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Approximation of nonessential spectrum of transfer operators

VIVIANE BALADI AND MATTHIAS HOLSCHNEIDER

December 1998

ABsTRACT. We give sufficient conditions to approximate the “nonessential” spectrum of
a bounded operator £ acting on a Banach space B by part of the spectra of a sequence of
compact (or finite rank) operators £; = (Id —1II;) £(Id —II;), where Id —II; is a suitable
family of uniformly bounded operators which approach the identity. (By nonessential
spectrum we mean here all the spectrum outside of the disc of radius equal to the essential
spectral radius.) For this, we combine the formulas

pess(L£L) = lim (limsup(inf)HHjEmH)l/m =

(lim sup(inf)[| £ 1L;[)*/™ |

Iim

for the essential spectral radius with nonstandard perturbative results on the stability of
the nonessential spectrum of quasicompact operators. We present concrete applications to
transfer operators of smooth expanding maps using multiresolution analysis (large scale
approximation projections).

1. INTRODUCTION

Matrices, and more generally linear operators on infinite-dimensional vector spaces,
are ubiquitous tools which permeate pure and applied mathematics. A natural prob-
lem, which has kept mathematicians busy for centuries, is to determine, or at least
approximate, their spectrum (in infinite-dimensional situations, sometimes only a dis-
crete part of it). In this work, we are concerned with the infinite-dimensional (Banach
space) situation, and we deal with bounded linear operators which are not necessarily
compact. Our main result (Proposition 3 in Section 2) is a list of conditions guarantee-
ing that a subset of the eigenvalues of a sequence of compact or finite-rank operators
(Id —1II;)£(Id —II;) (together with the corresponding eigenspaces) converges to those
eigenvalues of the original operator £ which are outside of a disc containing the essen-
tial spectrum. The simple proof combines a convenient exact formula for the essential
spectral radius (Theorem 1 from [H1]) with a non-standard — and somewhat unex-
pected — perturbative result (Theorem 2 from [BY]), which had originally been used to
control the spectrum of randomly perturbed dynamical systems.
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Sequences of compact or finite rank operators Id —II; for which our results hold can
be explicited in some cases (sometimes via multiresolution analysis, using wavelets).
In Section 3, we explain a specific dynamical systems setting where our scheme works.
The linear operator there is the Ruelle transfer operator associated to a differentiable
uniformly expanding dynamical system on a torus. (Transfer operators, sometimes
also called Perron-Frobenius operators, are very powerful tools to study the ergodic
properties of dynamical systems. We refer e.g. to [R] and the references therein for
the framework of Section 3.) The Banach spaces are Sobolev or Holder spaces, and the
finite-rank operators Id —II; are constructed using the Meyer [M] orthonormal wavelet
basis (it would be interesting to actually run the algorithm on a computer).

An important and famous finite-dimensional matrix scheme used in ergodic theory
of dynamical systems (to approximate the physical, or “SRB” measure, together with
its rate of mixing) is the Ulam method. Recent numerical and theoretical work has
shown that not only the maximal eigenvalue, but also further spectral values of Ulam
maftrices approximate well part of the spectrum associated to various types of chaotic
dynamics (see in particular the sequence of papers and effective algorithms of Dellnitz
and collaborators [DJ], and the rigorous results of Hunt [Hu], and Froyland [Fr]; we also
mention the recent paper [KMY] — see also [K1] — for similar approximation results,
together with quantified estimates on the speed of convergence, finally [BIS] contains
results obtained using Theorem 2 below from [BY]). It seems to us, however, that since
Ulam matrices are obtained by locally constant approximations, they cannot describe
the action of the dynamics on observables smoother than Holder or Lipschitz. Our
scheme, on the other hand, is applicable to a wider range of smoothness classes.

We end this introduction by mentioning, in order of expected difficulty, three direc-
tions for future research. As soon as one proves that a mathematical object can be
approximated by a sequence, one obvious question is the speed of convergence. For the
case considered in Section 3, we believe that exponential speeds of convergence hold (by
analogy to the results in [KMY], e.g.).

A second natural problem consists in extending our dynamical results from Section 3
to compact boundaryless manifolds more general than the n-torus T™. This should be
possible by developing and/or applying the necessary multi-resolution analysis.

Last, but definitely not least, we have limited ourselves to uniformly expanding dy-
namical systems for which the transfer operator has nice spectral properties when acting
on smooth functions. When the dynamics is uniformly hyperbolic, the inverse maps im-
prove smoothness along unstable manifolds but make functions less smooth along stable
manifolds. Although recent progress has been made in our understanding of analytic
[Rg], but also differentiable [Li, Ki], hyperbolic settings, one still does not have a good
Banach space framework for the transfer operator. Perhaps our approximation scheme
can be extended to the hyperbolic setting via the use of “directional” Banach spaces.
(Further extensions to nonuniformly hyperbolic dynamics would also be desirable.)

Acknowledgements: V.B. thanks G. Courtois, G. Keller, and J. Buzzi for useful
comments. She gratefully acknowledges the hospitality of IHES where part of this work
was done. M.H. is thankful to the University of Geneva for its kind hospitality.



2. APPROXIMATION OF THE DISCRETE SPECTRUM: TWO ABSTRACT RESULTS

We first recall a few basic definitions and facts (see [K]| and [DS] for more information).
Let (B, ||-||) be a Banach space, that will always be assumed infinite-dimensional. (Since
we mostly have function spaces in mind, we denote vectors in B by ¢, ¢ etc.). Denote by
B(B) the set of bounded linear operators acting in B (noting ||£|| for the operator norm
of £ € B(B)), by K(B) C B(B) the ideal of compact operators, and by F(B) C K(B)
the ideal of finite rank operators. For £ € B(B) the resolvent set of L is the set of
complex numbers z so that £ — zId : B — B is an invertible operator with a bounded
inverse (£ — zId)~! € B(B). The spectrum o(L) of L is the set of 2 € C which are not
in the resolvent set of £. The spectral radius p(L) of L is

p(L) = sup{|z| s.t. z € o(L)}.
As is well known, the spectral radius of £ can be obtained as the following limit:

T m|l/m
p(L) = T ™|,

An element z € o(L) is an eigenvalue of £ if £L—zId has nontrivial kernel. The geometric
multiplicity of an eigenvalue z is the dimension 1 < my(z) < oo of its eigenspace {p €
B s.t. (£L—z)p =0}, and its (algebraic) multiplicity is the dimension my(z) < oo of the
generalised eigenspace {¢ € B s.t. Am > 1,(L—2)"¢ = 0}. (We have mq(z) < ma(z).)
The supremum 1 < i(z) < oo of those m which occur in the definition of the generalised
eigenspace of an eigenvalue z is called the indez of z.

The essential spectral radius pess(L) of L is the smallest number x > 0 such that any
A € o(L) with modulus || > & is an isolated eigenvalue of finite (algebraic) multiplicity
of £. We sometimes use the informal terminology “nonessential spectrum” or “discrete
spectrum” to denote the spectrum of £ outside of the disc of radius pess(L).

There exist several definitions for the essential spectrum of a linear bounded operator.
Browder’s [Br, Section 6] essential spectrum is the set of those z € C such that at least
one of the three following possibilities holds: z is a limit point of o(L), or (£ — z1d)B
is not closed, or the generalised eigenspace {¢ € B s.t. 3m > 1,(L — z)™p = 0} has
infinite dimension. Wolf’s [W] essential spectrum is the set of those z € C such that
L — z1Id is not Fredholm (see [K]). In general the Wolf and Browder essential spectrum
do not coincide (as noted in [N], the complement of the Browder essential spectrum is
the union of those components of the complement of the Wolf essential spectrum which
meet the resolvent set, in particular the Browder essential spectrum always contains the
Wolf essential spectrum).

Our definition for the essential spectral radius is consistent both with Browder’s and
Wolf’s definition of essential spectrum as we explain now. Firstly, pess(£) is the radius of
the smallest disc containing the Browder essential spectrum (because of [Br, Lemma 17,
p. 110]). Secondly, pess(L) is also the radius of the smallest disc containing the Wolf
essential spectrum. This second property can be deduced from two facts: on the one
hand z is in the Wolf essential spectrum if and only if £ — zId is invertible modulo



K(B) if and only if £ — zId is invertible modulo F(B), see [L, Chapter IX, Theorem
6]. On the other hand Nussbaum’s formula [N] states that the radius pess(L) of the
smallest disc containing the Browder essential spectrum coincides with

pess(£) = lim (inf{||L™ — K| s.t. K € K(B)})/m™. (2.1)

By the above equivalent formulations of the Wolf spectrum, Nussbaum’s formula can

be modified to

pess(£) = lim (inf{|[ L™ — F| st. F € F(B))'™ (2.2)

This is a non-trivial result since the set F(B) of finite rank operators is not necessarily
dense in the ideal IK(B) of compact operators. (The paper [F] of Fried was extremely
useful in clarifying the above points.)

We denote by B* the dual space of the Banach space B, i.e., the space of bounded lin-
ear functionals v : B — C. (Having in mind mainly complex measures and distributions
we write v, p for elements of B*.) For v € B*, we use the notation v(¢) = (v|¢). For
L € B(B), we write L* € B(B*), for the dual operator defined by (L*v|p) = (v|L(p)).

Recall that operators of finite rank on B can be written as

77Z) = Z Va(¢)¢a7

aEA

where A is a finite index set, v, € B*, and ¢, € B.

Our first abstract result is a list of exact formulas (probably well-known “in spirit”)
for the essential spectral radius of a bounded operator £ (see [H1] for proofs). They
hold for Banach spaces possessing suitable families of bounded operators II; converging
to zero and for which (Id — II; )L is compact. Candidates for such families of opera-
tors can be constructed via multiresolution analysis for many classical function spaces
(most notably Sobolev, but more generally Triebel, and partly Besov-Holder classes),
of periodic functions on the torus T", say (see e.g. [H1, H2], see also Section 3 below
for applications to transfer operators, where the Id — II; are in fact projections).

Definition (Compact approximation of the identity for (£,5)). A sequence of

operators Id —II; € B(B), for j € Z*, is a compact uniformly bounded approximation
of the identity for (£, B) if:

(1) 3 const >0 s.t. ||II,|| < const ,Vj € ZT;
(i3) (Id —TII;)L is compact,Vj € Z7;

and

(131) Bo = Bo({Il;}) = { € B s.t. ]151;10 II;(¢) =0} is dense in B.

We shall also need a dual notion:



Definition (*-compact approximation of the identity for (£,5)). A sequence of
operators Id —II; € B(B), for j € Z™, is a *-compact uniformly bounded approximation
of the identity for (£, B) if it satisfies (1) together with:

(¢2*) L£(Id —II;) is compact, Vj € Z™;

and

(132*) By = By({Il;}) = {v € B* s.t. ]151;10 IT3(v) = 0} is dense in B*.

Stronger results will hold for sequences of operators satisfying certain hierarchical
constraints (which hold in particular in the setting of Section 3):

Definition (Hierarchical compact approximation of the identity for (£,B)). A
sequence of operators Id — II; € B(B) is called a hierarchical compact (respectively
«-compact) approximation of the identity for (L£,B) if it satisfies (i), (i7) and (i:7)
(respectively (1), (12*), (117*)) together with

(iv) Il = M Il = Mjpe, VjeZT. (2.3)

The operator £ is said to act in scales, respectively *-scales, for k with respect to the
hierarchical compact approximation of the identity, if there is k € ZT such that

(0) T |Tx£0d — 1) =0
J—o0

respectively (2.4)
(") Tim [[(1d — T1)£TT 4] = 0.

j—oo
If (v) (respectively (v*)) in (2.4) holds for & = 0 then L is said to act ezactly (respectively
*-ezactly) in scales on {II;}.

Theorem 1 (Holschneider [H1], 1996). Let L € B(B). Suppose there is a compact
uniformly bounded approzimation of the identity {Id —II;} for (L,B) (i.e., satisfying
(1,01,121) ). Then Bo({Il;}) = B, and

pess(£) = lim (limsup |[IL; L7 DY ™ = lim (liminf |[T;£™))Y™. (2.5)

]_> m—0o0 J—00

If there 1ws {Id —11;} a *-compact uniformly bounded approzimation of the identity in
(L.B) (i.e., satisfying (¢,011",120%)), then By({Il;}) = B* and

pess(L) = lim (hmsupH,CmH H)l/m = hm (hmme,CmH H)l/m. (2.6)

m— j—o0

If there is a hierarchical compact (or *-compact) approzimation of the identity {Id —
I1;}, and if there 1s k € ZT such that L acts in scales for k on {II;} (i.e., (i,iv) and
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either (it,1i1,v) or (10* —iit*,v*) hold), then any of the four limits in (2.5-2.6) coincide
with pess(L).

Remark 1. In the last assertion of the theorem, if IT; satisfies ||II,|| < 1, then the interior
limit actually exists. Indeed, for any bounded A we have by (iv)

[ATL; || = [ AL 1 15| < [JATLj—a ]

Therefore the sequence || AIL,|| is non-increasing. The same argument applies to ||IL;A]||.

Remark 2. If the sequence II; satisfies only (i) and (ii) (respectively (i:*)) then the
Nussbaum formula (2.1) clearly gives the upper bounds in (2.5), respectively (2.6) (see
also the proof in the Appendix). In some applications neither (i¢) nor (i7¢*) can be
assumed to hold, but an assumption similar to the one appearing in [K2], and that we
state now, may be used. (Note that a key idea to obtain lower bounds for the essential
spectral radius by constructing almost eigenvalues was contained in the beautiful short
paper [Ma] of Mather.) Suppose that II; and £ are such that (z,77) hold and that there
is a double sequence of infinite dimensional closed spaces V" C 1I;B, for j,m € Z7T and
a constant C' > 0 so that for each fixed m and all sequences 7" € V™ with ||¢'|| = 1

we have
limsup |[£™ || > Climsup |[[L™IL; ] (2.7)
j—00 j—00
Then
pess(£) = lim (lim sup |[£™TL;|[)1/™ .
(See [H2, Theorem 3.3, and also Section 9] for an analysis of transfer operators acting
on homogeneous (s + a)-Holder spaces, with 0 < o < 1 and s € Z™, using condition

(2.7).)

The idea to use families of projection operators to exploit the essential spectrum is
not new. For example, Persson [P] gives a formula for the lower bound of the essential
spectrum of a self-adjoint operator in L?(R™) by using restrictions of the operator to
complements of compact sets of R™. More recently, Keller [K3] developed a theory of
quasi-nuclear operators and applied it to construct dynamical Fredholm determinants
associated to transfer operators in an analytic setting (his Proposition 2.2 is related to
our Theorem 1, but it requires additional assumptions on the approximating projections,
in particular the nontrivial hypothesis [K3, (2.11)]).

Theorem 1 will be used in combination with the following result on spectral ap-
proximations (which was originally proved in view of understanding small stochastic
perturbations):



Theorem 2 (Baladi—Young [BY], 1993). For £ € B(B), let L; € B(B) be a se-

quence of operators with

IL;|| < const ¥ j € 71 and lim Li(¢) =L(p),Ve eB.

¥ de el

Assume that for any k> pess(L), there is mg € 7T such that for each m > mg, there is
Jo(m) such that for all 3 > jo(m)

lem = L) < k™ (2.8)

Then for any k > pess there 1s J(k) such that the essential spectral radius pess(L;) < &
for each 5 > J.

Furthermore, writing X, respectively X; (with 7 > J(r)), for the (finite-dimensional)
direct sum of the generalised eigenspaces associated to the eigenvalues of L, respectively
L;, of modulus larger than k, and denoting the corresponding spectral projections by P,
P;, we have

(1) The norms ||P—Pj|| tend to zero as j — co. More precisely, there is 6 > 0 such

that
B~ Byl < exp®m0) i > T(). (2.9)

where
m(j) = max{m € Z* s.t. j > jo(m)}.

(2) The Hausdorff distance between the spectrum of L|x and that of L;|x, tends to
zero as j — oo. More precisely, for all j > J(r)

Hdist(o(L]x ), o(£5]x,)) < const (CY"(j) + ()11, (2.10)

where d > 1 1s the mazimum of the indices of eigenvalues of L of modulus larger
than k and

YV () = mae (€5 — L™ (2.11)
lell=1

(Note that Cg(m(]))(j) < k™) for j > J(k).)

(3) If ¢ € X s an eigenvector for L and an eigenvalue A\ of algebraic multiplicity
d, and index d; > 1, then for each j > J(k) the operator L; has 1 < { < d,
eigenvectors ; ; for eigenvalues \; ; (1 = 1,... L), with sum over 1 =1,... (
of the algebraic multiplicities of A; ; equal to do, and

max max(|A = Al o = i) < const (CY"(G) + OGN (212)



Theorem 2 is obtained by combining Lemmas 1, 2 and 3 from Section 2 in [BY],
noting that assumptions (A.1) and (A.3) there follow from the definition of the essential
spectral radius, while assumption (A.2) in [BY] is just our hypothesis (2.8).

We would like to attract the reader’s attention to very recent results of Keller and
Liverani [KL] which reinforce Theorem 2 in certain cases.

The main new result of this paper is obtained by putting together Theorem 1 and
Theorem 2:

Proposition 3. For £ € B(B), let {Id —1I1;} be esther both a compact and a *-compact
uniformly bounded approxzimation of the identity, or a compact or x-compact uniformly
bounded hierarchical approzimation of the identity on which L acts in scales for some k,
i.e., either (a) [(i,11,10) and (¢,05%,903%)], or (b) (i,i1,0i1,10,0), or (c) (i,00*,i0i*, v, v*)
hold.

Assume further that for some large enough M € ZF, LM acts exactly in scales on
the sequence II; (More precisely: in case (a) we assume [(v) and (v*)] for k = 0, in
case (b) we assume (v) for k=0, and in case (c) the convergence (v*) for k =0.)

Then for any fized k£ > pess(L), the spectrum and generalised eigenspaces of the
compact operators

L; = (Id —1I;)L(1d —1I;)

outside of the disc of radius k converge to those of L in the sense of (1)-(3) of Theorem 2
(including bounds (2.9-2.12)).

Obviously, Theorems 1 and 2 as well as Proposition 3 are of interest only when
pess(L) < p(L) (especially when there are “many” eigenvalues between pess(L) and
p(L)). Proposition 3 is especially interesting if £(Id —1II;) or (Id —II;)L are finite rank
operators. Section 3 contains specific examples where both conditions in this paragraph
are satisfied.

Proof of Proposition 3. We start by replacing £ by M = LM and £; by M; = (Id —
I;)LM(Id —II;), at the end of the proof we shall see how to recover results about £
itself. (Note that if (i7) respectively (i7*) is satisfied for £ then it also holds for £M.
Iterating assumption (iv) does not lead into difficulties.)

The only thing which requires checking is assumption (2.8) of Theorem 2. For this,
we observe that the conditions for the strongest statement of Theorem 1 are satisfied.

Thus

pess( M) = lim_ (lim sup | ILM™ [)V™ = Tim (limsup | M™IL;|)"/"
]—)OO ]—)OO

In other words, for any < with & > pess(,CM), there 1s mg > 1 such that for all m > mg
and each € > 0 there is j;(m) such that for all j > j1(m)

IIL;M™| <E™ 4+ €eand [ M™IL|| < E™ + €. (2.13)
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(We may, and will, take e = £™.) For a constant C >0 (independent of j and m) to be
defined below, and for each fixed m > mq(&), we set ,

d=46(m) =

1
(m = D)(CllM[ym=t
and take j, > max(jo(m), j1(m)) large enough so that
|T; M(Id — I1;)|| < §&™ (2.14)
for all j > j, (recall that M acts exactly in scales). We then have the bounds

[M™ = M| =M™ = [(1d —TT;)M(Id —II;)}™ |
= [[M™ = (1d —II;)M™(Id —1I;)

— mi: (Id —T0;)MF*(21d — TT;)TT; M[(Id — TI1,;)2 M]™~*=1(1d — T0;)|
k=1

< JIGM™IL; + (Id = IL; ) M™IL; + I M™ (Id — 115 ||
+ (m — 1DS&™(C||M]|))m !
< (sup |[IL][)22&™ + 2(sup | IL;]|)(1 + sup ||TL;||)2&™
J J J

(2.15)
(the second equality can be proved by induction on m since Id — (Id — II;)? = (2Id —
II;)II;; we also use C = (1 4 sup; [[TL;|[)(2 + sup; ITL;])?). Since all constants in (2.15)
are uniform in m we have obtained an estimate which is equivalent to (2.8) for M = £M.

We now explain how to prove our statements for the original operator £. First note
that, since pess(LM) = (pess(L))M, if & > pess(L) then v = &M > peo(LM).  Also,
since the spectral projection associated to £ and an eigenvalue A coincides with that
of LM and AM | the assertion regarding |[P — P,|| in (1) of Theorem 2 is clearly valid.
Since X 1is finite-dimensional, we may conclude by applying perturbation theory of
finite dimensional matrices as in the proof of Lemma 3 in [BY, pp. 361-362]. (Note
that algebraic multiplicity is preserved when taking powers of an operator, whereas the
index, which is the size of the largest Jordan block, may only decrease.) O

Nonconvergence of the determinants

In Section 3 we shall discuss situations where Proposition 3 furnishes us with a se-
quence of finite rank operators £; whose eigenvalues of large enough modulus (together
with the corresponding generalised eigenspaces) converge to the corresponding data for
a given noncompact bounded operator L. It is tempting to consider the associated
sequence of “Fredholm determinants” d;(z) = det(Id — z£;). The functions d;(z) are
polynomials, of degree increasing with j, and whose zeroes of small enough modulus

9



converge as j — oo to the inverse eigenvalues of £. In many situations, however, the
functions d;(z) do not converge as holomorphic functions in any disc. (The “small
(essential) spectrum” of L seems to be the reason for this lack of convergence.) We
believe that such counter-examples can be obtained in the framework of smooth ex-
panding maps of the circle, by considering a sequence II; associated to locally constant
approximations (Haar basis) or approximations of higher but finite smoothness.

3. DYNAMICAL TRANSFER OPERATORS AND
WAVELET APPROXIMATIONS: AN APPLICATION

A typical situation where Theorem 1 applies is when £ is the transfer operator
associated to a smooth expanding map of the n-dimensional torus T", the Banach space
is a space of smooth distributions, a Sobolev space, or more generally a Triebel space
(see [H2]), and the II; are obtained by orthogonal projections on a multi-resolution
analysis (see [Me]). We now give precise definitions and statements, without striving
for the fullest generality.

Definition of the transfer operator

Let f: T"™ — T™ be a C* uniformly expanding map (i.e., there exists v > 1 with
|Dfv|| > ~|lv| for each @ € T™ and each v € T,T"). Let g : T" — C be a C*
function. The Ruelle transfer operator £ associated to the pair (f, g) is defined (e.g. on
L*(T") = L*(T™, du), with 1 Lebesgue measure on the torus) by

_ 9w)e(y)
Lo(z) = f%;x det DI (]| (3.1)

(The choice g = 1 leads to the usual Perron-Frobenius-type transfer operator, for which
there exists a maximal eigenfunction which is the density of the unique absolutely
continuous invariant probability measure for f.)

Definition of the hierarchical approximation of the identity

We now give an explicit example of operators II; that will satisfy the assumptions of
Proposition 3. We start with an orthonormal wavelet basis for L?(R"), e.g., the Meyer
basis obtained from multiresolution analysis of L?(R") (see [M]). This is a set of 2" — 1
functions ¢y (K = 1,...,2" — 1), in the Schwartz space S(R") of rapidly decreasing
functions

S(R™ = {p € L*(R") s.t. sup|z™p(x)| < o0 ,¥p,m € (Z1)"}
R
such that all moments of each 1y, vanish (i.e., [, £™¢r(2)dp = 0), and such that

(0! = 2"y (20e — ) for k=1,... 2" —1,j € Z,( € Z"}

10



is an orthonormal basis of L?(R"). Moreover, the ¢ have compactly supported Fourier
transforms. Let P : S(R") — L?(T") be the periodisation operator

Po(z) =) elz+10).

ez

Then we get an orthonormal basis of L?(T") by considering
{P¢£7£7k - 17 72n_ 17] - Z_,KE {0, ,2_j — 1}”}U{77/)0 = ]_}

Finally, we define the sequence II; : L?(T™) — L*(T"), for j € Z, by setting Id — II;
to be the (finite-rank) orthogonal projection on the finite dimensional space generated
by the P} Lfork=1,...,2" —1, —j <j' <0, and ( € {0, ... 270 — 1}

W - T)() = [ g vodn
2"—1 0 (3.2)

DS Pl [ ePl T d

k=1 j'=—j¢c{o,... 2-3" —1}n»

Two (scales of) Banach spaces

We shall consider the transfer operator £ acting on two scales of Banach spaces (the

sequence of projections just introduced will work for both). The first is the well-known
scale of Sobolev spaces H*(T"), for fixed s € RT, i.e.,

mezr

HY(T") = {¢ € L(T") s.t. |[¢lln = \/I¢(0)|2 + Y ImPlp(m)P <oc}. (3.3

where we used the notation ¢(m), for the Fourier coefficients of ¢, and we write |m| =

The second is derived from the Holder — Zygmund scale of spaces A%(T™"). This is
the space of periodic functions f € CII(T"), for s = [s] 4 {s}, [s] € N, {s} € [0,1), for

which for all multi-indices 3, |3| = [s] we have
8 — 98
Y |z — y[ts)

The left-hand side defines the norm of A°(T™) Here we suppose s ¢ N, otherwise we
have to use the Zygmund spaces (see, e.g., [Tr] for a definition). In Lemma 4 below we
will use the closure of C*>(T") in A*(T"), denoted by A*(T"). The point is that both
Sobolev and Holder scales of spaces (together with many others) are well characterised
through wavelet coefficients. More precisely, a distribution ¢ is in H*(T") if and only
if its wavelet coefficients

ap’ = (PUL'le)

11



satisfy

Z 2_213|0z‘,i’£|2 < 00,
3k L

The left-hand side defines a norm equivalent to the standard Sobolev norm. The scale
A®(T™) is characterised in wavelet space via

sup 2_3j|oz‘,i’é| < 00
3k L

Again we have equivalence of norms. The closed subspace A\*(T") consists of precisely
those functions for which, in addition,

lim max2~%|ay"| =0.
500 bk

The projections Id — II; from (3.2) are finite-rank on both the Sobolev and Hélder
spaces. Since our transfer operator L is associated with a smooth map f and weight
g, it is also bounded on these spaces (see [H1]). As the following key technical lemma
shows, we may apply Proposition 3:

Lemma 4. (Exact scaling for suitable Banach spaces) Let L be a transfer operator
associated to a smooth expanding map f and a smooth weight g as in (3.1), acting on
a Banach space B = H*(T") or B = X°(T"). Let Id —II; be the sequence of finite-
rank projections defined by (3.2). Then II; and L satisfy properties (i,1t,i11,1v,v).
Furthermore, there is M € Z1 such that LM acts exactly in scales on the hierarchical
sequence I1;.

Proof of Lemma 4.

Assertions (i7) and (iv) are obvious consequences of the definitions. Properties (i)
and (i1¢) follow from the above wavelet characterisation of the scales H*(T") and A*(T")
in wavelet space. (Note that property (ii7) does not hold for A*(T").)

To prove the exact scaling property we recall a result proved in [H1, Sections 7-8].
There it was shown that the transfer operator may be written as

L=L+TR,

where R is smoothing: it is continuous from H"(T") to H"t!(T"), and from A" (T") to
ATHLH(T™) for all r > —1.

L2 is a linearised version of £, its precise definition can be found in [H1, Lemma 7.3).
(Note that the operators analogous to £2 and R in Sections 7-8 of [H1] were defined
in the wavelet coordinates, while here we work with their versions in the original space
T™; also, [H1] considered the non periodic case of R”, this does not lead to difficulties.)
It suffices to recall that £ is completely determined by the derivatives of the dynamics
f at all points of T". In particular, since, by hypothesis £ is obtained by composing

12



with uniform contractions, £7 maps functions supported by a disk in Fourier space
to functions supported by a ~-times smaller disk, where v > 1 is our bound for the
expansion rate of the dynamics. On the other hand, the image of (Id —II;) consists of
functions supported by a disk of radius < ¢27 in Fourier space, whereas the image of
II; is supported outside a disk of radius C 2’ with some C > ¢ > 0. Upon replacing £
by L™ (m depends on C/c¢) we see that

IT;(£™)?(Id —10;) = 0.

It remains to analyse the effect of R. Since R is acting in scales, it is continuous from
H*=Y(T") to H*(T") and from A\*~'(T") to A*(T"). It can thus be written as R = 'R/,
where I" is defined via IT' : Pgbi’é — 2”%/}%. Thus R’ is continuous from H*(T") to
H?*(T™). Now, by definition

WL e ey = [T xe vy < comst 277 50 (j— o0),
and the exact scaling property follows. [

Remark 3. For y € T" we introduce the bounded linear operator Dy, acting either on
the Sobolev space H*(R") or the derived from Hélder space A\*(T™) (defined analogously
to (3.3-3.4)) by

wo D(ff_(;))

(where the inverse branch ff_(;) is unambiguously defined by f~!(f(y)) = y). For each

m > 1 an operator Dsm , can be defined similarly as in (3.5).

In fact, Holschneider [H1, Theorems 21.-2.2] applies Theorem 1 in wavelet coordi-
nates to show a more explicit formula for the essential spectral radius. The following
bounds are easy consequences of his formula:

1/m
limy, o0 (SuprT" me(y):x |g(m)(y)| HDfm7yH>\S(Rn)>

for B = A\*(T"),
Pess(L) < 1/(2m) (3.6)

for B=H*(T"),

(for m > 1, we write ¢("™(z) = Hm_l g(fi(x))). Using that each inverse branch of f™

1=0
is a contraction by v~™, it is not difficult to show that for any y

—ms n —m(s—n
| Dgm yllne@mny < and, for s > 3 | Dgm oyl e mny <y (s=n/2) (3.7)
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For n = 1, the bound obtained from (3.6) and the refined version |[[Dgm y||xsmn) <
[(f™) (y)|~° of (3.7) is similar to the one-dimensional exact formula for A°(]0,1]) with
0 < s < 1in [BJL]. (See also [CI] for s > 1, and, in a one-dimensional bounded
variation setting, [K2], for earlier and different expressions.) Campbell-Latushkin [CL]
and Gundlach—Latushkin [GL] have recently obtained, via a different (Oseledec theorem)
approach, other exact expressions of the essential spectral radius in higher dimensional
smooth expanding settings.

If ¢ is nonnegative, the spectral radius of £ acting on C*® functions (for any s > 0) is

just (see [R])
(m) 1/m
. 9" (y) )
L)= lim [ su —_— )
pLL) m%o<x€ﬂli fmz(y):x|dethm(y)|

Therefore, since there is an eigenvalue equal to p(L£) with a nonegative eigenfunction
in C=(T"™) C H?(T") N A*(T") (use that f,g are C*, see [R]), the essential spectral
radius of £ on A\*(T") satisfies

pess(L£) < p(L)/7* < p(L)
(this double inequality was proved by Ruelle in [R] for £ acting on C*(T")). Similarly,
for s > n/2, the essential spectral radius of £ on H*(T") satisfies

pess(L) < p(L)[y*7"* < p(L) .
Remark 4. Ordinary Fourier analysis could be used in the Sobolev space framework,
in particular, the analogue of Lemma 4 would be true. However, Fourier series would
not be suitable for the Holder space analysis, or for other Banach spaces in which
multiresolution analysis and wavelets are applicable. Also, in situations where Fourier
and wavelet analysis are both applicable, numerical algorithms based on wavelets usually
converge much faster. (See, e.g., [Me].)

Remark 5. Because our C'* assumptions on (f,g), our transfer operator £ preserves
any Holder or Sobolev space. We have chosen to work with an orthonormal wavelet
basis which is r-regular for each r > 0, and which can thus be applied to approximate
the “nonessential” spectrum of £ on any H*(T"). Since the essential spectral radius of
L on H*(T™) is a monotone function of s which tends to zero as s — oo, in fact all the
eigenvalues of (Id —II;)£(Id — II;) will converge to eigenvalues of L for eigenfunctions
in NgsoH*(T™). (In other words, we only see the “embedded smooth spectrum” of L.)

If we had chosen a wavelet basis of a given regularity r > 0, and let £ act on H*(T")
for r > s > 0, then the eigenvalues of modulus greater than the essential spectral
radius of £ acting on H"(T") (and only them) obtained by the approximation scheme
are guaranteed to exhaust the eigenvalues of £ acting on H*(T") in the corresponding
annulus (their eigenfunctions will in fact lie in H"(T™) C H*(T")).

Finally, one could extend the results of [H1], and therefore the results of the present
paper, to the case when the dynamics and weights involved in the construction of the
transfer operator have a given finite regularity (this would restrict the regularity of the
Banach spaces which can be considered).
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APPENDIX: PROOF OF THE ABSTRACT SPECTRAL RADIUS THEOREM (THEOREM 1)

We reproduce for the reader’s convenience the proof of Theorem 1, adapted from

[H1].

Proof of Theorem 1. We first suppose that the compactness condition (i¢*) and the

density property (¢i¢*) hold and show (2.6) (the proof of (2.5) assuming (i¢) and (¢i)

is completely analogous and is left to the reader). We consider only the “lim sup” and

leave the “liminf”-part to the reader. We decompose the argument into five steps:
Step 1: We have for all m,

inf{|[£™ — K| s.t. £ compact} < [[L™IL;]|.

Indeed, we may write

£"— L™ = £™(1d —1I,) .

The right hand side is a compact operator, since it contains a compact factor by hy-
pothesis (i7), and since £ is bounded.

Step 2: We have B = B*. Indeed, suppose Bf > o — ¢ € B*. Then for every
e > 0, we find K such that & > K implies |[¢)r, — ¢|| < e. It follows that

MG < (W5 | + (T3 (0 — o)l < [[TT54)x[| + conste — conste (5 — o0).

Since € was arbitrary, the statement follows.

Step 3: For all K € F(B), we have lim;_, ||[KII;|| = 0. Indeed, for all ¢ with ||| =1

we find
KT = [ (val e )ball < D (1T val

B* VaHB .
This tends to 0 as 7 — oo, since, by Step 2, Bf = B*, and since the sum contains only
finitely many terms.

Step 4: We have for all K € F(B)

1 )
1€ =Kl > —— lim sup [T

co J—o0
Here oo > const > 1 follows from condition (¢). Indeed, since ||IL;|| < const, we find
(£ = K|} < const ||£ — K|,

for each 7. Now

(£ = KL = |10 || = [T

We may take the limit superior j — oo and obtain the stated estimate.
Step 5: We have for all m, upon replacing £ by £,

const ~1/™ (lim sup £ IL,)Y™ < (inf{||£™ — K|| s.t. K finite rank})'/™

¥ de el
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and, by Step 1:

(inf{||L™ = K| s.t. K compact})l/m < (lim sup H,CmHjH)l/m.

¥ de el

We now may go to the limit m — oo, showing (2.5-2.6).

Assuming now that II; is hierarchical and that (i::*), (v*) hold, we prove the last
assertion of Theorem 1 in three steps:

Step 6: Note that if A satisfies (v*) for some k, it also satisfies it for k+ 1 (and hence
for all &' > k). Indeed, we may write as before

1(1d = L) AT g | = (I = I, ) ATL T ]| < const [[(Id — IT, ) ATE g

The last expression tends to 0 by hypothesis on A. An analogous argument applies for
the second limit.

Step 7. The set of bounded operators satisfying (v*) for a given k forms an algebra.
Indeed if both M and L satisfy condition (v*), then their sum and scalar multiples
obviously satisfy it, and we are left to check the product. By Step 6 we may suppose
that £ and M satisfy (v*) for the same k. Then we have, thanks to (iv),

[(Id = I1;) LMy 244 |
= [[(Id = T;) L[4 5 + (Id = T )(Id = I )] MITj g ||

Using the triangular inequality and (7), the last expression may be bounded above by
< const [|M||(1d — TL)LTL 4] + (1 + const £ (I — Ty pxp1) M|

By hypothesis, both expressions tend to 0 as j — oco.
Step 8 Conclusion. For any M € B(B) satistying (v*) and thus in particular for
M = L™, we have

[MITjp || < [IMITjg k]| 4 [[(Id = T1;) M4 ]
In the limit j — oo, we obtain

lim sup [|MIL4| < lim sup [T M| < const lim sup [|TLM].

In the same way way we obtain

lim sup [[II;4x M| < const lim sup [[MIL;|.

¥ de el ¥ de el

Since the constant appearing in the right-hand side does not depend on M, the stated
equality of all limits follows. [
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