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Abstract
Background: Time series data are increasingly available in health care, especially for the purpose
of disease surveillance. The analysis of such data has long used periodic regression models to detect
outbreaks and estimate epidemic burdens. However, implementation of the method may be
difficult due to lack of statistical expertise. No dedicated tool is available to perform and guide
analyses.

Results: We developed an online computer application allowing analysis of epidemiologic time
series. The system is available online at http://www.u707.jussieu.fr/periodic_regression/. The data
is assumed to consist of a periodic baseline level and irregularly occurring epidemics. The program
allows estimating the periodic baseline level and associated upper forecast limit. The latter defines
a threshold for epidemic detection. The burden of an epidemic is defined as the cumulated signal
in excess of the baseline estimate. The user is guided through the necessary choices for analysis.
We illustrate the usage of the online epidemic analysis tool with two examples: the retrospective
detection and quantification of excess pneumonia and influenza (P&I) mortality, and the prospective
surveillance of gastrointestinal disease (diarrhoea).

Conclusion: The online application allows easy detection of special events in an epidemiologic
time series and quantification of excess mortality/morbidity as a change from baseline. It should be
a valuable tool for field and public health practitioners.

Background
The generalization of electronic data capture in health
care has made time series data increasingly available for
public health surveillance [1]. How to best analyse these
data will likely be case dependent and require expert sta-

tistical advice. There is however a well agreed "good anal-
ysis practice" in particular classes of surveillance
problems, so that less expert users may consider undertak-
ing the analysis themselves. This requires making software
available online and providing guidance on its use: this is
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exactly what was done with online tools for DNA
sequences alignment (BLAST, FASTA), allowing biologists
to successfully use these methods on their own data.

Here, we focus on epidemic detection and quantification
from time series data. There is a widely used approach for
this purpose originating from Serfling's work on influenza
[2]. He proposed calculating excess P&I mortality due to
seasonal influenza using deviations from a periodic
regression model that captured the annual seasonality of
the data. It was first necessary to (subjectively) select years
without excess death to train the baseline regression
model. The approach has then been extended to address
several issues: refining regression equations and extracting
baseline model information without subjective filtering
of the data [3-5]. Algorithms for prospective outbreak
detection were also proposed in this framework [6-8].

In this paper, we describe an online tool allowing users to
detect unexpected events, eg outbreaks, in a seasonal epi-
demiologic time series. Two applications are detailed to
illustrate how results are obtained.

Implementation
Two types of analysis exist for surveillance time series: ret-
rospective analysis, to locate and quantify the impact of
past epidemics, and prospective analysis, for real time
detection of epidemics. In all cases, four steps are neces-
sary. First, a subset of data ("training data") is selected
from the whole time series to estimate the baseline level.
Second, an algorithm or a rule is used to selectively dis-
card epidemic events from the training data, so that the
baseline level is estimated from truly non epidemic data.
Third, a periodic regression model is fitted to the training
data. Finally, the model is used to define an epidemic
threshold and/or estimate excess morbidity/mortality. We
review how these issues have been addressed in the litera-
ture, using the detection of influenza epidemics in time
series as an illustration. Table 1 summarizes all inputs
required from the user, and describes the default options
retained in our system.

Training period
Even if long time series are available, it is not generally the
case that all data should be included in the training period
[9]. Indeed, changes in case reporting and demographics
will likely be present over long time periods, and this may
affect how well the baseline model fits the data. Modelling
of influenza mortality typically uses the five preceding
years in baseline determination [2,10,11]. Including more
past seasons improves the seasonal components esti-
mates, while limiting the quantity of data allows captur-
ing recent trends. In our system, we propose using the
whole dataset in the model fitting for retrospective analy-
sis (as done, for example, in [12,13]), and to limit to a
past few years in the case of prospective detection of epi-
demics (as, for example, in [7,8]). In the latter case, the
user is invited to specify the length of the training data in
an input field. He can define it in number of years or in
number of observations. In either case, the minimal time
span accepted is one year.

Purge of the training period
In order to model the non-epidemic baseline level, the
model must be fitted on non-epidemic data. For seasonal
diseases such as influenza in the Northern hemisphere, it
is difficult to find long epidemic-free periods since epi-
demics typically occur every year. There are two choices to
deal with the presence of epidemics in the training data:
excluding the corresponding data from the series, or
explicitly modelling the epidemics.

In the first choice, epidemics must first be identified. Sev-
eral rules have been suggested in this respect. Viboud et al.
excluded the 25% highest values from the training period
[13]. Costagliola et al. removed all data above a given
threshold (more than three influenza-like illness cases per
sentinel general practitioner) [14]. Olson et al. excluded
the months with "reported increased respiratory disease
activity or a major mortality event" [4]. Others deleted
entire periods: e.g. December to April [12], or September
to mid-April [15].

Table 1: Required inputs from the user for baseline model fitting

Parameter Possible values Default value

Length of the training period Number of years, number of observations Retrospective : All data
Prospective : Half dataset

Purge of the training period Data above selected percentile, above cut-off 
value, or in user-defined periods

Above the 15% highest percentile

Regression equation Linear, quadratic or cubic terms. Annual, semi-
annual or quarterly periodicity

Automated model selection

Upper forecast limit (UFL) Percentile between 50% and 100% 95%
Minimum duration above UFL defining an 
unexpected change

Number of observations 14 days/2 weeks/1 month
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The second choice, less common, requires explicit model-
ling of the epidemic periods during the training data. In
this case, an epidemic indicator must be included as a cov-
ariable in the model. For influenza epidemic, one may
choose the number of laboratory influenza A and B iso-
lates [5,16]. However, the availability of an independent
epidemic indicator is uncommon in practice.

In summary, data points may be excluded either because
they exceed a (possibly data determined) threshold,
because they were collected during a period known to be
epidemic prone (for example winters), or because the user
wishes to exclude the points. These three options are avail-
able in our system.

Regression equation
A variety of formulations may be used for the regression
equation, including linear regression [14], linear regres-
sion on the log-transformed series [6], Poisson regression
[17], and Poisson regression allowing for over-dispersion
[18]. Linear regression is suitable when working with large
frequencies or incidences, while working with the log
transformed series or applying Poisson regression is
advised when observations are small in magnitude.

In the regression equation, the trend is generally modelled
using a linear term [2,4,11], or a second degree polyno-
mial [3,7,19]. In our application we propose these two
trends plus the third degree polynomial, to offer more
flexibility. When the model is used for prospective detec-
tion of epidemics, it is often safer to use only a linear trend
to avoid inconsistencies when the model will be extrapo-
lated into the future. Thus, the application restrains the
user's choice to the models that have linear trend. For ret-
rospective analysis, where extrapolation is not an issue,
more complex trends may improve the fit of the baseline
model. So, the application allows the user to choose
among all the proposed models with linear, quadratic and
cubic trends. For the seasonal component, a simple yet
effective description may be obtained using sine and
cosine terms with period one year [2]. Refined models are
found in the literature, often with terms of period 6
months [14], sometimes 3 months [3], and, rarely,
smaller [11]. In our application, we chose to propose the
most widely used periodicities, ie 12, 6 and 3 months. As
a result, all regression equations for the observed value
Y(t) are special cases of the following model: Y(t) = α0 +
α1 t + α2 t2 + α3 t3 + γ1 cos(2πt/n) + δ1 sin(2πt/n) +γ2
cos(4πt/n) + δ2 sin(4πt/n) + γ3 cos(8πt/n) + δ3 sin(8πt/n)
+ ε(t). For prospective modelling, α2 and α3 are always 0.
Model coefficients are estimated by least squares regres-
sion.

In our system, automatic selection of the best fitting
model is made possible by a selection algorithm (see Fig-

ure 1, which illustrates the process on an example detailed
in the result section). It relies on ANOVA comparison (sig-
nificance level : 0.05) to select between nested models,
and on Akaike's Criterion to select between non-nested
models [20]. The algorithm starts comparing, by ANOVA,
the simplest model M11 (Y(t) = α0 + α1 t + γ1 cos(2πt/n) +
δ1 sin(2πt/n) + ε(t)) with the two models in which it is
nested: M12 (Y(t) = α0 + α1 t + γ1 cos(2πt/n) + δ1 sin(2πt/
n) + γ2 cos(4πt/n) + δ2 sin(4πt/n) + ε(t)) and M21 (Y(t) =
α0 + α1 t + α2 t2 + γ1 cos(2πt/n) + δ1 sin(2πt/n) + ε(t)). If
none of the alternative models (M12 and M21) is signifi-
cantly better than the initial one (M11), the algorithm
keeps M11 and stops. If one of the two alternative models
is better than the initial one, the algorithm keeps it and
goes on. If the two alternative models are better than the
initial one, the algorithm keeps the one with the lowest
AIC and goes on. The process is repeated until finding the
"best overall" model over the nine proposed models.

Alert notification
As the baseline model is fitted to the observations, the var-
iation around the model fit may be estimated by the
standard deviation of the residuals (difference between
observed and model value). It is therefore possible to cal-
culate forecast intervals for future observations, assuming
that the baseline model holds in the future. Thresholds
signalling an unexpected change are typically obtained by
taking an upper percentile for the prediction distribution
(assumed to be normal), typically the upper 95th percen-

Model selection algorithmFigure 1
Model selection algorithm. Graphical output of the 
model selection algorithm. Data and models are described in 
Table 2. Models selected through the algorithm pathway are 
in italics. The model finally kept is in bold italics.

p=0.706 p<0.001

p=0.014 p<0.001 p=0.195 p<0.001

p<0.001 p=0.001 p<0.001 p=0.159

p<0.001 p<0.001

M11 (AIC=4340.20)

M12 (AIC=4343.49) M21 (AIC=4225.27)

M13 (AIC=4338.74) M22 (AIC=4225.93) M31 (AIC=4188.19)

M23 (AIC=4215.60) M32 (AIC=4188.42)

M33 (AIC=4174.64)



BMC Medical Informatics and Decision Making 2007, 7:29 http://www.biomedcentral.com/1472-6947/7/29

Page 4 of 9
(page number not for citation purposes)

tile [14], or upper 90th percentile [11]. A rule is then used
to define when epidemic alerts are produced: for example
as soon as an observation exceeds the threshold [7], or if
a series of observations fall above the threshold, for exam-
ple during 2 weeks [13], or 1 month [21].

Results
We developed a web-based application allowing users to
construct periodic regression models for analysis of epide-
miologic time series. It is written in HTML, PHP, and Java-
Script for the user interface, and interfaced with the R
system (2.5.0) for statistical computations [22]. The appli-
cation is available online [23]. The R codes are freely avail-
able in Additional file 1 and on the application web site.

Users may input their own dataset (eg incidences, mortal-
ities, medication sales) as a plain text file (ie ASCII file)
containing the time series as a single column, i.e. the val-
ues are separated by a carriage return. Observations must
be aggregated by day, week or month. The user will be
invited to specify this time step in a scrolling list. Missing
values are allowed, provided they are coded by "NA". It is
assumed that the dataset will contain at least one year of
data. Several example datasets from France are included in
the system: incidence rates per 100,000 population for
influenza-like illness and diarrhoea for 1991–2001, and
P&I mortality series for 1968–1999 [24]. They are availa-
ble as daily, weekly or monthly time series.

Retrospective analysis of influenza epidemics
The first example uses monthly P&I mortality in France
over the period 1968–1999. The user wishes to retrospec-
tively identify the epidemic periods and quantify the
cumulated mortality in these epidemics. Use of the system
begins with selecting the corresponding dataset on the
main page.

After data input, the user is taken through three successive
webpages to specify the baseline model parameters (Table
1). The first page allows choosing the type of analysis.
Here, the user selected to conduct retrospective analysis,
therefore the whole time series is included in the training
period.

The second page allows excluding observations from the
training period (Figure 2). Three options for excluding
data are proposed. The user may select the upper percen-
tile between 0% and 60% above which all data are
excluded. Excluding all observations greater than a speci-
fied cut-off value is the second option. In the third option,
the user provides a file of the same length as the training
period flagging the observations as "keep" (value 0) or
"exclude" (value 1). To guide the percentile or cut-off
selection, histograms and cumulated density plot are pro-
vided. In Figure 2, the user selected to exclude all observa-
tions greater than the 15% upper percentile.

The third page allows the user to select the mathematical
form for the baseline model. This page is dependent on
the type of analysis, prospective or retrospective. For the
retrospective analysis, nine models are available, combin-
ing the three choices for the trend and periodicity (see
Table 2). Using the automated selection feature, the
model with cubic trend and annual periodicity is chosen
for baseline P&I mortality. Figure 1 presents the detail of
the selection algorithm.

In the third page, the user defines the epidemic threshold
by selecting a percentile of the prediction distribution,
between 50% and 100%. Here, default value (95%) was
selected. Increasing this value will lead to less observa-
tions outside the thresholds and more specific detection.

Table 2: Retrospective evaluation of the excess P&I mortality in France for 1968–1999, using nine periodic regression models. The 
components included in each model are indicated by a*. #Model options: exclusion of the top 15% percentile from the training period; 
forecast interval: 95%

Trend Periodicity

Model# t t2 T3 1 year 6 months 3 months AIC Cumulated excess 
mortality over the whole period

M11 * * 4 340 88 442
M12 * * * 4 343 87 260
M13 * * * * 4 339 88 266
M21 * * * 4 225 85 083
M22 * * * * 4 226 83 245
M23 * * * * * 4 216 83 505
M31 * * * * 4 188 85 175
M32 * * * * * 4 188 83 337
M33 * * * * * * 4 175 82 465
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On the contrary, decreasing the threshold will increase
sensitivity and timeliness of the alerts.

To avoid making alerts for isolated data points, a mini-
mum duration above the threshold may be required.
Default values are 14 days (2 weeks) for daily and weekly
data, and 1 month if the data are monthly-aggregated. The
beginning of the epidemic is the first date the observa-
tions exceed the threshold, and the end the first time
observations return below the threshold. Here, the default
value (1 month) was selected.

The application provides plots of the time series, the base-
line level, the threshold and the detected epidemics (Fig-
ure 3a). A first table is output with the expected baseline
and threshold values at each date in the dataset. A second
table shows the dates and excess mortality for all detected
epidemics (summarized in Table 2). The excess mortality

is defined as the cumulated difference between observa-
tions and baseline over the entire epidemic period. Excess
percentages are also provided, calculated as the observed
size divided by the sum of expected values throughout
each epidemic.

Prospective surveillance of gastrointestinal diseases
In this analysis, the user wishes to define epidemic thresh-
olds for prospective monitoring of diarrhoea. We briefly
summarize the differences between this analysis and the
retrospective case. As above, a time series must be first
provided (here we selected diarrhoea with weekly obser-
vations). After choosing "prospective analysis", the user
must select the duration of the training period, typically a
few years. We select five years for the training data. Data
exclusion before fitting the baseline model is carried out
as in the first example. The regression equation is limited
to a linear trend, but all three periodicities are available.

Purge of the training periodFigure 2
Purge of the training period. Interactive selection of the method used to purge the training period of past epidemic out-
breaks. Option 1 (delete the highest percentile of observations) was chosen. The percentile was set to 15% in a scrolling list 
ranging 0% to 60%.
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Graphical output of the softwareFigure 3
Graphical output of the software. (a) Retrospective detection of influenza epidemics from monthly P&I mortality in 
France, 1968–1999. (b) Prospective analysis of gastrointestinal disease (2002–2007) and model-based extrapolation for 2008 
with epidemic threshold. In all graphs: observed (grey), model (black), upper forecast limit (dashed).
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Here, the automated selection leads to a model with a lin-
ear trend, and annual, semi-annual and quarterly periodic
terms.

Alert thresholds are defined by selecting a percentile of the
prediction distribution, between 50% and 100%. A typi-
cal choice is 95%. The application then generates a plot
showing the whole data, the baseline and threshold val-
ues over the training period and model extrapolation for
the following year (Figure 3b). An output table contains
the expected baseline and threshold values for each date
in the dataset and the following year.

Discussion
We have presented an online application for analysing
epidemiologic surveillance time series. The program can
be used to extract the dates and size of past epidemics, or
to establish epidemic thresholds for prospective surveil-
lance. We intend this application to be a practical tool for
field and public-health practitioners. We designed a user-
friendly interface that provides default-values options and
interactive graphical feedback. Since all the parameters
can be changed by the user, the program provides an easy
way to check how the analysis changes with different
choices.

The epidemiologic time series most suitable for analysis
are those where the monitored signal consists of a sea-
sonal background with outbreaks. This is clearly the case
for influenza surveillance data. Influenza-like syndromes
occur at all times of the year, although typically more in
the winter than the summer, even when no influenza viral
strain is circulating. Viral testing is considered the gold
standard method to provide the real number of influenza-
affected patients but since this test is not part of routine
diagnoses, morbidity and mortality in a population can
not be specifically attributed to influenza. One way to esti-
mate the impact of influenza in a population from surveil-
lance data including surveillance of influenza-like
syndromes, pneumonia or influenza associated admis-
sions, or cause-specific mortality, is to use statistical meth-
ods such as periodic regression. This hypothesis also
holds for other infectious diseases, for example gastroen-
teritis where syndromes under surveillance (diarrhoea,
fever) can be due to various pathogens which are more
active in some seasons than others. Alternative detection
methods exist that do not rely on the hypothesis of a sea-
sonal baseline. For instance, Hidden Markov Models
assume that the observations are generated from a finite
mixture of distributions governed by an underlying
Markov chain [25,26]. These methods have shown good
aptitude in distinguishing epidemic and non epidemic
phases in seasonal and non-seasonal time series. Another
alternative is control-chart methods, which may be cali-

brated on data from recent months rather from previous
years [27].

A minimum of one year historical data is required to fit
the models discussed here, but we note that more reliable
predictions require at least two or three year historical
data to calculate the baseline level. Other methods have
been developed for disease surveillance with limited his-
torical data sets [27,28]. We also recommend, for the pro-
spective setting, to make sure that the one year long
predictions begin outside the epidemic season, in order to
highlight the incoming epidemic in its entirety. While first
and second degree polynomial trends are frequently used
in periodic regression models in the literature [2,3], we
have added the option of a third degree polynomial to
offer more flexibility, only for the retrospective analysis.
For the seasonal components, we included the most
widely used periodicities, ie 12, 6 and 3 months. We did
not propose higher degree polynomials or seasonal terms
because higher order terms may be more prone to result
in unidentifiable models or other problems with model
fit.

The application is based on a general periodic regression
model that contains most previous published models as
special cases. Yet, we did not implement some specialised
models encountered in the literature. For example, some
authors modelled the secular trend with a smoothing
spline fitted on summer months [12,29]. Others included
autoregressive terms in their models [5,30,31]. Additional
variables may also be incorporated into the regression
model, for example day of the week, holiday, and post-
holiday effects [7], sex and age [32], or temperature and
humidity [5]. A few authors replaced the epidemic values
in the training period by expected non-epidemic values,
rather than deleting them [10,33]. We have not included
these options in the application for reasons of parsimony.
One of the most important features of an online tool such
as the one presented here is that it should allow inferences
to be made by front-line practitioners who often do not
have detailed knowledge of statistical software. We have
attempted to balance the desire to provide a user-friendly
interface while at the same time offering sufficient options
to cover the needs of most surveillance datasets.

Conclusion
The online application presented here should be a valua-
ble tool for public health surveillance. Its user-friendly
interface facilitates fairly complex modelling, offering
public health practitioners the possibility to rapidly inves-
tigate the burden of epidemics, or to utilise the same sta-
tistical approaches to set epidemic thresholds for
prospective surveillance.
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Availability and requirements
• Project name: Periodic regression models

• Project home page: http://www.u707.jussieu.fr/
periodic_regression/

• Operating systems: Web based application

• Programming language: R, PHP, Javascript

• Other requirements: Javascript supported and activated
on the web browser (tested with Mozilla 5.0 and Internet
Explorer 7.0).
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