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Abstract 
The integration of electric vehicles (EVs) into the electricity systems comprises both threats and 
chances. A successful control strategy of EV charging processes is beneficial for both EVs and electricity 
grid. This paper proposes a scenario-based two-stage stochastic linear programming model for 
scheduling EV charging processes for different grid requirements in real time using a rolling window 
approach. The model considers the uncertainties in EV availability (i.e. arrival time and departure time) 
and electricity demand upon arrival (i.e. initial and target state of charge of the battery). Monte Carlo 
simulation shows how different input parameters may affect the results. Inhomogeneous Markov 
Chains are used for EV usage pattern simulation and for scenario generation. For reducing computing 
time, the amount of scenarios is again reduced by scenario reduction technique. The proposed model 
is applicable for various grid purposes. We demonstrate the applicability of our model by three 
example cases: Load flattening (only EV charging load), load leveling (together with conventional 
household load) and demand response (for wind energy integration or ancillary service).

Keywords
Electric vehicles, Smart charging, Uncertainty, Stochastic optimization, Demand response

Nomenclature
Indices/Sets:

Electric vehicles (EVs) that are available for charging at period 𝑚(𝐸𝑉𝑖) 𝑖
Time intervals 𝑡
Time intervals (for estimation of future EV arrivals)𝑠
Scenarios𝜔

Parameters:
Penalty factor𝜆
Capacity of an EV, [kWh]𝐶𝑎𝑝
EV charging efficiency, [%]𝑒
Length of a time interval, [hour]∆t
Maximum EV charging power of an EV, [kW]𝑃𝑚𝑎𝑥

Starting period of a rolling window𝑖
Availability of EV  in period , [binary] 𝐴𝑚,𝑡 𝑚 𝑡
Initial state of charge (SOC) of EV  before charging, [%]𝑆𝑂𝐶𝑖𝑛𝑖

𝑚 𝑚
Initial SOC for EVs that are estimated to arrive in future periods, [%]𝑆𝑂𝐶'

0
 Maximum SOC of EV, [%]𝑆𝑂𝐶𝑚𝑎𝑥

SOC target of EV  when charging ends, [%]𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑚 𝑚

SOC target of EV from future period  when charging ends, [%]𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑠 𝑠

Number of EVs that are estimated to arrive in future period  in scenario 𝛼𝑠,𝜔 𝑠 𝜔
Ending period of the rolling window that starts in period 𝑊𝑖 𝑖
Availability of EV  after the rolling window that starts in period , [binary]𝐴𝐴𝑚 𝑚 𝑖
Preferred total EV charging demand in period , [kW]𝐷𝑝𝑟𝑒𝑓

𝑡 𝑡
Probability of scenario 𝜋𝜔 𝜔
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Total EV charging power in the period before the rolling window which starts in period , [kW]𝐷𝑖 ― 1 𝑖

Variables (non-negative):
Gap between  and SOC of EV  when the rolling windows ends, [%]𝐺𝑎𝑝𝑚 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑚 𝑚
Gap between  and SOC of EVs from future period  in scenario , [%]𝐺𝑎𝑝'

𝑠,𝜔 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑠 𝑠 𝜔

EV charging demand assumed in period  (in scenario , [kW]𝐷𝑡,(𝜔) 𝑡 𝜔)
SOC of EV  in period , [%] 𝑆𝑂𝐶𝑚,𝑡 𝑚 𝑡

 SOC of EVs in period  in scenario , [%]𝑆𝑂𝐶'
𝑠,𝑡,𝜔 𝑡 𝜔

Charging power of EV  in period , [kW] 𝑃𝑚,𝑡 𝑚 𝑡
Charging power in period  of EVs from period  in scenario , [kW]𝑃'

𝑠,𝑡,𝜔 𝑡 𝑠 𝜔
Difference between  and  in period  (in scenario , [kW]𝐷𝐼

𝑡,(𝜔) 𝐷𝑡𝑜𝑡𝑎𝑙
𝑡,(𝜔) 𝐷𝑝𝑟𝑒𝑓

𝑡 𝑡 𝜔)
Change of  in two consecutive periods in period  in scenario , [kW]𝐷𝐼𝐼

𝑡,𝜔 𝐷𝐼
𝑡,𝜔 𝑡 𝜔

Notation:
Minimum of the two numbersmin(·, ·)

max{ } Maximum value in the set···

1. Introduction

With an increasing market share of electric vehicles (EVs), large integration of EVs may bring both 
challenges and opportunities to the power system (Fischer et al., 2019; Wellers et al., 2016). When EV 
customers charge EVs without external incentives, they prefer to charge EVs to their desired level as 
quickly as possible, which is often referred to as uncontrolled charging, or instant charging. By contrast, 
controlled charging means either EV’s charging power is regulated within the given limits or the 
charging time is scheduled.  We do not consider bidirectional charging (so called vehicle-to-grid or V2G) 
here. With instant charging, EVs will immediately start charging upon arrival with their maximum 
charging power until their charging targets are completed (Perez et al., 2017; Taljegard et al., 2019; 
Zhang et al., 2018). This leads to high peak loads, mainly during evening hours, which challenges the 
electricity grid and may influence the operation of power plants (Schill and Gerbaulet, 2015).  

However, due to long idle time, the load shifting potential of EVs is significant and might accordingly 
be used to alleviate the challenge to the electricity system (Babrowski et al., 2014). The topic of 
integrating EVs synergistically into the electricity system has gained increasing attention in the 
literature. Moreover, the promising load shift potential of EVs provides not only the possibility of peak 
shaving but also the prospect for other applications (J. Hu et al., 2016; Yang et al., 2015). Many 
literatures focus on the integration of renewable energy with EVs (Goonewardena and Le, 2012; 
Mehrjerdi and Rakhshani, 2019; Seddig et al., 2017; Yang et al., 2015). Another interesting topic is to 
maximize the profit of an EV aggregator by participating in the electricity market (Baringo and Sánchez 
Amaro, 2017; Sarker et al., 2016). 

As a foundation of all the promising EV applications above, EV charging behaviors should be 
scheduled when they are connected to the grid and these behaviors depend on the uncertainties of 
EV availabilities (i.e. arrival and departure time and the charging demand upon arrival). These 
uncertainties would deteriorate the practicability of an EV charging scheduling model. Most current 
literature either assume perfect information about these uncertainties or only consider one of them. 
Therefore, this paper aims to develop a real-time EV charging scheduling model with a focus on the 
inevitable uncertainties from EV availability. Moreover, as current studies mostly apply EV’s load 
shifting potential for one specific objective (e.g. load flattening), we structure the model in a flexible 
way so that it can be easily extensible for different specific applications. 

In terms of optimization methods, Sundström and Binding (2012) develop both quadratic and linear 
programming models which satisfy EV owners’ requirements while avoiding distribution grid 
constraints, and point out the computational challenge of quadratic programming. Both Iversen et al. 
(2014) and Wu et al. (2016) apply stochastic dynamic programming to minimize the operational cost 
of a single EV but not an EV fleet. Multi-objective optimization is also applied to balance the tradeoff 
between conflicting objectives (Ju et al., 2016; Lu et al., 2018), such as demand response and 
renewable energy integration. When V2G is considered, mixed integer linear programming is often 
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applied because of the binary nature of decision variables for charging or discharging state (Sabillon 
Antunez et al., 2016). 

In this paper, we propose a scenario-based two-stage stochastic linear programming (SLP) model 
for EV charging scheduling in real time. EV usage patterns are generated by inhomogeneous Markov 
chains. With regards to real-time scheduling, this myopic (online or local) optimizing environment is 
considered by a rolling window approach. In the model formulation, future EVs are aggregated by their 
arrival time so that their uncertainties (i.e. the availabilities and charging demand) are considered by 
scenario-based stochastic optimization. Representative scenarios are selected by a scenario reduction 
technique. With Monte Carlo simulation, we further demonstrate the performance of the model with 
different input parameters (EV usage profiles and their electricity demand). The aggregation of future 
EVs also keeps the computing time compatible for empirical applications, since we capture their 
uncertainties in the model but limit the consequential complexities. 

The formulation of the model objective is kept slim and as general as possible in order to guarantee 
its flexible and straightforward application. The model objective is to minimize the distance between 
the EV charging demand and a pre-defined curve. By simply adjusting this pre-defined curve, we 
demonstrate the performance of our model using three potential applications. The first application is 
for load flattening of the charging demand of EV fleets. With the conventional load from households, 
the second application is for load leveling (peak shaving and valley filling). The last application is related 
to demand response for wind energy integration and ancillary services in the reserve market.

Our main contributions to the current literature are summarized as follows:
(1) We develop a stochastic optimization model for EV charging scheduling in real time which 

especially considers the uncertainties from EV availabilities and their demand upon arrival. 
We also demonstrate the value of using a stochastic model by comparing with a 
deterministic one.  

(2) The objective of the proposed model is formulated in a flexible way and is ready to be 
implemented for specific applications by only setting different values to one parameter. 
We extensively present three examples to elaborate the method.

(3) Our problem is applied on empirical field test data represented by usage patterns of dozens 
of EVs for over six months.

The remainder of the paper is organized as follows. Section 2 gives a short overview of current 
literature on the EV charging scheduling problem and the current research gap is discussed. Section 3 
outlines the formulation of the model. Section 4 explains the setting of the parameters in the model. 
Section 5 presents three potential applications of the model. Section 6 concludes the paper.

2. Related Work

This section gives an overview of current literature focusing on EV charging scheduling problem. The 
consequential uncertainties are clarified and the research gap is discussed.

2.1 Objectives for EV Charging Scheduling 
There are two typical ways to schedule EV charging behaviors: the decentralized and the centralized 
way (Richardson et al., 2012; Sundström and Binding, 2011). The decentralized way means that EVs 
schedule their own charging behaviors based on information they can receive from outside. Wu et al. 
(2016) develop a stochastic dynamic programming model to minimize the energy cost of a smart home 
with EV, battery storage, and photovoltaic array. Iverson et al. (2014) also apply stochastic dynamic 
programming for charging scheduling of a single EV to minimize the operating cost. A potential 
drawback of this way is that if multiple EVs receive the same external information (e.g. electricity price) 
and schedule their charging behaviors under the same strategy, it is likely that their schedules are 
similar, and this may lead to peak shifting but not peak shaving (Ramchurn, 2012). However, Hu et al. 
(2016) propose a dynamic pricing mechanism which offers different charging tariffs for EV users 
depending on their arrival times and the current demand. 

The centralized approach means that an entity would schedule charging behaviors for a group of 
EVs by controlling the charging processes directly or indirectly, e.g. by giving price incentives. This new 
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entity is often referred to as charging service provider, EV aggregator or fleet operator (J. Hu et al., 
2016; Sundström and Binding, 2011). Such charging service provider can be the grid operator or a new 
third-party player that makes a profit by providing demand-side management service. State of charge 
(SOC), the level of battery charge in percentage, is a key indicator for EV charging scheduling. Together 
with initial SOC and target SOC, charging service providers need collect EV information (e.g. battery 
capacity and maximum charging power) and communicate with EVs to schedule optimal charging 
behaviors. In order to provide a certain kind of service (e.g. reserve) to the grid, an EV charging 
scheduling model should have a relatively large amount of EVs to schedule. 

Charging service providers can schedule charging behavior for EVs. Literally, the charging service is 
a service provided to an EV to control its charging behavior and to charge the EV in a certain way. In 
fact, it is a service primarily to the grid or utility because the initial motivation of controlled charging 
originates from the potential challenge that the grid might face, as discussed in Section 1. Potential 
cost savings for EV owners guarantee this possibility. With the discussions above, this paper schedules 
EV charging behaviors in a centralized way. A centralized model may include EVs connected to one 
location, e.g. one charging infrastructure or one charging station. 

2.2 How Uncertainties of EV are Considered in Modeling
In this paper, we clarify and analyze two kinds of uncertainties in EV charging scheduling. One 

uncertainty is EV’s availability for charging, which means EV’s arrival time to the grid and its departure 
time. We categorize EVs into two groups: EVs that are currently connected to the grid and EVs that 
may arrive in the future. For currently connected EVs, the arrival times are apparently known. 
Regarding the departure time, it is assumed in this paper that with proper financial incentive EV owners 
will guarantee their departure times upon arrival and send this information to the charging service 
provider. Please note that this guaranteed departure time can be earlier than the actual departure 
time but not later. For future EVs, their availabilities remain unknown in this paper. The other 
uncertainty is the charging demand upon arrival or the SOC of the EV battery, i.e., the initial SOC upon 
arrival and target SOC at departure. For currently connected EVs, the initial SOC is known and user’s 
target SOC can also be communicated to the charging service provider. For future EVs, their SOC is not 
known to the system. 

Therefore, the uncertainties of EV charging scheduling we consider are not from EVs that are 
currently connected to the grid, but from EVs that may arrive in future periods, i.e. from their 
availability and SOC statuses. Although EV charging scheduling models only optimize solutions for 
currently connected EVs, the arrival of future EVs should also be taken into account. From a systematic 
aspect, when we schedule the charging behaviors of currently connected EV over a time span, the 
arrival of future EVs would also have an impact on the total charging demand of the system and the 
solutions of currently connected EVs in future periods are accordingly affected. The above discussions 
on EV charging scheduling and its uncertainties provide a framework and contribute to categorizing 
and analyzing current studies concerning EV charging scheduling. 

One way to handle this future EV availability is to only consider the currently-connected EVs into 
the model and to recalculate the model with updated information whenever new EV arrives. Guo et 
al. (2018) propose an online linear programming model to decrease the peak of EV charging demand. 
He et al. (2012) minimize the total charging cost with a quadratic programming model for real-time 
charging scheduling problem of EVs. Both Guo et al. (2018) and He et al. (2012) compare their optimal 
solutions between a global (offline) optimum which has perfect information about future EVs and a 
local (online) optimum which considers only the currently connected EVs. The resulting differences 
indicate the necessity of considering uncertainty of future EV arrivals for more empirically-related 
modelling.

The uncertainties from future EV have also received increasing attention by literature. Lu et al. 
(2018) propose a multi-objective load dispatch model for a microgrid including distributed generations 
and electric vehicles. The uncertainties from EV usage behavior and charging load are tackled with 
Monte Carlo simulation which would not apply in real-time EV charging scheduling problem. 
Heydarian-Forushani et al. (2016) develop a scenario-based stochastic programming model and study 
the interaction between EV parking lots and wind energy. In this paper, EVs are both aggregated by 
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their arrival time and departure time. Therefore, there is no individual EV in the model and individual 
charging target is not considered. Instead of using scenarios, Akhavan-Rezai et al. (2018) build and train 
an artificial neural network to hourly forecast future EV arrivals. However, the uncertainty in future 
EVs’ departure time is not considered. Wu and Sioshansi (2017) develop a two-stage stochastic 
optimization model for EV charging scheduling at a fast charging station which minimizes the operating 
cost and avoids overloading the transformer. Their paper models uncertainties in EV arrival time and 
charging demands upon arrival. However, this paper assumes the same charging duration for all 
flexible EVs, so the uncertainty in EV departure time is not considered, and the currently connected 
EVs are in fact modeled in an aggregated way.

In addition to EVs, an energy scheduling model may also incorporate other components (e.g., 
electricity price, household loads, photovoltaic and wind energy production and stationary battery 
storage) e.g. Refs. (Le Goff Latimier et al., 2015; Wu et al., 2016; Zhang et al., 2014). In this paper, the 
parameters of such components will not be considered uncertain.

2.3 Rolling Window Approach
As EV charging is persistently scheduled for EVs that arrive, the rolling window approach, or model 
predictive control, seems to be highly suitable for real-world charging scheduling models. A charging 
scheduling model optimizes for a fixed time span (  periods in Fig.1). Every time the model iterates, 𝑊
this time span moves forward by one period. The starting period  and the ending period  are 𝑖 𝑊𝑖

updated accordingly, as shown in Fig. 1. The set of EVs that are currently available  is also updated, 𝐸𝑉𝑖

and so are all parameters indexed by . Although the optimal solutions are calculated for  periods, 𝑚 𝑊
only the solution for the first period (period ) will be implemented.𝑖

However, few current literatures take rolling window approach into account. Wu and Sioshansi 
(2017) further apply it to their model with a fixed optimization horizon of 60 minutes while they 
assume that all EV charging windows are 40 minutes. He et al. (2012) do not fix their optimization 
horizon (rolling window) when updating charging schedule but only until the last departure time of the 
currently-connected EVs. Lee et al. (2019) use model predictive control to reschedule EV charging rates 
when a new EV arrives or the last computed solution exceeds a certain period. Z. Hu et al. (2016) also 
suggest that the rolling window approach be further applied upon their proposed model for load valley 
filling by EV charging. 

In spite of its necessity, the rolling window approach may bring further challenges to the 
performance of an EV charging scheduling model, which is rarely mentioned in the current literature. 
In reality, it is possible that some currently-connected or future EVs might have their charging windows 
(availabilities) beyond the defined optimization horizon. The first challenge is how to set charging 
targets for these EVs by the end of the current optimization horizon. For instance in  iteration of 𝑘𝑡ℎ

Fig. 1, a future EV may arrive in period   but the optimization horizon ends in period . 𝑘 + 𝑊 ― 1 𝑘 + 𝑊
It is highly likely that this future EV is still available for charging after period . Therefore, a 𝑘 + 𝑊
feasible charging targets should be assigned for such EVs. Second, a proposed model may only 
guarantee the performance of the solution of the current iteration while the true result is a 
combination of a series of iterations, which might fluctuate (cf. Fig. 6 below).  For example, if the 
objective of a certain EV charging scheduling model is to flatten the total EV charging demand, the 
optimization solution for  iteration would be a flat curve. However, if no EV departs at period  𝑘𝑡ℎ 𝑘 + 1
and more EVs arrive at period , the optimization solution for  iteration would also be a 𝑘 + 1 (𝑘 + 1)𝑡ℎ

flat curve, but operating at a higher level. As only the first-period result of every iteration will be 
implemented, the actual charging demand might fluctuate. 
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Fig. 1. Illustration of the rolling window approach

2.4 Research Gap 
With the discussions and the literature review above, the current research gap in EV charging 
scheduling, where this paper aims to contribute, is mainly on how to consider each EV’s uncertainty in 
the formulation and how to make assumptions in EV parameter settings without oversimplifying them, 
especially when a model is applied under rolling window approach.

3. EV Charging Scheduling Model

We formulate the EV charging scheduling problem as a scenario-based two-stage SLP problem and 
minimize the distance between the actual EV charging demand and a pre-defined preferred charging 
demand over a time span. The first stage is only for the current period and determines the charging 
demand of the EVs that are currently connected to the grid. The second stage is for the rest of the 
time span and determines the estimated charging demand of the currently connected EVs as well as 
possible future EVs. For random parameters in the second stage, we use scenarios to represent the 
possible realizations of the parameters in the second stage. 

The model uses the rolling window approach and, hence, only the known EV charging demand in 
the first stage ( ) for the first 15 minutes are set ultimately (but considering also the estimated 𝑡 = 𝑖
future demand). As time moves forward by one period, the optimization horizon also rolls forward by 
one period and the model recalculates solutions for all following periods ( ) with updated data. 𝑡 > 𝑖

3.1 Model Formulation 
The formulation of the model is as follows:
Min: (1)𝐷𝐼

𝑖 + ∑
𝜔

∑𝑡 = 𝑊𝑖

𝑡 = 𝑖 + 1𝜋𝜔 × (|𝐷𝐼
𝑡,𝜔| + |𝐷𝐼𝐼

𝑡,𝜔|) + ∑
𝑚𝐺𝑎𝑝𝑚 × λ + ∑

𝑠,𝜔𝜋𝜔 × 𝐺𝑎𝑝'
𝑠,𝜔 × λ

Subject to:

    (2)𝐷𝑡 = ∑
𝑚 ∈ 𝐸𝑉𝑖𝑃𝑚,𝑡 𝑡 = 𝑖

(3)𝐷𝑡,𝜔 = ∑
𝑚 ∈ 𝐸𝑉𝑖𝑃𝑚,𝑡 + ∑𝑡

𝑠 = 𝑖 + 1𝑃'
𝑠,𝑡,𝜔 𝑖 +1 ≤ 𝑡 ≤ 𝑊𝑖, ∀𝜔

(4)𝐷𝐼
𝑡 = 𝐷𝑡 ― 𝐷𝑝𝑟𝑒𝑓

𝑡 𝑡 = 𝑖

(5)𝐷𝐼
𝑡,𝜔 = 𝐷𝑡,𝜔 ― 𝐷𝑝𝑟𝑒𝑓

𝑡 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, ∀𝜔

(6)𝐷𝐼𝐼
𝑡,𝜔 = 𝐷𝐼

𝑡,𝜔 ― 𝐷𝐼
𝑡 ― 1,𝜔 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, ∀𝜔

(7)𝑆𝑂𝐶𝑚,𝑡 × 𝐶𝑎𝑝 = 𝑆𝑂𝐶𝑚,𝑡 ― 1 × 𝐶𝑎𝑝 + 𝑃𝑚,𝑡 × 𝑒 × ∆𝑡 𝑚 ∈ 𝐸𝑉𝑖, 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖

(8)𝑆𝑂𝐶𝑚,𝑡 × 𝐶𝑎𝑝 = 𝑆𝑂𝐶𝑖𝑛𝑖
𝑚 × 𝐶𝑎𝑝 + 𝑃𝑚,𝑡 × 𝑒 × ∆𝑡 𝑚 ∈ 𝐸𝑉𝑖,𝑡 = 𝑖
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(9)𝑆𝑂𝐶𝑚,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 𝑚 ∈ 𝐸𝑉𝑖, 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖

(10)𝑆𝑂𝐶𝑚,𝑡 + 𝐺𝑎𝑝𝑚 ≥ 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑚 × (1 ― 𝐴𝐴𝑚) 𝑚 ∈ 𝐸𝑉𝑖, 𝑡 = 𝑊𝑖

(11)𝑃𝑚,𝑡 ≤ 𝑃𝑚𝑎𝑥 × 𝐴𝑚,𝑡 𝑚 ∈ 𝐸𝑉𝑖,  𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖

(12)𝑃𝑚,𝑡 ≤ 𝑃𝑚𝑎𝑥 × (4 ― 4 × 𝑆𝑂𝐶𝑚,𝑡 ― 1) 𝑚 ∈ 𝐸𝑉𝑖, 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖

(13)𝑃𝑚,𝑡 ≤ 𝑃𝑚𝑎𝑥 × (4 ― 4 × 𝑆𝑂𝐶𝑖𝑛𝑖
𝑚 ) 𝑚 ∈ 𝐸𝑉𝑖, 𝑡 = 𝑖

(14)𝑆𝑂𝐶'
𝑠,𝑡,𝜔 × 𝐶𝑎𝑝 × 𝛼𝑠,𝜔 = 𝑆𝑂𝐶'

𝑠,𝑡 ― 1,𝜔 × 𝐶𝑎𝑝 × 𝛼𝑠,𝜔 + 𝑃'
𝑠,𝑡,𝜔 × 𝑒 × ∆𝑡 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑖 +1 ≤ 𝑠 < 𝑡, ∀𝜔

(15)𝑆𝑂𝐶'
𝑠,𝑡,𝜔 × 𝐶𝑎𝑝 × 𝛼𝑠,𝜔 = 𝑆𝑂𝐶'

0 × 𝐶𝑎𝑝 × 𝛼𝑠,𝜔 + 𝑃'
𝑠,𝑡,𝜔 × 𝑒 × ∆𝑡 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑠 = 𝑡, ∀𝜔

(16)𝑆𝑂𝐶'
𝑠,𝑡,𝜔 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑖 +1 ≤ 𝑠 ≤ 𝑡, ∀𝜔

(17)𝑆𝑂𝐶'
𝑠,𝑡,𝜔 + 𝐺𝑎𝑝'

𝑠,𝜔 ≥ 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑠 𝑡 = 𝑊𝑖, 𝑠 ≥ 𝑖 + 1, ∀𝜔

(18)𝑃'
𝑠,𝑡,𝜔 ≤ 𝑃𝑚𝑎𝑥 × 𝛼𝑠,𝜔 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑖 +1 ≤ 𝑠 ≤ 𝑡, ∀𝜔

As the potential challenge of EV charging is the increase of peak demand within a day, the basic 
application of our optimization model is peak shaving or load leveling Both Z. Hu et al. (2016) and He 
et al. (2012) design pricing mechanisms for peak shaving and develop a quadratic programming model 
to EV charging scheduling. Instead of using electricity price signals as a guidance, this paper proposes 
to use a preferred total charging demand curve. Objective (1) minimizes the distance between the EV 
charging curve and this preferred curve and makes sure the distance over a time span could be equally 
distributed if possible. With Objective (1), the actual total charging demand would try to follow this 
pre-defined preferred curve. The curve makes the model extensible since the true model task depends 
on the value of this preferred curve. In (1),  is the objective function of the first stage, namely the 𝐷𝐼

𝑖
distance between the EV charging demand and the preferred demand only for the current period 

( ).  is the objective function of the second stage, namely the 𝑡 = 𝑖 ∑
𝜔

∑𝑡 = 𝑊𝑖

𝑡 = 𝑖 + 1𝜋𝜔 × (|𝐷𝐼
𝑡,𝜔| + |𝐷𝐼𝐼

𝑡,𝜔|)
distance for the rest of the time span ( ). As we use scenarios to represent the uncertain 𝑡 ∈ {𝑖 + 1,…,𝑊𝑖}
parameters in the future, variables in the second stage are scenario-dependent (indexed by ) and the 𝜔
objective function of the second stage is a weight average of different scenarios.  and ∑

𝑚𝐺𝑎𝑝𝑚 × λ
 are relaxation terms to guarantee that the model will not be infeasible in case EV ∑

𝑠,𝜔𝜋𝜔 × 𝐺𝑎𝑝'
𝑠,𝜔 × λ

users’ charging target cannot be satisfied. The penalty factor  here is set to be a very high positive λ
value ( in our case). As a result, to meet users’ request is prior to following the preferred curve so 106 
that the high penalty could be avoided.

Constraints (2)-(6) define the variables in Objective (1). The total EV charging demand   and  𝐷𝑖 𝐷𝑡,𝜔
are defined in (2) and (3). Unlike , second-stage variable  also considers demand from EVs that 𝐷𝑖 𝐷𝑡,𝜔
might arrive in future periods. There are three indices for the charging power of future-connected EVs 

. The first index  points out the future periods when these EVs are estimated to arrive. The 𝑃'
𝑠,𝑡,𝜔 𝑠

second index  stands for the period of a charging behavior. The third index  indicates scenarios, as 𝑡 𝜔
estimations for the number of EV arrivals in the future may vary among scenarios. According to the 
definition of , its charging time  cannot be earlier than the arrival time  (one EV can only be 𝑃'

𝑠,𝑡,𝜔 𝑡 𝑠
charged upon arrival). For instance,  means that the charging power in period 4 for the EVs that 𝑃'

2,4,8
are estimated to arrive in period 2 by scenario 8. By comparison,  means one EV is charged before 𝑃'

4,2,8
its arrival time, which is not feasible. In (4),  and  are the difference between total charging 𝐷𝐼

𝑡 𝐷𝐼
𝑡,𝜔

demand  and preferred charging demand  for the starting period . Similar to  ,  in (5) is 𝐷𝑡 𝐷𝑝𝑟𝑒𝑓
𝑡 𝑖 𝐷𝐼

𝑡 𝐷𝐼
𝑡,𝜔

the difference between total charging demand  and preferred charging demand  for the 𝐷𝑡,𝜔 𝐷𝑝𝑟𝑒𝑓
𝑡

following periods. In (6),  is the change of this difference. and in (1) serve as a 𝐷𝐼𝐼
𝑡,𝜔 𝐺𝑎𝑝𝑚 𝐺𝑎𝑝'

𝑠,𝜔
relaxation for the model in case it fails to meet the charging target set by a certain user when the 
charging service ends. 

(7) - (13) are for EVs that are currently connected to the grid. (7) - (10) are constraints for EV SOC.  
(7) and (8) are for SOC in two consecutive periods. (9) guarantees that the SOC will not exceed the 
maximum value.  (10) is to make sure that the SOC target set by the user can be satisfied at the end of 
the current rolling horizon. Two exceptions are considered in (10). First,  guarantees that if the 𝐺𝑎𝑝𝑚
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final SOC of an EV is still lower than the SOC target set by the user, the model will not be infeasible. 
The penalty  is set to be a very high value so that meeting users’ request has priority over following 𝜆
preferred charging demands. Second,  in (10) is a binary parameter and is equal to 1 when the 𝐴𝐴𝑖

𝑚
availability of an EV is beyond the current rolling window horizon. By giving more charging flexibility to 
EVs that have longer available periods,  avoids long periods with high SOC and protects battery 𝐴𝐴𝑖

𝑚
lifetime (Lunz et al., 2012). (11) limits the charging power of the EVs.  is the availability of EVs that 𝐴𝑚,𝑡
are currently connected to the grid. The departure times of these EVs are assumed to be known in 
advance, as explained in Section 2.2. As assumed in Kaschub et al. (2013), EV’s maximum charging 
power will decrease as SOC increases. We also model this maximum charging power decrease in a 
linearized way. (12) and (13) assume that the maximum charging power will start to decrease linearly 
when SOC is over 75% and will drop to zero at full SOC.

Constraints (14) - (18) are for EVs that are estimated to arrive in future periods, and are similar to 
constraints (7) - (11). However, EVs that are estimated to arrive in the same future period are taken as 
one “aggregated” EV in the model. The number of EVs that arrive in one same future period is a random 
parameter and we formulate the stochastic problem in a scenario-based way, which means this 
random parameter is replaced by its weighted scenarios (possible realizations). Such replacement 
turns a stochastic model into a deterministic one (Seddig et al., 2019; Wu and Sioshansi, 2017).  
Parameter  estimates the number of EVs that may arrive in future periods in different scenarios. 𝛼𝑠,𝜔
The capacity and maximum charging power of these aggregated EV depend on the number of EVs 
aggregated. With this aggregation, the model does not need to individually consider the uncertainties 
in departure time and SOC of future EVs. Constraint (14) and (15) are for the SOC of this aggregated 
EV in two consecutive periods. (16) guarantees that SOC of the aggregated EV will not exceed 
maximum value. Similar to (10), (17) also sets a charging target for future EVs and considers the 
uncertainty of future EV departure time. For these aggregated EVs, the charging target  by 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑠
the end of the optimization horizon will be set to be proper values, which will be further discussed in 
Section 4.2. Linearization of maximum charging power is not applied to these aggregated EVs. (18) 
limits the charging power of the aggregated EV.

4. Parameter Setting

4.1 Temporal Setting
With the rolling window approach, newly-arrived EVs can be integrated into the model and the set of 
connected EVs is always updated. The model optimizes charging scheduling for the next 24 hours and 
the time resolution is 15 minutes. The setting of 24-hour rolling horizon is because the total charging 
demand within 24 hours is similar between different rolling windows, although the EV charging 
demand can be shifted to some extent. The model runs every 15 minutes with updated parameters, 
hence only the here-and-now solution for the first stage will be actually implemented. 

4.2 EV setting

4.2.1 EV Usage Pattern
The original EV usage data employed in this paper is from iZEUS (2012), the intelligent Zero Emission 
Urban System project which aims to enhance research, development, and practical demonstration in 
the fields of smart traffic and smart grid. From this project, usage patterns of 28 EVs are recorded for 
six months by minute. The usage data are recorded in three states: driving, parking only and charging. 
With this data set and inhomogeneous Markov chains (Iversen et al., 2017; Widén et al., 2009), this 
paper generates EV availability patterns and scenarios for future EV arrivals.

In a nutshell, there are two steps to follow in order to generate EV usage data from inhomogeneous 
Markov chains. The first step is to obtain the transition matrix for each EV, as shown in (19).

  (19)𝑀(𝑡) = [𝑝11(𝑡) 𝑝12(𝑡) 𝑝13(𝑡)
𝑝21(𝑡) 𝑝22(𝑡) 𝑝23(𝑡)
𝑝31(𝑡) 𝑝32(𝑡) 𝑝33(𝑡)] 𝑝𝑎𝑏(𝑡) = 𝑃(𝑋𝑡 + 1 = 𝑏|𝑋𝑡 = 𝑎)
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In (19),  denotes the state of an EV in time .  is the transition probability and it denotes 𝑋𝑡 𝑡 𝑝𝑎𝑏(𝑡)
the probability of EV to change from state  to state  in time . We use inhomogeneous Markov chains 𝑎 𝑏 𝑡
because this transition probability is time-variant within a day. For example, EVs are more likely to 
remain parked at night than in the day-time.  can be estimated from statistical data (original EV 𝑝𝑎𝑏(𝑡)
trip data in this paper). For example, an EV has two states (0 for parking and 1 for driving) and (𝑋𝑡,𝑋𝑡 + 1
 denotes EV’s state in two consecutive periods. According to original trip data, we have ten samples )

of , which are  and . Then we (𝑋𝑡,𝑋𝑡 + 1) (0,0), (0,1), (0,1), (0,1), (1,0), (1,1), (1,1), (1,1), (1,1) (1,1)
have

    (19a)𝑀(𝑡) = [𝑝00(𝑡) 𝑝01(𝑡)
𝑝10(𝑡) 𝑝11(𝑡)] = [1/4 3/4

1/6 5/6] 𝑝𝑎𝑏(𝑡) = 𝑃(𝑋𝑡 + 1 = 𝑏|𝑋𝑡 = 𝑎)

The second step is to generate simulated data by using  and a random number, which is 𝑀(𝑡)
uniformly distributed between 0 and 1. , the state at the starting period, can be assumed to be zero. 𝑋1
To get the value of , we compare   with a random sampling of this random number, say 0.2. If 𝑋2 𝑀(1)
we suppose  is equal to  in (19a), this 0.2 is less than 0.25 and  is equal to 0. In such a way, 𝑀(1) 𝑀(𝑡) 𝑋2
we could generate a time series of EV usage pattern.

We assume that when an EV is not in the driving state, it is available for charging. With this 
assumption, we convert  into each  (a binary parameter in the proposed model). Only availability 𝑋𝑡 𝐴𝑚,𝑡
periods longer than 3 hours are considered for controlled charging, because shorter availability periods 
are more suitable for instant charging. As a relatively large amount of EVs are necessary for centralized 
scheduling, this paper generates four availability patterns with each of the 28 transition matrices from 
inhomogeneous Markov chains so that there are 112 EVs in the model for . 𝐴𝑚,𝑡

An EV has load shifting potential only when its parking duration is beyond its minimum charging 
time. A longer extra parking time means a greater load shifting potential, which could also have an 
impact on the performance of a model. With extra parking time, charging behaviors can be postponed 
or shifted (Babrowski et al., 2014). Otherwise, instant charging would be the only option. Therefore, 
we present the simulation data of  (EV availability). In order to present the uncertainty of EV usage 𝐴𝑚,𝑡
patterns, we compare  with repeated random sampling of the random number uniformly 𝑀(𝑡)
distributed between 0 and 1. With 500 runs of Monte Carlo simulation, Fig.2 shows the proportions of 
EVs’ parking events with different durations in the total number of parking events. Fig. 3 shows the 
number of parked EVs within a day. The curve presents the median and the shaded area is for data 
between 25% and 75% quantile. 

As shown in Fig. 2, on average, about 60% of the parking events we consider have availability 
durations of less than 12 hours. Schäuble et al. (2017) have similar findings concerning the distribution 
of charging availability durations. Please note that we only consider EVs with availability periods longer 
than three hours, as discussed in Section 4.2. Based on the EV settings in Section 4.2.2, it takes about 
five hours to fully charge an empty EV with maximum charging power in our model. If an EV would like 
to have a 50% SOC increase within three hours, this leaves almost no potential for load shifting. Even 
under a controlled charging strategy, its EV charging curve would still behave like one under instant 
charging strategy. Therefore, due to the EV settings of the paper, we only consider EVs parking more 
than three hours as they have relatively sufficient potential for load shifting. In Fig. 3, most EV are 
parked before 6 a.m. and then this parking number decreases in the daytime, which is similar to the 
findings of Schäuble et al. (2016) and Brady and O’Mahony (2016).
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Fig. 2. Box plots of EV parking durations (in blocks of three hours) 
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Fig. 3. Distribution of parked EV quantity in every 15 minutes (with median – curve; 25% & 75% quantile - 
shade) 

In order to approximate the uncertainty of random parameter , a large set (500) of scenarios is 𝛼𝑠,𝜔
generated with inhomogeneous Markov chains mentioned above. As such a large scenario set would 
also bring computational challenge to the model, scenario reduction technique is then applied to 
reduce the number of scenarios used in the model. The commonly used scenario reduction methods 
are forward selection methods, backward reduction methods and their variants. Both forward 
selection and backward reduction methods run in an iterative fashion. For one iteration, forward 
selection methods select one representative scenario out of the original set while backward reduction 
methods exclude one scenario which could be represented by others. As we plan to pick 10 (a small 
number of) scenarios out of 500, forward selection takes fewer iterations to solve and outperforms 
backward reduction in terms of computational time (Wang, 2010). We apply the fast forward selection 
method (Feng and Ryan, 2013; Heitsch and Römisch, 2003), which is briefly reviewed as follows. The 
Euclidean distance of each two scenarios is first calculated and one scenario which is closest to the 
other scenarios can be selected. Then the second scenario can be selected which is closest to the 
remaining scenarios. The process iterates until the method selects a subset of the original scenario set 
which includes 10 scenarios and has the shortest distance to the remaining scenarios. A smaller set of 
scenarios are selected to represent the possible realizations and guarantee low computation time. 
Unselected scenarios will then add their own probabilities to one of selected ones which has the 
shortest distance to them. 

Fig. 4 presents the distribution of EV arrival quantity and its variation throughout a day and shows 
the randomness of the stochastic parameter . The curve presents the median and the shaded area 𝛼𝑠,𝜔
is for data between 25% and 75% quantile. It can be seen that most arrivals happen after 6 a.m. and 
peak in the evening hours.
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Fig. 4. Distribution of EV arrival quantity in every 15 minutes 
(with median – curve; 25% & 75% quantile - shade)

4.2.2 EV Model Specification 
In the field test of iZEUS (2012), Daimler electric Smart is used for several months generating 
comprehensive driving and charging patterns. In this paper, the corresponding EV specification in the 
parameter settings, as listed in Table 1, are considered for the following calculations.

Table 1. EV specification settings 

Parameter Setting Parameter Setting

𝐶𝑎𝑝 17.6 kWh 𝑒 90%
𝑃𝑚𝑎𝑥 5 kW 𝑆𝑂𝐶𝑖𝑛𝑖

𝑚 𝑈(15%,75%)
𝑆𝑂𝐶'

0 45% 𝑆𝑂𝐶𝑚𝑎𝑥 100%

The rationale of Table 1 is to follow the specification of Daimler electric Smart (the car model used 
in iZEUS). The battery capacity of Daimler electric Smart is 17.6 kWh. 90% is a reasonable assumption 
for EV charging efficiency. The maximum charging power  at a standard charging point is usually 𝑃𝑚𝑎𝑥

between 2.5 kW to 7 kW. We assume that the initial battery level  is between 15% and 75 % so 𝑆𝑂𝐶𝑖𝑛𝑖
𝑚

that the average value is 45%. In equation (20), we set the target SOC to be 90 % if possible. Therefore, 
this setting would meet the daily energy consumption of one EV, which is about 8 kWh.

The setting of  considers the availability parking duration  (in 15 minutes) of each EV 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑚 𝑇𝑚

and its initial SOC. As in (20),  is set to be an appropriate value and is below 90% so that the 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑚

SOC target can be satisfied within the charging period, and the load shifting potential is also 
guaranteed. With maximum charging power, the SOC increase of one EV in our model in one period 
(15 minutes) is about 6%. For flexibility of charging scheduling, we assume a 3% SOC increase per 
period (half of maximum SOC increase). Since future arrivals of EVs are aggregated, the notion of 
departure time does not apply to this aggregated EV. The model only needs to assign a proper charging 
task  by the end of a rolling horizon, as is explained in (21). Please note that although (20) 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑠
and (21) look similar in form, the meanings behind  and  are different.  is 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑚 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑠 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑚
the real charging target for the currently connected EVs while  assigns charging tasks for the 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑠
aggregated future EVs and is only an estimation for the future.

           (20)𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑚 = min (𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑚 + 𝑇𝑚 × 0.03, 0.9) ∀𝑚

      (21)𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑠 = min (𝑆𝑂𝐶'

0 + (𝑊𝑖 ― 𝑠) × 0.03, 0.9) ∀𝑠

5. Results and Discussions

In this section, we will illustrate the proposed model with three potential applications. Application I is 
to flatten the total charging demand of EVs. With Application I, we compare the performance of our 
model with that of a deterministic one.  Application II is for peak shaving and valley filling (together 
with conventional load from households). Application III contributes to wind energy integration and 
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ancillary services in the reserve market. We also validate the choice of the stochastic model instead of 
a deterministic one. The formulated model is a two-stage SLP model and includes 260,981 variables 
and 549,470 constraints. The model is implemented in GAMS with CPLEX solver installed in a personal 
laptop with Intel Core i5-7200U processor and 8 GB RAM. As the model runs iteratively in a rolling 
window fashion, it takes about 15 seconds to solve one iteration.

5.1 Application I: Flattening EV Charging Demand 
In order to give a quantitative example of the load shifting potential of EVs, Application I is to flatten 
the EV charging demand, which decreases the peak demand of EV charging and increases the workload 
of the electricity grid without an additional investment in the new grid hardware, e.g. EV parking lots 
(Jochem et al., 2016; Lee et al., 2019). To achieve this goal, the preferred demand curve  is defined 𝐷𝑝𝑟𝑒𝑓

𝑡
in (22). With this, the charging demand curve aims to be as flat and as low as possible. For comparison, 
we also simulate a charging demand curve for instant charging with the same EV usage data. Our 
proposed model runs for a two-day time span and results are shown in Fig. 5. 

(22)𝐷𝑝𝑟𝑒𝑓
𝑡 = 0 ∀𝑡
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Fig. 5(a). Number of parked EVs
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Fig. 5(b). EV charging demand of instant and controlled charging strategy

As discussed in Section 4.2, we assume that all parked EVs have charging requests and are available 
for charging (connected to the grid). In Fig. 5(a), the number of EVs connected to the grid decreases 
during daytime. In Fig. 5(b), the instant charging curve is simulated under the assumption that EVs 
charge upon arrival with maximum charging power until they reach their charging targets. The 
controlled charging curve is the optimization results of the proposed model where EVs’ charging time 
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can be scheduled within their parking time and their charging power can be regulated. The instant 
charging demand of these EVs peaks significantly in early evening hours and drops to a low level at 
night time. This simulated result of instant charging demand shows characteristics similar to those 
found by Schäuble et al. (2017). There is some synergy effect between the instant charging demand 
and the number of EV arrivals (Fig. 4), which is in line with the definition of instant charging. The instant 
charging demand depends more on the number of EV arrivals and less on the number of parked EVs. 
In controlled charging, EV charging demand is flattened and distributed throughout the entire day. The 
peak demand of instant charging strategy is 167 kW while the peak demand of controlled charging 
strategy is 73 kW. A potentially applicable situation of this example could be a parking garage or a 
charging station which might otherwise need to increase its capacity.

5.2 Comparison of Stochastic and Deterministic Models 
The number of future EV arrivals is the main uncertain parameter in EV scheduling. The proposed 
model in Section 3 is formulated as a scenario-based stochastic problem for this uncertain parameter 
( ). The value of the proposed stochastic model is compared with a deterministic model in which 𝛼𝑠,𝜔
the number of future EV arrivals is estimated with the mean value of each period (cf. Fig. 4). As a 
benchmark, the solution of a perfect model is also presented where we use the real arrival quantity of 
each future period as an estimation. Please note that all other parameter settings remain the same for 
all three models. The perfect model here is not a perfect foresight model.

To illustrate the performance of the three models, we present their solutions under two new EV 
usage profiles with Application I, as shown in Fig. 6. In both Fig. 6(a) and Fig. 6(b), the perfect solution 
is not perfectly flat as other uncertainties still remain (  and ) and the rolling window 𝑆𝑂𝐶'

0 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑠

approach is applied. In spite of that, the perfect solution can serve as a benchmark for the other two 
solutions. In terms of curve fitting, we introduce two indicators to check whether the stochastic model 
gives a better fit (closer to the perfect model solution), namely mean absolute error (MAE) and root 
mean square error (RMSE).  For a solution of  periods,  is the error for each period ( ). 𝑛 𝑒𝑗 𝑒𝑗, 𝑗 = 1,2,…𝑛
MAE and RMSE are calculated as

 (23)𝑀𝐴𝐸 =
1
𝑛∑𝑛

𝑗 = 1𝑒𝑗

 (24)𝑅𝑀𝑆𝐸 =
1
𝑛∑𝑛

𝑗 = 1𝑒2
𝑗

With the definitions in (23) and (24), RMSE gives more weight to larger errors while MAE is unbiased. 
Table 2 shows the comparison results of Fig. 6. The two indicators may or may not draw the same 
conclusion under different EV usage profiles. 

With Monte Carlo simulation, average errors are calculated for 100 random EV usage profiles.. 
Please note that one random EV usage profile here consists of 112 EV usage behaviors for two days as 
input data. Furthermore, we present the maximum deviation of a single period and the top 1‰ 
deviations in Table 3. The overall performance of the two models (stochastic and deterministic) can 
therefore be presented by various indicators and under a large size of different input data. With the 
favorable results shown in bold type, the stochastic model is found to give a better curve fitting in 
terms of avoiding larger deviations (errors). One example of a large deviation is Fig. 6(b) which has a 
significant load drop around 7:30 a.m. on the first day. However, the stochastic model outperforms 
the deterministic one under such extreme case.
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Fig. 6(a). Flattened EV charging load under EV usage profile 1
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Fig. 6(b). Flattened EV charging load under EV usage profile 2

Table 2. MAE and RMSE under two EV usage profiles of Fig. 6 (kW)

MAE RMSE

Stochastic Deterministic Stochastic Deterministic

Fig. 6(a) 1.9491 2.1062 2.2968 2.4377

Fig. 6(b) 2.3448 2.1665 3.1476 3.7510

Table 3. Different criteria for stochastic and deterministic model comparison (kW)

Stochastic Deterministic

Average MAE 2.0731 2.0223

Average RMSE 2.6001 2.7679

Maximum deviation 19.2003 36.6387

Deviation of top 1‰ 11.3074≥ 20.2641≥

5.3 Application II: Peak Shaving and Valley Filling
More applications of EV charging scheduling are related to the interaction of the latter with other 
elements in the power systems, e.g., original load, renewable energy and stationary battery storage. 
According to Sundström and Binding (2012) and Liu (2012), instant charging demand increases 
significantly during evening hours. This has a negative impact on the electricity system.

Application II of the proposed model is to shift EV charging demand for peak shaving and valley 
filling from conventional load  , which refers to the total household load of 112 families. Together 𝐵𝑎𝑠𝑒𝑡
with this conventional load, Application II shifts more EV charging load to off-peak hours and limits the 
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increase in peak load. The preferred load curve is defined in (25). With Monte Carlo simulation, we 
present how different input parameters (EV usage patterns and SOC status) may affect the results. Fig. 
7 presents 10 Monte Carlo simulation runs of the model with different EV arrival parameters for three 
days, i.e. EV availability ( , ) from inhomogeneous Markov chains and SOC status ( , 𝐴𝑚,𝑡 𝐴𝐴𝑚 𝑆𝑂𝐶𝑖𝑛𝑖

𝑚

).𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑚

     (25)𝐷𝑝𝑟𝑒𝑓
𝑡 = 𝑚𝑎𝑥 {𝐵𝑎𝑠𝑒𝑡│𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖} ― 𝐵𝑎𝑠𝑒𝑡 ∀𝑡

Fig. 7(a) shows how EV charging load follows the preferred curve under 10 different EV parameters. 
Because of the charging target set by EV users, the EV charging load may not perfectly reach the value 
of the preferred curve but is able to follow the shape of the preferred curve under uncertainties. In 
Fig. 7(b), the black curve is the conventional load . The 10 colored curves above are 10 potential 𝐵𝑎𝑠𝑒𝑡
total demand curves out of 10 different EV arrival parameters. The area between each of the 10 
colored curves and the base-load black curve is the EV charging load (cf. Fig. 7(a)). As can be seen, EV 
charging behaviors are more scheduled to off-peak hours in order to avoid higher peak load. The model 
also manages to cover the variation of the base load without further increasing the peak load. The 
difference between the 10 total load curves (10 color curves in Fig. 7) derives from the 10 Monte Carlo 
simulation runs of EV arrival parameters. This result serves as an example to show how the results 
would perform on different days. Morais et al. (2014) show similar results but EV uncertainties are not 
considered.
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Fig.7(a). EV charging load for peak shaving and valley filling under 10 Monte Carlo simulation runs 
(charging load - in color; preferred curve - black)
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Fig.7(b). Total load for peak-shaving and valley-filling under 10 Monte Carlo simulation runs 
(total load - in color; household load - black)

5.4 Application III: Demand Response for Wind Energy Integration and Control Reserve Market
A significant amount of wind energy has been curtailed in the past few years (Schermeyer et al., 2018) 
and recent literature also considers utilizing EVs for the integration of renewable energy (Schuller et 
al., 2015). With great temporal flexibility, EVs can be used to reduce the curtailment of wind and solar 
energy, which is Application III of our model.

In the case of potential wind energy curtailment, EV charging demand can adjust accordingly for 
the utilization of renewable energy. To achieve this goal, the preferred demand curve  is again 𝐷𝑝𝑟𝑒𝑓

𝑡
set to zero (cf. constraint (22)). Additionally, constraint (26) will be added to the proposed model. 
When a new rolling window starts, constraint (26) forces the total charging demand  in the next 𝐷𝑡,𝜔
few periods to be higher or lower than the previous charging demand  by a certain amount . 𝐷𝑖 ― 1 𝑅
Scalar  determines the duration of the decrease periods. Exemplary results are shown in Fig. 8. 𝑞

  (26)𝐷𝑡,𝜔 = 𝐷𝑖 ― 1 +𝑅 𝑖 ≤ 𝑡 ≤ 𝑖 + 𝑞, 𝑖 ≥ 2, ∀𝜔

In Fig. 8(a), a demand increase  of 40 kW for two hours from 7:45 to 9:45 of the first day is 𝑅
requested. For comparison, the reference charging demand (without  request) is also given. As extra 𝑅
EV charging demand is scheduled, EV charging demand after 10 a.m. is lower than the one in the 
reference case as a compensation. This compensation effect is because the total EV demand within a 
time frame is fixed to some extent. Our proposed model distributes this compensation smoothly in the 
following periods and minimizes this side effect. Fig. 8(b) shows a mirrored example of Fig. 8(a) on the 
demand side, where  is set to be -40 kW between 7:45 and 9:45. When power import is needed 𝑅
because of wind energy curtailment, this problem can be temporarily solved by postponing EV charging, 
which provides an option to avoid high redispatch cost. 

In Fig. 8(c), we further set  to be -50 kW between 7:45 and 10:45 to examine the impact of this 𝑅
application on EVs’ final SOC. We find that all EVs’ target SOC are completed in the reference case of 
Fig. 8 while eight charging tasks are not completed in the decrease case of Fig. 8(c). We compare the 
results of final SOC at departure of these two cases and present our findings in Fig. 9. We illustrate the 
charging availabilities of the eight tasks with grey bars and the decrease periods with blue shades (from 
7:45 to 10:45 of the 1st day). As shown in Fig. 9, these eight charging tasks have relatively shorter 
availability periods (about 4 hours) and the majority of their availability periods are in the decrease 
period (3 hours, between 7:45 and 10:45). Because of this overlapping, these charging tasks have 
limited load shifting potentials beyond the decrease periods. In order to respond to the mandatory 
demand decrease, these eight charging tasks greatly reduce their charging power between 7:45 and 
10:45. As their departure time is too early to outbalance this request, their charging tasks become 
incomplete.
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(a) , between 7:45 and 9:45 of the first day𝑅 = 40 𝑘𝑊
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(b) , between 7:45 and 9:45 of the first day𝑅 = ―40 𝑘𝑊
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(c) , between 7:45 and 10:45 of the first day𝑅 = ―50 𝑘𝑊

Fig.8. Synergy with wind energy integration

Fig. 9. Comparison of final SOC at departure, reference case of Fig. 8 and decrease case of Fig. 8(c)
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Due to the possibility of uncompleted charging tasks, we further calculate the lowest R value for 
temporary decrease which can still complete all charging tasks. To achieve this, we adjust the original 
model ((1) - (18)) as follows.
Min: (1a)𝐷𝐼

𝑖 + ∑
𝜔

∑𝑡 = 𝑊𝑖

𝑡 = 𝑖 + 1𝜋𝜔 × (|𝐷𝐼
𝑡,𝜔| + |𝐷𝐼𝐼

𝑡,𝜔|) ―M × 𝑅

(10a)𝑆𝑂𝐶𝑚,𝑡 ≥ 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑚 × (1 ― 𝐴𝐴𝑚) 𝑚 ∈ 𝐸𝑉𝑖, 𝑡 = 𝑊𝑖

(17a)𝑆𝑂𝐶'
𝑠,𝑡,𝜔 ≥ 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑠 𝑡 = 𝑊𝑖, 𝑠 ≥ 𝑖 + 1, ∀𝜔

  (27)𝐷𝑡,𝜔 + 𝑅 = 𝐷𝑟𝑒𝑓
𝑖 ― 1 𝑖 ≤ 𝑡 ≤ 𝑖 + 𝑞, 𝑖 ≥ 2,∀𝜔

Objective (1) is replaced by (1a). Parameter  is set to be a large positive number. Variable  is the M 𝑅
amount for temporary decrease and can be either positive or negative by definition. To minimize the 
objective,  will try to be as large as possible.𝑅

Constraint (10) and (17) are replaced by (10a) and (17a) respectively. We remove  and  𝐺𝑎𝑝𝑚 𝐺𝑎𝑝'
𝑠,𝜔

from the constraints to guarantee that all charging tasks can be completed.
Constraint (25) is an additional constraint. Parameter  is the total charging demand in the last 𝐷𝑟𝑒𝑓

𝑖 ― 1
period in the reference case (shown in Fig. 8). With constraint (25), the new model will force the total 
charging demand to be lower than  by a certain amount  for a couple of periods. The new model 𝐷𝑟𝑒𝑓

𝑖 ― 1 𝑅
includes objective (1a), constraints (2-9), (10a), (11-16), (17a), (18) and (27). 

Fig. 10 shows the exemplary 2-day results of the lowest operating level (compared with the 
reference case) if we decrease the total charging demand temporarily for two or three hours. The initial 
charging curve from Application I serves as a reference case before control reserve is provided. From 
either one of the two lowest operating level curves, we can see that this lowest operating level is time-
variant because EVs parking at night have longer parking times and greater load shifting potentials. 
When we compare the two curves, we find that this lowest operating level is higher for longer decrease 
durations.
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Fig. 10. Lowest operating level for temporary decrease 

In Fig. 8(c), we have a decrease of 50 kW from 7:45 to 10:45 on the first day. While in Fig. 10, the  𝑅
value for three hours at 7:45 of the first day is 47.99 kW, which means uncompleted charging will 
happen if the decrease value is greater than 47.99 kW and lasts for three hours. In order to justify the 
new model, we set R to be -47.99 kW from 7:45 to 10:45 and rerun the original model with constraint 
(24). We check if all EV charging tasks can be completed in this new decrease case. In Fig. 11, we 
compare the final SOC results of this new decrease case with the one in the reference case of Fig. 8. 
We illustrate the charging availabilities of the tasks with gray bars and the decrease periods with blue 
shades (from 7:45 to 10:45 of the 1st day).
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Fig. 11. Comparison of final SOC at departure, reference case of Fig. 8 and new decrease case 
( , between 7:45 and 10:45 of the 1st day) 𝑅 = ―47.99 𝑘𝑊

In Fig. 11, the first eight tasks are the same as the ones in Fig. 9 and we see that seven tasks are still 
uncompleted (Tasks 1-3 and 5-8), which means the  value from the new model fails to guarantee that 𝑅
all charging tasks can be completed. This is because the new model can only guarantee that all EVs 
that are already connected at 7:45 can complete their charging tasks. Based on the EV patterns used, 
Task 8 is available from 8:15 to 11:30 and Task 9 from 8:15 to 11:45. These two EV arrive during the 3-
hour period and have limited availabilities for load shifting, which takes up the charging demand 
scheduled for other EVs (Task 1-3 and 5-8).  As a result, some EV charging tasks are uncompleted. Even 
though our model considers uncertainties of future EVs, the total charging demand is controlled at a 
low level in the first three hours of the decrease case so that the model does not schedule charging 
behaviors for future EVs within the decrease periods.

Despite the discussions above, the findings in Fig. 10 provide an upper bound for real-time charging 
demand decrease, which means uncompleted charging tasks will happen if the decrease level goes 
beyond . The findings may assist EVs in integrating renewable energy or bidding in control reserve 𝑅
markets. Fig. 10 can also serve as a quantification of EV load shifting potentials at different times of 
the day. Future work may focus on further improvements of the new model.

5.5 Future Work
As a premise to our proposed model, we assume that all EV users accept the proposed charging 
strategy and that none of them will leave earlier than at their guaranteed departure times. The 
simplifications above might not apply in reality and analyses of EV users’ acceptance should be studied 
accordingly (Ensslem et al., 2013). Although we have taken into account the uncertainties of future 
EVs by either scenarios or valid assumptions, the EV driving profile with different maximum charging 
power in reality might be more difficult to consider than our simulation results, which might 
deteriorate the performance of the proposed model. Further exemplary results based on other EV 
database might be necessary. Since charging strategies may have a significant impact on the battery 
lifetime, additional concerns regarding the battery degradation could also be considered (X. Hu et al., 
2016; Li et al., 2017). The applications of load flattening and peaking shaving can be further elaborated 
with constraints for grid bottleneck and transformer capacity limit and the synergy between EV 
charging and local renewable energy integration can also be further studied. As in Tan et al. (2016) and 
Zheng et al. (2019), the idea of V2G has been widely discussed in the current literature but is not yet 
included in our current model. The integration of V2G would increase model complexity and 
computational burden and would be an improvement of our work and the focus of future research.

6. Conclusion

This paper presents a two-stage SLP to address the EV charging scheduling problem in real time. We 
model the uncertainties in EV availability (arrival time and departure time) and SOC status upon arrival 
(initial SOC and target SOC). We consider the future EVs on an aggregated level to reduce 
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computational burden. With this objective, the model can be easily applied for different optimization 
purposes. 

Three potential applications are given. Application I flattens the total charging demand of an EV 
fleet throughout the day. A comparison between the controlled charging demand and an instant 
charging demand is presented. Application II is for peak shaving in coupling with household demand 
and manages to shift more charging demand to off-peak hours. Application III utilizes EVs for 
renewable energy integration where EV charging behaviors respond to the volatile output of 
renewable energy in real time, which can also serve as an example of participation in the control 
reserve market. 

We show that future EVs may not complete their charging tasks when the down-regulation offer of 
total load is excessively provided and charging behaviors are greatly postponed. This is because we 
consider the uncertainties from future EVs but on an aggregated level. This aggregation decreases the 
computation complexity of the model and does not consider EVs which arrive in the near future with 
limited availabilities. Based on this, we further adjust the model and calculate the upper bound down-
regulation offer at different times of the day and for different durations. 
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