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ABSTRACT
Background. During steady walking, gait parameters fluctuate from one stride to
another with complex fractal patterns and long-range statistical persistence. When
a metronome is used to pace the gait (sensorimotor synchronization), long-range
persistence is replaced by stochastic oscillations (anti-persistence). Fractal patterns
present in gait fluctuations aremost often analyzed using detrended fluctuation analysis
(DFA). This method requires the use of a discrete times series, such as intervals between
consecutive heel strikes, as an input. Recently, a new nonlinear method, the attractor
complexity index (ACI), has been shown to respond to complexity changes like DFA,
while being computed from continuous signals without preliminary discretization. Its
use would facilitate complexity analysis from a larger variety of gait measures, such
as body accelerations. The aim of this study was to further compare DFA and ACI
in a treadmill experiment that induced complexity changes through sensorimotor
synchronization.
Methods. Thirty-six healthy adults walked 30 min on an instrumented treadmill
under three conditions: no cueing, auditory cueing (metronome walking), and visual
cueing (stepping stones). The center-of-pressure trajectory was discretized into time
series of gait parameters, after which a complexity index (scaling exponent alpha)
was computed via DFA. Continuous pressure position signals were used to compute
the ACI. Correlations between ACI and DFA were then analyzed. The predictive
ability of DFA and ACI to differentiate between cueing and no-cueing conditions was
assessed using regularized logistic regressions and areas under the receiver operating
characteristic curves (AUC).
Results. DFA and ACI were both significantly different among the cueing conditions.
DFA and ACI were correlated (Pearson’s r = 0.86). Logistic regressions showed that
DFA and ACI could differentiate between cueing/no cueing conditions with a high
degree of confidence (AUC = 1.00 and 0.97, respectively).
Conclusion. Both DFA and ACI responded similarly to changes in cueing conditions
and had comparable predictive power. This support the assumption that ACI could
be used instead of DFA to assess the long-range complexity of continuous gait signals.
However, future studies are needed to investigate the theoretical relationship between
DFA and ACI.
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INTRODUCTION
Gait is a stereotyped sequence of movements that enable human beings to move through
their environment. A fluid and stable gait requires the complex coordination of dozens of
muscles controllingmultiple joints. Biomechanical and energy constraints limit the range of
gait movements to a narrow window (Holt et al., 1995); for example, at a preferred walking
speed, step length and step time vary by only a few percent (Terrier, Turner & Schutz, 2005).
It was previously thought that these small variations were random noise introduced by
residual neuromuscular inaccuracies; however, after studying the structure of gait variability
among hundreds of consecutive strides, it was observed that stride-to-stride fluctuations
were not totally random but instead exhibited a fractal pattern (Hausdorff et al., 1995).
Fractal fluctuations in time series produced by living beings have been deemed to be a
signature of their complex internal organization and of the feedback loops needed to adapt
behaviors to environmental changes (Goldberger et al., 2002; West, 2013). Accordingly,
physiological time series most often exhibit scaling properties and statistical persistence.
Regarding human walking, the complex fluctuations in stride intervals, stride speeds, and
stride lengths exhibit fractal patterns with inverse power-law memory (Hausdorff et al.,
1995; Terrier, Turner & Schutz, 2005); that is, a change occurring at a given gait cycle can
potentially influence another cycle dozens of steps later.

The fractal pattern of gait fluctuations can be disrupted by sensorimotor synchronization.
It is possible for humans to synchronize their stepping with external rhythmic cues, such
as walking in time with a musical rhythm (auditory cueing). In such cases, stride-to-stride
fluctuations become anti-persistent; that is, stride intervals tend to oscillate stochastically
around the imposed pace (Terrier, Turner & Schutz, 2005; Delignières & Torre, 2009; Sejdić
et al., 2012; Choi et al., 2017). In other words, a long stride interval has a higher probability
of being followed by a short stride interval. Similarly, time series of stride speeds are anti-
persistent in treadmill walking, in which a constant speed is imposed by the treadmill belt
(Dingwell & Cusumano, 2010). The fractal pattern of stride speeds can be restored using
self-paced treadmills, in which the belt speed is dynamically controlled by the walking
subjects (Choi et al., 2017). In treadmill experiments, if an additional instruction of gait
synchronization is superimposed on the task of walking at the belt speed, a generalized
anti-persistent pattern is then observed (Terrier & Dériaz, 2012; Roerdink et al., 2015;
Choi et al., 2017). This phenomenon exists both when synchronizing stride intervals to a
metronome (auditory cueing), and when aligning step lengths to visual cues projected onto
the treadmill belt (visual cueing) (Terrier, 2016).

In 2010, Dingwell and Cusumano hypothesized that the emergence of anti-persistence
was linked to the degree of voluntary control dedicated to the gait. They suggested
that, during a normal gait, deviations go uncorrected and can persist across consecutive
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strides (under-correction). In contrast, in paced walking, deviations are followed by rapid
corrections that lead to anti-persistence (over-correction). This ‘‘tight control’’ hypothesis
has been supported by other studies (Roerdink et al., 2015; Bohnsack-McLagan, Cusumano
& Dingwell, 2016). Earlier this year, Roerdink et al. further demonstrated that the degree of
anti-persistence can bemodulated by constraining themaneuverability range on a treadmill
(Roerdink et al., 2019). In short, characterizing the noise structure of gait variability helps
us to better understand gait control; among other things, it can provide information about
whether a gait is highly controlled or more automated. In addition, cued walking has
important applications for rehabilitation in gait disorders (Yoo & Kim, 2016; Pereira et al.,
2019).

Detrended fluctuation analysis (DFA) is typically the preferred method to identify the
fluctuation structure in a time series of gait parameters. Introduced in 1995 by Hausdorff et
al., DFA identifies the modification of a signal’s variance at different time scales. DFA can
unmask underlying fluctuation structures that may be otherwise obscured by time series
trends (Peng et al., 1995). The presence of power-law scaling is determined through the
scaling exponent alpha (α); if the exponent is small (α <0.5), the fluctuations are deemed
to be anti-persistent. Statistical persistence corresponds to α values higher than 0.5 and an
α value equal to 0.5 indicates a random, uncorrelated noise (see Appendix B in Terrier &
Dériaz (2013) for further information).

DFA requires a non-periodical, discrete time series as an input. Foot switches,
i.e., pressure sensitive insoles, can be used to detect heel strikes on the ground and
can thus collect time series of stride intervals (Hausdorff, Ladin & Wei, 1995; Sejdić et al.,
2012; Almurad et al., 2018). Several methods using the continuous measure of the positions
of various body parts have also been proposed: (1) high-accuracy GPS (Terrier, Turner &
Schutz, 2005); (2) 3-D video analysis of treadmill walking (Dingwell & Cusumano, 2010);
and (3) an instrumented treadmill that records the center-of-pressure trajectory (Terrier
& Dériaz, 2012; Terrier, 2016; Roerdink et al., 2019). These methods require a preliminary
discretization of the position signals via minima/maxima detection algorithms (Terrier &
Schutz, 2005; Roerdink et al., 2008; Dingwell & Cusumano, 2010).

Other studies attempted to retrieve stride intervals from acceleration signals (Terrier &
Dériaz, 2011), but the correct discrimination of strides can be challenging. Accelerometers
are most often attached to the lower back for optimally assessing whole-body movements
and for enhancing the compliance in wearing a sensor over long periods of time. The
dampening of accelerations throughout the limbs can make difficult the detection of foot
contacts, which are required to compute stride durations (Terrier & Reynard, 2018). For
example, a poor detection of gait events leads to large errors when evaluating walking
distance from trunk accelerations (Lopez et al., 2008). Although solutions exist under
optimal conditions (González et al., 2010), it has been suggested that methods that do
not require a preliminary detection of gait events could be advantageous when studying
pathological gaits with atypical acceleration signals (Riva et al., 2013). A method that can
analyze gait complexity from continuous signals may be useful in ecological monitoring of
pathological gaits (Terrier et al., 2017).
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The discrete gait time series that are analyzed throughDFA are fundamentally the output
of a continuous process. Indeed, gait control coordinates muscles and joints continuously
during successive gait cycles; this process generates stride intervals, stride lengths, and
stride speeds as outputs. It is questionable whether it is even possible to retrieve the fractal
signature of long-range stride fluctuations in a continuous signal that could capture both
intra- and inter- stride gait dynamics. In 2013, I hypothesized that an attractor that reflects
short-term gait dynamics could also contain information about long-term gait complexity
(Terrier & Dériaz, 2013). In 2018, I explored this hypothesis further (Terrier & Reynard,
2018): I proposed the use of a new gait complexity index computed from continuous
signals, which I named the attractor complexity index (ACI).

ACI is a new term for long-term local dynamic stability (LDS)—also referred to as
divergence exponent or lambda (λ)—which was introduced by Dingwell et al. (2000) and
Dingwell & Cusumano, (2000). This algorithm, based on Lyapunov exponents used in chaos
theory (Dingwell, 2006; Mochizuki & Aliberti, 2017), has been recommended to assess gait
stability and fall risk (Bruijn et al., 2013). LDS requires the construction of an attractor in
the phase space by means of time delay embedding of continuous signals, such as body
accelerations (Takens, 1981; Rosenstein, Collins & De Luca, 1993; Terrier & Dériaz, 2013).

LDS is defined as the divergence rate among attractor trajectories. The divergence
rate can be evaluated at different intervals, either immediately after the initial separation
between adjacent trajectories (short-term LDS) or several strides later (long-term LDS).
In the years following Dingwell’s seminal articles, it became clear that long-term LDS was
in fact not a good index for predicting fall risk and gait stability (Bruijn et al., 2013), but
that short-term LDS had better properties for gait stability analysis, as shown in modeling
studies (Su & Dingwell, 2007; Bruijn et al., 2012).

Studies have shown that long-term LDS responded to various experimental conditions
independently of short-term LDS. In visually andmechanically destabilizing environments,
short-term and long-term LDS vary in opposite directions (McAndrew, Wilken & Dingwell,
2011). Similar results have been obtained when galvanic vestibular stimulation is used
to impair dynamic balance (Van Schooten et al., 2011). Walking on a compliant surface
decreases long-term LDS, with no relevant effects on short-term LDS (Chang et al., 2010).
Overall, an accumulation of evidence supports the fact that long- and short-term LDS
measure different aspects of gait control, which may justify a change in the terminology to
clearly differentiate between them.

Given that long-term LDS is not a gait stability index, renaming it as ACI seems
appropriate. Indeed, as demonstrated through amodelling approach, ACI is highly sensitive
to the noise structure of stride intervals (Terrier & Reynard, 2018).More precisely, a lowACI
is associated with statistical anti-persistence, and a high ACI is associated with persistence.
Furthermore, it has been shown that when stride intervals are kept constant, divergence
curves become flat after only two strides (see Fig. 2 in Terrier & Reynard (2018)). Although
additional theoretical work is required to explore the causes of this sensitivity, it can be
assumed that the complex gait dynamic is reflected by wider boundaries in the attractor,
which allows further long-term divergence. In contrast, statistical anti-persistence signals
a less complex gait dynamic, a more restricted attractor, and therefore a lower long-term
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divergence rate. The fact that no divergence is observed if stride intervals are kept constant
further supports this hypothesis.

The objective of the present study was to confirm that ACI can be used to assess
gait complexity from continuous signals without preliminary discretization. In my 2018
study (Terrier & Reynard, 2018), I hybridized acceleration signals with artificial signals to
explore this assumption. Here, in order to apply ACI to real signals, I computed both ACI
and scaling exponents (αs) from a center-of-pressure trajectory recorded in a treadmill
experiment that submitted participants to either visual or auditory cueing. I then explored
the responsiveness of ACI to the cueing conditions, as well as correlations between ACI
and αs. The ability of ACI and αs to predict cueing conditions was also assessed. The study
also had two secondary objectives: to test the appropriateness of different intervals for
computing ACI, and to evaluate short-term LDS’s sensitivity to cueing.

MATERIALS & METHODS
Data
Data from a previous study were re-analyzed (Terrier, 2016). In summary, 36 individuals
walked for 30 min on an instrumented treadmill at their preferred speed. They were
exposed to three different conditions of 10 min duration each: (1) normal walking with no
cueing; (2) walking while synchronizing their gait cadence to an isochronous metronome
(auditory cueing); and (3) walking while targeting visually projected shapes with their feet
(visual cueing).

Ethics statement
The present study is a re-analysis of an anonymized database and is not considered as a
human research needing authorization from an ethic committee. Consent was obtained
for anonymization and reuse. Please refer to the ethic statement in the original publication
for further information (Terrier, 2016).

Data availability
Individual data are available in the Supplemental Information. Raw signals are hosted on
Figshare.

Data processing
For each condition, 1,000 steps (500 gait cycles) were recorded. The force platform
embedded into the treadmill recorded the position (Cartesian coordinates, anteroposterior
[AP] and mediolateral [ML] axes) of the center of pressure at a sampling rate of 500 Hz.
Based on the detection of heel strikes in the anteroposterior (AP) signal, time series of
stride time (ST), stride length (SL) and stride speed (SS) were computed (Roerdink et al.,
2008). Next, the noise structure of stride-to-stride fluctuations were assessed with DFA (for
in-depth descriptions of the DFA algorithm, see Terrier, Turner & Schutz (2005), Terrier
& Dériaz (2012) and Terrier & Dériaz (2013); DFA results—the scaling exponents α—are
shown in Terrier (2016)). DFA was implemented with box sizes ranging from 12 to 125
(i.e., N / 4) using the evenly spaced algorithm (Almurad & Delignières, 2016).
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Figure 1 Divergence curves.Using time-delay embedding, 5-dimensional attractors were reconstructed
from the anteroposterior and mediolateral coordinates of a center-of-pressure trajectory. The logarithmic
divergence from neighbor trajectories (y-axis) was averaged across trajectories and participants (N = 36),
and drawn against normalized time (strides, x-axis). Three curves are shown, one for each experimental
condition.

Full-size DOI: 10.7717/peerj.7417/fig-1

The 500 Hz signal from the AP and ML signals were then low-pass filtered (18 Hz 12th
order Butterworth) and down-sampled to 100 Hz. Raw 500-strides signals were resampled
at a constant number of 50,000 samples, i.e., 100 points per stride.

Computations of nonlinear indexes of gait stability (LDS) and complexity (ACI) were
implemented via the same methods as in previous studies that used Rosenstein’s algorithm
(Rosenstein, Collins & De Luca, 1993; Terrier & Dériaz, 2013; Terrier & Reynard, 2015).
High dimensional attractors were built according to the delay-embedding theorem. The
average mutual information of each signal was used to assess the time delay (Fraser
& Swinney, 1986). A common dimension of five was determined with a global false
nearest neighbor analysis (Kennel, Brown & Abarbanel, 1992). Average divergence of the
attractor was defined as avg(ln[d j(i)]), that is, the logarithm of the ith Euclidian distance
d downstream of the jth pair of nearest neighbors in the attractor, averaged over all
pairs. Time was normalized by ST. Resulting divergence curves are shown in Fig. 1. The
exponential divergence rate, calculated as avg(ln[dj(i)]) / stride, was evaluated with linear
fits across several spans as follows: 0–0.5 stride (LDS), 1–4 strides (ACI [1–4]), 4–7 strides
(ACI [4–7]), and 7–10 strides (ACI [7–10]). These spans not only cover the classical range
usually used for computing the long-range LDS (4–10), but also cover spans closer to initial
separation that have not been studied so far (1–4).

Statistics
Notched boxplots were used to depict the distribution of the individual results (Figs. 2 and
3). Descriptive statistics (means and standard deviations [SD]) were computed for the ACIs
(Table 1). LDS statistics can be found in the Supplemental Information. Figure 4 shows
the effect sizes (Hedges’ g ) of the differences between conditions (i.e., auditory cueing
minus no cueing, and visual cueing minus no cueing), as well as Bonferroni corrected 95%
confidence intervals.
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Figure 2 Descriptive statistics of the local dynamic stability (LDS). The notched boxplots summarize
the distribution of individual results (N = 36) across the three experimental conditions for the anteropos-
terior (A) and the mediolateral (B) signals. The notch extremes correspond to the 95% confidence inter-
vals of the medians. The red+ symbols indicate outliers.

Full-size DOI: 10.7717/peerj.7417/fig-2

Figure 3 Descriptive statistics of the attractor complexity index (ACI). The notched boxplots summa-
rize the distribution of individual results (N = 36) across the three experimental conditions for the three
different ACI spans, and for the anteroposterior (A) and the mediolateral (B) signals. The notch extremes
correspond to the 95% confidence intervals of the medians. The red+ symbols indicate outliers.

Full-size DOI: 10.7717/peerj.7417/fig-3
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Table 1 Descriptive statistics of the attractor complexity index (ACI).Means and standard deviations (SD) of ACI measured in the 36 subjects
under the three experimental conditions. AP, anteroposterior; ML, mediolateral.

N = 36 ACI [1–4] ACI [4–7] ACI [7–10]

ACI× 1,000 AP ML AP ML AP ML

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

No cueing 2.16 (0.34) 1.39 (0.30) 0.87 (0.12) 0.51 (0.19) 0.47 (0.12) 0.36 (0.11)
Auditory cueing 1.78 (0.37) 1.21 (0.26) 0.50 (0.19) 0.20 (0.11) 0.21 (0.13) 0.08 (0.09)
Visual cueing 1.68 (0.52) 1.20 (0.29) 0.43 (0.22) 0.32 (0.19) 0.16 (0.13) 0.16 (0.14)

The correlations among the variables are illustrated in Fig. 5 through scatter plots and
linear fits. Pearson’s correlation coefficients (r) and null hypotheses for a null correlation
coefficient were also assessed.

Least absolute shrinkage and selection operator LASSO (Tibshirani, 1996) and logistic
regressions were used to assess the extents to which DFA, LDS and ACI could differentiate
between the cueing (auditory and visual) and no-cueing conditions. The LASSO algorithm
had the advantage of regularizing the fit for lower overfitting and of selecting the most
important predictors. The dependent binary variable was coded as no-cueing = 1 (36
observations), and cueing (auditory and visual) = 0 (72 observations). Three models
were fitted as follows: Model 1: the independent variables were LDS-AP and LDS-ML (two
predictors); Model 2: the independent variables were ACI [1–4], ACI [4–7], and ACI [7–10]
for both the ML and AP directions (six predictors); andModel 3: the independent variables
were α-ST, α-SL, and α-SS (three predictors). All α values were taken from Terrier (2016).
The LASSO regularization factor was set via 10-fold cross-validation. Receiver operating
characteristic (ROC) curves were used to illustrate the models’ diagnostic abilities. Areas
under the curves (AUCs), along with bootstrapped confidence intervals, were computed as
well (Fig. 6). Sensitivity and specificity were also evaluated considering that the predicted
classwas 1 if the predicted probabilitywas higher than 0.5. Figure 7 presents the standardized
coefficients of the multivariable logistic models, which indicate the relative importance of
each predictor.

RESULTS
Divergence curves (Fig. 1) revealed a clear difference between cueing and no-cueing
conditions, especially for theAP signal. In the no-cueing condition (black curve), divergence
increased steadily, with moderate dampening. In contrast, for both auditory and visual
cueing conditions, dampening occurred more rapidly after four strides.

LDS and ACI are defined as slopes of the divergence curves measured at different
intervals. Given the dampening, it was expected that ACI measured further from the initial
separation would exhibit lower values. This was confirmed, as shown in the Fig. 3 boxplots:
ACI [1–4] was higher andmore variable than either ACI [4–7] or ACI [7–10]. Furthermore,
the LDS, which was computed during the first step, was larger (Fig. 2).

As shown by the effect size plots in Fig. 4, ACIs decreased strongly when individuals
followed auditory or visual cues. The effect was most pronounced for the AP signal, for
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Figure 4 Effect sizes of attractor complexity index (ACI). Standardized effect size (Hedges’ g ) of the dif-
ference between cueing and no-cueing conditions for the anteroposterior (A) and the mediolateral signals
(B). Vertical lines are 95% confidence intervals (Bonferroni corrected). AC, auditory cueing; VC, visual
cueing; NC, no-cueing.

Full-size DOI: 10.7717/peerj.7417/fig-4

Figure 5 Correlations and scatter plots across local dynamic stability (LDS), attractor complexity in-
dex (ACI), and scaling exponent (alpha) measures. Pearson’s correlation coefficients (r) are shown on
the lower left. Bold values indicate significant results for the hypothesis test for r = 0. In the upper right,
scatter plots with the linear fits are shown. AP, anteroposterior; ML, mediolateral; ST, stride time; SL,
stride length; SS, stride speed.

Full-size DOI: 10.7717/peerj.7417/fig-5
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Figure 6 Receiver operating characteristic (ROC) curves. ROC curves for two multivariable logistic
models predicting cueing/no-cueing conditions: (1) scaling exponent (alpha); and (2) attractor complexity
index (ACI). Areas under the curves (AUCs) are written with their confidence intervals.

Full-size DOI: 10.7717/peerj.7417/fig-6

Figure 7 Standardized coefficients of the multivariable logistic models. Two multivariable logistic
models were fitted using: (A) scaling exponents (Alphas); and (B) attractor complexity indexes (ACIs). A
least absolute shrinkage and selection operator (LASSO) was used to regularize fitting. Bars show the value
of the standardized beta coefficient of the logistic regressions for each predictor. AP, anteroposterior; ML,
mediolateral; ST, stride time; SL, stride length; SS, stride speed.

Full-size DOI: 10.7717/peerj.7417/fig-7
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which both auditory and visual cueing had comparable effects. In contrast, a relevant
difference existed between auditory and visual cueing for the ML signals. Regarding LDS,
the only significant effect was between the auditory and no-cueing conditions in the ML
directions (standardized effect size: −0.38; 95% CI [−0.69–−0.04]).

Figure 5 shows the correlations among the LDS, ACI, and scaling exponents.Of particular
note is the high correlation found between ACI [4–7] measured by the AP direction and
the scaling exponents (r = 0.86 with α-ST, and r = 0.86 with α-SL). Other ACI spans
exhibited weaker correlations. ML-LDS was not correlated with other variables, while
AP-LDS was weakly and negatively correlated with scaling exponents (r =−0.20 with
α-ST, and r =−0.30 with α-SS).

Using the ACIs and scaling exponents, multivariable logistic models differentiated very
well between the cueing and no-cueing conditions. The AUCs were close to 1 (α AUC =
0.996, ACI AUC = 0.973; Fig. 6). ACI model’s sensitivity was 94%, and specificity was
89%. In contrast, regarding LDS, the LASSO shrinkage procedure reduced the coefficients
to zero, indicating a non-significant model.

As shown in Fig. 7, The LASSO algorithm selected the most significant predictors,
and no important ones were set to 0. The LDS predictors are not shown, because all the
coefficients were null. The strongest predictors were α-ST and ACIs measured in the AP
direction over long-term spans (4–10).

DISCUSSION
The aim of this study was to further explore whether ACI could be used to assess gait
complexity from continuous signals. The results strongly support the hypothesis that both
DFA and ACI measure the same thing: their values were strongly correlated, they both
differed strongly between the cueing and no-cueing conditions, and they both predicted
cueing conditions with high degrees of sensitivity and specificity. The results also show
that ACI should be measured in the AP direction and between four to seven strides
downstream from the initial separation. In addition, LDS seemed insensitive to cueing,
further supporting its use as a pure gait stability index.

A previous study assessed the effect of auditory cueing on stride-to-stride fluctuations in
a treadmill experiment among 20 young adults (Terrier & Dériaz, 2012). Scaling exponents
of SL and ST were strongly anti-persistent (α < 0.5) under the auditory cueing condition.
Based on the same data, another study investigated the effects of auditory cueing on LDS
and ACI (Terrier & Dériaz, 2013). ACI (still referred to as λ-L at that time) was computed
over a timescale between the 4th and 10th strides. The standardized effect size of the
difference between the no-cueing and auditory cueing conditions was −3.3 for both the
AP and ML signals. In addition, a substantial correlation between the scaling exponents
and ACI was found (canonical correlation: r = 0.83). Another research group also found
similar results in a study that combined a foot-switch and an accelerometer to evaluate
overground walking (Sejdić et al., 2012); they found that both ACIs (λ-LT) and scaling
exponents were substantially lower when the walk was paced with a metronome. The
results of the present study confirm ACI’s sensitivity to auditory cueing (effect size <−2;
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Fig. 4). Overall, ACI seems sensitive to changes of long-range fluctuation patterns induced
by auditory sensorimotor synchronization.

The influence of visual cueing on ACI had not been previously studied. The present
results indicate that both visual and auditory cueing induced similar modifications to ACIs
measured from the AP signal (Figs. 1 and 4). Previous research has also demonstrated
that visual and auditory cueing have similar effects on scaling exponents (Terrier, 2016),
which are incidentally computed from the discretization of the AP signal. In contrast, the
present study found that when using ML measures, visual cueing had less of an effect than
did auditory cueing (Fig. 4). It is worth noting that the visual cueing procedure consisted
of participants aiming their feet toward rectangular visual targets (stepping stones). As a
result, the task required voluntary leg control in both the AP and ML directions. Further
analyses are needed to specifically explore gait lateral control under such circumstances,
for instance by analyzing time series of step widths, which would be computed from the
discretization of the ML signal (see Terrier, 2012).

LDS and ACI are rates of divergence (i.e., slopes) computed from an average logarithmic
divergence curve (Fig. 1). Contrary to a real chaotic attractor, gait divergence curves do
not exhibit a linear region, from which the slope should be computed according to the
Rosenstein algorithm (Rosenstein, Collins & De Luca, 1993; Terrier & Dériaz, 2013). In
fact, as illustrated in Fig. 1, the divergence rate diminishes continuously along the curve.
The determination of range for computing ACI is therefore not straightforward. In their
seminal researches, Dingwell et al. computed the slope between the 4th and 10th strides,
but without a clear justification for this range (Dingwell et al., 2000; Dingwell & Cusumano,
2000). Subsequent studies followed identical spans. However, based on an examination of
the divergence curves, itmay be unnecessary to go that far from initial separation to estimate
a meaningful long-term divergence, especially since this also increases computational cost.
For instance, it was recently shown that an ACI (LDS-L) computed between the 2nd and 6th
strides could discriminate between healthy individuals and patients suffering chronic pain
of lower limbs (Terrier et al., 2017). In addition, the recent modeling study that introduced
ACI observed that the ACI measured between the 2nd and 4th strides was more responsive
to the stride-to-stride noise structure than the ACI measured between the 4th and the 10th
strides, i.e., the originally proposed range (Terrier & Reynard, 2018). Here, the results show
that ACI [4–7] was superior to the other ranges: it exhibited the highest correlation with the
scaling exponents of ST and SL (r = 0.86 and 0.86; Fig. 5), it had the highest contrast with
the no-cueing condition (Fig. 4), and it was selected by the logistic model as the second
highest predictor of cueing conditions (standardized coefficient = 0.95; Fig. 7). In short, it
is very likely that it is not necessary to measure divergence after the 7th stride to assess ACI.

The results support the hypothesis that LDS and ACI measure different aspects of gait
control. Notably, LDS was not able to predict cueing conditions (not significant logistic
model), and most of the correlations between LDS and scaling exponents were weak
(Fig. 5). The only significant correlations concerned the AP-LDS and they were negative,
i.e., went in opposite direction compared to the ACI correlations. ML-LDS has been shown
to be an index of gait instability (Reynard et al., 2014) and fall risk (Bizovska et al., 2018).
This may be due to the importance of lateral stability for maintaining a steady and safe gait
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(Bauby & Kuo, 2000;Gafner et al., 2017). The results of the present study support the use of
ML-LDS for stability assessments given its total independence from complexity measures
(Fig. 5). However, it is unclear whether results obtained from center-of-pressure trajectory
are comparable to those obtained with other methods, such as trunk accelerometry;
incidentally, a large-scale accelerometry study found that AP-LDS could predict future falls
(Van Schooten et al., 2015). The assumption that ML-LDS is better suited for gait stability
assessments thus requires further investigations. Overall, renaming long-term LDS as ACI
is further legitimated given the distinct responsiveness of short- and long-term LDS to
cueing.

The biggest strength of the present study is in its substantial number of strides measured
in a large sample of healthy adults (36), particularly when compared to other recent
studies in the field (Sejdić et al., 2012; Bohnsack-McLagan, Cusumano & Dingwell, 2016;
Roerdink et al., 2019). Evaluating gait complexity requires the analysis a large number of
consecutive strides (Marmelat & Meidinger, 2019). Similarly, reliability results show that
many consecutive strides are required to accurately assess ACI (Reynard & Terrier, 2014).
As far as I know, LDS and ACI have never been computed over a such large number of
consecutive strides (500) so far. Consequently, this study’s findings most likely offer good
generalizability.

The study’s primary limitation is that the analyses of the center-of-pressure trajectories
are restricted to treadmill experiments with few potential applications. The center-of-
pressure approach has the advantage of allowing an easy discretization to compare both
discrete time series and continuous signals (Roerdink et al., 2008), but further investigations
are required to explore ACI potential in real-life applications using inertial sensors such
as accelerometers. Finally, it is important to underline that the use of ACI to assess the
fluctuation structure of gait is purely based on empirical considerations and has no clear
theoretical support for now. Further theoretical studies are required to investigate the
relationship between scaling exponents and ACI.

CONCLUSIONS
This study’s findings support the hypothesis that ACI can provide information about the
stride-to-stride fluctuation structure of an individual’s gait based on continuous signals.
Given that ACI fully harnesses continuous signals, it is not excluded that it requires fewer
consecutive strides than DFA for an accurate measurement, but this requires further
studies. Accordingly, information about gait complexity can be obtained while measuring
a gait with inertial sensors, such as accelerometers (Terrier et al., 2017; Terrier & Reynard,
2018).

ACI could thus assess the degree of motor control applied by walkers on their gait (the
‘‘thigh control’’ hypothesis; see Dingwell & Cusumano (2010) and Roerdink et al. (2019)).
A high ACI would indicate an automated gait, while a lower ACI would be a sign of
greater voluntary attention dedicated to gait control. For example, it has been previously
suggested that a low ACI in patients with lower limb pain is due to enhanced gait control
to avoid putting too much weight on a painful leg (Terrier et al., 2017). Older studies that
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inappropriately used ACI as a gait stability index should be reinterpreted with the ‘‘thigh
control hypothesis’’ taken into account. For example, Dingwell et al.(2000) found that
patients suffering from peripheral neuropathy had lower ACIs, which was interpreted as a
higher gait stability obtained by lowering walking speed. An alternative explanation would
be that diminished sensory feedback required more attention dedicated to gait control.

The use of LDS to characterize gait stability and assess fall risk has gained popularity
over recent years (Mochizuki & Aliberti, 2017; Bizovska et al., 2018; Mehdizadeh, 2018).
Computing ACI in addition to LDS can be made without further computation. Using ACI
and LDS together could be fruitful, as information about gait automaticity and cautiousness
would complement information about gait stability. It is hoped that the results of this study
will help convince researchers to reinstate the use of ACI to further enrich their gait analysis
studies.
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