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We present results from a measurement of double diffraction dissociation in pp collisions at the

Fermilab Tevatron collider.

The production cross section for events with a central pseudorapidity

gap of width An° >3 (overlapping 1 = 0) is found to be 4.43 + 0.02(stat) + 1.18(syst) mb
[3.42 = 0.01(stat) = 1.09(syst) mb] at /s = 1800[630] GeV. Our results are compared with previous
measurements and with predictions based on Regge theory and factorization.

DOI: 10.1103/PhysRevLett.87.141802

Double diffraction (DD) dissociation is the process in
which two colliding hadrons dissociate into clusters of
particles producing events with a central pseudorapidity
gap (region of pseudorapidity, n [1], devoid of particles),
as shown in Fig. 1. This process is similar to single diffrac-
tion (SD) dissociation, in which one of the incident hadrons
dissociates while the other escapes as a leading (highest
momentum) particle. Events with pseudorapidity gaps are
presumed to be due to the exchange across the gap of a
Pomeron [2], which in QCD is a color singlet state with
vacuum quantum numbers.

Previous measurements of DD have been performed
only over limited 7 regions for pp collisions at \/s = 200
and 900 GeV [3], for exclusive and semi-inclusive dis-
sociation channels at lower energies [4,5], e.g., pp —
(prtm )(pa @ )or pp — (pm* 7~ ) + X, and for
v p interactions at the DESY ep collider HERA [6]. The
present measurement, which is based on a study of events
from pp collisions at /s = 1800 and 630 GeV collected
by the Collider Detector at Fermilab (CDF), covers a wide
7 range, allowing comparisons with theoretical predictions
on both 7 dependence and normalization.

To facilitate our discussion, we begin by defining the
relevant variables [7]. We use s and ¢ for the square of the
center of mass energy and 4-momentum transfer between
the two incident hadrons, and ¢ for the fractional momen-
tum loss of the leading hadron in SD. For p p dissociation
into masses M and M», we define the nominal pseudora-
pidity gap as Ay = In(sso/MiM3), where so = 1 GeVZ;
on average, An is approximately equal to the true rapid-
ity gap in an event. A variable defined as s = M M3 /s0
can be thought of as the generalization of s’ = M? for
SD, since in both cases In(s’/s) represents the 5 region
accessible to the dissociation products. For pp SD with
M; =m, = 1GeV, s = M?and &€ = e 27 = ¢'/s.

dN
_ M, dn
P P T'|r11in Mmax
P n M2 n MZ>
M, In's
FIG. 1. Schematic diagram and event topology in pseudora-

pidity space of a double diffractive pp interaction.
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PACS numbers: 13.85.Ni

Diffraction has traditionally been treated theoretically in
the framework of Regge phenomenology [2]. At large A7,
where Pomeron exchange is dominant [7], the SD cross
section is given by the triple-Pomeron amplitude,

d*osp _ [ B0 sfai-1a } 2 s_/>e
didAn _[1677 ¢ IR (0)<S0 >

where «(t) is the Pomeron trajectory, € = a(0) — I,
B(t) the coupling of the Pomeron to the (anti)proton,
and « = g(r)/B(0) the ratio of the triple-Pomeron
to the Pomeron-proton couplings; we use a(t) =
a(0) + a't = 1.104 + 0.25¢ [8], B(0) = 4.1 mb'/2 [8],
and g(r) = 0.69 mb'/2 (= k = 0.17) [9]. The second
factor of Eq. (1) has the form of the Pomeron-proton
total cross section at the subenergy +/s’, while the first
factor can be thought of as a rapidity gap probability
[10]. Measurements on SD have shown that Eq. (1),
which is based on factorization, correctly predicts the
An dependence for An > 3, but fails to predict the
energy dependence of the overall normalization, which at
s = 1800 GeV is found to be suppressed by an order
of magnitude [11,12]. It is generally believed that this
breakdown of Regge factorization is imposed by unitarity
constraints [13]. Phenomenologically, it has been shown
that normalizing the integral of the gap probability [first
factor in Eq. (1)] over all phase space to unity yields the
correct energy dependence [9,12].

Using factorization, the DD differential cross section
may be expressed in terms of the SD and elastic scattering
cross sections as [7]

d30’DD _ dZO'SD dZO'SD / da’el
didMidM;  dtdM} dtdM3 dt
_ kBIOBOP e
167 (M12M22)1+25 ’

where bpp = 2a'In(sso/MiM3). Changing variables
from M; and M, to An and 7, = ln%, where 7). is the
center of the rapidity gap, yields (setting 81 = B2 = )

d*opp [ «xB*0) 2[a(t)—1]Ai| 2 <S_/>E
dtdAndn, _[ 16w ¢ T BTN ) |
3)

This expression is strikingly similar to Eq. (1), except that,
since the gap is now not adjacent to a leading (anti)proton,
M. is treated as an independent variable. The question
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that arises naturally is whether Eq. (3) correctly predicts
the differential DD cross section apart from an overall
normalization factor, as is the case with Eq. (1) for SD.
The answer to this question, and the suppression in overall
normalization relative to that observed in SD, provides
a crucial check on models proposed to account for the
factorization breakdown observed in SD.

The components of CDF [14] relevant to this study
are the central tracking chamber (CTC), the calorime-
ters, and two scintillation beam-beam counter (BBC) ar-
rays. The CTC tracking efficiency varies from ~60% for
pr = 300 MeV to over 95% for py > 400 MeV within
|7| < 1.2, and falls monotonically beyond |n| = 1.2 ap-
proaching zero at || ~ 1.8. The calorimeters have pro-
jective tower geometry and cover the regions |n| < 1.1
(central), 1.1 < |n| < 2.4 (plug), and 2.2 < |n| < 4.2
(forward). The An X A¢ tower dimensions are 0.1 X
15° for the central and 0.1 X 5° for the plug and for-
ward calorimeters. The BBC arrays cover the region 3.2 <
|| < 5.9.

Our data sample consists of 1.0 X 10%[1.6 X 10°]
minimum-bias events at \/s = 1800[630] GeV collected
with a BBC coincidence trigger (between the p and p
sides of CDF) at average instantaneous luminosities of
2.5 X 10%9[9.6 X 107 cm 2sec”!.  The fraction of
overlap events due to multiple interactions in this sample
is estimated to be 20.7[6.5]%. To reject overlap events, we
accept only events with no more than one reconstructed
vertex within =60 cm from the center of the detector.

The method we use to search for a DD signal is
based on the approximately flat dependence of the event
rate on An expected for DD events, as seen by setting
a(r) = 1.104 + 0.25¢ in Eq. (3), compared to the ex-
ponential dependence expected for nondiffractive (ND)
events where rapidity gaps are due to random multiplicity
fluctuations. Thus, in a plot of event rate versus An, the
DD signal will appear as the flattening at large A% of an
exponentially falling distribution. For practical considera-
tions, our analysis is based on experimental gaps defined
as Angxp = Mmax — Mmin, where (nmin)nmax is the n
of the “particle” closest to 7 = 0 in the (anti)proton
direction (see Fig. 1). A particle is a reconstructed track
in the CTC, a calorimeter tower with energy above a
given threshold, or a BBC hit. The (uncorrected) tower
energy thresholds used, chosen to lie comfortably above
noise level, are Er = 0.2 GeV for the central and plug
and E = 1 GeV for the forward calorimeters. At the
calorimeter interfaces near || ~ 0, 1.1, and ~2.4, where
the noise level is higher, |n|-dependent thresholds are
used. The DD signal is extracted by fitting the measured
Angxp distribution with expectations based on a Monte
Carlo (MC) simulation incorporating SD, DD, and ND
contributions. ~ The same thresholds are used in the
MC simulations after dividing the generated particle
energy by an 7-dependent energy calibration coefficient
representing the ratio of true to measured (uncorrected)

141802-4

calorimeter energy [15]. For charged-particle tracks, the
MC generation is followed by a detector simulation.

Figure 2 shows Lego histograms of events versus 7max
and — M, for data and for Monte Carlo generated ND, SD,
and DD events at /s = 1800 GeV. A uniform 7 distribu-
tion was assumed for particles within a calorimeter tower.
The observed structure in the distributions along Nmax(min)
is caused by the variation of the tower energy thresh-
old with |[n|. The bins at |9)maxmin)| = 3.3 contain all
events within the BBC range of 3.2 < | )max(min)| < 5.9.

The diffractive MC generator is a modified version of
that used in Ref. [16], incorporating the differential cross
sections of Egs. (1) and (3). Nondiffractive interactions
are simulated using PYTHIA [17]. The data distribution in
Fig. 2 has a larger fraction of events at large |%max(min)!
than either the ND or the SD Monte Carlo generated dis-
tributions. From the previously measured SD cross sec-
tion [11] and the MC determined fraction of SD events
triggering both BBC arrays, the fraction of SD events in
our 1800[630] GeV data sample is estimated to be 2.7%
[2.4%]. A combination of 97.3% ND and 2.7% SD gener-
ated events cannot account for the data at large |7max(min)l
in Fig. 2. The simulated DD distribution is approximately
flat in |9max(min)| and describes the data well when com-
bined with the ND and SD distributions.

Figure 3 presents the number of events as a function of
Angxp for the 1800 GeV data (points) and for a fit to the
data using a mixture of MC generated DD and “non-DD”
(ND plus SD) contributions (solid histogram). The dashed
histogram shows the non-DD contribution. The agreement

\s=1800 GeV

—_
[eleololele)

norm events

FIG. 2. The number of events as a function of 7m,x and
—Mmin, the n of the track or hit tower closest to » = 0 in
the (anti)proton direction at /s = 1800 GeV: (a) data; (b), (c),
(d) MC generated nondiffractive (ND), single-diffractive (SD),
and double-diffractive (DD) events. The MC distributions are
normalized by a fit to the data described in the text.
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2 Vs=1800 GeV
S Lk « DATA
©10 7
] — DD + non-DD MC
A — T non-DD MC
104
10° 3 -
102 3
10 ¢
T IRSRI IS YT T T NN ST S NS S USSR NS R
0 1 2 3 4 5 6 7
0
AN =Ny Mimin
FIG. 3. The number of events as a function of Angxp =

TNmax — Mmin for data at /s = 1800 GeV (points), for double
diffractive (DD) plus non-DD MC generated events (solid line),
and for only non-DD MC events (dashed line).

between data and MC indicates that, as in SD, the shape
of the differential DD cross section is correctly described
by Regge theory and factorization.

At /s = 1800[630] GeV, the fraction of events with
And, >3 (gap fraction) is (9.08 * 0.03)% [(11.43 *
0.03)%], in which the fraction of background non-DD
events, estimated using the MC simulation, is (23.6 =
0.6)% [(29.7 = 0.6)%]. After background subtraction,
the DD gap fraction becomes (6.94 = 0.06)% [(8.03 =
0.08)%]. The quoted errors are statistical. The amount
of ND background in the region Angxp > 3 depends on
the tower energy calibration coefficients and thereby on
the calorimeter tower energy thresholds used in the MC.
Increasing these thresholds has the effect of decreasing
the multiplicity in the MC generated events, resulting in
larger rapidity gaps and hence larger ND background in
the region of Angxp. The systematic uncertainty in the
background is estimated by raising (lowering) the tower
thresholds in the MC by a factor of 1.25 and refitting the
data. This change in thresholds increases (decreases) the
background by a factor of 1.54 (0.52) [1.56 (0.56)].

The vertex cut employed to reject events due to multiple
interactions also rejects single interaction events with extra
(fake) vertices resulting from track reconstruction ambigu-
ities. By comparing the fraction of events surviving the
vertex cut with the fraction of single interaction events ex-
pected from the BBC cross section and the instantaneous
luminosity, the vertex cut efficiency (fraction of single in-
teraction events retained) is found to be 0.87 = 0.02(syst)
[0.90 = 0.02(syst)]. This efficiency is applied only to the
total number of events, since the gap events have low cen-
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tral multiplicities and therefore are not likely to have fake
vertices.

The measured DD gap fractions, which are based on
our experimental gap definition, Angxp = Nmax — Mmins
depend on the particle E7 thresholds used. The correction
factors needed to transform the measured gap fractions
to gap fractions corresponding to the gap definition
on which Eq. (3) is based, namely An° = In(sso/
M3M3) [In(M; /\[550) < 0,i =1,2], were evaluated
using the DD Monte Carlo simulation and found to be
0.81[0.75] for /s = 1800[630] GeV. Correcting the
measured DD gap fractions by these factors and for the
vertex cut efficiency, and normalizing the results to our
previously measured cross sections of 51.2 = 1.7 mb
[39.9 = 1.2 mb] for events triggering the BBC arrays, we
obtain  2.51 = 0.01(stat) = 0.08(norm) * 0.58(bg) mb
[2.16 * 0.01(stat) = 0.06(norm) = 0.65(bg) mb] for the
DD cross section in the region An® > 3.

The trigger acceptance, evaluated from the DD MC
simulation, is 0.57 * 0.07(syst) [0.63 = 0.07)(syst)].
The uncertainty was estimated by considering variations
in the simulation of small mass diffraction dissocia-
tion. The acceptance corrected DD cross sections for
An® > 3 are 443 = 0.02(stat) = 1.18(syst) mb [3.42 +
0.01(stat) = 1.09(syst) mb].

The corresponding cross sections predicted by Eq. (3),
determined by the DD MC simulation, are 49.4 =*
10.0(syst) mb [27.7 * 5.5(syst) mb], where the uncer-
tainty is due to an assigned 10% systematic error in the
triple-Pomeron coupling [9]. The ratio (discrepancy factor)
of measured to predicted cross sections is Dpp = 0.09 =
0.03 [0.12 = 0.03], where the errors include all systematic
uncertainties. The deviation of D from unity represents
a breakdown of factorization, which is similar to that ob-
served in SD [9,12], where the corresponding discrepancy
factors, calculated from the fit parameters in Ref. [9], are
Dgp = 0.11 = 0.01[0.17 = 0.02].

Our data are compared with the UAS results [3]
in Fig. 4. The comparison is made for cross sections
integrated over ¢ and over all gaps of An > 3, corre-
sponding to & = ¢~27 = 0.05 in SD. The extrapolation
of our data from An® > 3 (gaps overlapping 7 = 0) to
An > 3 (all gaps) was made using Eq. (3) and amounts
to multiplying the An® > 3 cross sections by a factor of
1.43[1.34] at /s = 1800[630] GeV, yielding opp(+/s =
1800[630] GeV, Ay > 3) = 6.32 £ 0.03(stat) £ 1.7
(syst)[4.58 = 0.02(stat) = 1.5(syst)] mb. The UA5 cross
sections were obtained by extrapolating the cross sections
measured over limited large-gap regions to An >3
using a Monte Carlo simulation in which the p and p
dissociated independently with a (1/M?)e’" distribution
[18]. For a meaningful comparison, we corrected the
reported UA5 values by backtracking to the measured
limited A7 regions using a (1/M?)e”" dependence
and then extrapolating to An > 3 using Eq. (3). This
correction increases the cross sections by a factor of
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FIG. 4. The total double diffractive cross section for p(p) +
p — X; + X, versus /s compared with predictions from Regge
theory based on the triple-Pomeron amplitude and factorization
(solid curve) and from the renormalized gap probability model
(dashed curve).

1.43 [1.19] at /s = 200[900] GeV. The solid curve in
Fig. 4 was calculated using Eq. (3). The disagreement
between this curve and the data represents a breakdown
of factorization. The dashed curve is the prediction of
the renormalized gap probability model [10,12], in which
the integral of the gap probability [first factor in Eq. (3)
over all available phase space] is normalized to unity.
The error bands around the curves are due to the 10%
uncertainty in the triple-Pomeron coupling [9]. Within the
quoted uncertainties, the data are in agreement with the
renormalized gap model.

In conclusion, we have measured double diffraction dif-
ferential cross sections in pp collisions at /s = 1800 and
630 GeV and compared our results with data at \/s = 200
and 900 GeV and with predictions based on Regge theory
and factorization. We find a factorization breakdown com-
parable in magnitude to that observed in single diffraction
dissociation. The data are in agreement with the renormal-
ized gap probability model [10].
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