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Abstract

Robust automatic selection techniques for the smoothing parameter of a
smoothing spline are introduced. They are based on a robust predictive error
criterion and can be viewed as robust versions of €/, and cross-validation.
They lead to smoothing splines which are stable and reliable in terms of mean

squared error over a large spectrum of model distributions.
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1 Introduction

Smoothing splines are flexible techniques for data modeling and basic building blocks

in nonparametric models like Generalized Additive Models. Consider the model
Yi=fle) 4w, 1=1,....,n, (1)

where xy,...,z, are the design points and wu; are independent random variables
with expectation E(u;) = 0 and variance V(u;) = o*. We suppose, without loss of
generality, that « < 1 < ... < x, < b. Then a (natural cubic) spline minimizes the

penalized criterion

iIGK%&QY+éyLQﬂwa, o)

where A is a positive constant which controls the amount of smoothness. Typically
the smoothing parameter A is selected automatically to minimize the average predic-
tive squared error by means of cross-validation or the C, statistic. General references
include de Boor (1978), Wahba (1990), Héardle (1990), Hastie and Tibshirani (1990),
and Green and Silverman (1994).

Although smoothing splines are local fits in nature, they can still suffer from
potential robustness problems due to a few outlying points. To avoid these prob-
lems, Huber(1979) introduced M-type smoothing splines by replacing the classical

criterion (2) by

1ap( )+ y/{ﬂ W, 3)
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where A > 0 and p(t) is a convex function. Although an appropriate choice of p(.)
ensures resistance to outlying points, from a robustness point of view the selection
of the smoothing parameter X is crucial and must be based on some robust criterion.

This point seems to have been neglected in the literature.

[Figure 1 about here.]

Figure 1 shows some data with a few outlying points in the upper left corner. Fives
curves are fitted: the true curve which generated the data, a classical spline, a M-
type spline based on criterion (3) with a classical criterion for the selection of A, a
M-type spline with a selection of A based on robust cross-validation (cf. Section 3),
and a classical spline with A chosen by robust cross-validation. It is clear that the
classical fit misses some of the features of the data. The fit based on the robust
criterion (3) but with A chosen by an unmodified cross-validation criterion presents
the same behavior as the classical spline. Both curves are over-smoothed. This shows
that the robust selection of the smoothing parameter is crucial. Indeed, the best fit is
obtained with a M-type spline with the smoothing parameter selected by the robust
criterion. The value of the smoothing parameter obtained automatically by classical
cross-validation is about 200 times larger than that obtained by the robust version
of cross-validation. This affects the fit everywhere and not only locally where the
outlying points appear. Finally, note that a classical spline with the robust selection

of the smoothing parameter leads to an unsatisfactory fit which lies somewhere in



between.

The aim of this paper is to introduce robust selection techniques for the smooth-
ing parameter by means of robust versions of cross-validation and ). They are
based on a robust predictive error criterion which takes into account the predictive
performance for the majority of the data. Similar ideas have been developed for ro-
bust model selection in regression; cf. Ronchetti and Staudte (1994) and Ronchetti,
Field, and Blanchard (1997).

The paper is organized as follows. In Section 2 we review M-type smoothing
splines. In Section 3 we motivate and develop robust versions of cross-validation
and C, for the automatic selection of the smoothing parameter. Section 4 presents
the results of a small simulation study which shows the stability and reliability of the
new techniques for a large spectrum of error distributions in model (1). Section 5

presents some conclusions.

2 M-type Smoothing Splines

The nonparametric estimation of the regression function f in model (1) by M-
type smoothing splines goes back to Huber (1979) and consists of minimizing the
penalized criterion (3) with respect to f over S;[a,b]'. Suppose, for the moment,

that o is known.

1 S5[a, b] is the space of functions that are differentiable on [a, b] and have absolutely continuous

first derivative.



The solution of this problem is a compromise between closeness to the data and
smoothness. Whereas in the ordinary spline case closeness to the data is measured
by the sum of squared residuals, with M-type smoothing splines goodness-of-fit is
evaluated through a loss function p applied to residuals. The parameter A controls
this compromise, which is in fact a trade-off between bias and variance. We will
discuss the choice of this parameter in the next section.

If p(.) is convex, it can be shown that the solution of problem (3) is a cubic

spline. We can then write its finite dimensional form as follows

S ople) + %)\ £7 It (4)

=1

where ¢; = yi—{rM7 f=(f(x1),...,f(z,), K =NTQN"! Q; = J N/(2)N!(x)dx
and N is a natural-spline basis matrix. By differentiating (4) with respect to f, we

obtain the set of estimating equations
—(r) + AKT = 0, (5)

where (1) = %p(t) and ¢ (r) is the vector whose components are the function ¢
applied to each component of r = (rq,...,7,), and r; = y’;—f’ The choice of a
bounded function ¢ will ensure robustness with respect to outliers in the residuals;
Y (t) =t leads to ordinary splines.

A first order Taylor expansion ¢ (r) ~ ;/)(e)—%M(fA'—f), where M = diag(¢'(r1),. ..

Y'(ry)), leads to the one-step representation of the solution of (5)

u Ao -1 o
B (14 EWK) <f+ sz)(e)) , (6)



where the matrix M is replaced by its expectation. This representation can be
viewed as the result of applying an ordinary spline to the unobservable pseudodata
y=1f+ ELW¢(€) This shows that the resistance of the M-type smoothing spline is

achieved by down-weighting the standardized errors ¢; by the nonlinear (bounded)

Z_2p(€;). Moreover, it allows one to derive limit theorems and rates

transformation Vol

of convergence for the estimator f, cf. Cox (1983).

While in classical smoothing splines o is concentrated out in the calculation of the
smoothing parameter, in our proposal o needs to be estimated. A robust estimator
of o is crucial in order to guarantee the global robustness of the procedure. Based
on our experience, we recommend to use Huber’s Proposal 2 (see Huber, 1981 and

Hampel, Ronchetti, Rousseeuw, and Stahel, 1986) which consists of solving (5) and

> x(r) =0 (7)

simultaneously, where x(?) = t¢(t) — p(t) — 3, and [ is a constant which ensures
Fisher consistency for the estimation of o. More details of the computation of robust
splines can be found in Utreras (1981).

In this development, care has only been taken of robustness with respect to
residuals. If we suspect leverage points in the a’s (design points), resistance can be
achieved by introducing weights. In this case (5) is replaced by —W(r)+ AKT =0,
where W is a diagonal matrix of weights depending on the 2’s. The solution of this

new problem becomes a weighted spline.



3 Robust Selection of Smoothing Parameter

Assume model (1) with symmetric errors and a M-type smoothing spline defined
by (5), where ¢ is an odd function. Although the parameter A can be chosen by
eye, it is more reasonable to have an automatic selection procedure. To construct
this rule we can proceed by defining a robust criterion for prediction. Minimizing
an estimate of this criterion will give us the optimal value of A. For example, in
the case of classical procedures, cross-validation and Mallows’s €, are estimators of
the predictive squared error. From a robustness point of view, a robust criterion for
prediction should not penalize values of A which lead to good fits for the majority
of the data except perhaps at a few points.

Therefore, as in Ronchetti and Staudte (1994) we define the rescaled weighted

predictive squared error by

WPSEQ) = &

g

> a@t(fle) - f <“‘f>>2] , (3)

where w; = ;/)(yi_i(wi))/(yi_f(xi)) = (r;)/r;. (8) has the attractive form of a

[

weighted mean squared error but other general loss functions could be used. The
weights ; in (8) have the effect of reducing possible large contributions of (f(:z;z) —
f(x;))* at a few outlying points. This in turn does not penalize robust fits which
perform well for the majority of the data except at a few outlying points.

If we define the weighted sum of squared residuals by

WSR(\) = Z 022 = Z 2 (ri), (9)



and let §; = 025D it is casy to see that
WPSE(\) = E(WSR() ZE (W2e?) +22E 02e:6;) (10)
This suggests the following robust version of Mallows’s C,
RC,(\) = WSR() ZE (@7 e?) +22Ew65 (11)

The term — Y " | E(@Fe) + 25 " | E(w?€;6;) is a correction term in order to
make WS R(A) unbiased for WPSE(X).

For the computation of criterion (11) we need an expression for the correction
term — > " E(w?e}) + 23 0 E(w?e;d;). Its value is derived in Appendix A and

allows us to write the final formula of RC,())

E(?))

B Tr(S)—

=D V) = nky? 42—

% {E;b; —E <¢2>] Tr((S—Dfffs—-n') -
Ei¢, [E(¢2¢’2) —E (f—j)} Tr(SST). (12)

One can check that putting 1(¢) = ¢ in the above expression yields the usual
definition of Mallows’s C),.

Equation (12) depends on o, which is in general unknown. As suggested in the
literature about classical splines (see Hastie and Tibshirani, 1990), it is important
to take an external estimation that does relatively little smoothing. We use a robust

estimation of ¢ obtained as a solution of

n

T
=0
;X<Uwa?—l—b? + 1>

8




where 7; = (@41 — @) /(Tig1 — Tic)yio1 + (20 — 2ic)/(Tig1 — Tim1)Yigr — yi =
aiYi—1 + biyir1 — i, 0 = 2,...,n— 1, and x(.) is defined as in (7). The residuals 7;
are obtained by taking design points x;_1, x;, x;11, joining the two outer observations
by a straight line and then computing the difference between the straight line and
the middle observation. The estimator proposed is a robust version of the estimator
of Gasser, Sroka, and Jennen-Steinmetz (1986). A different robust version of this
estimator is discussed by Cunningham, Eubank, and Hsing (1991).

Another robust criterion for choosing the optimal value of A can be obtained by
exploiting the pseudodata structure we discussed in Section 2. We outline here a
heuristic argument for its derivation. By applying ordinary cross-validation to the

pseudodata, we have

1 - . A1
RCV(\) = 52(%—% )?
=1

N 2
19—y
= —E 1
n =1 (1_SH> 7 ( 3)

where §; = f(x;) + ELW;ZJ(Q), ﬁ;z is the fit obtained leaving out the ith data point,

and S;; is the ith diagonal element of the matrix S = ( + EA;'J, K)™'. But y, = f(:z;z),

and by estimating f(x;) by f(:z;z), we finally obtain

ROV(A) = %(EU;/)Q ; (1¢j(g3)2_ (14)

As in the case of RC,(A), putting ¢(¢) = ¢ in (14) recovers the ordinary cross-
validation. A similar proposal was suggested by Leung, Marriott, and Wu (1993)

for robust kernel M-smoothers.



4 Simulation Study
For our simulation study we consider the model
Y; =sin(2r(1 —2:)*) +0.5%¢;, 1 =1,... ,n. (15)

The function v is the Huber function defined by

t | t]<e
P(t) = e(t) = (16)

esgn(t) |t]|>ec
We perform a comparison of the classical procedure with the robust procedure
proposed in this paper. We choose ¢ = 1.345 in (16) which ensures 95% efficiency
with respect to the normal model in a location problem. The scale parameter in the
robust procedure is estimated by means of Huber’s Proposal 2 given by (7), where
X(t) = ta(t) — palt) — 3, %pg = 9z, and ¢ = 1.95. This last value corresponds to

80% efficiency for the scale parameter with respect to the normal model.

Errors are generated from several symmetric distributions and from an asymmet-

ric one. These distributions are described in Hoaglin, Mosteller, and Tukey (1983),

Chapter 10, and classified with respect to their tail index defined by

CF(0.99) — FT1(0.5) /871(0.99) — ®71(0.5)
) = Fi0.m) = F—1(0.5)/<1>—1(0.75) —91(0.5)’ (17)

where @ is the cumulative distribution function of a standard normal distribution.
The asymmetric distribution is 0.9A(0,1) 4+ 0.1A(30,1). The spread parameters

of the distributions considered are fixed by quartile matching with respect to the

10



quartiles of the standard normal distribution. The expectations appearing in the

definition of RC,()A) (formula (12)) are calibrated at the normal model.
[Table 1 about here.]

A list of the distributions used is given in Table 1, together with their correspond-
ing tail index. This design covers a large spectrum of possible error distributions
from very short-tailed to very long-tailed distributions. For each distribution, we
simulated 100 replications of a sample of size n = 100.

For each sample and for each technique (classical and robust), we compute the

performance criterion defined by

Lo~/ 2
MSE = — Z (fes) = fe)) s (18)
where the smoothing parameter is obtained by means of classical and robust cross-
validation and classical and robust C),.

All our simulations were performed with the software S-PLUS, MathSoft, Seat-

tle. The implementation is simple and reasonably fast when exploiting the built-in

functions for the treatment of ordinary splines.

[Figure 2 about here.]

Let us now look at the results. Figure 2 shows the boxplots of the log,, M SE ratio
between the classical procedure and the robust one when the errors are generated
from each distribution considered in Table 1. The smoothing parameter is chosen

11



by cross-validation. It appears that the robust procedure is essentially equivalent to
the classical one for short-tailed and normal-like distributions, but it has a smaller
MSFE by a factor of 5 under distributions with moderate tails and by a factor of 10
under more extreme cases. The higher variability of the ratio in the extreme cases is
due to the M SE of the classical procedure (cf. Figure 3) and to the high variability
of its smoothing parameter (not shown).

The same simulations were carried out using (', and RC, for determining the

best value of A.

[Figure 3 about here.]

Figure 3 shows that in the robust case, the MSFE is stable across the underlying
distributions and shows a moderate variability even when the error distribution is
heavy-tailed. On the other hand, the MSE of the classical spline increases with
7(F). In fact, when the underlying distribution has a large tail index, C,(A) is an
increasing function and the minimum is attained at A = 0. This particular behavior

reflects once more the non-resistance of the procedure.

5 Conclusions

We have shown that the selection of the smoothing parameter of a smoothing spline
must be based on a robust prediction criterion if we want to obtain a stable quality

of the fit over a large spectrum of error distributions. This seems to be even more im-

12



portant in nonparametric regression where one does not want to specify a model for
the errors. As is the case for its classical counterpart, the robust technique proposed
in this paper will depend on the assumption of an underlying smooth target signal.
Based on our experience, the robust procedure performs better than its classical
counterpart in the presence of mild non-smoothness of the underlying signal. How-
ever, it cannot cope with situations where the signal shows clear discontinuities. In
these situations other techniques like wavelets would probably be more appropriate.

Open research directions include the generalizations of these techniques in more
complex models like the Generalized Additive Models where smoothing splines play
an important role as building blocks of the estimation procedure. Some related work

in this area includes Gu (1992a) and Gu (1992b).
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A Appendix

A.1 Derivation of the Correction Term in the Formula of
RCy(N)

We derive the value of the constant ¢ = EZ L E(w?e?) + 2 EZ VE(w ?¢;0;). Con-

sider first the Taylor expansion of the weights w; = ¢(¢; — §;)/(e; — &;) at §; = 0:

"
: 1
By = w; — Wb + —10% — —(w!")* 8, (19)
2 6
where w; = ¢(¢;)/¢; and (w!")* = w!(€*) with € € [¢,€ = r]. Squaring (19), taking

into account terms up to order 67 and grouping by order of §;, we have
C:—nEwe —I—QZE wq—l—wzw%?)(s]—l—
— Z E w'262 + w;w! 6 + 4wiw;q> 522] ) (20)

Moreover, by E(w?e?) = Ey? and (6) we have

z”: b w € + w;w; 62> 5] = E@) Tr(9), (21)

and

Z E [(w’262 + wiw! e + 4wiw26i> 522} -

=1

% [EW - b (KH Tr((S =D (S = D7) +
E% [E(¢2¢’2) ~E (f)} Tr(SST). (22)

Putting all this together we find the final formula (12) for RC,(X).

14
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Figure 1: Example from model (1).
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Distribution T(F)

Uniform 0.57

Normal 1

Logistic 1.21
Double Exponential 1.63

Contaminated Normal (0.05,10) | 3.42
Contaminated Normal (0.10,10) | 4.94
Slash 7.85

Cauchy 9.22

Table 1: Distributions used in the simulation study and their corresponding tail
index.
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