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Approximation of nonessential spectrum of transfer operatorsViviane Baladi and Matthias HolschneiderDecember 1998Abstract. We give su�cient conditions to approximate the \nonessential" spectrum ofa bounded operator L acting on a Banach space B by part of the spectra of a sequence ofcompact (or �nite rank) operators Lj = (Id ��j)L(Id ��j), where Id ��j is a suitablefamily of uniformly bounded operators which approach the identity. (By nonessentialspectrum we mean here all the spectrum outside of the disc of radius equal to the essentialspectral radius.) For this, we combine the formulas�ess(L) = limm!1(limsupj!1 (inf)k�jLmk)1=m = limm!1(limsupj!1 (inf)kLm�jk)1=m ;for the essential spectral radius with nonstandard perturbative results on the stability ofthe nonessential spectrum of quasicompact operators. We present concrete applications totransfer operators of smooth expanding maps using multiresolution analysis (large scaleapproximation projections). 1. IntroductionMatrices, and more generally linear operators on in�nite-dimensional vector spaces,are ubiquitous tools which permeate pure and applied mathematics. A natural prob-lem, which has kept mathematicians busy for centuries, is to determine, or at leastapproximate, their spectrum (in in�nite-dimensional situations, sometimes only a dis-crete part of it). In this work, we are concerned with the in�nite-dimensional (Banachspace) situation, and we deal with bounded linear operators which are not necessarilycompact. Our main result (Proposition 3 in Section 2) is a list of conditions guarantee-ing that a subset of the eigenvalues of a sequence of compact or �nite-rank operators(Id ��j)L(Id ��j) (together with the corresponding eigenspaces) converges to thoseeigenvalues of the original operator L which are outside of a disc containing the essen-tial spectrum. The simple proof combines a convenient exact formula for the essentialspectral radius (Theorem 1 from [H1]) with a non-standard { and somewhat unex-pected { perturbative result (Theorem 2 from [BY]), which had originally been used tocontrol the spectrum of randomly perturbed dynamical systems.1991 Mathematics Subject Classi�cation. 41A30 42C15 47A10 47B38 58F19.V.B. is partially supported by the Fonds National Suisse de la Recherche Scienti�que.Typeset by AMS-TEX1



Sequences of compact or �nite rank operators Id ��j for which our results hold canbe explicited in some cases (sometimes via multiresolution analysis, using wavelets).In Section 3, we explain a speci�c dynamical systems setting where our scheme works.The linear operator there is the Ruelle transfer operator associated to a di�erentiableuniformly expanding dynamical system on a torus. (Transfer operators, sometimesalso called Perron-Frobenius operators, are very powerful tools to study the ergodicproperties of dynamical systems. We refer e.g. to [R] and the references therein forthe framework of Section 3.) The Banach spaces are Sobolev or H�older spaces, and the�nite-rank operators Id ��j are constructed using the Meyer [M] orthonormal waveletbasis (it would be interesting to actually run the algorithm on a computer).An important and famous �nite-dimensional matrix scheme used in ergodic theoryof dynamical systems (to approximate the physical, or \SRB" measure, together withits rate of mixing) is the Ulam method. Recent numerical and theoretical work hasshown that not only the maximal eigenvalue, but also further spectral values of Ulammatrices approximate well part of the spectrum associated to various types of chaoticdynamics (see in particular the sequence of papers and e�ective algorithms of Dellnitzand collaborators [DJ], and the rigorous results of Hunt [Hu], and Froyland [Fr]; we alsomention the recent paper [KMY] | see also [K1] | for similar approximation results,together with quanti�ed estimates on the speed of convergence, �nally [BIS] containsresults obtained using Theorem 2 below from [BY]). It seems to us, however, that sinceUlam matrices are obtained by locally constant approximations, they cannot describethe action of the dynamics on observables smoother than H�older or Lipschitz. Ourscheme, on the other hand, is applicable to a wider range of smoothness classes.We end this introduction by mentioning, in order of expected di�culty, three direc-tions for future research. As soon as one proves that a mathematical object can beapproximated by a sequence, one obvious question is the speed of convergence. For thecase considered in Section 3, we believe that exponential speeds of convergence hold (byanalogy to the results in [KMY], e.g.).A second natural problem consists in extending our dynamical results from Section 3to compact boundaryless manifolds more general than the n-torus Tn. This should bepossible by developing and/or applying the necessary multi-resolution analysis.Last, but de�nitely not least, we have limited ourselves to uniformly expanding dy-namical systems for which the transfer operator has nice spectral properties when actingon smooth functions. When the dynamics is uniformly hyperbolic, the inverse maps im-prove smoothness along unstable manifolds but make functions less smooth along stablemanifolds. Although recent progress has been made in our understanding of analytic[Rg], but also di�erentiable [Li, Ki], hyperbolic settings, one still does not have a goodBanach space framework for the transfer operator. Perhaps our approximation schemecan be extended to the hyperbolic setting via the use of \directional" Banach spaces.(Further extensions to nonuniformly hyperbolic dynamics would also be desirable.)Acknowledgements: V.B. thanks G. Courtois, G. Keller, and J. Buzzi for usefulcomments. She gratefully acknowledges the hospitality of IHES where part of this workwas done. M.H. is thankful to the University of Geneva for its kind hospitality.2



2. Approximation of the discrete spectrum: two abstract resultsWe �rst recall a few basic de�nitions and facts (see [K] and [DS] for more information).Let (B; k�k) be a Banach space, that will always be assumed in�nite-dimensional. (Sincewe mostly have function spaces in mind, we denote vectors in B by ',  etc.). Denote byB(B) the set of bounded linear operators acting in B (noting kLk for the operator normof L 2 B(B)), by K(B) � B(B) the ideal of compact operators, and by F (B) � K(B)the ideal of �nite rank operators. For L 2 B(B) the resolvent set of L is the set ofcomplex numbers z so that L � z Id : B ! B is an invertible operator with a boundedinverse (L � z Id )�1 2 B(B). The spectrum �(L) of L is the set of z 2 C which are notin the resolvent set of L. The spectral radius �(L) of L is�(L) = supfjzj s.t. z 2 �(L)g :As is well known, the spectral radius of L can be obtained as the following limit:�(L) = limm!1 kLmk1=m :An element z 2 �(L) is an eigenvalue of L if L�zId has nontrivial kernel. The geometricmultiplicity of an eigenvalue z is the dimension 1 � m1(z) � 1 of its eigenspace f' 2B s.t. (L� z)' = 0g, and its (algebraic) multiplicity is the dimensionm2(z) � 1 of thegeneralised eigenspace f' 2 B s.t. 9m � 1 ; (L�z)m' = 0g. (We havem1(z) �m2(z).)The supremum 1 � i(z) �1 of thosem which occur in the de�nition of the generalisedeigenspace of an eigenvalue z is called the index of z.The essential spectral radius �ess(L) of L is the smallest number � � 0 such that any� 2 �(L) with modulus j�j > � is an isolated eigenvalue of �nite (algebraic) multiplicityof L. We sometimes use the informal terminology \nonessential spectrum" or \discretespectrum" to denote the spectrum of L outside of the disc of radius �ess(L).There exist several de�nitions for the essential spectrum of a linear bounded operator.Browder's [Br, Section 6] essential spectrum is the set of those z 2 C such that at leastone of the three following possibilities holds: z is a limit point of �(L), or (L � z Id )Bis not closed, or the generalised eigenspace f' 2 B s.t. 9m � 1 ; (L � z)m' = 0g hasin�nite dimension. Wolf's [W] essential spectrum is the set of those z 2 C such thatL� z Id is not Fredholm (see [K]). In general the Wolf and Browder essential spectrumdo not coincide (as noted in [N], the complement of the Browder essential spectrum isthe union of those components of the complement of the Wolf essential spectrum whichmeet the resolvent set, in particular the Browder essential spectrum always contains theWolf essential spectrum).Our de�nition for the essential spectral radius is consistent both with Browder's andWolf's de�nition of essential spectrum as we explain now. Firstly, �ess(L) is the radius ofthe smallest disc containing the Browder essential spectrum (because of [Br, Lemma 17,p. 110]). Secondly, �ess(L) is also the radius of the smallest disc containing the Wolfessential spectrum. This second property can be deduced from two facts: on the onehand z is in the Wolf essential spectrum if and only if L � z Id is invertible modulo3



K(B) if and only if L � zId is invertible modulo F (B), see [L, Chapter IX, Theorem6]. On the other hand Nussbaum's formula [N] states that the radius �ess(L) of thesmallest disc containing the Browder essential spectrum coincides with�ess(L) = limm!1(inffkLm �Kk s.t. K 2 K(B)g)1=m : (2.1)By the above equivalent formulations of the Wolf spectrum, Nussbaum's formula canbe modi�ed to �ess(L) = limm!1(inffkLm �Fk s.t. F 2 F (B)g)1=m : (2.2)This is a non-trivial result since the set F (B) of �nite rank operators is not necessarilydense in the ideal K(B) of compact operators. (The paper [F] of Fried was extremelyuseful in clarifying the above points.)We denote by B� the dual space of the Banach space B, i.e., the space of bounded lin-ear functionals � : B ! C . (Having in mind mainly complex measures and distributionswe write �, � for elements of B�.) For � 2 B�, we use the notation �(') = (�j'). ForL 2 B(B), we write L� 2 B(B�), for the dual operator de�ned by (L��j') = (�jL(')).Recall that operators of �nite rank on B can be written as 7!X�2A ��( )'� ;where A is a �nite index set, �� 2 B�, and '� 2 B.Our �rst abstract result is a list of exact formulas (probably well-known \in spirit")for the essential spectral radius of a bounded operator L (see [H1] for proofs). Theyhold for Banach spaces possessing suitable families of bounded operators �j convergingto zero and for which (Id � �j )L is compact. Candidates for such families of opera-tors can be constructed via multiresolution analysis for many classical function spaces(most notably Sobolev, but more generally Triebel, and partly Besov-H�older classes),of periodic functions on the torus Tn, say (see e.g. [H1, H2], see also Section 3 belowfor applications to transfer operators, where the Id ��j are in fact projections).De�nition (Compact approximation of the identity for (L;B)). A sequence ofoperators Id ��j 2 B(B), for j 2Z+, is a compact uniformly bounded approximationof the identity for (L;B) if:(i) 9 const > 0 s.t. k�jk � const ;8j 2Z+ ;(ii) (Id ��j)L is compact,8j 2Z+ ;and (iii) B0 = B0(f�jg) = f' 2 B s.t. limj!1�j(') = 0g is dense in B :We shall also need a dual notion: 4



De�nition (�-compact approximation of the identity for (L;B)). A sequence ofoperators Id ��j 2 B(B), for j 2Z+, is a �-compact uniformly bounded approximationof the identity for (L;B) if it satis�es (i) together with:(ii�) L(Id ��j ) is compact, 8j 2Z+ ;and (iii�) B�0 = B�0(f�jg) = f� 2 B� s.t. limj!1��j (�) = 0g is dense in B� :Stronger results will hold for sequences of operators satisfying certain hierarchicalconstraints (which hold in particular in the setting of Section 3):De�nition (Hierarchical compact approximation of the identity for (L;B)). Asequence of operators Id � �j 2 B(B) is called a hierarchical compact (respectively�-compact) approximation of the identity for (L;B) if it satis�es (i), (ii) and (iii)(respectively (i), (ii�); (iii�)) together with(iv) �j�j+1 = �j+1�j = �j+1 ; 8 j 2Z+ : (2.3)The operator L is said to act in scales, respectively �-scales, for k with respect to thehierarchical compact approximation of the identity, if there is k 2Z+ such that(v) limj!1 k�j+kL(Id ��j)k = 0 ;respectively (v�) limj!1 k(Id ��j )L�j+kk = 0 : (2.4)If (v) (respectively (v�)) in (2.4) holds for k = 0 then L is said to act exactly (respectively*-exactly) in scales on f�jg.Theorem 1 (Holschneider [H1], 1996). Let L 2 B(B). Suppose there is a compactuniformly bounded approximation of the identity fId � �jg for (L;B) (i.e., satisfying(i; ii; iii)). Then B0(f�jg) = B, and�ess(L) = limm!1(lim supj!1 k�jLmk)1=m = limm!1(lim infj!1 k�jLmk)1=m : (2.5)If there is fId ��jg a �-compact uniformly bounded approximation of the identity in(L;B) (i.e., satisfying (i; ii�; iii�)), then B�0(f�jg) = B� and�ess(L) = limm!1(lim supj!1 kLm�jk)1=m = limm!1(lim infj!1 kLm�jk)1=m : (2.6)If there is a hierarchical compact (or �-compact) approximation of the identity fId ��jg, and if there is k 2 Z+ such that L acts in scales for k on f�jg (i.e., (i; iv) and5



either (ii; iii; v) or (ii�� iii�; v�) hold), then any of the four limits in (2.5{2.6) coincidewith �ess(L).Remark 1. In the last assertion of the theorem, if �j satis�es k�jk � 1, then the interiorlimit actually exists. Indeed, for any bounded A we have by (iv)kA�jk = kA�j�1�jk � kA�j�1k :Therefore the sequence kA�jk is non-increasing. The same argument applies to k�jAk.Remark 2. If the sequence �j satis�es only (i) and (ii) (respectively (ii�)) then theNussbaum formula (2.1) clearly gives the upper bounds in (2.5), respectively (2.6) (seealso the proof in the Appendix). In some applications neither (iii) nor (iii�) can beassumed to hold, but an assumption similar to the one appearing in [K2], and that westate now, may be used. (Note that a key idea to obtain lower bounds for the essentialspectral radius by constructing almost eigenvalues was contained in the beautiful shortpaper [Ma] of Mather.) Suppose that �j and L are such that (i; ii) hold and that thereis a double sequence of in�nite dimensional closed spaces V mj � �jB, for j;m 2 Z+ anda constant C > 0 so that for each �xed m and all sequences 'mj 2 V mj with k'mj k = 1we have lim supj!1 kLm'mj k � C lim supj!1 kLm�jk : (2.7)Then �ess(L) = limm!1(lim supj!1 kLm�jk)1=m :(See [H2, Theorem 3.3, and also Section 9] for an analysis of transfer operators actingon homogeneous (s + �)-H�older spaces, with 0 < � < 1 and s 2 Z+, using condition(2.7).)The idea to use families of projection operators to exploit the essential spectrum isnot new. For example, Persson [P] gives a formula for the lower bound of the essentialspectrum of a self-adjoint operator in L2(Rn) by using restrictions of the operator tocomplements of compact sets of Rn. More recently, Keller [K3] developed a theory ofquasi-nuclear operators and applied it to construct dynamical Fredholm determinantsassociated to transfer operators in an analytic setting (his Proposition 2.2 is related toour Theorem 1, but it requires additional assumptions on the approximating projections,in particular the nontrivial hypothesis [K3, (2.11)]).Theorem 1 will be used in combination with the following result on spectral ap-proximations (which was originally proved in view of understanding small stochasticperturbations): 6



Theorem 2 (Baladi{Young [BY], 1993). For L 2 B(B), let Lj 2 B(B) be a se-quence of operators withkLjk � const ;8 j 2Z+ and limj!1Lj(') = L(') ;8' 2 B :Assume that for any � > �ess(L), there is m0 2Z+ such that for each m � m0, there isj0(m) such that for all j � j0(m) kLm � Lmj k � �m : (2.8)Then for any � > �ess there is J(�) such that the essential spectral radius �ess(Lj) < �for each j � J .Furthermore, writing X, respectively Xj (with j � J(�)), for the (�nite-dimensional)direct sum of the generalised eigenspaces associated to the eigenvalues of L, respectivelyLj , of modulus larger than �, and denoting the corresponding spectral projections by P,Pj, we have(1) The norms kP�Pjk tend to zero as j !1. More precisely, there is � > 0 suchthat kP�Pjk � exp��m(j) ; 8 j � J(�) ; (2.9)where m(j) = maxfm 2Z+ s.t. j � j0(m)g :(2) The Hausdor� distance between the spectrum of LjX and that of Lj jXj tends tozero as j !1. More precisely, for all j � J(�)Hdist(�(LjX ); �(Lj jXj )) � const (C(m(j))X (j) + C(1)X (j))1=d ; (2.10)where d � 1 is the maximum of the indices of eigenvalues of L of modulus largerthan � and C(m)X (j) = max'2Xk'k=1 k(Lmj � Lm)'k : (2.11)(Note that C(m(j))X (j) � �m(j) for j � J(�).)(3) If ' 2 X is an eigenvector for L and an eigenvalue � of algebraic multiplicityda and index di � 1 , then for each j � J(�) the operator Lj has 1 � ` � daeigenvectors 'i;j for eigenvalues �i;j (i = 1; : : : ; `), with sum over i = 1; : : : ; `of the algebraic multiplicities of �i;j equal to da, andmax1�i�`max(j�� �i;j j; k'� 'i;jk) � const (C(m(j))X (j) + C(1)X (j))1=di : (2.12)7



Theorem 2 is obtained by combining Lemmas 1, 2 and 3 from Section 2 in [BY],noting that assumptions (A.1) and (A.3) there follow from the de�nition of the essentialspectral radius, while assumption (A.2) in [BY] is just our hypothesis (2.8).We would like to attract the reader's attention to very recent results of Keller andLiverani [KL] which reinforce Theorem 2 in certain cases.The main new result of this paper is obtained by putting together Theorem 1 andTheorem 2:Proposition 3. For L 2 B(B), let fId ��jg be either both a compact and a �-compactuniformly bounded approximation of the identity, or a compact or �-compact uniformlybounded hierarchical approximation of the identity on which L acts in scales for some k,i.e., either (a) [(i; ii; ii) and (i; ii�; iii�)], or (b) (i; ii; iii; iv; v), or (c) (i; ii�; iii�; iv; v�)hold.Assume further that for some large enough M 2 Z+, LM acts exactly in scales onthe sequence �j (More precisely: in case (a) we assume [(v) and (v�)] for k = 0, incase (b) we assume (v) for k = 0, and in case (c) the convergence (v�) for k = 0.)Then for any �xed � > �ess(L), the spectrum and generalised eigenspaces of thecompact operators Lj = (Id ��j)L(Id ��j )outside of the disc of radius � converge to those of L in the sense of (1)-(3) of Theorem 2(including bounds (2.9-2.12)).Obviously, Theorems 1 and 2 as well as Proposition 3 are of interest only when�ess(L) < �(L) (especially when there are \many" eigenvalues between �ess(L) and�(L)). Proposition 3 is especially interesting if L(Id ��j) or (Id ��j)L are �nite rankoperators. Section 3 contains speci�c examples where both conditions in this paragraphare satis�ed.Proof of Proposition 3. We start by replacing L by M = LM and Lj by Mj = (Id ��j)LM (Id � �j ), at the end of the proof we shall see how to recover results about Litself. (Note that if (ii) respectively (ii�) is satis�ed for L then it also holds for LM .Iterating assumption (iv) does not lead into di�culties.)The only thing which requires checking is assumption (2.8) of Theorem 2. For this,we observe that the conditions for the strongest statement of Theorem 1 are satis�ed.Thus �ess(LM ) = limm!1(lim supj!1 k�jMmk)1=m = limm!1(lim supj!1 kMm�jk)1=m :In other words, for any ~� with ~� > �ess(LM ), there is m0 � 1 such that for all m � m0and each � > 0 there is j1(m) such that for all j � j1(m)k�jMmk � ~�m + � and kMm�jk � ~�m + � : (2.13)8



(We may, and will, take � = ~�m.) For a constant bC > 0 (independent of j and m) to bede�ned below, and for each �xed m �m0(~�), we set ,� = �(m) = 1(m� 1)( bCkMk)m�1 ;and take j2 � max(j0(m); j1(m)) large enough so thatk�jM(Id ��j)k � � ~�m (2.14)for all j � j2 (recall that M acts exactly in scales). We then have the boundskMm �Mmj k = kMm � [(Id ��j )M(Id ��j)]mk= kMm � (Id ��j)Mm(Id ��j)� m�1Xk=1 (Id ��j)Mk(2Id ��j)�jM[(Id ��j)2M]m�k�1(Id ��j)k� k�jMm�j + (Id ��j )Mm�j +�jMm(Id ��j)k+ (m� 1)�~�m( bCkMk)m�1� (supj k�jk)22~�m + 2(supj k�jk)(1 + supj k�jk)2~�m+ ~�m ; (2.15)(the second equality can be proved by induction on m since Id � (Id � �j)2 = (2Id ��j)�j ; we also use Ĉ = (1 + supj k�jk)(2 + supj k�jk)2). Since all constants in (2.15)are uniform inm we have obtained an estimate which is equivalent to (2.8) forM = LM .We now explain how to prove our statements for the original operator L. First notethat, since �ess(LM ) = (�ess(L))M , if ~� > �ess(L) then � = ~�M > �ess(LM ). Also,since the spectral projection associated to L and an eigenvalue � coincides with thatof LM and �M , the assertion regarding kP� Pjk in (1) of Theorem 2 is clearly valid.Since X is �nite-dimensional, we may conclude by applying perturbation theory of�nite dimensional matrices as in the proof of Lemma 3 in [BY, pp. 361-362]. (Notethat algebraic multiplicity is preserved when taking powers of an operator, whereas theindex, which is the size of the largest Jordan block, may only decrease.) �Nonconvergence of the determinantsIn Section 3 we shall discuss situations where Proposition 3 furnishes us with a se-quence of �nite rank operators Lj whose eigenvalues of large enough modulus (togetherwith the corresponding generalised eigenspaces) converge to the corresponding data fora given noncompact bounded operator L. It is tempting to consider the associatedsequence of \Fredholm determinants" dj(z) = det(Id � zLj ). The functions dj(z) arepolynomials, of degree increasing with j, and whose zeroes of small enough modulus9



converge as j ! 1 to the inverse eigenvalues of L. In many situations, however, thefunctions dj(z) do not converge as holomorphic functions in any disc. (The \small(essential) spectrum" of L seems to be the reason for this lack of convergence.) Webelieve that such counter-examples can be obtained in the framework of smooth ex-panding maps of the circle, by considering a sequence �j associated to locally constantapproximations (Haar basis) or approximations of higher but �nite smoothness.3. Dynamical transfer operators andwavelet approximations: an applicationA typical situation where Theorem 1 applies is when L is the transfer operatorassociated to a smooth expanding map of the n-dimensional torus Tn, the Banach spaceis a space of smooth distributions, a Sobolev space, or more generally a Triebel space(see [H2]), and the �j are obtained by orthogonal projections on a multi-resolutionanalysis (see [Me]). We now give precise de�nitions and statements, without strivingfor the fullest generality.De�nition of the transfer operatorLet f : Tn ! Tn be a C1 uniformly expanding map (i.e., there exists 
 > 1 withkDfvk � 
kvk for each x 2 Tn and each v 2 TxTn). Let g : Tn ! C be a C1function. The Ruelle transfer operator L associated to the pair (f; g) is de�ned (e.g. onL2(Tn) = L2(Tn; d�), with � Lebesgue measure on the torus) byL'(x) = Xf(y)=x g(y)'(y)jdetDf(y)j : (3.1)(The choice g � 1 leads to the usual Perron-Frobenius-type transfer operator, for whichthere exists a maximal eigenfunction which is the density of the unique absolutelycontinuous invariant probability measure for f .)De�nition of the hierarchical approximation of the identityWe now give an explicit example of operators �j that will satisfy the assumptions ofProposition 3. We start with an orthonormal wavelet basis for L2(Rn), e.g., the Meyerbasis obtained from multiresolution analysis of L2(Rn) (see [M]). This is a set of 2n� 1functions  k (k = 1; : : : ; 2n � 1), in the Schwartz space S(Rn) of rapidly decreasingfunctions S(Rn) = f' 2 L2(Rn) s.t. supRn jxm@p'(x)j <1 ;8p;m 2 (Z+)ngsuch that all moments of each  k vanish (i.e., RRn xm k(x) d� = 0), and such thatf j;`k = 2jn=2 k(2jx � `) for k = 1; : : : ; 2n � 1 ; j 2Z; ` 2Zng10



is an orthonormal basis of L2(Rn). Moreover, the  k have compactly supported Fouriertransforms. Let P : S(Rn)! L2(Tn) be the periodisation operatorP'(x) = X`2Zn '(x + `) :Then we get an orthonormal basis of L2(Tn) by consideringfP j;`k ; k = 1; : : : ; 2n � 1 ; j 2 Z� ; ` 2 f0; : : : ; 2�j � 1gng [ f 0 � 1g :Finally, we de�ne the sequence �j : L2(Tn) ! L2(Tn), for j 2 Z+, by setting Id ��jto be the (�nite-rank) orthogonal projection on the �nite dimensional space generatedby the P j0;`k for k = 1; : : : ; 2n � 1, �j � j0 � 0, and ` 2 f0; : : : ; 2�j0 � 1gn:(Id ��j )(') = ZTn ' 0 d�+ 2n�1Xk=1 0Xj0=�j X`2f0;::: ;2�j0�1gn P j0;`k � ZTn 'P j0;`k d� (3.2)Two (scales of) Banach spacesWe shall consider the transfer operator L acting on two scales of Banach spaces (thesequence of projections just introduced will work for both). The �rst is the well-knownscale of Sobolev spaces Hs(Tn), for �xed s 2 R+, i.e.,Hs(Tn) = f' 2 L2(Tn) s.t. k'kHs :=sj'̂(0)j2 + Xm2Zn jmj2sj'̂(m)j2 <1g : (3.3)where we used the notation '̂(m), for the Fourier coe�cients of ', and we write jmj =pPim2i .The second is derived from the H�older { Zygmund scale of spaces ��(Tn). This isthe space of periodic functions f 2 C [s](Tn), for s = [s] + fsg, [s] 2 N, fsg 2 [0; 1), forwhich for all multi-indices �, j�j = [s] we havek'k1 + sup� ;x ;y j@�'(x) � @�'(y)jjx� yjfsg <1 (3.4)The left-hand side de�nes the norm of �s(Tn) Here we suppose s =2 N, otherwise wehave to use the Zygmund spaces (see, e.g., [Tr] for a de�nition). In Lemma 4 below wewill use the closure of C1(Tn) in �s(Tn), denoted by �s(Tn). The point is that bothSobolev and H�older scales of spaces (together with many others) are well characterisedthrough wavelet coe�cients. More precisely, a distribution ' is in Hs(Tn) if and onlyif its wavelet coe�cients �j;`k := (P j;`k j')11



satisfy sXj;k;` 2�2jsj�j;`k j2 <1 :The left-hand side de�nes a norm equivalent to the standard Sobolev norm. The scale�s(Tn) is characterised in wavelet space viasupj;k;` 2�sj j�j;`k j <1Again we have equivalence of norms. The closed subspace �s(Tn) consists of preciselythose functions for which, in addition,limj!�1max`;k 2�sj j�j;`k j = 0 :The projections Id � �j from (3.2) are �nite-rank on both the Sobolev and H�olderspaces. Since our transfer operator L is associated with a smooth map f and weightg, it is also bounded on these spaces (see [H1]). As the following key technical lemmashows, we may apply Proposition 3:Lemma 4. (Exact scaling for suitable Banach spaces) Let L be a transfer operatorassociated to a smooth expanding map f and a smooth weight g as in (3.1), acting ona Banach space B = Hs(Tn) or B = �s(Tn). Let Id � �j be the sequence of �nite-rank projections de�ned by (3.2). Then �j and L satisfy properties (i; ii; iii; iv; v).Furthermore, there is M 2 Z+ such that LM acts exactly in scales on the hierarchicalsequence �j .Proof of Lemma 4.Assertions (ii) and (iv) are obvious consequences of the de�nitions. Properties (i)and (iii) follow from the above wavelet characterisation of the scalesHs(Tn) and �s(Tn)in wavelet space. (Note that property (iii) does not hold for �s(Tn).)To prove the exact scaling property we recall a result proved in [H1, Sections 7-8].There it was shown that the transfer operator may be written asL = L@ +R ;where R is smoothing: it is continuous from Hr(Tn) to Hr+1(Tn), and from �r(Tn) to�r+1(Tn) for all r > �1.L@ is a linearised version of L, its precise de�nition can be found in [H1, Lemma 7.3].(Note that the operators analogous to L@ and R in Sections 7{8 of [H1] were de�nedin the wavelet coordinates, while here we work with their versions in the original spaceTn; also, [H1] considered the non periodic case of Rn, this does not lead to di�culties.)It su�ces to recall that L@ is completely determined by the derivatives of the dynamicsf at all points of Tn. In particular, since, by hypothesis L is obtained by composing12



with uniform contractions, L@ maps functions supported by a disk in Fourier spaceto functions supported by a 
-times smaller disk, where 
 > 1 is our bound for theexpansion rate of the dynamics. On the other hand, the image of (Id ��j) consists offunctions supported by a disk of radius � c 2j in Fourier space, whereas the image of�j is supported outside a disk of radius C 2j with some C > c > 0. Upon replacing Lby Lm (m depends on C=c) we see that�j(Lm)@ (Id ��j) = 0 :It remains to analyse the e�ect of R. Since R is acting in scales, it is continuous fromHs�1(Tn) to Hs(Tn) and from �s�1(Tn) to �s(Tn). It can thus be written as R = �R0,where � is de�ned via � : P j;`k ! 2jP j;`k . Thus R0 is continuous from Hs(Tn) toHs(Tn). Now, by de�nitionk�j�kHs(Tn ) = k�j�k�s(Tn ) � const 2�j ! 0 (j !1) ;and the exact scaling property follows. �Remark 3. For y 2 Tn we introduce the bounded linear operator Df;y acting either onthe Sobolev spaceHs(Rn) or the derived from H�older space �s(Tn) (de�ned analogouslyto (3.3{3.4)) by Df;y' = ' �D(f�1f(y))jdetDf(y)j ; (3.5)(where the inverse branch f�1f(y) is unambiguously de�ned by f�1(f(y)) = y). For eachm � 1 an operator Dfm;y can be de�ned similarly as in (3.5).In fact, Holschneider [H1, Theorems 21.{2.2] applies Theorem 1 in wavelet coordi-nates to show a more explicit formula for the essential spectral radius. The followingbounds are easy consequences of his formula:�ess(L) �8>>>>>>>><>>>>>>>>: limm!1�supx2Tn Pfm(y)=x jg(m)(y)j kDfm ;yk�s(Rn )�1=mfor B = �s(Tn) ;limm!1�supx2Tn Pfm(y)=x jg(m)(y)j2 kDfm;yk2Hs(Rn )�1=(2m)for B = Hs(Tn) ; (3.6)(for m � 1, we write g(m)(x) =Qm�1i=0 g(f i(x))). Using that each inverse branch of fmis a contraction by 
�m, it is not di�cult to show that for any ykDfm;yk�s(Rn ) � 
�ms and, for s > n2 ; kDfm;ykHs(Rn ) � 
�m(s�n=2) : (3.7)13



For n = 1, the bound obtained from (3.6) and the re�ned version kDfm;yk�s(Rn ) �j(fm)0(y)j�s of (3.7) is similar to the one-dimensional exact formula for �s([0; 1]) with0 < s < 1 in [BJL]. (See also [CI] for s � 1, and, in a one-dimensional boundedvariation setting, [K2], for earlier and di�erent expressions.) Campbell{Latushkin [CL]and Gundlach{Latushkin [GL] have recently obtained, via a di�erent (Oseledec theorem)approach, other exact expressions of the essential spectral radius in higher dimensionalsmooth expanding settings.If g is nonnegative, the spectral radius of L acting on Cs functions (for any s � 0) isjust (see [R]) �(L) = limm!1� supx2Tn Xfm(y)=x g(m)(y)jdetDfm(y)j�1=m :Therefore, since there is an eigenvalue equal to �(L) with a nonegative eigenfunctionin C1(Tn) � Hs(Tn) \ �s(Tn) (use that f; g are C1, see [R]), the essential spectralradius of L on �s(Tn) satis�es�ess(L) � �(L)=
s < �(L)(this double inequality was proved by Ruelle in [R] for L acting on Cs(Tn)). Similarly,for s > n=2, the essential spectral radius of L on Hs(Tn) satis�es�ess(L) � �(L)=
s�n=2 < �(L) :Remark 4. Ordinary Fourier analysis could be used in the Sobolev space framework,in particular, the analogue of Lemma 4 would be true. However, Fourier series wouldnot be suitable for the H�older space analysis, or for other Banach spaces in whichmultiresolution analysis and wavelets are applicable. Also, in situations where Fourierand wavelet analysis are both applicable, numerical algorithms based on wavelets usuallyconverge much faster. (See, e.g., [Me].)Remark 5. Because our C1 assumptions on (f; g), our transfer operator L preservesany H�older or Sobolev space. We have chosen to work with an orthonormal waveletbasis which is r-regular for each r > 0, and which can thus be applied to approximatethe \nonessential" spectrum of L on any Hs(Tn). Since the essential spectral radius ofL on Hs(Tn) is a monotone function of s which tends to zero as s!1, in fact all theeigenvalues of (Id ��j)L(Id ��j ) will converge to eigenvalues of L for eigenfunctionsin \s>0Hs(Tn). (In other words, we only see the \embedded smooth spectrum" of L.)If we had chosen a wavelet basis of a given regularity r > 0, and let L act on Hs(Tn)for r � s > 0, then the eigenvalues of modulus greater than the essential spectralradius of L acting on Hr(Tn) (and only them) obtained by the approximation schemeare guaranteed to exhaust the eigenvalues of L acting on Hs(Tn) in the correspondingannulus (their eigenfunctions will in fact lie in Hr(Tn) � Hs(Tn)).Finally, one could extend the results of [H1], and therefore the results of the presentpaper, to the case when the dynamics and weights involved in the construction of thetransfer operator have a given �nite regularity (this would restrict the regularity of theBanach spaces which can be considered). 14



Appendix: Proof of the abstract spectral radius theorem (Theorem 1)We reproduce for the reader's convenience the proof of Theorem 1, adapted from[H1].Proof of Theorem 1. We �rst suppose that the compactness condition (ii�) and thedensity property (iii�) hold and show (2.6) (the proof of (2.5) assuming (ii) and (iii)is completely analogous and is left to the reader). We consider only the \lim sup" andleave the \lim inf"-part to the reader. We decompose the argument into �ve steps:Step 1: We have for all m,inffkLm �Kk s.t. K compactg � kLm�jk :Indeed, we may write Lm � Lm�j = Lm(Id ��j ) :The right hand side is a compact operator, since it contains a compact factor by hy-pothesis (ii), and since L is bounded.Step 2: We have B�0 = B�. Indeed, suppose B�0 3  k !  2 B�. Then for every� > 0, we �nd K such that k � K implies k k �  k � �. It follows thatk��j k � k��j kk+ k��j ( �  k)k � k��j kk+ const �! const � (j !1) :Since � was arbitrary, the statement follows.Step 3: For all K 2 F (B), we have limj!1 kK�jk = 0. Indeed, for all  with k k = 1we �nd kK�j k = kX� (��j�j ) �k �X� k��j��kB�k��kB :This tends to 0 as j !1, since, by Step 2, B�0 = B�, and since the sum contains only�nitely many terms.Step 4: We have for all K 2 F (B)kL �Kk � 1const lim supj!1 kL�jk :Here 1 > const � 1 follows from condition (i). Indeed, since k�jk � const , we �ndk(L �K)�jk � const kL � Kk ;for each j. Now k(L �K)�jk � kL�jk � kK�jk :We may take the limit superior j !1 and obtain the stated estimate.Step 5: We have for all m, upon replacing L by Lm,const�1=m (lim supj!1 kLm�jk)1=m � (inffkLm �Kk s.t. K �nite rankg)1=m ;15



and, by Step 1:(inffkLm �Kk s.t. K compactg)1=m � (lim supj!1 kLm�jk)1=m :We now may go to the limit m!1, showing (2.5{2.6).Assuming now that �j is hierarchical and that (iii�); (v�) hold, we prove the lastassertion of Theorem 1 in three steps:Step 6: Note that if A satis�es (v�) for some k, it also satis�es it for k+1 (and hencefor all k0 > k). Indeed, we may write as beforek(Id ��j)A�j+k+1k = k(Id ��j )A�j+k�j+k+1k � const k(Id ��j)A�j+kk :The last expression tends to 0 by hypothesis on A. An analogous argument applies forthe second limit.Step 7: The set of bounded operators satisfying (v�) for a given k forms an algebra.Indeed if both M and L satisfy condition (v�), then their sum and scalar multiplesobviously satisfy it, and we are left to check the product. By Step 6 we may supposethat L and M satisfy (v�) for the same k. Then we have, thanks to (iv),k(Id ��j)LM�j+2k+1k= k(Id ��j)L[�j+k + (Id ��j+k)(Id ��j+k+1)]M�j+2k+1k :Using the triangular inequality and (i), the last expression may be bounded above by� const kMkk(Id ��j)L�j+kk+ (1 + const )2kLkk(Id ��j+k+1)M�j+2k+1k :By hypothesis, both expressions tend to 0 as j !1.Step 8: Conclusion. For any M 2 B(B) satisfying (v�) and thus in particular forM = Lm, we have kM�j+kk � k�jM�j+kk+ k(Id ��j )M�j+kkIn the limit j !1, we obtainlim supj!1 kM�j+kk � lim supj!1 k�jMkk�j+kk � const lim supj!1 k�jMk :In the same way way we obtainlim supj!1 k�j+kMk � const lim supj!1 kM�jk :Since the constant appearing in the right-hand side does not depend on M, the statedequality of all limits follows. � 16
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