ machine.

Since a cold reset always takes a system out of the fil-
tered subspace, the maximal success probability is obtained
in the limit γh � γc, i.e., the opposite of the limit max-
imizing the fidelity of the generated state with the target
state. To determine psuc in this limit, let Sk denote the set
of all eigenstates of the joint free Hamiltonian where k cold
qutrits are in one of the excited states (all in the same
one), while the remaining N − k − 1 cold qutrits are in the
ground state. For instance, in SN−1 we have the states SN−1 =
{|0, 1̄〉, |1, 1̄〉, |2, 1̄〉, |0, 2̄〉, |1, 2̄〉, |2, 2̄〉} while S0 consists of
the states S0 = {|0, 0̄〉, |1, 0̄〉, |2, 0̄〉}. We will compare the
flows of population into and out of the Sk . However, first we

argue that within each Sk the populations on each of the states
are equal in the steady state. We first note that all processes
(the evolution driven by the Hint of the GHZ machine, as well
as hot and cold resets) are symmetric in the states |1̄〉 and |2̄〉
of the cold qutrits. The populations of states with the hot qutrit
in a fixed state and a fixed number of cold qutrits excited to
the same excited state, and which differ only in whether this
state is |1〉 or |2〉, must therefore be equal in the steady state.
In contrast, Hint is not symmetric in the states |0〉, |1〉, and |2〉
of the hot qutrit, and hence populations of states with the hot
qutrit in different levels are not expected to be equal in the
steady state in general. However, in the limit γh � γc, there
are many hot resets between each cold one. This will then
equalize the populations within each set Sk before a cold reset
causes a transition to Sk−1. Hence, all populations with each
Sk are equal in the steady state.

We can now draw the flow diagram shown in Fig. 6 for
population transfer between the Sk . In the steady state, the
flow into each set Sk must equal the flow out. If we denote
the population per state in Sk by Pk , we therefore have, for
k = 2, . . . , N − 1,

kγc|Sk|Pk = (k − 1)γc|Sk−1|Pk−1. (C1)

The number of states in the set Sk is given by

|S0| = 3,

|Sk| = 6

(
N − 1

k

)
, k > 0. (C2)

Inserting in Eq. (C1) and rearranging, one finds that

Pk = k − 1

k

(
N − 1

k

)−1(
N − 1
k − 1

)
Pk−1

= k − 1

N − k
Pk−1, k = 2, . . . , N − 1. (C3)

From this it follows that PN−1 = P1 and PN−2 = P2, etc. That
is,

PN−k = Pk, k = 1, . . . , N − 1. (C4)

To determine the relation with P0, we note that Hint drives
swaps between the states |20̄〉 ↔ 1√

2
(|11̄〉 + |02̄〉) and hence

FIG. 6. Flow diagram for population entering and leaving the
sets of states Sk with k cold qubits excited. The rates per state in
the set of origin are indicated.
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between S0 and SN−1. This process is a unitary rotation.
Nevertheless, in the steady state it still results in a flow of
population with a constant rate, which we can denote νg.
Focusing on the flow in and out of SN−1, we can write

νgP20̄ = νg(P02̄ + P11̄ ) + (N − 1)γc|SN−1|PN−1. (C5)

As argued above, when γh � γc, all states in each Sk are
equally probable, and so

1
3νgP0 = 1

3νgPN−1 + 6(N − 1)γcPN−1. (C6)

Now, if further νg � (N − 1)γc, then

P0 = PN−1. (C7)

Finally, normalization of the steady state requires that

1 =
N−1∑
k=0

|Sk|Pk = 3P0 + 6
N−1∑
k=1

(
N − 1

k

)
Pk . (C8)

Together, Eqs. (C3), (C7), and (C8) provide N independent
equations from which the populations Pk , k = 0, . . . , N − 1
can be determined. Explicitly, we can first express everything
in terms of P0. For k � 1,

Pk =
k−1∏
s=1

s

N − s − 1
P1 =

(
N − 2
k − 1

)−1

P0 (C9)

where we used that P1 = PN−1 = P0. Then, from (C8),

1 =
[

3 + 6
N−1∑
k=1

(
N − 1

k

)(
N − 2

k − 1

)−1
]

P0 (C10)

=
[

3 + 6(N − 1)
N−1∑
k=1

1

k

]
P0 (C11)

= 3[1 + 2(N − 1)hN−1]P0, (C12)

and hence

P0 = 1

3[1 + 2(N − 1)hN−1]
(C13)

where hn is the nth harmonic number. We can now compute
the probability for successful filtering, given the steady-state
populations (C9) and (C13). The success probability becomes

psuc = P(hot qutrit not in |2〉, no cold in |0〉) (C14)

= 4PN−1 = 4P0 = 4

3[1 + 2(N − 1)hN−1]
(C15)

≈ 4

3N log(N )
, (C16)

where the last line is valid for large N . We note that the
assumption νg � (N − 1)γc leading to (C7) may not formally
be justified for the local master equation. However, we have
checked that the final expression (C15) is consistent with
solutions obtained for N � 8 without making this assumption.

It is interesting to observe that the critical psuc for obtaining
a nontrivial GHZ-state fidelity approaches the above maximal
value (C14) of psuc rapidly already for N = 3 and 4 displayed
in the main text. Provided that this observation extends to
larger N , it is interesting to note that genuinely multipartite

FIG. 7. Nonlocality vs filtering success probability for N =
2, 3, 4 in a GHZ machine with one hot system and N − 1 cold
systems. The results are obtained numerically by optimizing over
γh, g � 10−2�min.

entanglement can be generated with a success probability
which decreases only log linearly with N .

APPENDIX D: NONLOCALITY VERSUS FILTERING
PROBABILITY IN THE GHZ-STATE AND CLUSTER

STATE MACHINES

A particularly strong form of entanglement is that which
can violate a Bell inequality. Therefore, we have considered
whether the states generated by the GHZ machine at fixed
success probabilities have the ability of violating Bell inequal-
ities. To this end, we have focused on the Mermin inequalities
[41], which is a family of Bell inequalities applicable to
scenarios in which N observers share a state and perform
one of two local measurements with binary outcomes. These
inequalities are known to be maximally violated by a GHZ
state. Let the input of the kth observer in the Bell scenario
be xk ∈ {0, 1} and the corresponding output be ak ∈ {0, 1}.
We use a somewhat modified variant [42] of the Mermin
inequalities which reads

1

2N

∑
x1...xN ∈{0,1}

∣∣∣∣∣
〈

N∏
k=1

(
A(k)

0 + (−1)xk A(k)
1

)〉∣∣∣∣∣ � 1, (D1)

where〈
A(1)

x1
. . . A(N )

xN

〉 =
∑

a1...aN

(−1)a1+···+aN P(a1 . . . aN |x1 . . . xN ).

(D2)

We have fixed the measurements of each observer to be those
required for a maximal violation with a GHZ state. For N =
2, the optimal measurements are σx and σz for one observer,
and (σz + σx )/

√
2 and (σz − σx )/

√
2 for the other observer.

For N = 3 we have let all three observers perform either σx

or σy, and for N = 4 one observer performs either σx or σy

whereas the remaining three choose between (σx + σy)/
√

2
and (σx − σy)/

√
2. We have numerically obtained the tradeoff

between nonlocality and the filtering success probability. The
results are illustrated in Fig. 7. We conclude that the states
generated by the GHZ machine can violate Bell inequalities
for reasonable psuc.

We have also performed an analogous analysis for the
states generated at fixed success probabilities in the clus-
ter state machine. Specifically, we have considered whether

012315-9

280



TAVAKOLI, HAACK, BRUNNER, AND BRASK PHYSICAL REVIEW A 101, 012315 (2020)

FIG. 8. Nonlocality vs filtering success probability for the cluster
state machine. The results are obtained by constrained optimization
over γh, γc, g � 10−2�min.

these states can violate a Bell inequality tailored for cluster
states [40]. We have restricted ourselves to the measurements
optimal for a cluster state 1/2(|0000〉 + |0011〉 + |1100〉 −
|1111〉) which is unitarily equivalent to the target state. Hence,
after a suitable local unitary, the Bell expression reads

B = 〈σxσyσyσx + σxσyσxσy + 1σzσxσx − 1σzσyσy〉, (D3)

which is bounded by B � 2 in all local hidden variable mod-
els. With a cluster state, one can achieve B = 4. The tradeoff
between B and the success probability of filtering is displayed
in Fig. 8. We find that the generated states are nonlocal for any
psuc up to its maximal value.

APPENDIX E: LINDBLAD-TYPE MASTER EQUATION

To demonstrate that our results are not restricted to the
simple reset model employed in the main text, here we provide
a Lindblad-type master equation, which can be derived from
a microscopic model with bosonic baths. The reset model is

FIG. 9. Fidelity of the filtered state with the GHZ state vs the
bath temperatures when using the Lindblad-type master equation
(E1). The plot is for N = 3 parties and the parameter settings are
1 = 10−4, 2 = 3 = 5 × 10−3, g = 1.6 × 10−3, �(1) = 1 �(2) =
2.5.

replaced by

d

dt
ρ = −i[Hfree + Hint, ρ] +

∑
k

knB(Ek, Tk )D[A+
k ]ρ(t )

+
∑

k

k[1 + nB(Ek, Tk )]D[A−
k ]ρ(t ), (E1)

where k denotes the rate of a transition, nB(E , T ) =
1/(eE/T − 1) is the Bose-Einstein distribution, and D denotes
the dissipator [43].

Results from the Lindblad-type model qualitatively agree
with those of the reset model. As an example, we again
consider a GHZ target state for three parties (N = 3), solve
for the steady state, and find the GHZ fidelity of the filtered
state as a function of Th and Tc. The result is shown in Fig. 9.
Just as in the analogous figure in the main text based on the
reset model, we see that high fidelities can be attained with
reasonably low-temperature gradients. Parameter values are
chosen based on recent experimental results in circuit QED
[44–47] (see also [33]).
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P H Y S I C S

Self-testing nonprojective quantum measurements 
in prepare-and-measure experiments
Armin Tavakoli1*, Massimiliano Smania2, Tamás Vértesi3,  
Nicolas Brunner1, Mohamed Bourennane2

Self-testing represents the strongest form of certification of a quantum system. Here, we theoretically and experi-
mentally investigate self-testing of nonprojective quantum measurements. That is, how can one certify, from ob-
served data only, that an uncharacterized measurement device implements a desired nonprojective positive-operator 
valued measure (POVM). We consider a prepare-and-measure scenario with a bound on the Hilbert space dimension 
and develop methods for (i) robustly self-testing extremal qubit POVMs and (ii) certifying that an uncharacterized 
qubit measurement is nonprojective. Our methods are robust to noise and thus applicable in practice, as we demon-
strate in a photonic experiment. Specifically, we show that our experimental data imply that the implemented 
measurements are very close to certain ideal three- and four-outcome qubit POVMs and hence non-projective. In 
the latter case, the data certify a genuine four-outcome qubit POVM. Our results open interesting perspective for 
semi–device-independent certification of quantum devices.

INTRODUCTION
Measurements in quantum theory were initially represented by com-
plete sets of orthogonal projectors on a Hilbert space. Such measure-
ments are standard in a multitude of applications. Nevertheless, 
in a modern understanding of quantum theory, measurements are 
described by positive-operator valued measures (POVMs), i.e., a set 
of positive semi-definite operators summing to identity. POVMs 
are the most general notion of a quantum measurement; all projective 
measurements are POVMs, but not all POVMs need be projective.

Nonprojective measurements are widely useful in both conceptual 
and applied aspects of quantum theory, as well as in quantum informa-
tion processing. In several practically motivated tasks, they present 
concrete advantages over projective measurements. Nonprojective 
measurements enhance estimation and tomography of quantum states 
(1, 2), as well as entanglement detection (3) and unambiguous state 
discrimination of nonorthogonal states (4, 5). They have also found 
applications in quantum cryptography (6, 7) and randomness gen-
eration (8). In addition, nonprojective measurements can be used to 
maximally violate particular Bell inequalities (9) (assuming a bound 
on the Hilbert space dimension), a fact that has been applied to im-
prove randomness extraction beyond what is achievable with pro-
jective measurements (10, 11).

In view of their diverse and growing applicability, it is important 
to develop tools for certifying and characterizing nonprojective mea-
surements under minimal assumptions. The strongest possible form 
of certification involves a “black-box” scenario, where the quantum 
devices are a priori uncharacterized. Astonishingly, it is possible in 
certain cases to completely characterize both the quantum state and 
the measurements based only on observed data, which is referred to 
as “self-testing” (12). A well-known example is that the maximal 
violation of the Clauser-Horne-Shimony-Holt Bell inequality (13) 
implies (self-tests) a maximally entangled two-qubit state and pairs 

of anticommuting local projective measurements (14–16). Self-testing 
can also be made robust to noise (17, 18).

However, for the purpose of characterizing nonprojective mea-
surements in the black-box scenario, methods based on Bell in-
equalities encounter a challenge. Because of Neumark’s theorem, 
every nonprojective measurement can be recast as a projective measure-
ment in a larger Hilbert space. That is, any nonprojective measure-
ment on a given system is equivalent to projective measurement 
applied to the joint state of the system and an ancilla of a suitable 
dimension [see, e.g., (19)]. Since one usually considers no restriction on 
Hilbert space dimension in the Bell scenario, it is nontrivial to charac-
terize a nonprojective measurement based on a Bell inequality. While 
this is possible in theory (in the absence of noise) (10), it appears 
challenging in the more realistic scenario where the experiment fea-
tures imperfections. To the best of our knowledge, robust self-testing 
methods for nonprojective measurements in Bell scenarios have not yet 
been developed. A possible way to circumvent the problem is to consider 
a Bell scenario with quantum systems of bounded Hilbert space dimen-
sion. In particular, Gómez et al. (11) and Gómez et al. (20) recently 
reported the experimental certification of a nonprojective measurement 
in a Bell experiment assuming qubits. However, these experiments do 
not represent self-tests, as they certify the nonprojective character of a 
measurement, but not how it relates to a specific target POVM.

Here, we investigate the problem of self-testing nonprojective 
measurements under the assumption of bounded Hilbert space 
dimension. We follow a different approach, by considering a prepare- 
and-measure scenario instead of a Bell scenario. First, this scenario 
offers a natural framework for certifying and characterizing non-
projective measurements. The reason is that, as argued above, the 
notion of nonprojectiveness almost inherently involves a notion of 
Hilbert spaces of fixed dimension. Then, the prepare-and-measure 
scenario is arguably the simplest scenario in which the problem can be 
studied without further assumptions. Second, the prepare-and-measure 
scenario offers a very significant practical advantage as compared to 
Bell experiments. The reason is that there is no need to involve distant 
observers and entangled states. This makes prepare-and-measure 
scenarios simpler to implement (21–26). Moreover, prepare-and- 
measure scenarios are easier to analyze theoretically, which allows 
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us to develop self-testing methods that are versatile and highly robust 
to noise. Third, the assumption of a dimension bound is reasonable 
for characterization schemes. This is due to the fact that characteriza-
tion schemes are not adversarial; i.e., they do not involve malicious 
devices. The experimenter typically knows which degrees of freedom 
are relevant; for example, the polarization of photons. However, every 
experiment is subject to unavoidable errors due, e.g., to technical 
noise and alignment errors. Characterization of quantum devices in 
this realistic setting is well captured by our assumption of a dimen-
sion bound.

In the first part of the paper, we present methods for character-
izing nonprojective measurements. First, we present a method for 
self-testing a targeted nonprojective measurement in noiseless 
scenarios. Second, since noiseless statistics never occur in practice, 
we present methods for inferring a lower bound on the closeness of 
the uncharacterized measurement and a given target POVM, based 
on the observed noisy statistics; specifically, we lower-bound the 
worst-case fidelity between the real measurement and the ideal 
target one. Third, we introduce a method for determining whether 
the observed statistics could have arisen from some (unknown) pro-
jective measurements. If not, the measurement is certified as non-
projective. These methods have twofold relevance. On the one hand, 
they enable foundational insights into physical inference of non-
projective measurements in a semi–device-independent setting. On 
the other hand, they provide tools for assessing and certifying the 
quality of an experimental setup. We demonstrate the practicality of 
these self-testing methods in two experiments. In the first, we target a 
symmetric informationally complete (SIC) qubit POVM and demon-
strate an estimated 98% worst-case fidelity. In addition, our data certify 
a genuine four-outcome qubit POVM. In the second experiment, we 
target a symmetric three-outcome qubit POVM and certify a worst-case 
fidelity of at least 96%. Last, we discuss some open questions.

THE SELF-TESTING PROBLEM, THE SCENARIO,  
AND OVERVIEW OF RESULTS
Self-testing is the task of characterizing a quantum system based only 
on observed data. In other words, it is about gaining knowledge of the 
physical properties of initially unknown states and/or measurements 
present in an experiment by studying the correlations observed in 
the laboratory.

In this work, we focus on prepare-and-measure scenarios. They 
differentiate themselves from Bell scenarios in two important ways. 
First, prepare-and-measure scenarios involve communicating ob-
servers and thus no space-like separation. Second, they do not in-
volve entanglement, whereas Bell scenarios do. Prepare-and-measure 
scenarios can generally be modeled by two separated parties, Alice 
and Bob, who receive random inputs x and y, respectively. Alice 
prepares and sends a quantum state x to Bob who performs a mea-
surement y with outcome b, represented by a POVM   { M y  b }  b    with

   M y  b  ≥ 0 and  ∑ 
b
      M y  b  = 𝟙 ∀ y  (1)

This generates a probability distribution

  P(b ∣ x, y ) = tr( ρ  x    M y  b )  (2)

To make the problem nontrivial, an assumption on Alice’s prepa-
rations is required; otherwise, Alice could simply send x to Bob and 

any probability distribution P(b∣x, y) would be achievable. The 
assumption we consider in this work is that Alice’s preparations, 
i.e., the set of states x, can be represented in Hilbert space of given 
dimension d. By choosing d < ∣ x∣, we prevent Alice from communi-
cating all information about her input x to Bob. There exist distribu-
tions obtained from quantum systems of a dimension d that cannot 
be simulated classically [see, e.g., (27)]. That is, no strategy in which 
Alice communicates a classical d-valued message to Bob can possibly 
reproduce the observed data. Such distributions that cannot be classi-
cally simulated are candidates for self-testing considerations.

The problem of self-testing consists in characterizing the set of 
states {x} and/or the set of measurements  { M y  b }  based only on the 
distribution P(b ∣ x, y). This characterization can usually be done only 
up to a unitary transformation and possibly a relabeling. In a recent work 
(28), methods were presented for self-testing sets of pure quantum states 
and sets of projective measurements in the qubit case. These were 
subsequently extended to higher dimensional systems in (29, 30).

Formally, a self-test can be made via a witness, which is a linear 
function of the probability distribution P(b ∣ x, y)

   A [  P (  b ∣ x, y )   ]   =  ∑ 
x,y,b

     α  xyb   P (  b ∣ x, y )     (3)

where xyb are real coefficients. Moreover, given a witness, one can 
determine its maximal witness value   A   Q   achievable under quantum 
distributions (Eq. 2) in a bounded Hilbert space. The witness can then 
be used for self-testing a set of quantum states and/or measure-
ments, whenever there is a unique combination of states and/or 
measurements that achieves   A   Q  . Then, it is clear that when the ob-
served distribution P(b∣x, y) leads to   A   Q  , a specific set of states 
and/or measurements is identified (up to a simple class of transfor-
mations). A necessary condition for a witness to be useful for self-testing 
is that, for a given dimension d, quantum systems outperform classical 
ones; if not, several strategies would generally be compatible with 
the data [see (21, 21, 27) for examples of such witnesses]. In the 
“Self-testing nonprojective measurements: Noiseless case” section, 
we present a method for constructing witnesses whose maximal value 
can self-test a targeted nonprojective qubit measurement Mtarget.

Next, we turn to robust self-tests, i.e., self-tests that can be applied 
even when the statistics is not ideal, causing the witness value to be 
less than   A   Q  . This is fundamental to make our methods applicable 
in practice, as any realistic experiment is prone to noise. The influence 
of noise makes it impossible to perfectly pinpoint the states and 
measurements. This motivates the following question. Given an ob-
servation of a witness value  A <  A   Q  , how close are the states and 
measurements to the ideal ones, i.e., those that would have been 
perfectly self-tested if we had observed  A =  A   Q  ? In the “Robust 
self-testing of nonprojective measurements” section, we develop methods 
for robustly self-testing nonprojective qubit measurements by lower- 
bounding the fidelity between the implemented measurement and the 
ideal one. A tight robust self-testing would give the fidelity between the 
measurement that is most distant from the ideal one and that could 
have generated a witness value  A <  A   Q  . Since the presented method 
does not apply to all types of self-tests, we complement it with a numerical 
method based on random sampling, which efficiently estimates the 
robustness of self-testing nonprojective qubit measurements.

Whereas robust self-testing represents a quantitative physical 
inference, it is also relevant to consider a more qualitative inference. 
On the basis of the witnesses we develop for self-testing, we show 
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how to certify that the uncharacterized measurement is nonprojective. 
In the “Certification methods for nonprojective measurements” 
section, we determine the largest value of our witness that is compatible 
with qubit projective measurements. When observing a larger value, 
the nonprojective character of the measurement is certified. In a similar 
spirit, we determine a bound on our witness above which a genuine 
four-outcome (nonprojective) qubit measurement is certified.

An overview of all the self-testing methods developed in this 
work is illustrated in Fig. 1. The methods will be applied in the 
“Qubit SIC-POVM” section to self-test particularly relevant non-
projective qubit measurements. For these examples, we will demon-
strate the usefulness of our methods by implementing them in a 
photonic experiment. Specifically, our experimental data imply 
that the implemented measurements are very close to certain 
ideal three- and four-outcome qubit POVMs and hence are non-
projective. In the latter case, the data certify a genuine four-outcome 
qubit POVM.

RESULTS
This section presents how to certify and characterize nonprojective 
measurements in prepare-and-measure scenarios with both noiseless 
and noisy statistics. The focus will be on qubit systems. Therefore, 
we begin by summarizing the properties of qubit POVMs.

A POVM with O outcomes is a set of operators   { E  i  } i=1  O    with the 
property that Ei ≥ 0 and that   ∑ i      E  i   = 𝟙. In the case of qubits, Ei can 
be represented on the Bloch sphere as

   E  i   =    i  (𝟙 +    → n    i   ·   →  )  (4)

where     → n    i    (with     → n    i   ≤ 1 ) is the Bloch vector, i ≥ 0, and    →   = (   x  ,    y  ,  
  z  )  are the Pauli matrices. Positivity and normalization imply that

    ∑ 
i=1

  
O

       i   = 1 and   ∑ 
i=1

  
O

       i      → n    i   = 0  (5)

The set of POVMs is convex, and a POVM is called extremal if it 
cannot be decomposed as a convex mixture of other POVMs. For 
qubits, extremal POVMs have either O = 2,3,4 outcomes (31). In the 
case O = 2, extremal POVMs are simply projective, whereas for O = 3 
and O = 4, they are nonprojective; an extremal three-outcome qubit 
POVM has three unit Bloch vectors in a plane, and an extremal 
four-outcome qubit POVM has four unit Bloch vectors of which no 
choice of three are in the same plane (31). An extremal qubit POVM 
is therefore characterized by its Bloch vectors. As the statistics of 
nonextremal POVMs can always be simulated by stochastically im-
plementing extremal POVMs, it is clear that only extremal POVMs 
can be self-tested.

Self-testing nonprojective measurements: Noiseless case
Consider a target extremal nonprojective qubit POVM Mtarget, with 
O = 3 or O = 4 outcomes, for which we associate the outcome b to 
the unit Bloch vector     → v    b   . Our goal is now to construct a witness  A  
such that its maximal value self-tests Mtarget. The method consists 
of two steps summarized in Fig. 2.

Step 1. First, we construct a simpler witness   A ′    featuring O prepa-
rations; i.e., Alice has O inputs. Bob receives an input y = 1, …, Y 
and provides a binary outcome. The goal of this simpler witness is 
to self-test a particular relation among the prepared states ∣x〉. Specifi-
cally, we would like to certify that their unit Bloch vectors     → u    x    point 
in opposite direction (on the Bloch sphere) to those of the target 
POVM Mtarget; i.e.,     → u    x   = −    → v    x    for x = 1, …, O. Let us define

   A ′   =   ∑ 
x,y,b

     c  xyb   P(b ∣ x, y)  (6)

with real coefficients cxyb chosen such that the maximal value    A ′     Q   of 
the witness for qubits self-tests the desired set of prepared states {∣x〉} 
(up to a global unitary and relabelings). In general, we believe that 
it is always possible to find such a self-test by considering enough 
inputs for Bob, corresponding to well-chosen projective measurements, 
and suitable coefficients cxyb [see (28) for examples]. Furthermore, 

Fig. 1. Graphical overview of the self-testing methods and steps presented in Results. 
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note that one could also, in principle, have more than O prepara-
tions for Alice and then self-test that O of them have the desired 
relation to Mtarget. In addition, we remark that the construction of 
an adequate witness   A ′    is not unique in general.

Step 2. We construct our final witness  A  from   A ′   . Specifically, we 
supply Bob with one additional measurement setting called povm. 
This setting corresponds to a measurement with O outcomes. Since 
the intention is to self-test the measurement corresponding to 
this setting as Mtarget, we associate the setting povm to O outcomes. 
We define

  A =  A ′   − k  ∑ 
x=1

  
O

   P(b = x ∣ x, povm)  (7)

for some positive constant k. A maximal witness value   A   Q  =   A ′     Q   
now implies that the setting povm corresponds to Mtarget (up to a 
unitary and relabelings). This is because a maximal witness value 
implies that (i) the set of prepared states {∣x〉} have Bloch vectors 
anti-aligned with those of Mtarget and (ii) P(b = x∣x, povm) = 0 for 
all x; hence, the Bloch vectors of the setting povm are of unit length 
and aligned with those of Mtarget. Moreover, as a qubit POVM is 
characterized by its Bloch vectors, we see that Mtarget is the only 
POVM that can attain the maximal witness value   A   Q  . Therefore, we 
obtain a self-test of the target POVM Mtarget.

In the “Qubit SIC-POVM” section, we will apply this method to 
self-test symmetric qubit POVMs with three and four outcomes.

Robust self-testing of nonprojective measurements
No experiment can achieve the noiseless conditions needed to ob-
tain exactly a maximal value of  A . Therefore, it is paramount to 
discuss the case when a nonmaximal value of  A  is observed. We will 
show that, in this case, one can nevertheless make a statement about 
how close the uncharacterized measurement E performed in the 
laboratory (corresponding to the setting povm) is to the target 
POVM Mtarget.

To address this question, we must first define a measure of close-
ness between two measurements. A natural and frequently used dis-

tance measure in quantum information is the fidelity, F, between 
two operators. We consider a measure of closeness amounting to 
the best possible weighted average fidelity between the extremal qubit 
target POVM elements Mtarget = {Mi} and the actual POVM elements 
E = {Ei}. That is, we allow for a quantum extraction channel  to be 
applied to the actual POVM. The set of allowed extraction channels 
is the set of unital channels in the relevant Hilbert space dimension. 
This is understood from the fact that the extraction channel must 
map O-outcome POVMs to O-outcome POVMs in the given Hilbert 
space dimension. Because of linearity, this implies that the channel 
is unital. Conversely, since every channel preserves positivity, every 
unital channel in the relevant Hilbert space dimension maps POVMs 
to POVMs. We look for the best possible extraction channel. We 
thus define the quantity

  F(E,  M   target  ) =  max  


      1 ─ 2     ∑ 
i=1

  
O

      tr ( [  E  i   ]  M  i  ) ─ tr ( M  i  )
    (8)

Since the target measurement is extremal, the POVM elements 
are proportional to rank-one projectors; Mi ∝ Pi. Because of Eq. 4, 
we can write  Λ [  E  i   ] =  λ  i  (𝟙 +    → n    i   ·   → σ )  subject to the constraints (Eq. 5). 
By evaluating Eq. 8, we find that  F = 1 / 2 + 1 / 2  ∑ i        i   tr ( P  i      → n    i   ·    →    i   ) ≤ 1 . 
To saturate the inequality, each Bloch vector     → n    i    must be of unit length, 
i.e.,  ∣   → n    i  ∣= 1 , and aligned with the Bloch vector of Pi. Hence, Mi and 
[Ei] are both proportional to the same rank-one projector. Since 
a POVM with Bloch vectors of unit length is fully characterized, i.e., 
all coefficients i are fixed by the conditions (Eq. 5), this implies that 
Mi = [Ei]. Thus, a maximal fidelity of F = 1 is uniquely achieved 
when the actual POVM is equal to the target measurement.

In general, a nonmaximal value of the witness  A  can arise from 
many different possible choices of states and measurements. We 
denote by  S(A)  the set of all O-outcome POVMs that are compatible 
with a given observed value  A . Our goal is now to find a lower-bound 
on the average fidelity F that holds for every measurement   E ′  ∈ S(A) . 
Therefore, the quantity of interest is the worst-case average fidelity:

  ℱ(A ) =  min  
 E ′  ∈S(A)

   F( E ′  ,  M   target )  (9)

Calculating this quantity, or even lower-bounding it, is typically 
a nontrivial problem even in the simplest case. We proceed with 
presenting two methods for this task.

We remark that the definition (Eq. 8), given for qubits, could 
potentially be extended to higher-dimensional systems (replacing the 
factor 1/2 by 1/d). This could work for POVMs where all elements 
are proportional to rank-one projectors. However, the latter are only 
a strict subset of general extremal POVMs. Finding a more general 
figure of merit is thus an interesting open question.
Robust self-testing with the swap method
A lower-bound on the worst-case average fidelity can be obtained 
via semidefinite programming (32). The method combines the so-
called swap method (33, 34), introduced for self-testing in the Bell 
scenario, and the hierarchy of dimensionally bounded quantum cor-
relations (35). Such adaptations of the swap method to prepare- 
and-measure scenarios were introduced in (28) to self-test pure state 
and projective measurements. In section S1, we outline the details 
of how the swap method is adapted to robustly self-test nonprojective 
measurements. This method benefits from being applicable in a 
variety of scenarios and for returning rigorous lower bounds on ℱ. 
Nevertheless, it suffers from two drawbacks. First, the method only 
overcomes the fact that self-tests are valid up to a global unitary, but 

Fig. 2. Method for self-testing a targeted nonprojective qubit measurement by 
exploiting simpler self-tests of preparations. Step 1: tailor scenario and witness 
such that a maximal   A ′    self-tests Alice’s preparations to have Bloch vectors that are 
anti-aligned with those of the target measurement. Step 2: Add an extra setting to 
Bob and modify the witness to self-test the target non-projective measurement.
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not that they may be valid up to relabelings. Thus, it is only useful 
for target measurements that are self-tested up to a unitary. Second, 
while rarely producing tight bounds on ℱ, the computational re-
quirements scale rapidly with the number of inputs, the number of 
outputs, and the chosen level of the hierarchy. In the “Qubit 
SIC-POVM” section, we will show that the method can be efficiently 
applied for robustly self-testing a three-outcome qubit POVM.
Numerically approximating robust self-testing
To also address cases in which self-tests are valid up to both a unitary 
transformation and relabelings, we can estimate ℱ based on random 
sampling. The approximation method benefits from being straight-
forward and broadly useful, while it suffers from the fact that it 
merely estimates the value of ℱ instead of providing a strict lower 
bound. The key feature is that the minimization appearing in Eq. 9 
is replaced by a minimization taken over data obtained from many 
random samples of the setting povm. We detail this method in section S2 
and apply it to an example in the “Qubit SIC-POVM” section.

Certification methods for nonprojective measurements
Whereas robust self-testing considers quantitative aspects of physical 
inference from noisy data, it is important to also consider the qualita-
tive inference. An important qualitative statement is to prove that 
the uncharacterized measurement is nonprojective or, more generally, 
that it cannot be simulated by projective measurements. It is known 
that when POVMs are sufficiently noisy, they become perfectly 
simulable via projective measurements (19, 36, 37). The witnesses 
we construct can address this question. We will see that whenever 
the observed value of the witness  A  is sufficiently large, one can 
certify that the setting povm necessarily corresponds to some non-
projective measurement and could not have been simulated via pro-
jective measurements. Specifically, we derive an upper bound on  A  
for projective measurements (or convex combination of them). The 
violation of such a bound thus certifies a nonprojective measurement 
or, more precisely, a genuine three-outcome (or four-outcome) 
POVM. At the end of this subsection, we also show how to certify a 
genuine four-outcome POVM.

A projective qubit measurement has binary outcomes and can 
therefore be represented by an observable M ≡ M0 − M1, where Mi 
is the measurement operator corresponding to outcome i = 0,1. Let 
us consider the case where the O-outcome measurement povm is 
projective. One may assign two outcomes to rank-one projectors and 
the rest to trivial zero operators. Note that it is enough here to con-
sider these cases, as the witness  A  is linear in terms of the measure-
ment operators. Projectors can thus be assigned in three (O = 3) or 
six (O = 4) different ways, of which the optimal instance must be 
chosen. Let the outcomes in the optimal instance be o0∣povm and 
o1∣povm and associate the observable   M  povm   ≡  M  Y+1   =  M povm   o  0∣povm    −  
M povm   o  1∣povm    . The witness (Eq. 7) can be written as

  A = C(k ) +  ∑ 
x
     tr[   x    ℒ x  (k) ({ M  y  })]  (10)

where C(k) is a constant and   ℒ x  (k) ({ M  y  })  is a linear combination of 
the observables {M1, …, MY + 1}. Note that   ℒ x  (k) ({ M  y  })  does not de-
pend on the index y but on the collection of observables. Using the 
Cauchy-Schwarz inequality for operators, we obtain

  A ≤ C(k ) +  ∑ 
x
      √ 

_______________
  tr[   x    ℒ x  (k)   ({ M  y  })   2 ]    (11)

Because of projectivity, we have   M  y   =    → n    y   ·   →   , where     → n    y    is of unit 
length. Using  { M  k  ,  M  l  }= 2    → n    k   ·    → n    l   𝟙 , one finds   ℒ x  (k)   ({ M  y  })   2  =  t x  (k) ({   → n    y  }) 𝟙 , 
for some function t, which is a weighted sum of scalar products of 
the Bloch vectors of the observables. Consequently, to bound  A  under 
all projective measurements, we have

  A   ≤   
Proj

  C(k ) +  max  
{   → n    y  }

     ∑ 
x
      √ 
_

  t x  (k) ({   → n    y  })   ≡ ℬ(k)  (12)

Thus, ℬ(k) bounds the value of  A  for projective measurements. 
The evaluation of this bound only depends on Bob’s Bloch vectors 
and is further simplified by their parameterization in terms of two 
angles. The effort needed to evaluate the bound depends on the chosen 
prepare-and-measure scenario. Typically, considering scenarios with 
some symmetry properties is beneficial.

Moreover, when targeting a four-outcome qubit POVM, we 
consider also a finer form of qualitative characterization by consider-
ing whether  A  can be simulated by the setting povm being 
some three-outcome POVM. If not, the measurement is certified 
as a genuine four-outcome measurement. This amounts to bound-
ing the value of  A  achievable under any two- or three-outcome 
qubit POVM and then observing a violation of that bound. For this 
purpose, one may use the hierarchy of dimensionally bounded 
quantum correlations (35), which can be used to upper-bound  A  
under three-outcome POVMs. Since the hierarchy is built on pro-
jective measurements, one must embed Alice’s preparations in 
a larger Hilbert space with the dimension chosen such that 
three-outcome POVMs can be recast as projective measurement 
following Neumark’s theorem. To obtain tight bounds, one may need 
a reasonably high hierarchy level, which can be efficiently imple-
mented using the methods of (30).

Next, in the “Qubit SIC-POVM” section, we will apply the out-
lined methods to specific nonprojective measurements and experi-
mentally demonstrate the certification of both nonprojective and 
genuine four-outcome measurements.

Relevant examples and their experimental realization
In the above, we have discussed methods for self-testing a target 
nonprojective measurement. Here, we put these methods in 
practice in a photonic experiment. We implement three- and 
four-outcome symmetric qubit POVMs, with Bloch vectors form-
ing a star (trine-POVM) and a tetrahedron (SIC-POVM), respec-
tively. In the first case, we certify a nonprojective measurement 
and apply our methods for robust self-testing, demonstrating 
worst-case average fidelity of at least 96% compared to an ideal 
trine-POVM. In the second case, we certify a genuine four-outcome 
qubit POVM and demonstrate worst-case average fidelity of approxi-
mately 98% with respect to an ideal SIC-POVM. We consider each 
example separately by first applying the methods of Results to obtain 
adequate witnesses and then present the corresponding experimental 
realization. The setup common to both experiments is presented in 
Materials and Methods.
Qubit SIC-POVM
We begin by illustrating the self-testing methods for a frequently 
used nonprojective measurement, namely, the qubit SIC-POVM, 
which we denote   M  SIC   . This measurement has four outcomes, 
and its four unit Bloch vectors   {   → v    b  }  b    form a regular tetrahedron on 
the Bloch sphere, with weights b = 1/4. Such a regular tetrahedron 
construction can be achieved via two different labelings of the 
four outcomes that are not equivalent under unitary transformations. 
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Up to a unitary transformation, each such SIC-POVM can be written 
with Bloch vectors

      
→ v    1   = [1, 1, 1 ] /  √ 

_
 3       → v    2   = [1, − 1, − 1 ] /  √ 

_
 3      

   → v    3   = [− 1, 1, − 1 ] /  √ 
_

 3       → v    4   = [− 1, − 1, 1 ] /  √ 
_

 3  
   (13)

and the set of Bloch vectors   {−    → v    l  }  l   , respectively.
Noiseless self-test
We find a prepare-and-measure scenario for self-testing   M  SIC   . Fol-
lowing step 1 in the “Self-testing nonprojective measurements: 
Noiseless case” section, we introduce a prepare-and-measure scenario 
in which Alice has four preparations, x ∈ {1,2,3,4}, and Bob has 
three binary-outcome measurements, y ∈ {1,2,3}. The witness is 
chosen as

   A  SIC  ′   =   1 ─ 12    ∑ 
x,y

     P(b =  S  x,y  ∣x, y)  (14)

where S1, y = [0,0,0], S2, y = [0,1,1], S3, y = [1,0,1], and S4, y = [1,1,0]. 
The maximal value,   A  SIC  ′   = 1 / 2(1 + 1 /  √ 

_
 3  ) , can be achieved by 

Alice preparing her four states forming a regular tetrahedron, e.g., 
with the Bloch vectors in Eq. 13, and Bob performing the measure-
ments x, y, and z. In section S3, we prove the maximal witness 
value and show that it self-tests that Alice’s preparations indeed 
must form a regular tetrahedron on the Bloch sphere. By step 2 in 
the “Self-testing nonprojective measurements: Noiseless case” section, 
we supply Bob with an additional four-outcome measurement povm 
and consider the modified witness

   A  SIC   =   1 ─ 12    ∑ 
x,y

     P(b =  S  x,y  ∣x, y ) − k  ∑ 
x=1

  
4
   P(b = x∣x, povm)  (15)

Thus, we conclude that   A  SIC   = 1 / 2(1 + 1 /  √ 
_

 3  )  self-tests   M  SIC   .
We note that there also exist other prepare-and-measure scenarios 

fulfilling the requirements of step 1. For example, one may achieve 
the desired self-test using the so-called 3 → 1 random access code 
whose self-testing properties were considered in (28). However, this 
prepare-and-measure scenario requires more preparations than the 
one presented here.
Robust self-test
Next, we consider the worst-case fidelity (given in Eq. 9) of the mea-
surement corresponding to the setting povm with   M  SIC   . Since the 
self-test of   M  SIC    is valid up to a relabeling and a collective unitary, 
we cannot use the swap method to lower-bound ℱ. Instead, we use 
the numerical approximation method (see section S2 for details). 
Figure 3 displays roughly 3 × 105 optimal pairs  ( A  SIC  , F)  each evalu-
ated from a randomly sampled measurement for the setting povm. 
The evaluation was done for k = 1/5 (which, as will soon be shown, 
turns out to be the most noise-resilient choice of k). We see that the 
minimal sampled fidelity as a function of   A  SIC    describes a curve, 
which constitutes the approximation of ℱ.
Certifying nonprojective and genuine four-outcome POVMs
Last, we derive a tight bound valid for all qubit projective measure-
ments on the value of   A  SIC   . Because of the symmetries of   A  SIC   , we 
can, without loss of generality, let the nontrivial (nonzero measure-
ment operator) outcomes of the measurement povm be the outcomes 
b = 1,2. Hence, we define the observable   M  povm   ≡  M  4   =  M povm  1   −  M povm  2   . 
Then, we follow the steps outlined in the “Certification methods for 
nonprojective measurements” section. First, we re-write   A  SIC    in the 
form of Eq. 10. We find C(k) = (1 − 2k)/2 and

   
 ℒ x=0,1  (k)  ({ M  y  }) =   1 ─ 24   [ 1,  (− 1)   x ,  (− 1)   x ,  (− 1)   x+1  12k ] ·  → M  

     
 ℒ x=2,3  (k)  ({ M  y  }) =   1 ─ 24   [ − 1,  (− 1)   x ,  (− 1)   x+1 , 0 ] ·  → M  

    (16)

where    → M   = [ M  1  ,  M  2  ,  M  3  ,  M  4  ] , with   M  y   =    → n    y   ·   →   . After applying the 
Cauchy-Schwarz inequality, we obtain a cumbersome expression of 
the form of Eq. 11. To evaluate its maximal value (following Eq. 12), 
we use the following concavity inequality:   √ 

_
 r   +  √ 

_
 s   ≤  √ 
_

 2(r + s)    for 
r, s ≥ 0, with equality if and only if r = s. Apply this inequality twice 
to the expression (Eq. 12), first to the two terms associated to x = 
0,1, and then to the two terms associated to x = 2,3. After a simple 
optimization over     → n    3    and denoting  x =    → n    1   ·    → n    2   , one arrives at

   
 A  SIC   ≤   1 − 2k ─ 2   +    √ 

_
 2   ─ 24    √ 
_

 6 − 4x  
    

 +     √ 
_

 2   ─ 24    √ 
____________________

  2  r  k   + 4x + 48k  √ 
_

 2    √ 
_

 1 + x     ≡  f  k  (x)
   

where rk = 3 + 144k2. This bound is valid for a particular value of x. 
To hold for all projective measurements, we simply maximize fk(x) 
over x. This requires only an optimization in a single real variable x 
∈ [ − 1,1], which is straightforward. The optimal choice is denoted 
x*. Setting ℬ(k) = fk(x*), we have   A  SIC   ≤ ℬ(k)  for all projective 
measurements. Although the expressions involved are cumbersome, 
the analysis is simple and straightforward. We have considered the 
tightness of the projective bound for k ∈ {1/100,2/100, …,1} by 
numerically optimizing   A  SIC    under unit-trace measurements (which 
includes all rank-one projective measurements). In all cases, we 
saturate the bound ℬ(k) up to machine precision with a projective 
measurement.

Furthermore, we have also considered bounding   A  SIC    under 
three-outcome qubit POVMs using the hierarchy of dimensionally 
bounded quantum correlations (as described in the “Certification 
methods for nonprojective measurements” section). In our imple-
mentation of (35), we have embedded the qubit preparations into a 
three-dimensional Hilbert space and optimized   A  SIC    under projective 
measurements of the only existing nontrivial rank combination. 
The relaxation level involved some monomials from both the second 
and third level, and the size of the moment matrix was 126. This was 

Fig. 3. Numerical approximation of the worst-case fidelity of the unknown 
measurement (setting povm) with the qubit SIC-POVM by roughly 3×105 random 
three- and four-outcome POVM samples for which the optimal values of  (A, F)  
were calculated. The figure also displays the critical limits on   A  SIC    and ℱ for 
projective and three-outcome POVMs, respectively, as well as the experimentally 
measured values.
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done for all k ∈ {1/100,2/100…,1}, and each upper bound was saturated 
up to numerical precision using lower bounds numerically obtained 
via semidefinite programs.

To study the robustness of both the nonprojective and the genuine 
four-outcome certification, we have considered the critical visibility 
of the system needed when exposed to noise. This is modeled by the 
preparations taking the form x(v) = vx + (1 − v)noise, where v ∈ 
[0,1] is the visibility and noise is some arbitrary qubit state. A 
straightforward calculation shows that the critical visibility for 
violating some given bound ℬ is

   v  crit  (k ) =   ℬ(k ) −  A   rand  + k  ─  
 A   Q  −  A   rand  + k

    (17)

where   A   rand   is the witness value obtained from the optimal measure-
ments performed on the maximally mixed state. Notably, this expres-
sion is independent of the specific form of noise. We have applied 
this to   A  SIC    with ℬ(k), corresponding to the bounds on projective 
and three-outcome measurements, respectively. The corresponding 
critical visibilities are plotted in section S5. In both cases, we find that 
the largest amount of noise is tolerated for k = 1/5, corresponding to 
vcrit = 0.970 and vcrit = 0.990, respectively.
Experimental result
Wave-plate settings for Alice’s prepared states in Eq. 13 and Bob’s mea-
surements x, y, z, and the four-outcome SIC-POVM anti-aligned 
to the vectors in Eq. 13, are reported in section S5. In section S5, we 
also report a state tomography of Alice’s preparations.

Optimally choosing k = 1/5, the measured value of the witness as 
compared to the relevant bounds is

    A  SIC     ≤   
projective

  0.7738   ≤   3−outcome  0.7836   ≤   
qubit

  0.7887.     
 A SIC  Lab  = 0.78514 ± 5 ×  10 stat  

−5   ± 1.0 ×  10 syst  −4  
    (18)

The statistical error originates from Poissonian statistics, and the 
systematic error originates from the precision of the wave-plate 
settings. More details about the errors are discussed in section S5.

We observe a substantial violation of both the projective measure-
ment and the three-outcome measurement bounds. Thus, we can 
certify that Bob’s measurement povm is a genuine four-outcome qubit 
POVM. Furthermore, as illustrated by the results in Fig. 3, we certify 
approximately a 98% worst-case fidelity with the qubit SIC-POVM.
Qubit trine-POVM
We consider a second example in which the target POVM is the so-
called trine-POVM. This measurement has three outcomes, and its 
Bloch vectors form an equilateral triangle on a disk of the Bloch 
sphere, with l = 1/3. The Bloch vectors are hence defined by

     → v    1   = [0, 0, − 1 ],    → v    2   =   1 ─ 2   [ −  √ 
_

 3  , 0, 1 ],    → v    3   =   1 ─ 2   [  √ 
_

 3  , 0, 1]  (19)

Noiseless self-test
We introduce a prepare-and-measure scenario in which Alice has 
three inputs x ∈ {1,2,3}, and Bob has two binary-outcome measure-
ments labeled by y ∈ {1,2}, and consider the witness

   A  tri  ′   =   ∑ 
x,y,b

     T  x,y    (− 1)   b  P(b∣x, y)  (20)

where Tx,1 = [1,1, − 1] and   T  x,2   = [ √ 
_

 3  , −  √ 
_

 3  , 0] . In section S3, we show 
that its maximal value is   A  tri  ′   = 5 , and that this value implies that 
Alice’s three preparations form an equilateral triangle on the Bloch 

sphere. Then, we add an additional input povm for Bob and consider 
the witness

   A  tri   =   ∑ 
x,y,b

     T  x,y    (− 1)   b  P(b∣x, y ) − k  ∑ 
x=1

  
3
   P(b = x∣x, povm)  (21)

for some k > 0. Then,   A  tri   = 5  self-tests the setting povm as the 
trine-POVM up to a unitary.
Robust self-test
We now turn to considering its robust self-testing properties, i.e., 
lower-bounding the worst-case fidelity of the unknown measure-
ment (setting povm) with the target measurement for a given value 
of   A  tri   . Since the above self-test is achieved only up to unitary trans-
formations, we may find rigorous lower bounds on the worst-case 
fidelity ℱ using semidefinite programming. In accordance with the 
“Robust self-testing of nonprojective measurements” section, we have 
performed the swap-operation on Bob’s side and used the hierarchy 
of finite-dimensional correlations to lower-bound ℱ. The hierarchy 
level was an intermediate level containing some higher-order 
moments corresponding to an SDP matrix of size 105. In addition, 
for the sake of comparison, we have implemented the numerical 
approximation method for robust self-testing to estimate the accuracy 
of the bound obtained via the swap method. The results are shown 
in Fig. 4. A comparison suggests that the swap method returns a 
suboptimal bound. Its accuracy could potentially be improved by 
using a higher hierarchy level. Nevertheless, the obtained bound will 
prove sufficient for the practical purpose of experimentally certifying 
the targeted POVM with high accuracy.

Last, we have also self-tested the trine-POVM in a different 
prepare-and-measure scenario (see section S3). In section S4, we use 
this prepare-and-measure scenario to derive a tight bound on pro-
jective measurements by evaluating the right-hand side of Eq. 12.
Experimental realization
The witness in Eq. 21 is maximized if Alice’s three Bloch vectors 
point to the vertices of an equilateral triangle on a disk of the Bloch 
sphere. We take that disk to be the xz plane, taking     → t    i   = −    → v    i    (from 
Eq. 19), and Bob performs one of three measurements z, x, and the 
three-outcome POVM with vectors anti-aligned to Alice’s states. 
See section S5 for state tomography of Alice’s preparations. In con-
trast to the previous experiment, output 2 of Bob’s measurement 
station only consists of one detector (D3) and no wave plate or po-
larizing beamsplitter (PBS) (see Fig. 5). The wave-plate settings cor-
responding to the above states and measurements are reported in 
section S5.

Fig. 4. Lower bound on  ℱ( A  tri  )  for k=1 obtained from the swap method, togeth-
er with roughly 3000 points  ( A  tri  , ℱ )  obtained via the numerical approxima-
tion method. This is displayed next to the experimentally achieved results.
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With the said settings, we have obtained the experimentally mea-
sured value of   A  tri    as a function of k. Since we aim to demonstrate a 
large worst-case fidelity with the trine-POVM, we have computed 
the lower bound on  ℱ( A  tri  )  for many different values of k and found 
that choosing k = 1 leads to the optimal result. The corresponding 
experimentally measured witness is

   A  tri  (k = 1 )   ≤   
projective

  4.89165   ≤   
qubit

  5  (22)

    A tri  
Lab  (  k = 1 )   = 4.9659 ± 7 ×  10 stat  

−4   ± 1.7 ×  10 syst  −3     (23)

This data point and its relation to the worst-case fidelity of the 
laboratory measurement with the targeted POVM are depicted in 
Fig. 4. From   A tri  

Lab  , we infer a closeness of at least 96%. This can be 
compared to the largest possible fidelity between a projective measure-
ment and the trine-POVM, which is straightforwardly found to be 
 (2 +  √ 

_
 3   ) / 4 ≈ 0.933 . However, as indicated by the results of the 

sampling-based numerical approximation method for robust self- 
testing (presented in Fig. 4), a better bound of ℱ may allow us to 
rigorously infer a worst-case fidelity of at least 97.3%.

Furthermore, we have considered the possibility of the experi-
mental data certifying a nonprojective qubit measurement. However, 
to this end, we found that another choice of k is optimal with respect 
to the witness value that is achievable under projective measurements. 
We found that the optimal choice is k ≈ 4.5. The corresponding ex-
perimentally measured value becomes

    A  tri  (k = 4.5 )   ≤   
projective

  4.71139   ≤   
qubit

  5    
 A tri  

Lab (k = 4.5 ) = 4.93613 ± 5 ×  10 stat  
−5   ± 1.0 ×  10 syst  −4  

   (24)

We conclude that our experimental data certifies a nonprojective 
qubit measurement.

DISCUSSION
We investigated the problem of self-testing nonprojective measure-
ments. We argued that a prepare-and-measure scenario with an upper 
bound on the Hilbert space dimension represents a natural frame-
work for investigating this problem. We considered both the qualita-
tive certification of a measurement being nonprojective and/or 
genuine four-outcome, as well as a quantitative characterization in 
terms of worst-case fidelity to a given target POVM. We demonstrate 
the practical relevance of these methods in two experiments in which 
we both certify a genuine four-outcome POVM and infer a high 
worst-case fidelity with respect to target symmetric qubit POVMs.

It would be interesting to overcome the limitation of the swap 
method and develop a rigorous robust self-testing method for general 
four-outcome qubit POVMs. Also extending these methods to 
high-dimensional POVMs would be relevant since there exist ex-
tremal nonprojective measurements that feature the same number 
of outcomes as projective measurements (contrary to the qubit case). 
Moreover, it would be interesting to investigate self-testing of non-
projective measurements using different assumptions as in our work. 
One could consider for instance prepare-and-measure scenarios 
with a bound on the entropy (38), the overlap between the prepared 
states (8), or their mean energy (39). Last, one may ask whether it 
would be possible to robustly self-test a nonprojective measurement 
in the fully device-independent case, i.e., returning to the Bell scenario 
without any assumption on the dimension.

MATERIALS AND METHODS
In the experiment, the qubit states are encoded in the polarization 
degree of freedom of a single photon, with the convention of ∣H〉 ≡ 
∣0〉 and ∣V〉 ≡ ∣1〉. The setup is depicted in Fig. 5.

Alice’s station includes a heralded single-photon source where 
femtosecond laser pulses at 390 nm are converted into pairs of photons 
at 780 nm, through type I spontaneous parametric down-conversion 
in two orthogonally oriented beta-barium borate crystals. Photon 

Fig. 5. Experimental setup. More details, including labeling, can be found in the main text. Pol, polarizer.
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pairs go through 3-nm spectral filters and are then coupled into 
two single-mode fibers for spatial mode filtering. The idler photon 
is sent to the trigger avalanche photodiode (APD) detector (T) and 
heralds the presence of a signal photon. The latter is then emitted 
again into free space and undergoes Alice’s state preparation, con-
sisting of a fixed linear polarizer, a /4 wave plate [or quarter–wave 
plate (QWP)], and a /2 wave plate [or half–wave plate (HWP)].

Upon preparing the required qubit state, Alice forwards the signal 
photon to Bob’s measurement station, where it goes through a 
double-path Sagnac interferometer, each path of which contains an 
HWP. The interferometer mixes the polarization degree of freedom 
with path, effectively enabling Bob to perform either projective or 
nonprojective measurements in the original polarization Hilbert 
space where the qubit was prepared, thanks to the two polarization 
analyzers at the outputs. Each of these consists of a phase plate, an 
HWP, and (in output 1) a QWP, a polarizing beam splitter and 
two single-photon detectors. Outputs from all detectors (T and D1 
to D4) are sent to a coincidence unit connected to a computer.

All measurements were performed with heralded photon rates 
of approximately 1 × 104 counts per second, while each setting was 
measured for 500 s. We have made an assumption of fair sampling, 
i.e., that the detection events are representative of the total number 
of signal photons. This assumption is reasonable for tasks that do 
not include a notion of an adversary. The quality of state prepa-
ration and measurement can be estimated by preparing states 
∣H〉,  ∣+ 〉 = (∣H〉 + ∣V 〉 ) /  √ 

_
 2   , and  ∣R〉 = (∣H〉 + i ∣V 〉 ) /  √ 

_
 2    and 

measuring them in the Pauli bases z, x, and y, respectively. The 
three visibilities obtained in our setup with this characterization 
measurement were

   
 V     z     = (99.91 ± 0.02 ) %

    V     x     = (99.31 ± 0.01 ) %   
 V     y     = (99.23 ± 0.02 ) %

    (25)

While the almost optimal   V   σ  z      is a direct consequence of the high 
extinction ratios of the PBSs used, the lower visibilities in the inter-
ference bases are mainly due to the double-path Sagnac interferometer, 
which showed a visibility of around 99.4%, therefore effectively 
bounding from above the results we can achieve in the experiments.

Note added. During the completion of this manuscript, we became 
aware of an independent work (40) discussing the certification of 
qubit POVMs.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/16/eaaw6664/DC1
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Noise-robust preparation contextuality shared between any number of observers via unsharp
measurements

Hammad Anwer,1, ∗ Natalie Wilson,1, ∗ Ralph Silva,2 Sadiq Muhammad,1 Armin Tavakoli,3 and Mohamed Bourennane1

1Department of Physics, Stockholm University, S-10691 Stockholm, Sweden
2Institute for Theoretical Physics, ETH Zurich, Switzerland

3Département de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland

Multiple observers who independently harvest nonclassical correlations from a single physical system share
the system’s ability to enable quantum correlations. We show that any number of independent observers can
share the preparation contextual outcome statistics enabled by state ensembles in quantum theory. Further-
more, we show that even in the presence of any amount of white noise, there exists quantum ensembles that
enable such shared preparation contextuality. The findings are experimentally realised by applying sequential
unsharp measurements to an optical qubit ensemble which reveals three shared demonstrations of preparation
contextuality.

Introduction.— Quantum correlations can surpass the limi-
tations of corresponding classical models. In their most com-
mon form, quantum correlations are obtained from the out-
comes of single (albeit randomly chosen) measurements per-
formed on a physical system. After the measurement, the
physical system can be discarded, or even demolished by the
measurement apparatus. Therefore, since one does not need
to consider the measurement-induced decoherence in the state
of the physical system, optimal quantum correlations are often
obtained from sharp (projective) measurements that extract
a maximal amount of information from the physical system
while also inducing a maximal disturbance in its state [1].

Arguably, the fact that measurements disturb physical states
should have interesting consequences for more general quan-
tum correlations. To reveal the influence of measurement-
induced disturbances on observed outcome statistics, one re-
quires systems to undergo more than a single measurement.
A simple scenario for studying the trade-off between the
strength of quantum correlations and the disturbance induced
by extracting them is one in which quantum correlations are
shared between many observers. Sharing quantum correla-
tions means that a physical system is measured by a sequence
of independent observers, each of whom are tasked with fal-
sifying the existence of a classical model for their observed
correlations. Hence, the stronger the correlations extracted
by the first observer, the larger the disturbance induced in
the state of the system, and thus the weaker the correlations
that can possibly be extracted by a second observer. Sharing
quantum correlations requires the first observer to measure in
such a way that the outcome correlations are strong enough
to elude all classical models while the induced disturbance is
small enough to enable a second observer independently re-
peat the same feat. Understanding and characterising quan-
tum correlations obtained via sequential measurements is a
conceptually interesting problem [2–5] which has promising
applications in quantum information protocols [6, 7].

Sharing quantum correlations was first studied in the con-
text of Bell inequality tests [4] where it was found that a
pair of qubits in a singlet state can enable two sequential

∗ H. A. and N. W. contributed equally to this work.

Bell inequality violations. This has also been experimentally
demonstrated [8, 9]. In addition, the number of sequential
Bell inequality violations can be indefinitely extended at the
price of all observers strongly biasing their choice of mea-
surement and therefore rendering the quantum correlations
super-exponentially fragile to noise [4]. Moreover, the shared
quantum correlations have recently also been studied in other
entanglement-based tasks such as entanglement witnessing
[10] and quantum steering [11, 12].

Here, we theoretically and experimentally study the shar-
ing of quantum correlations that demonstrate preparation con-
textuality. These are correlations that cannot be reproduced
in a hidden variable theory that ascribes equivalent repre-
sentations to indistinguishable preparations, i.e. it disregards
the context (specific procedure) underlying a state preparation
[13]. Such quantum contextuality does not require entangle-
ment but only single quantum systems, and is well-studied
both in theory (see e.g. Refs.[13–19]) and experiment (see
e.g. Refs. [15, 16, 20]). In our scenario, states are sampled
from an ensemble and communicated sequentially between
independent observers, each of whom performs a measure-
ment with the aim of obtaining preparation contextual out-
come statistics. We show that preparation contextuality can
be shared between any number of sequential observers. Fur-
thermore, we show that the sharing is robust to noise, in the
sense that for any given number of independent observers
and exposure to any nontrivial amount of white noise, one
can find an ensemble whose contextuality can be shared be-
tween all the observers. We proceed to experimentally demon-
strate the sharing of preparation contextuality. We realise a
four-observer scenario in which the first observer prepares
an optical qubit ensemble and the remaining three observers
perform sequential unsharp (non-maximally disturbing) mea-
surements. Thus, we obtain three shared demonstrations of
preparation contextuality.

Nonclassicality via preparation contextuality.— The im-
possibility of describing the set of observables in quantum
theory by underlying classical (noncontextual) quantities orig-
inates in the arguments of Bell, Kochen and Specker [21].
More recently, the notion of contextuality has seen a gen-
eralisation formulated in operational terms (i.e., in terms of
probabilities) applying to measurements, transformations and
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preparations [13]. Here, we are interested in contextuality in
terms of preparations.

The predictions of an operational theory (e.g. quantum the-
ory) may be explained by an ontological model [22] that as-
cribes each physical system S to a set Λ of ontic (objective)
states λ. A particular preparation P of the system is associ-
ated to a distribution µP (λ) over the ontic state space. Sim-
ilarly, the probability of outcome b of a measurement M is
described by a response function ξb,M (λ). The ontological
model thus seeks a µ and a ξ to explain the observed statistics
by p(b|P,M) =

∫
Λ
µP (λ)ξb,M (λ)dλ. The model is said to

be preparation noncontextual if two different preparations P
and P ′ that cannot be distinguished by the statistics generated
by any measurement (that is; ∀M : p(b|P,M) = p(b|P ′,M))
are associated to the same distribution over ontic states, i.e.,
µP = µP ′ . If observed statistics falsify this assumption, then
it is said to be preparation contextual. Quantum state ensem-
bles are known to enable preparation contextuality.

A family of preparation noncontextuality inequalities.— In
order to prove preparation contextuality, it is sufficient to vi-
olate an inequality bounding the correlations attainable in a
preparation noncontextual model. We focus on a family of
such inequalities introduced in Ref. [15] related to a variant
of Random Access Coding [23, 24]. Consider a party Alice
receiving a random input string x = x1 . . . xn ∈ {0, 1}n. Her
input is associated to a preparation Px (one of 2n possible)
which is sent to a receiver Bob. Her preparations are con-
strained to satisfy certain indistinguishability relations: there
must exist no measurement that can reveal any information
about the parity of the string r · x for every r ∈ {0, 1}n with
|r| ≥ 2. Bob receives a random input y ∈ {1, . . . , n}, and
performs a measurement {M b

y} with outcome b ∈ {0, 1}. The
partnership is awarded a point if the outcome of Bob coincides
with the yth entry in Alice’s string. In any preparation noncon-
textual theory, the probability of winning obeys the following
bound [15]:

A(n) ≡ 1

n2n

∑

x,y

p(b = xy|x, y) ≤ n+ 1

2n
. (1)

Due to the contextual nature of quantum theory, these inequal-
ities can be violated. Maximal quantum violations for any
n ≥ 2 are known [25]. Bob performs dichotomic measure-
ments characterised by an observable GTn,y . These are recur-
sively defined from G2,1 = σx, G2,2 = σy , and G3,1 = σx,
G3,2 = σy and G3,3 = σz , and

n even: Gn,k = Gn−1,k ⊗ σx ∀i ∈ {1, . . . , n− 1},
n odd: Gn,k = Gn−2,k ⊗ σx ∀i ∈ {1, . . . , n− 2}

(2)

with Gn,n = 11 ⊗ σy if n is even, and Gn,n = 11 ⊗ σz and
Gn,n−1 = 11 ⊗ σy of n is odd. The optimal preparations are
states of bn/2c qubits specified by

ρx = trA

[
(11 +Ax)⊗ 11φ⊗bn/2cmax

]
, (3)

where Ax = 1√
n

∑n
i=1(−1)xiGn,i, φmax corresponds to the

maximally entangled state (|0, 0〉+ |1, 1〉) /
√

2, and the trace

FIG. 1. Alice’s preparations are sent from one observer to the
next, each performing a measurement aiming to independently re-
veal preparation contextual statistics. To this end, only the average
post-measurement state ρ̃(k)x is relevant.

is taken over the first system in every entangled pair. Note that
Alice’s preparations are single quantum systems, and only for
simplicity written in terms of post-measurement states of a
collection of entangled states. The presented strategy leads to
the maximal quantum valueA(n) = 1/2(1+1/

√
n) for every

n [25].
Sequential scenario.— We consider a scenario in which the

ability to violate the inequality (1) is shared between many
independent observers, named Bob1,..., Bobm, each of whom
receive an independent random input yk ∈ {1, . . . , n} and
output bk ∈ {0, 1}. Alice’s randomly chosen preparation is
sent to Bob1 who performs a measurement and passes the
post-measurement state to Bob2 who performs a measurement
and passes the post-measurement state to Bob3 etc. The sce-
nario is illustrated in Fig. 1. The pair Alice-Bobk uses the
marginal distribution p(bk|x, yk) to compute the witness (1)
(here labelled A(n)

k ) to check for preparation contextuality.
In a quantum approach, we may denote Alice’s prepara-

tions by ρx which must satisfy the indistinguishability rela-
tion

∑
r·x=0 ρx =

∑
r·x=1 ρx for every string r with |r| ≥ 2.

Since one has to keep track of both the statistics and the post-
measurement states of each Bob, we require the detailed set of
Kraus operators for each measurement. ByKbk

yk
we denote the

Kraus operators of Bobk associated to the ykth measurement
and bkth outcome. The state received by Bobk is specified
by Alice’s input x, and the strings of inputs (y1, . . . , yk−1)
and outputs (b1, . . . , bk−1) of all previous Bobs. However, we
treat each Bob in the sequence as independent from the rest,
meaning that they do not know the specific inputs or outputs of
the other Bobs in each run of the experiment. Thus, in order to
calculate the relevant marginal distributions p(bk|x, yk), only
the average state ρ̃(k)

x received by Bobk is required, i.e., the
state obtained from averaging a preparation ρx of Alice over
all the inputs and outputs of all previous Bobs:

ρ̃(k)
x =

1

n

∑

yk−1,bk−1

Kbk−1
yk−1

ρ̃(k−1)
x (Kbk−1

yk−1
)†, (4)

with ρ̃(1)
x = ρx. Consequently, the desired marginal statis-

tics for Bobk are p(bk|x, yk) = tr
(
ρ̃

(k)
x (Kbk

yk
)†Kbk

yk

)
. This

constitutes a description of general quantum strategies in the
sequential scenario.

Sharing preparation contextuality.— We apply the above
general description to construct a specific family of quan-
tum strategies for sharing preparation contextuality, that is
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inspired by the previously described optimal quantum strat-
egy for the maximal violation of the inequalities (1). Alice
prepares the states (3) while each Bob performs an unsharp
variant of the measurements optimal for violating (1). In that
strategy the measurements of Bob are the dichotomic observ-
ables GTn,yk defined in (2), corresponding to the projectors
Πb
n,y = (11 + (−1)bGTn,y)/2 that are both the Kraus opera-

tors and POVM elements. For a weaker measurement, one
modifies the POVM element to (11 + (−1)b ηk G

T
n,y)/2, for

some ηk ∈ [0, 1]. If ηk = 1 (ηk = 0), the measurement is
sharp (non-interacting). Choosing 0 < ηk < 1 corresponds to
an unsharp measurement. The corresponding Kraus operator
is given by

Kbk
yk

=

√
1 + ηk

2
Πbk
n,yk

+

√
1− ηk

2
Πb̄k
n,yk

, (5)

where the bar-sign denotes a bit-flip. This class of strategies
has the following convenient property.

Lemma 1. If Alice prepares the states in Eq. (3) and the Bobs
each measure GTn,yk with sharpness ηk, the average state re-
ceived by Bobk is

ρ̃(k)
x = vkρx + (1− vk) ρmix, (6)

where ρmix is the maximally mixed state and the visibility vk ∈
[0, 1] is given recursively by

vk = vk−1fk−1 =
k−1∏

j=1

fj , (7)

where v1 = 1 by definition, and the “quality factor" fk of
the measurement of Bobk is defined from the sharpness ηk as
fk = (1 + (n− 1)

√
1− η2

k)/n.

Proof. The proof is technical in character and is given in Ap-
pendix (section A).

Using Eq. (6), the figure of merit (1) for the pair Alice and
Bobk reads

A(n)
k =

1

2

(
1 +

vkηk√
n

)
. (8)

This leads to preparation contextuality whenever ηk >
1/(vk

√
n). This can be used to recursively calculate the criti-

cal pairs (ηk, vk). Thusly, we arrive at the following result.

Result 1. The number of observers who can independently
share the preparation contextuality enabled by Alice’s ensem-
ble is at least n.

Proof. Consider that each Bob tunes the sharpness of his mea-
surement so as to just violate the inequality (1), but not more.
Expressing the measurement sharpness ηk = sin θk, where
θk ∈ [0, π/2], we thus require sin θk = 1/(vk

√
n). On

the other hand, a trivial lower bound on the quality factor
of Bobk’s measurement is fk = (1 + (n− 1) cos θk) /n ≥
cos θk. Squaring, and using the expression for the critical
value of sin θk above, we find that f2

k ≥ 1 − 1/(v2
kn). Since

the visibility of the next Bob is vk+1 = vkfk, we have v2
k+1 =

v2
kf

2
k ≥ v2

k

(
1− 1/(v2

kn)
)
. Hence, the decrease in visibility

from each Bob to the next is bounded by v2
k − v2

k+1 ≤ 1/n

which together with v1 = 1 gives v2
k+1 ≥ 1 − k/n. This im-

plies that the visibility of the nth Bob is at least vn ≥ 1/
√
n,

which is precisely the condition for violating the preparation
noncontextuality inequality.

Thus by suitably choosing n, an arbitrary long sequence of
observers can share the preparation contextual correlations en-
abled by Alice’s ensemble. Moreover, we show in Appendix
(section B) that for the considered class of quantum strategies,
the number of observers who share preparation contextuality
can be no more than n. Also, as shown in Appendix (section
C), one can share preparation contextuality between any num-
ber of observers also in a scenario in which none of the Bob’s
knows his position in the sequence.

Noise-robustness.— The scenario we have considered so far
is an idealisation in which no noise appears. In addition to
this not being realistic in any experiment, it is interesting to
consider whether the noiseless scenario is distinctive, or also
significantly noisy ensembles [26] enable shared preparation
contextuality. To address this matter, we let Alice’s prepara-
tions be mixtures of the intended state ρx with the maximally
mixed state: ρx(q) = qρx + (1 − q)ρmix for some visibil-
ity q ∈ [0, 1]. For a given number of observers, what is the
smallest q such that preparation contextuality can be shared
between all observers?

Result 2. For any given number of independent observers m,
there exists an ensemble whose contextuality can be shared
between all observers for any q > 0.

Proof. We substitute ρx for ρx(q) in the proof of Result 1.
This means v1 = q, and leads to v2

k+1 ≥ q − k/n. Thus, in
order to observe m violations, one must choose n ≥ dmq e.

Hence, preparation contextuality can be shared between
any number of observers using ensembles with an arbitrar-
ily large noise-component by choosing a sufficiently large n.
The price to pay for this property is that when q → 0, both the
Hilbert space dimension of Alice’s ensemble and the number
of preparations and measurements diverge.

Experiment.— We demonstrate the theoretical findings in
an experiment with three (n = 3) sequential tests of prepa-
ration contextuality. Alice prepares the eight qubit states
(3) with Bloch vectors ~ax = [(−1)x1 , (−1)x2 , (−1)x3 ] /

√
3.

Bob1 and Bob2 perform unsharp measurements (5) of σx, σy
and σz whereas Bob3 performs projective (sharp) measure-
ments of the same observables.

In the experiment we peform unsharp measurements on the
polarisation state of a single photon using shifted Sagnac in-
terferometers, as shown in Bob1 and Bob2 in Fig. (2). A HWP
is placed in each path of the interferometer, rotated to θi/2 in
the horizontal path and π/4− θi/2 in the vertical path to con-
trol the sharpness of the measurement. A HWP and QWP
before and after the interferometer are used to select the basis
of the measurement. The measurement outcome is encoded in
the output path, i.e. outcome bi = 0 (bi = 1) corresponds to
the detection of the photon in output path 1 (2, beam blocked
in figure). In the sequential scenario we choose to consider
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FIG. 2. Optical set-up used to reveal contextuality sharing. See text for details. Q and H represent quarter-wave plates (QWPs) and half-wave
plates (HWPs).

only one path at a time for Bob1 and Bob2 to simplify the set-
up. By adding an additional rotation to the HWPs or QWPs
before and after Bob, we can select the output we want to
analyse [8, 9]. The results of Bob1 and Bob2’s unsharp mea-
surements are therefore obtained at Bob3, comprised of a PBS
and single photon detectors D1 and D2. For example, if we
consider output 1 at Bob1 and Bob2, a click in either detector
at Bob3 tells us that Bob1 and Bob2 had the outcome b1 = 0
and b2 = 0. We analyse the counts in Bob3 corresponding to
all possible combinations of output ports to realise a full mea-
surement. This protocol relies on a stable photon generation
rate. Details of measurement angles are given in Appendix
(section D). This set-up can be used to perform projective
measurements (η = 1, θi = 0), no measurement (η = 0,
θi = π/4), or an intermediate-strength measurement, where
the the sharpness (strength) of the measurement is tuned by
varying θi.

The full set-up is shown in Fig. 2. We generate heralded
single photons at 780 nm via spontaneous parametric down-
conversion (SPDC) using a single type-I beta barium borate
(BBO) crystal of thickness 2 mm pumped by 390 nm femto-
second laser pulses. The idler photon is detected by an APD
single-photon detector, Dtrigger, and is used as a trigger. The
single photons are coupled into single-mode fibres (SMF) af-
ter passing through a narrowband 3 nm interference filter (F)
to define the spatial and spectral properties of the photons. Af-
ter filtering, the signal photon is prepared into one of Alice’s
eight states, using a polariser, two QWPs and a HWP (angles
given in Appendix (section D). The unsharp measurements of
Bob1 and Bob2 correspond to θ1 = 24.95◦ (η1 = 0.6441)
and θ2 = 20.10◦ (η2 = 0.7637) respectively, which ideally
produce A1 = A2 = A3 = 0.6859 > 2/3 with Ak = A(3)

k .
Results.— In order to test each of the three preparation non-

contextuality inequalities (between Alice and each of the three
Bobs), we require 24 marginal probabilities (the ‘winning’
answers bk = xyk ) corresponding to the three measurement
bases and Alice’s eight preparations. To reduce the Poisso-

nian error, each Bob collects approximately 34 million counts
for each of these 24 settings. Our experimental values can be
found in Appendix (section E). These lead to three prelimi-
nary values of Apre

1 = 0.687 ± 0.001, Apre
2 = 0.675 ± 0.001,

and Apre
3 = 0.681± 0.001.

Data analysis.— Due to small yet unavoidable experimen-
tal imperfections, e.g. waveplate imperfections and offsets in
the rotation of the waveplates, it is impossible to perfectly sat-
isfy the operational indistinguishability relations required to
test preparation contextuality. This problem can be overcome
by suitable post-processing methods [20]. As described in Ap-
pendix (section F), we have used a relaxed variant of these
methods to enforce the indistinguishability relations relevant
to a test of inequality (1) on our experimental data. This comes
at the cost of the observed values

(
Apre

1 ,Apre
2 ,Apre

3

)
decreasing

in a manner corresponding to how well the statistics approxi-
mates said relations. Due to the high visibility and precision
of the experimental set-up, we find only a small decrease in
the three correlation witnesses:

Apost
1 = 0.683± 0.001

Apost
2 = 0.670± 0.001

Apost
3 = 0.677± 0.001

all of which violate inequality (1).
Conclusions.— We have theoretically developed and exper-

imentally demonstrated the sharing of preparation contextual
correlations in scenarios that require no entanglement. In ad-
dition to such correlations being possible to share between
any number of observers, we found that this can be done in
a strongly noise-robust manner. This distinguishes shared
preparation contextuality from known results in e.g. shared
Bell nonlocality in which the fragility to noise of sequential
demonstrations scales super-exponentially [4]. This fragility
poses a significant experimental hurdle and has hitherto lim-
ited demonstrations to two sequential violations of Bell in-
equalities [8, 9]. We experimentally observed three sequential
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demonstrations of preparation contextuality. Optical set-ups
of this spirit (see also Refs [8, 9]) are promising candidates
for a variety of sequential correlation tests. Finally, an inter-
esting question is to understand which forms of quantum cor-
relations can be shared between indefinitely many observers
in a noise-robust manner.
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The no-signaling principle states that instantaneous com-
munication at a distance is impossible. This imposes
constraints on the possible correlations between distant

observers. Consider the so-called Bell scenario1, where each party
performs different local measurements on a shared physical
resource distributed by a single common source. In this case, the
no-signaling principle implies that the choice of measurement
(the input) of one party cannot influence the measurement sta-
tistics observed by the other parties (their outputs). In other
words, the marginal probability distribution of each party (or
subset of parties) must be independent of the input of any other
party. These are the well-known no-signaling conditions, which
represent the weakest conditions that correlations must satisfy in
any reasonable physical theory2, in the sense of being compatible
with relativity. More generally, the no-signaling principle ensures
that the information cannot be transmitted without any physical
carrier. This provides a useful framework to investigate quantum
correlations (which obviously satisfy the no-signaling conditions,
but do not saturate them in general2) within a larger set of
physical theories satisfying no-signaling; see e.g., refs. 2–9.

Recently, the concept of Bell nonlocality has been generalized
to networks, where separated sources distribute physical resour-
ces to subsets of distant parties (Fig. 1). Assuming the sources to
be independent from each other10,11, arguably a natural
assumption in this context, leads to many novel effects. Notably,
it becomes now possible to demonstrate quantum nonlocality
without the use of measurement inputs11–15, but only by con-
sidering the output statistics of fixed measurements. Just recently,
a first example of such nonlocality genuine to networks was
proposed15,16. This radically departs from the standard setting of
Bell nonlocality, and opens many novel questions. Characterizing
correlations in networks (local or quantum) is however still very
challenging at the moment, despite recent progress17–28.

Moving beyond quantum correlations, this naturally raises the
question of finding the limits of possible correlations in networks,
assuming only no-signaling and independence (NSI) of the
sources22,29–33. Here, we investigate this question and derive
limits on correlations, which we refer to as NSI constraints. While
our approach can in principle be applied to any network, we focus
here on the well-known triangle network with binary outputs and
no inputs, for which we obtain strong, and even tight NSI con-
straints. Specifically, we show that, despite the absence of an
input, some statistics imply the possibility for one party to signal
to others by locally changing (or not changing) the structure of
the network. Formally, this amounts to considering a specific
class of so-called network inflations, as introduced in ref. 22,
which we show can lead to general and strong NSI constraints.
Moreover, we prove that some of our NSI constraints are in fact
tight, by showing that they can be saturated by correlations from
explicit trilocal models, in which the sources distribute classical
variables. Interestingly, however, it appears that not all of our NSI
constraints can be saturated by trilocal models, which opens the
possibility of having nonlocal (but nevertheless non-signaling)
correlations in the triangle network with binary outputs. Finally,
we conclude with a list of open questions.

Results
NSI constraints. The triangle network (sketched in Fig. 1a) fea-
tures three observers: Alice, Bob, and Charlie. Every pair of
observers is connected by a (bipartite) source, providing a shared
physical system. Importantly, the three sources are assumed to be
independent from each other. Hence, the three observers share no
common (i.e., tripartite) piece of information. Based on the
received physical resources, each observer provides an output
(a, b, and c, respectively). Note that the observers receive no input

in this setting, contrary to standard Bell nonlocality tests. The
statistics of the experiment are thus given by the joint probability
distribution p(a, b, c). We focus on the case of binary outputs:
a, b, c∈ {+1, −1}. It is then convenient to express the joint
distribution as follows:

pða; b; cÞ ¼ 1
8
ð1þ aEA þ bEB þ cEC þ abEAB

þ acEAC þ bcEBC þ abcEABCÞ;
ð1Þ

where EA, EB, and EC are the single-party marginals, EAB, EBC,
and EAC are the two-party marginals, and EABC is the three-body
correlator. Note that the positivity of p(a, b, c) implies constraints
on marginals, in particular p(+++)+ p(−−−) ≥ 0 implies

EAB þ EAC þ EBC ≥ �1 : ð2Þ
In the following, we will derive nontrivial constraints bounding

and relating the single-party and two-party marginals of p(a, b, c)
under the assumption of NSI. While it seems a priori astonishing
that the no-signaling principle can impose constraints in a Bell
scenario, featuring no inputs for the parties, we will see that this is
nevertheless the case in the triangle network.

The main idea is the following. Although one party (say Alice)
receives no input, she could still potentially signal to Bob and
Charlie by locally modifying the structure of the network. To see
this, consider the hexagon network depicted in Fig. 1b, and focus
on parties Bob and Charlie. From their point of view, the two
networks (triangle and hexagon) should be indistinguishable.
This is because all the modification required to bring the triangle
network to the hexagon (e.g., by having Alice adding extra parties
and sources) occurs on Alice’s side, and can therefore be space-
like separated from Bob and Charlie. If Alice, by deciding which
network to use, could remotely influence the statistics of Bob and
Charlie, this would clearly lead to signaling. Hence, we conclude
that the local statistics of Bob and Charlie (i.e., the single-party
marginals EB and EC, as well as the two-party marginals EBC)
must be the same in the triangle and in the hexagon. To see that
this condition really captures the possibility to signal, we could
imagine a thought experiment in which we would give an input to
Alice, which determines whether she modifies her network
structure or not. If she does so and this has an incidence on the
EBC marginal, then Bob and Charlie can learn about Alice’s input,
hence breaking the usual notion no-signaling condition. Note that
the input considered here is however purely fictional, Alice’s
input is not present in the actual experiment.

From the above reasoning, we conclude that the joint output
probability distribution for the hexagon, i.e., pða; b; c; a0; b0; c0Þ,
must satisfy several constraints. In particular, one should have
that

X
b pða; b; c; a0; b0; c0Þ ¼

X
b0 pða; b; c; a0; b0; c0Þ ¼ EB ð3Þ

Inflation

A

A

C ′ B ′

A′

B CB C

�

�

�
� �

�

�

�

�

a b

Fig. 1 Inflation of the triangle network to the hexagon network. In order to
capture NSI constraints in the triangle network a, we consider an inflation
to the hexagon network b. Importantly, from the point of view of Bob and
Charlie, the two situations must be indistinguishable. If not, then Alice
could (instantaneously) signal to Bob and Charlie, simply by locally
modifying the network structure.
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X
c pða; b; c; a0; b0; c0Þ ¼

X
c0 pða; b; c; a0; b0; c0Þ ¼ EC ð4Þ

X
bc pða; b; c; a0; b0; c0Þ ¼

X
b0c0 pða; b; c; a0; b0; c0Þ ¼ EBC;

ð5Þ
where all sums go over all outputs a; b; c; a0; b0; c0. From the
independence of the sources, we obtain additional constraints,
namely

X
bb0 pða; b; c; a0; b0; c0Þ ¼ E2

B ð6Þ
X

cc0 pða; b; c; a0; b0; c0Þ ¼ E2
C ð7Þ

X
bb0c pða; b; c; a0; b0; c0Þ ¼ EBCEB ð8Þ

X
bcc0 pða; b; c; a0; b0; c0Þ ¼ EBCEC ð9Þ

X
bcb0c0 pða; b; c; a0; b0; c0Þ ¼ E2

BC : ð10Þ
Clearly, we also get similar constraints when considering
signaling between any other party (Bob or Charlie) to the
remaining two.

Altogether, we see that NSI imposes many constraints on
pða; b; c; a0; b0; c0Þ. Obviously, we also require that

pða; b; c; a0; b0; c0Þ≥ 0 and
X

pða; b; c; a0; b0; c0Þ ¼ 1 : ð11Þ
Now reversing the argument, we see that the non-negativity of
pða; b; c; a0; b0; c0Þ imposes nontrivial constraints relating the
single- and two-party marginals of the triangle distribution p
(a, b, c). To illustrate this, let us proceed with an example in a
slightly simplified scenario, assuming all single-party marginals to
be uniformly random, i.e., EA= EB= EC= 0. In this case, we
obtain

64 pða; b; c; a0; b0; c0Þ ¼ 1þ ðabþ a0b0ÞEAB þ ðbcþ b0c0ÞEBC þ ðca0 þ c0aÞEAC

þ ðabcþ a0b0c0ÞF3 þ ðbca0 þ b0c0aÞF0
3 þ ðca0b0 þ c0abÞF00

3

þ aa0bb0E2
AB þ bb0cc0E2

BC þ aa0cc0E2
AC þ aa0ðbcþ b0c0ÞF4

þ bb0ðca0 þ c0aÞF0
4 þ cc0ðabþ a0b0ÞF00

4 þ aa0bb0ðcþ c0ÞF5

þ bb0cc0ðaþ a0ÞF0
5 þ aa0cc0ðbþ b0ÞF00

5 þ aa0bb0cc0F6 ≥ 0

ð12Þ
Importantly, notice that the above expression contains a number
of variables (of the form FX) that are uncharacterized; these
represent X-party correlators in the hexagon network, see
Supplementary Note 1 for more details. Hence, we obtain a set
of inequalities imposing constraints on our variables of interest
(i.e., EAB, EBC, and EAC), but containing also additional variables
that we would like to discard. This can be done systematically via
the algorithm of Fourier–Motzkin elimination34. Note that here
we need to treat the squared terms, such as E2

AB, as new variables,
independent from EAB, so that we get a system of linear
inequalities. Solving the latter, and taking into account positivity
constraints as in Eq. (2), we obtain a complete characterization of
the set of two-body marginals (i.e., EAB, EBC, and EAC) that are
compatible with NSI in the triangle network (for a hexagon
inflation and uniform single-party marginals), in terms of a single
inequality

ð1� EABÞ2 � E2
BC � E2

AC ≥ 0 ; ð13Þ
and its symmetries (under relabeling of the parties and of the
outputs). This implies a more symmetric, but slightly weaker
inequality:

ð1þ EABÞ2 þ ð1þ EBCÞ2 þ ð1þ EACÞ2 ≤ 6 : ð14Þ

Note that when EAB= EBC= EAC≡ E2, we get simply
E2 ≤

ffiffiffi
2

p � 1 � 0:41.
Next, we consider the symmetric case (i.e., EA= EB= EC≡ E1

and EAB= EBC= EAC≡ E2) and obtain nontrivial NSI constraints
on the possible values of E1 and E2 (Fig. 2). In particular,
correlations compatible with NSI must satisfy the following
inequality

ð1þ 2jE1j þ E2Þ2 ≤ 2ð1þ jE1jÞ3 : ð15Þ

Let us move now to the most general case, with arbitrary values
for single- and two-party marginals. For a given set of values EA,
EB, EC, EAB, EBC, and EAC, it is possible here to determine via a
linear program whether this set is compatible with NSI or not
(Supplementary Note 1). More generally, obtaining a character-
ization of the NSI constraints in terms of explicit inequalities (as
above) is challenging, due mainly to the number of parameters
and nonlinear constraints. We nevertheless obtain that the
following inequality represents an NSI constraint

ð1þ jEAj þ jEBj þ EABÞ2
þð1þ jEAj þ jECj þ EACÞ2
þð1þ jEBj þ jECj þ EBCÞ2

≤ 6ð1þ jEAjÞð1þ jEBjÞð1þ jECjÞ :

ð16Þ

A proof of this general inequality is given in Supplementary
Note 1. Note that this inequality reduces to Eq. (14) when EA=
EB= EC= 0, as well as to Eq. (15) for the symmetric case.

It is worthwhile discussing the connection between our
approach and the inflation technique presented in refs. 22,25.
There, the main focus is on using inflated networks for deriving
constraints on correlations achievable, with classical resources. In
that case, information can be readily copied, so that sources can
send the same information to several parties. Ultimately, this
allows for a full characterization of correlations achievable with
classical resources22. Copying information is however not
possible in our case, as no-signaling resources cannot be perfectly
cloned in general6. Hence only inflated networks with bipartite

1

0.5

0

–0.5
0 0.2 0.4 0.6 0.8 1

E
2

E1

Fig. 2 Region of allowed correlations for symmetric distributions;
projection in the plane E2 vs E1. The turquoise region is ruled out by NSI
constraints, while the gray region is excluded from simple positivity
constraints. The white region is accessible via trilocal models. Correlations
in the yellow region satisfy NSI constraints (from the hexagon inflation), but
we could not find a trilocal model for them. The constraint Eq. (34) of ref. 22

is shown in dotted black. The dashed turquoise curve corresponds to the
NSI inequality Eq. (15), which turns out to be tight. Explicit trilocal models
are also obtained for the correlations marked by blue dots (Supplementary
Note 2).
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sources can be considered in our case, such as the hexagon. A
discussion of these ideas can be found in Section V.D of ref. 22,
where the idea of using inflation to limit no-signaling correlations
in networks is mentioned. Here, we derive explicitly bounds that
all correlations satisfying the NSI constraints, whether quantum
of post-quantum, have to satisfy, and identify the physical
principle behind them.

Finally, the choice of the hexagon inflation deserves a few
words. As seen from Fig. 1b, it is judicious to consider inflated
networks forming a ring, with a number of parties that is a
multiple of three. Intuitively, this should enforce the strongest
constraints on the correlations of the inflated network; in
particular, all single- and two-body marginals are fixed by the
correlations of the triangle. This would not be the case when
considering inflations to ring networks, with a number of parties
that is not divisible by three.

Tightness. A natural question is whether the constraints we
derived above, that are necessary to satisfy NSI, are also sufficient.
There is a priori no reason why this should be the case. Of course,
starting from the triangle network, there are many (in fact infi-
nitely many) possible extended networks that can be considered,
and no-signaling must be enforced in all cases. For instance,
instead of extending the network to a hexagon (as in Fig. 1), Alice
could consider an extension to a ring network featuring 9, 12, or
more parties. Clearly, such extensions could lead to stronger
constraints than those derived here for the hexagon network.

Nevertheless, we show that some of the constraints we obtain
above are in fact tight, i.e., necessary and sufficient for NSI. We
prove this by presenting explicit correlations (constructed within
a generalized probabilitic theory satisfying NSI) that saturate
these constraints. In fact, we consider simply the case where all
sources distribute classical variables to each party, which we refer
to as trilocal models. The latter give rise to correlations of the
form

pða; b; cÞ ¼ R
μðαÞdα R νðβÞdβ R ωðγÞdγ

pAðajβ; γÞ pBðbjα; γÞ pCðcjα; βÞ
; ð17Þ

where α, β, and γ represent the three local variables distributed by
each source, with arbitrary probability densities μ(α), ν(β), and ω
(γ). Also, pA(a∣β, γ) represents an arbitrary response function for
Alice, and similarly for pB(b∣α, γ) and pC(c∣α, β). Note that such
trilocal models represents a natural extension of the concept of
Bell locality to networks (see e.g., refs. 10,19).

We first consider the case of symmetric distributions, i.e.,
characterized by the two parameters E1 and E2, and seek to
determine the set of correlations that can be achieved with trilocal
models. As shown in Fig. 2, it turns out that almost all NSI
constraints can be saturated in this case, in particular the
inequality (15). After performing a numerical search, we could
construct explicitly some of these trilocal models, which involve
up to ternary local variables (see Supplementary Note 2 for
details). Moreover, we compare our NSI constraint (15) to the
one derived in ref. 22 (see Eq. (34)), and find that the present one
is stronger, and in fact tight (Fig. 2). Note also that a previous
work derived an NSI constraint based on entropic quantities29;
such constraints are however known to be generally weak, as
entropies are a coarse-graining of the statistics, which no longer
distinguishes between correlations and anticorrelations.

As seen from Fig. 2, there is however a small region (in yellow)
that is compatible with NSI (considering the hexagon inflation),
but for which we could not construct a trilocal model. Whether this
gap can be closed by considering more sophisticated local models
(using variables of larger alphabet) or whether stronger no-
signaling bounds can be obtained is an interesting open question.

For the triangle network with binary outcomes, any trilocal
distribution can be obtained by considering shared variables of
dimension (at most) six, and deterministic response functions24.

In fact, another (and arguably much more interesting) possibility
would be that this gap cannot be closed, as it would feature
correlations with binary outcomes satisfying NSI, but that are
nevertheless non-trilocal. To further explore this question, let us
now focus on the case where single-party marginals vanish, i.e.,
E1= 0. We investigate the relation between two-party marginals E2
and the three-party correlator E3= EABC, comparing NSI con-
straints and trilocal models. Notice that the NSI constraints we
obtain here do not involve E3 (as the latter cannot be recovered
within the analysis of the hexagon). Hence NSI imposes only
E2 ≤

ffiffiffi
2

p � 1, while positivity of p(a, b, c) imposes other constraints.
This is shown in Fig. 3, where we also seek to characterize the set of
correlations achievable via trilocal models (proceeding as above).
Interestingly, we find again a potential gap between trilocal
correlations and NSI constraints. This should however be
considered with care. First, the NSI constraints obtained from
the hexagon may not be optimal (see Discussion section). Second,
there could exist more sophisticated trilocal models (e.g., involving
higher-dimensional variables) that could lead to a stronger
correlations (i.e., cover a larger region in Fig. 3). Note also that
we investigated whether quantum distributions satisfying the
independence assumption exist outside of the trilocal region, but
we could not find any example (we performed a numerical search,
considering entangled states of dimension up to 4 × 4).

Finally, note that we also performed a similar analysis for the
case where single-party marginals vanish, but two-body marginals
are not assumed to be identical to each other. Here, we find that
inequality (13) can be saturated in a few specific cases. However,
there also exist correlations satisfying the NSI bounds that do not
seem to admit a trilocal model; details in Supplementary Note 1.

Discussion
We discussed the constraints arising on correlations in networks,
under the assumption of NSI of the sources. We focused our
attention on the triangle network with binary outputs for which
we derived strong constraints, including tight ones. Our work
raises a number of open questions that we now discuss further.

0 0.2 0.4 0.6 0.8 1
E3

0.5

0.1

0.3

–0.1

–0.3

E
2

Fig. 3 Region of allowed correlations for symmetric distributions with
E1= 0; represented in the plane E2 vs E3. The turquoise region is ruled out
by NSI constraints (dashed turquoise line given by Eq. (15)), while the gray
region is excluded from simple positivity constraints. The white region is
accessible via trilocal models. Correlations in the yellow region satisfy NSI
constraints (from the hexagon inflation), but we could not find a trilocal
model for them. Explicit trilocal models are also obtained for the
correlations marked by blue dots (see Supplementary Note 2).
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A first question is whether the constraints we derive (necessary
under NSI), could also be sufficient. We believe this not to be the
case, as stronger NSI constraints could arise from inflations of the
triangle to more complex networks (e.g., loop networks with an
arbitrary number of parties). Note that there could also exist
different forms of no-signaling constraints, that cannot be
enforced via inflation. In this respect, we compare in Supple-
mentary Note 1 our NSI constraints with the recent work of
ref. 32 proposing a very different approach to this problem, using
the Finner inequality. A notable difference is that the latter
imposes constraints on tripartite correlations, which is not the
case here.

Another important question is whether there could exist
nonlocality in the simplest triangle network with binary out-
comes. That is, can we find a p(a, b, c) that satisfies NSI, but that
is nevertheless non-trilocal? While we identified certain potential
candidate distributions for this, we could not prove any con-
clusive result at this point. We cannot exclude the possibilities
that (i) these correlations are in fact not compatible with NSI (as
there exist stronger NSI constraints) or (ii) these correlations can
in fact be reproduced by a trilocal model. In order to address
point (i), one could try to reproduce these correlations via an
explicit NSI model, for instance considering that all sources emit
no-signaling resources (such as nonlocal boxes2) which could
then be wired together by the parties. To address point (ii), one
could show that these correlations violate a multilocality
inequality for the triangle network. Of course finding such
inequalities is notably challenging, see e.g., ref. 13.

Furthermore, it would be interesting to derive NSI constraints
for other types of networks. Indeed, the approach developed here
can be straightforwardly used. Cases of high interest are general
loop networks, as well as the triangle network with larger output
alphabet (where examples of quantum nonlocality are proven to
exist11,15).

Finally, a more fundamental question is whether any correla-
tion satisfying the complete NSI constraints can be realized
within an explicit physical theory satisfying no-signaling (the
latter are usually referred to as generalized probabilistic the-
ories6). While this is the case in the standard Bell scenario (where
all parties share a common resource), it is not clear if that would
also be the case in the network scenario.
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Entanglement is a fundamental resource for quantum information science. However, bipartite entan-
glement is destroyed when one particle is observed via projective (sharp) measurements, as is typically
the case in most experiments. Here, we show experimentally that, if instead of sharp measurements, one
performs many sequential unsharp measurements on one particle that are suitably chosen depending on
the previous outcomes, then entanglement is preserved and it is possible to reveal quantum correlations
through measurements on the second particle at any step of the sequence. Specifically, we observe that
pairs of photons entangled in polarization maintain their entanglement when one particle undergoes three
sequential measurements and that each of these can be used to violate a Clauser-Horne-Shimony-Holt
inequality. This proof-of-principle experiment demonstrates the possibility of repeatedly harnessing two
crucial resources, entanglement and Bell nonlocality, that, in most quantum protocols, are destroyed after
a single measurement. The protocol we use, which in principle works for an unbounded sequence of
measurements, can be useful for randomness extraction.

DOI: 10.1103/PhysRevApplied.13.044008

I. INTRODUCTION

Entanglement is at the heart of foundational and applied
aspects of quantum theory [1]. Its paradigmatic applica-
tions include cryptography [2], teleportation [3], metrol-
ogy [4], and device-independent quantum information [5].
However, it is also a fragile resource. The prolonged
exposure of an entangled system to spontaneous decoher-
ing influences from the surrounding environment leads to
its decay and eventual disappearance [6,7]. Furthermore,
entanglement can vanish due to local measurements per-
formed on one or several of the entangled systems. In
particular, bipartite entanglement is completely destroyed
as soon as a sharp measurement (i.e., a nondegenerate
projective measurement) is performed on one of the two
entangled systems [8]. For example, a sharp measurement
of the spin along the x direction on one of the two spin
qubits in a maximally entangled state leaves the qubits in
a product state. Nonetheless, such entanglement-breaking
measurements are commonplace in entanglement-based
applications of quantum theory. Moreover, when applied

*vallone@dei.unipd.it

to suitable entangled states, they typically give rise to the
strongest quantum correlations in tests of Bell inequali-
ties [9]. This certifies the presence of entanglement in a
device-independent manner.

Recently, however, a number of works have considered
the generation of entanglement-based quantum correla-
tions in scenarios in which physical systems undergo sev-
eral sequential measurements [10–12]. It has been found
possible to perform local measurements on an entan-
gled state such that the resulting correlations violate a
Bell inequality but the postmeasurement state neverthe-
less remains entangled enough to make yet another Bell-
inequality violation achievable [10]. Naturally, this feat is
impossible with projective measurements. The measure-
ments must be sharp enough to generate correlations that
cannot be classically modeled but, nevertheless, unsharp
enough so that some entanglement is still preserved after
the measurement to make another Bell-inequality violation
possible. These sequential unsharp measurements have
been applied in studies of incompatible observables [13],
state tomography [14], contextuality [15], and self-testing
of quantum instruments [16,17]. Entanglement-based pro-
tocols using them have been proposed for certifying an
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unbounded amount of device-independent [18] and one-
sided device-independent random numbers [19], as well as
for tests of finite-memory classical systems [20].

These advances make it relevant to develop experi-
mental tools for sustaining entanglement over sequential
measurements. While it has already been shown that
appropriately chosen unsharp measurements do not
destroy entanglement [21] and that others are capable
of certifying it [22,23], proving experimentally that it
is possible to do both things in a sequential manner
remains a challenge. Notably, two sequential violations of
the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality
[24] have been demonstrated [25,26]. However, extend-
ing the sequence to three and more measurements is
demanding due to the sensitivity to noise [10]. Here,
we demonstrate the ability to sustain entanglement over
sequential measurements in a scenario in which the mea-
surement choices depend on the history of previously
performed measurements and observed outcomes. Since a
given sequence of measurement choices and observed out-
comes determines the evolution of the original state, one
is faced with the task of demonstrating sustained entangle-
ment along every possible branch of the resulting treelike
structure of possible evolutions. We accomplish this for
three sequential measurements on an entangled state, either
by observing a violation of the CHSH inequality [24]
or with a suitable entanglement witness. In principle, the
protocol we use works for an unbounded sequence of mea-
surements and can be useful for randomness extraction
[18,19,27–31].

II. THEORETICAL MODEL

Consider a scenario in which two separated parties,
Alice and Bob, share a two-qubit maximally entangled
state |ψ1〉 = 1/

√
2 (|00〉 + |11〉). Alice performs sequen-

tial measurements on her part of the state. In the first step,
she randomly selects one of two dichotomic observables
A0 and A1,

Am(μ1) = K†
+1|m(μ1)K+1|m(μ1)− K†

−1|m(μ1)K−1|m(μ1),
(1)

where m ∈ {0, 1} and the Kraus operators K±1|m are defined
by

K+1|m(μ1) = cos(μ1)�
+
m+ sin(μ1)�

−
m ,

K−1|m(μ1) = sin(μ1)�
+
m+ cos(μ1)�

−
m .

(2)

Here, �+
0 and �−

0 (�+
1 and �−

1 ) are the projectors onto
the positive and negative eigenvectors of σZ (σX ), respec-
tively. Moreover, the parameter μ1 ∈ [0,π/4] can be used
to tune the sharpness of her measurement [32]. On the one
end, choosing μ1 = 0 means that the measurement is sharp
(projective) and therefore consumes all the entanglement

of the shared state. On the other end, choosing μ1 = π/4
means that the measurement is noninteractive (K±1|m =
1/

√
2) and therefore produces random outcomes, leav-

ing the shared state unaltered. Choosing μ1 ∈ (0,π/4)
corresponds to an unsharp but nevertheless interactive
measurement. Depending on Alice’s choice of measure-
ment and her observed outcome, the postmeasurement
state ends up in one of four possible configurations. Since
it is necessarily pure, it can be written in the form

|ψ2〉 = K±1|m(μ1)√
〈ψ1| K†

±1|m(μ1)K±1|m(μ1) |ψ1〉
|ψ1〉

= UA,2 ⊗ UB,2[cos(η2) |00〉 + sin(η2) |11〉] (3)

for some angle η2 ∈ (0,π/4] that quantifies the entangle-
ment in the state and some unitary transformations UA,2
and UB,2 that depend on Alice’s choice of measurement
and observed outcome.

In the second step in the sequence, Alice uses her knowl-
edge of the measurement choice and the recorded outcome
to apply U†

A,2 to her system. Then, she again randomly
chooses between the measurements in Eq. (2), with the
sharpness parameter denoted by μ2. Again, the global state
|ψ3〉 after Alice’s second measurement can end up in one
of four possible configurations (given knowledge of the
postmeasurement state after the first step of the protocol)
and it can again be written on the form of Eq. (3), with
suitable angles and unitary operations.

Acting in analogy with the second step, Alice can indefi-
nitely continue the protocol and hence perform an arbitrar-
ily long sequence of measurements. At the generic step k,
the state is described by

|ψk〉 = UA,k ⊗ UB,k[cos(ηk) |00〉 + sin(ηk) |11〉]. (4)

In Table III (Appendix A), we give exact expressions
for unitary operations UA,k, UB,k and parameter ηk, which
depend on the history of Alice’s measurements and out-
comes up to step k − 1. Alice applies U†

A,k to her sub-
system; she performs either measurement A0 or A1 with
strength parameter μk and the state takes again the form
of Eq. (4), with k replaced by k + 1 so that step k + 1
can begin. We note that if Alice chooses μj > 0 ∀j ≤ k,
then ηk+1 > 0, meaning that |ψk+1〉 is still entangled. Not
only this: if she uses measurement A0 with strength param-
eter μk > arctan(tan2 ηk) and finds outcome −1, the new
entanglement parameter is ηk+1 = arctan(tanμk/tan ηk) >

ηk and therefore entanglement has been amplified.
At any step k, the protocol can be interrupted for

the purpose of certifying that entanglement is still
present via a violation of the CHSH inequality. Bob
must apply U†

B,k, projectively measure either observable
B0,k = cos(θk)σX + sin(θk)σZ or B1,k = − cos(θk)σX +
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sin(θk)σZ , where θk = arccot[sin(2ηk)], and finally record
outcome ±1. Then, he can correlate his results with those
of Alice at the same step k and calculate the CHSH
quantity

SCHSH ≡ 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉. (5)

A violation of the CHSH inequality (SCHSH ≤ 2) certifies
that the experiment involves inherently quantum effects.
With the choice of parameters that we outline, Bob finds
that

SCHSH,k = 2 cos(2μk)

√
1 + sin2(2ηk), (6)

meaning that this violation (SCHSH,k > 2) happens for any
choice of k if Alice uses μk < μk,max = 1

2 arctan(sin 2ηk).
In order to find θk and UB,k, Bob needs to know Alice’s
history of measurements and outcomes at steps 1 . . . k − 1.
We can imagine that Alice feeds them back to him after
each step or that he selects his operations at random from
all his possibilities and then correlates his results only
with those of Alice for which his choice was right. When
Bob acts, he only certifies the entanglement of the state
after one specific history of Alice’s measurements and out-
comes. However, in sufficiently many runs of the protocol,
he can cover many different histories.

This protocol underlines two points:

(a) If they are weak, Alice’s measurements do not
destroy entanglement (μk > 0 → ηk+1 > 0).

(b) If they are not too weak, the same weak mea-
surements that preserve entanglement are able to extract
enough information to violate a CHSH inequality and thus
certify the presence of entanglement in the premeasure-
ment state (μk < μk,max → SCHSH,k > 2).

This means that Alice can perform an arbitrary number
of measurements on every single entangled system, each
time fulfilling the certification requirement and without
ever destroying entanglement. For random-number gen-
eration, she could extract more than 1 bit of certified
local randomness from the sequences in which she only
measures σX , thus beating the limit imposed by projec-
tive measurements. For instance, with a short sequence of
two measurements, with μ1 = 0.13 and μ2 = 0, she would
certify 1.026 bits.

III. EXPERIMENTAL METHOD

We describe here our proof-of-concept implementation
aimed at verifying the two points above. Alice makes
at most three sequential measurements and the protocol
can be stopped at step 1, 2, or 3. We choose μ1 ≈ 0.34,
μ2 ≈ 0.19 and μ3 = 0. The former two parameters opti-
mize the expected values of SCHSH around 2.2 at steps 1 and

2, enough to grant a significant experimental observation
without sacrificing the value at step 3. We can set μ3 = 0
because we are sure that the protocol will not continue after
step 3 and therefore there is no need to preserve entan-
glement. Just before step 3, the shared system can be in
16 possible states, depending on Alice’s previous choices
and outcomes. Although a CHSH-inequality violation is
possible for all of them, only in four cases is the achiev-
able value of SCHSH sufficiently greater than 2, to admit the
experimental detection. In the remaining 12 cases, we ver-
ify entanglement using a different strategy: Alice and Bob
apply the operation U†

A ⊗ U†
B and then measure the entan-

glement witness W = 1⊗ 1− σZ ⊗ σZ − σX ⊗ σX . It is
easy to prove that the mean value of this witness is neg-
ative on the state of interest, whereas it would be positive
or zero on any separable state [33]. In total, we measure
nine independent values of SCHSH (one when we stop the
protocol at step 1, four at step 2, and four at step 3), plus
12 values of 〈W〉.

We encode two qubits in the polarization degree of free-
dom of two separated photons. Polarization-entangled pho-
ton pairs are generated by a custom-built source [14,25]
based on a Sagnac interferometer. It prepares the entan-
gled state |ψ1〉, where |0〉 and |1〉 refer to the horizon-
tal and vertical polarizations. The pairs are sent to the
two arms of our experimental setup, which correspond
to Alice and Bob in the theoretical protocol. Figure 1
schematizes the optical implementation for each of Alice’s
measurement steps: two half-wave plates (HWPs) apply
U†

A, which is always a rotation in the space of linear
polarizations; then, another HWP represents the choice
between the measurements A0 and A1; and, finally, a

FIG. 1. A conceptual optical scheme for each of Alice’s steps.
Angle μ corresponds to the sharpness parameter in Alice’s mea-
surements. The two states obtained at the two outputs correspond
to the Kraus operators K+1|m and K−1|m applied to the input state,
meaning that each measurement outcome is mapped to an out-
put. In this model, mirrors apply the σZ operation to incident
polarization, whereas polarizing beam splitters simply separate
two orthogonal polarizations without introducing any relative
phase. In our implementation, one of the exits is blocked and we
change the outcome corresponding to the active one by rotating
the external wave plates. For a key to the optical elements, see
Fig. 2.
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polarization-based Mach-Zehnder interferometer (MZI)
implements the unsharp measurement. It entangles the
polarization with the path degree of freedom, while the
sharpness parameter is set by the angles−μ/2 and π/4 −
μ/2 of the internal HWPs. The two exit paths correspond
to the two outcomes of the polarization measurement: the
probability of a photon taking each of them is equal to the
probability of each outcome, while the polarization state
of the photon (if observed in each path) is the expected
postmeasurement state. One can imagine putting many of
these devices in a treelike structure that, in principle, can
grow unlimited, but in our experiment we stop after three
of them. Every branch of the tree corresponds to a partic-
ular history of outcomes: detecting a photon at the end of
a branch allows us to retrieve this history, attesting that
the photon has taken the corresponding sequence of exits.
Alice does not need to retrieve the outcome after each mea-
surement, because the wave plates are set to execute the
correct unitary operation U†

A, depending on which branch
they are in. This encoding of measurement outcomes in the
path degree of freedom is common in experiments involv-
ing sequential measurements on single photons [34–39].
Figure 2 depicts this idea.

Bob makes only projective measurements in the space of
linear polarization; hence his scheme can be simplified to
a HWP that selects the observable and a polarization beam
splitter (PBS) that separates the two outcomes.

In practice, our implementation is simplified with
respect to Fig. 2 and only uses one detector (a single-
photon avalanche diode, SPAD) for Alice and one for Bob.
Since we set Alice’s third measurement to be projective,
we need only two MZIs in a sequence on her side. One
exit of each is blocked, so that there is only one path
from the source to Alice’s detector. Each interferometer
is set to change the input polarization according to the
Kraus operator K+1|0(μ) = cos(μ)�+

0 + sin(μ)�−
0 , while

two HWPs, one before and one after it, can change any
of {�+

0 ,�−
0 ,�+

1 ,�−
1 } into another, thus selecting the basis

and outcome of the measurement. This means that depend-
ing on the orientation of these plates, the interferometer
can carry out each of the four Kraus operators required by
the protocol. We mechanically rotate the HWPs in different
configurations, each corresponding to one measurement-
outcome combination. By orientating all of Alice’s HWPs
properly, we select which branch of the tree is implemented
by the one path of our setup, thus setting her complete
history of measurements and outcomes. The choice of
measurement bases is not made in real time, photon by
photon, as a faithful realization of the protocol would
require, but, rather, at fixed temporal intervals, the length
of which is limited by the speed of rotation of the plates
and the integration time needed to keep the statistical error
small enough. Moreover, the setup cannot evaluate differ-
ent measurement outcomes simultaneously but we have
to check their relative frequencies one by one. We evalu-
ate sequentially all the combinations of plate orientations,
thus reconstructing the entire tree one branch at a time. For
each combination, we count coincident detections between
Alice and Bob for a fixed exposure time. These counts
are proportional to the joint probability of obtaining the
combination of outcomes under test and hence allow us to
find SCHSH and 〈W〉. We note that Alice never communi-
cates her previous history of measurements and outcomes
to Bob: we externally choose it and then select the same
plate orientations that Bob would use if he received such a
message.

We operate under the fair-sampling assumption that
coincident detection events faithfully represent the pho-
ton pairs produced by the crystal. Moreover, our setup
is affected by the “locality loophole,” i.e., classical
communication between Alice and Bob during the
measurement of SCHSH cannot be physically excluded.

FIG. 2. A conceptual treelike structure of the protocol. The two positions of Bob’s HWP if he stops the protocol at the kth step
depend on Alice’s choices and outcomes of all the previous k − 1 steps. Also, those of the HWPs that implement U†

A inside each of
Alice’s blocks depend on her previous history. In our implementation, Alice stops at most at the third measurement. Moreover, we do
not build the entire tree but only one branch and we change the combination of outcomes to which it corresponds by rotating wave
plates.
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Finally, avoiding the tree structure increases the experi-
ment duration, because the probabilities of outcome are
not all recorded at once. Furthermore, it prevents our setup
from being straightforwardly adapted for applications such
as randomness extraction. However, it greatly simplifies
the implementation for the goal of certifying entanglement.

IV. RESULTS

We use a coincidence window of ±1 ns and an exposure
time of 20 s for all measurements. Given the production
rate of our source and the losses in the setup, the total
number of photon pairs that contribute to our measure-
ments is approximately 3 × 104. The detection efficiency
of Alice’s channel is approximately 1%, while Bob’s is
approximately 8%, with the difference being due to the
multimode fiber on Bob’s side (details in Appendix C).
Before the experiment, we verify the quality of the ini-
tial entangled state using the visibility figure of merit and
we obtain 99% and 98% when measuring the σZ ⊗ σZ
and σX ⊗ σX correlations, respectively. The visibility in
the former basis depends on the extinction ratio of the
polarizing elements in the measurement setup, whereas in
the latter basis it is limited by the quality of the Sagnac
interferometer.

Table I shows the experimental results for the nine val-
ues of SCHSH, whereas Table II shows the 12 mean values
for the entanglement witnesses. For completeness, we also
report in Table IV (Appendix B) the witnesses in the other
four cases at step 3, for which the CHSH violation is a
stronger certification of entanglement because it requires
fewer assumptions [40]. We observe the violation of all the
nine CHSH inequalities with several standard deviations
of statistical significance, proving that Alice’s sequential

TABLE I. The experimental values of SCHSH. The second col-
umn reports the history of measurements and outcomes that
precede the one that yields SCHSH on Alice’s side. The notation
is as follows: outcome at step 1 | measurement choice at step 1;
outcome at step 2 | measurement choice at step 2. The violation
(i.e., SCHSH − 2) is expressed in units of the standard deviation
on SCHSH, derived from Poissonian error on the counts and error
propagation.

Final
step Alice’s history SCHSH SD

Violation
(units of SD)

1 not applicable 2.15 0.01 20
2 +1|0 2.13 0.01 12
2 −1|0 2.07 0.01 6
2 +1|1 2.12 0.01 10
2 −1|1 2.09 0.01 7
3 +1|0; −1|0 2.48 0.03 16
3 −1|0; −1|0 2.53 0.03 17
3 +1|1; −1|0 2.47 0.03 15
3 −1|1; −1|0 2.46 0.03 15

TABLE II. The experimental mean values of the entanglement
witness. The final step is the third for all results. The first column
reports the history of measurements and outcomes that precede
the one that yields 〈W〉 on Alice’s side. The notation is as follows:
outcome at step 1 | measurement choice at step 1; outcome at
step 2 | measurement choice at step 2. The last column reports
−〈W〉, expressed in units of its standard deviation, derived from
Poissonian error on the counts and error propagation.

Alice’s history 〈W〉 SD
Confirmation
(units of SD)

+1|0; +1|0 −0.12 0.01 13
+1|0; +1|1 −0.17 0.01 14
+1|0; −1|1 −0.20 0.01 17
−1|0; +1|0 −0.07 0.01 8
−1|0; +1|1 −0.12 0.01 11
−1|0; −1|1 −0.14 0.01 13
+1|1; +1|0 −0.06 0.01 7
+1|1; +1|1 −0.13 0.01 10
+1|1; −1|1 −0.18 0.01 14
−1|1; +1|0 −0.07 0.01 8
−1|1; +1|1 −0.17 0.01 13
−1|1; −1|1 −0.16 0.01 13

measurements do not destroy entanglement and at the same
time can certify its presence. The former point is also
corroborated by the results of 〈W〉, which are always sig-
nificantly negative. We also note that the value of SCHSH at
step 3 is greater than those at steps 1 and 2. This is expected
given the particular sharpness parameters that we use in
the experiment and proves that the protocol can be used
for entanglement amplification, although only for a subset
of measurement choices and outcomes.

We still observe small deviations from the expected val-
ues and we attribute them to systematic alignment errors in
our setup. Imperfections in one of Alice’s interferometers
might make the measurement that we perform suboptimal,
thus reducing SCHSH at the corresponding step. Moreover,
they might degrade the entanglement in the output state,
thus also decreasing SCHSH at the steps that follow. Finally,
the results at the first two steps can be influenced by defects
in parts of the setup that ensue the corresponding interfer-
ometers, because photons must still go through these parts
before they reach the detectors. The main sources of error
are the phase between the arms of the MZIs, which has
to be carefully regulated by tilting the PBDs, and rotation
of the wave plates, which must be accurate. These rota-
tions can also deviate the photons out of the detectors’
entrance, thus invalidating the polarization measurements.
Alignment difficulties such as these are the reason why
simplification of the experimental setup is of paramount
importance. Regarding statistical errors, we verify that the
repeatability of the motorized rotators used to set the orien-
tation of the wave plates is good enough that its contribu-
tion is negligible; hence the standard deviations reported in
Tables I and II are derived only from the Poissonian error
on the photon counts.
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V. CONCLUSIONS

In this work, we show that it is experimentally feasi-
ble to sustain entanglement over a sequence of unsharp
measurements while being able to generate correlations
that are strong enough to violate a Bell inequality through
the same measurements. We report strong violations of the
CHSH inequality, backed by more than 10 standard devi-
ations of statistical significance, even at the third step of
the sequence (albeit only for some of the possible his-
tories of previous measurements and outcomes). This is
important for protocols that require certified entanglement
for quantum information tasks, such as the extraction of
random bits from measurement outcomes. Our proof-of-
principle experiment is based on entangled photon pairs
and exploits only three well-controlled sequential mea-
surements. It would be of evident interest to extend these
ideas to other relevant physical systems that make substan-
tially longer sequences of unsharp measurements possible,
allowing one to harness entanglement many times for
quantum information applications.
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APPENDIX A: DETAILED DESCRIPTION OF THE
PROTOCOL

At the beginning of step k, Alice and Bob share the pure
and entangled state

|ψk〉 = UA,k ⊗ UB,k[cos(ηk) |00〉 + sin(ηk) |11〉], (A1)

where UA,k and UB,k are local unitary operations and ηk ∈
(0,π/4]. Alice has perfect knowledge of the state; hence
she can apply U†

A,k to her subsystem. The shared state
becomes

|ψ ′
k〉 = 1A ⊗ UB,k[cos(ηk) |00〉 + sin(ηk) |11〉]. (A2)

She chooses the strength of her measurement, in the form
of parameter μk ∈ (0,μk,max), where

μk,max = 1
2

arctan(sin 2ηk). (A3)

We require μk > 0 to preserve entanglement at step k + 1
(indeed, Alice is allowed to choose μk = 0 if she agrees
with Bob to stop the protocol at step k). The upper bound

is required to make the violation of the CHSH inequality
at step k possible. Note that this implies that tan(2μk) ≤
sin(2ηk) ≤ tan(2ηk) and hence μk ≤ ηk.

Then, she chooses between the two observables
A0(μk) = E+1|0(μk)− E−1|0(μk) and A1(μk) = E+1|1(μk)

− E−1|1(μk), where

E+1|0(μk) = 1
2

[1+ cos(2μk)σZ] ,

E−1|0(μk) = 1
2

[1− cos(2μk)σZ] ,

E+1|1(μk) = 1
2

[1+ cos(2μk)σX ] ,

E−1|1(μk) = 1
2

[1− cos(2μk)σX ] .

(A4)

A0(μk) and A1(μk) are noisy measurements of σZ and σX ,
respectively. Moreover, E±1|m(μk) = K±1|m(μk)

†K±1|m(μk)

where K±1|m(μk) are the Kraus operators mentioned in the
main text:

K+1|0(μk) = cos(μ1) |0〉 〈0| + sin(μk) |1〉 〈1| ,

K−1|0(μk) = sin(μ1) |0〉 〈0| + cos(μk) |1〉 〈1| ,

K+1|1(μk) = cos(μ1) |+〉 〈+| + sin(μk) |−〉 〈−| ,

K−1|1(μk) = sin(μ1) |+〉 〈+| + cos(μk) |−〉 〈−| ,

(A5)

where |+〉 and |−〉 are the two eigenstates of σX .
After performing the measurement and recording the

outcome, the shared state becomes

|ψk+1〉 = UA,k+1 ⊗ UB,k+1[cos(ηk+1)|00〉 + sin(ηk+1)|11〉]
(A6)

and step k + 1 can begin.
The unitary operations UA,k+1 and UB,k+1 and the new

parameter ηk+1 can be found from their corresponding
values at step k. In particular,

UA,k+1 = e−iαk+1σY ,

UB,k+1 = e−iβk+1σY UB,k,
(A7)

where angles αk+1 and βk+1 depend on the choice of
measurement and outcome at step k, as summarized in
Table III.

We emphasize that if the measurement choice is A0,
the outcome is −1 and tan(μk) > tan2(ηk), then ηk+1 >

ηk, which means that entanglement has been ampli-
fied; this cannot happen in the other cases. To find
the expressions of Table III, one should write |ψk+1〉 =
K±1|m(μk)/

√〈ψ ′
k| E±1|m(μk) |ψ ′

k〉 |ψ ′
k〉 and then perform

the Schmidt decomposition on this state. The singular
vectors (which form the columns of UA,k+1 and UB,k+1)
should be ordered according to decreasing singular values.
Then, tan(ηk+1) is simply the ratio between the smaller and
larger singular values. This sequence begins at step 1 with
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TABLE III. The properties of step k + 1 given those of step k.

Kraus αk+1 βk+1 ηk+1
at step k

K+1|0 0 0 arctan[tan(μk) tan(ηk)]
K−1|0 π/2 π/2 arctan[tan(μk)/ tan(ηk)]
K+1|1 1

2 arccot[tan(2μk) cos(2ηk)] 1
2 arctan[tan(2ηk) cos(2μk)] 1

2 arcsin[sin(2μk) sin(2ηk)]

K−1|1 − 1
2 arccot[tan(2μk) cos(2ηk)] − 1

2 arctan[tan(2ηk) cos(2μk)] 1
2 arcsin[sin(2μk) sin(2ηk)]

UA,1 = UB,1 = 1 and η1 = π/4. With this information and
the above updating rules, it is possible to find all parame-
ters at all steps.

If Alice and Bob decide to interrupt the proto-
col at step k, Bob must apply U†

B,k and measure
projectively the two observables B0,k = cos(θk)σX +
sin(θk)σZ and B1,k = − cos(θk)σX + sin(θk)σZ , where
θk = arccot[sin(2ηk)]. Inserting these expressions in the
definition of SCHSH yields Eq. (6). From this, one can prove
that in order to violate the CHSH inequality, μk must be
chosen such that tan(2μk) < sin(2ηk), as stated in the main
text.

APPENDIX B: VALUES FOR THE THREE-STEPS
IMPLEMENTATION

Table IV contains the numerical values for all the
parameters of the protocol, restricted to our three-steps
implementation.

APPENDIX C: DETAILED DESCRIPTION OF THE
EXPERIMENTAL SETUP

The heart of our entangled-photons source is a
30-mm-long periodically poled potassium titanyl phos-
phate (PPKTP) crystal, which lies inside a Sagnac
interferometer. A continuous-wave laser at 404 nm sends
diagonally polarized light to the PBS of the interferome-
ter so that the crystal is illuminated from both directions.
By a spontaneous parametric down-conversion process in
a quasiphase-matching configuration, pairs of orthogonally
polarized photons at 808 nm are generated. Due to a dual
wavelength half-wave plate (that works both at 404 nm
and 808 nm) inside the Sagnac interferometer, the quantum
state just after it is 1/

√
2(|01〉 + |10〉), where the hori-

zontal (|0〉) and vertical (|1〉) polarizations are defined by
the aforementioned PBS. Two single-mode fibers collect
the photons and bring them to the two arms of the mea-
surement setup, Alice and Bob. In each of them, a HWP

TABLE IV. The values of the parameters for our three-steps implementation and comparison with the observed values for SCHSH
and 〈W〉. The notation for the second column is as follows: outcome at step 1 | measurement choice at step 1; outcome at step 2 |
measurement choice at step 2. The standard deviations in the last two columns are derived from Poissonian error on the counts and
error propagation.

Step k Alice’s history ηk αk βk θk μk SCHSH 〈W〉 SCHSH (observed) 〈W〉 (observed)

1 not applicable π/4 0 0 π/4 0.34 2.20 −1 2.15 ± 0.01 no data
2 +1|0 0.34 0 0 1.01 0.19 2.19 −0.63 2.13 ± 0.01 no data
2 −1|0 0.34 π/2 π/2 1.01 0.19 2.19 −0.63 2.07 ± 0.01 no data
2 +1|1 0.34 π/4 π/4 1.01 0.19 2.19 −0.63 2.12 ± 0.01 no data
2 −1|1 0.34 −π/4 −π/4 1.01 0.19 2.19 −0.63 2.09 ± 0.01 no data
3 +1|0; +1|0 0.07 0 0 1.44 0 2.02 −0.14 no data −0.12 ± 0.01
3 +1|0; −1|0 0.50 π/2 π/2 0.87 0 2.61 −0.84 2.48 ± 0.03 −0.75 ± 0.01
3 +1|0; +1|1 0.12 0.63 0.32 1.34 0 2.05 −0.23 no data −0.17 ± 0.01
3 +1|0; −1|1 0.12 −0.63 −0.32 1.34 0 2.05 −0.23 no data −0.20 ± 0.01
3 −1|0; +1|0 0.07 0 0 1.44 0 2.02 −0.14 no data −0.07 ± 0.01
3 −1|0; −1|0 0.50 π/2 π/2 0.87 0 2.61 −0.84 2.53 ± 0.03 −0.79 ± 0.01
3 −1|0; +1|1 0.12 0.63 0.32 1.34 0 2.05 −0.23 no data −0.12 ± 0.01
3 −1|0; −1|1 0.12 −0.63 −0.32 1.34 0 2.05 −0.23 no data −0.14 ± 0.01
3 +1|1; +1|0 0.07 0 0 1.44 0 2.02 −0.14 no data −0.06 ± 0.01
3 +1|1; −1|0 0.50 π/2 π/2 0.87 0 2.61 −0.84 2.47 ± 0.03 −0.78 ± 0.01
3 +1|1; +1|1 0.12 0.63 0.32 1.34 0 2.05 −0.23 no data −0.13 ± 0.01
3 +1|1; −1|1 0.12 −0.63 −0.32 1.34 0 2.05 −0.23 no data −0.18 ± 0.01
3 −1|1; +1|0 0.07 0 0 1.44 0 2.02 −0.14 no data −0.07 ± 0.01
3 −1|1; −1|0 0.50 π/2 π/2 0.87 0 2.61 −0.84 2.46 ± 0.03 −0.68 ± 0.02
3 −1|1; +1|1 0.12 0.63 0.32 1.34 0 2.05 −0.23 no data −0.17 ± 0.01
3 −1|1; −1|1 0.12 −0.63 −0.32 1.34 0 2.05 −0.23 no data −0.16 ± 0.01
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and a QWP correct the unitary operations applied by the
fibers. Bob also uses a liquid-crystal retarder (LCR) to fine
tune the phase between different polarization components.
These optical elements change the state to

|ψ1〉 = 1√
2
(|00〉 + |11〉), (C1)

where |0〉 and |1〉 are now defined by Alice’s and Bob’s
polarizers.

The principle of the two measurement setups is that
polarizing and birefringent optical elements select one
measurement effect and then their axes are rotated to eval-
uate sequentially all the effects of interest. The number
of coincident detections in each configuration is counted
and associated with the corresponding effect. Bob has to
measure only linear polarizations; therefore his measure-
ment setup consists of a rotating HWP and a fixed linear
polarizer (LP). A multimode fiber then collects the pho-
tons and brings them to a SPAD. On Alice’s side, two
Mach-Zehnder interferometers in a series implement the
two weak measurements. They separate the horizontal- and
vertical-polarization components using PBDs. For conve-
nience, we use three HWPs instead of two in our MZIs:
in this way, we can regulate the sharpness parameter μ by
rotating a single plate, while the others are fixed. Indeed,
the arm carrying the |0〉 polarization encounters a HWP
with an axis at −π/8, while the other encounters a HWP at
π/8. Then, a HWP at angle π/8 − μ/2 spans across both.
The interferometer, followed by a HWP at angle π/4 that
swaps |0〉 and |1〉 implements the Kraus operator:

K+1|0(μ) = cos(μ)�+
0 + sin(μ)�−

0 . (C2)

Two HWPs, one before and one after the MZI, can change
any of {�+

0 ,�−
0 ,�+

1 ,�−
1 } into another, thus selecting the

basis and outcome of the measurement. This means that
depending on the orientation of these plates, the interfer-
ometer can carry out each of the four Kraus operators
required by the protocol, shown in Eq. (A5).

The unitary operations needed before each weak mea-
surement are realized by the HWP at the beginning of
the next step. The total number of HWPs needed between
the measurement steps would be five (one to select the
measurement-outcome combination of the previous mea-
surement, one to do the same for the next one, one to
swap |0〉 and |1〉, and two for the unitary operation), but
this can be reduced to one, as is true for any odd num-
ber of HWPs. Since the third measurement is strong, it is
achieved by a HWP and a LP. A single-mode fiber finally
collects Alice’s photons and brings them to a SPAD, the
signal of which is correlated with Bob’s signal by a time
tagger with 80-ps resolution, that then returns coincidence
counts within a ±1-ns window. A faithful representation
of our implementation is shown in Fig. 3.

-

FIG. 3. The actual optical implementation.

The total rate of coincidences summed over the out-
comes of a polarization measurement is about 1500 Hz.
We measure the efficiency of Alice’s detection system
as the ratio between the rate of coincidences and that of
single counts in Bob’s channel and we obtain approxi-
mately 1%. This value includes the quantum efficiency
of Alice’s SPAD and losses in the optical system, but is
mostly limited by the two couplings into single-mode fiber
that photons must endure in their path from the crystal to
the detector. Bob’s efficiency is comparatively much better
(approximately 8%) because of the multimode fiber (with
a higher collection probability) that we use at the detection
stage.

The coincidence rate, integrated over an exposure time
of 20 s, makes the total number of coincident events
contributing to a complete measurement about 3 × 104,
sufficient to make statistical errors small. Systematic mis-
alignments of the setup are the main source of error.
In particular, imperfections in the wave plates can cause
imbalances in the photon counts, which are critical for the
final results. Rotating plates can slightly deviate the beam
out of the fiber entrance, hindering the accuracy of the
polarization measurements. Preparation of the entangled
state is also important and needs precise alignment of the
source. Finally, the Mach-Zehnder interferometers need to
be perfectly balanced to achieve sufficient visibility.
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Quantum correlations which violate a
Bell inequality are presumed to power
better-than-classical protocols for solv-
ing communication complexity problems
(CCPs). How general is this statement?
We show that violations of correlation-
type Bell inequalities allow advantages in
CCPs, when communication protocols are
tailored to emulate the Bell no-signaling
constraint (by not communicating mea-
surement settings). Abandonment of this
restriction on classical models allows us
to disprove the main result of, inter alia,
[Brukner et. al., Phys Rev. Lett. 89,
197901 (2002)]; we show that quantum cor-
relations obtained from these communica-
tion strategies assisted by a small quan-
tum violation of the CGLMP Bell inequal-
ities do not imply advantages in any CCP
in the input/output scenario considered in
the reference. More generally, we show
that there exists quantum correlations,
with nontrivial local marginal probabili-
ties, which violate the I3322 Bell inequality,
but do not enable a quantum advantange
in any CCP, regardless of the communi-
cation strategy employed in the quantum
protocol, for a scenario with a fixed num-
ber of inputs and outputs

1 Introduction
Entanglement in itself cannot be used for infor-
mation transfer. However, when combined with
classical communication, it becomes a paradig-
matic resource for quantum information transfer.
It can amplify the capacity of a channel [1, 2],
most famously in superdense coding [3]. Also, it

can be used as a resource for better-than-classical
communication complexity [4, 5]. Such reduc-
tions of communication complexity have a range
of applications (see e.g. [7–11]) and are central
tools for understanding the power of entangle-
ment as a resource, both in terms of the extent
to which it can outperform classical approaches
[12–14] and how it compares to other quantum
resources [15–17].

Communication complexity problems (CCPs)
are tasks in which separated parties collaborate
to compute a function dependent on inputs dis-
tributed among them, while only being allowed a
limited amount of communication1. In their sim-
plest form, such tasks can be viewed as games in
which two parties Alice and Bob hold random in-
putsX and Y respectively and collaborate so that
one of them (say Bob) can compute a function
f(X,Y ). Alice communicates a classical message
m(X) to Bob who outputs a guess g(m,Y ) for
the value of f . If the guess is correct, the part-
nership earns a “point". Importantly, the com-
munication is limited so that the alphabet of m
is smaller than that of X, typically rendering per-
fect evaluations of f impossible. The CCP is to
find for Alice and Bob a communication strategy
maximising the score, i.e. the averaged (over the
distribution of inputs) number of points.

By sharing entanglement, Alice and Bob can
sometimes increase their score beyond what is
classically achievable [5]. To this end, it is nec-
essary that they exploit entanglement to dis-
tribute strong correlations that violate a Bell

1An alternative approach to CCP considers the mini-
mal amount of communication required to compute a func-
tion with distributed inputs. However, in this work, our
focus is scenarios in which tasks are performed with lim-
ited communication.
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inequality. We illustrate this with an exam-
ple [18]. Alice (Bob) has fully random inputs
X = (x0, x) ∈ [2]2 (Y = y ∈ [2]), where [s] de-
notes the set {0, . . . , |s| − 1}. The CCP (game)
is: Bob earns a point if he gives his guess g equal
to f = x0 + xy mod 2, while Alice can send him
only a binary (bit) message m(x0, x). The score
in the CCP is written S = 1/8∑x0,x,y P (g =
f |x0, x, y). The optimal classical score, which is
S = 3

4 , is achieved with some deterministic encod-
ing/decoding procedure. Due to the small num-
ber of inputs, one can easily consider all possi-
ble messaging and guessing strategies. One finds
that there are several different strategies achiev-
ing the optimal classical score in the CCP. It can
be shown, see [5] and e.g. [6], that among other
ones, there is an optimal strategy which runs as
follows: Alice sends m(x0, x) = a(x) +x0 mod 2
and Bob guesses g = m+b(y) mod 2, where a(x)
and b(y) are binary-valued functions of the in-
puts x and y respectively. The winning condition
f = g now reduces to a(x) + b(y) = xy, which al-
lows us to put the score in the form of the Clauser-
Horne-Shimony-Holt (CHSH) [19] Bell inequality:
S = 1/4∑x,y P (a + b = xy|x, y) ≤ 3/4. Thus
immediately the following entanglement-assisted
strategy becomes relevant: Alice and Bob use
their inputs (x, y) as settings in a quantum test
of the CHSH inequality where a, b ∈ [2] are their
respective local outcomes. Having obtained her
outcome in the CHSH test, Alice sends the mes-
sage m(x0, x) = a + x0 mod 2 to Bob. Notice
that this message emulates the Bell no-signaling
constraint in the sense that it does not allow Bob
to read out the value of x, which was used as
a setting in the CHSH test. Bob uses his out-
come in the CHSH test to construct the guess
g = m + b mod 2. Since shared entanglement
enables Alice and Bob to violate the CHSH in-
equality, this quantum strategy leads to a score
of up to S = 1

2 + 1
2
√

2 ≈ 0.854, which is the largest
possible violation of the CHSH inequality. Thus,
the entanglement-assisted strategy holds an ad-
vantage over all possible classical strategies in the
CCP.

There are many more results showing that
every probability distribution that violates spe-
cific Bell inequalities has the ability of enhanc-
ing a CCP beyond classical protocols. Exam-
ples include the Mermin inequalities [5, 20], the
Collins-Gisin-Linden-Massar-Popescu (CGLMP)

inequalities [16, 21–23], the elegant Bell inequal-
ity [24], Bell inequalities for random access coding
[15, 25–27], the biased CHSH inequalities [11, 28]
and a large class of bipartite many-outcome Bell
inequalities [29]. More generally, Ref. [30] showed
that the violation of every multipartite correla-
tion Bell inequality with binary outcomes implies
beating the best possible classical score in a cor-
responding CCP constructed by generalising the
above example based on the CHSH inequality.
See the topical review [31] for further discussions.
This fauna of results begs the question: does ev-
ery nonlocal probability distribution (i.e. a proba-
bility distribution that violates a Bell inequality)
lead to an advantage in a CCP? To show such ad-
vantages, one requires only an example of a CCP
in which access to the nonlocal probability dis-
tribution is advantageous. However, proving that
no such advantage is possible is significantly more
challenging; one must rule out the possibility of
an advantage in every possible CCP, i.e. no mat-
ter the number of inputs and outputs, the choice
of score and the chosen classical communication
strategy.

Whereas we do not provide a decisive answer
to whether Bell nonlocality always implies ad-
vantages in CCPs, we show that there exists
a natural input/output scenario in which Bell
nonlocality does not enable a quantum advan-
tage in any CCP. We first formalise classical and
entanglement-assisted CCPs. Then, we show how
to map multipartite d-outcome correlation Bell
inequalities to corresponding CCPs. This method
allows to e.g. reproduce the examples studied in
the literature, listed in the previous paragraph.
We prove that a violation of a Bell inequality, to-
gether with restricted communication strategies,
which do not reveal the input the sender would
use to define her measurement setting the Bell in-
equality test, implies beating an analogous clas-
sical protocol for the corresponding CCP.

This restriction on classical strategies is tacitly
used in several previous works (see e.g. Refs. [16,
22, 23]) which enables a quantum advantage.
Our more complete analysis of classical strate-
gies no longer sustains the generality of e.g. the
main result of Ref. [22], that every violation of
the CGLMP inequality combined with the above
mentioned communication strategies implies an
advantage in some CCP for a fixed number of
inputs and outputs. This leads us to consider
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the classical simulation of entanglement-assisted
CCPs. We consider a situation with fixed number
of inputs and outputs and show that there exists
a quantum nonlocal probability distribution that
does not enable better-than-classical communica-
tion complexity, regardless of the communication
strategy and the choice of score. Our results are
in opposition to the common belief that Bell non-
locality always is useful for better-than-classical
communication complexity.

2 Formal scheme of the communica-
tion complexity problems analysis
We mainly consider two-party protocols. These
are formulated as games. Alice and Bob each
receive random inputs, respectively X ∈ [NA]
and Y ∈ [NB]. Alice sends a message m ∈ [M ]
(with M < NA) to Bob who outputs g ∈ [G],
which is awarded with tgX,Y points. The tuple
(NA, NB,M,G) corresponds to a choice of sce-
nario. The score of a specific CCP within the
chosen scenario is written as

S[p(g|X,Y )] =
∑

g,X,Y

tgX,Y p(g|X,Y ) (1)

where p(g|X,Y ) is the probability of Bob’s out-
put for local inputs X,Y . Notice that the scor-
ing function can always absorb prior probabilities
p(X,Y ).

In a classical picture, Alice encodes her mes-
sage with a function E : [NA] → [M ] and Bob
constructs his guess with a function D : [M ] ×
[NB] → [G]. The choice of (E,D) can be co-
ordinated via a shared random variable λ, with
some probability distribution p(λ). Therefore, a
classical model is of the form

pC(g|X,Y ) =
∑

λ

p(λ)pλ(g|X,Y ). (2)

where the deterministic distribution is
pλ(g|X,Y ) = ∑

m p(m|X,λ)p(g|m,Y, λ) with
p(m|X,λ) = δm,Eλ(X) and p(g|m,Y, λ) =
δg,Dλ(m,Y ). Due to linearity in Eq. (1), the
largest score is found with a deterministic
communication strategy. We therefore define the
optimal classical score in a CCP as

SC = max
λ
S[pλ(g|X,Y )]. (3)

In contrast, if Alice and Bob share an entan-
gled state ρ, they may use their inputs to se-
lect measurement settings with associated out-
comes a and b respectively. The statistics reads
p(a, b|X,Y ) = tr

[
AaX ⊗Bb

Y ρ
]
where AaX and Bb

Y

are measurement operators. Subsequently, Al-
ice sends m = E(a,X) for some function E :
[|a|]×[NA]→ [M ] and Bob guesses g = D(m, b, y)
for some function D : [M ] × [|b|] × [NB] → [G],
where |a| and |b| denote the cardinality of the re-
spective output spaces. Here, we have assumed
that the Bell inequality test is performed before
Bob receives Alice’s message (in line with space-
like separation). Moreover, although shared ran-
domness could be absorbed into the shared en-
tangled state, we treat it separately in order to
emphasise that it is a classical resource. There-
fore, a quantum model is of the form

pQ(g|X,Y ) =
∑

λ

p(λ)pQ
λ (g|X,Y ), (4)

where

pQ
λ (g|X,Y ) =
∑

a,b,m

p(a, b|X,Y )p(m|a,X, λ)p(g|m, b, Y, λ).

3 All violations of correlation Bell in-
equalities power advantages in con-
strained CCPs
Consider a Bell scenario with N parties
O1, . . . , ON who perform measurements labelled
x1, . . . , xN with outcomes o1, . . . , oN ∈ [d] for
some d ≥ 2, and any Bell inequality of the form

B =
∑

~x

∑

r

tr~xP~x

(
N∑

i=1
oi = f r~x

)
LHV
≤ C, (5)

where ~x = (x1, . . . , xN ), C is the LHV bound, r is
an additional integer-valued indexing parameter
which allows for more general Bell inequalities2,
f r~x ∈ [d] and tr~x are real coefficients. The rela-
tion

∑
i oi = f r~x is evaluated modulo d. The Bell

inequalities in Eq (5) are sometimes referred to
as full correlation Bell inequalities. To map (5)
to a CCP, let Oi (for i = 1, . . . , N − 1) have an

2For instance the CHSH inequality requires only one
value of r but in order to write the CGLMP inequalities
on the form (5) one requires several values of r.
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input Xi = (xi, x(i)
0 ) where x(i)

0 ∈ [d]. Each of
these parties may send a message mi ∈ [d] after
which ON , who has input XN = xN , produces a
guess g ∈ [d] and earns tr~x/d

N−1 points whenever
g = f r~x +∑N−1

i=1 x
(i)
0 . The score is defined as

S = 1
dN−1

∑

~x,~x0

∑

r

tr~xP~x

(
g = f r~x +

N−1∑

i=1
x

(i)
0

)
,

(6)
where ~x0 = (x(1)

0 , . . . , x
(N−1)
0 ). Notice that the

coefficients tr~x/d
N−1 in the CCP do not depend

on ~x0. To put the Bell inequality and the CCP
on equal footing, let the N parties share an en-
tangled state and use their inputs ~x to perform
a measurement with outcome oi ∈ [d]. Then, the
parties Oi for i = 1, . . . , N−1 send mi = oi+x

(i)
0

to ON who outputs g = oN + ∑
imi. Here, in

analogy with the previous CHSH-inspired exam-
ple, the addition of x(i)

0 in the message ensures
that ON cannot learn the input xi which was used
as a setting in a Bell inequality test. Also, no-
tice that the parties O1, . . . , ON−1 only use part
of their inputs for choosing a measurement set-
ting. This is in analogy with previous littera-
ture (e.g. Refs. [15, 22, 29, 30]). We then find
S = B. In comparison, consider a classical situ-
ation that is restricted to the same type of com-
munication strategies, i.e. “additive” messages on
the form mi = oi(xi) + x

(i)
0 , where oi(xi) is a

function of xi, that do not reveal the value of
xi. Naturally, this leads to S = B ≤ C. There-
fore, when restricting to additive communication
strategies for both the quantum and classical sit-
uation, one finds that violation of Eq. (5) im-
plies S > C, i.e. a quantum advantage in the
CCP. The above construction generalises results
in Refs. [5, 11, 15, 16, 22, 23, 26, 27, 30]. Com-
munication which does not allow one to reveal
measurement settings (as above) is important in
scenarios in which the task function should be cal-
culated in a way which does not allow an eaves-
dropper to learn the inputs of a sender, or even
in a more subtle situation in which a sender does
not want the receiver to know her inputs.

For d = 2, the scenario reduces to that of
Ref. [30], in which it was shown that messages
of the form mi = oi + x

(i)
0 lead to the optimal

classical score (3). However, the same does not
have to be true for d > 2. We shall explicitly
show that such is not the case using the specific
example of Ref. [22]. Ref. [22] showed (via the

above map) that every violation of the CGLMP
inequality [21] implies an advantage in a corre-
sponding CCP in which the communication is re-
stricted to the additive communication strategies
defined above. As we show next, this constraint
effectively excludes the optimal classical strategy.

4 The CGLMP inequality and commu-
nication complexity
Let us consider the CCP of Ref. [22] obtained
by choosing (5) as the CGLMP inequality. This
inequality is a facet Bell inequality when Alice
and Bob have two settings x, y ∈ [2] and three
possible outcomes a, b ∈ [3];

Bcglmp =
1
4
∑

x,y

[
Pxy(a+b = f1)−Pxy(a+b = f2)

] LHV
≤ 1

2 ,

(7)

where f1 = −xy and f2 = −xy+(−1)x+y. Using
two entangled qutrits, one can reach the maximal
quantum violation BQ

cglmp ≈ 0.7287 [32]. In the
corresponding CCP, Alice (Bob) has random in-
puts x0 ∈ [3] and x ∈ [2] (y ∈ [2]). Alice may
send a ternary message m ∈ [3] to Bob who out-
puts a guess g ∈ [3]. The score (6) is

Scglmp =
1
12

∑

x0,x,y

[
Pxy(g = x0 + f1)− Pxy(g = x0 + f2)

]
.

(8)

For an additive communication strategy, the vi-
olation of (7) is necessary and sufficient for
outperforming the corresponding classical value
Scglmp = 1/2. Ref. [22] restricted itself to
such additive communication strategies (for both
classical and quantum models) to prove that
a quantum enhancement of classical protocols
in this CCP is possible if and only if the
CGLMP inequality is violated. Since additive
communication strategies assisted by Bell non-
local correlations allow for a strong link be-
tween CCPs and Bell inequality violations, it ap-
pears natural that such communication strate-
gies would power quantum-over-classical advan-
tages in CCPs. However, as we show next, this
does not necessarily mean that the best classical
strategies are of the additive type, i.e. it is not
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always optimal to tailor a classical strategy to a
Bell inequality.

We now relax the assumption of additive com-
munication strategies (m = x0 + a mod 3)
and compute the optimal classical score (3).
There are 312 deterministic encoding and guess-
ing strategies. Interestingly, by separately con-
sidering all of them, we find that

SC
cglmp = 2

3 . (9)

This can be saturated by Alice sending
m(x0, x) = δx,0δx0,2 + 2δx,1δx0,1 mod 3 and Bob
guessing g(m, y) = 2δy,0m+δy,1 (m+ 1) mod 3.
Note that m = 1, 2 informs Bob of the value of x.

Thus, the broad class of communication strate-
gies considered in Ref. [22] is insufficient to find
the optimal classical score. A large violation of
the CGLMP inequality, Bcglmp > 2/3, indeed
does imply an advantage over general classical
protocols for the CCP. However, weaker viola-
tions, 1/2 < Bcglmp ≤ 2/3, are insufficient to
achieve the same feat. In Appendix. A we show
that analogous criticism applies to the CCPs of
Refs. [16, 23]. Also, we have numerically consid-
ered whether the limitation Scglmp ≤ BQ

cglmp can
be overcome by using a more general message (see
Appendix. B for details). However, we have found
no improvement over the strategy in which Alice
and Bob maximally violate the CGLMP inequal-
ity and the message is additive.

Departing from the particular CCP (8), we re-
mind ourselves that entanglement-assisted advan-
tages originate from the probability distribution
p(g|x0, x, y). Evidently p(g|x0, x, y) may lack a
classical model even when the specific score (8)
does not exceed the classical bound (9). Is it
the case that for every probability distribution
p(g|x0, x, y) obtained by a trit-communication
and a violation of the CGLMP inequalities, there
exists some other CCP in which a higher score is
obtained than is classically possible? Presently,
we answer this for the case of the additive com-
munication strategy. Let Alice and Bob use their
shared entanglement to generate a probability
distribution of the form

p(a, b|x, y) = vpcglmp(a, b|x, y) + 1− v
9 , (10)

where pcglmp(a, b|x, y) maximally violates the
CGLMP inequality and v ∈ [0, 1] is the protocol
visibility parameter. This violates the CGLMP

inequality when v > 0.6861. The probability dis-
tribution pQ

v (g|x0, x, y), obtained via shared en-
tanglement and an additive communication strat-
egy, beats the classical bound (9) when v >
0.9149. We seek the largest v for which pQ

v can
be simulated by a classical model. This means
solving the linear program

max
p(λ)

v s.t. p(λ) ≥ 0, ∑
λ p(λ) = 1,

and pQ
v (g|x0, x, y) = ∑

λ p(λ)pλ(g|x0, x, y).
(11)

By considering pλ(g|x0, x, y) for all possible de-
terministic strategies, we have found that the cor-
responding polytope of classical probability dis-
tributions has 47601 vertices. We have evalu-
ated the linear program and found v ≈ 0.7943.
Hence, probability distributions pQ

v (g|x0, x, y) for
0.7943 < v ≤ 0.9149 indeed imply an advantage
over classical protocols in some CCP despite the
particular CCP (8) failing to detect it. However,
when 0.6861 < v ≤ 0.7942 the CGLMP inequal-
ity is violated, but the probability distribution
pQ
v (g|x0, x, y) can be classically modelled.

5 Bell nonlocality without CCP advan-
tages in fixed scenarios
The above classical simulation focuses on
entanglement-assisted correlations obtained via
an additive communication strategy. Here, we
prove a more general statement: that for a given
scenario (that is, a fixed number of inputs and
outputs) there exists a nonlocal probability dis-
tribution which cannot be used to improve any
CCP beyond classical constraints, regardless of
the choice of communication strategy. Specifi-
cally, we find a nonlocal probability distribution
that when combined with any communication
strategy gives rise to a p(g|X,Y ) which can be
simulated in a classical model for the given sce-
nario.

To this end, we focus on the a simple Bell sce-
nario going beyond that of the CHSH inequality.
In order to work with the smallest number of out-
comes possible (a, b ∈ [2]), we must consider two
parties with ternary settings settings x, y ∈ [3].
Three settings are needed, as the two-setting sce-
nario is fully characterised by the CHSH inequal-
ity, which is a correlation inequality and therefore
implies advantages in a CCP whenever violated
[18, 30]. Alternatively, one could also consider
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the previously discussed Bell scenario with two
settings and three outcomes. However, we focus
on the former due to its conceptual simplicity and
(as it turns out) computational advantages. In
the three-setting scenario, the facet Bell inequali-
ties are the (lifted) CHSH inequality and the I3322
inequality [35, 36]. The I3322 inequality reads

I = −PA(0)−2PB(0)−PB(1)+
∑

x,y

Tx,yP (x, y) ≤ 0,

(12)
where P (x, y) is the probability of outputting a =
b = 0, PA(x) = p(a = 0|x), PB(y) = p(b = 0|y)
and T = {[1, 1, 1], [1, 1,−1], [1,−1, 0]}. Notably,
this inequality is not a correlation Bell inequality
and is therefore not in the broad class of Bell in-
equalities whose violation necessarily implies ad-
vantages in CCPs [30].

Motivated by the choice of scenario in previ-
ous discussions for translating Bell inequality vi-
olations to advantages in CCPs, we consider a
communication scenario in which Alice has in-
puts x0 ∈ [2] and x ∈ [3] and Bob has an input
y ∈ [3]. Alice sends m ∈ [2] to Bob who outputs
g ∈ [2]. To further motivate that this scenario is
a good choice for revealing the CCP advantages
of probability distributions that violate the I3322
inequality, we have shown in Appendix. C that
a maximal violation of (12) (for qubits) implies
better-than-classical communication complexity,
and also that every probability distribution vio-
lating (12) obtained from mixing the optimal one
with a uniform probability distribution (in anal-
ogy with Eq. (10)) also implies such an advantage.
Note that such a scenario is a natural extension
of the ones studied in Ref. [30].

Nevertheless, we show that there exists a non-
maximally entangled state and local measure-
ments that give rise to a probability distribution
that violates I3322 inequality, that however is not
advantageous in any CCP in the stated scenario.
To this end, Alice and Bob can generate a Bell-
like distribution of the form p(a, b|x0, x, y). No-
tice that only three of Alice’s six inputs are re-
quired to create Bell nonlocal correlations that
violate the I3322 inequality. We can without
loss of generality label these three inputs by x.
Thus, with these labels, the dependence on x0
in the Bell nonlocal distribution becomes triv-
ial, i.e. p(a, b|x0, x, y) = p(a, b|x, y). Now, we
can choose our candidate probability distribution
pcand(a, b|x, y). This distribution has a quan-

tum realisation. It also weakly violates Eq. (12)
(I ≈ 0.0129), but importantly does not violate
the CHSH inequality and hence cannot lead a
better-than-classical score in a CCP based on the
CHSH inequality. The candidate probability dis-
tribution was originally proposed in Ref. [36] and
we detail it and its quantum realisation in Ap-
pendix. D. We show that for every possible com-
munication strategy within the scenario, there ex-
ists no CCP in which pcand enables an advantage
over classical protocols. We first note that since
we have fixed the probability distribution in the
Bell scenario to pcand, the set of distributions (4)
that Alice and Bob can generate in the commu-
nication scenario forms a polytope. Therefore,
it suffices to show that all deterministic commu-
nication strategies with access to pcand can be
classically modelled. Since Alice maps the twelve
possible values of (a, x0, x) to her binary message
m, and Bob maps the twelve values (m, b, y) to
his binary output g, there exists a total of 224 de-
terministic communication strategies. For each of
these (indexed by µ), we have evaluated the corre-
sponding probability distribution pµ(g|x0, x, y) =∑
a,b,m p(a, b|x, y)pµ(m|a, x0, x)pµ(g|m, b, y). We

have found that the relevant polytope of proba-
bility distributions in the communication scenario
has 8192992 vertices. To show that the proba-
bility distribution pµ(g|x0, x, y) can be simulated
by a classical model for all vertices, we consider
the mixture of each vertex probability distribu-
tion with random outcomes; pQ,v

µ (g|x0, x, y) =
vpµ(g|x0, x, y) + (1− v)/2. Then, for each of the
roughly eight million values of µ, we decide the
possibility of a classical model by running a lin-
ear program algorithm3 analogous to Eq. (11).
We find that for every choice of µ, the value of
v is never smaller than one (up to machine pre-
cision). That is, every pµ(g|x0, x, y) can be clas-
sically modelled. Thus, we conclude that in the
scenario in which Alice has X ∈ [6] and Bob has
Y ∈ [3] and m and g are bit valued, there exists
no CCP that can be improved beyond classical

3Since each run of the linear program takes a few sec-
onds to complete, it would require months to complete
all 8192992 cases on a standard computer. To contend
with this problem, we have distributed the computation;
roughly 40% of it to the high-performance computing clus-
ter Baobab at the University of Geneva, another 20% to
two workstation computers, and the remaining 40% to five
standard desktop computers. This allowed us to complete
the full computation in less than three weeks.
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constraints by the parties sharing the nonlocal
probability distribution pcand(a, b|x, y).

6 Conclusions
A substantial number of examples of quantum
advantages in CCPs being powered by Bell in-
equality violations can be understood as differ-
ent instances of a single map from Bell inequal-
ities to CCPs. We found that a violation of the
former implies an advantage in the latter for a
simple class of communication strategies. As we
explicitly showed, a complete analysis of classical
communication complexity requires the revision
of several previous claims in which violations of
particular Bell inequalities where thought to im-
ply advantages in CCPs. Going beyond that, we
found that there exists nonlocal distributions for
which the statistics of every possible communica-
tion strategy in any possible CCP can be sim-
ulated by classical models in an input/output
scenario that naturally extends previous works.
This suggests that not all forms of Bell nonlocal-
ity are useful for better-than-classical communi-
cation complexity. A definite proof of this state-
ment would require an extension of our results
to CCPs with any number of inputs and outputs.
Our results motivate a characteriation of the (now
seemingly nontrivial) relation between Bell nonlo-
cality and entanglement-assisted communication
complexity. Which nonlocal probability distribu-
tions are useful for outperforming classical limi-
tations in CCPs and which are not?
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A The optimal classical score in the
communication complexity problems of
Refs. [16, 23]
Ref. [22] introduced CCPs based on the ternary-
outcome CGLMP inequality. These were ex-
tended in Refs. [16, 23] to CGLMP inequalities
with any number (d) of outcomes. In a spirit sim-
ilar to that of Ref. [22], these subsequent works
restrict themselves to considering classical com-
munication strategies of the additive type. Here,
we show that also for d > 3 this fails to capture
the optimal classical score of the CCP. For sim-
plicity, we focus on the case of four outcomes.

Refs. [16, 23] present the following CCPs (up
to minor modifications). Alice has eight possible
inputs written in terms of a bit x ∈ [2] and a
quart x0 ∈ [4]. Bob has two possible inputs y ∈
[2]. Alice may communicate at most a four-valued
message to Bob who aims to maximise the score

Scglmp = 1
16

∑

x0,x,y

Px,y(g = x0+f1
1 )−Px,y(g = x0+f1

2 )

+ 1
3
(
Px,y(g = x0 + f2

1 )− Px,y(g = x0 + f2
2 )
)
,

(13)

where

f1
1 = x0 − xy f1

2 = x0 − xy + (−1)x+y

f2
1 = x0 − xy − (−1)x+y f2

2 = x0 − xy + 2(−1)x+y,

computed modulo four. Alice (Bob) uses x (y)
to measure an entangled pair with possible out-
comes a ∈ [4] (b ∈ [4]). Then, using an additive
communication strategy, i.e. m = x0 + a mod 4
and g = m+ b mod 4, one finds that Scglmp be-
comes identical to the Bell expression in the four-
outcome CGLMP inequality [16, 23] which has an
LHV bound (in this form and normalisation) of
1/2. Therefore, under additive communication
strategies Refs. [16, 23] found Scglmp ≤ 1/2.

However, the optimal classical score is not satu-
rated with such a communication strategy. Since
Alice maps eight inputs to four outputs, and sim-
ilarly for Bob, there is a total of 416 pairs of en-
coding and guessing functions. We have evalu-
ated the score for all such pairs and found that
the optimal classical score is

SC
cglmp = 2

3 . (14)
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An encoding/decoding strategy that saturates
this bound is

m = [0, 0, 0, 1, 0, 2, 3, 0] (15)
g = [0, 3, 1, 2, 2, 3, 0, 1], (16)

where the tuple represents the response to the
pair (x, x0) and (y,m) respectively (ordered as
(0, 0), (0, 1), . . . , (1, 2), (1, 3)). Thus, in full anal-
ogy with the discussion in the main text focused
on ternary-outcome CGLMP inequalities, correc-
tions also apply to its generalisation to more than
three outcomes.

B Numerical search for the optimal
quantum score in the CCP based on the
CGLMP inequality
We present numerical methods which we used in
support of the conjecture that an additive com-
munication strategy and a quantum probability
distribution that maximally violates the CGLMP
inequality give the optimal entanglement-assisted
score in the CCP based on the ternary-outcome
CGLMP inequality (8).

The joint state of Bob’s local system (after
Alice’s measurement) and the classical message
when averaged over Alice’s outcome can be writ-
ten

ρx0x =
∑

a

trA [Aax ⊗ 1ρ]⊗ |m〉〈m|, (17)

where we encode the classical message in the com-
putational basis state |m〉〈m|. For all determinis-
tic messages of the restricted class m = m(a, x0),
we have evaluated the score and found that only
those of the additive type lead to a better-than-
classical score. However, for a general determin-
istic message m = m(a, x0, x) such a brute-force
approach is too time-consuming. To address the
general case, we can obtain upper bounds on the
score by substituting |m〉〈m| in Eq. (17) with a
quantum system σa,x0,x ∈ C3. Notice that this
only serves as a tool towards treating the relevant
problem in which the message is classical. More-
over, this substitution is far more constraining
than allowing for general quantum communica-
tion assisted by shared entanglement. The substi-
tution of the classical message for a quantum one
comes with the advantage that one can efficiently

run alternating convex searches for lower bound-
ing the quantity SQC

cglmp = maxρ,A,B,σ Scglmp. The
searches are alternating in the sense that we first
considers a semidefinite program optimising over
the shared state, then a second one optimising
over Alice’s measurements, then a third one op-
timising over Bob’s measurements and finally a
fourth one optimising over the quantum mes-
sage. This procedure of four semidefinite pro-
grams is iterated until the results appear to con-
verge. For three respectively four dimensional
entangled systems, we implemented the proce-
dure by alternating semidefinite programs each
optimising over the state, Alice’s measurements,
Bob’s measurements and the quantum message
respectively. We have implemented this proce-
dure for 10000 randomly chosen starting points.
Each of these 10000 trials involves ten iterations
of the described procedure (that is, 40 evaluations
of a semidefinite program). In all 10000 cases we
find that the optimisation converges to the value
BQ

cglmp, which is what is obtained by maximally
violating the CGLMP inequality and then using
an additive communication strategy.

C Communication complexity advan-
tages via violation of the I3322 inequality
Ref. [36] found that the maximal quantum viola-
tion of the I3322 inequality with a shared entan-
gled pair of qubits is IQ = 1/4 and is achieved
with the singlet state |ψ−〉 = (|0, 1〉 − |1, 0〉)/

√
2

and measurements in the xz-plane of the Bloch
sphere whose Bloch vectors (including the antipo-
dal vectors) form a hexagon on both Alice’s and
Bob’s side. Specifically, the Bloch vectors read

~a1 = [0, 0, 1] ~b1 = −[
√

3, 0, 1]/2
~a2 = [

√
3, 0, 1]/2 ~b2 = −[0, 0, 1]

~a3 = [
√

3, 0,−1]/2 ~b3 = [
√

3, 0,−1]/2. (18)

Thus the resulting probability distribution is

p3322(a, b|x, y) = 1
4
[
1− (−1)a+b~ax ·~by

]
. (19)

We have considered the mixture of this probabil-
ity distribution with a uniformly random proba-
bility distribution, i.e.

pv(a, b|x, y) = vp3322(a, b|x, y) + 1− v
4 . (20)

Accepted in Quantum 2020-06-04, click title to verify. Published under CC-BY 4.0. 8

320



This probability distribution violates the I3322 in-
equality only when v > 4/5. We consider its use-
fulness in CCPs in a scenario (same as in the
main text) in which Alice has six inputs, Bob has
three inputs, and Alice’s and Bob’s outputs both
are binary. We choose an additive communication
strategy in which Alice sends m = a+x0 mod 2
and Bob outputs g = m+b mod 2. This leads to
a specific probability distribution in the CCP (de-
pendent on v). We then run a linear program of
the type presented in the main text to determine
the largest v for which the entanglement-assisted
probability distribution in the CCP has a clas-
sical model. We find that it returns v = 4/5,
thus showing that every probability distribution
of the form (20) that violates the I3322 inequality
implies advantages in a CCP.

D The candidate probability distribu-
tion
There exists probability distributions in the Bell
scenario with three setting and two outcomes that
violate the I3322 inequality but not the CHSH in-
equality. Ref. [36] provided an example, which
we in the main text used as the candidate prob-
ability distribution pcand(a, b|x, y). It is obtained
by Alice and Bob sharing the noisy state

ρ = 17
20 |φ〉〈φ|+

3
20 |0, 1〉〈0, 1| (21)

where |φ〉 = (2|0, 0〉 + |1, 1〉)
√

5. This state
cannot violate the CHSH inequality for any
choice of measurements (which can be checked
via the Horodecki criterion [37]), but it can vi-
olate the I3322 inequality as follows. Write Al-
ice’s (Bob’s) Bloch vectors in the xz-plane as
~ax = [sin θx, cos θx] ( ~by = [sinφy, cosφy]) with

θ1 = η θ2 = −η θ3 = −π2
φ1 = −χ φ2 = χ φ3 = π

2

with η = arccos
(√

7/8
)
and χ = arccos

(√
2/3

)
.

This defines the candidate probability distribu-
tion

pcand(a, b|x, y) =
1
4 tr

[
(1 + (−1)a~ax · ~σ)⊗ (1 + (−1)b~by · ~σ)ρ

]

(22)

which achieves I ≈ 0.0129.
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Quantum communication leads to strong
correlations, that can outperform classical
ones. Complementary to previous works
in this area, we investigate correlations in
prepare-and-measure scenarios assuming a
bound on the information content of the
quantum communication, rather than on
its Hilbert-space dimension. Specifically,
we explore the extent of classical and quan-
tum correlations given an upper bound on
the one-shot accessible information. We
provide a characterisation of the set of
classical correlations and show that quan-
tum correlations are stronger than clas-
sical ones. We also show that limiting
information rather than dimension leads
to stronger quantum correlations. More-
over, we present device-independent tests
for placing lower bounds on the informa-
tion given observed correlations. Finally,
we show that quantum communication car-
rying log d bits of information is at least as
strong a resource as d-dimensional classi-
cal communication assisted by pre-shared
entanglement.

1 Introduction

Separated parties, initially independent, can be-
come correlated via communication. Intuitively,
more communication enables stronger correla-
tions. Also, the strength of the correlations may
vary depending on the nature of the communi-
cation; for example if the message is carried by
a quantum system rather than a classical one.
In general, understanding the relation between
communication and correlations is a fundamen-
tal question, at the intersection of information
theory and physics.

Consider a simple scenario (see Fig. 1) with two
separated parties. A first party, Alice, receives an

input x and sends a message to a second party,
Bob. Upon receiving this message, as well as
some input y, Bob produces an output b. When
repeated many times (with inputs x and y ran-
domly sampled), this experiment is described by
the conditional probability distribution p(b|x, y)
which characterises the correlations between Al-
ice and Bob. Clearly, the amount of information
about x encoded in Alice’s message determines
the strength of the possible correlations. If Al-
ice sends no message at all (or if the message is
independent of x), then no correlations are gen-
erated, i.e. p(b|x, y) = p(b|y). On the other hand,
if the message perfectly encodes x, then maximal
correlations can be established; any distribution
p(b|x, y) is possible. Thus the main question is:
how strong correlations can be established pro-
vided that the amount of communication from
Alice to Bob is quantitatively limited?

Naturally, the answer depends on how exactly
communication is quantified. The most com-
mon approach consists in measuring communi-
cation via the dimension of the message, i.e. the
number of bits the message could carry. This
is used in the field of communication complex-
ity (see e.g. [1]), where the goal is to find out
how the minimum dimension required to solve a
problem (i.e. demanding that the output b cor-
responds to a certain function of the inputs x
and y) scales with the problem size. Notably,
the use of quantum communication is advanta-
geous since it allows one to solve certain prob-
lems with exponentially smaller dimension [2, 3].
In parallel, there has been interest in character-
ising the set of possible correlations p(b|x, y) for
classical and quantum systems of bounded dimen-
sion [4–7]. Again, quantum correlations turn out
to be stronger than classical ones. This led to
a novel framework for quantum information pro-
cessing termed “semi-device-independent” [8–12],
where devices are assumed to process quantum
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Figure 1: Prepare-and-measure scenario. In this work we
investigate the strength of possible correlations p(b|x, y)
given a limit on the information carried by the quantum
message ρx.

systems of bounded dimension, but are otherwise
uncharacterised.

However, measuring communication via the di-
mension provides only a partial characterisation.
Information-theoretic concepts are typically bet-
ter suited to get a complete picture. This raises a
natural question, namely to understand the rela-
tion between the strength of correlations and the
amount of information that the communication
contains. But then, information about what? In
correlation experiments, the answer is very natu-
ral: we are interested in the information that the
message contains about Alice’s input x.

Here we formalise this problem and investi-
gate classical and quantum correlations for in-
formationally restricted communication. Natu-
rally, however, there are many different ways of
quantifying information based on entropies. We
quantify the information content of an ensemble
of prepared states (classical or quantum) via a
one-shot version of accessible information based
on min-entropies [13]. This choice of informa-
tion measure has a two-fold motivation. Firstly,
it admits a simple operational interpretation in
terms of how well one could determine Alice’s in-
put from her message, via the best possible mea-
surement. Secondly, it proves convenient to work
with. Our approach is clearly complementary
to previous works based on dimension. Firstly,
information is a continuous quantity, while di-
mension is discrete; one can consider ensembles
of states carrying only half a bit of information
about Alice’s input, which would have no ana-
logue using dimension. Secondly, even when con-
sidering ensembles of states carrying log d bits of
information (for some dimension d), there exist
ensembles of dimension d′ > d that carry no more
than log d bits of information, e.g. certain ensem-
bles of non-orthogonal quantum states.

In this work, we develop a framework for char-
acterising informationally restricted correlations.
For the case of classical systems, we show that
the relevant set of correlations forms a convex
polytope, which can be fully characterised. This
allows one to find the minimal amount of in-
formation required to reproduce a given correla-
tion using classical communication. In turn, we
prove that quantum correlations can be stronger
than classical ones. Moreover, we derive device-
independent lower bounds on the information,
given observed correlations. These ideas are il-
lustrated in a simple scenario. We also show
that ensembles of higher-dimensional quantum
states carrying no more than one bit of infor-
mation can generate stronger correlations than
two-dimensional quantum systems (i.e. qubits).
Finally, we show that any correlations achievable
with classical communication (of a d-dimensional
message) assisted by pre-shared entanglement
can also be achieved using quantum communi-
cation carrying log d bits of information.

2 Setting
We start by defining informationally restricted
correlations in a quantum prepare-and-measure
scenario. The sender, Alice, receives an input
x ∈ [n] sampled from a random variableX (where
[s] = {1, . . . , s}) which she encodes into a quan-
tum state ρx that she relays to the receiver, Bob.
Bob also receives a random input y ∈ [l] and then
measures the received state with some generalised
measurement (positive operator-valued measure,
POVM) {Mb|y} with outcome b ∈ [k]. The ob-
served correlations are

p(b|x, y) = tr
(
ρxMb|y

)
. (1)

Let us now characterise the information in Al-
ice’s message about her input x. Since x is ran-
dom, sampled from some distribution pX(x), the
ensemble of messages is given by E = {pX(x), ρx}.
How well could an observer, via any possible
POVM {Nz}, guess x from E? The guessing prob-
ability is

Pg(X|E) = max
{Nz}

n∑

x=1
pX(x) tr [ρxNx] . (2)

Note that the optimal POVM, {N∗z }, does not
need to be part of set of POVMs {Mb|y}. Hence
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the statistics obtained from measuring {N∗z }
do not necessarily appear in the correlations
p(b|x, y).

The observer’s minimal uncertainty about X
when provided E , i.e. the conditional min-
entropy, is Hmin(X|E) = − log [Pg(X|E)]. The
amount of information gained by learning E ,
i.e. the information carried by E , is then the dif-
ference in uncertainty without and with the com-
munication [13];

IX(E) = Hmin(X)−Hmin(X|E), (3)

where Hmin(X) = − log [maxx pX(x)] is the min-
entropy. The quantity IX(E) can be viewed
as a single-shot version of accessible information
[14, 15]. Note that for any given ensemble E , the
guessing probability (and hence the information)
can be computed via a semidefinite program [16].

We can now define the set of possible correla-
tions p(b|x, y) when the information of the mes-
sage is upper bounded. Importantly, we do not
limit the Hilbert-space dimension for representing
the set of the quantum states {ρx}. We also allow
for shared randomness between Alice’s and Bob’s
devices. This makes the model more general, and
at the same time simplifies the characterisation
of the sets of correlations (as these sets are now
convex). Formally, we define the set SQ

α of corre-
lations of the form

p(b|x, y) =
∑

λ

p(λ) tr
(
ρ(λ)
x M

(λ)
b|y
)
, (4)

where λ denotes the shared classical variable, dis-
tributed according to p(λ), and the information
is bounded by IX ≤ α. The quantity IX is com-
puted via Eq. (3), considering the average guess-
ing probability of the ensemble E = {p(λ), Eλ}:

Pg(X|E) =
∑

λ

p(λ)Pg(X|Eλ), (5)

where Pg(X|Eλ) denotes the guessing probability
for the subensemble Eλ = {pX(x), ρ(λ)

x }.

3 Classical correlations
Similarly to above, we can characterise the set of
classical correlations, SC

α , subject to an informa-
tion bound. In this setting, Alice encodes x into
a classical message m ∈ [d]. Bob then provides
an output based on his input y and the message

m. Considering again shared randomness, the re-
sulting correlations take the form

p(b|x, y) =
∑

λ

p(λ)
d∑

m=1
pA(m|x, λ)pB(b|m, y, λ).

(6)
In order to characterise correlations of the above
form such that IX ≤ α, we proceed as follows.
First, notice that the dimension d of the message
may a priori be unbounded. However, it turns out
that, without loss of generality, one can restrict to
the case d = n. Next, notice that each encoding
of the message pA(m|x, λ) can be taken to be de-
terministic, i.e. m is a deterministic function of x
and λ. Finally, to each of these deterministic en-
codings, we can associate a guessing probability
P

(λ)
g . A detailed discussion is given in Appendix.
With these in hand, we notice that the con-

straint IX ≤ α is equivalent to
∑
λ p(λ)P (λ)

g ≤
2α−Hmin(X), which is linear in p(λ). Therefore,
the set SC

α forms a convex polytope. The facets
of the polytope correspond to linear inequalities

∑

x,y,b

rxyb p(b|x, y) ≤ β (7)

where rxyb and β are real coefficients, which give
a complete characterisation of SC

α .
We have explicitly characterised SC

α for sce-
narios featuring a small number1 of inputs and
outputs. We find three types of facet inequali-
ties: (i) positivity conditions, e.g. p(b|x, y) ≥ 0,
(ii) inequalities ensuring the information bound
on the observed correlations, e.g.

∑
x p(b =

x|x, y) ≤ 2α−Hmin(X) (assuming here n = k),
and (iii) other inequalities. Inequalities (i) and
(ii) are in a sense trivial, as they must be satis-
fied by all physical correlations (when assuming
IX ≤ α). On the contrary, inequalities (iii) are
non-trivial, and thus capture limits of classical
correlations. These inequalities do not necessarily
hold for quantum correlations, as we show below.

Finally, note that the problem of determining
whether some observed correlations p(b|x, y) can
be obtained classically with IX ≤ α bits of infor-

1Typically, characterising SC
α quickly becomes compu-

tationally demanding as we increase the number of inputs
and outputs (the number of vertices grows rapidly). While
we could solve cases with n = 2, 3 efficiently and the case
of n = 4 preparations within reasonable time, evaluating
n = 5 preparations becomes time-consuming on a stan-
dard desktop computer.
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mation is a linear program. One can thus deter-
mine the minimal amount of information required
to produce p(b|x, y) in a classical protocol.

4 Quantum advantage
A critical question is whether informationally
restricted quantum correlations can outperform
their classical counterparts (and thereby provide
a quantum advantage). To answer this question,
we have considered simple scenarios – labelled by
the number of inputs and outputs, i.e. (n, l, k)
– and characterised their classical polytope SC

α .
Alice’s input is always chosen to be uniformly dis-
tributed, i.e. pX(x) = 1/n. The simplest scenario
where we could find a non-trivial facet inequality
is (3,2,2). We conjecture that n ≥ 3 is necessesary
(we have checked that no quantum advantage is
possible for (2, 2, 2) and (2, 2, 3)).

The scenario (3, 2, 2) features two non-trivial
facets showing a quantum advantage (see Ap-
pendix) . Here we focus on one of them:

F1 ≡ −E11−E12−E21+E22+E31 ≤ 2α+1−1 (8)

where Exy = p(0|x, y) − p(1|x, y) and IX ≤ α ∈
[0, log 3]. Notice that for α = 1, this inequality
is identical to the simplest dimension witness of
Ref. [4] for classical bits.

Importantly, the above inequality can be vi-
olated in quantum theory whenever2 IX ∈
(0, log 3), as illustrated in Fig. 2. Let Alice and
Bob share one bit of randomness (λ ∈ {0, 1})
with distribution q ≡ p(λ = 0). When λ = 0,
Alice prepares the qubit ensemble E0 = {1

3 , |ψx〉}
with |ψ1〉 = 1√

2 (|0〉+ |1〉), |ψ2〉 = |0〉 and |ψ3〉 =
sin π

8 |0〉 − cos π8 |1〉. Bob measures the observ-
ables −σx+σz√

2 and σz−σx√
2 , where (σx, σy, σz) are

the Pauli matrices. When λ = 1, Alice sends
no information and Bob outputs b = 1 regard-
less of y. This strategy results in the witness
value F1 = 1 + 2

√
2q, while the information is

IX = log(1 + q). Thus, this strategy is rel-
evant in the range IX ∈ [0, 1]. When IX ∈
[1, log(3)], we consider another mixed strategy.
For λ = 0 we use again the ensemble E0 and as-
sociated measurements, and for λ = 1 a qutrit

2The extremal cases IX ∈ {0, log 3} are trivial since
they correspond to no information and relaying x respec-
tively.

Figure 2: Witness value F1 as a function of the infor-
mation bound IX ≤ α. Classical correlations necessarily
satisfy the inequality (8) (blue curve). Quantum corre-
lations outperform classical ones for α ∈ (0, log 3); the
red curve is obtained by a family of quantum protocols
and therefore constitutes a lower bound on the opti-
mal quantum correlations. The black curve represents
a lower bound on theory-independent correlations, i.e. a
lower bound on the information needed for the value F1.

strategy in which Alice sends x to Bob, thus at-
taining the maximal value of F1 = 5. We get
F1 =

(
1 + 2

√
2
)
q+5 (1− q) and IX = log(3−q).

An interesting question is to find the optimal
value of F1 for any possible quantum strategy
with bounded information. This is a non-trivial
question as one should consider quantum sys-
tems of arbitrarily large Hilbert-space dimension.
Based on numerical search, we show in Appendix
the existence of slightly better quantum strate-
gies than the above one, but we did not find a
simple parameterisation for them.

5 Device-independent bounds on in-
formation
While determining the limits of quantum cor-
relations for limited information is challenging,
we can nevertheless infer a general, theory-
independent, lower bound on information given
observed correlations p(b|x, y).

The assumption IX ≤ α implies that, from
any of the distributions {p(b|x, 1), . . . , p(b|x, l)},
one cannot extract more than α bits of informa-
tion about x. Allowing for an arbitrary post-
processing of the data (Bob creating a new out-
put b′ from y and b ), i.e. p(b′|y, b) ≥ 0 with∑
b′ p(b′|y, b) = 1 where b′ ∈ [n], we obtain the

constraints

∀y :
∑

x,b

pX(x)p(b|x, y)p(b′ = x|y, b) ≤ 2α−Hmin(X).
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Determining whether a given correlation p(b|x, y)
is compatible with the above constraints can be
cast as a linear program. If the program ad-
mits no feasible solution, then an information
IX > α is necessary to reproduce p(b|x, y). Note
that, while the above constraints are necessary
to ensure that IX ≤ α, they are most likely
not sufficient in general. How to derive stronger
constraints on information is an interesting open
problem.

To illustrate the relevance of these ideas, we
have derived a lower bound on IX given an ob-
served value of the witness F1. The results are
illustrated in Fig. 2 and demonstrate the pos-
sibility of certifying a device-independent lower
bound on the information. Note that the bound
applies to quantum correlations, and more gener-
ally to any operational theory.

6 Information versus dimension
Another relevant question is to compare quantum
correlations with bounded information to those
achievable with bounded dimension. Such com-
parison makes sense when IX ≤ log d, where d
is the Hilbert-space dimension of the quantum
systems. Clearly, any correlation achieved via
d-dimensional systems (qudits) requires at most
IX = log d, as any ensemble of qudits carries no
more than log d bits of information [14]. However,
it turns out that there are quantum correlations
not achievable via qudits that can nevertheless be
obtained with information IX = log d.

Specifically, we consider the case d = 2 and ex-
hibit quantum correlations achievable with IX =
1 that cannot be obtained from qubits. Con-
sider a Random Access Code [17–19] in which
Alice receives a uniformly random four-bit in-
put x = (x1, x2, x3, x4) ∈ [2]4. Bob has settings
y ∈ [4], and returns a binary output b with which
he aims to guess xy. The score is

FRAC = 1
64
∑

x,y

p(b = xy|x, y). (9)

Qubit strategies must satisfy FRAC < 3/4; this
follows from the impossibility of having four mu-
tually unbiased bases for qubits [12, 18]. More-
over, numerical optimisation strongly suggests
that FRAC ≤ 0.741 for qubits [18].

It is nevertheless possible to obtain the score
FRAC = 3/4 using quantum ensembles with IX =

1. The strategy employs 16 four-dimensional
quantum states of the form

ρx = 1
8

(
21⊗1− (−1)x41⊗σy− (−1)x1σx⊗σx

− (−1)x2σy ⊗ σx − (−1)x3σz ⊗ σx
)
, (10)

and Bob measures the observables B1 = σx⊗ σx,
B2 = σy ⊗ σx, B3 = σz ⊗ σx and B4 = 1 ⊗ σy.
Note that, despite being four-dimensional, these
states are noisy (with purity tr

(
ρ2
x

)
= 1/2 ∀x)

and carry only one bit of information. Since all
states have the same spectrum, (1/2, 1/2, 0, 0),
this can be checked analytically as follows. For
any quantum ensemble, the information is upper
bounded by

IX ≤ log (d) + log
(maxx pX(x)λmax(ρx)

maxx pX(x)

)
,

(11)
where λmax(ρx) is the largest eigenvalue of ρx,
and d the Hilbert-space dimension. The bound
is obtained from using the relation tr [ρxNx] ≤
λmax(ρx) tr [Nx] in Eq. (2) and then

∑
xNx = 1d.

The bound Eq. (11) is tight when (i) for each x,
ρx only has one non-zero eigenvalue (with possi-
ble multiplicity) and (ii) pX(x)λmax(ρx) is con-
stant in x. The ensemble in Eq. (10) satisfies this
criteria.

An interesting question is whether larger sep-
aration is possible. That is, how much stronger
can quantum correlations with IX = log d bits of
information become compared to quantum corre-
lations using d-dimensional quantum systems. In
Appendix, we show that, in a scenario without
shared randomness, this advantage can be made
arbitrarily large. Specifically, we construct quan-
tum correlations achievable with IX = 1 bit of
information, that can only be reproduced using
an arbitrary large Hilbert-space dimension.

7 Quantum communication versus
entanglement-assisted classical commu-
nication
Informationally restricted quantum systems also
have interesting implications when comparing
quantum resources in different communication
scenarios. On the one hand, Alice may send
an amount of quantum communication to Bob
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(as in Fig. 1). On the other hand, Alice and
Bob may share unlimited entanglement and Al-
ice communicates the same amount classically.
These two approaches are generally not equiva-
lent. In fact, for dimensionally restricted clas-
sical and quantum messages, there is no strict
hierarchy. In some cases, quantum communica-
tion outperforms entanglement-assisted classical
communication [20–22] and vice versa in others
[22–24]. Given this seemingly complicated pic-
ture, no generally valid criterion is known for de-
termining which quantum resource is more effi-
cient for a given communication task. Interest-
ingly, we show that every correlation obtained via
entanglement-assisted classical communication of
a d-dimensional message can also be obtained via
quantum communication carrying at most log d
bits of information. That is, in this setting, quan-
tum communication is the stronger resource.

Consider a scenario with classical communica-
tion, where Alice and Bob can use a pre-shared
entangled state ρAB. Upon receiving input x, Al-
ice performs a measurement {Aa|x} with outcome
a on her half of ρAB, which projects Bob’s system
onto the state σa|x = trA([Aa|x⊗1B]ρAB)/p(a|x),
where p(a|x) = tr([Aa|x ⊗ 1B]ρAB). Alice then
sends a classical message to Bob; which we rep-
resent as a collection of d-dimensional quantum
states µa|x diagonal in the same basis. Thus, Bob
holds the classical-quantum state µa|x ⊗ σa|x, on
which he can perform some measurements in or-
der to establish correlations p(b|x, y). The infor-
mation cost of this protocol originates only from
the classical message, as the entanglement is pre-
shared.

Now, we construct a quantum communication
protocol to simulate the above correlations using
at most log d bits of information. Upon receiv-
ing x, Alice samples from p(a|x), and sends to
Bob the classical-quantum state µa|x ⊗ σa|x. Ev-
idently, Bob can now reproduce the same corre-
lations p(b|x, y). The key point is now to show
that this protocol does not require more infor-
mation than above. The ensemble (averaged
over a) can be written EQC = {pX(x), τx} where
τx = ∑

a p(a|x)µa|x ⊗ σa|x. The corresponding
guessing probability is

PQC
g = max

{Nz}

∑

a,x

pX(x)p(a|x) tr
(
µa|x ⊗ σa|xNx

)

(12)

where the POVM {Nz} acts jointly on the clas-

sical message space and on the quantum state
space. We can place the following upper bound
on the guessing probability

PQC
g ≤ max

{Nz}

∑

x

pX(x) tr
((∑

a

p(a|x)σa|x

)
NB
x

)
,

(13)
where we have used that tr(µa|x ⊗ σa|xNx) ≤
tr(σa|xNB

x ), where NB
x is the partial trace of

Nx over the first system (the classical message
space). Importantly, since for every x the ensem-
ble {p(a|x), σa|x} is remotely prepared by Alice
on Bob’s side, it follows that

∑

a

p(a|x)σa|x =
∑

a

trA
(
Aa|x ⊗ 1BρAB

)

= trA (ρAB) = ρB. (14)

Therefore, the guessing probability obeys

PQC
g ≤ max

{Nz}

∑

x

pX(x) tr
(
NB
x ρB

)
(15)

≤
(
max
x

pX(x)
)

max
{Nz}

tr
(∑

x

NB
x ρB

)
. (16)

Finally, we use the completeness relation of
POVMs to obtain

∑

x

NB
x =

∑

x

tr1 (Nx) = tr1 (1d ⊗ 1) = d1,

(17)
where we have used that the identity operator
on the classical message space is d-dimensional.
Thus, we conclude that

PQC
g ≤ dmax

x
pX(x). (18)

Consequently, the information is bounded by

IX = − log
(
max
x

pX(x)
)

+ log
(
PQC
g

)

≤ − log
(
max
x

pX(x)
)

+ log
(
dmax

x
pX(x)

)
= log d.
(19)

This concludes the proof: quantum communi-
cation of log d bits of information is a stronger
resource than classical communication of a d-
dimensional message assisted by any amount of
entanglement.

Finally, we also note that this proof remains
valid also if Alice uses her classical outcome a and
her input x to encode a quantum d-dimensional
message µa|x. This is, however, not the most gen-
eral quantum operation that may be considered.
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8 Conclusions
We have investigated correlations in prepare-and-
measure scenarios under the assumption of an up-
per bound on the information. We have shown
how to fully characterise correlations in the case
of classical systems and proved a quantum advan-
tage. Moreover, we showed that stronger quan-
tum correlations can be obtained when bounding
the information rather than the dimension, and
devised device-independent tests of information.

An outstanding open question is to characterise
quantum correlations when the transmitted in-
formation is bounded. Is it sufficient to consider
quantum ensembles of finite dimension, as in the
classical case? Or are there correlations that re-
quire infinite-dimensional quantum systems? An-
other point is to understand how much stronger
quantum correlations can be compared to clas-
sical ones. For the case where shared random-
ness is not allowed, we could show a diverging
advantage. Is it also the case in a scenario includ-
ing shared randomness? In addition, it would be
interesting to consider informationally restricted
correlations based on other information measures
than the one we consider here; for instance based
on Shannon entropies. Another possible direc-
tion is to explore connections between our ap-
proach and other scenarios in information theory,
for instance the (quantum) information bottle-
neck function [25, 26]. Furthermore, it would also
be relevant to explore the role of informationally
restricted correlations with respect to the line of
research focused on operational contextuality [27]
in which one considers prepare-and-measure sce-
narios featuring an assumption of oblivious com-
munication (see e.g. [28, 29]).

Finally, we briefly discuss the prospects of us-
ing our approach in experiments, notably towards
possible applications in semi-device-independent
(SDI) quantum information processing. In this
area, protocols so far were mostly based on a di-
mension assumption, see e.g. [8–12], which is usu-
ally justified from the physics of the experiment.
For instance, a setup where the relevant degree of
freedom is the polarization of a single photon mo-
tivates the assumption that the prepared states
can be described as qubits. In practice, how-
ever, single-photon sources feature imperfections
which result in unavoidable multi-photon emis-
sions, which clearly no longer satisfy the qubit
assumption. Taking these into account is typi-

cally cumbersome and inefficient (see for instance
[11]). In comparison, the information approach
might be much better adapted here. From a phys-
ical model of the source, the rate of multi-photon
events can be estimated. For instance, a weak
laser source will exhibit Poisson statistics. For
each photon number the carried information can
be estimated, which in turn results in an over-
all bound on the carried information. In this
way, one could continuously tune the information
bound, taking into account the relevant degrees
of freedom and photon statistics. Bounding the
information rather than the dimension may there-
fore represent a more natural assumption, better
motivated by the physics of the source. It would
be interesting to explore these ideas in practice,
as well as to understand the relation between the
information approach and other SDI approaches
recently developed, based on bounding the energy
[30], the overlap [31, 32] or the entropy [33] of the
quantum communication.
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A Characterisation of classical correla-
tions
We describe a classical scheme, starting with de-
terministic strategies. Alice uses an encoding
function E : [n] → [d] to associate her input
to a d-valued message m = E(x) and sends it
to Bob. No limitation on d is assumed. Bob
uses a decoding function D : [d] × [l] → [k]
to map the pair (m, y) into an k-valued output
b = D(m, y). Since there are ZA = dn (ZB = kdl)
possible encoding (decoding) functions, the num-
ber of deterministic strategies is Z = ZAZB. We

index them by (EλA , DλB) for λA ∈ [ZA] and
λB ∈ [ZB] respectively. Via the shared random-
ness λ = (λA, λB), classical correlations are writ-
ten

pC(b|x, y) =
∑

λ

p(λ)
d∑

m=1
δm,EλA (x)δb,DλB (m,y).

(20)
We now characterise pC(b|x, y) when IX ≤ α
for some real α ≥ 0. To this end, we need to
eliminate the dimension d. Below, in section A.3
we show that without loss of generality one can
choose d = n (i.e. the dimension equal to the
number of inputs for Alice). We will use this
fact to characterise the polytope of classical cor-
relations and leave the proof for the end of this
section.

A.1 The classical polytope

We use that classical messages of dimension d = n
are sufficient. Therefore, we can denote all encod-
ing functions and decoding functions (EλA , DλB)
where the index λ = (λA, λB) acts as a shared
random variable (whose cardinality is now fi-
nite) allowing the coordination of deterministic
encoding and decoding strategies. For a fixed
deterministic strategy, we obtain a distribution
p′λ(b|x, y). This distribution is a vertex of the
polytope P which is the space of all probabilities
p(b|x, y). However, many deterministic strategies
give rise to the same vertex in the probability
space. Therefore, we write {pγ(b|x, y)}γ for the
unique elements in the set {p′λ(b|x, y)}λ. We de-
fine

Eγ = {λ = (λA, λB)|pγ(b|x, y) = p′λ(b|x, y)},
(21)

where {pγ(b|x, y)} is the list of vertices of P (with-
out duplicates). In other words, Eγ is the set of
all deterministic strategies that generate the ver-
tex pγ(b|x, y).

To each vertex of P we associate the smallest
amount of information needed to generate it (for
simplicity, we work with the guessing probabil-
ity). That is,

P (γ)
g = min

λ∈Eγ
P (λA)
g (22)

where the guessing probability of the determinis-
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tic strategy is given by

P (λA)
g = max

µ

∑

x

pX(x)
d∑

m=1
δm,EλA (x)δx,D̃µ(m),

(23)
where the maximisation is over all the determin-
istic decoding strategies D̃ : [d] → [n] (of which
there are nd).

We now impose the information restriction,
IX ≤ α. This can be formulated as a linear con-
straint in the shared randomness. The characteri-
sation of the set of information restricted classical
correlations reads

p(b|x, y) =
∑

γ

p(γ)pγ(b|x, y) (24)
∑

γ

p(γ)P (γ)
g ≤ 2α−Hmin(X) (25)

∑

λ

p(γ) = 1 (26)

p(γ) ≥ 0. (27)

This defines a convex polytope. Its facets can be
obtained using standard polytope software. We
label this polytope Pα and note that it is con-
tained inside P.

As an illustration of how the polytope Pα may
look, we have displayed in Fig. 3 a schematic of
the polytope in the simplest case of Alice having
two inputs and Bob performing a single binary
outcome measurement (n = k = 2, l = 1), for
which the polytopes P and Pα are polygons.

p(1|2)

p(1|1)

1 1/2

11/2

Pα

P

x

x

x

x

Figure 3: The classical set of correlations for a scenario
with two preparations and one binary outcome measure-
ment (n, l, k) = (2, 1, 2). The polytope P has four ver-
tices, each corresponding to a guessing probability of
either one or one half (written in blue). The facets are
lines. Therefore there is only one pair of vertices per
facet, for each of which we inscribe a new vertex (rep-
resented by a tick) as imposed by limiting the guessing
probability. Thus, the blue region is the polytope Pα.

A.2 Optimal classical correlations via linear
programming
Since the set of classical correlations forms a con-
vex polytope for IX ≤ α, one can determine
whether a given p(b|x, y) belongs to said poly-
tope via a linear program. This allows one to de-
termine whether p(b|x, y) is classically realisable
with information no more than α.

Moreover, given any linear functional of prob-
abilities,

F =
∑

x,y,b

rxyb p(b|x, y), (28)

one can determine the exact classical bound
through the evaluation of the linear program

FC = max
p(λ)

F [p(b|x, y)]

such that
∑

λ

p(λ)P (λA)
g ≤ 2α−Hmin(X),

∑

λ

p(λ) = 1, and p(λ) ≥ 0. (29)

This allows to obtain witnesses for classical cor-
relations.

A.3 Dimension n is sufficient for classical mes-
sages
Here, we show that the optimal classical corre-
lations, for any correlation witness constrained
by bounded guessing probability (or equivalently,
bounded information) with shared randomness,
is obtained with a message dimension not larger
than the cardinality of the input of Alice, i.e. d =
n.

Any classical strategy can be decomposed as a
mixture of deterministic strategies, as given by
Eq. (20). For a fixed value of the shared variable
λ, the encoding strategy EλA is fixed. Since x
can take at most n different values, there is then
at most n different values of EλA(x). Thus, for
a fixed λ, at most n message symbols are used.
Whether there is any advantage in using message
dimensions d > n thus becomes a question of
whether there is any advantage in using different
sets of message symbols for different λ.

We first show that any value of the maximum
in Eq. (29) obtained with different sets of message
symbols for different λ can also be achieved using
the same set of n symbols for all λ. This can be
seen from Eq. (20). For each value of λ, the factor
δm,EλA (x) is nonzero for at most n different values
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ofm. The decoding functionDλB(m) hence needs
to be defined only on these values. If any of these
values lie outside [n] = {1, . . . , n} then there must
be corresponding values in [n] which are not used.
We can then redefine EλA and DλB to use these
values instead.

Specifically, for some fixed λ, say that
EλA(x0) = ν /∈ [n] for some x0. Then there exists
ν ′ ∈ [n] such that EλA(x) 6= ν ′ for all x. We then
define

E′λA
(x) =

{
ν ′ if x = x0,

EλA(x) otherwise,
(30)

D′λB
(m) =

{
DλB(ν) if m = ν ′,

DλB(m) otherwise.
(31)

Substituting EλA → E′λA
and DλB → D′λB

in
(20) leaves the probabilities p(b|x, y) unchanged.
Repeating this process, the message symbols can
be chosen in [n] for every λ, without changing the
probabilities and hence a distribution achieving
the optimum in Eq. (29) remains optimal.

The only remaining question is now, whether
this remapping to a strategy using the same n
symbols for all λ can lead to violation of the
information constraint. From (23), we can see
that this is not the case. Let D̃µ∗ be the optimal
decoding function which achieves the maximum
on the right-hand side of (23), for some fixed λ.
When EλA is replaced by E′λA

as above, the max-
imum remains unchanged and is achieved by

D̃′µ∗(m) =
{
D̃µ∗(ν) if m = ν ′,

D̃µ∗(m) otherwise.
(32)

Thus, following the recipe above, we can replace
all the encoding and decoding functions EλA :
[n] → [d], DλB : [d] → [n], and D̃µ : [d] → [n] by
other functions EλA : [n] → [n], DλB : [n] → [n],
and D̃µ : [n] → [n] without changing the prob-
abilities p(b|x, y) or the guessing probabilities
P

(λA)
g . It follows that the optimum of Eq. (29)

can always be attained using a message dimen-
sion of at most n.

B Case study for (n, l, k) = (3, 2, 2)
We have obtained the facets of the polytope
for several simple scenarios. The simplest sce-
nario in which we have found non-trivial facets
is (n, l, k) = (3, 2, 2). One can consider different

values for the information bound IX ≤ α. We
have considered different values of α for each of
which we have found two non-trivial inequalities
(i.e. they are not positivity nor the information
restriction). More precisely, we considered eleven
evenly spaced values of the guessing probability
in the range (1/3, 1). The facets are

F1 =
∑

x,y

t1x,yE(x, y) ≤ 6Pg − 1 (33)

F2 =
∑

x,y

t2x,yE(x, y) ≤ 12Pg − 4. (34)

where t1x,y = {[−1,−1], [−1, 1], [1, 0]} and t2x,y =
{[−1,−1], [−1, 1], [2, 0]}. Note that for conve-
nience, we have expressed the upper bounds in
terms of the guessing probability instead of the
information. Both inequalities can be violated in
quantum theory. For the first inequality, a vi-
olation valid for any non-trivial information was
presented in the main text using a quantum strat-
egy with one bit of shared randomness. Notably,
said strategy also violates the second inequality
but not in the entire range IX ∈ (0, log 3).

Moreover, we have numerically explored
whether larger violations of the first inequality
are possible. We considered the case in which
Alice prepares general qutrit states and found it
to be advantageous. We have employed a brute-
force numerical search using the function “fmin-
con“ in MATLAB. We employ an effective La-
grange multiplier λ and seek to maximise the
function

F̃1 = F1 − λ|IX − α|, (35)

for a given information bound α. We have chosen
λ = 100. In every step, we evaluate the informa-
tion IX in the three preparations via a semidefi-
nite program. Then, we evaluate the largest pos-
sible value of F1 for the given preparations, which
thanks to the binary outcomes can be cast as an
eigenvalue problem. We then ask MATLAB to
maximise F̃1. In Fig 4 the results are compared
to those of the strategy in the main text. In
the range IX ∈ (0, 1) we find an improvement,
but not in the range IX ∈ [1, log 3]. However,
we have not found a simple parameterisation of
these quantum strategies. Also, it could be possi-
ble that even better results can be obtained with
higher-dimensional preparations.
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Figure 4: Witness value F1 as a function of the informa-
tion IX ≤ α. The quantum strategy from the main
text is displayed (red curve) and the numerically ob-
tained quantum violations based on qutrits are displayed
in blue. In the range α ∈ (0, 1) these improve on the
first quantum strategy. Notably, numerics showed that
an improvement on the red curve is possible already with
qubit preparations.

C Arbitrary large advantage over
dimension-bounded quantum ensembles
without shared randomness
In the main text, we showed that one bit of com-
munication is not always optimally encoded in
a qubit ensemble but sometimes in an ensemble
of higher-dimensional quantum systems. Here,
we show that such advantages over dimension-
bounded systems can become more significant in
scenarios without shared randomness.

Consider the following variant of a quantum
Random Access Code (without shared random-
ness). Alice has a uniformly random variable
X ∈ [2n] with values x = x1 . . . xn ∈ [2]n. She
sends m bits of information to Bob, who has
a random variable Y ∈ [n] with values y from
which he produces an outcome b ∈ [2]. The aim
is to maximise the worst-case success probability
of finding b = xy, i.e.,

Amn = min
x,y

p(b = xy|x, y). (36)

Let us first choose m = 1. It is known that
with two-valued classical messages or with two-
dimensional quantum systems, it is impossible to
achieve a better result than that obtained with
random guessing, i.e. A1

n = 1/2, when n > 3
[34]. In contrast, for n = 2 and n = 3, qubits
hold an advantage over classical two-valued mes-
sages. The reason is that for n = 4 (and anal-
ogously for n > 4) it is impossible to cut the
Bloch sphere into 24 = 16 symmetric parts with

four planes passing through the origin. By a
similar argument using the generalised higher-
dimensional Bloch sphere, it has been shown [34]
that for general integers m ≥ 1, sending m classi-
cal two-valued messages or sendingm qubits (2m-
dimensional quantum systems) cannot achieve a
better result than A = 1/2 when n is choosen as
at least 22m.

We compare this with sending a general quan-
tum ensemble of limited information. Again, we
first choose m = 1 and n = 4. Using the ensem-
ble and measurements specified in the main text
for four-bit Random Access Code (average suc-
cess probability variant), one immediately finds
that ∀x, y : p(b = xy|x, y) = 3/4, and therefore
that A1

4 = 3/4. Thus, the ensemble of mixed
four-dimensional systems provides an advantage
over two-valued classical messages when qubit en-
sembles fail to provide any better-than-classical
result.

Refs. [21, 35] derived Bell inequalities for Ran-
dom Access Codes. Using the results of Ref. [35],
Alice and Bob can share an entangled state of lo-
cal dimension D = 2bn2 c and use their inputs as
settings for testing the Bell inequalities of [21, 35].
Then, if Alice communicates her binary outcome
to Bob, he can satisfy the relation b = xy with
probability

∀x, y : p(b = xy|x, y) = 1
2 + 1

2
√
n
. (37)

In the main text we showed that any corre-
lations achievable by means of entanglement-
assisted classical communication also is achiev-
able by means of quantum communication with-
out sending more information (and without the
need of share randomness). Therefore, we can
obtain the correlations (37) using the quantum
communication model discussed in the main text.
Consequently, using only a single bit of quantum
information (encoded in a general ensemble), we
can achieve

A1
n = 1

2 + 1
2
√
n
. (38)

Note that this is strictly greater than 1/2 for all
n ≥ 2. Therefore, if we choose n ≥ 22m but use
only a single bit of information, we outperform
the best possible quantum protocols in which the
allowed m bits are encoded in 2m-dimensional
quantum systems. Thus, the advantage is un-
bounded in the sense that a fixed amount (one
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bit) of general quantum information holds an ad-
vantage over the m bits carried by m qubits, for
any (potentially) arbitrarily large choice of m.
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Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are central to
many conceptual and practical aspects of quantum theory. In this work, we investigate their role in quantum
nonlocality. For every integer d ≥ 2, we introduce Bell inequalities for which pairs of d-dimensional MUBs
and SICs, respectively, produce the largest violations allowed in quantum mechanics. To investigate whether
these inequalities can be used for the purpose of device-independent certification of measurements, we show
that the concepts of MUBs and SICs admit a natural operational interpretation which does not depend on the
dimension of the underlying Hilbert space. We prove that the maximal quantum violations certify precisely
these operational notions. In the case of MUBs we also show that the maximal violation certifies the presence
of a maximally entangled state of local dimension d and that the maximal violation is achieved by a unique
probability distribution. This constitutes the first example of an extremal point of the quantum set which admits
physically inequivalent quantum realisations, i.e. is not a self-test. Finally, we investigate the performance of our
Bell inequalities in two tasks of practical relevance. We show that the Bell inequalities for MUBs guarantee the
optimal key rate in a device-independent quantum key distribution protocol with d outcomes. Moreover, using
the Bell inequalities for SICs, we show how qubit and qutrit systems can generate more device-independent
randomness than higher-dimensional implementations based on standard projective measurements. We also
investigate the robustness of the key and randomness generation schemes to noise. The results establish the
relevance of MUBs and SICs for both fundamental and applied considerations in quantum nonlocality.

I. INTRODUCTION

Mutually unbiased bases (MUBs) and symmetric informa-
tionally complete projectors (SICs) are widely celebrated, in-
tensively studied and broadly useful concepts in quantum the-
ory. Two bases of a finite-dimensional Hilbert space are called
mutually unbiased if the inner product between any two ele-
ments belonging to different bases has constant magnitude. In
other words, if a system is prepared in a state belonging to
the first basis, then when a measurement is performed in the
second basis, all the outcomes are equally probable [1]. In a
similar spirit, a set of rank-one projectors is called symmet-
ric informationally complete when the magnitude of all inner
products between different projectors is equal and the projec-
tors are tomographically complete [2, 3]. More formally,

• Let {|ej〉}dj=1 and {|fk〉}dk=1 be two orthonormal bases
of the d-dimensional Hilbert space Cd. The two bases
are mutually unbiased if

|〈ej |fk〉|2 =
1

d
(1)

for all j and k. The constant on the right-hand-side
is merely a consequence of the two bases being nor-
malised.

• Let {|rj〉}d
2

j=1 be a set of unit vectors in Cd. The set is
called symmetric informationally complete if

|〈rj |rk〉|2 =
1

d+ 1
(2)

for all j 6= k. Again, the constant on the right-hand-
side is fixed by normalisation. Moreover, the reason for
there being precisely d2 elements in a SIC1 is that this
is the largest number of unit vectors in Cd that could
possibly admit the uniform overlap property (up to nor-
malisation identical to Eq. (2)).

Whereas MUBs and SICs are inherently different objects,
they are frequently studied jointly [4–9]. This is in part due
to both being highly symmetric and elegant algebraic struc-
tures, and in part due to the interesting connections that exist
between them. Their conceptually appealing properties make
them important in the general study of quantum theory, en-
compassing both foundational matters and applications.

MUBs are central to the understanding of quantum com-
plementarity and its many applications; see e.g. Ref. [10] for
a review of MUBs. The former is manifested in the fact that
MUBs give rise to the strongest entropic uncertainty rela-
tions (among projective measurements acting on a fixed di-
mension) [11]. Moreover, MUBs play a prominent role in
quantum cryptography, where they are employed in many of
the most well-known quantum key distribution protocols [12–
16] as well as in secret sharing protocols [17–19]. In addition,
complete sets of MUBs are known to be statistically optimal
for quantum state tomography [20, 21]. Also, MUBs are in-
strumental for quantum random access coding [22–26]. Two

1 By SIC (in singular) we refer to one set of symmetric informationally com-
plete projectors. By SICs (in plural), we refer to all such sets.
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other interesting applications are quantum error correction
[27, 28] and entanglement detection in both high-dimensional
and multipartite systems [29]. Notably, MUBs are also at the
heart of the Mean King’s Problem [30, 31]. Much attention
has been directed at determining the number of MUBs that
exist in general Hilbert space dimensions [10].

In a similar spirit, SICs are widely studied for both funda-
mental and practical reasons; see e.g. Ref. [32] for a recent
review of SICs. This has motivated substantial research effort
directed towards proving their existence in all Hilbert space
dimensions (presently known, at least, up to dimension 121)
[2, 3, 33, 34]. Every SIC can be suitably normalised such that
it forms a single quantum measurement with d2 outcomes.
This is clearly not a projective measurement but a positive
operator-valued measure (POVM) and hence we refer to the
resulting object as a SIC-POVM. It has been shown that SIC-
POVMs are optimal POVMs for (single-measurement) quan-
tum state tomography [35–38]. Furthermore, they are use-
ful for entanglement witnessing [39], have found applications
in quantum key distribution [40, 41] and enable optimal ran-
dom number generation from a singlet state [42]. In addition,
SICs are at the heart of many protocols for certifying the non-
projective nature of a measurement [43–46]. Moreover, SICs
exhibit interesting connections to several areas of mathemat-
ics, for instance Lie and Jordan algebras [47] and algebraic
number theory [48, 49].

Due to their highly symmetric properties and breadth of rel-
evance, it is important to study the role of MUBs and SICs
in the context of generating correlations that do not admit
a classical description. The strongest form of such correla-
tions are those that are nonlocal, i.e. correlations that violate
a Bell inequality [50]. For instance, qubit MUBs occur com-
monly in the simplest Bell scenarios [51, 52] and SIC-POVMs
were used to reveal the relevance of non-projective measure-
ments in quantum nonlocality [53]. There is also an example
of a Bell inequality in which three three-dimensional MUBs
are required to produce the maximal quantum violation [54].
While attempts have been made at establishing more general
relations between quantum nonlocality and MUBs [55, 56],
results of substantial generality are lacking. Nevertheless,
two questions appear particularly natural. Firstly, can one
construct Bell inequalities in which MUBs and SICs of any
given Hilbert space dimension generate the largest quantum
violations? Secondly, and conversely, could one determine,
by only observing some form of quantum nonlocality, that
an initially uncharacterised measurement obeys some opera-
tional notion of mutual unbiasedness or symmetric informa-
tional completeness? While both these questions are founda-
tionally important, positive answers would also pave the way
for device-independent quantum information protocols for the
many practical applications for which MUBs and SICs are de-
sirable.

In this work we solve these challenges for both MUBs and
SICs. We show how to construct Bell inequalities that are
maximally violated in quantum theory using a maximally en-
tangled state of local dimension d and, respectively, a pair of
d-dimensional MUBs and a d-dimensional SIC. Then, we ask
what can be inferred if the maximal Bell inequality violation

is observed. In the case of MUBs, we show that the maximal
quantum violation of the proposed Bell inequality implies that
the measurements satisfy an operational definition of mutual
unbiasedness, and that the shared state is essentially a maxi-
mally entangled state of local dimension d. Similarly, in the
case of SICs, we find that the maximal quantum violation im-
plies that the measurements satisfy an analogous operational
definition of symmetric informational completeness.

Before proceeding any further let us explain how our re-
sults are related to the phenomenon of self-testing (rigidity), in
which the unknown state and measurements are identified up
to additional degrees of freedom, local isometries and possi-
bly a transposition (see Ref. [57] for a review on self-testing).
While the state certification for the MUB inequalities coin-
cides with the notion used in self-testing, the conclusions we
draw regarding the measurements constitute a weaker form of
certification. To stress this point in this work we have chosen
to consistently use the term “certification” over “self-testing”.

Finally, we show that our Bell inequalities are useful in two
practically relevant tasks. For the case of MUBs, we con-
sider a scheme for device-independent quantum key distribu-
tion and prove a key rate of log d bits, which is optimal for
any protocol that extracts key from a d-outcome measurement.
By conducting numerical studies for the case of qutrit sys-
tems we show that the protocol is robust to noise. For SICs,
we construct a scheme for device-independent random num-
ber generation. For two-dimensional SIC-POVMs, we obtain
the largest amount of randomness possible for any protocol
based on qubits. For three-dimensional SIC-POVMs, we ob-
tain more randomness than can be obtained in any protocol
based on projective measurements and quantum systems of
dimension up to seven. In addition, we investigate the robust-
ness of these schemes to noise.

II. BELL INEQUALITIES FOR MUTUALLY UNBIASED
BASES

We present a family of Bell inequalities in which the
maximal quantum violation is achieved with any pair of d-
dimensional MUBs and a maximally entangled state. To this
end, consider a bipartite Bell scenario parameterised by an
integer d ≥ 2. Alice randomly receives one of d2 possible
inputs labelled by x ≡ x1x2 ∈ [d]2 (where [s] ≡ {1, . . . , s})
and produces a ternary output labelled by a ∈ {1, 2,⊥}.
Bob receives a random binary input labelled by y ∈ {1, 2}
and produces a d-valued output labelled by b ∈ [d]. The
joint probability distribution in the Bell scenario is denoted
by p(a, b|x, y) and the scenario is illustrated in Figure 1.

To make our choice of Bell functional transparent, we will
phrase it as a game in which Alice and Bob collectively win
or lose points. If Alice outputs a =⊥, no points will be won
or lost. If she outputs a ∈ {1, 2}, points will be won or lost if
b = xy . More specifically, Alice and Bob win a point if a = y
and lose a point if a = ȳ, where the bar-sign flips the value of
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FIG. 1. Bell scenario for two MUBs of dimension d. Alice receives
one of d2 inputs and produces a ternary output while Bob receives a
binary input and produces a d-valued output.

y ∈ {1, 2}. This leads to the score

RMUB
d ≡

∑

x,y

p(a = y, b = xy|x, y)− p(a = ȳ, b = xy|x, y),

(3)
where the sum goes over x = x1x2 ∈ [d]2 and y ∈ {1, 2}.

At this point the outcome a =⊥might seem artificial, so let
us show why it plays a crucial role in the construction of the
game. To this end, we use intuition based on the hypotheti-
cal case in which Alice and Bob share a maximally entangled
state

|ψmax
d 〉 =

1√
d

d∑

k=1

|k, k〉. (4)

The reason we consider the maximally entangled state is that
we aim to tailor the Bell inequalities so that this state is opti-
mal. Then, we would like to ensure that Alice, via her mea-
surement and for her outcomes a ∈ {1, 2}, remotely prepares
Bob in a pure state. This would allow Bob to create stronger
correlations as compared to the case of Alice remotely prepar-
ing his system is a mixed state. Hence, this corresponds to Al-
ice’s outcomes a ∈ {1, 2} being represented by rank-one pro-
jectors. Since the subsystems of |ψmax

d 〉 are maximally mixed,
it follows that p(a = 1|x) = p(a = 2|x) = 1/d ∀x. Thus,
we want to motivate Alice to employ a strategy in which she
outputs a =⊥ with probability p(a =⊥ |x) = 1 − 2/d. Our
tool for this purpose is to introduce a penalty. Specifically,
whenever Alice decides to output a ∈ {1, 2}, she is penalised
by losing γd points. Thus, the total score (the Bell functional)
reads

SMUB
d ≡ RMUB

d − γd
∑

x

(
p(a = 1|x) + p(a = 2|x)

)
. (5)

Now, outputting a ∈ {1, 2} contributes towards RMUB
d but

also causes a penalty γd. Therefore, we expect to see a trade-
off between γd and the rate at which Alice outputs a =⊥. We
must suitably choose γd such that Alice’s best strategy is to
output a =⊥ with (on average over x) the desired probability
p(a =⊥ |x) = 1 − 2/d. This accounts for the intuition that
leads us to the following Bell inequalities for MUBs.

Theorem II.1 (Bell inequalities for MUBs). The Bell func-
tional SMUB

d in Eq. (5) with

γd =
1

2

√
d− 1

d
, (6)

obeys the tight local bound

SMUB
d

LHV
≤ 2 (d− 1)

(
1− 1

2

√
d− 1

d

)
, (7)

and the quantum bound

SMUB
d

Q
≤
√
d (d− 1). (8)

Moreover, the quantum bound can be saturated by sharing a
maximally entangled state of local dimension d and Bob per-
forming measurements in any two mutually unbiased bases.

Proof. A complete proof is presented in Appendix A 1. The
essential ingredient to obtain the bound in Eq. (8) is the
Cauchy–Schwarz inequality. Furthermore, for local models,
by inspecting the symmetries of the Bell functional SMUB

d , one
finds that the local bound can be attained by Bob always out-
putting b = 1. This greatly simplifies the evaluation of the
bound in Eq. (7).

To see that the bound in Eq. (8) can be saturated in quan-
tum theory, let us evaluate the Bell functional for a particular
quantum realisation. Let |ψ〉 be the shared state, {Px1}dx1=1

and {Qx2
}dx2=1 be the measurement operators of Bob cor-

responding to y = 1 and y = 2 respectively and Ax be
the observable of Alice defined as the difference between Al-
ice’s outcome-one and outcome-two measurement operators,
i.e. Ax = A1

x −A2
x. Then, the Bell functional reads

SMUB
d =

∑

x

〈ψ|Ax ⊗ (Px1 −Qx2)− γd
(
A1
x +A2

x

)
⊗ 11|ψ〉.

(9)

Now, we choose the maximally entangled state of local dimen-
sion d, i.e. |ψ〉 = |ψmax

d 〉, and define Bob’s measurements as
rank-one projectors Px1

= |φx1
〉〈φx1

| and Qx2
= |ϕx2

〉〈ϕx2
|

which correspond to MUBs, i.e. |〈φx1
|ϕx2
〉|2 = 1/d. Finally,

we choose Alice’s observables as Ax =
√
d/(d− 1)(Px1

−
Qx2

)T, where the pre-factor ensures the correct normalisation
and T denotes the transpose in the standard basis. Note that
Ax is a rank-two operator; the corresponding measurement
operator A1

x (A2
x) is a rank-one projector onto the eigenvector

of Ax associated to the positive (negative) eigenvalue. Since
the subsystems of |ψmax

d 〉 are maximally mixed, this implies
〈ψmax
d |(A1

x + A2
x) ⊗ 11|ψmax

d 〉 = 2/d. Inserting all this into
the above quantum model and exploiting the fact that for any
linear operator O we have O ⊗ 11|ψmax

d 〉 = 11⊗OT|ψmax
d 〉, we

straightforwardly saturate the bound in Eq. (8). �

We remark that for the case of d = 2 one could also choose
γ2 = 0 and retain the property that qubit MUBs are optimal.
In this case the marginal term is not necessary, because in the

339



4

optimal realisation Alice never outputs ⊥. Then, the quan-
tum bound becomes 2

√
2 and the local bound becomes 2.

The resulting Bell inequality resembles the Clauser–Horne–
Shimony–Holt (CHSH) inequality [51], not just because it
gives the same local and quantum values, but also because the
optimal realisations coincide. More specifically, the measure-
ments of Bob are precisely the optimal CHSH measurements,
whereas the four measurements of Alice correspond to two
pairs of optimal CHSH measurements.

III. DEVICE-INDEPENDENT CERTIFICATION OF
MUTUAL UNBIASEDNESS

Theorem II.1 establishes that a pair of MUBs of any di-
mension can generate a maximal quantum violation in a Bell
inequality test. We now turn to the converse matter, namely
that of device-independent certification. Specifically, given
that we observe the maximal quantum violation, i.e. equality
in Eq. (8), what can be said about the shared state and the
measurements? Since the measurement operators can only be
characterised on the support of the state, to simplify the no-
tation let us assume that the marginal states of Alice and Bob
are full-rank.

Theorem III.1 (Device-independent certification). The max-
imal quantum value of the Bell functional SMUB

d in Eq. (5)
implies that

• There exist local isometries which allow Alice and Bob
to extract a maximally entangled state of local dimen-
sion d.

• Under the assumption that the marginal state of Bob is
full-rank, the two d-outcome measurements he performs
satisfy the relations

Pa = dPaQbPa and Qb = dQbPaQb, (10)

for all a and b.

Proof. The proof is detailed in Appendix A 2. Here, we briefly
summarise the part concerning Bob’s measurements. Since
the Cauchy–Schwarz inequality is the main tool for proving
the quantum bound in Eq. (8), saturating it implies that also
the Cauchy–Schwarz inequality is saturated. This allows us
to deduce that the measurements of Bob are projective and
moreover we obtain the following optimality condition:

Ax ⊗ 11|ψ〉 = 11⊗
√

d

d− 1
(Px1

−Qx2
) |ψ〉, (11)

for all x1, x2 ∈ [d] where the factor
√
d/(d− 1) can be re-

garded as a normalisation. Since we do not attempt to certify
the measurements of Alice, we can without loss of generality
assume that they are projective. This implies that the spectrum
of Ax only contains {+1,−1, 0} and therefore (Ax)3 = Ax.
This allows us to obtain a relation that only contains Bob’s
operators. Tracing out Alice’s system and subsequently elim-
inating the marginal state of Bob (it is assumed to be full-rank)

leads to

Px1
−Qx2

=
d

d− 1
(Px1

−Qx2
)
3
. (12)

Expanding this relation and then using projectivity and the
completeness of measurements, one recovers the result in
Eq. (10). �

We have shown that observing the maximal quantum value
of SMUB

d implies that the measurements of Bob satisfy the re-
lations given in Eq. (10). It is natural to ask whether a stronger
conclusion can be derived, but the answer turns out to be neg-
ative. In Appendix A 2 c we show that any pair of d-outcome
measurements (acting on a finite-dimensional Hilbert space)
satisfying the relations in Eq. (10) is capable of generating the
maximal Bell inequality violation. For d = 2, 3 the relations
given in Eq. (10) imply that the unknown measurements corre-
spond to a direct sum of MUBs (see Appendix B 3 a) and since
in these dimension there exists only a single pair of MUBs
(up to unitaries and complex conjugation), our results imply
a self-testing statement of the usual kind. However, since in
higher dimensions not all pairs of MUBs are equivalent [58],
our certification statement is less informative than the usual
formulation of self-testing. In other words, our inequalities al-
low us to self-test the quantum state, but we cannot completely
determine the measurements (see Refs. [59, 60] for related re-
sults). Note that we could also conduct a device-independent
characterisation of the measurements of Alice, but since these
are not relevant for the scope of this work (namely MUBs and
SICs), we do not do it explicitly.

The certification provided in Theorem III.1 turns out to be
sufficient to determine all the probabilities p(a, b|x, y) that
arise in the Bell experiment (see Appendix A 3), which means
that the maximal quantum value of SMUB

d is achieved by a sin-
gle probability distribution. Due to the existence of inequiva-
lent pairs of MUBs in certain dimensions (e.g. for d = 4), this
constitutes the first example of an extremal point of the quan-
tum set which admits inequivalent quantum realisations.2

It is important to understand the relation between the condi-
tion given in Eq. (10) and the concept of MUBs. Naturally, if
{Pa}da=1 and {Qb}db=1 are d-dimensional MUBs, the relations
(10) are satisfied. Interestingly, however, there exist solutions
to Eq. (10) which are neither MUBs nor direct sums thereof.
While, as mentioned above, for d = 2, 3 one can show that any
measurements satisfying the relations (10) must correspond to
a direct sum of MUBs, this is not true in general. For d = 4, 5
we have found explicit examples of measurement operators
satisfying Eq. (10) which cannot be written as a direct sum
of MUBs. In fact, they cannot even be transformed into a
pair of MUBs via a completely positive unital map (see Ap-
pendix B for details). These results beg the crucial question:
how should one interpret the condition given in Eq. (10)?

2 Recall that the notion of equivalence we employ is precisely the one that
appears in the context of self-testing, i.e. we allow for additional degrees
of freedom, local isometries and a transposition.
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To answer this question we resort to an operational formu-
lation of what it means for two measurements to be mutually
unbiased. An operational approach must rely on observable
quantities (i.e. probabilities), as opposed to algebraic relations
between vectors or operators. This leads to the following nat-
ural definition of mutually unbiased measurements (MUMs)3.

Definition III.2 (Mutually unbiased measurements). We say
that two n-outcome measurements {Pa}na=1 and {Qb}nb=1 are
mutually unbiased if they are projective and the following im-
plications hold:

〈ψ|Pa|ψ〉 = 1⇒ 〈ψ|Qb|ψ〉 =
1

n

〈ψ|Qb|ψ〉 = 1⇒ 〈ψ|Pa|ψ〉 =
1

n
, (13)

for all a and b. That is, two projective measurements are mu-
tually unbiased if the eigenvectors of one measurement give
rise to a uniform outcome distribution for the other measure-
ment.

Note that this definition captures precisely the intuition be-
hind MUBs without the need to specify the dimension of the
underlying Hilbert space. Interestingly enough, MUMs admit
a simple algebraic characterisation.

Theorem III.3. Two n-outcome measurements {Pa}na=1 and
{Qb}nb=1 are mutually unbiased if and only if

Pa = nPaQbPa and Qb = nQbPaQb, (14)

for all a and b.

Proof. Let us first assume that the algebraic relations hold. By
summing over the middle index, one finds that both measure-
ments are projective. Moreover, if |ψ〉 is an eigenvector of
Pa, then 〈ψ|Qb|ψ〉 = 〈ψ|PaQbPa|ψ〉 = 1

n 〈ψ|Pa|ψ〉 = 1
n .

By symmetry, the analogous property holds if |ψ〉 is an eigen-
vector of Qb.

Conversely, let us show that MUMs must satisfy the above
algebraic relations. Since

∑
a Pa = 11 we can choose an or-

thonormal basis of the Hilbert space composed only of the
eigenvectors of the measurement operators. Let {|eaj 〉}a,j be
an orthonormal basis, where a ∈ [n] tells us which projector
the eigenvector corresponds to and j labels the eigenvectors
within a fixed projector (if Pa has finite rank, then j ∈ [trPa],
otherwise j ∈ N). By construction for such a basis we have
Pa|ea

′
j 〉 = δaa′ |eaj 〉. To show that Pa = nPaQbPa it suffices

to show that the two operators have the same coefficients in
this basis. Since

〈ea′j |nPaQbPa|ea
′′
k 〉 = nδaa′δaa′′〈eaj |Qb|eak〉, (15)

〈ea′j |Pa|ea
′′
k 〉 = δaa′δaa′′δjk (16)

3 Note that in what follows we use the term “eigenvector” to refer to eigen-
vectors corresponding to non-zero eigenvalues.

it suffices to show that n〈eaj |Qb|eak〉 = δjk. For j = k this is
a direct consequence of the definition in Eq. (13). To prove
the other case, define |φθ〉 =

(
|eaj 〉+ eiθ|eak〉

)
/
√

2, for θ ∈
[0, 2π). Since Pa|φθ〉 = |φθ〉, we have 〈φθ|Qb|φθ〉 = 1/n.
Writing this equality out gives

1

n
=

1

2

(
2

n
+ eiθ〈eaj |Qb|eak〉+ e−iθ〈eak|Qb|eaj 〉

)
. (17)

Choosing θ = 0 implies that the real part of 〈eaj |Qb|eak〉 van-
ishes, while θ = π/2 implies that the imaginary part vanishes.
Proving the relation Qb = nQbPaQb proceeds in an analo-
gous fashion. �

Theorem III.3 implies that the maximal violation of the Bell
inequality for MUBs certifies precisely the fact the Bob’s mea-
surements are mutually unbiased. To provide further evidence
that MUMs constitute the correct device-independent gener-
alisation of MUBs, we give two specific situations in which
the two objects behave in the same manner.

Maassen and Uffink considered a scenario in which two
measurements (with a finite number of outcomes) are per-
formed on an unknown state. Their famous uncertainty re-
lation provides a state-independent lower bound on the sum
of the Shannon entropies of the resulting distributions [11].
While the original result only applies to rank-one projective
measurements, a generalisation to non-projective measure-
ments reads [61]

H(P ) +H(Q) ≥ − log c, (18)

where H denotes the Shannon entropy and c =
maxa,b‖

√
Pa
√
Qb‖2 where ‖·‖ is the operator norm. If we

restrict ourselves to rank-one projective measurements on a
Hilbert space of dimension d, one finds that the largest uncer-
tainty, corresponding to c = 1/d, is obtained only by MUBs.
It turns out that precisely the same value is achieved by any
pair of MUMs with d outcomes regardless of the dimension
of the Hilbert space:

c = max
a,b
‖
√
Pa
√
Qb‖2 = max

a,b
‖PaQb‖2

= max
a,b
‖PaQbPa‖ = max

a
‖Pa/d‖ =

1

d
. (19)

A closely related concept is that of measurement incom-
patibility, which captures the phenomenon that two measure-
ments cannot be performed simultaneously on a single copy
of a system. The extent to which two measurements are in-
compatible can be quantified e.g. by so-called incompatibility
robustness measures [62]. In Appendix B 4, we show that ac-
cording to these measures MUMs are exactly as incompatible
as MUBs. Moreover, we can show that for the so-called gener-
alised incompatibility robustness [63], MUMs are among the
most incompatible pairs of d-outcome measurements.

IV. APPLICATION: DEVICE-INDEPENDENT QUANTUM
KEY DISTRIBUTION

The fact that the maximal quantum violation of the Bell in-
equalities introduced above requires a maximally entangled
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state and MUMs, and moreover that it is achieved by a unique
probability distribution, suggests that these inequalities might
be useful for device-independent quantum information pro-
cessing. In the task of quantum key distribution [12, 13, 64]
Alice and Bob aim to establish a shared data set (a key) that
is secure against a malicious eavesdropper. Such a task re-
quires the use of incompatible measurements, and MUBs in
dimension d = 2 constitute the most popular choice. Since
in the ideal case the measurement outcomes of Alice and Bob
that contribute to the key should be perfectly correlated, most
protocols are based on maximally entangled states. In the
device-independent approach to quantum key distribution, the
amount of key and its security is deduced from the observed
Bell inequality violation.

We present a proof-of-principle application to device-
independent quantum key distribution based on the quantum
nonlocality witnessed through the Bell functional in Eq. (5).
In the ideal case, Alice and Bob follow the strategy that gives
them the maximal violation, i.e. they share a maximally entan-
gled state of local dimension d and Bob measures two MUBs.
To generate the key we provide Alice with an extra setting
that produces outcomes which are perfectly correlated with
the outcomes of the first setting of Bob. This will be the only
pair of settings from which the raw key will be extracted and
let us denote them by x = x∗ and y = y∗ = 1. In most
rounds of the experiment, Alice and Bob choose these set-
tings and therefore contribute towards the raw key. However,
to ensure security, a small number of rounds is used to evalu-
ate the Bell functional. In these rounds, which are chosen at
random, Alice and Bob randomly choose their measurement
settings. Once the experiment is complete, the resulting value
of the Bell functional is used to infer the amount of secure raw
key shared between Alice and Bob. The raw key can then be
turned into the final key by standard classical post-processing.
For simplicity, we consider only individual attacks and more-
over we focus on the limit of asymptotically many rounds in
which fluctuations due to finite statistics can be neglected.

The key rate, K, can be lower bounded by [65]

K ≥ − log
(
P βg
)
−H(By∗ |Ax∗), (20)

where P βg denotes the highest probability that the eavesdrop-
per can correctly guess Bob’s outcome when his setting is y∗

given that the Bell inequality value β was observed, andH(·|·)
denotes the conditional Shannon entropy. The guessing prob-
ability P βg is defined as

P βg ≡ sup

{ d∑

c=1

〈ψABE|11⊗ Pc ⊗ Ec|ψABE〉
}
, (21)

where {Ec}dc=1 is the measurement employed by the eaves-
dropper to produce her guess, the expression inside the curly
braces is the probability that her outcome is the same as Bob’s
for a particular realisation and the supremum is taken over all
quantum realisations (the tripartite state and measurements of
all three parties) compatible with the observed Bell inequality
value β.

Let us first focus on the key rate in a noise-free scenario,
i.e. in a scenario in which SMUB

d attains its maximal value.
Then, one straightforwardly arrives at the following result.

Theorem IV.1 (Device-independent key rate). In the noise-
less case the quantum key distribution protocol based on
SMUB
d achieves the key rate of

K = log d (22)

for any integer d ≥ 2.

Proof. In the noiseless case, Alice and Bob observe exactly
the correlations predicted by the ideal setup. In this case the
outcomes for settings (x∗, y∗) are perfectly correlated which
implies thatH(By∗ |Ax∗) = 0. Therefore, the only non-trivial
task is to bound the guessing probability.

Since the actions of the eavesdropper commute with the
actions of Alice and Bob, we can assume that she performs
her measurement first. If the probability of the eavesdropper
observing outcome c ∈ [d], which we denote by p(c), is non-
zero, then the (normalised) state of Alice and Bob conditioned
on the eavesdropper observing that outcome is given by:

ρ
(c)
AB =

1

p(c)
trC

[
(11⊗ 11⊗ Ec)|ψABE〉〈ψABE|

]
. (23)

Now Alice and Bob share one of the post-measurement states
ρ
(c)
AB and when they perform their Bell inequality test, they will

obtain different distributions depending on c, which we write
as pc(a, b|x, y). However, since the statistics achieve the max-
imal quantum value of SMUB

d and we have previously shown
that the maximal quantum value is achieved by a single proba-
bility point, all the probability distributions pc(a, b|x, y) must
be the same. Moreover, we have shown that for this probabil-
ity point, the marginal distribution of outcomes on Bob’s side
is uniform over [d] for both inputs. This implies that

Pg =

d∑

c=1

p(c)pc(b = c|y = 1) =
1

d
, (24)

because pc(b = c|y = 1) = p(b = c|y = 1) = 1
d for all c. �

We remark that the argument above is a direct consequence
of a more general result which states that if a bipartite prob-
ability distribution is a nonlocal extremal point of the quan-
tum set, then no external party can be correlated with the out-
comes [66].

It is interesting to note that the obtained key rate is the
largest possible for general setups in which the key is gen-
erated from a d-outcome measurement. Also, the key rate
is optimal for all protocols based on a pair of entangled
d-dimensional systems subject to projective measurements.
This follows from the fact that projective measurements in
Cd cannot have more than d outcomes. Note that it has re-
cently been shown that the same amount of randomness can
be generated using a modified version of the Collins–Gisin–
Linden–Massar–Popescu inequalities [67].

Let us now depart from the noise-free case and estimate
the key rate in the presence of noise. To ensure that both the
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guessing probability and the conditional Shannon entropy can
be computed in terms of a single noise parameter, we have to
introduce an explicit noise model. We employ the standard ap-
proach in which the measurements remain unchanged, while
the maximally entangled state is replaced with an isotropic
state given by

ρv = v|ψmax
d 〉〈ψmax

d |+
1− v
d2

11, (25)

where v ∈ [0, 1] is the visibility of the state. Using this state
and the ideal measurements for Alice and Bob, the relation
between v and SMUB

d can be easily derived from (9), namely,

v =
1

2

(
1 +

SMUB
d√

d(d− 1)

)
. (26)

Utilising this formula, we also obtain the value of
H(By∗ |Ax∗) as a function of the Bell violation. The remain-
ing part of (20) is the guessing probability (21). In the case of
d = 3, we proceed to bound this quantity through semidefinite
programming.

Concretely, we implement the three-party semidefinite re-
laxation [68] of the set of quantum correlations at local level
one4. This results in a moment matrix of size 532× 532 with
15617 variables. The guessing probability is directly given by
the sum of three elements of the moment matrix. It can then
be maximised under the constraints that the value of the Bell
functional SMUB

3 is fixed and the moment matrix is positive
semidefinite. However, we notice that this problem is invari-
ant under the following relabelling: b → π(b) for y = 1,
c → π(c), x1 → π(x1), where π ∈ S3 is a permutation
of three elements. Therefore, it is possible to simplify this
semidefinite program by requiring the matrix to be invariant
under the group action of S3 on the moment matrix (i.e. it
is a Reynolds matrix) [43, 69, 70]. This reduces the number
of free variables in the moment matrix to 2823. With the Se-
DuMi [71] solver, this lowers the precision (1.1×10−6 instead
of 8.4×10−8), but speeds up the computation (155s instead of
8928s) and requires less memory (0.1GB instead of 5.5GB).
For the maximal value of SMUB

d , we recover the noise-free re-
sult of K = log 3 up to the fifth digit. Also, we have a key
rate of at least one bit when SMUB

d & 2.432 and a non-zero
key rate when SMUB

d & 2.375. The latter is close to the local
bound, which is SMUB

d ≈ 2.367. The resulting lower bound
on the key rate as a function of the Bell inequality violation is
plotted in Fig. 2.

V. NONLOCALITY FOR SYMMETRIC INFORMATIONAL
COMPLETENESS

We now shift our focus from MUBs to SICs. We con-
struct Bell inequalities whose maximal quantum violations are

4 We attribute one operator to each outcome of Bob and the eavesdropper,
but only take into account the first two outcomes of Alice.

FIG. 2. Lower bound on the key rateK in the asymptotic limit versus
the value of the Bell functional SMUB

3 .

achieved with SICs. Since this turns out to be more challeng-
ing than for the case of MUBs, we first establish the relevance
of SICs in a simplified Bell scenario subject to additional con-
straints. This serves as a stepping stone to a subsequent relax-
ation which gives a standard (unconstrained) Bell inequality
for SICs. We then focus on the device-independent certifica-
tion power of these inequalities, which leads us to an oper-
ational notion of symmetric informational completeness. Fi-
nally, we extend the Bell inequalities so that their maximal
quantum violations are achieved with both projectors forming
SICs and a single generalised measurement corresponding to
a SIC-POVM.

A. Stepping stone: quantum correlations for SICs

Consider a Bell scenario, parameterised by an integer d ≥
2, involving two parties Alice and Bob who share a physical
system. Alice receives an input labelled by a tuple (x1, x2)

representing one of
(
d2

2

)
possible inputs, which we collec-

tively refer to as x = x1x2. The tuple is randomly taken
from the set Pairs(d2) ≡ {x|x1, x2 ∈ [d2] and x1 < x2}. Al-
ice performs a measurement on her part of the shared system
and produces a ternary output labelled by a ∈ {1, 2,⊥}. Bob
receives an input labelled by y ∈ [d2] and the associated mea-
surement produces a binary outcome labelled by b ∈ {1,⊥}.
The joint probability distribution is denoted by p(a, b|x, y),
and the Bell scenario is illustrated in Fig. 3.

Similar to the case of MUBs, in order to make our choice of
Bell functional transparent, we phrase it as a game played by
Alice and Bob. We imagine that their inputs are supplied by
a referee, who promises to provide x = x1x2 and y such that
either y = x1 or y = x2. Similar to the previous game Alice
can output a =⊥ to ensure that no points are won or lost.
However, in this game also Bob can ensure that no points are
won or lost by outputting b =⊥. If neither of them outputs ⊥,
a point is either won or lost. Specifically, when a = 1 a point
is won if y = x1 (and lost otherwise), whereas if a = 2 then a
point is won if y = x2 (and lost otherwise). Let us remark that
in this game Bob’s only role is to decide whether in a given
round points can be won/lost or not. For this game the total
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FIG. 3. Bell scenario for SICs of dimension d. Alice receives one of(
d2

2

)
inputs and returns a ternary outcome while Bob receives one of

d2 inputs and returns a binary outcome.

number of points (the Bell functional) reads

RSIC
d ≡

∑

x1<x2

(
p(1, 1|x, x1)− p(1, 1|x, x2)

+ p(2, 1|x, x2)− p(2, 1|x, x1)
)
,

(27)

where the sum is taken over all x ∈ Pairs(d2).
Let us now impose additional constraints on the marginal

distributions of the outputs. More specifically, we require that

∀x : p (a = 1|x) + p (a = 2|x) =
2

d
,

∀y : p(b = 1|y) =
1

d
.

(28)

The intuition behind these constraints is analogous to that dis-
cussed for the case of MUBs. Namely, we imagine that Al-
ice and Bob perform measurements on a maximally entangled
state of local dimension d. Then, we wish to fix the marginals
such that the measurements of Alice (Bob) for the outcomes
a ∈ {1, 2} (b = 1) remotely prepare Bob’s (Alice’s) sub-
system in a pure state. This corresponds to the marginals
p (a = 1|x) = p (a = 2|x) = p (b = 1|x) = 1/d which is re-
flected in the marginal constraints in Eq. (28). We remark that
imposing these constraints simplifies both the intuitive under-
standing of the game and the derivation of the results below.
However, it merely serves as a stepping stone to a more gen-
eral subsequent treatment in which the constraints (28) will be
removed.

To write the value of the Bell functional of a quantum
realisation, let us introduce two simplifications. The mea-
surement operators of Alice are denoted by {Aax} and as be-
fore it is convenient to work with the observables defined as
Ax = A1

x − A2
x. The measurements of Bob are denoted by

{Bby}, but since they only have two outcomes, all the expres-
sions can be written in terms of a single operator from each
input y. In our case it is convenient to use the outcome-one op-
erator and for convenience we will skip the superscript, i.e. we
will write By ≡ B1

y for all y. Then, the Bell functional evalu-
ated on a specific quantum realisation reads

RSIC
d =

∑

x1<x2

〈ψ|Ax ⊗ (Bx1 −Bx2) |ψ〉. (29)

Note that the Bell functional, in particular when written in a
quantum model, is much reminiscent of the expressionRMUB

d
(3) encountered for MUBs, with the key difference that the
roles of the inputs and outputs of Bob are swapped.

Let us consider a quantum strategy in which Alice and
Bob share a maximally entangled state |ψmax

d 〉. Moreover,
Bob’s measurements are defined as By = |φy〉〈φy|, where
{|φy〉}d

2

y=1 is a set of unit vectors forming a SIC (assum-
ing it exists in dimension d), i.e. |〈φy|φy′〉|2 = 1/(d + 1)
for all y 6= y′. Also, we define Alice’s observables as
Ax =

√
(d+ 1)/d (Bx1

−Bx2
)

T, where the pre-factor en-
sures normalisation. Firstly, since the subsystems of Alice and
Bob are maximally mixed, and the outcomes a ∈ {1, 2} and
b = 1 each correspond to rank-one projectors, the marginal
constraints in Eq. (28) are satisfied. Using the fact that for any
linear operator O we have O ⊗ 11|ψmax

d 〉 = 11⊗OT|ψmax
d 〉, we

find that

RSIC
d =

√
d+ 1

d

∑

x1<x2

〈ψmax
d |11⊗ (|φx1〉〈φx1 | − |φx2〉〈φx2 |)2 |ψmax

d 〉

=

√
d+ 1

d

∑

x1<x2

(
2

d
− 2

d(d+ 1)

)
= d(d−1)

√
d(d+ 1).

(30)

In fact, this strategy relying on a maximally entangled state
and a SIC achieves the maximal quantum value ofRSIC

d under
the constraints of Eq. (28). In Appendix C 1 we prove that
under these constraints the tight quantum and no-signaling
bounds onRSIC

d read

RSIC
d

Q
≤ d(d− 1)

√
d (d+ 1) (31)

RSIC
d

NS
≤ d

(
d2 − 1

)
. (32)

We remark that SICs are not known to exist in all Hilbert
space dimensions. However, their existence in all dimensions
is strongly conjectured and explicit SICs have been found in
all dimensions up to 121 [34].

B. Bell inequalities for SICs

The marginal constraints in Eq. (28) allowed us to prove
that the quantum realisation based on SICs achieves the max-
imal quantum value ofRSIC

d . Our goal now is to remove these
constraints to obtain a standard Bell functional. Analogously
to the case of MUBs we add marginal terms to the original
functionalRSIC

d .
To this end, we introduce penalties for both Alice and Bob.

Specifically, if Alice outputs a ∈ {1, 2} they lose αd points,
whereas if Bob outputs b = 1, they lose βd points. The total
number of points in the modified game constitutes our final
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Bell functional

SSIC
d ≡ RSIC

d − αd
∑

x1<x2

(p (a = 1|x) + p (a = 2|x))

− βd
∑

y

p (b = 1|y) . (33)

Hence, our aim is to suitably choose the penalties αd and βd
so that the maximal quantum value of SSIC

d is achieved with a
strategy that closely mimics the marginal constraints (28) and
thus maintains the optimality of Bob performing a SIC.

Theorem V.1 (Bell inequalities for SICs). The Bell functional
SSIC
d in Eq. (33) with

αd =
1− δd,2

2

√
d

d+ 1

βd =
d− 2

2

√
d(d+ 1),

(34)

obeys the tight local bound

SSIC
d

LHV
≤
{

4 for d = 2,

d2(d− 1)− d(d2 − d− 1)
√

d
d+1 for d ≥ 3,

(35)
and the quantum bound

SSIC
d

Q
≤ d+ 2δd,2

2

√
d (d+ 1). (36)

Moreover, the quantum bound is tight and can be saturated by
sharing a maximally entangled state of local dimension d and
choosing Bob’s outcome-one projectors to form a SIC.

Proof. The proof is presented in Appendix C 2. In order to ob-
tain the quantum bound in Eq. (36), the key ingredients are the
Cauchy–Schwarz inequality and semidefinite relaxations of
polynomial optimisation problems. To derive the local bound
in Eq. (35), the key observation is that the symmetries of the
Bell functional allow us to significantly simplify the problem.

The fact that the quantum bound is saturated by a maxi-
mally entangled state and Bob performing a SIC can be seen
immediately from the previous discussion that led to Eq. (30).
With that strategy, we findRSIC

d = d(d−1)
√
d(d+ 1). Since

it also respects p(a = 1|x)+p(a = 2|x) = 2/d ∀x, as well as
p(b = 1|y) = 1/d ∀y, a direct insertion into Eq. (33) saturates
the bound in Eq. (36). �

Note that in the limit of d → ∞ both the local bound and
the quantum bound grow as ∼ d2.

We remark that for the special case of d = 2, no penalties
are needed to maintain the optimality of SICs (which is why
the delta function appears in Eq. (34)). The derived Bell in-
equality for a qubit SIC (which corresponds to a tetrahedron
configuration on the Bloch sphere) can be compared to the so-
called elegant Bell inequality [52] whose maximal violation is
also achieved using the tetrahedron configuration. While we
require six settings of Alice and four settings of Bob, the el-
egant Bell inequality requires only four settings of Alice and

three settings of Bob. However, the additional complexity in
our setup carries an advantage when considering the critical
visibility of the shared state; i.e. the smallest value of v in
Eq. (25) (defining an isotropic state) for which the Bell in-
equality is violated. The critical visibility for violating the el-
egant Bell inequality is 86.6%, whereas for our Bell inequality
it is lowered to 81.6%. We remark that on the Bloch sphere,
the anti-podal points corresponding to the four measurements
of Alice and the six measurements of Bob form a cube and a
cuboctahedron respectively, which constitutes an instance of
the type of Bell inequalities proposed in Ref. [72].

C. Device-independent certification

Theorem V.1 shows that for any dimension d ≥ 2 we
can construct a Bell inequality which is maximally violated
by a SIC in that dimension (provided a SIC exists). Let us
now consider the converse question, namely that of device-
independent certification. In analogy with the case of MUBs
(Eq. (10)), we find a simple description of Bob’s measure-
ments.

Theorem V.2 (Device-independent certification). The maxi-
mal quantum value of the Bell functional SSIC

d , provided the
marginal state of Bob is full-rank, implies that his measure-
ment operators {By}d

2

y=1 are projective and satisfy
∑

y

By = d 11 (37)

and

By = (d+ 1)ByBy′By (38)

for all y 6= y′.

A complete proof, which is similar in spirit to the proof of
Theorem III.1, can be found in Appendix C 3.

For the special case of d = 2, the conclusion can be made
even more accurate: the maximal quantum violation of SSIC

2

implies that Bob’s outcome-one projectors are rank-one pro-
jectors acting on a qubit whose Bloch vectors form a regular
tetrahedron (up to the three standard equivalences used in self-
testing).

Similar to the case of MUBs, we face the key question of
interpreting the condition in Eq. (38) and its relation to SICs.
Again in analogy with the case of MUBs, we note that the con-
cept of a SIC references the dimension of the Hilbert space,
which should not appear explicitly in a device-independent
scenario. Hence we consider an operational approach to SICs,
which must rely on observable quantities (i.e. probabilities).
This leads us to the following natural definition of a set of pro-
jectors being operationally symmetric informationally com-
plete (OP-SIC).

Definition V.3 (Operational SIC). We say that a set of pro-
jectors {Ba}n

2

a=1 is operationally symmetric informationally
complete (OP-SIC) if

∑

a

Ba = n 11 (39)
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FIG. 4. Bell scenario for SICs and SIC-POVMs of dimension d. This
scenario modifies the original Bell scenario for SICs (see Figure 3)
by supplying Alice with an extra setting labelled by povm which
has d2 possible outcomes.

and

〈ψ|Ba|ψ〉 = 1⇒ 〈ψ|Bb|ψ〉 =
1

n+ 1
, (40)

for all a 6= b.

This definition trivially encompasses SICs as special in-
stances of OP-SICs. More interestingly, an argument analo-
gous to the proof of Theorem III.3 shows that this definition is
in fact equivalent to the relations given in Eqs. (37) and (38).
Hence, in analogy with the case of MUBs, the property of
Bob’s measurements certified by the maximal violation of our
Bell inequality is precisely the notion of OP-SICs.

D. Adding a SIC-POVM

The Bell inequalities proposed above (Bell functional SSIC
d )

are tailored to sets of rank-one projectors forming a SIC. How-
ever, it is also interesting to consider a closely related entity,
namely a SIC-POVM, which is obtained simply by normal-
ising these projectors, so that they can be collectively inter-
preted as arising from a single measurement. That is, a SIC-
POVM on Cd is a measurement {Ea}d

2

a=1 in which every mea-
surement operator can be written as Ea = 1

d |φa〉〈φa|, where
the set of rank-one projectors {|φa〉〈φa|}a forms a SIC. Due
to the simple relation between SICs and SIC-POVMs, we can
extend the Bell inequalities for SICs proposed above such that
they are optimally implemented with both a SIC (as before)
and a SIC-POVM.

It is clear that in order to make SIC-POVMs relevant to the
Bell experiment, it must involve at least one setting which cor-
responds to a d2-outcome measurement. For the Bell scenario
previously considered for SICs (see Figure 3), no such mea-
surement is present. Therefore, we supplement the original
Bell scenario by introducing a single additional measurement
setting of Alice, labelled by povm, which has d2 outcomes
labelled by a′ ∈ [d2]. The modified Bell scenario is illustrated
in Figure 4. We construct the Bell functional T SIC

d for this sce-
nario by modifying the previously considered Bell functional

SSIC
d :

T SIC
d = SSIC

d −
d2∑

y=1

p(a′ = y, b =⊥ |povm, y). (41)

Hence, whenever Bob outputs “⊥“ and the outcome associ-
ated to the setting povm coincides with the input of Bob, a
point is lost.

Evidently, the largest quantum value of T SIC
d is no greater

than the largest quantum value of SSIC
d . In order for the for-

mer to equal the latter, we require that: i) SSIC
d reaches its

maximal quantum value (which is given in Eq. (36)) and ii)
that p(a′ = y, b =⊥ |povm, y) = 0 ∀y. We have already
seen that by sharing a maximally entangled state and Bob’s
outcome-one projectors {By}y forming a SIC, the condition
i) can be satisfied. By normalisation, we have that Bob’s
outcome-⊥ projectors areB⊥y = 11−By . Again noting that for
any linear operator O we have O⊗ 11|ψmax

d 〉 = 11⊗OT|ψmax
d 〉,

observe that if Bob applies B⊥y , then Alice’s local state is or-
thogonal to By . Hence, if Alice chooses her POVM {Ea′},
corresponding to the setting povm, as the SIC-POVM de-
fined by Ea′ = 1

dB
T
a′ , the probability of finding a′ = y van-

ishes. This satisfies condition ii). Hence, we conclude that in
a general quantum model

T SIC
d

Q
≤ d+ 2δd,2

2

√
d (d+ 1), (42)

and that the bound can be saturated by supplementing the pre-
vious optimal realisation with a SIC-POVM on Alice’s side.

VI. APPLICATION: DEVICE-INDEPENDENT QUANTUM
RANDOM NUMBER GENERATION

The fact that the Bell functionals SSIC
d and T SIC

d achieve
their maximal quantum values with a SIC and a SIC-POVM
respectively, opens up the possibility for device-independent
quantum information protocols for tasks in which SICs and
SIC-POVMs are desirable. We focus on one such application,
namely that of device-independent quantum random number
generation [73]. This is the task of certifying that the data
generated by a party cannot be predicted by a malicious eaves-
dropper. In the device-independent setting, both the amount of
randomness and its security is derived from the violation of a
Bell inequality.

Non-projective measurements, such as SIC-POVMs, are
useful for this task. The reason is that a Bell experiment im-
plemented with entangled systems of local dimension d and
standard projective measurements cannot have more than d
outcomes. Consequently, one cannot hope to certify more
than log d bits of local randomness. However, Bell exper-
iment relying on d-dimensional entanglement implemented
with (extremal) non-projective measurements can have up to
d2 outcomes [74]. This opens the possibility of generating up
to 2 log d bits of local randomness without increasing the di-
mension of the shared entangled state. Notably, for the case
of d = 2, such optimal quantum random number generation
has been shown using a qubit SIC-POVM [42].
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FIG. 5. Lower bound on the amount of device-independent random-
ness versus the value of T SIC

2 .

Here, we employ our Bell inequalities for SIC-POVMs to
significantly outperform standard protocols relying on projec-
tive measurements on d-dimensional entangled states. To this
end, we briefly summarise the scenario for randomness gener-
ation. Alice and Bob perform many rounds of the Bell exper-
iment illustrated in Figure 4. Alice will attempt to generate
local randomness from the outcomes of her setting labelled
by povm. In most rounds of the Bell experiment, Alice per-
forms povm and records the outcome a′. In a smaller num-
ber of rounds, she randomly chooses her measurement setting
and the data is used towards estimating the value of the Bell
functional T SIC

d defined in Eq. (41). A malicious eavesdrop-
per may attempt to guess Alice’s relevant outcome a′. To this
end, the eavesdropper may entangle her system with that of
Alice and Bob, and perform a well-chosen POVM {Ec}c to
enhance her guess. In analogy to Eq. (21), the eavesdropper’s
guessing probability reads

P βg ≡ sup

{ d2∑

c=1

〈ψABE|Acpovm ⊗ 11⊗ Ec|ψABE〉
}
, (43)

where {Ec}d
2

c=1 is the measurement employed by the eaves-
dropper to produce her guess, the expression inside the curly
braces is the probability that her outcome is the same as Al-
ice’s outcome for the setting povm for a particular realisation
and the supremum is taken over all quantum realisations (the
tripartite state and measurements of all three parties) compat-
ible with the observed Bell inequality violation β = T SIC

d .
We quantify the randomness generated by Alice using the

conditional min-entropy Hmin(Apovm|E) = − log
(
P βg
)
. To

obtain a device-independent lower bound on the randomness,
we must evaluate an upper bound on P βg for a given observed
value of the Bell functional. We saw in Section IV that if
the eavesdropper is only trying to guess the outcome of a sin-
gle measurement setting, we can without loss of generality
assume that they are only classically correlated with the sys-
tems of Alice and Bob. As before, we restrict ourselves to the
asymptotic limit of many rounds, in which fluctuations due to
finite statistics can be neglected.

In order to bound the randomness for some given value of
T SIC
d , we use the hierarchy of quantum correlations [68]. We

restrict ourselves to the cases of d = 2 and d = 3. For the

case of d = 2, we construct a moment matrix with the opera-
tors {(11, Ax)⊗ (11, By)⊗ (11, E)}∪{Apovm ⊗ (11, By, E)},
neglecting the ⊥ outcome. The matrix is of size 361 × 361
with 10116 variables. Again, we can make use of symmetry
to simplify the semidefinite program. In this case, the follow-
ing permutation leaves the problem invariant: x1 → π(x1),
x2 → π(x2), a → fπ(a, x1, x2), a′ → π(a′), y → π(y),
c→ π(c), where

fπ(a, x1, x2) =





a π(x1) < π(x2)

2 π(x1) ≥ π(x2) and a = 1

1 π(x1) ≥ π(x2) and a = 2

⊥ π(x1) ≥ π(x2) and a =⊥

(44)

and π ∈ S4. Using this symmetry reduces the number of free
variables to 477. The trade-off between the amount of certi-
fied randomness and the nonlocality is illustrated in Figure 5.
We find that for sufficiently large values of T SIC

2 (roughly
T SIC
2 ≥ 4.8718), we outperform the one-bit limitation asso-

ciated to projective measurements on entangled qubits. No-
tably, for even larger values of T SIC

2 , we also outperform the
restriction of log 3 bits associated to projective measurements
on entangled systems of local dimension three. For the opti-
mal value of T SIC

2 we findHmin(Apovm|E) & 1.999, which is
compatible up to numerical precision with the largest possible
amount of randomness obtainable from qubit systems under
general measurements, namely two bits.

For the case of d = 3 we bound the guessing probabil-
ity following the method of Ref [73]. This has the advan-
tage of requiring only a bipartite, and hence smaller, moment
matrix than the tripartite formulation. However, the amount
of symmetry leaving the problem invariant is reduced, be-
cause the objective function only involves one outcome. Con-
cretely, we construct a moment matrix of size 820 × 820
with 263549 variables. We then write the guessing proba-
bility as P (a′ = 1|povm) and identify the following group
of permutations leaving the problem invariant: x1 → π(x1),
x2 → π(x2), a → fπ(a, x1, x2), a′ → π(a′), y → π(y),
where π ∈ S9 leaves element 1 invariant and permutes ele-
ments 2, . . . , 9 in all possible ways. Taking this symmetry into
account reduces the number of free variables to 460. In order
to further simplify the problem we make use of RepLAB, a
recently developed tool which decomposes representations of
finite groups into irreducible representations [75, 76]. This
allows us to write the moment matrix in a preferred basis in
which it is block diagonal. The semidefinite constraint can
then be imposed on each block independently, with the largest
block of size 28 × 28 instead of 820 × 820. Solving one
semidefinite program with SeDuMi [71] then takes 0.7s with
< 0.1GB of memory instead of 162s/0.2GB without block-
diagonalisation, and fails due to lack of memory without any
symmetrisation (> 400GB required).

Using entangled states of dimension three and correspond-
ing SIC-POVMs, one can attain the full range of values for
T SIC
3 . Importantly, the guessing probability is independent of

the outcome guessed by the eavesdropper, and we can verify
that the bound we obtain is convex, hence guaranteeing that
no mixture of strategy by the eavesdropper must be consid-
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FIG. 6. Lower bound on the amount of device-independent random-
ness versus the value of T SIC

3 .

ered [73]. The randomness is then given in Figure 6, which
indicates that by increasing the value of T SIC

3 , we can ob-
tain more randomness than the best possible schemes rely-
ing on standard projective measurements and entangled sys-
tems of dimensions 3, 4, 5, 6, 7. Especially, in the case of
T SIC
3 being maximal, we find that Hmin(Apovm|E) ≈ 3.03

bits. This is larger than what can be obtained by performing
projective measurements on eight dimensional systems (since
log 8 = 3 bits). It is, however, worth noting that this last value
is obtained at the boundary of the set of quantum correlations
where the precision of the solver is significantly reduced5.
It is not straightforward to estimate the extent to which this
reduced precision may influence the guessing probability, so
it would be interesting to reproduce this computation with a
more precise solver such as SDPA [77].

VII. CONCLUSIONS

MUBs and SICs are conceptually elegant, fundamentally
important and practically useful features of quantum theory.
We investigated their role in quantum nonlocality. For both
MUBs and SICs (of any Hilbert space dimension) we pre-
sented families of Bell inequalities for which they produce
the maximal quantum violations. Moreover, we showed that
these maximal quantum violations certify natural operational
notions of mutual unbiasedness and symmetric informational
completeness. Then, we considered applications of both fam-
ilies of Bell inequalities in practically relevant tasks. The Bell
inequalities for MUBs turn out to be useful for the task of
device-independent quantum key distribution and give the op-

timal key rate for measurements with d outcomes. Moreover,
for the case of qutrit systems we investigated the noise robust-
ness of the protocol. For the Bell inequalities for SICs, we
considered device-independent random number generation for
qubits and qutrits based on SIC-POVMs. We showed (up to
numerical precision) optimal randomness generation for qubit
systems. For qutrit systems, we showed that more random-
ness can be generated than in any scheme using standard pro-
jective measurements and entanglement of up to dimension
seven. These results were obtained using the RepLAB pack-
age, which helped to significantly reduce the complexity of
the corresponding semidefinite programs by taking advantage
of their symmetry.

This work opens many new research directions, so let us
mention just a few of them. We showed that a maximal quan-
tum violation of the Bell inequality for MUBs self-tests a
maximally entangled state of local dimension d. In the case
of the Bell inequality for SICs we have managed to certify the
measurements of Bob, but we do not have a self-testing re-
sult for the state. If a self-test of the state is possible, what
are the implications for the device-independent certification
of the SIC-POVM setting? This may prove helpful towards
solving another interesting question, namely that of proving
optimal local randomness generation (i.e. 2 log d bits) for any
d based on the Bell inequality for SIC-POVMs. Another av-
enue of exploration regards the concept of mutually unbiased
measurements (MUMs). In this work, we have shown some of
their basic properties with regard to MUBs as well as exam-
ples of how they are relevant in quantum information theory.
However, a more systematic exploration of MUMs would be
desirable. Similarly, a general exploration of operational SICs
(OP-SICs) in quantum information theory, as well as their re-
lation to SICs, would be of similar interest. Finally, we note
that our noise-robust results for quantum key distribution and
quantum random number generation may be relevant for ex-
perimental implementations.
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Appendix A: Bell inequalities for mutually unbiased bases

In this appendix we fill in some details on the Bell inequalities for MUBs. We start by deriving the local and quantum bounds
and proving the device-independent certification result stated in the main text. Then, we proceed to show that no stronger
characterisation of Bob’s measurement can be obtained from the maximal violation of our Bell inequality and, moreover, that
the maximal violation is achieved by a single probability point.
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The Platonic solids is the name traditionally given to the five regular convex polyhedra, namely the tetrahe-
dron, the octahedron, the cube, the icosahedron and the dodecahedron. Perhaps strongly boosted by the towering
historical influence of their namesake, these beautiful solids have, in well over two millennia, transcended tra-
ditional boundaries and entered the stage in a range of disciplines. Examples include natural philosophy and
mathematics from classical antiquity, scientific modeling during the days of the European scientific revolution
and visual arts ranging from the renaissance to modernity. Motivated by mathematical beauty and a rich history,
we consider the Platonic solids in the context of modern quantum mechanics. Specifically, we construct Bell
inequalities whose maximal violations are achieved with measurements pointing to the vertices of the Platonic
solids. These Platonic Bell inequalities are constructed only by inspecting the visible symmetries of the Platonic
solids. We also construct Bell inequalities for more general polyhedra and find a Bell inequality that is more
robust to noise than the celebrated Clauser-Horne-Shimony-Holt Bell inequality. Finally, we elaborate on the
tension between mathematical beauty, which was our initial motivation, and experimental friendliness, which is
necessary in all empirical sciences.

I. INTRODUCTION

Which physicist has never been attracted by mathemati-
cal beauty? And what is more beautiful than the Platonic
solids; the five regular polyhedra in our three-dimensional
space (see Fig.1)? Here, we first present the fascinating his-
tory of these solids and then use them to derive simple Bell in-
equalities tailored to be maximally violated for measurement
settings pointing towards the vertices of the Platonic solids.
In this way, we connect beautiful mathematics with founda-
tional quantum physics. However, these Platonic Bell in-
equalities do not distinguish themselves with regard to exper-
imental friendliness: quantum theory predicts that their viola-
tions are less robust to noise than the much simpler Clauser-
Horne-Shimony-Holt (CHSH) Bell inequality [1]. In fact, Pla-
tonic Bell inequalities require more measurement settings - as
many as the number of vertices of the platonic solid - than the
CHSH Bell inequality, which requires only the absolute mini-
mum of two settings per side. We also construct Bell inequal-
ities tailored to another class of elegant polyhedra, namely the
Archimedean solids, i.e. the semi-regular polyhedra. In partic-
ular we consider the famous Buckyball, a polyhedron which
corresponds to the carbon-60 molecule used in the first molec-
ular interferometer [2] , which requires even more measure-
ment settings. However, we find that these Bell inequalities
also do not offer notable experimental advantages. Finally,
we depart from Bell inequalities motivated by mathematical
beauty and instead focus our research on finding experimen-
tally friendly Bell inequalities: starting from the Buckyball
we iteratively search for noise robust Bell inequalities. This
leads us to a Bell inequality that is somewhat more noise toler-
ant than the CHSH Bell inequality. However, it is remarkably
inelegant. We conclude with a discussion of the danger for
theoretical physics to become - and remain - too focused on
mathematical beauty [3] at the expense of developing connec-
tions with experiments.

FIG. 1: The five Platonic solids inscribed in spheres. From left to
right: the tetrahedron, the octahedron, the cube, the icosahedron and
the dodecahedron.

II. A BRIEF HISTORY OF THE PLATONIC SOLIDS IN
ARTS, PHILOSOPHY AND SCIENCE

This section provides a broader context for the Platonic
solids. Readers interested exclusively in Bell inequalities may
jump to the next section.

The ancient Greek civilisations laid the foundations of
western natural philosophy. The development of the latter is
permeated by a fascination for geometry. The magnum opus
of Greek geometry, Euclid’s Elements, remained a standard
textbook until the 20’th century [4]. First printed in Venice
in 1482 as one of the earliest mathematics books set in type,
it has since been re-printed in at least a thousand editions1

and is certainly the most influential mathematical work in his-
tory [5]. Geometry allowed the early natural philosophers to
describe, understand and make predictions about, the physi-
cal world. In the sixth century BC, Thales of Miletus, often

1 Ref. [5], authored in 1968, suggests that the Elements is only outdone in
number of editions by the Bible.
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hailed as the first scientific philosopher in western civilisa-
tion, likely used his knowledge of geometry to measure the
height of the pyramids of Egypt [6]. Centuries later, in the
Hellenistic period, Eratostenes accurately calculated the cir-
cumference of the Earth and Hipparcus discovered the preces-
sion of the equator. Archimedes’ geometry led him to the Law
of the Lever [7], still taught to every pupil in physics class.

Geometry was often ascribed a deeper meaning, beyond
pure mathematics and its applications. This entails attributing
spiritual, religious or philosophical meaning to certain pro-
portions, planar shapes and solids, elevating the geometries to
a tangibly sacred status. The perhaps most famous example
of such metaphysical beliefs is due to the Pythagoreans2 [8].
Their ideas of sacred geometries were influential, notably also
on key figures such as Plato in the fifth century BC. In The Re-
public, Plato writes that "geometry will draw the soul towards
truth, and create the spirit of philosophy" [9]. In Timaeus,
Plato makes concrete the link between geometry and natural
philosophy; he discusses the five regular polyhedra, i.e. the
polyhedra whose vertices are identical and whose faces are
identical regular polygons, namely the tetrahedron, the octa-
hedron, the cube, the icosahedron and the dodecahedron. To-
day, these five solids are known as the Platonic solids (see
Fig. 1). Plato assigned four of the solids to the four classical
elements thought to be the fundamental form of all matter; the
tetrahedron to fire, the octahedron to air, the cube to earth and
the icosahedron to water. To the remaining fifth solid, Plato
left the following mysterious comment [10] "A fifth regular
solid still exists, namely the dodecahedron, which does not
form the element of any substance; but God used it as a pat-
tern for dividing the zodiac into its twelve signs." Later, his
pupil Aristotle added a fifth element to the original four ele-
ments, namely the aether3. It historically became associated to
the dodecahedron, perhaps due to its relevance for the golden
ratio. From a purely mathematical standpoint, the Platonic
solids were the focus of the 13’th book of Euclid’s Elements
which studies their construction and their proportions when
inscribed in a sphere.

The Platonic solids can be appreciated by modern mathe-
maticians for their appealing geometric properties, by mod-
ern natural scientists for their occurrence in nature, historical
scientific models and metaphysical ideas, and by a broader
modern audience for their historical appearance in western vi-
sual arts and natural philosophy, as well as their sheer beauty.
It appears reasonable to say that the historical interest in the
Platonic solids was substantially aided by the fact they were
so strongly endorsed by a character as titanic as Plato.

Almost two millennia after Plato, the maintained apprecia-
tion for the Platonic solids could for instance be seen in Luca

2 For instance, the number three was an ideal number as it was the number of
vertices in a triangle, which was a symbol of Apollo. The number ten was
termed a perfect number due to the number of vertices in a geometry called
a tetractys. The number was therefore honoured by the Pythagoreans not
gathering in groups of more than ten people.

3 Aether theories persisted in science until the strong negative evidence put
forward by the Michelson-Morley experiment, performed in 1887.

Pacioli’s mathematics book De Divina Proportione. Pub-
lished in 1509, it spends its first section motivating the di-
vinity of the golden ratio; in particular by emphasising that
the golden ratio appears in the dodecahedron, which is a rep-
resentation of the aether [11]. The book’s lasting success even
outside mathematics circles may in part be due to its masterful
illustrations of the Platonic solids and various other geome-
tries, in drawings signed Leonardo da Vinci. In fact, the works
of many artists feature the Platonic solids; ranging from the re-
naissance mosaics in the cathedral of San Marco in Venice to
the 20’th century works of Maurits Escher, who incidentally
also kept a coveted model of the nested Platonic solids in his
office [12]. Salvador Dalí’s 1955 painting The Sacrament of
the Last Supper (framed in the golden ratio) sets stage inside
a dodecahedron.

In the realm of natural philosophy, the Platonic solids found
a new role in the 1597 publication of Mysterium Cosmograph-
icum authored by Johannes Kepler. Kepler proposed a model
of the heliocentric solar system in which the six known planets
were modeled by nesting the five Platonic solids and inscrib-
ing and circumscribing them by spheres [13]. Although this
model was later abandoned due to its inconsistencies with as-
tronomical observations, it served as a stepping stone to Ke-
pler’s three laws of planetary motion. Albeit not in the so-
lar system, the Platonic solids present themselves elsewhere
in nature. Three of them are natural structures of crystals.
A range of Boron compounds include Boron-12 which takes
an icosahedral form. The icosahedron is also the structure of
many species of Radiolaria and viruses, e.g. polio. Curiously,
it was the discovery of the icosahedral phase in quasicrystals
that led to the Nobel prize in chemistry in 2011 [14]. No-
tably, the most common silicates are structured as a silicon
atom binding to four oxygen atoms. The silicon atom sits at
the center of a tetrahedron with the oxygen atoms sitting at
its vertices. Interestingly, silicates comprise the majority of
Earth’s crust and mantle, and they are often the dominating
mineral in various forms of soil. Perhaps, had Plato ascribed
the tetrahedron rather than the cube as the manifestation of
earth, his metaphysical ideas might have better withstood the
test of time.

III. A BRIEF HISTORY OF BELL INEQUALITIES

This section provides a non-technical introduction to Bell
inequalities. Readers interested mainly in the technical con-
siderations may proceed immediately to the next section.

Modern science, with its emphasis on empiricism, has for
long left behind ideas of Euclidean geometry being fundamen-
tal to describing nature. The 19’th century saw the develop-
ment of curved (non-euclidean) geometry4 which in the early
20’th century found a fundamental role in Einstein’s theory

4 Non-euclidean geometry was the climax of two millennia of mathematical
discussions, first led by Greeks, then by Arabs and Persians and finally by
renaissance Europeans, about Euclid’s fifth postulate (parallel lines) [15].
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of gravity. The 20’th century also brought with it the per-
haps most radical change of scientific paradigm since the days
of Newton, namely the theory of quantum mechanics, which
governs nature on the scale of atoms and elementary particles.
The most radical predictions of quantum mechanics defied the
principle of locality, i.e. that events that are very far separated
in space and time cannot influence each other5 [16]. This
counterintuitive feature put quantum mechanics on an appar-
ent collision course with the famous no-signaling principle.

Quantum mechanics claimed that two objects, separated by
large distances could still influence each other. Take a pair of
atoms, which have a magnetic moment due the angular mo-
mentum and spin of their electrons and nucleus. We mea-
sure the direction of the atom’s magnetic moment. Quantum
mechanics tells us that if we were to find the magnetic mo-
ment of the first atom pointing upwards, then this can change
the magnetic moment of our second atom so that it will also
be found pointing upwards. This influence is immediate, and
does not even require some carrier (e.g. a mechanical wave or
light) to bring it from one atom to the other. Today, this phe-
nomenon is famous under the name entanglement: the fact
that the whole system is greater than the collection of its indi-
vidual parts. Remarkably, however, quantum mechanics still
manages to peacefully coexist with the principle of no-faster-
than-light communication. The reason is that although distant
systems influence each other, the influence does not carry any
information from one system to the other. In the 1920s, the
question of whether entanglement exists prompted an inten-
sive series of debates between Einstein and Bohr; the former
speaking of a “spooky action at a distance“, and the latter in
support of quantum mechanics.

Nevertheless, and most remarkably, in 1964 physicist John
Bell proved that the existence of entanglement could in fact
be scientifically settled [17]. Bell found a way of capturing
the essence of what local theories predicted about the corre-
lations between the magnetic moments. For example, if one
finds the first magnetic moment pointing in some direction,
how often does one also find the second magnetic moment
pointing in the same direction? If the former points to the
left, to what extent does it mean that the latter will be point-
ing right? Answering such questions tells us the correlations
between the two distant magnetic moments. Bell showed that
some correlations that were possible in quantum mechanics
were in fact impossible in local theories; local correlations
obey relations today known as Bell inequalities, which can
be violated in quantum theory [18]. The existence of entan-
glement could therefore be confirmed by an experiment (see
Fig. 2 for an illustration of a Bell experiment) successfully
violating a Bell inequality. Early experiments strongly sup-
ported quantum mechanics [19, 20] and the matter was def-
initely settled by experiments in 2015 [21]. The monumen-
tal violation of Bell inequalities established entanglement as

5 It is interesting to point out that some earlier theories such as Newtonian
gravity in fact did not respect the principle of locality; gravity propagates
instantaneously. This was, however, generally perceived as a major draw-
back.

FIG. 2: Illustration of a Bell experiment. Two separate atoms that
are entangled with each other are sent to different stations where
their magnetic moments are measured along various directions. Each
measurement answers whether the magnetic moment points up or
down the axis along which it is measured. In a Platonic Bell in-
equality, the best measurements at each station are those that form a
Platonic solid.

a natural phenomenon which gave rise to the today rapidly
developing field of quantum information theory. This field
promises things such as quantum computers, quantum cryp-
tography and teleportation as exciting technologies in a cur-
rently unraveling “second quantum revolution“ [22].

IV. THE PLATONIC SOLIDS

A three-dimensional solid that has sharp corners, straight
edges and polygonal faces is called a polyhedron. The Pla-
tonic solids is the umbrella term for all polyhedra that are
both convex and regular. In an intuitive but informal way, this
means that

• Convex polyhedron: every two points inside the poly-
hedron can be connected with a straight line that itself
is inside the polyhedron.

• Regular polyhedron: the edges, vertices and faces re-
spectively look the same.

In two dimensions, it is easily seen that there are infinitely
many regular convex polygons. Remarkably, the situation
changes completely in three dimensions; Euclid proved that
there are only five regular convex polyhedra. These are called
the Platonic solids (see Fig. 1). Let us briefly review each of
them.

• Tetrahedron. A triangular pyramid with four faces,
four vertices and six edges.

• Octahedron. A triangular antiprism with eight faces,
six vertices and twelve edges.

• Cube. A box with six square faces, eight vertices and
twelve edges.

• Icosahedron. 20 triangular faces, twelve vertices and
30 edges. By dividing its vertices suitably in three sets
of four, one can inscribe three perpendicular golden
rectangles.

• Dodecahedron. Twelve pentagonal faces, 20 vertices
and 30 edges. Its surface area, volume and distance be-
tween adjacent vertices are related to the golden ratio.

353



4

To every polyhedron, we can associate a partner polyhedron
called its dual. The dual of the dual is again the original poly-
hedron. To construct the dual of a polyhedron, the main idea
is to let the vertices of the dual pass through the midpoint of
the faces of the original polyhedron. The Platonic solids ex-
hibit particularly elegant duality relations: the tetrahedron is
its own dual whereas the octahedron and cube are dual to each
other and similarly for the icosahedron and the dodecahedron.
Thus, the dual of a Platonic solid is always a Platonic solid.

V. BELL INEQUALITIES

The magnetic moment of an atom is a direction in three-
dimensional space; we can think of it as an arrow denoted
~n on a unit-radius sphere. Imagine that we want to measure
the magnetic moment. This can be done along any axis we
want, labeled by an arrow ~m on our sphere. Quantum me-
chanics tells us how to compute the probability of our mag-
netic moment, initially in direction ~n, being found up (along
the positive axis) and down (along the negative axis) respec-
tively, when measured along ~m.

Let us now add a second atom. We separate the pair, send-
ing one atom to Alice and one atom to Bob. Alice may
measure the magnetic moment of her atom in various di-
rections. Let us say that she has NA different directions to
choose from. We label her choice of measurement direc-
tion x = 1, . . . , NA and label the corresponding direction by
~ax. Similarly, Bob may measure his magnetic moment in one
of NB different directions. We label his choice of direction
y = 1, . . . , NB and the specific direction by ~by . For given
choices of measurements, there are four possible outcomes.
These are ++,+−,−+ and −−. If Alice and Bob have the
same outcome, i.e. either ++ or −−, we say that Alice and
Bob are correlated. If they have different outcomes, either
+− or −+, we say that Alice and Bob are anticorrelated. It
is therefore handy to introduce a correlator which captures the
degree of correlation or anticorrelation;

E(x, y) = p(+,+) + p(−,−)− p(+,−)− p(−,+). (1)

The closer E is to one (negative one), the stronger are the
correlations (anticorrelations). When E = 0 there are no cor-
relations between the outcomes.

We wish to determine whether the correlations contained
in the list {E(x, y)}x,y can be explained by local theories.
To this end, we must construct Bell inequalities. These are
inequalities of the form

B ≡
NA∑

x=1

NB∑

y=1

cx,yE(x, y)
local
≤ C, (2)

where cx,y are some real numbers and C is a bound that is
respected by all possible local theories. We emphasise that the
local bound holds irrespective of the measurement directions
used to obtain the expectation values.

What does it mean that the correlations can be modeled
with a local theory? Local models assume that when the parti-

cles were created, they were endowed with some shared prop-
erty λ. A measurement simply reveals that already existing
property. If Alice chooses measurement x, a local model de-
termines whether the outcome is + or − given the property λ.
The analogous goes for Bob. However, we do not know what
specific property λ represents. Our ignorance of it is repre-
sented by a probability distribution p(λ). Therefore, in a local
model, the correlators reads

E(x, y) =
∑

λ

p(λ)EA
λ (x)E

B
λ(y). (3)

Thus, to find the local bound C in Eq. (2), we must maximise
B over p(λ). Fortunately, this can be determined by checking
a finite number of specific choices of p(λ) (all the determinis-
tic responses of Alice and Bob) and pick the largest one [24].

The critical point is that Bell inequalities can sometimes be
violated (B > C) if the Bell experiment is modeled within
quantum mechanics, i.e. by Alice and Bob having their two
magnetic moments in an entangled state. The most interest-
ing case is when the two magnetic moments are maximally
entangled, i.e. in the state

|φ+〉 = | ↑↑〉+ | ↓↓〉√
2

. (4)

This state has the remarkable property that if Alice measures
her magnetic moment along direction ~n, the magnetic moment
of Bob ends up also pointing either up or down the axis ~n (up
to a reflection in the xz-plane). This paves the way for quan-
tum correlations that violate the Bell inequality and therefore
do not admit a local model. The natural question becomes,
how strong can quantum correlations be? How much can they
violate a Bell inequality? In what follows, we construct Bell
inequalities that achieve their maximal correlations in quan-
tum mechanics by Alice and Bob choosing their measurement
directions ~ax and ~by to respectively point to the vertices of a
Platonic solid.

By Platonic Bell inequality, we mean to say a Bell inequal-
ity that is maximally violated in quantum theory with mea-
surements forming pairs of Platonic solids (see Fig. 2). No-
tably, Platonic solids have previously been used in the context
of quantum mechanics, e.g. to construct correlation tests for
a phenomenon known as steering [25], which is a weaker no-
tion of a genuinely quantum phenomenon, as compared to the
violation of Bell inequalities.

VI. TWO SIMPLE PLATONIC BELL INEQUALITIES

We begin by presenting two particularly simple Platonic
Bell inequalities. Their simplicity stems from the fact that
all the coefficients cx,y appearing in Eq. (2) are either +1,
−1 or 0, and that the Bell inequalities are constructed by in-
specting the symmetries between a Platonic solid and its dual
Platonic solid. Our first Platonic Bell inequality gives Alice
and Bob measurement settings that correspond to a cube and
an octahedron respectively (being dual polyhedra). Our sec-
ond Platonic Bell inequality is based on the icosahedron and
the dodecahedron (again being dual polyhedra).
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FIG. 3: A compound of two dual Platonic solids: the cube and the
octahedron. For each vertex of the octahedron (for example green
point), four vertices of the cube are equally close to it (red points)
whereas the remaining four vertices of the cube are equally distant to
it (blue points).

A. The first Platonic Bell inequality

We construct a Platonic Bell inequality for the cube and the
octahedron. To this end, we consider a Bell experiment in
which Alice has eight possible settings which we label by a
three-bit string x = x1x2x3 ∈ {0, 1}3 and Bob has six possi-
ble settings y = y1y2 which we label by a trit y1 ∈ {1, 2, 3}
and a bit y2 ∈ {0, 1}. In order to construct the Bell inequal-
ity, we visualise a compound of a cube and an octahedron (see
Fig. 3). The fact that these solids are dual to each other makes
the compound highly symmetric. We exploit this to construct
our Platonic Bell inequlity.

We now reason as follows. If Alice’s and Bob’s magnetic
moments are maximally entangled, it means that if Alice mea-
sures her magnetic moment in the direction corresponding to
the vertex of the octahedron (green point) and finds the out-
come (say) +, she will remotely prepare Bob’s magnetic mo-
ment in the same state (up to reflection in the xz-plane) as
that into which her state has collapsed. Also, if a magnetic
moment points in direction ~n and is measured along ~m, the
correlations (anticorrelations) are stronger the closer (more
distant) the two vectors are. Four of the vertices of the cube
(red points) are close, and equally close, to the vertex of the
octahedron (green point). Therefore, we let the reasonably
strong correlations contribute towards our Bell inequality test;
specifically we put cx,y = 1. Similarly, the other four vertices
of the cube (blue points) are distant, and equally distant, from
the vertex of the octahedron (green point). Hence, we let the
reasonably strong anticorrelations contribute towards our Bell
test; we put cx,y = −1. Repeating this reasoning for every
vertex of the octahedron, we arrive at the first Platonic Bell
inequality. It reads

Bcuboct =
∑

x,y

(−1)xy1+y2E(x, y)
local
≤ 24. (5)

The local bound is obtained by considering all assignments of
+ and − to the outcomes of Alice and Bob. To derive it, we
write Ax, By ∈ {±1} and impose the form of Eq. (3). This
gives

Bcuboct =

∑

x

Ax
∑

y

(−1)xy1
+y2By ≤

∑

x

∣∣∣∣∣
∑

y

(−1)xy1
+y2By

∣∣∣∣∣

=
∑

x

∣∣∣(−1)x1(B10 −B11) + (−1)x2(B20 −B21)

+ (−1)x3(B30 −B31)
∣∣∣. (6)

Notice that for all y1, we have By10 − By11 ∈ {−2, 0, 2}. A
little inspection shows that it is optimal to never choose the
value zero. In fact, as long as we choose By10 − By11 =
±2, we always find the local bound Bcuboct = 24. We remark
that the Bell inequality (5) is closely related to the so-called
Elegant Bell inequality [26]; the settings of Alice and Bob are
merely doubled.

Now, in order to show that we indeed have a Platonic Bell
inequality, we must derive the maximal quantum violation and
show that it is achievable with a cube on Alice’s side and an
octahedron on Bob’s side. If we let Alice and Bob share the
maximally entangled state and perform measurements corre-
sponding to these Platonic solids, we find that

Bcuboct = 16
√
3 ≈ 27.71, (7)

which is a violation of the Bell inequality.
Let us now prove that no larger value is possible in quan-

tum theory i.e. there exists no entangled state (of potentially
higher dimension) and no local measurements that can gener-
ate a larger Bell inequality violation. We write

Bcuboct =
∑

x

〈αx|βy〉 (8)

where

|αx〉 = Ax ⊗ 11|ψ〉 (9)

|βx〉 = 11⊗
∑

y

(−1)xy1
+y2By|ψ〉. (10)

Here Ax is a general observable of Alice and By is a general
observable of Bob. We use the Cauchy-Schwarz inequality,
the fact that 〈αx|αx〉 = 1 and a simple concavity inequality to
write

Bcuboct ≤
∑

x

√
〈βx|βx〉 ≤

√
8

√∑

x

〈βx|βx〉. (11)

Let us now consider the sum under the square-root on the
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FIG. 4: A compound of two dual Platonic solids: the icosahedron and
the dodecahedron. For each vertex of the icosahedron (for example
green point), five vertices of the dodecahedron are (equally) close to
it (red points) whereas another five vertices of the dodecahedron are
(equally) distant to it (blue points).

right-hand-side. We find

∑

x

〈βx|βx〉 =
∑

x

∑

y,y′

(−1)xy1+xy′
1
+y2+y

′
2〈ψ|ByBy′ |ψ〉

=
∑

y,y′

(−1)y2+y′2
(∑

x

(−1)xy1+xy′
1

)
〈ψ|ByBy′ |ψ〉

= 8
∑

y1,y2,y′2

(−1)y2+y′2〈ψ|By1y2By1y′2 |ψ〉

= 48− 8
∑

y1

〈ψ|{By10, By11}|ψ〉 ≤ 96, (12)

where we have used that B2
y = 11 and that {By10, By11} ≥

−211. Inserting this into Eq. (11), we recover the quantum
bound Bcuboct ≤ 16

√
3. We conclude that our inequality (5)

indeed is a Platonic Bell inequality for the cube and the octa-
hedron.

B. The second Platonic inequality

Our first Platonic Bell inequality relied on exploiting the
duality between the cube and the octahedron. The same intu-
ition can be used to construct a simple Platonic Bell inequal-
ity for Alice performing measurements forming an icosahe-
dron and Bob performing measurements forming a dodecahe-
dron. Since the vector antipodal to every vector pointing to a
vertex of the icosahedron and the dodecahedron respectively
also points to a vertex, we can simplify the setting by only
supplying Alice and Bob with a number of settings equal to
half the number of vertices in the icosahedron and dodeca-
hedron respectively. This means that we consider a Bell in-
equality test in which Alice has six settings and Bob has ten

settings. In analogy with the previous, we visualise a com-
pound of the icosahedron and the dodecahedron, see Fig. 4.
Duality presents us with a highly symmetric compound which
we exploit to construct our Bell inequality. Again, we imagine
that the two magnetic moments are maximally entangled and
that Alice therefore remotely prepares Bob’s magnetic mo-
ment in the same direction as her own once she has measured
it. Then, both the magnetic moments will (for example) point
to the vertex (green point) of the icosahedron. Since this ver-
tex is close, and equally close, to five vertices of the dodeca-
hedron (red points) while distant, and equally distant, to five
other vertices of the dodecahedron (blue points), we reward
(put cx,y = 1) correlations in the first five events and anal-
ogously reward (put cx,y = −1) anticorrelations in the lat-
ter five events. In the event of Bob measuring in a direction
corresponding to a vertex of the dodecahedron which is nei-
ther among the five close nor the five distant ones, we give no
reward (cx,y = 0). This simple reasoning leads to a list of
coefficients which can straightforwardly be rearranged (per-
mutations and global sign flips) to the coefficients

cicodod =




1 1 1 0 1 1 0 0 0 0
1 1 0 1 0 0 1 1 0 0
1 0 1 1 0 0 0 0 1 1
0 1 0 0 1 0 1 0 −1 −1
0 0 1 0 0 1 −1 −1 1 0
0 0 0 1 −1 −1 0 1 0 1




(13)

The corresponding Bell inequality becomes

Bicodod =

6∑

x=1

10∑

y=1

cicodod
x,y E(x, y)

local
≤ 20, (14)

where the local bound is obtained by considering all assign-
ments of outcomes (+,−) to Alice and Bob.

By sharing the maximally entangled state |φ+〉 and Alice
performing measurements corresponding to an icosahedron
and Bob performing measurements corresponding to a dodec-
ahedron, we obtain the quantum value

Bicodod = 2
√
45 + 60ϕ ≈ 23.84, (15)

where ϕ = 1+
√
5

2 is the golden ratio. We have confirmed
the optimality of this value (up to machine precision) using
the hierarchy of quantum correlations [27]. This shows that
Eq. (14) indeed is a Platonic Bell inequality. We note that one
can attempt a more standard analytical proof of the quantum
bound via the method used to derive the optimality of Eq. (7).
However, this is significantly more cumbersome due to the
increased number of settings.

VII. A SYSTEMATIC METHOD

Let us now outline a more general approach to the construc-
tion of Platonic Bell inequalities. Here, we choose a pair of
Platonic solids for Alice and Bob and construct a Bell inequal-
ity for which the chosen solids are optimal.
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Tetrahedron Octahedron Cube Icosahedron Dodecahedron
Tetrahedron 16/3 | 16/3 7.82 | 8 9.24 | 32/3 14.78 | 16 22.82 | 80/3
Octahedron - 12 | 12 13.86 | 16 21.96 | 24 34.40 | 40

Cube - - 64/3 | 64/3 29.89 | 32 47.51 | 160/3
Icosahedron - - - 41.89 | 48 63.57 | 80

Dodecahedron - - - - 109.7 | 400/3

TABLE I: Local (left) and quantum (right) bounds for Bell inequalities for all pairs of Platonic solids. In all cases except that of two tetrahedra,
two octahedra and two cubes we find a quantum violation. In all cases but these, we have Platonic Bell inequalities.

Let the vectors pointing to the vertices of Alice’s Platonic
solid be denoted {~vx}. Similarly, the vectors {~uy} denote the
vertices of Bob’s Platonic solid. For simplicity, we let Alice
have the solid with the smaller number of vertices. Consider
now the following Bell inequality

BPlato ≡
NA∑

x=1

NB∑

y=1

(~vx · ~u∗y)E(x, y)
local
≤ C, (16)

where ~u∗ = (u1,−u2, u3). That is, we reward correlations
and anticorrelations between Alice and Bob by an amount cor-
responding to the scalar product between the vertices of the
desired Platonic solids (up to one being reflected in the xz-
plane). It is worth noting that the Bell inequality depends on
the relative angle between the two Platonic solids, which typ-
ically also will influence the local bound. The local bound C
can straightforwardly be evaluated by considering all output
strategies;

C = max
A1,...,ANA∈{±1}

NA

B1,...,BNB∈{±1}
NB

∑

y

By
∑

x

(~vx · ~u∗y)Ax

= max
A1,...,ANA∈{±1}NA

∑

y

∣∣∣∣∣
∑

x

(~vx · ~u∗y)Ax
∣∣∣∣∣ . (17)

Thus, we find the local bound by considering 2NA evaluations.
Let us now evaluate the value of BPlato in a quantum model

in which Alice and Bob share the maximally entangled state
|φ+〉. We let Alice’s measurements be represented by the
vectors ~ax = ~vx and Bob’s measurements be represented by
~by = ~uy . We find

BPlato =
∑

x,y

(~vx · ~u∗y)〈φ+|Ax ⊗By|φ+〉

=
∑

x,y

(~vx · ~u∗y)〈φ+|11⊗ByAT
x|φ+〉

=
∑

x,y

(~vx · ~u∗y)〈φ+|11⊗ (~u∗y · ~σT)(~vx · ~σT)|φ+〉

=
∑

x,y

(~vx · ~u∗y)2 (18)

In the second line, we have used that for any observable R ⊗
11|φ+〉 = 11 ⊗ RT|φ+〉 and in the penultimate line we have
used that tr

(
(~u∗y · ~σT)(~vx · ~σT)

)
= 2~vx · ~u∗y .

FIG. 5: The truncated icosahedron is an Archimedean solid with 32
faces, 60 vertices and 90 edges.

Let us now consider the maximal quantum correlations. We
note that there are 15 possible pairs of Platonic solids (includ-
ing when both solids are the same). For each of these 15 cases,
we have constructed the Bell inequality (16), computed the
quantum value (18) and compared it to the maximal quantum
value obtained via the first level of the hierarchy of quantum
correlations. We find that the quantum strategy based on the
Platonic solids always is optimal. In Table I we compare the
maximal quantum correlations with the local bound. We see
that in all cases except for that of two tetrahedra, two octahe-
dra and two cubes, the quantum correlations violate the local
bound67. Moreover, due to the structure of the Platonic Bell
inequalities, the maximal quantum value of BPlato is a simple
rational number.

6 Since the relative angle between the two Platonic solids matters, we specify
that the vertices of the Platonic solids where chosen to be the ones given
by the software Mathematica’s built-in function "PolyhedronData".

7 We remark that the visibility required for a violation in the presence of
white noise is the ratio between the local and quantum bounds.
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A. A Buckyball Bell inequality

The Bell inequality construction (16) also works for some
polyhedra that are not Platonic solids. Here, we illustrate this
fact by considering a so-called Archimedean solid8. Specifi-
cally, we focus on the solid obtained from cutting an icosahe-
dron symmetrically at every vertex so that each of them is re-
placed with a facet. Since at every vertex of the icosahedron,
five of its faces meet, the cut polyhedron, called a truncated
icosahedron, has five times as many vertices. The truncated
icosahedron therefore has 60 vertices and its faces are either
identical pentagons or identical hexagons - see Fig. 5 for an
illustration. Incidentally, the truncated icosahedron is the de-
sign of the classic football and the structure of the carbon al-
lotrope Buckminsterfullerene. The latter is often colloquially
referred to as a “Buckyball“.

In analogy with the Platonic Bell inequalities, we obtain a
Buckyball Bell inequality using the construction in Eq. (16).
To facilitate the fact that Alice and Bob will have 60 mea-
surements each, we note that if a vector points to a vertex of
the Buckyball, then the antipodal vector also points to a ver-
tex of the Buckyball. Therefore, we only supply Alice and
Bob with 30 measurements each, which are intended to point
to the 30 vertices of the Buckyball which are not antipodal to
each other. By choosing two perfectly aligned Buckyballs, the
resulting Buckyball Bell inequality is

BBuckyball
local
≤ 20

109
(461 + 493ϕ) ≈ 230.952 (19)

BBuckyball
quantum
≤ 300, (20)

where the quantum bound is obtained via the hierarchy of
quantum correlations and saturated by choosing the Bucky-
ball in Eq. (18). The local bound is obtained by evaluating
Eq. (17).

VIII. OUTPERFORMING THE CHSH BELL INEQUALITY

The simplest Bell inequality test requires only two mea-
surements each for Alice and Bob. The Bell inequality
which describes this setting is known as the Clauser-Horne-
Shimony-Holt (CHSH) inequality [1]. In fact, the CHSH in-
equality can straightforwardly be obtained from our general
form in Eq. (16) by choosing ~v1 = (1, 0, 0) and ~v2 = (0, 0, 1)

as well as ~u1 = (1, 0, 1)/
√
2 and ~u2 = (1, 0,−1)/

√
2. The

CHSH inequality reads

BCHSH ≡ E(1, 1)+E(1, 2)+E(2, 1)−E(2, 2)
local
≤ 2. (21)

Via Eq. (18), we saturate the maximal quantum violation,
BCHSH = 2

√
2.

8 The Archimedean solids are the semi-regular convex polyhedra (excluding
the Platonic solids, prisms and antiprisms) of which there are 13.

An interesting question is the amount of disturbance that
the quantum implementation can tolerate before ceasing to vi-
olate a Bell inequality. This is commonly modeled by mixing
the desired quantum state (typically, the maximally entangled
state) with white noise represented by the maximally mixed
state, i.e.

ρv = v|φ+〉〈φ+|+ 1− v
4

11, (22)

where v ∈ [0, 1] is called the visibility. It is then relevant
to find the critical visibility below which one can no longer
violate a Bell inequality. In the case of the CHSH inequal-
ity, a simple computation shows that the critical visibility is
v = 1/

√
2 ≈ 0.7071. As it has turned out, only few Bell

inequalities can outperform the CHSH inequality in terms of
their critical visibility for the maximally entangled state. The
first example was reported in 2008; Ref. [28] constructed a
Bell inequality with 465 settings on each side and showed a
critical visibility of v ≈ 0.7056. Recently, Bell inequalities
with 42 settings on each side have been discovered, that fur-
ther reduce the critical visibility of the maximally entangled
state to v ≈ 0.7012 [23]. The method for finding the latter
Bell inequality relies on the development of an efficient algo-
rithm for finding a separating hyperplane between a point and
a convex set. In this context, the point is a quantum probabil-
ity distribution measured in a Bell experiment and the convex
set is the set of local correlations.

We have implemented the algorithm of Ref. [23] based on
the Buckyball. Specifically, we compute the probability dis-
tribution corresponding to Alice and Bob measuring along
aligned Buckyballs on the maximally entangled state. Via the
algorithm, we find a hyperplane that separates it from the local
set. Such a hyperplane can be written as the left-hand-side of
a general Bell inequality, i.e. as in Eq. (2). We compute the lo-
cal bound associated to the hyperplane as well as the maximal
quantum violation. This gives us a new probability distribu-
tion. We mix it with a small amount of noise, corresponding
to Eq. (22), and again run the algorithm. The procedure is
repeated, and thus, noise is added and the probability distribu-
tion is perturbed, until it appears that we no longer find Bell
inequalities with improved critical visibility. We illustrate the
procedure in Figure 6. Implementing this procedure based
on the Buckyball, we have found a 30 setting Bell inequal-
ity with a critical visibility of v ≈ 0.7054. Whereas we used
the Buckyball as our starting point, the quantum violation that
corresponds to the stated visibility is achieved with other poly-
hedra that have more complicated structures. Unfortunately,
the Bell inequality appears not to admit a simple analytical
form. However, for sake of completeness, we present it in
Appendix.

IX. LOST IN BEAUTY

There are different ways of reading our findings. First, there
is the attractive connection established between the beautiful
and historically rich Platonic solids and foundational relations
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FIG. 6: Illustration of our application of the algorithm of Ref. [23].
Starting from the quantum probability distribution obtained from the
Buckball, we find a Bell inequality that detects it. Then, we find the
best quantum violation of that Bell inequality and repeat the proce-
dure many times.

in our arguably most successful physics theory, quantum me-
chanics. But, secondly, there is a lesson to be learned here.
Mathematical beauty was our initial motivation. The derived
Platonic Bell inequalities are undoubtedly very elegant. How-
ever, admittedly, they are not experimentally friendly. They
require many more measurement settings than necessary and
in spite of the efforts going into developing an elegant con-
struction, their resistance to noise (which is unavoidable in
any experiment) is lower than in numerous simpler Bell in-
equalities. Naturally, it would be nice to see the Platonic Bell
inequalities be violated in experiments; motivated simply by

the appreciation of the Platonic solids and quantum nonlo-
cality. However, unless the relevant technology incidentally
happens to be set up and ready to use, it is unlikely that a
practically minded experimenter would perform such an ex-
periment. Indeed, only when we moved away from math-
ematical beauty, we eventually found a Bell inequality ex-
periment (somewhat related to the Archimedean Buckyball)
which is more noise resistant than the CHSH Bell inequality.
The improvement is small, but it illustrates that searching to
connect with experimental physics led us away from mathe-
matical beauty. We believe that this carries a general lesson,
namely that there is tension between mathematical beauty and
experimentally friendly theoretical models [3]. Mathematical
beauty can help in structuring the initial steps in new research
directions, but unless theoretical models have experimental re-
alities in mind, there is the danger of losing sight of empirical
sciences.
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X. NOISE-TOLERANT BELL INEQUALITY

Below we give the coefficients cx,y for a Bell inequality of
the form of Eq. (2) that outperforms the CHSH inequality in

terms of noise tolerance. The local bound of the Bell inequal-
ity is 145.0181 and a quantum violation of 205.5873 is pos-
sible using a maximally entangled state. Notably, the critical
visibility is the ratio of these two numbers, which is 0.7054.
We give the coefficients in two matrices: the first one cov-
ers the values y = 1, . . . , 15 and the latter covers the values
y = 16, . . . , 30.
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Unsharp measurements are increasingly important for foundational insights in quantum theory and
quantum information applications. Here, we report an experimental implementation of unsharp qubit
measurements in a sequential communication protocol, based on a quantum random access code. The
protocol involves three parties; the first party prepares a qubit system, the second party performs operations
that return both a classical and quantum outcome, and the latter is measured by the third party. We
demonstrate a nearly optimal sequential quantum random access code that outperforms both the best
possible classical protocol and any quantum protocol that utilizes only projective measurements.
Furthermore, while only assuming that the involved devices operate on qubits and that detected events
constitute a fair sample, we demonstrate the noise-robust characterization of unsharp measurements based
on the sequential quantum random access code. We apply this characterization towards quantifying the
degree of incompatibility of two sequential pairs of quantum measurements.

DOI: 10.1103/PhysRevLett.125.080403

Introduction.—Textbook measurements in quantum
theory are represented by complete sets of orthogonal
projectors. However, general measurements in quantum
theory are described by positive operator-valued measures
(POVMs), i.e., an ordered set of positive operators fMigi
with normalization

P
i Mi ¼ 1. Evidently, projective mea-

surements are instances of POVMs but not all POVMs are
projective measurements. These nonprojective measure-
ments are well defined in Hilbert spaces of fixed dimension
(otherwise they can be viewed as projective measurements
in a larger space [1]). They are foundationally interesting
and relevant to many phenomena and applications of
quantum theory.
Some nonprojective measurements are extremal in the

space of all POVMs with fixed Hilbert space dimension and
number of outcomes i.e., they cannot be simulated with
stochastic implementation of other measurements [2].
Whereas such POVMs have been studied in broad contexts
[2–11], far from all nonprojective measurements are of this
type. In fact, many interesting POVMs are unsharp
measurements, in the sense that they are weaker (noisy)

variants of projective measurements. By suitably tuning the
noise parameter (sharpness), an experimenter can control
the information-disturbance trade-off [12]; continuously
from extracting no information and inducing no disturb-
ance (noninteractive measurement) to extracting maximal
information and inducing maximal disturbance (sharp
projective measurement). Sequential unsharp measure-
ments that individually induce only a small disturbance
can be used for real-time monitoring of the evolution of
single quantum systems [13–16]. When sufficiently fre-
quent, such sequences effectively constitute continuous
measurements, which have broad relevance in quantum
information science (see, e.g., the review in Ref. [17]). Two
key application of sequential unsharp measurements are
adaptive measurement protocols [18,19] and quantum
feedback protocols [20–22]. Interestingly, such sequences
are also versatile as they can be used to realize the most
general quantum measurements [23]. Moreover, unsharp
measurements have prominent roles in a number of other
topics including weak values [24], entanglement amplifi-
cation [25], quantum random number generation [26], tests
of the memory capacity of classical systems [27] and
sequential quantum correlations [12,28–31]. This has
prompted a number of experiments focused on the imple-
mentation of incompatible measurements [32–34], quan-
tum contextuality [30], and quantum nonlocality [35–37].
Recently, Refs. [38,39] considered unsharp measure-

ments in a sequential implementation of a frequently
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encountered communication task known as a quantum
random access code (QRAC) [40–42]. In a (Q)RAC, a
sender, Alice, receives two input bits ðx0; x1Þ which she
encodes into a (qu)bit that is sent to a receiver, Bob. Bob
receives an input bit y and then attempts to choose his
output b such that it equals to Alice’s yth bit, i.e., b ¼ xy. In
an optimal classical protocol, Alice always sends x0; thus
Bob succeeds when y ¼ 0 and takes a random guess when
y ¼ 1, leading to an average success probability of 0.75.
However, a quantum advantage is obtained if Alice
prepares four qubit states forming a square on the equator
of the Bloch sphere and Bob measures two suitably aligned
Pauli observables, resulting in a success rate of ≈0.85.
From an alternative perspective, a QRAC can be viewed as
a certification tool that allows an experimenter to character-
ize the involved preparation and measurement devices
solely from its success rate, while assuming only that
the setup operates on qubits [43].
However, unsharp measurements in standard QRACs are

unremarkable as their outcome statistics can be simulated
by a measurement device that stochastically implements
projective measurements. Therefore, Refs. [38,39] consid-
ered a sequential scenario (see Fig. 1) in which the
postmeasurement state of Bob is relayed to another
receiver, Charlie, who receives an input bit z and analo-
gously attempts to recover the zth bit of Alice. Thus, Alice
sequentially implements a QRAC with Bob and Charlie in
the respective order. Here, unsharp measurements become
indispensable: in order for both QRACs to achieve a high
success rate, Bob must interact with the incoming system in
such a way that sufficient information is extracted to power
his guess of xy, while simultaneously the disturbance is
limited to allow Charlie to accurately guess xz.
Furthermore, it was shown [38,39] that sequential
QRACs can serve as certification tools for characterizing
the unsharpness of Bob’s operations while only assuming
that the states are qubits.
In this Letter, we report experimental implementation of

sequential QRACs using measurements of tunable unsharp-
ness and demonstrate nearly optimal quantum correlations
that outperform both all classical protocols as well as all
quantum protocols based only on projective qubit mea-
surements. We harvest these quantum communication

advantages to certify the unsharpness parameter by con-
fining it to a narrow interval. Subsequently, we theoretically
develop and experimentally demonstrate how the sequen-
tial QRACs can be applied to quantify the degree of
incompatibility [44] between two sequential pairs of
quantum measurements.
Scenario and theoretical background.—Based on

Refs. [38,39], we describe the sequential QRAC experi-
ment. It involves three parties, Alice, Bob, and Charlie (see
Fig. 1). Alice receives an input x≡ x0; x1 ∈ f0; 1g and
prepares some uncharacterized qubit state denoted ρx,
which she sends to Bob. Bob receives an input y ∈
f0; 1g and performs a corresponding operation on ρx.
This operation produces a classical output b ∈ f0; 1g
and some postoperation qubit state denoted ρy;bx , which
is sent to Charlie. Charlie receives an input z ∈ f0; 1g and
then measures ρy;bx , yielding an outcome c ∈ f0; 1g. All
inputs ðx; y; zÞ are statistically independent and uniformly
distributed. The limit of many rounds yields conditional
probability distributions pðb; cjx; y; zÞ.
The conditional probability distributions pðb; cjx; y; zÞ

are used to evaluate the success rate of two QRACs: one
between Alice and Bob, and one between Alice and
Charlie. The former is successful when b ¼ xy and the
latter is successful when c ¼ xz. The two respective success
rates read

WAB ¼ 1

8

X
x;y

Pðb ¼ xyjx; yÞ;

WAC ¼ 1

8

X
x;z

Pðc ¼ xzjx; zÞ: ð1Þ

Note that we can always take WAB;WAC ∈ ½1
2
; 1�.

Evidently, WAB is independent of Charlie. However,
WAC is not independent of Bob because he operates on
the system before it reaches Charlie.
Bob’s two operations (y ¼ 0, 1) are described by the

notion of a quantum instrument [45], which captures both
the measurement statistics and the evolution of the mea-
sured state. A quantum instrument is defined as an ordered
set of trace-non-increasing completely positive maps
fΛbjygb with the property that for any state ρ it holds
that pðbjyÞ ¼ tr½ΛbjyðρÞ�. Having observed the classical
output b, the quantum output of the instrument is
ρy;b ¼ ΛbjyðρÞ=tr½ΛbjyðρÞ�. Since we consider qubits and
Bob has binary outcomes, the extremal quantum instru-
ments are written as ΛbjyðρÞ ¼ KbjyρK

†
bjy, where fKbjygb

are Kraus operators satisfying
P

b Kbjy†Kbjy ¼ 1, with the
convenient property that Kbjy†Kbjy ¼ Bbjy where fBbjygb
are the two POVMs of Bob [46]. For simplicity, we can
represent Bob’s measurements in terms of two observables
which, in general, read By ≡ B0jy − B1jy ¼ αy1þ n⃗y · σ⃗,
where n⃗y are Bloch vectors, σ⃗ are the Pauli matrices, and
jαyj ≤ 1 − jn⃗yj. The sharpness of Bob’s measurements is

Alice 

      b    {0,1}

Input Input Input

Output Output

FIG. 1. Alice receives two bits x0, x1 and sends the qubit state
ρx0;x1 to Bob who receives an input y and produces a classical
output b and a quantum output ρy;bx0;x1 , which is measured by
Charlie according to his input z, yielding an outcome c.
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defined as ηy ¼ jn⃗yj. Notice that for ηy ∈ f0; 1g, the
measurements are noninteractive and sharp, respectively,
whereas ηy ∈ ð0; 1Þ corresponds to intermediate cases. We
consider the case of η≡ η0 ¼ η1. We emphasize that one
can stochastically simulate Bob’s unsharp POVMs using
only projective measurements, but one cannot simulate his
quantum instrument in this manner. Therefore, we can
distinguish a projective simulation from a genuine unsharp
measurement by considering both the classical and quan-
tum output.
By inspecting the witnesses ðWAB;WACÞ, one may

characterize the sharpness parameter η. References [38,39]
showed that for a given value of WAB, the optimal value of
WAC in quantum theory is given by

WAC ¼ 1

8

�
4þ

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16WAB − 16W2

AB − 2

q �
; ð2Þ

and that such an optimal pair implies a precise value of η.
However, in the experimentally realistic case in which
perfectly optimal quantum correlations are not relevant, a
suboptimal witness pair can be used to deduce upper and
lower bounds on η,

η ≥
ffiffiffi
2

p
ð2WAB − 1Þ≡ ηmin;

η ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ

ffiffiffi
2

p
− 4WACÞð2WAC − 1Þ

q
≡ ηmax: ð3Þ

Thus, the closer the experimentally observed correlations are
to the optimal ones in Eq. (2), the narrower is the interval
IðWAB;WACÞ≡ ½ηmin; ηmax� to which we can confine the
sharpness η.
Experiment.—The optimal quantum correlations (2) are

obtained with a unique quantum strategy (up to a global
unitary) [38]. Alice needs to prepare four states forming a
square on a great circle on the Bloch sphere. For simplicity
we choose the xz plane and Alice’s four states
jψx0x1i ¼ cos αx0x1 j0i þ sin αx0x1 j1i, corresponding to the
four values fðπ=8Þ;−ð3π=8Þ; ð9π=8Þ; ð5π=8Þg of αx0x1 ,
respectively, where ρx ¼ jψx0x1ihψx0x1 j. Similarly, the
optimal quantum instruments of Bob correspond to the

Kraus operators Kbjy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ð−1ÞbByÞ=2

q
for a suitably

chosen η, where By ∈ fησx; ησzg are the corresponding
observables of Bob. The quantum output is sent to Charlie
whose observables are two complementary projective
measurements C0 ¼ σx and C1 ¼ σz. In an ideal experi-
ment, for every η, we obtain the witness pair,

WAB ¼ 2þ ffiffiffi
2

p
η

4
; WAC ¼ 4þ ffiffiffi

2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2η2

p

8
; ð4Þ

which satisfies the optimality condition (2).
We implemented this optimal strategy, using single-

photon polarization qubits where the computational basis
corresponds to horizontal (H) and vertical (V) polarization,
i.e., jHi≡ j0i and jVi≡ j1i. The complete optical setup is

shown in Fig. 2. Alice’s preparation device also encloses a
heralded single photon source that produces photons at
wavelength 780 nm through spontaneous parametric down
conversion (SPDC) by pumping a type-I beta barium borate
(BBO) single crystal of thickness 2 mm using 390 nm fs
laser pulses. Time correlated idler and signal photons are
spectrally and spatially purified by passing through 3 nm
(FWHM) wide optical filters (F) and coupling into single
mode fibers (SMF), respectively. The idler photons in mode
“a” are detected by an avalanche photodiode (APD),
marked as DTrigger, with detection efficiency ∼60%, which
produces a trigger signal indicating the presence of a
photon in mode “b.” Alice prepares this photon in one
of the four desired states jψx0;x1i using a polarizer when it
only passes through jHi and a half-wave plate, HWP(A), at
angles 11.25°, −11.25°33.75° and −33.75°, respectively,
and sends it to Bob.
Bob’s unsharp measurements on the received photons

are performed using a shifted Sagnac interferometer as
described in Refs. [30,36]. In this setup the strength of the
measurement is controlled by rotating half-wave plate
HWP(1) to θ and HWP(2) to ðπ=4Þ − θ, that are placed,
respectively, in the path of horizontally and vertically
polarized beams after the polarization beam splitter
(PBS) such that η ¼ cosð4θÞ. To switch between the bases
By according to the input y, Bob rotates both his wave-
plates HWP(B1) and HWP(B2) to 22.5° and 0°, respec-
tively. The outcome of these measurements b ∈ f0; 1g is
encoded in the output path of the interferometer such that
b ¼ 0 (b ¼ 1) corresponds to the detection of the photon in
the output path “1” ≡ transmission (“2” ≡ reflection). In a
sequential scenario, we choose to consider only one output
path at a time to simplify the setup and by adding an
additional rotation to the HWP(B1) and HWP(B2), we can

SMF

SMF

D Trigger

F

Lens

BBO
2 mm

FC

Alice 

Polarizer

   HWP(A)

Heralded
source 

Charlie

PBS

MMF

FC

HWP(C)   

Bob HWP   (B2)   HWP     

HWP    (B1)   HWP     

FC

MMF

( )
HWP(1)

( /4 - )
HWP(2)

PBS
 (B1)   

a

b

FIG. 2. Experimental setup. Alice prepares her states using a
heralded photon source, a polarizer and a half-wave plate HWP
(A). Bob’s instrument is realized by a shifted Sagnac interfer-
ometer where the sharpness parameter η ¼ cosð4θ) is tuned using
half-wave plates HWP(1) and HWP(2). HWP(B1) and HWP(B2)
are used to switch between the observables B0 and B1 as well as
selecting the output corresponding to the outcome b ¼ 0 and
b ¼ 1. Charlie performs projective (sharp) measurements on the
received qubit from Bob using a HWP(C) and a polarization
beam splitter (PBS).
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select the output we want to analyze at a given time. Using
output 2, Bob will locally be able to learn the outcome of
his measurement counterfactually when using perfect
detectors. Also, when the fair sampling assumption is
invoked, which is the case in this experiment, Bob can
still infer his outcome of the measurement locally using
average photon rates.
Finally, Charlie’s projective measurement setup consists

of HWP(C), PBS, a pair of fiber couplers (FC) and
multimode fibers (MMF) that propagate the photons to a
pair of APDs. He performs Cz ∈ fσx; σzg on the received
qubits according to his random input z ∈ f0; 1g, by rotating
HWP(C) to 22.5° and 0°, respectively. The results of
Charlie’s marginal probabilities (for evaluating WAC) are
obtained by averaging out the inputs and outputs of Bob.
Results.—To evaluate ðWAB;WACÞ from the data, we

require the marginal probabilities appearing in Eq (1). All
parties setting are set using motorized rotation stages that
are controlled by a computer program. To gather sufficient
statistics we measure 60 sec in each setting with a rate of
∼20 kHz and collected at least 1.2 million events. Each
measured value of ðWAB;WACÞ together with the (black
color) error bars (horizontal and vertical corresponding to
WAB andWAC, respectively) is shown in Fig. 3 and can be
compared to the optimal quantum correlations (red color)
and the optimal classical correlations (blue color, given by
ðWAB;WACÞ ≤ 3=4). Our obtained quantum correlations
are nearly optimal for all considered values of η. Also, in
the worst case, the classical limit is outperformed by at
least 15 standard deviations. Moreover, the data reliably
outperforms the optimal quantum correlations attainable
when Bob uses stochastic projective measurements (green
color) (see Ref. [39]). This certifies the advantage of
unsharp measurements in sequential QRACs. Notably, the
projective bound is not outperfromed for the two data

points corresponding to η ∈ f0; 1g since in these
cases the bound coincides with the optimal quantum
correlations.
From the inequalities in Eq. (3), we can determine an

upper and a lower bound on the sharpness parameter. Thus, η
can be confined to the interval IðWAB;WACÞ for each of the
measured values of the witness pair ðWAB;WACÞ. These
certified intervals are depicted by gray bars in Fig. 3 located
vertically from the corresponding witness’ and using the y
axis on the right side. We observe that the certification is
more precise (the interval is smaller) as the sharpness
parameter increases. The smallest (largest) interval, corre-
sponding to an essentially projective (noninteractive) meas-
urement, has a width of about 10−3 (0.2). This is due to the
fact that the bounds in Eq. (3) become more sensitive to
small imperfections when WAC increases. Further details
about the experimental data is presented in the Supplemental
Material [47]. Moreover, in Ref. [47], we also compare this
characterization of unsharp measurements to a simple tomo-
graphic model with an essentially trusted preparation device
subjected to comparably small errors.
Data analysis.—The experiment is influenced by sys-

tematic errors originating from, for instance, imperfect
wave plates as well as offsets in their marked zero position,
finite PBS extinction and cross talk, and limited interfer-
ence visibility. The magnitude of these errors is revealed by
the extent to which the experimental points are shifted away
from the optimal quantum correlations. In order to mini-
mize systematic errors, we carefully select and characterize
all the optical components. This brings us closer to the
optimal quantum correlation and the experimental points
correspond to a more than 98% total visibility estimation.
Nevertheless, random errors due to Poissonian statistics or
due to repetition of the experimental settings with limited
precision will spread the observed point on Fig. 3 to a
region contained within the black bars. To keep this error
low, all the settings are set by computerized controlled
motors with repetition precision < 0.02°. Errors together
with mean values are provided in the Supplemental
Material [47].
Quantifying sequentual measurement incompatibility.—

In order to witness quantum correlations, one requires
incompatible measurements. In that sense, violating the
classical constraint with WAB (WAC) certifies that Bob’s
(Charlie’s) two POVMs are incompatible [48,49]. It is,
however, more informative to consider a quantitative
inference; is it possible to deduce from ðWAB;WACÞ a
lower bound on the extent to which Bob’s and Charlie’s
POVMs are incompatible? In order to achieve such
quantification of Heisenberg uncertainty, one must first
define a measure of incompatibility valid for dichotomic
qubit observables. We use the degree of incompatibility
introduced in Ref. [44];

Dðn⃗0; n⃗1Þ ¼ jn⃗0 þ n⃗1j þ jn⃗0 − n⃗1j − 2; ð5Þ
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FIG. 3. Experimental results. Optimal quantum correlations
(red), optimal quantum correlations from stochastic projective
measurements (green), optimal classical correlations (blue), and
experimentally obtained values of witness pairs ðWAB;WACÞ
(black). The characterization of the sharpness parameter η is
depicted by gray bars corresponding to the interval to which it is
confined (y axis on the right-hand side).
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where n⃗0 and n⃗1 are the Bloch vectors of the observables.
All compatible observables obey D ≤ 0 whereas incom-
patible observables obey D ≤ 2ð ffiffiffi

2
p

− 1Þ. As expected, the
bound is saturated by two Pauli observables. Since we are
interested in incompatible observables, we simply reset
negative values of D to 0. As shown in Supplemental
Material [47], the success rate of a QRAC implies a lower
bound on D:

D ≥ 8W − 6: ð6Þ

Thus, whenever a QRAC exceeds the classical bound
of 3

4
, a degree of incompatibility is certified and quantified.

By choosing W ¼ WAB, we use Eq (6) to quantify the
incompatibility of Bob’s unsharp measurements. The
bound in Eq. (6) can also be applied to Charlie’s mea-
surements, but it would significantly underestimate their
degree of incompatibility due to the sequential nature of the
experiment. A more sophisticated quantification is possible
when exploiting both WAB and WAC and the fact that
η ∈ IðWAB;WACÞ. Considering unbiased observables for
Bob, i.e., By ¼ ηðn̂y · σ⃗Þ, where n̂y is the normalized Bloch
vector, we show in the Supplemental Material [47] that
Charlie’s degree of incompatibility respects

D ≥ min
η∈IðWAB;WACÞ

16WAC − 8

1þ gη þ fWAB
ð1 − gηÞ

− 2 ð7Þ

where gη≡
ffiffiffiffiffiffiffiffiffiffiffi
1−η2

p
and fWAB

≡2ðηmin=ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðηmin=ηÞ2

p
.

Notice that if we choose not to exploit the certified
interval IðWAB;WACÞ, we may simply take the limit of
η → 0 and recover the bound in Eq. (6) for W ¼ WAC. In
Fig. 4 we show the degree of incompatibility as obtained
from the twelve experimentally measured witness pairs
ðWAB;WACÞ corresponding to different targeted values of
the sharpness parameter η. As expected, we see that the
incompatibility of Bob’s measurements decreases with η
and vanishes in the vicinity of η ¼ 1=

ffiffiffi
2

p
, which is the

theoretical threshold. For Charlie, we always find a high

degree of incompatibility which stems from his projective
measurements.
Conclusions.—By precise control of unsharp quantum

measurements, we demonstrated nearly optimal sequential
quantum random access codes that outperform not only the
best possible classical protocols but also the best possible
quantum protocols based only on projective measurements.
We harvested the quantum advantage in the communication
task in order to certify the degree of unsharpness in the
preformed measurements. Exploiting both the sequential
QRACs and the certification of the unsharpness, we
quantitatively demonstrated the incompatibility of two
sequential pairs of measurements across a wide range of
sharpness parameters. Our results demonstrate the useful-
ness of unsharp measurements in quantum communication
tasks, the possibility of quantifying the degree of incom-
patibility of sequential pairs of unsharp observables and the
practical feasibility of characterizing them under weak
assumptions.
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M. Bourennane, Self-testing non-projective quantum mea-
surements in prepare-and-measure experiments, Sci. Adv. 6,
16 (2020).

[12] R. Silva, N. Gisin, Y. Guryanova, and S. Popescu, Multiple
Observers Can Share the Nonlocality of Half of an
Entangled Pair by Using Optimal Weak Measurements,
Phys. Rev. Lett. 114, 250401 (2015).

[13] A. N. Korotkov, Continuous quantum measurement of a
double dot, Phys. Rev. B 60, 5737 (1999).

[14] J. Audretsch, T. Konrad, and A. Scherer, Sequence of
unsharp measurements enabling a real-time visualization
of a quantum oscillation, Phys. Rev. A 63, 052102 (2001).

[15] T. Konrad, A. Rothe, F. Petruccione, and L. Diósi, Mon-
itoring the wave function by time continuous position
measurement, New J. Phys. 12, 043038 (2010).

[16] K.W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi,
Observing single quantum trajectories of a superconducting
quantum bit, Nature (London) 502, 211 (2013).

[17] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf, Introduction to quantum noise, measure-
ment, and amplification, Rev. Mod. Phys. 82, 1155 (2010).

[18] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and
H. Mabuchi, Adaptive Homodyne Measurement of Optical
Phase, Phys. Rev. Lett. 89, 133602 (2002).

[19] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and
C. Bamber, Direct measurement of the quantum wave-
function, Nature (London) 474, 188 (2011).

[20] R. L. Cook, P. J. Martin, and J. M. Geremia, Optical
coherent state discrimination using a closed-loop quantum
measurement, Nature (London) 446, 774 (2007).

[21] G. G. Gillett, R. B. Dalton, B. P. Lanyon, M. P. Almeida,
M. Barbieri, G. J. Pryde, J. L. O’Brien, K. J. Resch, S. D.
Bartlett, and A. G. White, Experimental Feedback Control
of Quantum Systems Using Weak Measurements, Phys.
Rev. Lett. 104, 080503 (2010).

[22] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybar-
czyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini,
M. Brune, J-M. Raimond, and S. Haroche, Real-time
quantum feedback prepares and stabilizes photon number
states, Nature (London) 477, 73 (2011).

[23] O. Oreshkov and T. A. Brun, Weak Measurements Are
Universal, Phys. Rev. Lett. 95, 110409 (2005).

[24] Y. Aharonov, D. Z. Albert, and L. Vaidman, How the Result
of a Measurement of a Component of the Spin of a Spin-1=2
Particle can turn out to be 100, Phys. Rev. Lett. 60, 1351
(1988).

[25] Y. Ota, S. Ashhab, and F. Nori, Entanglement amplification
via local weak measurements, J. Phys. A 45, 415303 (2012).

[26] F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban,
P. Wittek, and A. Acín, Unbounded randomness certifica-
tion using sequences of measurements, Phys. Rev. A 95,
020102(R) (2017).

[27] A. Tavakoli and A. Cabello, Quantum predictions for an
unmeasured system cannot be simulated with a finite-
memory classical system, Phys. Rev. A 97, 032131 (2018).

[28] A. Bera, S. Mal, A. Sen(De), and U. Sen, Witnessing
bipartite entanglement sequentially by multiple observers,
Phys. Rev. A 98, 062304 (2018).

[29] A. H. Shenoy, S. Designolle, F. Hirsch, R. Silva, N. Gisin,
and N. Brunner, Unbounded sequence of observers exhibit-
ing Einstein-Podolsky-Rosen steering, Phys. Rev. A 99,
022317 (2019).

[30] H. Anwer, N. Wilson, R. Silva, S. Muhammad, A. Tavakoli,
and M. Bourennane, Noise-robust preparation contextuality
shared between any number of observers via unsharp
measurements, arXiv:1904.09766.

[31] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion,
D. Esteve, and A. N. Korotkov, Experimental violation of a
Bell’s inequality in time with weak measurement, Nat. Phys.
6, 442 (2010).

[32] F. Piacentini, A. Avella, M. P. Levi, M. Gramegna, G. Brida,
I. P. Degiovanni, E. Cohen, R. Lussana, F. Villa, A. Tosi,
F. Zappa, and M. Genovese, Measuring Incompatible
Observables by Exploiting Sequential Weak Values, Phys.
Rev. Lett. 117, 170402 (2016).

[33] Y. Kim, Y-S. Kim, S-Y. Lee, S-W. Han, S. Moon, Y-H. Kim,
and Y-W. Cho, Direct quantum process tomography via
measuring sequential weak values of incompatible observ-
ables, Nat. Commun. 9, 192 (2018).

[34] J.-S. Chen, M.-J. Hu, X-M. Hu, B.-H. Liu, Y.-F. Huang,
C.-F. Li, C.-G. Guo, and Y.-S. Zhang, Experimental reali-
zation of sequential weak measurements of non-commuting
Pauli observables, Opt. Express 27, 6089 (2019).

[35] M. Schiavon, L. Calderaro, M. Pittaluga, G. Vallone, and P.
Villoresi, Three-observer Bell inequality violation on a two-
qubit entangled state, Quantum Sci. Technol. 2, 015010
(2017).

[36] M.-J. Hu, Z.-Y. Zhou, X.-M. Hu, C.-F. Li, G.-C. Guo, and
Y.-S. Zhang, Observation of non-locality sharing among
three observers with one entangled pair via optimal weak
measurement, Quantum Inf. 4, 63 (2018).

[37] G. Foletto, L. Calderaro, A. Tavakoli, M. Schiavon,
F. Picciariello, A. Cabello, P. Villoresi, and G. Vallone,
Experimental Certification of Sustained Entanglement and
Nonlocality after Sequential Measurements, Phys. Rev.
Applied 13, 044008 (2020).

[38] K. Mohan, A. Tavakoli, and N. Brunner, Sequential random
access codes and self-testing of quantum measurement
instruments, New J. Phys. 21, 083034 (2019).

[39] N. Miklin, J. J. Borkała, and M. Pawłowski, Semi-device-
independent self-testing of unsharp measurements, Phys.
Rev. Research 2, 033014 (2020).

[40] A. Ambainis, A. Nayak, A. Ta-Shama, and U. Varizani,
Dense quantum coding and a lower bound for 1-way
quantum automata, in Proceedings of 31st ACM Symposium
on Theory of Computing (Association for Computing
Machinery (ACM), New York, 1999), pp. 376–383,
https://doi.org/10.1145/301250.301347.

[41] A. Ambainis, D. Leung, L. Mancinska, and M. Ozols,
Quantum random access codes with shared randomness,
arXiv:0810.2937.

[42] A. Tavakoli, A. Hameedi, B. Marques, and M. Bourennane,
Quantum Random Access Codes using Single d-Level
Systems, Phys. Rev. Lett. 114, 170502 (2015).

PHYSICAL REVIEW LETTERS 125, 080403 (2020)

080403-6

368



[43] A. Tavakoli, J. Kaniewski, A. Vértesi, D. Rosset, and
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Semi-device-independent certification of independent quantum state and measurement devices

Armin Tavakoli1
1Département de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland

Certifying that quantum devices behave as intended is crucial for quantum information science. Here, meth-
ods are developed for certification of both state preparation devices and measurement devices based on prepare-
and-measure experiments with independent devices. The experimenter assumes the independence of the devices
and knowledge of the Hilbert space dimension. Thus no precise characterisation of any part of the experiment is
required. The certification is based on a randomised version of unambiguous state discrimination and targets the
class of state ensembles corresponding to quantum t-designs of any size and any dimension. These quantum de-
signs are sets of states over which the average of any t-degree polynomial equals its average over all pure states,
and they accommodate many of the most useful discrete structures in quantum information processing. Further-
more, it is shown that the same experiments also certify the detection efficiency of the measurement devices, as
well as their non-projective nature. The presented methods can readily be implemented in experiments.

Introduction.— The precise control of quantum devices is
crucial for the development of quantum technologies and ex-
perimental tests of foundational phenomena in quantum the-
ory. Therefore, methods for certifying and characterising
quantum devices are indispensable in quantum information
science. Such methods allow one to ensure that, for example,
a state preparation device indeed prepares the intended state
or that a measurement device implements the desired mea-
surements. The most common approaches are quantum state
tomography [1] and quantum detector tomography [2]. In the
former, the state emitted by a preparation device is measured
in several different bases and the resulting outcome statistics
is used to determine the state. In the latter, the measurement
is determined from the outcome statistics obtained from prob-
ing it with different states. Therefore, the success of state
(detector) tomography hinges on the auxiliary measurement
(state preparation) device being precisely calibrated. Conse-
quently, imperfections on experimentally relevant parameters
in the auxiliary devices can undermine both state tomography
[3] and detector tomography [4]. Moreover, in order to pre-
cisely calibrate the auxiliary device itself, one typically also
requires a tomographic procedure which leads to an infinite
regress.

The requirement of precise control in tomography can be
overcome by more sophisticated certification methods. Meth-
ods have been developed for certifying states and measure-
ments in experimental settings in which a sender prepares
states and a receiver measures them but without neither device
requiring a detailed characterisation [5]. Instead, the only as-
sumption is that the Hilbert space dimension is known, which
can often be justified from inspecting the specific experimen-
tal setup. This so-called semi-device-independent (SDI) ap-
proach to certification of quantum devices benefits from the
fact that prepare-and-measure experiments are practical to im-
plement [6–11] while also allowing for realistic experimen-
tal imperfections. A variety of SDI certification methods
have been developed, e.g. for qubit states and measurements
[5], pairs of mutually unbiased bases and symmetric infor-
mationally complete measurements [12, 13], non-projective
qubit measurements [14, 15] and qubit quantum instruments
[16, 17]. The practical viability of SDI certification schemes
has also been experimentally demonstrated [4, 14, 18, 19].

With a few notable exceptions focused on dimension wit-
nessing [20, 21] and random number generation [10], previous
works on dimension-bounded quantum correlations in gen-
eral, and SDI certification schemes in particular, have adopted
models in which the involved quantum devices can be classi-
cally correlated in a stochastic and (to the experimenter) un-
known manner. Such models make the set of quantum corre-
lations convex, thereby considerably simplifying their analy-
sis. However, these models correspond to a paranoid setting
in which devices can classically conspire against the experi-
menter. In experiments that do not involve malicious parties,
it is often natural to assume that separate quantum devices are
independent.

In this work, we develop SDI certification methods for in-
dependent preparation and measurement devices. To this end,
we present a SDI variant of the well-studied task of unambigu-
ous state discrimination [22–24]. We prove that by observing
optimal correlations in this task, one can certify the collection
of states produced by the preparation device. The certifica-
tion has a broad scope of relevance since it targets any num-
ber of states in any dimension that form a quantum t-design
[25, 26]. A quantum t-design is a set of d-dimensional quan-
tum states with the property that the average of any t-degree
polynomial over the set equals the average taken over all pure
states. These interesting and highly symmetric structures have
broad applications in quantum information science. Examples
include quantum tomography [27, 28], quantum key distribu-
tion [29, 30], Bell inequalities [31], entropic uncertainty re-
lations [32] and entanglement detection [33, 34]. They also
accommodate (as special cases) some of the most intensely
researched and celebrated discrete Hilbert space structures
such as rank-one generalised measurements, complete sets of
mutually unbiased bases [35] and symmetric informationally
complete sets of states [36], as well as the Platonic solids [37].
Moreover, we also use the same task to show that useful prop-
erties of the measurement device can be certified. Specifi-
cally, we show that one can certify the detection efficiency of
the setup in a SDI manner. This is motivated by the fact that
detectors do not always succeed with detecting an incoming
physical system and that this is an important consideration in
many quantum information protocols. Importantly, in order
to make the certification of states and measurements experi-
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mentally relevant, we develop its robustness to errors. Finally,
we also exemplify the application of the scheme towards cer-
tification of non-projective measurements and show that it is
substantially more robust to errors than established SDI certi-
fication schemes based on classically correlated devices.

Randomised unambiguous state discrimination.— Our plat-
form for certifying quantum states and measurements is in-
spired by the textbook task of unambiguous state discrimina-
tion (USD). In USD, a sender (Alice) randomly chooses one
of two possible states, |φ1〉 and |φ2〉, and sends it to a receiver
(Bob). By measuring the incoming state, Bob tries to unam-
biguously decide which state he has received. Thus, he must
either correctly identify the state or declare that he does not
know the answer (inconclusive). His success rate is

pφ1,φ2

usd =
1

2
(p(1|φ1) + p(2|φ2)) , (1)

while no errors are made, i.e. p(1|φ2) = p(2|φ1) = 0. Nat-
urally, as soon as Alice’s two states are not perfectly dis-
tinguishable (orthogonal), Bob cannot achieve a perfect suc-
cess rate and must sometimes declare inconclusive rounds.
It is well-known [22–24] that Bob’s best measurement is
{M1,M2,M⊥} where

M1 =
11 − |φ2〉〈φ2|
1 + |〈φ1|φ2〉|

, M2 =
11 − |φ1〉〈φ1|
1 + |〈φ1|φ2〉|

, (2)

andM⊥ = 11−M1−M2, where “⊥“ denotes the inconclusive
outcome. This leads to the optimal success rate

max
M

pφ1,φ2

usd = 1 − |〈φ1|φ2〉|. (3)

In USD, the overlap of Alice’s two states is assumed to be
known. From this, we draw inspiration in order to construct
the task of randomised USD, in which Alice’s device requires
no precise characterisation but is assumed to produce states of
a known Hilbert space dimension.

In randomised USD, Alice generates a random input x ∈
{1, . . . , N} and subsequently produces a d-dimensional state
ρx. The state is sent to Bob who generates a random pair
of inputs y ≡ (y1, y2); these can be any one of the

(
N
2

)
or-

dered pairs (y1 < y2) of two positive integers no larger than
N . He then implements a corresponding measurement My =
{Mb|y}b with three possible outcomes b ∈ {1, 2,⊥}. The ran-
dom input informs him that his task is to unambiguously dis-
criminate between Alice’s two states {ρy1, ρy2}. Thus, when
x ∈ {y1, y2}, the task is to perform USD whereas otherwise
the round is inconsequential. Therefore, for a given input y,
the success rate is defined as

pyusd =
1

2
(p(1|y1, y) + p(2|y2, y)) , (4)

and the unambiguity requires p(1|y2, y) = p(2|y1, y) = 0 ∀y,
where the probabilities are given by the Born rule p(b|x, y) =
tr
(
ρxMb|y

)
. The performance in randomised USD is based

on all the individual USD tasks (for each y). To specify the
figure of merit, we first note that the rate of inconclusive
rounds is simply 1 − pyusd. We consider the moments of the

rate of inconclusive events accumulated over all the individ-
ual USD tasks:

St ≡
∑

y1<y2

(1 − pyusd)
2t
, (5)

where the integer t ≥ 1 is the order of the moments. As shall
soon become clear, this figure of merit is chosen due to its
connection to quantum designs and for enabling a handy tech-
nical treatment. Thus, randomised USD is parameterised by
the dimension d, the ensemble size N and the order t. Aiming
to perform USD well for every y means that Alice and Bob
aim to minimise St. Importantly, we stress that when N > d,
it is impossible for Alice to prepare her N states so that they
are all pairwise distinguishable (trivialising the task).

Certifying quantum designs.— We show that randomised
USD allows us to certify that Alice’s states form a quantum
t-design. While we presently restrict ourselves to an ideal set-
ting in which Bob’s discrimination is unambiguous for every
y, we will later consider the more general case in which the
discrimination features errors.

We use the fact that each of Bob’s measurements apply to a
single USD task (that corresponding to input y). This allows
us to write

min
quantum

St = min
{ρ}

∑

y1<y2

(
1 − max

My

pyusd

)2t

. (6)

Leveraging the fact that the devices are independent, the min-
imal value of St is achieved with pure states. Therefore, in
order to evaluate (6), we may write ρx = |ψx〉〈ψx|. Although
the states are d-dimensional, every pair {|ψy1〉, |ψy2〉} can be
viewed as an effective qubit embedded in the larger Hilbert
space. Therefore, for every y, it is optimal for Bob to perform
a measurement analogous to that in Eq (2). Hence, for given
states of Alice and input y, the optimal success rate is anal-
ogous to Eq (3). A simple re-arrangement of the summation
then gives

min
quantum

St = −N

2
+

1

2
min
{ψ}

∑

y1,y2

|〈ψy1 |ψy2〉|2t. (7)

At first sight, evaluating the right-hand-side seems challeng-
ing. However, the quantity subject to the minimisation is both
well-studied and closely linked to quantum designs; it is com-
monly referred to as the (t’th-order) frame potential [38].

A quantum design is a set {|φi〉} of N pure d-dimensional
states with the property that the average of any polynomial,
gt of degree t, taken over the set is identical to the average of
the same polynomial taken over all pure d-dimensional states.
That is,

1

N

N∑

i=1

gt(φi) =

∫
dφgt(φ), (8)

where dφ is the Haar measure on the space of pure quan-
tum states of dimension d. The polynomial gt can be writ-
ten as gt(φ) = 〈Φ|Gt|Φ〉 where |Φ〉 = |φ〉⊗t and Gt is some
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bounded operator in the symmetric subspace of (Cd)⊗t. It im-
mediately follows that a quantum t-design also is a t′-design
for t′ ≤ t. How does one determine whether a set of states is a
quantum design? The answer is based on the frame potential.
An ensemble ofN d-dimensional states constitutes a quantum
t-design if and only if it saturates the following lower bound
on the frame potential [26]

Vt({φ}) ≡
N∑

j,k=1

|〈φj |φk〉|2t ≥ N2t!(d− 1)!

(t+ d− 1)!
≡ Jt. (9)

With this knowledge of quantum designs in hand, we
can assert that the optimal quantum implementation of ran-
domised USD obeys

min
quantum

St ≥ 1

2
(Jt −N) ≡ Qt. (10)

The bound Qt can be saturated if and only if Alice’s states
form a t-design of dimension d compsed of N states. Hence,
this completes the certification. Moreover, notice that (10)
also serves as a family of device-independent dimension wit-
nesses for independent devices.

Certification under discrimination errors.— Since a small
rate of failed discriminations (incorretly identifying the state)
is to be expected in any realistic experiment, let us depart from
the ideal situation and consider certification of the prepara-
tions when Bob’s discrimination, for each input y, is subject
to an error rate. We show that certification of quantum designs
remains possible.

We adopt a model in which Alice’s two pre-established
equiprobable states |φ1〉 and |φ2〉 are to be discriminated in
such a way that the rate of incorrect announcements associated
to outcome 1 and 2 resepctively does not exceed ǫ ∈ [0, 12 ].
That is, the rate of error is bounded by q1 ≤ ǫ and q2 ≤ ǫ
where

q1 =
p(1|φ2)

p(1|φ1) + p(1|φ2)
, q2 =

p(2|φ1)
p(2|φ1) + p(2|φ2)

. (11)

Evidently, standard USD corresponds to choosing ǫ = 0. In-
terestingly, the problem of finding the optimal success rate
(1) under the bounded error conditions has been solved [39].
Ref [39] found that the optimal success rate is given by

pusd(ǫ) =

{
αǫ (1 − |〈φ1|φ2〉|) for ǫ ≤ ǫc
1
2

(
1 +

√
1 − |〈φ1|φ2〉2|

)
for ǫc ≤ ǫ,

(12)

where

αǫ =
1 − ǫ

(1 − 2ǫ)
2

(
1 + 2

√
ǫ (1 − ǫ)

)
(13)

and ǫc = 1/2
(
1 −

√
1 − |〈φ1|φ2〉|2

)
.

Equipped with this, we can now certify the preparation de-
vice also when the error rate ǫ is found in the data. From the
measured probabilities, one can appropriately choose ǫ. Then,

based on the observed error rate, we modify the original figure
of merit (5) so that it reads

Sǫt =
∑

y1<y2

(αǫ − pyusd)
2t
. (14)

Notice that the error-free case (ǫ = 0) returns the original
figure of merit since α0 = 1. To find the optimal value of
Sǫt , we can recycle the reasoning in the previous section. One
can account for the piecewise continuous feature in Eq (12)
by noticing that αǫ is monotonically increasing and that the
upper expression in (12) therefore serves as an upper bound
on the lower expression when ǫ ≥ ǫc. This can be applied
to our problem for every y and any ǫ. Then, we arrive at the
error-tolerant statement

min
quantum

Sǫt ≥ α2t
ǫ Qt, (15)

which generalises (10). The inequality can be saturated if
and only if Alice’s states form a t-design with the property
that the relation ǫ ≤ ǫc is satisfied for all pairs of states.
Hence, designs can be certified also in presence of discrim-
ination errors. For example, a celebrated family of designs
are known as symmetric informationally complete (SIC) [26].
They correspond to t = 2 and N = d2 for any d ≥ 2.
Any such design can be certified through (15) as long as ǫ re-
mains reasonably small. Specifically the bound is tight when

ǫ ≤ 1
2

(
1 −

√
d
d+1

)
. For qubits (d = 2), the critical error be-

comes ǫ ≈ 9.2% which is well above experimentally achieved
error rates in USD [40].

Furthermore, consider a situation in which we observe an
error rate ǫ but Alice’s preparations nevertheless do not pre-
cisely form a design. Then, we can estimate how close they
are to forming a design based on the measured value of Sǫt . If
we momentarily assume pure states a natural quantifier is the
frame potential, which by arguments analogous to the above
satisfies

Vt ≤ N +
2

α2t
ǫ

Sǫt . (16)

Hence, the closer Sǫt is to its optimum, the more accurate is
the certification of the design structure. Notably, we can ex-
tend this to account also for the possibility of mixed states
by expanding the domain of the frame potential. Define
Ṽt({ρ}) ≡ ∑N

j,k=1 F (ρj , ρk)
2t, where F denotes the fidelity.

Since a pair of mixed states cannot be discriminated with suc-
cess probability larger than αǫ(1−F ) when the error rate ǫ is
allowed [41], it follows that also Ṽt is bounded by the right-
hand-side of Eq (16) and thus admits a robust certification.

Certifying detection efficiency.— We turn our attention to
the measurement device. A realistic measurement device can
be modelled as succeeding with performing the intended de-
tection only with some probability η ∈ [0, 1]. As a typical
example, a single-photon avalanche diode for visibile light
has a detection efficiency around η = 55% [42]. Naturally,
it is often practical to infer the efficiency by assuming a sim-
ple model for the detector and probing it with single photons.
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Here, however, we consider the SDI situation in which the
overall detection efficiency is bounded based solely on the
statistics gathered in the considered experiments.

As before, we appropriately choose ǫ by inspecting the data
p(b|x, y) and accordingly consider the figure of merit (14).
In order to certify the detection efficiency, we must consider
the optimal value of Sǫt that is compatible with a hypothe-
sised value of η. Since the measurement device is uncharac-
terised, it can internally map a failed detection onto the out-
puts b ∈ {1, 2,⊥} so that detection failure cannot be read
out directly by the experimenter. If failed detections are out-
putted as b = 1 or b = 2, it will sometimes (in half the
cases) give a wrong answer to the discrimination task. This
sharply increases the error rate ǫ while making no better con-
tribution to the discrimination than a trivial random guess.
Therefore, the device optimally treats failed detections as in-
conclusive outcomes (b =⊥). From Eq (12), this causes the
success probability in bounded-error discrimination to obey
pφ1,φ2

usd ≤ ηαǫ (1 − |〈φ1|φ2〉|) with a possible equality when
ǫ ≤ ǫc.

Now, we can evaluate a bound on the optimal quantum
value of Sǫt when subject to a given amount of detection loss.
A simple calculation asserts the following useful inequality

(αǫ −max
M

pφ1,φ2

usd )2 ≥ α2
ǫ

(
(1 − η)2 + η(2 − η)|〈φ1|φ2〉|2

)
.

(17)
Applying this inequality for every input y, we can bound the
figure of merit as follows:

Sǫt ≥ min
{ψ}

α2t
ǫ

∑

y1<y2

(
(1 − η)

2
+ η(2 − η)|〈ψy1 |ψy2〉|2

)t
=
αǫ
2

×
(

−N +min
{ψ}

t∑

n=0

(
t

n

)
(1 − η)

2(t−n)
ηn(2 − η)nVn({ψ})

)

≥ α2t
ǫ

(
−N

2
+

1

2

t∑

n=0

(
t

n

)
(1 − η)2(t−n) ηn(2 − η)nJn

)
.

(18)

In the second line we have used the binomial theorem and
identified the n’th order frame potential, and in the third line
we have used Eq (9). For simplicity, we write Sǫt ≥ α2t

ǫ Qη
t

where Qη
t denotes the bracket on the last line. Hence, for

any observed Sǫt , the following 2t-degree polynomial must be
positive: P (η) ≡ Sǫt − α2t

ǫ Qη
t ≥ 0. To determine a lower

bound on the detection efficiency, we must decide the values
of η that respect the positivity of P (η). This is achieved by
finding the real-valued roots (in the interval [0, 1]) of P (η).

Application: detection efficiency based on SICs.— While
the bound on η is typically not tight due to (17), it enables
useful certification. We exemplify this through the previously
considered one-parameter family of designs known as SICs
(corresponding to N = d2 with t = 2 for any d ≥ 2). For this
family, we evaluate the relevant root of P (η) and find that

η ≥
αǫd(d− 1) −

√
d− 1

√√
2
√
(d2 − 1)Sǫ2 − α2

ǫd(d− 1)

αǫd(d− 1)
(19)

Notice that an optimal implementation (possible when ǫ ≤
1
2

(
1 −

√
d
d+1

)
) leads to Sǫ2 = α4

ǫ
d2(d−1)
2(d+1) which inserted into

Eq (19) implies perfect detection efficiency (η = 1). In the
other extreme, the bound only becomes trivial (η ≥ 0) when
Sǫ2 =

α4
ǫ

2 (d4−d2), where the second factor is the algebraically
maximal (trivial) value of the frame potential. For any inter-
mediate value of Sǫ2, we obtain a non-trivial bound on η. No-
tably, this stands in contrast to certification of detection effi-
ciency based on Bell inequality violations for which there ex-
ists a (often quite high [43]) threshold value for η below which
no device-independent certification of detection efficiency can
be made.

We exemplify the certification in a concrete implementa-
tion with imperfections. Take the qubit case of d = 2 (N = 4
and t = 2) and consider that the ideal preparations of Alice
and the ideal measurements of Bob are subject to some noise
rate γ. For simplicity, let us concentrate all the noise in Bob’s
measurements: the optimal measurements for USD are only
implemented with probability 1 − γ whereas with probability
γ the measurement corresponds to a random guess b ∈ {1, 2}.
In addition, we let Bob’s device have a detection efficiency of
ηexp = 55% and let it treat failed outcomes as b =⊥. The com-
bination of noise and detection loss leads to both errors (with
probability γ/2) and sub-optimal correlations corresponding
to pyusd = ηexp ((1 − γ) (1 − |〈ψy1 |ψy2〉|) + γ/2). Using that
Alice’s tetrahedral states have |〈ψy1 |ψy2〉|2 = 1/3, we can es-
tablish the error ǫ through Eq (11) and evaluate the certified
detection efficiency through Eq (19). For a nearly noise-free
implemenetation (γ = 0.5%) we certify η ≥ 31.8%. For an
order of magnitude higher noise rate (γ = 5%) we can still
certify a detection efficiency of η ≥ 21.0%.

Certification of non-projective measurements.— An inter-
esting feature of USD is that the optimal implementation uses
non-projective measurements. Due to the increasing interest
in non-projective measurements for quantum information ap-
plications, it is relevant to certify such measurement in SDI
scenarios. In Supplementary Material we exemplify this for
(N, d, t) = (4, 2, 2) and show that a certification can be
achieved for a detection efficiency of at least η = 3+

√
3

6 ≈
78.9%. This threshold is notable since it is much lower than
the nearly perfect detection efficiency required in other SDI
schemes based on classically correlated quantum devices [13–
15, 18, 44]

Conclusions.— I have developed methods for the certifica-
tion of state preparation devices and measurement devices in
prepare-and-measure experiments in which the devices are as-
sumed to be independent. The presented scheme is versatile
as it applies to three qualitatively different problems: i) cer-
tification of quantum states, ii) certification of detection effi-
ciency and iii) certification of non-projective measurements.
The certification is robust to errors and therefore applicable
to experiments. Notably, small experimental deviations from
the assumptions in the SDI scenario, such as memory effects
in the detector or multiphoton events, can be accounted for
using the method of Ref. [10].

The framework based on independent quantum devices de-
parts from the more common setting in which devices can be

373



5

classically correlated. This is often natural when considering
tasks that are not of adversarial nature. It is therefore relevant
to develop such certification schemes targeting various use-
ful properties of quantum systems. More generally, the loss
of convexity that comes with the independence assumption
makes it challenging to determine the limitations of quantum
correlations and consequently also their applications towards
various certification tasks. Here, our tool for overcoming this
obstacle relied significantly on USD and the theory of quan-
tum designs. It is of general interest to develop tools for char-
acterising the set of quantum correlations without shared ran-
domness. This would be both of foundational interest and a
route to interesting protocols for quantum information pro-

cessing.
Note added.— During the completion of this work, I be-

came aware of the related work of Ref [45].
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Appendix A: Randomised USD with stochastic projective
measurements

In order to bound the quantum performance of randomised
USD under projective measurements, we must first remind
ourselves of how projective measurements perform in stan-
dard USD. It is a well-known result that for any two pre-
established equiprobable non-orthogonal pure states, the op-
timal USD under stochastic projective measurements is ob-
tained by randomly measuring either the eigenbasis of the first
state or the eigenbasis of the second state. This leads to

max
projective

pusd =
1 − |〈φ1|φ2〉|2

2
. (A1)

Naturally, in the special case of orthogonal states, the USD
has a unit success rate.

We apply this to randomised USD. For every input y, the
best success rate reads

max
projective

pyusd =
1

2

(
1 − |〈ψy1 |ψy2〉|2 + τψy1 ,ψy2

)
, (A2)

where the special case of orthogonal state is accounted for by
defining τ = 1 if and only if 〈ψy1 |ψy2〉 = 0 and otherwise
τ = 0. For any given set of preparations, we can now eval-
uate the best performance in randomised USD for stochastic
projective measurements to be

St({ψ}) = 1

22t

∑

y1<y2

(
1 + |〈ψy1 |ψy2〉|2 − τψy1 ,ψy2

)2t

=
1

22t

∑

y1<y2

2t∑

n=0

(
2t

n

)
|〈ψy1 |ψy2〉|2n

(
1 − τψy ,ψy′

)2t−n

=
1

22t+1

2t∑

n=1

(
2t

n

)
(Vn −N) +

1

22t

∑

y1<y2

(
1 − τψy ,ψy′

)
.

(A3)

In order to obtain a bound valid for all projective measure-
ments and all state ensembles, we must find a lower bound on
the above expression valid for all states. However, this appears
not to be straightforward due to the right-most term.

However, by focusing on the most relevant case of qubits
we can solve the problem. Consider the example of
(N, d, t) = (4, 2, 2). Since we only have four states, the num-
ber of possible pairwise orthogonalities is small. One can ex-
haustively consider the different orthogonality configurations
that influence the right-most term in (A3). This straightfor-
wardly leads to the finding that the optimal configuration fea-
tures no orthogonalities among the four states. We can then
obtain a lower bound on (A3) via the global lower bound on
the frame potential (it gives S2 ≥ 11/10). However, this
bound is sub-optimal since four qubit states cannot be used
to form the 3- or 4-design that appear in the final expres-
sion in (A3). A better bound can be obtained by directly
exploiting the Bloch sphere parameterisation to reliably min-
imise the final expression in (A3). This leads to an optimal
configuration being four Bloch vectors pointing to the ver-
tices of a tetrahedron (quantum 2-design). Since this means
|〈ψy1 |ψy2〉|2 = 1/3 for y1 6= y2. Inserted into Eq (A3), we
obtain that projective measurements must obey S2 ≥ 32/27.

The sizable gap between S2 ≥ 32/27 and the best quan-
tum result at S2 = 2/3 allows for the certification of non-
projectiveness to be robust to errors. Consider for instance
that Bob’s detectors succeed with probability η. Due to the un-
ambiguity of the discimniation, failed events must be mapped
to b =⊥. We therefore have that pyusd = η (1 − |〈ψy1 |ψy2〉|) =
η
√
3−1√
3

. We therefore have

St = 6 ×
[
1 − η

√
3 − 1√
3

]4
. (A4)

The critical value of η for certifying the implementation of
non-projective measurements is obtained from solving St =
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32/27. The critical detection efficiency becomes

η =
3 +

√
3

6
≈ 78.9%. (A5)
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Bilocal Bell inequalities violated by the quantum Elegant Joint Measurement
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Network Bell experiments give rise to a form of quantum nonlocality that conceptually goes beyond Bell’s
theorem. We investigate here the simplest network, known as the bilocality scenario. We depart from the typical
use of the Bell State Measurement in the network central node and instead introduce a family of symmetric
iso-entangled measurement bases that generalise the so-called Elegant Joint Measurement. This leads us to
report noise-tolerant quantum correlations that elude bilocal variable models. Inspired by these quantum corre-
lations, we introduce network Bell inequalities for the bilocality scenario and show that they admit noise-tolerant
quantum violations. In contrast to many previous studies of network Bell inequalities, neither our inequalities
nor their quantum violations are based on standard Bell inequalities and standard quantum nonlocality. More-
over, we pave the way for an experimental realisation by presenting a simple two-qubit quantum circuit for the
implementation of the Elegant Joint Measurement and our generalisation.

Introduction.— The violation of Bell inequalities is a hall-
mark property of quantum theory. It asserts that the predic-
tions of quantum theory cannot be accounted for by any phys-
ical model based only on local variables [1]. Such violations,
referred to as quantum nonlocality, do not only provide in-
sights in the foundations of quantum theory, but they also
constitute a powerhouse for a broad scope of applications in
quantum information science [2].

A standard Bell experiment features a source that emits a
pair of particles shared between two space-like separated ob-
servers who perform local and independent measurements. In
quantum theory the particles can be entangled, thus enabling
global randomness [3]. In contrast, in local variable models
aiming to simulate the quantum predictions, the particles are
endowed with classically correlated stochastic properties that
locally determine the outcome of a given measurement. Many
decades of research on Bell inequalities have brought a rel-
atively deep understanding of quantum nonlocality and have
established standard methods for characterising correlations
in both quantum models and local variable models [2].

The last decade witnessed a significant conceptual advance:
much attention was directed at going beyond correlations in
standard Bell experiments in favour of investigating correla-
tions in networks featuring many observers and several in-
dependent sources of particles [4, 5]. While a standard Bell
experiment may be viewed as a trivial network (with a single
source), the introduction of multiple independent sources is
conceptually interesting since it brings into play new physical
ingredients and corresponds to the topology of future quantum
networks. In contrast to standard Bell experiments, network
Bell experiments feature some observers who hold indepen-
dent particles (from different sources) and therefore a priori
share no correlations. Moreover, entanglement can be dis-
tributed in the network, in particular to initially independent
observers, through the process of entanglement swapping [6].
Recent years have seen much attention being directed at char-
acterising classical, quantum and post-quantum correlations
in networks, many times through the construction of network
Bell inequalities and the exploration of their quantum viola-
tions [7–26]. In general, this is challenging due to the fact
that the introduction of multiple independent sources makes

FIG. 1: Bilocality scenario: Bob independently shares a “state” with
Alice and Charlie, respectively. In a quantum experiment, these are
independent, typically entangled quantum states (|ψ−〉), while in a
bilocal model these are associated to independent local variables (α
and γ).

the set of local variable correlations non-convex [4].
Here, we focus on the simplest nontrivial network Bell

experiment, known as the bilocality scenario. It features
two independent sources that each produce a pair of parti-
cles. The first pair is shared between observers Alice and
Bob while the second pair is shared between Bob and an-
other observer, Charlie (see Figure 1). Interestingly, there
are known Bell inequalities for the bilocality scenario (bilo-
cal inequalities), i.e. inequalities for the observed correlations
that are satisfied by all local variable models respecting the
independence of the two sources. Importantly, these inequal-
ities are also known to admit quantum violations. The quan-
tum violations typically arise from Bob implementing a Bell
State Measurement (BSM, encountered in quantum telepor-
tation [27] and entanglement swapping [6]). Conspicuously,
both the inequalities and their reported violations strongly re-
semble those encountered in the standard Bell experiments
(see e.g. [7, 18, 19, 28]). For instance the standard bilocal
inequality, first presented in Ref. [7], is essentially built on the
Clauser-Horne-Shimony-Holt (CHSH) inequality [29] and its
quantum violations through the BSM turn out to effectively
correspond to Bob in a coordinated manner separately test-
ing the CHSH inequality with Alice and Charlie respectively.
Indeed, the BSM measurement amounts to performing simul-
taneously the two commuting measurements of σ1 ⊗ σ1 and
σ3 ⊗ σ3 (where (σ1, σ2, σ3) are the three Pauli observables)
on Bob’s two independent qubits, and ample numerical evi-
dence shows that the optimal measurements settings for Alice
and Charlie are at ±45 degrees on the Bloch sphere, i.e. ex-
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actly those settings tailored for the CHSH inequality. Given
this close resemblance to the CHSH inequality, it is perhaps
unsurprising that the critical singlet visibility, required for two
identical noisy singlet states to enable a violation, is the same
as that encountered in the CHSH inequality, namely 1√

2
for

each state.
Here we investigate quantum nonlocality in the bilocality

scenario that is not based on the BSM and does not directly
trace back to standard quantum nonlocality as in the previous
cases. To this end, we present a family of two-qubit entan-
gled measurements generalising the so-called Elegant Joint
Measurement (EJM) [30]. These allow Bob to effectively
distribute (in an entanglement swapping scenario) different
entangled states to Alice and Charlie from those obtained
through a BSM. We investigate bilocal models for the result-
ing correlations, show explicit quantum violations of bilocal-
ity and obtain the critical visibility per singlet for a quantum
violation. Subsequently, we introduce new bilocal inequalities
tailored to our quantum correlations and show that they can
detect quantum nonlocality in the network at reasonable sin-
glet visibilities. Furthermore, towards experimental demon-
strations of quantum violations of network Bell inequalities,
that are not based on standard Bell inequalities, we explore
the implementation of our generalised EJM. We prove that it
cannot be implemented in linear optical schemes without aux-
iliary photons but that it can be implemented with a simple
two-qubit quantum circuit.

Entangled measurements with tetrahedral symmetry.— We
consider symmetric entangled measurements on two qubits
that, most naturally, have four outcomes. Specifically, we
present a family of bases {|Φθb〉}4b=1 of the two-qubit Hilbert
space, parametrised by θ ∈ [0, π2 ], such that all elements are
equally entangled and, moreover, the four local states, corre-
sponding to either qubit being traced out, form a shrunk regu-
lar tetrahedron inside the Bloch sphere.

To construct such bases, let us first introduce the pure qubit
states |~mb〉 that point (on the Bloch sphere) towards the four
vertices

~m1 = (+1,+1,+1) , ~m2 = (+1,−1,−1) ,

~m3 = (−1,+1,−1) , ~m4 = (−1,−1,+1) (1)

of a regular tetrahedron, as well as the states |−~mb〉
with the antipodal direction. Specifically, we write these
tetrahedron vertices in cylindrical coordinates as ~mb =√

3
(√

1− η2b cosϕb,
√

1− η2b sinϕb, ηb

)
and define

|±~mb〉 =

√
1± ηb

2
e−iϕb/2|0〉 ±

√
1∓ ηb

2
eiϕb/2|1〉. (2)

Our family of generalised EJM bases, with the above proper-
ties, is then given by

|Φθb〉 =

√
3 + eiθ

2
√

2
|~mb,−~mb〉+

√
3− eiθ
2
√

2
|−~mb, ~mb〉 (3)

Notice that for θ = 0, we obtain the EJM introduced in
Ref. [30] (the largest local tetrahedron in our family, of ra-
dius

√
3
2 ), while for θ = π

2 , we obtain the BSM (the smallest

local tetrahedron, of radius zero) up to local unitaries (which

can for instance be chosen as U1 ⊗ U2 = 11 ⊗ e
2πi
3
σ1+σ2+σ3√

3

to recover the standard BSM). By varying θ, we thus continu-
ously interpolate between the EJM and the BSM.

Quantum correlations.— We consider a specific quantum
implementation of the bilocality experiment illustrated in Fig-
ure 1. We let Bob apply the generalised EJM and consider
that both sources emit pairs of qubits corresponding to noisy
singlets (so-called Werner states [31])

ρi = Vi|ψ−〉〈ψ−|+
1− Vi

4
11, (4)

for i ∈ {1, 2} where Vi ∈ [0, 1] denotes the visibility of each
singlet |ψ−〉 = 1√

2
(|0, 1〉 − |1, 0〉). By applying his measure-

ment onto distributed (pure) singlets, Bob effectively prepares
Alice’s and Charlie’s joint state in an entangled state similar to
that of Eq. (3), up to a change in signs for ~mb and θ. Due to the
tetrahedral structure of the distributed states we expect to find
strong correlations between Alice and Charlie when they per-
form measurements of the three Pauli observables [32]. We
therefore let each of them have three possible measurement
settings x, z ∈ {1, 2, 3} (corresponding to the observables
(σx, σz)), with binary outcomes denoted a, c ∈ {+1,−1}.

To reflect the symmetry of our scenario, it is conve-
nient to identify Bob’s outcome b with the corresponding
vector ~mb from Eq. (1), i.e., to write b as ±1-valued 3-
vector b = (b1, b2, b3). The conditional probability distri-
bution p(a, b, c|x, z) obtained in the experiment can then be
characterised in terms of the single-, two- and three-party
correlators 〈Ax〉, 〈By〉, 〈Cz〉, 〈AxBy〉, 〈ByCz〉, 〈AxCz〉
(= 〈Ax〉〈Cz〉 in the bilocality scenario) and 〈AxByCz〉
for all x, y, z ∈ {1, 2, 3}, with e.g. 〈AxByCz〉 =∑
a,b1,b2,b3,c=±1 a b

y c p(a, b, c|x, z) and similarly for the
other correlators [33]. For the quantum correlation pθQ ob-
tained from our above choice of states and measurements,
these correlators become

〈Ax〉 = 〈By〉 = 〈Cz〉 = 〈AxCz〉 = 0,

〈AxBy〉 = −V1

2 cos θ δx,y, 〈ByCz〉 = V2

2 cos θ δy,z,

〈AxByCz〉 =





−V1V2

2 (1+ sin θ) if xyz ∈ {123, 231, 312}
−V1V2

2 (1− sin θ) if xyz ∈ {132, 213, 321}
0 otherwise

,

(5)

where δ is the Kronecker symbol.
Simulating quantum correlations in bilocal models.— Let

us first investigate whether the quantum probability distribu-
tion pθQ admits a bilocal model. In such a model, each pair
of particles is associated to a local variable denoted α and
γ respectively (see Figure 1). Alice’s (Charlie’s) outcome is
determined by her (his) setting and α (γ). Since they each
have three possible settings, we can without loss of generality
represent the local variables as triples α = (α1, α2, α3) and
γ = (γ1, γ2, γ3) with entries ±1, with each αx, γz denoting
Alice’s or Charlie’s deterministic outcome for the setting x or
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z. A bilocal model can thus be written as

pbiloc(a, b, c|x, z) =
∑

α,γ

q(1)α q(2)γ δa,αxδc,γzp(b|α, γ), (6)

where {q(1)α }α and {q(2)γ }γ are probability distributions rep-
resenting the stochastic nature of the local variables α and γ
respectively, and p(b|α, γ) are probability distributions repre-
senting the stochastic response of Bob upon receiving (α, γ).

The central question is whether the quantum correlations
characterised by Eq. (5) can be simulated in a bilocal model.
We investigate the matter with three different approaches.
Firstly, we set V ≡ V1 = V2 (equal noise on both sources),
and θ = 0 (as in the original EJM [30]). By employing
semidefinite relaxations of the set of bilocal correlations, one
can obtain a necessary condition for the existence of a bilo-
cal model [34]. An evaluation of the relevant semidefinite
program guarantees that a violation of bilocality is obtained
whenever V & 83 % [35]. However, this bound is not ex-
pected to be tight due to the non-convex nature of the set of
quantum correlations with independent sources.

Secondly, we provide a better characterisation of the power
of bilocal models by explicitly considering their ability to sim-
ulate the quantum correlations. To this end, we have used an
efficient search method which exploits that the numerical dif-
ficulties associated with the bilocality assumption are signif-
icantly reduced if the bilocal model first undergoes a Fourier
transformation [7]. For the case of V ≡ V1 = V2 and θ = 0
considered above, we look for the largest V for which pθ=0

Q
admits a bilocal model, and find the critical visibility

Vcrit ≈ 79.1 %. (7)

To further explore different values of (V1, V2), we then also
consider, for a given V1, the largest V2 for which a bilocal
model exists. Figure 2 shows the region in the (V1, V2)-plane
for which we find a bilocal simulation of pθQ (still for θ = 0
here; the analysis for θ > 0 is presented in Appendix A). It
also displays the product V1V2 associated to the boundary of
the bilocal region (the critical pairs). Interestingly, the product
of the critical visibilities is not constant. This is in stark con-
trast with previously studied quantum correlations that arise
from the BSM [7] for which the product of visibilities de-
termines the existence of a bilocal model. Notably, also the
violations of many bilocal inequalities that are based on coor-
dinated tests of standard Bell inequalities [7, 9, 18, 19, 28] are
determined by such products of visibilities.

Thirdly, we employ an intuitive ansatz for analytically con-
structing bilocal models that mimic the symmetry of pθ=0

Q .
Namely, we impose that the (unobserved) probability distri-
bution pbiloc(α, b, γ) = q

(1)
α q

(2)
γ p(b|α, γ) of the bilocal model

should have the same tetrahedral symmetry: for every per-
mutation π of the tetrahedron vertices {~mb} in Eq. (1), ex-
tended to the opposite vertices via π(−~mb) = −π(~mb),
and applied to the 3-vector variables α, b, γ, one should have
pbiloc(π(α), π(b), π(γ)) = pbiloc(α, b, γ). Under this symme-
try ansatz, we are able to analytically construct efficient bilo-
cal simulations of pθ=0

Q . Interestingly, along the entire bound-
ary of the bilocal region, the obtained results match those pre-
sented in Figure 2 up to the fifth decimal digit. This shows that

FIG. 2: The blue region represents the set of bilocal quantum cor-
relations pθ=0

Q in the plane of visibilities (V1, V2), with the dashed
line in the inset figure showing the product of the visibilites on the
boundary of this bilocal region. The red area is the part of the quan-
tum region that can be detected as non-bilocal through the violation
of our bilocal inequality (9).

simple and highly symmetric bilocal models are very nearly
optimal for simulating pθ=0

Q . These bilocal models and the
critical visibilities are detailed in Appendix B.

Bilocal Bell inequalities.— We now draw inspiration from
the structure of the nonbilocal quantum corelations obtained
from the EJM to construct a bilocal inequality. Hence, in con-
trast to several previous bilocal inequalities, the present one
is neither based on, nor apparently resembles, a standard Bell
inequality. Also, naturally, such an inequality applies to de-
tecting the non-bilocality of general probability distributions,
not only pθQ. To build the Bell expression, we introduce the
following quantities

S =
∑

y=z

〈ByCz〉 −
∑

x=y

〈AxBy〉,

T =
∑

x 6=y 6=z 6=x
〈AxByCz〉, Z = max (Cother) , (8)

where Cother = {|〈Ax〉|, |〈AxBy〉|, . . . , |〈AxByCz〉|} is the
set of the absolute values of all one-, two- and three-party cor-
relators other than those appearing in the expressions of S and
T . This leads us to the following bilocal inequality:

B ≡ S

3
− T

biloc
≤ 3 + 5Z. (9)

Notice that the Z quantity makes this general inequality non-
linear. The most interesting case is however when Z = 0,
as satisfied by the quantum correlation of Eq. (5). For this
case, we have proved the bilocal bound under the previously
considered symmetry ansatz (which in fact enforces Z = 0,
see Appendix C). Then, we have also confirmed the bilocal
bound using two different numerical methods applied to gen-
eral bilocal models [36]. We find that the bilocal inequality
above, for Z = 0, is tight in the sense that it constitutes one
of the facets of the projection of the “Z = 0 slice” of the
bilocal set of correlations onto the (S, T )-plane. Remarkably,
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this projection of the Z = 0 slice is delimited by linear in-
equalities, as further described in Appendix D; this stands in
contrast to previous bilocal inequalities which use nonlinear
Bell expressions. Finally, for Z > 0, we have again applied
the same numerical search methods to justify the correction
term 5Z in the bilocal bound of B. Notably, more accurate
corrections are also possible (see Appendix E).

For our quantum correlation of Eq. (5), we straightfor-
wardly obtain (S, T, Z) =

(
3V1+V2

2 cos θ,−3V1V2, 0
)
, and

B = 3V1V2 + V1+V2

2 cos θ. In the noiseless case (V1 = V2 =
1), we thus get B = 3 + cos θ, which gives a violation of
our bilocal inequality (9) for our whole family of generalised
EJM (i.e., the whole range of θ), except for the special case of
a BSM (θ = π

2 , for which our quantum correlation turns out to
be bilocal: see Appendix A). In contrast, when white noise is
present and both sources are equally noisy (V ≡ V1 = V2), we
get a violation of our inequality whenever 3V 2 +V cos θ > 3.
For θ = 0, the critical visibility per singlet required for a vio-
lation is

Vcrit =

√
37− 1

6
≈ 84.7 %. (10)

This shows that the quantum violation is robust to white noise
on the singlet states, but not optimally robust as no violation is
found here for V ∈ [0.791, 0.847]. More generally, the bilocal
inequality enables the detection of quantum correlations in a
sizable segment of the (V1, V2)-plane (see Figure 2).

Finally, we note that several different bilocal inequalities
can be constructed based on the correlations from the EJM.
As another example, in Appendix F we consider the following
Bell expression

B′ ≡
∑

x,b

√
p(b)

(
1− bxEA

b (x)
)

+
∑

z,b

√
p(b)

(
1 + bzEC

b (z)
)

+
∑

x 6=z,b

√
p(b)

(
1− bxbzEAC

b (x, z)
)
, (11)

where EA
b (x), EC

b (z) and EAC
b (x, z) denote one- and two-

party expectation values for Alice and Charlie, conditioned
on Bob’s output b = (b1, b2, b3) (see Appendix F). Numeri-
cal methods similar to the previous ones are employed to ev-
idence that B′ ≤ 12

√
3 + 2

√
15 holds for bilocal models.

In Appendix F we prove that there are quantum distributions
whose non-bilocality is detected with this bilocal inequality
but not with the inequality (9). Furthermore, we also prove
that if Bob has uniformly distributed outcomes (p(b) = 1

4 ),
then B′ . 30.70 is respected by all quantum models with
independent sources and hence it constitutes a quantum Bell
inequality for the network [35].

Implementation of the Elegant Joint Measurement.— It is
both interesting and practically relevant to address the ques-
tion of how one may implement experimentally the EJM and
its generalisation. In general, the implementation of joint
(two-qubit) measurements requires the interaction of differ-
ent signals. Optical implementations are of particular inter-
est since they are common and convenient for Bell-type ex-
periments. However, many such measurements, including the

FIG. 3: Quantum circuit for implementing our family of generalised
Elegant Joint Measurements parameterised by θ. A controlled-NOT
gate is followed by a Hadamard rotation (H = (σ1 + σ3)/

√
2) on

the control qubit, a controlled phase shift gate Rπ/2−θ , and a sep-
arate rotation of each qubit composed of Rπ/2 and H . Finally, a
measurement is performed in the basis {|00〉, |01〉, |10〉, |11〉}.

BSM, cannot be implemented with the basic tools applied in
linear optics schemes (phase-shifters and beam splitters) when
no auxiliary photons are present [37]. It turns out that our fam-
ily of generalised EJM as defined by Eq. (3) can also not be
implemented with two-photon linear optics, as can be shown
by evaluating the criterion provided in Ref. [38]. More so-
phisticated tools are therefore required.

Our measurement family can in fact be implemented by
the two-qubit circuit presented in Figure 3. This circuit maps
the four measurement basis states {|Φθb〉}b onto the computa-
tional basis product states {|00〉, |01〉, |10〉, |11〉} (up to global
phases). The proposed implementation involves (in addition
to single-qubit gates) two different controlled unitary opera-
tions, namely a standard controlled-NOT gate and a controlled
implementation of the phase shift gate

Rφ =

(
1 0
0 eiφ

)
. (12)

We remark that this controlled phase gate itself can be imple-
mented using two controlled-NOT gates and unitaries acting
on the target qubit as described in Ref. [39]. Finally, notice
that when θ = π

2 , we have Rπ/2−θ = 11 and thus the circuit
only involves a single two-qubit gate, just like the standard
scheme for a BSM [40].

Discussion and open questions.— We have investigated
quantum violations of bilocality based on the Elegant Joint
Measurement and a new generalisation thereof. In contrast to
several previous works in which quantum correlations were
generated through a Bell State Measurement, our setup does
not effectively reduce to separate implementations of the stan-
dard CHSH scenario. We nevertheless constructed new bilo-
cal inequalities, and exhibited violations that we could not
directly trace back to violations of a standard Bell inequal-
ity. Finally, we paved the way towards a bilocality experiment
based on the EJM by constructing a quantum circuit for its
implementation.

Several intriguing questions are left open. 1) What is the
largest possible quantum violation of the bilocal inequalities?
2) Can the inequalities be proven in full generality? We note
that the semidefinite relaxation methods of [34] can be ex-
ploited to place a bilocal bound on B, albeit perhaps not tight.
3) How can one formalise the intuitive idea that some bilocal
inequalities may or may not trace back to standard Bell in-
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equalities? 4) Can our EJM family be further generalised for
two higher-dimensional systems or for more than two qubits
such that it preserves its elegant properties? 5) Are there any
other correlations obtained using our EJM family that would
be of particular interest to study (in the bilocality scenario or
beyond), and more generally, could the introduced family of
measurements have other interesting applications in quantum
information science?
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FIG. 4: Bilocal regions of the quantum correlations pθQ in the
(V1, V2)-plane, for different values of θ.

Appendix A: Bilocal simulation for intermediate measurements

Here, we explore the possibility of a bilocal simulation of
quantum correlations based on the measurement family inter-
mediate between the EJM and the BSM. Firstly, we consider
the case in which Alice and Charlie perform the measurements
(σ1, σ2, σ3) and Bob performs the intermediate measurement
corresponding to a fixed θ. The resulting correlators are given
in Eq. (5) of the main text.

In order to search for the region in the (V1, V2)-plane for
which a bilocal simulation is possible, we have used the nu-
merical method mentioned in the main text (where we pre-
sented the analysis for θ = 0). Specifically, for a given θ, we
search for a brute-force solution to pθQ = pbiloc where we first
apply a Fourier transform to the problem. This transforms
probabilities into correlators. Some of these correlators are
fixed immediately by the constraint pθQ = pbiloc. Those that
are not fixed correspond to non-observable correlators (say
e.g. 〈A1A2C1〉) and represent the internal degrees of freedom
of the bilocal model, which we optimise over (under the con-
straint that they define valid probabilities). The main benefit
of this method is that source-independence, appearing on the
level of the free correlators, translates into simple conditions
that are either linear or quadratic. This makes the numerical
search more efficient and accurate; see Ref. [7] for a more de-
tailed description. In Figure 4, we display the boundary of the
bilocal region found through this method for several different
values of θ. We find that as we depart further from the EJM,
i.e as we increase θ, the region that admits a bilocal simulation
grows larger. For θ = π

2 , the quantum correlation pθQ is found
to be bilocal1 for all visibilities V1, V2.

It is interesting to note that while the non-bilocal region

1 An explicit bilocal model for p
θ=π

2
Q is obtained by letting α be any of the

4 vectors −~mb and γ be any of the 4 vectors ~mb of Eq. (1), with equal
probabilities, and by defining p(b|α, γ) = 1+3V1V2

4
if −α = b = γ or

det(−α, b, γ) > 0, and p(b|α, γ) = 1−V1V2
4

otherwise.
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FIG. 5: Bilocal regions of the quantum correlations when Alice and
Charlie perform the measurements

(
σ3+σ1√

2
, σ2,

σ3−σ1√
2

)
for different

values of θ.

appears to be vanishing in Figure 4 as Bob’s measurement ap-
proaches the BSM, the standard bilocal inequality [7], which
is based on the BSM, admits a robust quantum violation. This
suggests that as θ grows larger, and the measurement becomes
less similar to the EJM and more similar to the BSM, Alice
and Charlie would benefit from changing the orientation of
their local measurements. We illustrate this by letting Alice
and Charlie measure in the bases

(
σ3+σ1√

2
, σ2,

σ3−σ1√
2

)
. For

several values of θ, we plot the region in the (V1, V2)-plane
for which we find a bilocal simulation of the quantum correla-
tions thus obtained (still considering measurements on noisy
singlet states): see Figure 5. In Figure 5 we see that the
trend observed in Figure 4 is reversed; for larger values of
θ, the bilocal region is shrinking. In particular, for the BSM
(θ = π

2 ), the boundary of the bilocal region is characterised by
V1V2 = 1

2 which is the same as that obtained in the standard
bilocal inequality [7]. However, the bilocal region in Figure 5
is not monotonic in θ: the bilocal region for θ = π

6 is typi-
cally larger than that of the EJM (θ = 0). Typically, for small
values of θ, the re-oriented local measurements of Alice and
Charlie do not constitute an improvement over the previous
(σ1, σ2, σ3) measurements.

All this illustrates the fact that the choice of Alice and Char-
lie’s measurements have a nontrivial implication on the ex-
istence or non-existence of a bilocal model for the quantum
correlations under investigation. Although the choice of mea-
surements (σ1, σ2, σ3) for Alice and Charlie that we consid-
ered in the main text looks appropriate when Bob performs
the EJM, it is seen to be nonoptimal when Bob uses the gen-
eralised EJM family, for general values of θ > 0. Finding
the optimal measurements to unveil quantum nonbilocality in
a given scenario is certainly not a trivial task.

Appendix B: Bilocal models with tetrahedral symmetry

We detail here a simple and analytical family of bilocal
models exhibiting the tetrahedral symmetry outlined in the

main text. These models provide bilocal simulations of the
quantum correlation pθ=0

Q for visibilities (V1, V2) very close
to the critical ones, above which pθ=0

Q becomes nonbilocal.
Along the boundary of the bilocal set in the (V1, V2) plane
(shown in Figure 2 of the main text), the difference between
the critical pairs obtained by numerical search without our
symmetry assumption and those obtained for the model be-
low is of the order of 10−5 only; e.g., for the symmetric noise
case (V1 = V2), numerical optimisation over all bilocal mod-
els gave us a critical visibility of Vcrit ≈ 0.790896, while the
symmetric model below gives Vcrit ≈ 0.790871.

For convenience in the presentation below, let us denote
by T+ = {~mb}b=1,...,4 the set of tetrahedron vertices ~mb

of Eq. (1) and by T− = {−~mb}b=1,...,4 the set of oppo-
site vectors. For any α = (α1, α2, α3) ∈ T± (for any γ =
(γ1, γ2, γ3) ∈ T±, respectively), let us define α̃ = ±α ∈ T+
(γ̃ = ±γ ∈ T+) to be the vector in T+ along the same direc-
tion as α (γ) and possibly with the opposite sign, if α ∈ T−
(if γ ∈ T−).

In general, pθQ = pbiloc leads to a large system of equations.
However, the symmetry ansatz greatly simplifies the problem.
Note first that the requirement that pbiloc(π(α), π(b), π(γ)) =
pbiloc(α, b, γ) for all permutations π of the tetrahedron (as
defined in the main text) imposes that the probabilities q(1)α
(q(2)γ , resp.) are the same for all four values of α (γ) in T+,
and the same for all four values of α (γ) in T−. Defining
q
(1)
± =

∑
α∈T± q

(1)
α ∈ [0, 1] and q(2)± =

∑
γ∈T± q

(2)
γ ∈ [0, 1],

the weights q(1)α (q(2)γ ) are then all either equal to 1
4q

(1)
+ ( 14q

(2)
+ )

or to 1
4q

(1)
− ( 14q

(2)
− ), depending on whether α (γ) is in T+ or

T−.
In turn, it also follows that Bob’s response functions

conditioned on the local variables α, γ have the symmetry
p(π(b)|π(α), π(γ)) = p(b|α, γ) for all permutations π of the
tetrahedron. With this symmetry (and noting that b, just like
α̃ and γ̃, is always in T+), Bob’s response functions can be
defined by only specifying for instance, for each of the four
cases where α ∈ T± and γ ∈ T±: (i) the probabilities that b =
α̃ = γ̃ when α̃ = γ̃, which we denote by qτα,τγb=α̃=γ̃|α̃=γ̃ (with
the superscripts τα, τγ = ± referring to α ∈ Tτα and γ ∈ Tτγ ,
and such that the probabilities that b takes any of the three val-
ues other than α̃ = γ̃ is, by symmetry, (1− qτα,τγb=α̃=γ̃|α̃=γ̃)/3);
(ii) the probabilities that b = α̃ and (iii) the probabilities that
b = γ̃ when α̃ 6= γ̃, which we denote by q

τα,τγ
b=α̃|α̃6=γ̃ and

q
τα,τγ
b=γ̃|α̃6=γ̃ , resp. (such that the probabilities that b takes any

of the two values other than α̃ and γ̃, when these are different,
is (1 − qτα,τγb=α̃|α̃ 6=γ̃ − q

τα,τγ
b=γ̃|α̃6=γ̃)/2). All in all (and noting that

q
(i)
− = 1− q(i)+ for i = 1, 2), any bilocal model with the tetra-

hedral symmetry considered here can thus be defined by just
the 14 parameters q(1)+ , q

(2)
+ , q

τα,τγ
b=α̃=γ̃|α̃=γ̃ , q

τα,τγ
b=α̃|α̃6=γ̃ , q

τα,τγ
b=γ̃|α̃6=γ̃

(for each of the four combinations of τα, τγ).2

2 Note that pθQ does not have the (“full”) tetrahedral symmetry considered
here when θ > 0, as the correlators 〈AxByCz〉 in Eq. (5) are different for

383



8

To find the critical visibilities (V1, V2) for which such sym-
metric models can reproduce the quantum correlation pθ=0

Q ,
we let V1 take different fixed values, and optimise over the
14 weights above, together with V2, so as to find the largest
possible V2 allowing for pθ=0

Q to be reproduced. Numerically
we found, for large enough V1 (namely, V1 & 0.791), that the
optimal strategies were to take

q
(1)
+ ≈ q(2)+ ,

q+,+b=α̃=γ̃|α̃=γ̃ ≈ 0, q+,+b=α̃|α̃6=γ̃ ≈ 0, q+,+b=γ̃|α̃6=γ̃ ≈ 1,

q−,+b=α̃=γ̃|α̃=γ̃ ≈ 1, q−,+b=α̃|α̃6=γ̃ ≈ 0, q−,+b=γ̃|α̃6=γ̃ = q0,

q+,−b=α̃=γ̃|α̃=γ̃ ≈ 1, q+,−b=α̃|α̃6=γ̃ ≈ 0, q+,−b=γ̃|α̃6=γ̃ ≈ 0,

q−,−b=α̃=γ̃|α̃=γ̃ ≈ 0, q−,−b=α̃|α̃6=γ̃ ≈ 1, q−,−b=γ̃|α̃6=γ̃ ≈ 0, (B1)

for some value q0 ∈ [0, 1] (that depends on V1). E.g., when
α, γ ∈ T+ (in which case α̃ = α, γ̃ = γ), then the model
should return any of the three values b 6= α, γ (with equal
probabilities) if α = γ, or should return b = γ if α 6= γ; when
α ∈ T−, γ ∈ T+ (in which case α̃ = −α, γ̃ = γ), then the
model should return b = −α = γ if −α = γ, or should return
b = γ with probability q0 or any of the two values b 6= −α, γ
with equal probabilities (1− q0)/2 if −α 6= γ; etc.

By imposing that the 14 parameters of the model satisfy
Eq. (B1) with strict equalities, it becomes possible to construct
the model analytically. To reproduce the correlation pθ=0

Q , for
a given value of V1, the remaining free parameters need to
take the values

V2 =
58 + 9V1 − 12

√
2V1 − 8/9

27(1 + 2V1)
,

q
(1)
+ = q

(2)
+ =

2

3
−
√

2V1 − 8/9

2
,

q0 =
6
√

2V1 − 8/9 + 9V2 − 9V1 − 2

3
√

2V1 − 8/9 + 8− 9V1
, (B2)

which completes the full specification of our family of bilocal
models for pθ=0

Q , and for some very close-to-optimal visibili-
ties (V1, V2).

Note that our models here work for visibilities V1 ≥ V2;
for V2 ≥ V1 similar models can be found, with the roles
of V1 and V2 exchanged in the construction above. For
V1 = V2, the critical visibility Vcrit ≈ 0.791 is obtained as
the unique solution to the first line of Eq. (B2), after imposing
V1 = V2 = Vcrit. Note also that V1 ≥ V2 ensures in particular

even and odd permutations of {x, y, z}. One may also define bilocal mod-
els with a “relaxed” tetrahedral symmetry matching the symmetry of pθ>0

Q ,
by allowing for different probabilities for the two values of b other than α̃
and γ̃ when these are different (just depending on the sign of det(α̃, b, γ̃)
to preserve some symmetry). This would add four parameters to the model
(one for each combination of τα, τγ ). As an example, the explicit bilocal

model given in Footnote A for p
θ=π

2
Q has this relaxed tetrahedral sym-

metry. In the remaining part of these appendices however, by tetrahedral
symmetry we will refer to the “full” tetrahedral symmetry.

that V1 ≥ Vcrit > 4/9, so that the square roots in Eq. (B2) take
real values.

Appendix C: Proof of the first bilocal inequality under
tetrahedral symmetry

Here we prove the bilocal inequality (9) for models that
satisfy our tetrahedral symetry ansatz.

For such models, as defined in Appendix B in terms of the
14 parameters q

(1)
+ , q

(2)
+ , q

τα,τγ
b=α̃=γ̃|α̃=γ̃ , q

τα,τγ
b=α̃|α̃6=γ̃ , q

τα,τγ
b=γ̃|α̃ 6=γ̃ ,

the one-, two- and three-party correlators are found to be

〈Ax〉 = 〈By〉 = 〈Cz〉 = 〈AxCz〉 = 0,

〈AxBy〉 = δx,y
∑

τα,τγ=±1
q(1)τα q

(2)
τγ τα

(
q
τα,τγ
b=α̃|α̃6=γ̃ −

1−qτα,τγ
b=α̃=γ̃|α̃=γ̃

3

)
,

〈ByCz〉 = δy,z
∑

τα,τγ=±1
q(1)τα q

(2)
τγ τγ

(
q
τα,τγ
b=γ̃|α̃ 6=γ̃ −

1−qτα,τγ
b=α̃=γ̃|α̃=γ̃

3

)
,

〈AxByCz〉 = δx 6=y 6=z
∑

τα,τγ=±1
q(1)τα q

(2)
τγ τατγ

(
1
2 −

1−qτα,τγ
b=α̃=γ̃|α̃=γ̃

3

− q
τα,τγ
b=α̃|α̃6=γ̃+q

τα,τγ
b=γ̃|α̃ 6=γ̃

2

)

(C1)

(with δx 6=y 6=z = 1 if x, y, z are all distinct, δx 6=y 6=z = 0 other-
wise). From these we get3

S

3
− T

= q
(1)
+ q

(2)
+

[
2q+,+b=α̃|α̃ 6=γ̃ + 4q+,+b=γ̃|α̃ 6=γ̃ − 1− 2q+,+b=α̃=γ̃|α̃=γ̃

]

+ q
(1)
+ q

(2)
−
[
3− 4

1−q+,−
b=α̃=γ̃|α̃=γ̃

3 − 4q+,−b=α̃|α̃6=γ̃ − 4q+,−b=γ̃|α̃6=γ̃

]

+ q
(1)
− q

(2)
+

[
3− 8

1−q−,+
b=α̃=γ̃|α̃=γ̃

3 − 2q−,+b=α̃|α̃6=γ̃ − 2q−,+b=γ̃|α̃6=γ̃

]

+ q
(1)
− q

(2)
−
[
4q−,−b=α̃|α̃ 6=γ̃ + 2q−,−b=γ̃|α̃ 6=γ̃ − 1− 2q−,−b=α̃=γ̃|α̃=γ̃

]

(C2)

and Z = 0.
Recalling that all parameters qτα,τγ(··· ) of the symmetric model

are between 0 and 1, and that they further satisfy qτα,τγb=α̃|α̃ 6=γ̃ +

q
τα,τγ
b=γ̃|α̃ 6=γ̃ ≤ 1, one can easily see that each term in square

brackets above is upper-bounded by 3. As S/3 − T is ob-
tained as a convex combination of these four terms (with the
weights q(1)± q

(2)
± ), then it is also upper-bounded by 3—which

indeed proves our inequality (9) for bilocal models satisfying
the tetrahedral symmetry assumption (for which Z = 0).

We believe it should be possible to prove that any general
bilocal model for correlations satisfying Z = 0 can be “sym-
metrised” into a bilocal model with the tetrahedral symmetry

3 Note that bilocal models with the “relaxed” tetrahedral symmetry as de-
scribed in Footnote B give the same values of S and T , so that the proof
here also applies to such models.
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considered here, that would have the same values of S and T .
This would give a general proof of our bilocal inequality (9),
for the Z = 0 case. However, the details here remain to be
worked out properly, so that we rely for now on (trustworthy)
numerical optimisations.

Appendix D: “Z = 0 slice” of the bilocal set in the (S, T )-plane

It clearly appears that a case of particular interest in our
study is when Z = 0—as satisfied in particular by the quan-
tum correlation pθQ we investigate, and by any bilocal model
with the tetrahedral symmetry considered previously. The
choice to define and look at the quantities S and T , as de-
fined in Eq. (8), is then rather naturally dictated by the specific
forms of the correlators, Eq. (5) for pθQ.4

To get some idea of what the set of bilocal correlations
looks like, it is instructive to look at the projection onto
the (S, T ) plane of its slice where Z = 0. This projec-
tion, obtained through numerical optimisation to check the
(non)bilocality of various points (S, T ), is shown on Figure 6.
Quite remarkably, and contrarily to all (nontrivial, multidi-
mensional) bilocal sets previously studied in the literature, it
appears that the bilocal set in this projected slice is delimited
by linear inequalities, namely:

±S
3
− T

biloc
Z=0

≤ 3, ±S
biloc
Z=0

≤ 3, ±S + T

biloc
Z=0

≤ 3. (D1)

We also verified these six inequalities via numerical optimisa-
tions, as we did for our other bilocal inequalities presented in
this paper. These can also be proven for bilocal models with
the tetrahedral symmetry in the same way as in the previous
appendix. The first of these inequalities, with a + sign, cor-
responds precisely to our bilocal inequality (9) for the Z = 0
case. As we see, it thus appears to be “tight”, in the sense of
defining a facet of the bilocal set in the projected Z = 0 slice.

To complete the picture, one may also look at the set of
local correlations. This forms a convex polytope in the full
correlation space, so it is expected to also be delimited by
linear inequalities in the projected Z = 0 slice. We find here
that its facets are defined by

±S
loc
Z=0

≤ 3, ±T
loc
Z=0

≤ 4, ±S +
T

2

loc
≤ 3 (D2)

(with the last pair of inequalities holding in fact for general
local models, without the Z = 0 restriction); see Figure 6.
We note that the correlations pθQ satisfy the above inequalities
and, more generally, they admit a local model.

4 One may also naturally refine the analysis by defining and con-
sidering SAB =

∑
x=y 〈AxBy〉, SBC =

∑
y=z 〈ByCz〉,

R+ =
∑
xyz∈{123,231,312}〈AxByCz〉 and R− =∑

xyz∈{132,213,321}〈AxByCz〉 (such that S = SBC − SAB

and R = R+ +R−).

pQ
θ=0

S

3
- T ≤ 3

Bi
loc
al

No
nb
ilo
ca
l

Local

Nonlocal

θ
∈
[0
,π

/2
]

V
1=V

2 ∈ [0,1]

-4 -2 2 4
T

-4

-2

2

4

S

FIG. 6: Projection of the “Z = 0 slice” of the correlation space
onto the (S, T )-plane. The blue region represents the projection
of the bilocal set, delimited by the inequalities in Eq. (D1). The
gray dashed lines delimit the projection of the local set, according to
Eq. (D2). The black point shows the projection of the quantum cor-
relation pθ=0

Q in the noiseless case (V1 = V2 = 0). The orange and
green dash-dotted curves show the projections of pθ=0

Q for symmetric
noise V1 = V2 ∈ [0, 1] and the projections of pθQ for all θ ∈ [0, π

2
] in

the noiseless case, respectively, with the former entering the bilocal
set for visibilities V1 = V2 = Vcrit given by Eq. (10), and the latter
remaining nonbilocal as long as θ < π

2
.

Appendix E: Z-correction of the bilocal inequality

As we just saw, when restricting to the case where Z = 0,
the bilocal inequality presented in Eq. (9) of the main text is
tight in the (S, T ) plane. However, when Z is perturbed away
from zero (e.g. due to small experimental errors), then Eq. (9)
is not tight anymore.

We have numerically computed the largest values of B =
S
3 −T attainable for a given value of Z. This can be efficiently
incorporated into the optimisation by placing the linear con-
straint −Z ≤ 〈·〉 ≤ Z on all the one-, two- and three-party
correlators that do not appear in S and T . The results of the
optimisation are displayed in Figure 7. The simplest correc-
tion term that can be added to the bilocal bound for Z = 0
in order to account for the case where Z > 0 is a linear cor-
rection of 5Z, as illustrated and as we considered in Eq. (9).
However, it is clear that more precise correction terms to the
bilocal bound are also possible.

Appendix F: A second bilocal inequality

We detail the second bilocal inequality mentioned in the
main text. Alike the first bilocal inequality, it is inspired by
the quantum correlations based on the EJM. In order to de-
tect non-bilocal correlations without imposing additional con-
straints on the correlations, it is typically necessary to employ
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FIG. 7: Results for the numerical optimisation of the bilocal bound
of B for various values of Z (blue dots), and a linear correction (5Z)
to the bilocal bound of 3 associated to the case of Z = 0.

nonlinear expressions to capture the non-convexity of the set
of bilocal correlations. We thus consider here the Bell expres-
sion (Eq. (11) of the main text)

B′ ≡
∑

x,b

√
p(b)

(
1− bxEA

b (x)
)

+
∑

z,b

√
p(b)

(
1 + bzEC

b (z)
)

+
∑

x 6=z,b

√
p(b)

(
1− bxbzEAC

b (x, z)
)
, (F1)

where we have defined the conditional one-party cor-
relators EA

b (x) ≡ ∑
a,c a p(a, c|b, x, z) and EC

b (z) ≡∑
a,c c p(a, c|b, x, z) and the conditional two-party correla-

tors EAC
b (x, z) ≡ ∑a,c ac p(a, c|b, x, z), and where as in the

main text Bob’s output b is written as b = (b1, b2, b3), with
each by = ±1. In terms of the (non-conditional) correlators
considered previously, one has p(b) = 1

4 (1 +
∑
y b

y〈By〉),
p(b)EA

b (x) = 1
4 (〈Ax〉 +

∑
y b

y〈AxBy〉), p(b)EC
b (z) =

1
4 (〈Cz〉+

∑
y b

y〈ByCz〉), and p(b)EAC
b (x, z) = 1

4 (〈AxCz〉+∑
y b

y〈AxByCz〉).

1. Bilocal bound

The bilocal bound on B′ was obtained numerically, by opti-
mising general models using two different numerical search
methods [36]. We found in particular that the same upper
bound was obtained (up to machine precision) by bilocal mod-
els with the tetrahedral symmetry considered before; let us
thus consider such models to obtain the analytical expression
for the bilocal bound.

Recall that for these models, Z = 0—i.e., 〈Ax〉 =
〈By〉 = 〈Cz〉 = 〈AxCz〉 = 0; the bipartite correla-
tors 〈AxBy〉 and 〈ByCz〉 are also 0 whenever x 6= y and
y 6= z, resp.; and the tripartite correlators 〈AxByCz〉 are
also 0 whenever x, y, z are not all different. It follows that
p(b) = 1

4 , EA
b (x) = bx〈AxBx〉, EC

b (z) = bz〈BzCz〉, and
EAC
b (x, z) = δx 6=zbxbz〈AxBy 6=x,zCz〉 (where we used the

fact that b1b2b3 = 1, and where the superscript y 6= x, z de-
notes the unique value of y different from both x and z when
x 6= z), so that B′ can be written as

B′ = 2
∑

x

√
1− 〈AxBx〉+ 2

∑

z

√
1 + 〈BzCz〉

+ 2
∑

x 6=z

√
1− 〈AxBy 6=x,zCz〉. (F2)

Using Eq. (C1) we obtain more specifically, in terms of the 14
parameters q(1)+ , q

(2)
+ , q

τα,τγ
b=α̃=γ̃|α̃=γ̃ , q

τα,τγ
b=α̃|α̃ 6=γ̃ , q

τα,τγ
b=γ̃|α̃ 6=γ̃ defin-

ing a symmetric bilocal model (see Appendix B):

B′ = 6

√∑

τα,τγ

q
(1)
τα q

(2)
τγ

(
1− τα qτα,τγb=α̃|α̃6=γ̃ + τα

1−qτα,τγ
b=α̃=γ̃|α̃=γ̃

3

)

+ 6

√∑

τα,τγ

q
(1)
τα q

(2)
τγ

(
1 + τγ q

τα,τγ
b=γ̃|α̃ 6=γ̃ − τγ

1−qτα,τγ
b=α̃=γ̃|α̃=γ̃

3

)

+ 12

√√√√√
∑

τα,τγ

q
(1)
τα q

(2)
τγ


1− τατγ 1

2 + τατγ
1−qτα,τγ

b=α̃=γ̃|α̃=γ̃

3

+τατγ
q
τα,τγ
b=α̃|α̃ 6=γ̃+q

τα,τγ
b=γ̃|α̃ 6=γ̃

2


.

(F3)

One can then use the trivial (and all saturable) bounds

−q+,+b=α̃|α̃6=γ̃ ≤ 0, −q+,−b=α̃|α̃6=γ̃ ≤ 0, − 1−q−,+
b=α̃=γ̃|α̃=γ̃

3 ≤ 0 and

q−,−b=α̃|α̃6=γ̃ ≤ 1 under the first square root, q+,+b=γ̃|α̃ 6=γ̃ ≤ 1,

−q+,−b=γ̃|α̃6=γ̃ ≤ 0, − 1−q−,+
b=α̃=γ̃|α̃=γ̃

3 ≤ 0 and −q−,−b=γ̃|α̃6=γ̃ ≤ 0

under the second square root, and q+,+b=α̃|α̃ 6=γ̃ + q+,+b=γ̃|α̃6=γ̃ ≤

1, −q+,−b=α̃|α̃6=γ̃ − q+,−b=γ̃|α̃6=γ̃ ≤ 0, − 1−q−,+
b=α̃=γ̃|α̃=γ̃

3 ≤ 0 and

q−,−b=α̃|α̃6=γ̃ + q−,−b=γ̃|α̃6=γ̃ ≤ 1 under the third square root, to
upper-bound B′ above by a (saturable) expression that does no
longer contain the 7 different parameters involved here. This
leaves us with only 7 (out of the initial 14) free parameters to
optimise for the symmetric models, at which point we resort
to numerical means. We find in particular that the maximum
of the B′ expression is obtained by choosing q(1)+ = q

(2)
+ = 1

or q(1)+ = q
(2)
+ = 0. In the first case, we thus obtain

B′ ≤ 18

√
1 +

1−q+,+
b=α̃=γ̃|α̃=γ̃

3 + 6

√
2− 1−q+,+

b=α̃=γ̃|α̃=γ̃

3 , (F4)

which reaches its maximum for q+,+b=α̃=γ̃|α̃=γ̃ = 0. Thus, we
find the bilocal bound to be

B′
biloc
≤ 12

√
3 + 2

√
15 ≈ 28.53. (F5)

We reiterate that, although obtained explicitly here for bilo-
cal models with the tetrahedral symmetry, this bound was ver-
ified numerically to hold for general bilocal models.

2. Quantum violations

The bilocal bound is violated by the quantum correlations
pθQ, based on the family of measurements generalising the
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EJM. Evaluating the conditional one- and two-party correla-
tors, we obtain

EA
b (x) = −bxV1

2
cos θ, EC

b (z) = bz
V2
2

cos θ,

EAC
b (x, z) =





−bxbz V1V2

2 (1+ sin θ) if xz ∈ {13, 21, 32}
−bxbz V1V2

2 (1− sin θ) if xz ∈ {12, 23, 31}
0 otherwise

.

(F6)

Together with pθQ(b) = 1
4 for all b, this gives

B′ = 6
√

1 + V1

2 cos θ + 6
√

1 + V2

2 cos θ

+ 6
√

1 + V1V2

2 (1+ sin θ) + 6
√

1 + V1V2

2 (1− sin θ).

(F7)

In the noiseless case (V1 = V2 = 1), this gives a violation
of the bilocal inequality (F5) for all θ in the range 0 ≤ θ .
0.254π, with a maximal value of

B′ = 12
√

6 ≈ 29.39, (F8)

obtained for θ = 0. For θ = 0 precisely, allowing now for
symmetric noise, we find a violation for visibilities V1 = V2
larger than the critical visibility Vcrit ≈ 88.0 %.

3. Comparison between our two bilocal inequalities

From the results above it seems that our second bilocal in-
equality, Eq. (F5), is less powerful than our first one, Eq. (9),
at detecting the non-bilocality of the quantum correlation pθQ:
indeed it detects it only for a restricted range of θ, and for
larger visibilities. More generally, we find that any choice of
parameters (V1, V2, θ) for which pθQ violates our second in-
equality already violates our first inequality.

However, looking beyond the specific quantum correlation
pθQ, one can find non-bilocal correlations that violate Eq. (F5)
but not Eq. (9). An example is for instance given by the (local)
correlation defined by

〈Ax〉 = 〈By〉 = 〈Cz〉 = 〈AxCz〉 = 0,

〈AxBy〉 = −1

2
δx,y, 〈ByCz〉 =

1

2
δy,z,

〈AxByCz〉 = −1

3
δx 6=y 6=z, (F9)

which gives (S, T, Z) = (3,−2, 0) and thus satisfies Eq. (9)
(and in fact, satisfies all inequalities (D1) that bound the
(S, T )-projection of the bilocal set when Z = 0, see Ap-
pendix D), while B′ = 6

√
6 + 8

√
3 ≈ 28.55 > 12

√
3 +

2
√

15 ≈ 28.53 violates Eq. (F5).
It is clear that many different bilocal inequalities could be

obtained by considering various types of nonlinear functions
of the correlations, as we did here with B′. Some may be
found to be better-suited for certain correlations of interest,
other than pθQ.

4. Stronger-than-quantum nonlocality

We have also used the Bell expression (F1) to detect
stronger-than-quantum network nonlocality. This is achieved
by deriving a quantum Bell inequality for the network, i.e. a
non-trivial bound on B′ satisfied by all quantum models with
two independent sources. The bound is established under the
mild restriction that Bob has uniform outcomes, i.e. p(b) = 1

4
for all b. To this end, we consider the use of a simple concav-
ity inequality to linearize B′: for any a1, . . . , an ≥ 0, it holds
that

n∑

i=1

√
ai ≤

√√√√n
n∑

i=1

ai, (F10)

with equality if and only if all ai are equal. Since the Bell
expression B′ is a sum of square-root expressions, using the
concavity inequality above allows us to bound it with an ex-
pression that is a square-root of the corresponding sums. One
thus finds

B′ ≤
√

48B′lin., (F11)

where we have defined the linear expression

B′lin. ≡
∑

x,b

1

4

(
1− bxEA

b (x)
)

+
∑

z,b

1

4

(
1 + bzEC

b (z)
)

+
∑

x 6=z,b

1

4

(
1− bxbzEAC

b (x, z)
)
. (F12)

We can now bound B′lin. for quantum models, with in-
dependent sources, by using the semidefinite relaxations of
Ref. [34]. Thanks to codes provided by A. Pozas-Kerstjens,
we have been able to evaluate the third level SDP relaxation
described in [34] and obtain B′lin. . 19.64. This corresponds
to B′ ≤

√
48B′lin. . 30.70.
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Compounds of symmetric informationally complete measurements and their application in
quantum key distribution
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Symmetric informationally complete measurements (SICs) are elegant, celebrated and broadly useful discrete
structures in Hilbert space. We introduce a more sophisticated discrete structure compounded by several SICs. A
SIC-compound is defined to be a collection of d3 vectors in d-dimensional Hilbert space that can be partitioned
in two different ways: into d SICs and into d2 orthonormal bases. While a priori their existence may appear
unlikely when d > 2, we surprisingly answer it in the positive through an explicit construction for d = 4.
Remarkably this SIC-compound admits a close relation to mutually unbiased bases, as is revealed through
quantum state discrimination. Going beyond fundamental considerations, we leverage these exotic properties to
construct a protocol for quantum key distribution and analyze its security under general eavesdropping attacks.
We show that SIC-compounds enable secure key generation in the presence of errors that are large enough to
prevent the success of the generalisation of the six-state protocol.

Introduction.— Quantum information theory has estab-
lished a permanent link between the foundations of quantum
theory and quantum information technologies. This has rein-
vigorated interest in understanding the ultimate limitations
of quantum states and measurements as discrete structures
in Hilbert space. Quantum states and measurements have
a rich geometry that has no counterpart in classical models.
Therefore, it is unsurprising that the most elegant and sophis-
ticated discrete structures that can be found in Hilbert space
frequently also are the most celebrated and useful resources
for the processing of quantum information.

An outstanding example is known as a symmetric informa-
tionally complete set of pure quantum states (SIC). A SIC is
a maximal set (size d2) of d-dimensional states, {|φk〉}d

2

k=1,
with the property that the overlap between any pair of states
has the same magnitude:

|〈φk|φl〉|2 =
dδk,l + 1

d+ 1
, (1)

where the constant on right-hand-side is fixed by normalisa-
tion. Interestingly, a SIC can both be interpreted as a set of
states (as above) and as a generalised quantum measurement
(positive operator-valued measure, POVM) with d2 possible
outcomes. The measurement operators in such a SIC-POVM
are merely the subnormalised projectors of a SIC, namely
{ 1
d |φk〉〈φk|}d2

k=1.
SICs have been investigated for a long time in many dif-

ferent contexts [1–5]. Their relevance in pure mathematics
is remarkably diverse [6–8] and they even have technologi-
cal applications in high-resolution radar [9] and speech recog-
nition [10]. However, their interest in physics stems from
their prominent role in quantum information theory [5]. SIC-
POVMs are key tools for quantum state tomography [11–13],
which has motivated their experimental realisation in high-
dimensional Hilbert spaces [14–16]. Generally, SICs and
SIC-POVMs are used in a range of protocols: quantum key
distribution (QKD) [17–19], entanglement detection [20–22],
device-independent random number generation [23, 24], di-
mension witnessing [25] and characterisation of quantum de-

vices [26–30]. Moreover, SICs have been studied in the con-
text of quantum nonlocality [24, 31–33] and they have an in-
teresting foundational role in QBism [34]. All this has trig-
gered much interest in addressing the existence of SICs in
general Hilbert space dimensions. Presently, existence has
been proven numerically at least up to d = 151 [5, 35–37]
and is conjectured for any d (see [37] for a review).

In this work, we introduce a natural discrete Hilbert space
structure that is compounded of many separate SICs. The re-
sulting SIC-compound is a set of d3 pure d-dimensional quan-
tum states, denoted {|ψjk〉}jk for j ∈ [d2] and k ∈ [d] (where
[s] = {1, . . . , s}) with the following two properties:

I For every k, the states {|ψjk〉}j form a SIC.

II For every j, the states {|ψjk〉}k form an orthonormal
(ON) basis of Hilbert space.

In a handy terminology, we say that a SIC-compound is com-
posed of d “orthogonal SICs“, in the sense that elements num-
bered j in the d SICs are orthogonal to each other. Indeed,
given that the existence of SICs is a longstanding open prob-
lem [38], deciding the existence of a SIC-compound for a
given d is expected to be even more challenging. A priori,
it may seem unlikely that SIC-compounds exist at all when
d > 2 (it turns out that d = 2 is exceptional). We address the
existence of SIC-compounds for d = 3, . . . , 8. For d = 3 we
prove that no SIC-compound exists and for d = 5, 6, 7, 8 we
give evidence in support of the same conclusion. Remarkably,
however, for d = 4 we are able to analytically construct a SIC-
compound, thus proving that they, in fact, can exist in higher-
dimensional Hilbert spaces. The many symmetries of the SIC-
compound, which go beyond its defining properties, allow it
to be represented as a Latin square. Moreover, we find that the
SIC-compound admits a strong connection to mutually unbi-
ased bases (MUBs) which is revealed through quantum state
discrimination. Equipped with the fundamental understanding
of the SIC-compound, we consider its practical application
for quantum information processing. Specifically, we place
the SIC-compound at the heart of protocols for QKD, analyze
their security under coherent attacks and show their improved
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robustness as compared to the four-dimensional counterpart
of the six-state protocol [39] (which extends the celebrated
BB84 protocol [40]).

Qubit SIC-compound.— It is instructive to first consider the
simple example of a qubit SIC-compound. In terms of the
Bloch sphere representation, a SIC corresponds to four unit
Bloch vectors such that any pair has equal magnitude over-
lap. Hence, the four vectors point to the vertices of a regular
tetrahedron. For each vector, the unique orthogonal state is
represented by the antipodal Bloch vector, and therefore the
four antipodal Bloch vectors also form a regular tetrahedron.
By construction, the two SICs together form a SIC-compound.
Their convex hull is a cube inscribed in the Bloch sphere.

Generating SICs.— When d > 2, the existence of a SIC-
compound is far less clear. In order to address the matter,
one benefits much from the established knowledge of SICs
which heavily exploits the Weyl-Heisenberg (WH) group.
This group has two generators, X and Z , which are required
to satisfy the relations Xd = Zd = 11 and ZX = ωXZ ,
where ω = e

2πi
d . Every known SIC (with a single exception

in dimension 8 [3]) has been obtained by applying the WH
group in the following ansatz,

|φj〉 = Xj1Zj2 |ϕ〉, (2)

for j ≡ (j1, j2) ∈ [d]2 and for a suitably chosen so-called
fiducial state |ϕ〉. The group generators can conveniently be
chosen as the so-called shift and clock operators

X =

d−1∑

k=0

|k + 1〉〈k| Z =

d−1∑

k=0

ωk|k〉〈k|. (3)

For d = 2, 3 all SICs are obtained via this ansatz [41, 42]
and the same is true for any prime d provided that the SIC
admits some group structure [43]. Moreover, there is numeri-
cal evidence supporting that all SICs for d = 4, 5, 6, 7 can be
obtained via the WH group [44].

No qutrit SIC-compound.— Consider the case of qutrits
(d = 3). In view of the above, by showing that no SIC-
compound can be obtained via the WH group, we disprove
their existence in full generality. Note that the problem is sub-
stantially simplified due to the fact that Eq (2) generates SICs
by unitarily acting on a fiducial state. Therefore, in order to
construct orthogonal SICs, we must only find orthogonal fidu-
cial states. However, for qutrit systems there are uncountably
many relevant fiducial states [4, 5] (for a fixed representation
of the WH group). Fortunately, using the representation in
Eq (3), they all admit a simple parameterisation which al-
lows us efficiently investigate their orthogonalities. In Ap-
pendix A, we detail the analysis for d = 3 and show that no
more than two orthogonal SICs can be constructed. An ex-
ample of two orthogonal SICs is straightforwardly obtained
from choosing the two fiducial vectors |ϕ1〉 = 1√

2
(1, 1, 0)T

and |ϕ2〉 = 1√
2
(1,−1, 0)T.

Ququart SIC-compound.— For the case of ququarts (d =
4), in contrast to qutrits, there are only 256 fiducial states
[45] that yield SICs under the ansatz (2) (for a fixed repre-
sentation). Within these, one can find a SIC-compound with

a simple analytical form. To present it, we change the repre-
sentation of the WH-group so that the generators are written
as [46]

X = e
iπ
4




0 i 0 0
−1 0 0 0
0 0 0 1
0 0 i 0


 , Z = e

iπ
4



0 0 −1 0
0 0 0 1
i 0 0 0
0 i 0 0


 . (4)

Note that the global phase factors only serve to ensure the
correct sign ofXd andZd. Consider also the unitary operators

U =



0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0


 , V =



0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0


 , (5)

which generate a projective representation of the Klein four-
group Z2 × Z2. Application of 11, U , V , and UV on the
vector |ϕ1〉 = (t, i, i, i)T/n produces an orthonormal basis,
where t =

√
2 +

√
5 and n =

√
5 +

√
5. Call these states

{|ϕk〉}k∈[4]. Then it can be easily verified that the states
|ψjk〉 = Xj1Zj2 |ϕk〉 form a SIC for each value of k, where
j = (j1, j2). By construction, the states {|ψjk〉}k∈[4] form an
ON-basis for each of the 16 values of j. We remark that if the
computational basis is chosen as separable, all 64 states are
iso-entangled [47]; the entanglement negativity is 1

n2

√
1 + t2.

This constitutes an interesting parallel to the concept of iso-
entangled MUBs [48] (which upholds the same degree of en-
tanglement per state as the SIC-compound [49]).

By definition, the ququart SIC-compound contains four
SICs and 16 ON-bases of C4. Interestingly, it turns out that it
upholds two additional symmetries (that have no counterpart
in the qubit SIC-compound). Firstly, a careful examination
of {|ψjk〉}j,k shows that every state is not a member of pre-
cisely one ON-basis, but in fact of two different ON-bases.
Therefore, the SIC-compound houses an additional 16 ON-
bases. Secondly, one finds that every state |ψjk〉 upholds the
defining (SIC-like) overlap property (1) with 27 other states
in the SIC-compound, instead of the expected 15. The addi-
tional 12 SIC-like overlaps originate from an additional SIC
which shares four states with the defining SIC in the com-
pound. Thus, every state is a member of two distinct SICs (see
Ref [47] and Appendix C) that have four elements in common.

Since we are now faced with a total of 8 SICs and 32
ON-bases present in the compound, one benefits from nicely
organising the elements. A useful observation is that for
each of the four defining SICs, one can find four sets of
four states such that each is an orbit under the WH subgroup
{11, X2, Z2, X2Z2} (again a projective Klein four-group). By
suitably permuting the label j ∈ [16] in {|ψjk〉}jk, so that j1
indexes the subgroup and j2 indexes the application of 11, X ,
Z , and XZ , we can group these orbits together and represent
the SIC-compound as a Latin square (see Figure 1).

On existence in d = 5, 6, 7, 8.— For dimensions d =
5, 6, 7, 8, using the representation (3), there are only finitely
many relevant fiducial states to be considered [45, 50]. The
number of states that yield SICs when the WH group, in
the representation (3), is applied to them can be regarded as
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FIG. 1: Schematic of the 64 states in the ququart SIC-compound.
First, let us index the columns by k ∈ [4] and the rows by j2 ∈ [4]
and let each block contain the four states {|ψjk〉}4j1=1 (recall j =
(j1, j2)). Then, each column corresponds to one of the defining SICs
of the compound. The collection of elements in the identically la-
belled (‘1’,‘2’,‘3’ and ‘4’) blocks constitute the four additional SICs
present in the compound. Secondly, let us view the Latin square as
an illustration of the 16 individual states in each row of the previous
interpretation. The block with coordinates (j2, k) corresponds to the
state |ψjk〉 (for any chosen row index j1). Each row (of four states)
then corresponds to a defining ON-basis. For j1 = 1, 2, 3, 4, the
collection of elements with identical labels (‘1’,‘2’,‘3’ and ‘4’) con-
stitute the total of 16 additional ON-bases present in the compound.

known if we combine the high quality numerical results of
Ref [35] with the group theoretical analysis of Ref [45]. We
have enumerated all of them and exhaustively checked the
number of orthogonal SICs that can be constructed using these
states. We find that the number of orthogonal SICs varies (2,
4, 2 and 5 respectively) and that no SIC-compound can be
constructed. Reminding ourselves of the strong numerical ev-
idence in support of there not existing any other SICs than
those that we have explicitly constructed for d = 5, 6, 7, our
results render the existence of a SIC-compound for d = 5, 6, 7
very unlikely. However, as previously mentioned, dimen-
sion 8 also houses SICs that are not based on the WH group
[3, 51, 52]. Whether a SIC-compound can be formed from
these exceptional SICs is left as an open question.

Furthermore, in Appendix B we present a method for cer-
tifying [53] a SIC-compound (if it exists) or falsifying their
existence (if it does not exist) under the sole assumption of
dimension d.

Discriminating the SIC-compound with MUBs.—The
ququart SIC-compound admits a simple operational relation
to a set of four MUBs. Consider that for fixed j2 and k,
we try to discriminate between the four (equiprobable) states
{|ψj,k〉}j1 . Since these states are linearly independent, we can
use the “pretty good measurement” [54] which is the ON-basis
obtained from |ξj,k〉 = T

−1/2
j2,k

|ψj,k〉 by varying j1, where
Tj2,k =

∑
j1

|ψj,k〉〈ψj,k|. Measuring in this basis is in fact
optimal for minimising the error probability of the discrimina-
tion, which follows from [55]. Moreover, the resulting bases
for given j2 but different k are identical, while the bases for
different j2 are mutually unbiased. Thus, the four rows of the
Latin square correspond to four MUBs which, interestingly,

are iso-entangled with the largest possible entanglement neg-
ativity (each basis element has an entanglement negativity of
1√
8

). In Appendix C, we show that the relation between the
SIC-compound and the four MUBs is not a coincidence but
traces back to the fact that the Clifford group contains a copy
of the bipartite WH group. Finally, we note that also the fifth
MUB (the computational basis) emerges from state discrim-
ination in the SIC-compound: a state is randomly sampled
from a given column of the Latin square and we are asked to
determine which row it belongs to. The optimal measurement
is the computational basis.

Application in QKD.— Let us now consider the usefulness
of the d = 4 SIC-compound in QKD. Consider a prepare and
measure QKD scheme in which Alice transmits a random state
|ψjk〉 and Bob randomly measures in one of the 16 defining
ON bases of the SIC-compound. A variety of specific QKD
protocols can be constructed from this starting point, depend-
ing on how Alice and Bob transform or “sift” their resulting
data into the “raw key”. Here we focus on just two sifting
protocols. As in the original BB84 protocol, Alice and Bob
can use the bases in the compound, taking their k values as
the sifted key when their j1 and j2 values both match. Call
this Sifting B. Another possibility, which we denote Sifting
A, is that j1 is taken as the sifted key value when their j2 val-
ues agree, but their k values disagree. (This turns out to be
slightly more favorable than when the k values match.) Both
protocols finish with the standard steps of parameter estima-
tion, information reconciliation, and privacy amplification to
output a secure key. Since both protocols use the same prepare
and measure setup but differ only in the classical postprocess-
ing, we will see that Alice and Bob can first perform parameter
estimation on their data and then decide which sifting strategy
to employ.

We establish the security of both protocols against arbitrary
attacks by adapting the methods of [56–58] to ensure security
against collective attacks and then invoking [59] to ensure se-
curity against arbitrary attacks. The analysis proceeds in the
entanglement-based scenario of the protocol. Here Eve sup-
plies Alice and Bob with many copies of an arbitrary bipar-
tite state ρAB , to which she retains the purification in system
E, and Alice and Bob each randomly measure the bases as-
sociated with the compound on their respective subsystems.
The resulting statistics of their classical measurement choices
j and results k, as well as the possible collective attacks, are
precisely the same as the prepare-and-measure scenario.

Crucially, the symmetries of the SIC-compound translate
into symmetries of both sifting protocols, and this simplifies
the form of ρAB . As we show in Appendix D, for both Sift-
ing A and B we can assume without loss of generality that
ρAB = (1−p−q)ΦAB + qπAB + pκAB for some positive
parameters q, p with q+ p ≤ 1, where ΦAB is the maximally-
entangled state, πAB is the maximally-mixed state, and κAB

is the diagonal state of perfect uniform correlation. In other
words, the joint state is a partially depolarized and dephased
maximally-entangled state.

Alice and Bob can determine both p and q in the parameter
estimation phase as follows. It turns out that the probability of
sifting success for Sifting A increases with increasing q, while
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FIG. 2: Regions of positive key rate for various protocols. For each
q, the curves show the value of p such that the key rate is zero. Sifting
B outperforms the analog of the qubit six-state protocol using a full
set of five MUBs. Sifting A can tolerate p → 1 as q → 0. Together,
Sifting A and B nearly replicate the region of positive coherent in-
formation −H(A|B)ρ from the state ρAB .

the probability of error in the raw key depends on both p and
q. Therefore, before they commit to either sifting procedure,
Alice and Bob can use their data to determine both parameters
and only then decide which sifting procedure is more appro-
priate. Knowing the state ρAB , it is then a simple matter to
apply known bounds on the rate of key extraction using infor-
mation reconciliation and privacy amplification.

Fig. 2 depicts the values of q and p which lead to positive
key rates. It also displays the region of positive key for the
generalisation of the six-state protocol to d = 4 (using a full
set of five MUBs). To enable a fair comparison, the latter

protocol also discards sifting information [61]. Its symmetries
ensure that it treats all states delivered by Eve as depolarized
maximally-entangled states, so that when the actual joint state
is of the form ρAB above, it sees a depolarization rate of 1 −
p− q. Therefore, the region of positive rate for the five MUBs
protocol is symmetric under interchange of p and q. Using
the rate expression derived in [62], we find the threshold for
p = 0 to be q ≈ 0.309. This is also the threshold of the Sifting
B protocol.

Conclusions.— We have introduced SIC-compounds as an
elegant and sophisticated discrete structure in Hilbert space.
Against initial intuition, we found that SIC-compounds can
exist beyond qubit systems and explicitly constructed a four-
dimensional SIC-compound. We found that it upholds many
unexpected symmetries as well as an operational connection
to mutually unbiased bases. Then, through our example of
SIC-compounds, we illustrated that foundational understand-
ing of discrete structures of quantum systems not only are
interesting in themselves but that they also serve as new,
powerful, tools for quantum information processing. We ap-
plied SIC-compounds towards quantum key distribution and
showed that they can produce secure key in relevant situations
in which the generalisation of the six-state protocol no longer
is useful.

Lastly, we ask whether four-dimensional SIC-compounds
can be used to construct interesting entangled measurements
of two (or more) four-dimensional systems; generalising the
measurements of [65, 66] .
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Appendix A: No SIC-compound for d = 3

We fix the representation of the WH group to X =∑d−1
k=0 |k+1〉〈k| and Z =

∑d−1
k=0 ω

k|k〉〈k|. For this fixed rep-
resentation, we prove that no SIC-compound exists for d = 3.
It is known that there are infinitely many fiducial states in
d = 3 [4, 5]. They can be parameterised using a complete
set of mutually unibased bases, which can be written (without
normalisation) as follows:


1 0 0
0 1 0
0 0 1


 ,



1 1 1
1 ω ω2

1 ω2 ω


 ,



1 ω ω
ω 1 ω
ω ω 1


 ,



1 ω2 ω2

ω2 1 ω2

ω2 ω2 1


 .

(A1)

All [41, 42] fiducial states can be obtained via the follow-
ing [1] procedure. Choose any one of the four bases. Then,
choose any pair of elements within the basis. Denote the first
element by |e1〉 and the second element by |e2〉. The vector
|φ〉 =

(
|e1〉 − eiθ|e2〉

)
/
√
2, for any θ ∈ [0, 2π], is a valid

fiducial state. Repeating this procedure for all twelve relevant
pairs appearing in Eq. (A1), one obtains the complete set of
fiducial states.

The task of showing that no three fiducial states can form
an ON-basis is significantly simplified by the fact that the

problem is invariant in such a way that we can without loss
of generality choose the first fiducial vector correspoding to
the two first elements of the first basis in Eq. (A1), namely
|φ1〉 =

(
|0〉 − eiθ1 |1〉

)
/
√
2. Moreover, since every basis in

Eq. (A1) can be transformed into every other basis in Eq. (A1),
it is sufficient to search for an ON-basis with respect to all
fiducial states associated to, for instance, the second basis.
We name the three elements of the second basis (represented
in Eq. (A1) by the Fourier matrix) {|f1〉, |f2〉, |f3〉}. Writing
|φ2〉 =

(
|f1〉 − eiθ2 |f2〉

)
/
√
2, we straightforwardly obtain

that

0
!
= 〈φ1|φ2〉 ⇔

{
cos θ1 − cos(θ1 + θ2) − cos(θ2 +

π
3 ) = 1

sin θ1 − sin(θ1 + θ2) − sin(θ2 +
π
3 ) = 0.

(A2)
The solutions are found at (θ1, θ2) = (2π/3, π/3) and
(θ1, θ2) = (5π/3, 4π/3). To show that no third orthogonal
fiducial state exists, we also consider the cases of |φ′2〉 =(
|f1〉 − eiθ3 |f3〉

)
/
√
2 and |φ2′′〉 =

(
|f2〉 − eiθ2 |f3〉

)
/
√
2.

These give equations analogous to Eq. (A2), each with two
solutions. Inspecting these few cases, one easily finds that no
orthogonalities exist among these solutions. Thus, we con-
clude that no qutrit SIC-compound exists. However, as is
clear from the above, it is possible to construct two orthog-
onal qutrit SICs. The perhaps easiest example corresponds to
the two orthogonal fiducial states

|φ1〉 =
(1, 1, 0)T

√
2

, |φ2〉 =
(1,−1, 0)T

√
2

. (A3)

Appendix B: Certification and falsification of SIC-compounds

We show that SIC-compounds can be certified in a semi-
device-independent manner [53] (provided that they exist) and
that existence can be disproved using hierarchies of increas-
ingly precise necessary conditions that each can be evaluated
as a semidefinite program.

Consider a prepare-and-measure scenario in which Alice
has a random input x ∈ [d2] and Bob has an input (y, y′)
which labels all pairs of elements in [d2]. For convention, we
take y < y′. Each measurement of Bob has binary outcomes
b ∈ [2]. Alice’s states are of dimension no greater than d. In
Refs [25, 26], it was shown that the quantum maximum of the
following functional

S′ =
∑

(y,y′)

p(b = 1|y, (y, y′)) + p(b = 2|y′, (y, y′)) (B1)

is uniquely achieved in by Alice’s states forming a SIC.
Thus, it semi-device-independently certifies SIC preparations.
Moreover, one can add another (single) setting to Bob, z ∈ [1],
which has o ∈ [d2] possible outcomes, such that the modified
functional

S = S′ +
d2∑

x=1

p(o = x|x, z = 1) (B2)
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achieves its quantum maximum when both S′ and the above
sum individually are maximal. The optimal quantum value
obeys [26]

max
Q

S ≤ 1

2

√
d5(d− 1)2(d+ 1) +

(
d2

2

)
+ d, (B3)

which can be saturated if and only if Alice prepares a SIC
(provided it exists) and the setting z corresponds to the aligned
SIC-POVM (obtained from Alice’s sub-normalised prepara-
tions).

We will use this already known communication game for
SICs as a building block to construct a communication game
for SIC-compounds. Let Alice have inputs x ∈ [d2] and
i ∈ [d]. Bob takes inputs (y, y′) and j ∈ [d] and returns a
binary outcome. Moreover, Bob additionally has d settings la-
belled z ∈ [d] which have d2 possible outcomes. We are only
interested in cases in which r ≡ i = j. Let Alice and Bob play
the above game (for SICs) d times in parallel: each implemen-
tation (indexed by r) uses the preparations {(x, i = r)}x and
the measurements {(y, y′, j = r)∪ (z = r)}y,y′ . We label the
score in the r’th game by Sr. Naturally, these scores are so far
independent since they each correspond to independent sets of
preparations and measurements. If all Sr are maximal, it thus
certifies that Alice and Bob have implemented d independent
pairs of SIC preparations and SIC-POVMs. In order to certify
a SIC-compound, we need to enforce the orthogonality of the
d SICs.

To that end, we add a penalty term. If Alice’s preparation
is (x, i) and Bob implements one of his additional settings
with z 6= i, then the outcome o = x must never occur. If
this holds true for every (x, i, z 6= i), it is equivalent to a SIC-
compound given that we already know that Alice must prepare
SICs. Therefore, we choose our final correlation functional as

H =
1

d

d∑

r=1

Sr −
∑

x

i6=z

p(o = x|(x, i), z). (B4)

Using (B3) it follows that

max
Q

H ≤ max
Q

S, and that (B5)

H = max
Q

S ⇔ Alice prepares a SIC-compound. (B6)

Thus, we have constructed a quantum communication game in
which the optimal correlations are uniquely attained by SIC-
compounds.

This has two notable consequences. Firstly, we may numer-
ically search for SIC-compounds by attempting to maximise
H (which can be efficiently done through alternating convex
searches). Secondly, if one can prove that H cannot attain the
value (B3) in a quantum model, one falsifies the existence of
any SIC-compound in the given dimension. To enable such a
proof, one can use the hierarchy of semidefinite relaxations of
the set of dimensionally restricted quantum correlations [67].
However, the computational requirements are significant due
to the large number of preparations and measurements. Never-
theless, semidefinite relaxations can be evaluated by employ-
ing the symmetrisation techniques of Ref [26]. For instance,

we consider the (trivial) case of deciding the existence of three
orthogonal SICs for d = 2. The existence of a SIC-compound
would enable H ≈ 12.899 while our semidefinite relaxation
proves that no larger value is possible in quantum theory than
H ≈ 12.728. We could also evaluate the case of three or-
thogonal SICs in dimension three, but were unable to obtain
a bound on H smaller than that achieved by a SIC-compound
(our SDP matrix is of size 3915). The falsification (which we
have already shown analytically) could require a higher-level
relaxation.

Appendix C: SIC-compounds and MUBs in dimension four

Standard lore has it that SICs and MUBs are unrelated
in four dimensions. SICs appear as orbits of the Weyl–
Heisenberg group, and the SIC-compound is an orbit un-
der a subgroup of the normalizer of the Weyl–Heisenberg
group. MUBs on the other hand are obtained from the bi-
partite Heisenberg group. Since the two groups are different,
one does not expect a connection between SICs and MUBs.
Nevertheless we found a connection, and it is interesting to
see how this arises.

To see this we first recapitulate the analysis by Zhu et al.
[47, 63], which shows that in this dimension the Clifford
group contains two normal copies of the Weyl–Heisenberg
group. The Clifford group contains the symplectic group
SL(2) with matrix elements chosen to be integers modulo 8.
Its representation is fixed once the representation of the Weyl–
Heisenberg group is fixed [45]. The subgroup of SL(2) that
transforms a given compound to itself is generated by the or-
der 4 symplectic matrices

G1 =

(
3 0
6 3

)
, G2 =

(
5 2
2 1

)
, (C1)

together with an order 3 Zauner matrix [45] which plays
no role in this Appendix. The corresponding unitaries are
denoted UG1 and UG2 . The generators of the twin Weyl–
Heisenberg group are then represented by [47, 63].

X̃ = e
iπ
4 UG2XZ = e

iπ
4




0 0 0 −1
0 0 −1 0
0 i 0 0
−i 0 0 0


 , (C2)

Z̃ = UG1Z = e
iπ
4




0 0 −1 0
0 0 0 i
i 0 0 0
0 1 0 0


 . (C3)

The presence of this ‘extra’ Weyl–Heisenberg group explains
why the 4 · 16 vectors in the compound can be regrouped in
such a way that 4 + 4 SICs appear [63].

But the bipartite Heisenberg group is lurking here as well.
A straightforward calculation verifies that
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X2 = σz ⊗ 11 , Z2 = 11 ⊗ σz ,

(C4)
−iXZ̃ = σy ⊗ σy , ZX̃ = 11 ⊗ σx ,

where σx, σy, σz are the usual Pauli matrices. These local
operators generate the bipartite Heisenberg group, they leave a
given SIC compound invariant, and they can be used to create
the MUBs mentioned in the main text.

The usual construction of five MUBs proceeds by divid-
ing the bipartite Heisenberg group into maximal abelian sub-
groups. In the main text we obtained 4 MUBs, all of them
unbiased relative to the computational basis, as an orbit under
the bipartite Heisenberg group. This is the Alltop construction
of MUBs. The fact that this construction works in dimension 4
is already known [64], but the relation to the Weyl-Heisenberg
Clifford group is new.

Appendix D: QKD security proof details

Following [56–58], we can treat the sifting operation as
a quantum operation as follows. Since the SIC-compound
forms a single POVM, measurement can be described by the
isometry |φ〉 7→ 1

4

∑
jk |j〉|k〉〈ψjk |φ〉, followed by usual pro-

jective meaurement of the |j〉 and |k〉 registers. Sifting can
then be regarded as projective measurement of the appropri-
ate registers, either (j2, k) or (j1, j2), followed by postselec-
tion based on comparing the results using public communi-
cation. Thus, each (j2, k) combination in Sifting A, for in-
stance, gives rise to a Kraus operator Sj2,k which maps the
AB system to the raw keys KAKB according to Sj2,k :
|φ〉A ⊗ |ψ〉B 7→ N

∑
i,i′ |i〉KA |i′〉KB 〈ψi,j2,k|A〈ψ∗

i′,j2,k|B ,
where N is a normalization factor. (Recall that the conver-

sion requires Bob to use the complex conjugate states |ψ∗
jk〉.)

The case of Sifting B is entirely similar.

In this formalism it is now easy to confirm that the sifting
procedure is covariant under the automorphismG of the SIC-
compound, which is generated byX , Z , U , V , and one further
unitary operator, W , which cyclically permutes the last three
vector components and leaves the first fixed. Then, in the case
of Sifting A, for any element Y ∈ G and combination (j2, k),
the operator Sj2,kY ⊗ Y ∗ = Sj′2,k

′ for some j′2 and k′ (up
to a phase), because the automorphism generators each pre-
serve the individual rows and columns of the Latin square.
Importantly, in both sifting procedures under consideration,
the protocol discards the information besides the sifted key,
e.g. the (j2, k) values in Sifting A and the (j1, j2) values
in Sifting B. Therefore we may average the input state ρAB

over G, since the protocol will effectively only see the state
ρ̄AB =

∑
Y ∈G Y ⊗ Y ∗ρABY

† ⊗ Y T . Straightforward calcu-
lation shows that ρ̄AB = (1−p−q)ΦAB + qπAB + pκAB for
some positive parameters q, p with q + p ≤ 1, where ΦAB is
the maximally-entangled state, πAB is the maximally-mixed
state, and κAB is the diagonal state of perfect uniform corre-
lation.

The protocol proceeds to distill secret key from the raw
key using information reconciliation and privacy amplifica-
tion. Given a post-sifted state σKAKBE , we can appeal to the
rate formula of [60], r ≥ H(KA|E)σ −H(KA|KB)σ , where
H(KA|E)σ is the conditional entropy. The post-sifted state
will be of the form σKAKBE = M(S1,1ρ̄ABES

†
1,1), where

M denotes the measurement of the KA and KB systems,
each in the standard basis. This is a slight departure from and
improvement on [56–58], which for simplicity uses only the
Bell-diagonal part of S1,1ρ̄ABES

†
1,1. This lowers the key rate

and is unnecessary here as the state ρ̄ABE itself is of a very
simple form.
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