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Resistant Selection of the SmoothingParameter for Smoothing SplinesEva Cantoni and Elvezio RonchettiDepartment of EconometricsUniversity of GenevaCH - 1211 Geneva 4, SwitzerlandAugust 1998Revised December 1999AbstractRobust automatic selection techniques for the smoothing parameter of asmoothing spline are introduced. They are based on a robust predictive errorcriterion and can be viewed as robust versions of Cp and cross-validation.They lead to smoothing splines which are stable and reliable in terms of meansquared error over a large spectrum of model distributions.Key words: nonparametric models; M-type smoothing splines; robust Cp;robust cross-validation; tail length. 1



1 IntroductionSmoothing splines are exible techniques for data modeling and basic building blocksin nonparametric models like Generalized Additive Models. Consider the modelYi = f(xi) + ui; i = 1; : : : ; n; (1)where x1; : : : ; xn are the design points and ui are independent random variableswith expectation E(ui) = 0 and variance V (ui) = �2. We suppose, without loss ofgenerality, that a < x1 < : : : < xn < b. Then a (natural cubic) spline minimizes thepenalized criterion nXi=1 �yi � f(xi)� �2 + 12�Z ba ff 00(t)g2 dt; (2)where � is a positive constant which controls the amount of smoothness. Typicallythe smoothing parameter � is selected automatically to minimize the average predic-tive squared error by means of cross-validation or the Cp statistic. General referencesinclude de Boor (1978), Wahba (1990), H�ardle (1990), Hastie and Tibshirani (1990),and Green and Silverman (1994).Although smoothing splines are local �ts in nature, they can still su�er frompotential robustness problems due to a few outlying points. To avoid these prob-lems, Huber(1979) introduced M-type smoothing splines by replacing the classicalcriterion (2) by nXi=1 ���yi � f(xi)� �+ 12�Z ba ff 00(t)g2 dt; (3)2



where � > 0 and �(t) is a convex function. Although an appropriate choice of �(:)ensures resistance to outlying points, from a robustness point of view the selectionof the smoothing parameter � is crucial and must be based on some robust criterion.This point seems to have been neglected in the literature.[Figure 1 about here.]Figure 1 shows some data with a few outlying points in the upper left corner. Fivescurves are �tted: the true curve which generated the data, a classical spline, a M-type spline based on criterion (3) with a classical criterion for the selection of �, aM-type spline with a selection of � based on robust cross-validation (cf. Section 3),and a classical spline with � chosen by robust cross-validation. It is clear that theclassical �t misses some of the features of the data. The �t based on the robustcriterion (3) but with � chosen by an unmodi�ed cross-validation criterion presentsthe same behavior as the classical spline. Both curves are over-smoothed. This showsthat the robust selection of the smoothing parameter is crucial. Indeed, the best �t isobtained with a M-type spline with the smoothing parameter selected by the robustcriterion. The value of the smoothing parameter obtained automatically by classicalcross-validation is about 200 times larger than that obtained by the robust versionof cross-validation. This a�ects the �t everywhere and not only locally where theoutlying points appear. Finally, note that a classical spline with the robust selectionof the smoothing parameter leads to an unsatisfactory �t which lies somewhere in3



between.The aim of this paper is to introduce robust selection techniques for the smooth-ing parameter by means of robust versions of cross-validation and Cp. They arebased on a robust predictive error criterion which takes into account the predictiveperformance for the majority of the data. Similar ideas have been developed for ro-bust model selection in regression; cf. Ronchetti and Staudte (1994) and Ronchetti,Field, and Blanchard (1997).The paper is organized as follows. In Section 2 we review M-type smoothingsplines. In Section 3 we motivate and develop robust versions of cross-validationand Cp for the automatic selection of the smoothing parameter. Section 4 presentsthe results of a small simulation study which shows the stability and reliability of thenew techniques for a large spectrum of error distributions in model (1). Section 5presents some conclusions.2 M-type Smoothing SplinesThe nonparametric estimation of the regression function f in model (1) by M-type smoothing splines goes back to Huber (1979) and consists of minimizing thepenalized criterion (3) with respect to f over S2[a; b]1. Suppose, for the moment,that � is known.1S2[a; b] is the space of functions that are di�erentiable on [a; b] and have absolutely continuous�rst derivative. 4



The solution of this problem is a compromise between closeness to the data andsmoothness. Whereas in the ordinary spline case closeness to the data is measuredby the sum of squared residuals, with M-type smoothing splines goodness-of-�t isevaluated through a loss function � applied to residuals. The parameter � controlsthis compromise, which is in fact a trade-o� between bias and variance. We willdiscuss the choice of this parameter in the next section.If �(:) is convex, it can be shown that the solution of problem (3) is a cubicspline. We can then write its �nite dimensional form as followsnXi=1 ��(�i) + 12� fTKf ; (4)where �i = yi�f(xi)� , f = (f(x1); : : : ; f(xn)), K = N�T
N�1, 
ij = R N 00i (x)N 00j (x)dxand N is a natural-spline basis matrix. By di�erentiating (4) with respect to f , weobtain the set of estimating equations� (r) + �K f̂ = 0; (5)where  (t) = @@t�(t) and  (r) is the vector whose components are the function  applied to each component of r = (r1; : : : ; rn), and ri = yi�f̂i� . The choice of abounded function  will ensure robustness with respect to outliers in the residuals; (t) = t leads to ordinary splines.A �rst order Taylor expansion  (r) '  (�)� 1�M (̂f�f), whereM = diag( 0(r1); : : : ; 0(rn)), leads to the one-step representation of the solution of (5)f̂ ' �I + ��E 0K��1�f + �E 0 (�)� ; (6)5



where the matrix M is replaced by its expectation. This representation can beviewed as the result of applying an ordinary spline to the unobservable pseudodata~y = f + �E 0 (�). This shows that the resistance of the M-type smoothing spline isachieved by down-weighting the standardized errors �i by the nonlinear (bounded)transformation �E 0 (�i). Moreover, it allows one to derive limit theorems and ratesof convergence for the estimator f̂ , cf. Cox (1983).While in classical smoothing splines � is concentrated out in the calculation of thesmoothing parameter, in our proposal � needs to be estimated. A robust estimatorof � is crucial in order to guarantee the global robustness of the procedure. Basedon our experience, we recommend to use Huber's Proposal 2 (see Huber, 1981 andHampel, Ronchetti, Rousseeuw, and Stahel, 1986) which consists of solving (5) andnXi=1 �(ri) = 0 (7)simultaneously, where �(t) = t (t) � �(t) � �, and � is a constant which ensuresFisher consistency for the estimation of �. More details of the computation of robustsplines can be found in Utreras (1981).In this development, care has only been taken of robustness with respect toresiduals. If we suspect leverage points in the x's (design points), resistance can beachieved by introducing weights. In this case (5) is replaced by �W (r)+�K f̂ = 0,where W is a diagonal matrix of weights depending on the x's. The solution of thisnew problem becomes a weighted spline. 6



3 Robust Selection of Smoothing ParameterAssume model (1) with symmetric errors and a M-type smoothing spline de�nedby (5), where  is an odd function. Although the parameter � can be chosen byeye, it is more reasonable to have an automatic selection procedure. To constructthis rule we can proceed by de�ning a robust criterion for prediction. Minimizingan estimate of this criterion will give us the optimal value of �. For example, inthe case of classical procedures, cross-validation and Mallows's Cp are estimators ofthe predictive squared error. From a robustness point of view, a robust criterion forprediction should not penalize values of � which lead to good �ts for the majorityof the data except perhaps at a few points.Therefore, as in Ronchetti and Staudte (1994) we de�ne the rescaled weightedpredictive squared error byWPSE(�) = 1�2E " nXi=1 bw2i�f̂ (xi)� f(xi)�2# ; (8)where bwi =  (yi�f̂(xi)� )=(yi�f̂(xi)� ) =  (ri)=ri. (8) has the attractive form of aweighted mean squared error but other general loss functions could be used. Theweights ŵi in (8) have the e�ect of reducing possible large contributions of (f̂(xi)�f(xi))2 at a few outlying points. This in turn does not penalize robust �ts whichperform well for the majority of the data except at a few outlying points.If we de�ne the weighted sum of squared residuals byWSR(�) = nXi=1 bw2i r2i = nXi=1  2(ri); (9)7



and let �i = f̂(xi)�f(xi)� , it is easy to see thatWPSE(�) = E(WSR(�)) � nXi=1 E(bw2i �2i ) + 2 nXi=1 E(bw2i �i�i): (10)This suggests the following robust version of Mallows's CpRCp(�) = WSR(�) � nXi=1 E(bw2i �2i ) + 2 nXi=1 E(bw2i �i�i): (11)The term �Pni=1 E(bw2i �2i ) + 2Pni=1E( bw2i �i�i) is a correction term in order tomake WSR(�) unbiased for WPSE(�).For the computation of criterion (11) we need an expression for the correctionterm �Pni=1 E(bw2i �2i ) + 2Pni=1 E(bw2i �i�i). Its value is derived in Appendix A andallows us to write the �nal formula of RCp(�)RCp(�) = nXi=1  2(ri)� nE 2 + 2E( 2 0)E 0 Tr(S)�1�2 �E 02 � E� 2"2 �� Tr �(S � I)ffT (S � I)T��1E2 0 �E( 2 02)�E � 4"2 �� Tr(SST ): (12)One can check that putting  (t) = t in the above expression yields the usualde�nition of Mallows's Cp.Equation (12) depends on �, which is in general unknown. As suggested in theliterature about classical splines (see Hastie and Tibshirani, 1990), it is importantto take an external estimation that does relatively little smoothing. We use a robustestimation of � obtained as a solution ofnXi=1 �� ~ri�pa2i + b2i + 1� = 0;8



where ~ri = (xi+1 � xi)=(xi+1 � xi�1)yi�1 + (xi � xi�1)=(xi+1 � xi�1)yi+1 � yi =aiyi�1 + biyi+1 � yi, i = 2; : : : ; n� 1, and �(:) is de�ned as in (7). The residuals ~riare obtained by taking design points xi�1; xi; xi+1, joining the two outer observationsby a straight line and then computing the di�erence between the straight line andthe middle observation. The estimator proposed is a robust version of the estimatorof Gasser, Sroka, and Jennen-Steinmetz (1986). A di�erent robust version of thisestimator is discussed by Cunningham, Eubank, and Hsing (1991).Another robust criterion for choosing the optimal value of � can be obtained byexploiting the pseudodata structure we discussed in Section 2. We outline here aheuristic argument for its derivation. By applying ordinary cross-validation to thepseudodata, we have RCV (�) = 1n nXi=1 (~yi � ~̂y�ii )2= 1n nXi=1  ~yi � ~̂yi1� Sii!2 ; (13)where ~yi = f(xi) + �E 0 (�i), ~̂y�ii is the �t obtained leaving out the ith data point,and Sii is the ith diagonal element of the matrix S = (I+ ��E 0K)�1. But ~̂yi = f̂(xi),and by estimating f(xi) by f̂ (xi), we �nally obtainRCV (�) = 1n �2(E 0)2 nXi=1  2(ri)(1� Sii)2 : (14)As in the case of RCp(�), putting  (t) = t in (14) recovers the ordinary cross-validation. A similar proposal was suggested by Leung, Marriott, and Wu (1993)for robust kernel M-smoothers. 9



4 Simulation StudyFor our simulation study we consider the modelYi = sin(2�(1 � xi)2) + 0:5 � �i; i = 1; : : : ; n: (15)The function  is the Huber function de�ned by (t) =  c(t) = 8>><>>: t j t j� cc sgn(t) j t j> c: (16)We perform a comparison of the classical procedure with the robust procedureproposed in this paper. We choose c = 1:345 in (16) which ensures 95% e�ciencywith respect to the normal model in a location problem. The scale parameter in therobust procedure is estimated by means of Huber's Proposal 2 given by (7), where�(t) = t ~c(t) � �~c(t) � �, @@t�~c =  ~c, and ~c = 1:95. This last value corresponds to80% e�ciency for the scale parameter with respect to the normal model.Errors are generated from several symmetric distributions and from an asymmet-ric one. These distributions are described in Hoaglin, Mosteller, and Tukey (1983),Chapter 10, and classi�ed with respect to their tail index de�ned by� (F ) = F�1(0:99) � F�1(0:5)F�1(0:75) � F�1(0:5).��1(0:99) ���1(0:5)��1(0:75) ���1(0:5) ; (17)where � is the cumulative distribution function of a standard normal distribution.The asymmetric distribution is 0:9N (0; 1) + 0:1N (30; 1). The spread parametersof the distributions considered are �xed by quartile matching with respect to the10



quartiles of the standard normal distribution. The expectations appearing in thede�nition of RCp(�) (formula (12)) are calibrated at the normal model.[Table 1 about here.]A list of the distributions used is given in Table 1, together with their correspond-ing tail index. This design covers a large spectrum of possible error distributionsfrom very short-tailed to very long-tailed distributions. For each distribution, wesimulated 100 replications of a sample of size n = 100.For each sample and for each technique (classical and robust), we compute theperformance criterion de�ned byMSE = 1n nXi=1 �f̂ (xi) � f(xi)�2; (18)where the smoothing parameter is obtained by means of classical and robust cross-validation and classical and robust Cp.All our simulations were performed with the software S-PLUS, MathSoft, Seat-tle. The implementation is simple and reasonably fast when exploiting the built-infunctions for the treatment of ordinary splines.[Figure 2 about here.]Let us now look at the results. Figure 2 shows the boxplots of the log10 MSE ratiobetween the classical procedure and the robust one when the errors are generatedfrom each distribution considered in Table 1. The smoothing parameter is chosen11



by cross-validation. It appears that the robust procedure is essentially equivalent tothe classical one for short-tailed and normal-like distributions, but it has a smallerMSE by a factor of 5 under distributions with moderate tails and by a factor of 10under more extreme cases. The higher variability of the ratio in the extreme cases isdue to the MSE of the classical procedure (cf. Figure 3) and to the high variabilityof its smoothing parameter (not shown).The same simulations were carried out using Cp and RCp for determining thebest value of �. [Figure 3 about here.]Figure 3 shows that in the robust case, the MSE is stable across the underlyingdistributions and shows a moderate variability even when the error distribution isheavy-tailed. On the other hand, the MSE of the classical spline increases with� (F ). In fact, when the underlying distribution has a large tail index, Cp(�) is anincreasing function and the minimum is attained at � = 0. This particular behaviorreects once more the non-resistance of the procedure.5 ConclusionsWe have shown that the selection of the smoothing parameter of a smoothing splinemust be based on a robust prediction criterion if we want to obtain a stable qualityof the �t over a large spectrum of error distributions. This seems to be even more im-12



portant in nonparametric regression where one does not want to specify a model forthe errors. As is the case for its classical counterpart, the robust technique proposedin this paper will depend on the assumption of an underlying smooth target signal.Based on our experience, the robust procedure performs better than its classicalcounterpart in the presence of mild non-smoothness of the underlying signal. How-ever, it cannot cope with situations where the signal shows clear discontinuities. Inthese situations other techniques like wavelets would probably be more appropriate.Open research directions include the generalizations of these techniques in morecomplex models like the Generalized Additive Models where smoothing splines playan important role as building blocks of the estimation procedure. Some related workin this area includes Gu (1992a) and Gu (1992b).AcknowledgmentsThe authors would like to thank the Editor, the Associate Editor, and two Refereesfor their constructive comments.
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A AppendixA.1 Derivation of the Correction Term in the Formula ofRCp(�)We derive the value of the constant C = �Pni=1 E(bw2i �2i ) + 2Pni=1 E(bw2i �i�i). Con-sider �rst the Taylor expansion of the weights ŵi =  (�i � �i)=(�i � �i) at �i = 0:bwi = wi � w0i�i + w00i2 �2i � 16(w000i )��3i ; (19)where wi =  (�i)=�i and (w000i )� = w000i (��) with �� 2 [�; �̂ = r]. Squaring (19), takinginto account terms up to order �2i and grouping by order of �i, we haveC = �nE(w2i �2i ) + 2 nXi=1 E ��w2i �i + wiw0i�2i � �i�+� nXi=1 E ��w02i �2i + wiw00i �2i + 4wiw0i�i� �2i � : (20)Moreover, by E(w2i �2i ) = E 2 and (6) we havenXi=1 E ��w2i �i + wiw0i�2i � �i� = E( 2 0)E 0 Tr(S); (21)and nXi=1 E ��w02i �2i + wiw00i �2i + 4wiw0i�i� �2i � =1�2 �E 02 � E � 2�2 �� Tr �(S � I)ffT (S � I)T�+1E2 0 �E( 2 02)� E� 4�2 ��Tr(SST ): (22)Putting all this together we �nd the �nal formula (12) for RCp(�).14
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Figure 1: Example from model (1).
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Distribution � (F )Uniform 0.57Normal 1Logistic 1.21Double Exponential 1.63Contaminated Normal (0.05,10) 3.42Contaminated Normal (0.10,10) 4.94Slash 7.85Cauchy 9.22Table 1: Distributions used in the simulation study and their corresponding tailindex.
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