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diffuse B-cell lymphoma; DLC, deleted in liver cancer; EPLIN, epithelial protein lost in neoplasm; ERK, extracellular regulated
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ZONAB, (ZO-1)–associated nucleic acid binding protein.

The establishment and maintenance of epithelial cell-cell
junctions is crucially important to regulate adhesion, apico-
basal polarity and motility of epithelial cells, and ultimately
controls the architecture and physiology of epithelial organs.
Junctions are supported, shaped and regulated by
cytoskeletal filaments, whose dynamic organization and
contractility are finely tuned by GTPases of the Rho family,
primarily RhoA, Rac1 and Cdc42. Recent research has
identified new molecular mechanisms underlying the cross-
talk between these GTPases and epithelial junctions. Here we
briefly summarize the current knowledge about the
organization, molecular evolution and cytoskeletal anchoring
of cell-cell junctions, and we comment on the most recent
advances in the characterization of the interactions between
Rho GTPases and junctional proteins, and their consequences
with regards to junction assembly and regulation of cell
behavior in vertebrate model systems. The concept of
“zonular signalosome” is proposed, which highlights the close
functional relationship between proteins of zonular junctions
(zonulae occludentes and adhaerentes) and the control of
cytoskeletal organization and signaling through Rho GTPases,
transcription factors, and their effectors.

Introduction

Cell-cell junctions provide epithelial tissues with mechanical
and functional integrity, by playing an essential role in cell-cell
adhesion and formation of barriers between distinct body com-
partments. One key feature of junctions is their association with
highly ordered cytoskeletal networks of actin, microtubules and
intermediate filaments. Since Rho GTPases are major regulators
of the polymerization, organization and mechanics of the cyto-
skeleton, the interplay between Rho GTPase activity and the
organization of junctions is of fundamental importance in epithe-
lial morphogenesis and physiology. In this review we attempt to
address the complexity of this regulation, going from basic con-
cepts about the organization, evolution and cytoskeletal anchor-
ing of cell-cell junctions, to the most recent exciting findings
about the role of GEFs and GAPs at junctions, and their mecha-
nisms of regulation.

The Organization and Molecular Evolution of the
Epithelial Apical Junctional Complex

Epithelial tissues are at the boundary between the organism
and the external environment, and form the first barrier to the
entry of pathogens and toxins.1,2 In addition, they separate inter-
nal body compartments, thus allowing the maintenance of
homeostatic specialized functions, which depend on polarized
secretion and absorption, and maintenance of gradients across
epithelia.

To form efficient barriers, epithelial tissues must display spe-
cific architectural characteristics, such as being formed by at least
one continuous layer of closely packed cells, and show a
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topological asymmetry, paralleled in the structural and functional
apico-basal polarity of their individual units. Furthermore, they
must ensure the maintenance of a strong adhesion between cells,
to prevent their mechanical separation when tensile forces are
applied. Finally, they must establish and maintain continuous
seals, to prevent the free diffusion of solutes, molecules and
pathogens through the paracellular space. The adhesion and
barrier functions in vertebrate epithelia are carried out by spe-
cialized intercellular junctions: tight junction (TJ), zonula
adhaerens (ZA), and desmosomes. Tight junctions (TJ, also
called zonulae occludentes) (Fig. 1) provide the paracellular per-
meability seal, through 4-pass membrane proteins such as
occludin and claudins, which are anchored to the actin cyto-
skeleton via scaffolding complexes of PDZ-containing pro-
teins.3,4 ZAs can be viewed as a highly specialized and
topologically unique form of adherens junction (AJ): a contin-
uous, linear circumferential belt (zonula) around the apex of
polarized epithelial cells. AJ are present both in non-epithelial
cells (e.g., intercalated disks of cardiac myocites, sites of adhe-
sion between fibroblasts, neurons and others), and epithelial
and endothelial cells, and are characterized by the presence of
a member of the classical cadherin family (E-cadherin for epi-
thelia, VE-cadherin for endothelia, and so on).5,6 The epithe-
lial ZA is located immediately below the TJ, and contains not
only E-cadherin, a-catenin, b-catenin, and p120ctn, but also
PLEKHA7 and afadin, whereas lateral contacts with spot-like

adhesions (puncta adhaerentia) lack PLEKHA7 and afadin.7

Transmembrane Ig-like adhesion molecules such as JAM and
nectin are also present both in TJ and AJ, where they perform
adhesion and signaling functions. Desmosomes are essential to
provide tissue integrity and strength to the cell-cell junctions,
and they contain, as transmembrane proteins, desmocollin and
desmoglein, which belong to the cadherin superfamily of pro-
teins. Although there is evidence for a cross-talk between des-
mosomes and Rho GTPases,8-11 here we will focus primarily
on Rho GTPase regulation at the apical, zonular junctional
complex of vertebrates (ZA and TJ). The structure, function,
and molecular composition of vertebrate cell-cell junctions
have been described in several excellent reviews.3,4,6,12,13

Morphological and genomic analyses show that during evolu-
tion from lower Eukaryotes to Metazoans, and from invertebrates
to vertebrates, junctions have undergone dramatic changes with
regards to architectural organization, molecular composition, regu-
latory mechanisms, and, in some cases, the functions of individual
molecular constituents (Fig. 1). For example, the barrier function
in vertebrates is fulfilled by TJ, which are located immediately api-
cal to the cadherin-based zonula adhaerens (Fig. 1). In contrast,
the barrier function in invertebrates is carried out by septate junc-
tions, which are located basally, with respect to cadherin-based
adherens junctions.14 Ultrastructurally, vertebrate TJ are character-
ized by the intimate apposition of claudins on adjoining plasma
membranes, which appear as a network of fibrils upon freeze

Figure 1. Evolution of junctional architecture, and the molecular complexity of vertebrate junctions. Simplified schemes showing the organization of the
apical junctional complexes of polarized epithelial cells in insects (as an example of invertebrates) and vertebrate organisms. The canonical functions
(polarity, barrier, adhesion) of each type of junction (SAC D sub-apical complex/marginal zone, zonula adhaerens (ZA), septate junction, tight junction,
desmosome) are indicated on the left of the respective junction. E-cadherin based junctions along the lateral contacts of epithelial cells (puncta adhaer-
entia) have a composition similar to that of punctate junctions between filopodial tips, e.g they contain a classical cadherin, and catenins (p120ctn, b-cat-
enin, a-catenin), but not PLEKHA7 and afadin. On the right, a non-exhaustive list of proteins associated with vertebrate junctions is shown. Proteins,
which have so far been identified exclusively in vertebrate organisms, are highlighted in bold character.
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fracture. Insect septate junctions show extracellular electron-dense
“septa” bridging the opposite plasma membranes, rather than clau-
din-based fibrils.14 In vertebrates, TJ correspond topologically to
the physical “fence” separating apical from lateral plasma mem-
brane domains, which maintains apico-basal polarity (Fig. 1).
Instead, the fence in invertebrates is not the septate junction, but
the subapical complex (SAC)/marginal zone, which is apical to the
ZA, and morphologically distinct from TJ (Fig. 1). Evolutionarily
conserved polarity complexes confer either apical identity (Par3-
Par6-apKC and Crumbs-Pals1-PatJ complexes), or basolateral
identity (Scribble-Dlg-Lgl complex) to the plasma membrane, and
are segregated at the level of the TJ in vertebrates and the subapical
complex (SAC)/marginal zone in invertebrates (Fig. 1).3,14,15 At
the molecular level, the number of isoforms and/or family mem-
bers for most junctional proteins is considerably larger in verte-
brates, providing for increased molecular complexity and
redundancy. For example, although cadherin and catenins are
shared between insect and vertebrate AJ, invertebrates do not
express many classical cadherin isoforms, and lack desmosomal
cadherins, desmosomes and intermediate filaments.15,16 Strikingly,
epithelial cells of lower Eukaryotes, such as the amoeba Dyctioste-
lium discoideum, achieve adhesion and polarity in the absence of
any cadherin, whereas in metazoans E-cadherin is critically
required for cell-adhesion, embryonic development, and the gener-
ation of apico-basal polarity.17,18 Claudins, the transmembrane
proteins responsible for the barrier of TJ to ions, are highly diver-
gent in their sequence from invertebrates to vertebrates, and the
family includes over 20 members in vertebrates, whereas only 5
and 3 members, respectively, have been described so far in C. ele-
gans or Drosophila.14 A ZO-1 homolog has been identified in Dro-
sophila, but the ZO family in vertebrates comprises also
ZO-2 and ZO-3, which have partially redundant functions with
ZO-1.19,20 Knock-out of the components of the Par3-Par6-aPKC
complex in invertebrates has dramatic consequences on epithelial
and neuronal morphogenesis, but can have only tissue-specific and
more subtle effects in mice.21 The lateral polarity protein Lgl acts
as a canonical tumor suppressor protein in Drosophila, but not in
mice.22 Over 70 GEFs and 60 GAPs have been described in Ver-
tebrates, whereas only about 10 Rho GEFs and GAPs combined
have so far been identified in Drosophila.23 In summary, although
invertebrate model systems are useful to establish some general
principles, vertebrate cells and organisms are required to under-
stand the remarkably more complex organization of vertebrate
junctions and their signaling and regulatory mechanisms. In this
review, we focus on vertebrate model systems.

Assembly and Anchoring of the Cytoskeleton at
Epithelial Apical Junctional Complexes

To understand the relationships between Rho GTPase regula-
tion and assembly of vertebrate junctions, it is necessary to exam-
ine how the actomyosin and microtubule cytoskeletons, which
are major targets of Rho GTPase effectors, functionally and
structurally interact with AJ and TJ.

The circumferential, junction-associated bundle of actin
microfilaments and nonmuscle myosin in the brush border of
polarized epithelial cells was described three decades ago.24 The
actomyosin cytoskeleton regulates the distribution, stability, clus-
tering and endocytosis of cadherin at the cell membrane,25 and
the thickness of the bundle is related to the greater mechanical
tensions applied to the ZA, compared to weaker forces applied to
lateral AJ complexes.26 Contraction of the ZA-associated actomy-
osin ring causes apical constriction, which is crucial to support
morphogenetic changes in developing embryos.27 In addition,
the contractile apical actomyosin ring is critical for the regulation
of TJ integrity and barrier function.28

How actin and myosin are structurally connected to junctions,
and how they are regulated in their polymerization, assembly and
activities by junctional molecules are crucial questions. Several
actin-binding proteins are localized at AJ and TJ (Fig. 2).12,29

E-cadherin, although not directly binding to actin, acts as a scaf-
fold for cytoskeleton-associated protein complexes, and plays an
instructive role by marking the sites of de novo actin filament
polymerization.30,31 E-cadherin directly interacts with cortactin,
which in the presence of N-WASP can recruit Arp2/3 and its
activator WAVE2 to the ZA, thus promoting actin nucleation at
junctions.30,32 This process also requires a-actinin.33 The
WAVE2-Arp2/3 complex is activated by Rac1, and is necessary
for junctional integrity and contractile tension at the ZA.34 At
the ZA, N-WASP is also involved in a putative “non-canonical,"
Arp2/3-independent pathway, to stabilize newly formed actin fil-
aments, and promote their incorporation into apical rings.35

Figure 2. Proteins implicated in the organization and junctional anchor-
ing of cytoskeletal filaments. For each type of cytoskeletal filament (actin
and microtubules) the proteins shown are involved either in their poly-
merization, bundling, and anchoring to junctions, based on biochemical
and/or cell biological evidence.
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This is an example of a new role played at zonular junctions by a
protein, beyond its classical activity. Nucleation of actin filaments
by the Arp2/3 complex gives rise to an extensive array of
branched actin filaments, but mature apical junctions are charac-
terized by the presence of bundled actin filaments. Several actin-
binding proteins can influence microfilament organization and
dynamics at the ZA. Formins, for example, have been implicated
in the formation of junctional actin bundles in some cell
types.36,37 a-catenin, which has an evolutionarily conserved role
in organizing the cortical actin cytoskeleton,17,38,39 suppresses
actin polymerization by the Arp2/3 complex, while stabilizing
and bundling actin filaments. The affinities of interaction of
monomeric a-catenin with actin and vinculin are dramatically
increased when tensile forces are applied to junctions, through a
molecular stretching mechanism, indicating that monomeric
a-catenin bound to b-catenin can directly link F-actin to the
cadherin complex in vivo,40,41 although this is not observed in
vitro.42 EPLIN (Epithelial Protein Lost In Neoplasm) is recruited
to junctions by a-catenin, and it inhibits actin depolymerization,
and crosslinks actin filaments.43,44 Afadin associates with the
cytoplasmic domain of nectins and JAM,45 is recruited to the ZA
through an interaction with a-catenin, and directly interacts with
actin filaments.46 Afadin is a major organizer of the apical junc-
tional complex, and is essential for the development of apico-
basal polarity in vertebrate embryogenesis.47,48 Finally, myosin II
is an essential component of the contractile bundle associated
with the ZA, and its positioning is regulated by Shroom, and
actin-binding protein which interacts with the Rho effector
kinase ROCK,49 and is regulated by the FERM domain protein
Lulu.50 Recent studies have addressed the role of different actin
and myosin isoforms at epithelial junctions. Depletion studies
show that both b- and g- actin isoforms, though differently dis-
tributed, are essential for TJ barrier function and junction assem-
bly, whereas b-actin is selectively involved in the establishment
of apico-basal cell polarity.51 Concerning myosins, myosin IIA is
the most important in regulating cell morphology and cell-cell
adhesion, whereas myosin IIB has more subtle roles in actin fila-
ment dynamics.52,53

Besides AJ, TJ are also structurally and functionally linked to
the actin cytoskeleton (Fig. 2). Actin has multiple potential part-
ners at TJ, including the ZO proteins (ZO-1, ZO-2, ZO-3),
occludin and cingulin (Fig. 2).54-56 Cells depleted of ZO-1 show
defects in the barrier to larger solutes, and changes in the junction-
associated actin, indicating that ZO-1 forms a stabilizing link
between the barrier and the junctional actomyosin.57,58 In con-
trast, depletion of ZO-2 does not lead to either actin reorganiza-
tion or altered permeability to larger molecules,59 whereas
depletion of both ZO-1 and ZO-2 leads to a dramatic expansion
of the actomyosin belt associated with AJ.60 Since ZO-1 interacts
directly or indirectly with several actin-binding proteins, includ-
ing a-catenin and cortactin,19,61,62 and with GEFs for Rac1 and
RhoA,63,64 some of the phenotypes of these knock-down models
may be dependent on these interactions, although this remains to
be determined. Cingulin is so far the only TJ protein for which an
actin-bundling activity has been described in vitro.56 However,
cingulin depletion or overexpression in MDCK cells does not

result in dramatic changes in actin organization or barrier func-
tion,65-67 suggesting functional redundancies with other proteins.

Microtubules show a polarized distribution in epithelial cells,
and associate with the apical junctional complex.68 Recent stud-
ies show that E-cadherin is connected to the minus ends of
microtubules through a complex containing p120ctn, PLE-
KHA7, paracingulin and nezha (CAMSAP3)69,70 (Fig. 2).
Microtubule anchoring confers stability to apical junctions,69,71

and also indirectly stabilizes TJ barrier function, by enhancing
the accumulation of E-cadherin and associated proteins at the
ZA.72 Exogenous PLEKHA7 can accumulate at lateral contacts
puncta adhaerentia, probably through its interaction with
p120ctn, but this does not result in increased recruitment of
microtubule minus ends, suggesting that microtubule anchoring
requires a specialized molecular environment that occurs only at
the ZA.72 Interaction of microtubule plus ends with cadherin-
based junctions involves dynein, which interacts with b-cate-
nin,73 APC,74 and the spectroplakin ACF7.75 Recent experi-
ments indicate that a planar apical network of microtubules is
anchored to TJ through cingulin, and this interaction is regulated
by adenosine monophosphate protein kinase (AMPK)-mediated
phosphorylation of cingulin 76 (Fig. 2). There is an important
cross-talk between the actin and microtubule cytoskeletons. For
example, the formin mDia is involved both in linear actin poly-
merization and microtubule stabilization,77 and microtubules
can both sequester Rho GEFs that control actin organiza-
tion,78,79 and associate with the centralspindlin complex, which
plays roles not only in mitotic spindle organization and cytokine-
sis, but also in the control of Rho and Rac activity at junc-
tions.29,80 In summary, cell-cell junctions are critical sites of
anchoring and organization of cytoskeletal filaments, through
specific adaptor and regulatory molecules.

The Involvement of RhoA, Rac1 and Cdc42 in
Epithelial Junction Assembly and Regulation

The cytoskeleton is essential for the establishment, mainte-
nance, remodeling and disassembly of apical junctions, and this
process is regulated by Rho family GTPases and their effectors.
The first studies addressed the role of Rho GTPases in junction
regulation by exogenously expressing either the Rho inhibitor C3
transferase, or dominant negative (DN) or constitutively active
(CA) mutants of Rho GTPases. This lead to loss of barrier and
fence functions of TJ, inhibition or perturbation of junction
assembly, and was in some cases associated with disrupted locali-
zation of junctional proteins, depending on expression levels of
mutant proteins.81-85 The observation that DN and CA mutants
have similar effects is consistent with the notion that catalytic
cycling between active and inactive states, rather than a perma-
nent “on” or “off” state, is essential for the proper functioning of
Rho GTPases. Thus, mutant phenotypes may similarly affect the
Rho GTPases functional output, by binding to and sequestering
targets and effectors. In summary, correct junction assembly and
function requires a finely tuned balance in the activities of RhoA,
Rac1 and Cdc42.
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Rac1 and Cdc42 are essential in the initial formation of junc-
tions, following engagement of adhesion receptors at primordial
junctions,31,86,87 by promoting the polymerization of actin fila-
ments in lamellipodia and filopodia, through activation of the
Arp2/3 complex by WAVE2.29 A second crucial role of Cdc42 is
to promote the formation of the Par6-aPKC-Par3 complex, thus
allowing the establishment of apico-basal polarity and segregation
of apical TJ.3 The role of Cdc42 in polarity was first discovered
in the yeast Saccharomyces cerevisiae, where a Cdc42 mutation
resulted in inhibition of polarized budding.88 In vertebrate cells,
aPKC activity is required for the establishment of TJ, but not for
their maintenance, whereas the role of Cdc42 in the regulation of
mature TJ appears to depend on cell type. For example, in endo-
thelial cells Cdc42 does not play a significant role in regulating
junctional actin organization and barrier function,89 but in other,
non-endothelial cells, regulation of Cdc42 is necessary for TJ
maintenance.90,91 Evidence from invertebrate models indicates
that at steady state the Cdc42-Par6-aPKC axis acts by limiting
RhoA activity, and thus junctional tension at AJ.92 The role of
N-WASP, a target of Cdc42 and Rac1, in regulating junction
architecture and cortical tension has also been demonstrated in
vertebrate model systems.63 N-WASP can also be targeted by
pathogens, to promote cell-to-cell spreading.93

RhoA plays a fundamental role both in the establishment and
maintenance of AJ and TJ through 2 major effectors: Rho-associ-
ated protein kinase (ROCK) and Diaphanous-related formin-1
(Dia).94 mDia nucleates linear actin polymerization at the AJ,36

and can sense and generate mechanical forces on actin fila-
ments,95 whereas ROCK promotes the bundling of actin fila-
ments and the contractility of actomyosin, by enhancing the
phosphorylation of nonmuscle myosin light chains.96 These
functions are critical to maintain tension at apical junctions,
inhibit cadherin endocytosis, and establish and maintain TJ bar-
riers.92,97,98 A physiological balance between mDia and ROCK
activities is required to maintain ZAs, since decreased Dia or
increased ROCK activation can induce the transition from belt-
like ZA to punctate PA.94,99 Indeed, ROCK activation can also
be a major mechanism of junction disruption, triggered by cyto-
kines and other exogenous stimuli.100 Therefore the fine-tuning
of the activation of RhoA effectors in space and time is a critical
factor in the regulation of junction assembly and stability.

New Insights Into the Molecular Mechanisms
Underlying the Spatio-temporal Regulation of Rho

Family GTPases at Junctions

The biological impact of Rho family GTPases critically
depends on the precise site and timing of their activation. Thus,
understanding how Rho GTPases control junction assembly
requires the identification of the molecular mechanisms that reg-
ulate Rho GTPase activity at junctions.

The spatial and temporal control of Rho GTPases is coordi-
nated by GEFs and GAPs, which activate and deactivate Rho
GTPases by promoting either the exchange of GDP for GTP, or
GTP hydrolysis, respectively. GEFs and GAPs interact with

adaptor proteins, which recruit them to defined subcellular sites,
and/or modulate their activity, for example by phosphorylation
(see section on “Regulation of regulators”). In a previous review,
we summarized the interactions of vertebrate junctional proteins
with GEFs and GAPs implicated in the regulation of RhoA,
Rac1, Rap1 and Cdc42.101 Here, we will focus on more recent
studies, which have provided additional insights into the cross-
talk between junctional proteins and Rho family GTPases, and
frame them into a dynamic view of the involvement of GEFs and
GAPs in the different steps of junction formation.

RhoA
New roles in the regulation of RhoA activation at junctions have

recently been identified for both TJ and ZA proteins. ARHGEF11
(also known as PDZ-RhoGEF), a Rho-GEF containing a regulator
of G protein signaling (RGS) domain, was found to interact with
ZO-1, and to be important for the efficient assembly and remodel-
ing of apical junctions 64 (Fig. 3). Genomic studies identify ARH-
GEF11 as a susceptibility locus for intracranial aneurysms 102 and
kidney injury in the Dahl salt-sensitive rat model,103 suggesting
that ARHGEF11 is also involved in cardiovascular and renal physi-
ology and pathology, possibly through its activity at endothelial
and/or epithelial junctions. Two additional RhoGEFs were recently
found to be associated with the E-cadherin-catenin junctional com-
plex. TEM4 (ARHGEF17, also known as p164-RhoGEF) localizes
at stress fibers in sparse cells, and at junctions in confluent epithelial
cells.104 TEM4 depletion leads to decreased RhoA activation,
decreased myosin light chain phosphorylation, defective endothelial
junctions, and attenuated angiogenesis.104 Second, the E-cadherin-
a-catenin complex was found to mediate the retention of the Rho-
GEF ECT2 (Epithelial Cell Transforming gene 2, also known as
ARHGEF31) at the ZA in breast cancer (MCF7) cells, resulting in
spatially restricted RhoA activation, and generation of junctional
tension, to maintain junction integrity 29,105 (Fig. 3). During cyto-
kinesis ECT2 plays an important regulatory role in furrow contrac-
tility, and is associated with the centralspindin complex, which
comprises MgcRacGAP (RACGAP1), and the kinesin family
member MKLP1 (KIF23).106 Centralspindin not only regulates
ECT2-Rho signaling at junctions, but also inhibits the junctional
recruitment of p190RhoGAP (ARHGAP35),29 which functionally
interacts with p120-catenin.107,108 In addition to TEM4 and
ECT2, a new junctional RhoA GEF which has been identified is
p114RhoGEF (ARHGEF18), which interacts with cingulin to pro-
mote junctional tension in some, but not all types of epithelial
cells98 (Fig. 3). Recently it was found that p114RhoGEF also binds
to the FERM domain protein Lulu2, the polarity protein PatJ,109

and the Ser/Thr kinase LKB 110 (Fig. 3), suggesting that different
adaptor proteins can recruit p114RhoGEF to cellular sites where it
must be localized. GEF-H1 is another prominent junctional Rho
GEF, which interacts with cingulin and paracingulin, resulting in
its inactivation, and thus decreased RhoA activation and stress fiber
formation in the cytoplasm (reviewed in 101). GEF-H1 has been
implicated in diverse cellular activities, and recently it was also
shown to regulate apical constriction and cell intercalation to regu-
late neural tube closure in Xenopus development.111 Additional
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RhoGEFs which have been implicated in epithelial apical constric-
tion during morphogenesis are Trio,112 and ARHGEF11.113

Regarding Rho GAPs, indirect roles in regulating junctions
have been found for the unconventional myosins Myo9a and
Myo9b, large single-headed motor molecules that comprise a N-
terminal actin binding domain, and a tail with a Rho GAP
domain.114,115 Depletion and overexpression studies show that
both Myo9a and Myo9b regulate collective epithelial cell migra-
tion and wound healing, by down-regulating RhoA activity, and
thus reducing localized cytoskeletal tension at the leading edge of
lamellipodia, thus stabilizing nascent cell-cell contacts. However,
assembly of junctions in non-migrating cells is not affected by

Myo9a-depletion, suggesting that this myosin may be important
only for dynamic junctions.114 In another study, knockdown of
Myo9a was reported to disrupt TJ,116 similarly to what observed
following Myo9b depletion in Caco2 intestinal cells.115 Interest-
ingly, polymorphisms in the gene encoding the Myo9b heavy
chain are linked to several forms of inflammatory bowel dis-
ease,117,118 and Myo9b function may be implicated in pathogen-
esis both through defective cell migration of sub-mucosal
immune cells, and a leaky TJ barrier. Another Rho GAP that has
recently been implicated in the maintenance of cell adhesion is
DLC1 (Deleted in Liver Cancer 1), which acts as a GAP for
RhoA, RhoC, and, to a lesser extent, for Cdc42. Exogenous

Figure 3. Crosstalk between junctions and Rho GTPases during the biogenesis of epithelial junctions. Simplified schemes showing sequential steps in the
formation and maturation of the apical junctional complex (TJ and ZA) in epithelial cells, from primordial contact (top) to mature junction (bottom), and
the proteins involved. Legends for graphical objects are shown in box (top left). Green and red arrows/lines indicate activation and inhibition, respec-
tively. The main effects of Rho GTPase regulation on cytoskeletal organization and function are summarized on the sides of each scheme. Proteins and
protein interactions depicted here are derived from studies on different model systems, so they do not necessarily occur together, but are grouped in
one scheme for the sake of summarizing them. See text for additional details.
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DLC1 interacts with a-catenin at AJ, and suppresses invasion
and metastasis by up-regulating E-cadherin expression, in a Rho-
dependent manner.119 Another member of the DLC family of
RhoGAP proteins, DLC3, is localized at AJ in breast cancer cells
when exogenously expressed, and is essential for E-cadherin-
mediated maintenance of cell-cell contacts120 (Fig. 3).

Rac1
A key regulator of Rac1 activity at epithelial junctions is

Tiam1, which is required for the efficient formation of TJ, and is
inhibited in confluent cells by Par3,121 suggesting a negative
feedback mechanism upon junction maturation. The junctional
adaptor paracingulin interacts with Tiam1 and is involved in its
recruitment to junctions in MDCK cells,122 whereas b2-syntro-
phin regulates apico-basal positioning of Rac1 activity at junc-
tions, by counteracting the Par3-Tiam1 inhibitory interaction123

(Fig. 3). A new E-cadherin associated Rac GEF, Trio, was
recently localized at AJ, and its Rac1-activating activity is down-
regulated by the F-actin binding protein Tara in confluent epi-
thelial monolayers 124 (Fig. 3). Interestingly, the regulation of
Rac1 activity by Tara is implicated in the modulation of expres-
sion of E-cadherin, through a pathway involving the transcrip-
tion factor Tbx3,124 highlighting the link between junction
assembly and Rho family GTPase-mediated regulation of gene
expression.125 A new functional interaction of AMOT with mer-
lin was reported to regulate Rac signaling, through the Cdc42/
Rac1 GAP RICH1 (ARHGAP17).126 Merlin is a FERM-domain
protein encoded by the NF2 (neurofibromatosis-2) tumor sup-
pressor gene, and it regulates cell proliferation in response to
adhesive signaling.127 In confluent cells, junctionally localized
merlin relieves the inhibition of AMOT over Rich-1, thereby
allowing Rich-1 to inhibit Rac1, and thus inhibit downstream
MAPK and PAK signaling.126 Thus merlin functions to block
mitogenic signaling, by inhibiting Rac1 activity at TJ. Recent
studies also demonstrate that Rac1 activity during junction
assembly is regulated by the centralspindlin complex protein
MgcRacGAP, which is recruited to TJ by cingulin and paracin-
gulin.80 Since cingulin and paracingulin do not affect the locali-
zation of the RhoGEF ECT2, it appears that there are 2 pools of
MgcRacGAP at apical junctions, one which is recruited by cingu-
lin and paracingulin (at TJ), and a second one which is recruited
by the E-cadherin/ a-catenin complex, and interacts with ECT2,
at least in MCF7 cells.29,80

It should be emphasized that not all GEFs and GAPs act
locally at junctions, but they may contribute to junction assembly
through their action on different steps of junctions biogenesis, as
shown in the case of the Rac1/Cdc42 GAP PX-RICS (ARH-
GAP32), which is involved in the transport of N-cadherin and
b-catenin from the endoplasmic reticulum to the junctional sur-
face, but is not localized at junctions.128

Cdc42
Cdc42 is a third Rho family GTPase member that has been

implicated in regulation of junctions, albeit not in all cell
types.129 In MDCK cells, for example, activation of Cdc42 is
crucial for regulation of membrane traffic, biogenesis of cell

polarity, and formation of junctions, primarily through the acti-
vation of the Par6-aPKC-Par3 apical polarity complex.3 In addi-
tion to the previously characterized regulation by the Cdc42
GAP Rich-1,101 a new protein complex, comprising paracingulin
and CD2AP (CD2-associated protein), was found to regulate
Cdc42 activity at junctions of intestinal carcinoma cells, through
its interaction with the Cdc42 GAP SH3BP1 (SH3 domain
binding protein-1).130 SH3BP1 is implicated both in the matura-
tion of cell-cell junctions, and in homeostatic actin remodeling at
mature junctions.130 CD2AP is a scaffolding protein that has
been implicated in the maintenance of cell-cell contacts in the slit
diaphragms of glomerular podocytes, as well as the function of
cortactin and actin-capping proteins.131,132 Regarding specific
Cdc42 GEFs, genetic experiments in Drosophila embryos indi-
cate that multiple GEFs, including the Rho GEF ECT2, contrib-
ute to cortical activation of Cdc42 during contact-induced cell
polarization.133 However in mammalian epithelia only the ZO-
1-interacting Cdc42 GEF Tuba has so far been implicated in the
maintenance of junctional architecture, but not in junction
assembly.63,93 Recently, it was shown that the Cdc42 GEF Dbl
(MCF2, also known as ARHGEF21) regulates apical differentia-
tion and apical junction positioning, but not junction assembly,
through enhancing the accumulation and activity the Par6-aPKC
complex, and the expansion of the apical membrane.134

Importantly, Cdc42 and RhoA activities can also be modu-
lated by the cross-talk with Rap1, a member of the Ras family
of GTPases, which is associated with cadherin-, JAM- and
nectin-based complexes in epithelial and endothelial
cells.101,135 In endothelial cells the physiological restoration of
the TJ barrier requires the activation of the Rap1-afadin axis,
through phosphorylation of the Rap1 GEF C3G (RAPGEF1),
and leads to the down-regulation of RhoA signaling, and
enhanced AJ assembly.136 In addition, Rap1 induces FGD5
(FYVE, RhoGEF and PH domain containing 5)-dependent
Cdc42 activation, leading to MRCK (myotonic dystrophy-
related Cdc42-binding kinase)-dependent circumferential
accumulation of nonmuscle myosin II at junctions, while at
the same time suppressing the Rho-ROCK pathway, leading
to dissolution of radial stress fibers.137 In summary, different
molecular pathways are employed, in a cell-context-dependent
manner, to orchestrate junction assembly/disassembly through
Rho GTPase-dependent modulation of the actomyosin cyto-
skeleton. Moreover, the finely tuned antagonism between dif-
ferent Rho GTPases (typically Rac1/Cdc42 versus RhoA) sets
the position of the border between apical and lateral plasma
membrane domain, and thus apico-basal polarity, through the
spatially restricted accumulation of cytoskeletal and polarity
complex proteins.

Regulation of Regulators

Several mechanisms have been characterized, which regulate
the activity and stability of GEFs and GAPs, including phosphor-
ylation, lipid binding, intra-molecular auto-inhibition, and pro-
tein-protein interactions.
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The Rho GEF GEF-H1 can be sequestered either by binding
to microtubules in the cytoplasm,78,138 or by binding to cingulin
and paracingulin at epithelial junctions.66,122,139 Phosphoryla-
tion of GEF-H1 occurs at several different sites and has multiple
effects on GEF-H1 activity. In Jurkat cells, phosphorylation by
the Rac1 effector PAK1 leads to GEF-H1 binding to 14-3-3, and
association of the complex with microtubules, resulting in inhibi-
tion of GEF-H1 activity.140 Another member of the PAK kinase
family, PAK4, induces dissociation of GEF-H1 from microtu-
bules in fibroblasts, and switching of substrate specificity, from
Rho to Rac1.141 In COS cells, phosphorylation by Par1b, a
member of the conserved Par/MARK serine/threonine kinase
family, leads to dissociation of GEF-H1 from microtubules, and
microtubule destabilization.142,143 GEF-H1 phosphorylation can
be cell-cycle dependent, since at early stages of mitosis in Hela
cells GEF-H1 is phosphorylated by Aurora A kinase, whereas at
telophase it is dephosphorylated, to allow RhoA activation, cleav-
age furrow formation, and ingression during cytokinesis.144 In
HT1080 (fibrosarcoma) and LK2 (lung squamous cell carci-
noma) cells phosphorylation by ERK enhances the guanidine
exchange activity of GEF-H1.145 In LLC-PK1 kidney tubular
cells, GEF-H1 is involved in the sequential activation of Rac1
and RhoA, through TNF-a induced phosphorylation, which
activates Rac1, followed by a signaling cascade that results in
ERK phosphorylating GEF-H1, leading to RhoA activation.146

ERK signaling also leads to inhibition of GEF-H1 through phos-
phorylation in MDA-MB-231 breast cancer cells, thus regulating
cell motility and invasiveness.147 In summary, the specific mecha-
nisms of GEF-H1 regulation appear largely determined by the
cell context-dependent expression of interacting partners.

The Rho activator ECT2 is a key regulator of cytokinesis, and
is subjected to cell-cycle-dependent regulation. ECT2 first
becomes active in prophase, when it is phosphorylated by Cdk1,
and exported from the nucleus into the cytoplasm, to activate
RhoA and induce the formation of a mechanically stiff and
rounded metaphase cortex.148 Phosphorylation on a different site
is required for catalytic activity and interaction with polo-like
kinase, leading to stimulation of RhoA activity and SRE-regu-
lated transcription.149 In anaphase ECT2 associates with the cen-
tralspindlin complex, and is targeted to the equatorial membrane
through a mechanism that requires a pleckstrin homology
domain and a polybasic cluster that bind to phosphoinositide lip-
ids.150 Targeting of ECT2 to the equatorial membrane is the key
step to initiate cleavage furrow formation during cytokinesis.
Upon completion of mitosis, ECT2 undergoes ubiquitin-depen-
dent degradation, indicating that ECT2 is a bona fide cell-cycle-
regulated protein.151

Another GEF for which a putative phosphoinositide lipid-
mediated recruitment to the membrane has been proposed is
Tiam1, a Rac1-specific GEF.152 The guanine nucleotide
exchange activity of Tiam1 is enhanced by different inositol
phospholipids and other lipids.153,154 Tiam1 is a substrate for
the Src kinase, and phosphorylation of residue Y384 of Tiam1,
which occurs preferentially at AJ, triggers its degradation, leading
to AJ disruption and increased cell migration.155 Tiam1 also
interacts with 14-3-3 proteins when phosphorylated on serine

residues, and although phosphorylation does not affect Tiam1
activity, it is required for Tiam1 proteolytic degradation.155,156

Tiam1 phosphorylation by protein kinase C and by calcium-cal-
modulin kinase II have been described in activated fibroblasts,
this latter leading to increased guanidine exchange activity toward
Rac1 in vitro.157 Finally, protein kinase-D-mediated phosphory-
lation of the Rho GEF Syx reduces its junctional targeting,
through binding to 14-3-3 proteins.158

Phosphorylation also regulates GAPs, to activate or inhibit
their activity, or affect their stability. p190RhoGAP is regulated
by phosphorylation on Tyr, Ser and Thr residues, and by binding
to phospholipids. Activation of Src by different pathways (EGF,
integrin, PKC, and cadherin engagement) leads to phosphoryla-
tion of p190RhoGAP on Y1105, resulting in enhanced GAP
activity, inhibition of RhoA and stress fiber disassembly.159,160

Recruitment of active p190RhoGAP to cadherin through
p120ctn leads to local suppression of RhoA activity, which is
essential for AJ formation.107,161 ERK mediated phosphorylation
on different Ser and Thr residues in the C-terminal part of the
protein suppresses the GAP activity of p190RhoGAP during
focal adhesion formation.162 Interaction of a polybasic region
(PBR) of p190RhoGAP with phospholipids can switch substrate
specificity of p190RhoGAP, from RhoA to Rac1, and this inter-
action is antagonized by phosphorylation on Ser1221 and
Thr1226.163 Substrate specificity of RICH-1 is regulated in plate-
lets by Src-mediated phosphorylation, either to inhibit activity on
Rho/Rac or to activate GAP activity toward Cdc42.164 MgcRac-
GAP is regulated by binding to PRC1, which inhibits GAP activ-
ity toward Cdc42, thus allowing spindle formation during
mitosis, and by Aurora B-mediated phosphorylation and PP2A-
mediated dephosphorylation, which affect substrate specificity
and interaction with ECT2.165-167 The Rho GAP activity of
DLC1 can be inhibited either by phosphorylation, which favors
interaction with 14-3-3 and exclusion from focal adhesions,168 or
by intramolecular autoinhibition, which is mediated by a SAM
domain, and modulated by EGF signaling, through tensin3.169

A Dynamic View of the Cross-talk Between Rho
GTPases and Junction Assembly

The process that leads to the formation of epithelial cell-cell
junctions is highly regulated in space and time, and results from
the coordinated interactions between Rho GTPases, their GEF
and GAP regulators, and junctional molecules (Fig. 3). Upon
formation of primordial contacts, accumulation of E-cadherin
and Ig-like adhesion molecules (JAMs, nectins) is driven by and,
at the same time, stimulates Rac1-dependent actin polymeriza-
tion at the submembrane cortex, in positive feedback loop that
further promotes the accumulation of adhesion molecules at new
junctions (Fig. 3). In this initial phase, the activities of Rac1/
Cdc42, and the Ras-like GTPase Rap1 play a key role, both to
generate the cytoskeletal scaffold upon which to build the new
junction, and to expand the junctional surface, through cortac-
tin/N-WASP/WAVE2/Arp2/3-mediated actin polymerization,
and directed targeting of membrane vesicles. In order for
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junctions to be expanded and stabilized, RhoA must also be deac-
tivated at sites of cell-substratum interaction, for example
through the Rho GAP activity of myosin-9, and activated at
junctions (Fig. 3). Junctional RhoA activation is stimulated by
GEFs such as p114RhoGEF, ARHGEF11 and ECT2, which
interact with different ZA and TJ molecules (Fig. 3), and lead to
positioning, assembly and contractility of myosin filaments. Acto-
myosin contraction at junctions generates the tension required to
strengthen adhesion, and helps to cluster and stabilize adhesion
molecules (Fig. 3). Since excessive RhoA activation can lead to
junction disruption, a process which occurs also during epithelial-
mesenchymal transition or in response to pathogens and injury,
RhoA activity must also be downregulated, a process which
depends at least in part on the p120-dependent recruitment of
p190RhoGAP to AJ, and on the antagonism between RhoA and
Rac1. Activation of the Rac1/Cdc42 axis of Rho GTPases is essen-
tial both for junction expansion, through actin polymerization,
and to set apico-basal polarity, through the precise segregation of
apical from basolateral determinants at TJ. This is achieved
through ezrinDbl3-mediated localized activation of Cdc42, which
in turns activates the Par6-aPKC complex, to expand the apical
membrane.134 In developing embryos most junctional proteins are
targeted to the new junctional membrane through incorporation
of membrane vesicles along the basal/lateral plasma membrane,
whereas some junctional proteins are recruited to new junctions
from a cortical, apical pool.170-174 Once junctions are mature, the
dynamic remodelling and functional modulation of the actin and
microtubule cytoskeletons is supported by the steady-state equilib-
rium between activation and inhibition of GEFs, which maintains
homeostatic junction architecture and tension (Fig. 3).

A Zonular Signalosome at the Crossroads of
Junction Assembly, Rho GTPase Activities,

Cytoskeletal Organization, and Nuclear Signaling

Junction assembly and maturation is a dynamic process where
different inter-related events are coordinated in space and time:
a) accumulation and stabilization of transmembrane adhesion
proteins at TJ and ZA; b) accumulation of cytoplasmic plaque
proteins of ZA and TJ in the submembrane cortical cytoplasm,
and their linkage to cytoskeletal filaments; c) actin polymeriza-
tion, actin filament bundling and actomyosin contractility; d)
microtubule reorganization; e) spatial segregation of junctional
protein complexes into apical zonular TJ, subapical zonular ZA,
and lateral adherens junction (puncta adhaerentia). This process
is mediated by and culminates in the formation of a “zonular sig-
nalosome” (Fig. 4), defined as a complex of apical adaptor and
signaling proteins associated with zonular (circumferential, belt-
like) epithelial junctions (TJ and ZA). The zonular signalosome
therefore includes: 1) zonular junctional proteins which function
as adaptors for GEFs, GAPs (see Fig. 3), transcription factors
and other signaling molecules (for example ZO proteins, cingu-
lin, paracingulin, AMOT, Par3, afadin, etc); 2) the interacting
zonular signaling partners of zonular adaptors (GEFs, GAPs,
transcription factors, and other signaling molecules); 3)

potentially, additional zonular structural proteins for which no
or little direct role in regulation of signaling has yet been
described (PLEKHA7, for example), and their interacting signal-
ing partners. The targets and/or effectors of the zonular signalo-
some are: 1) RhoGTPases and their effectors (kinases and
phosphatases for example), which in turn affect signalosome
assembly and disassembly, through feedback loops (Fig. 4); 2)
genes whose expression is modulated by zonular signalosome-reg-
ulated pathways; 3) cytoskeletal proteins (actins, myosins, micro-
tubules and associated proteins): 4) transmembrane and adaptor
proteins which are clustered at zonulae through interactions with
signalosome adaptors, but can also be distributed at lateral con-
tacts (claudins, occludin, Ig-like CAMs, E-cadherin, catenins,
and others). Zonular clustering creates a molecular environment
which may confer new or different functions to these proteins,
for example only at TJ claudins assemble into continuous fibrils,
and are thus able to form ionic pores or barriers.

The composition and properties of the zonular signalosome
depend on cell and tissue type, as well as on cell-cycle stages. For
example, the Rho GEF ECT2 is zonular in cultured MCF7
mammalian carcinoma cells,29 partially zonular in keratinocytes,
not zonular in intestinal carcinoma cells, and not detectable in
kidney cells.80 MgcRacGAP is zonular in interphase kidney cells,
and excluded from junctions during mitosis.80 Different

Figure 4. The zonular signalosome. The zonular signalosome is com-
posed of zonular adaptor proteins, GEFs and GAPs, transcription factors
and other signaling proteins (see text). Rho GTPases which functionally
interact with the signalosome are at the center of a regulatory network
that controls adhesion, junction assembly and maturation, regulation of
gene expression, cell differentiation and survival, and motile behavior of
cells. Transcription factors and other signaling molecules can either exist
as part of the signalosome, or are cytoplasmic and regulated indirectly
by the signalosome (for example, through RhoA regulation). Arrows indi-
cate functional interactions (unidirectional or reciprocal activation, inhi-
bition, homeostatic balance). See text for additional details.
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members of the large GEFs and GAPs families probably show
cell- and tissue-type specific expression, however we are far from
a precise immunohistochemical mapping of their distribution in
different normal and diseased tissues. Similarly, structural adap-
tor proteins are not identically distributed in all cell types. For
example paracingulin is not detected in differentiated intestinal
epithelial cells,175 and ZO-3 shows a narrower tissue distribution
than ZO-1,176 and is not expressed in cultured mammary epithe-
lial cells.20

What are the functions of the zonular signalosome? One is to
fine-tune in space and time the activation of Rho family
GTPases, and thus the organization of the cytoskeleton, during
the dynamic processes of junction assembly and disassembly, and
at steady-state, to ensure the correct remodelling and turnover of
cytoskeletal and junctional proteins (Fig. 4). This equilibrium
can be perturbed by mechanical stresses, and pathological cues
(cytokines, pathogens, toxins), leading to junction disruption,
perturbation of the signalosome complex, and hence dramatically
altered spatio-temporal regulation of Rho GTPases. As such, the
signalosome can be viewed as a sensor, or signal transducer, of
extra- and intra-cellular signals, to control cell behavior, includ-
ing adhesion, motility, and junctional membrane integrity and
dynamics. By sequestering and/or stabilizing at junctions GEFs
and GAPs, the zonular signalosome also indirectly controls acti-
vation of signaling at cell-substratum adhesions, and thus cell
spreading and motility, for example through the Par3-
Tiam1,177,178 p114RhoGEF,179 and GEF-H1 139 modules. At
the tissue and organ level, perturbation of the zonular signalo-
some can elicit dramatic consequences on epithelial or endothe-
lial cell cell-adhesion and barrier functions, resulting for example
in loss of skin or mucosal barrier integrity, jaundice, edema, and
loss of proteins or ions across tissue barriers.

A second important function of the zonular signalosome is to
regulate transcription factors, cell-cycle regulators, and other sig-
naling molecules, thus controlling gene expression, proliferation,
differentiation, and survival. One mechanism of this regulation
involves the direct or indirect sequestration of the signaling mole-
cules at junctions, as shown for example by the role of ZO pro-
teins in the junctional retention and stability of the transcription
factor DbpA/ZONAB,20,180 and the cell cycle regulator
cyclinD1.181 Moreover, ZO-2, a-catenin and AMOT control
the nucleo-cytoplasmic shuttling of YAP/TAZ transcription fac-
tors by different mechanisms, including direct or indirect interac-
tion, stabilization at junctions, and cytoplasmic retention
through modulation of phosphorylation (reviewed in 125).
Another mechanism involves the modulation of RhoA activation,
by zonular GEFs, and interacting adaptor proteins. For example
GEF-H1 activation is critical in Dbpa/ZONAB activation and
nuclear shuttling 182 and RhoA activation is also critically
involved in the mechanotransduction-dependent regulation of

the activity of YAP transcription factors.183 RhoA is a central
molecule in the cross-talk between cytoskeletal organization and
nuclear signaling, and the integrity of the zonular signalosome,
by regulating not only Rho, but also Rac and Cdc42 activities, is
crucial to coordinate regulation of cytoskeletal organization with
cell-cell adhesion, motility and nuclear signaling.

Concluding Remarks

In the past decade there have been striking advances in clarify-
ing the identity of junctional proteins, GEFs and GAPs, and their
functional interactions. The general picture that has emerged is
one whereby epithelial morphogenesis and physiology are regu-
lated by the carefully tuned balance between the activities of
antagonistic Rho GTPases, through modulation of the expres-
sion, subcellular localization and activities of GEFs and GAPs.
However, many important questions remain open. First of all,
the majority of studies have been carried out on only one or a
few experimental models (cells, tissues, species), and should be
validated on additional vertebrate models. Junctions are remark-
ably heterogeneous in architecture, composition and function,12

and each cell type is thus likely to be characterized by a unique
configuration of junctional adaptors and Rho GTPase regulating
molecules. So, results obtained in one model system cannot be
extrapolated to other cells and tissues. Systematic transcriptomic
and proteomic approaches, and the generation of new and
improved reagents for the subcellular localization of GEFs and
GAPs will be critical to map sets of regulatory modules in their
correct context. In addition, detailed characterization of verte-
brate knockout models will be essential to understand the role of
GEFs and GAPs, and their interacting partners, in tissue and
organ physiology and pathology. Special attention should be
devoted to elucidating the 3-dimensional structures and affinities
of interaction between the adaptor molecules, GEFs and GAPs,
and how post-translational modifications can modulate them.
Addressing these questions will help to define the composition
and functions of zonular signalosomes in different epithelial and
endothelial cells and tissues, and develop strategies for their
experimental and therapeutic modulation.
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