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Abstract
Generalized Linear Latent Variable Models (GLLVM), as de�ned in Bartholomew

and Knott (1999) allow to model relationships between manifest and latent variables
when the manifest variables are of various type, such as continuous or discrete. They
extend structural equation modelling techniques which are very powerful modelling
tools in the social sciences. However, because of the complexity of the log-likelihood
function of GLLVM due to the fact that the latent variables are not directly observed,
usually an approximation such as numerical integration is used to carry out estimation
and inference. This can limit in a drastic way the number of variables in the model
and lead to biased estimators. In this paper, we propose a new estimator for the
parameters of a GLLVM. It is based on a Laplace approximation of the likelihood
function and can be computed even for models with a large number of variables. It
is shown that the new estimator can be viewed as aM -estimator leading to readily
available asymptotic properties and correct inference. A simulation study in various
settings shows its excellent �nite sample properties, in particular when compared with
a well established approach such as LISREL.
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1 Introduction

In many scienti�c �elds, researchers use models based on theoretical concepts that cannot

be observed directly. This is particularly the case in social sciences. In economics, for ex-

ample, there is a vast literature on welfare (see e.g. Sen, 1987) which involves measuring the

standard of living of people or households in di�erent economies. In psychology, researchers

often use theoretical concepts such as intelligence, anxiety, etc. These concepts are very

important within the framework of theoretical models. However, when these models are

validated by means of observed data, the problem of measurement arises. Indeed, how

are, for example, the welfare of people or the intelligence measured? For welfare, income

is often taken as a substitute and in psychology, researchers have developed a battery of

tests to measure intelligence indirectly.

In these situations, the researcher deals with theoretical concepts that are not observable

directly (they are latent) and on the other hand, to validate the models, he (or she) uses

observable quantities (manifest variables) that are proxies for the concepts of interest.

This problem is not new and statistical methods have been available for a long time; see

e.g. Jöreskog (1969), Bartholomew (1984a) and Arminger and Küsters (1988). Factor

analysis is one of them. A model is proposed to link manifest variables (supposed to be

multivariate normal) with latent variables (or factors) and a likelihood analysis can be

carried out. Since the work of Jöreskog (1969), a lot of research has been done to extend

simple factor analysis to more constrained models under the heading of covariance structure

or structural equations modelling. Most of these developments are readily available in

standalone softwares, such as LISREL; cf. Jöreskog (1990) and Jöreskog and Sörbom

(1993).

Although LISREL is a package that incorporates methods dealing with a large variety

of applied problems, it su�ers from an important drawback in that it assumes that the
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manifest variables are multivariate normal. When this is obviously not the case (as in the

case of binary variables), the manifest variables are taken as underlying indirect observa-

tions of multivariate normal variables. In other words, many applied problems are forced

into the multivariate normal framework for which many statistical procedures have been

developed.

In our opinion, it is essential that the manifest variables are treated as they are, i.e.

binary, ordinal or continuous. The model that formalizes the relationship between the

manifest and the latent variables should take the type of data at hand into account. These

types of models were �rst investigated by Bartholomew (1984a,b) who considered the

case of binary data. More recently, Moustaki (1996) and Moustaki and Knott (2000)

considered mixture of manifest variables. They proposed a generalized linear latent variable

model (GLLVM) (see Bartholomew and Knott, 1999) that allows to link latent variables

to manifest variables of di�erent type (see section 2.2).

However, the statistical analysis of GLLVM presents a di�culty. Since the latent vari-

ables are not observed, they must be integrated out from the likelihood function. Moustaki

(1996) and Moustaki and Knott (2000) propose to use Gauss-Hermite Quadrature as a nu-

merical approximation method. As it will be shown later, this implies that the possible

number of estimable latent variables included in the model is restricted at the moment

only to two.

In this paper, we instead propose the Laplace approximation for the likelihood function.

This technique has three important advantages with respect to the quadrature method.

First of all, it allows to derive the statistical properties of the estimator and to carry out

valid inference. Second, it allows to estimate more complex models, in particular models

with more than two latent variables, as well as models with correlated latent variables.

Third, it allows direct estimation of individual scores on the latent variables space (see

section 3.3).
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The paper is organized as follows: in section 2, we brie�y introduce the underlying

variable approach implemented in e.g. LISREL used to deal with non normal manifest

variables, as well as the GLLVM introduced by Bartholomew and Moustaki. In section 3,

we propose a new estimator for the GLLVM based on the Laplace approximation of the

likelihood function and investigate its statistical properties. The explicit formulas in the

case of a GLLVM with binomial and a mixture of normal and binomial manifest variables

are given in the Appendix. In section 4, we show that the model has multiple solutions

and a procedure is proposed to constrain the solution to be unique.

Finally, we compare our estimator with the ones provided by LISREL and the GLLVM

with the Gauss-Hermite Quadrature in section 5. This clearly reveals that the new esti-

mator has better performance in terms of bias and variance. As a conclusion, an overview

of possible extensions is given in section 6.

2 Two approaches for modelling latent variables
2.1 The underlying variable approach of LISREL

The underlying variable approach assumes that all the manifest variables are multivariate

normal. If a variable is not normal, it is assumed to be an indirect observation of an

underlying normal variable. This approach can be formulated as follows. LetX be a

Bernoulli manifest variable, z a vector of latent variables and α a matrix of parameters.

Let Y |z be an underlying normal variable with meanαTz and unit variance. Given z, a

link is then established betweenX|z and Y |z in that it is assumed thatX|z takes the value

1 if Y |z is positive and 0 otherwise. Then, the expected value ofX|z is

E(X|z) = P (Y > 0|z) = Φ(αTz),

where Φ(·) is the normal cumulative distribution. We obtain from the last equation that

probit(E(X|z)) = αTz.
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In practice, like in LISREL, the model parameters are estimated in three steps (see for in-

stance Jöreskog, 1969, 1990). First, the thresholds of the underlying variables are estimated

from the univariate means of the manifest variables. In a second step, the correlation ma-

trix between manifest and underlying variables is estimated using polychoric, polyserial and

Pearson correlations and, �nally, the model parameters are obtained from a factor analysis.

Consequently, the assumption of an underlying normal variable in the LISREL approach

can be compared to the one with the GLLVM (see below) except that the link function is

a probit instead of a logit. These two link functions are very close (|Φ(x)−Ψ(1.7x)| < 0.01

∀x, where Ψ is the logistic distribution function, see e.g. Lord and Novick (1968)) so that

in our simulations the estimators provided by LISREL can be compared to the ones we

propose in this paper (see section 5).

2.2 Generalized Linear Latent Variable Model (GLLVM)

In this section, we present the GLLVM starting from the framework of generalized linear

models (GLM); cf. McCullagh and Nelder (1989). The aim of a GLLVM is to describe

the relationship between p manifest variables x(j), j = 1, . . . , p, and q < p latent variables

z(k), k = 1, . . . , q. It is assumed that the latent variables explain the observed responses

in the manifest variables, so that the underlying distribution functions are the conditional

distributions gj(x
(j)|z), j = 1, . . . , p, which belong to the exponential family

gj(x
(j)|z) = exp

{
(x(j)αT

j z− bj(α
T
j z))/φj + cj(x

(j), φj)
}

(1)

and z = [1, z1, . . . , zq]
T = [1, zT

(2)]
T . Each distribution gj will then depend on the type of

manifest variable x(j), as well as on a set of parameters αj = [αj0, . . . , αjq]
T and scale φj.

The essential assumption in GLLVM is that, given the latent variables, the manifest

variables are conditionally independent. In other words, the latent variables explain all

the dependence structure between the manifest variables. Hence, the joint conditional

distribution of the manifest variable is given by
∏p

j=1 gj(x
(j)|z). Without loss of generality,
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it is also assumed that the distribution of the latent variables is the standard normal and

that latent variables are independent. The last assumption can be relaxed (see section

3). Thus, the density h(z(2)) of z(2) is the multivariate normal with mean µ = 0 and

Σ = Iq, the identity matrix of dimension q. The joint distribution of the manifest and

latent variables is given by
p∏

j=1

gj(x
(j)|z)h(z(2)). (2)

However, since the latent variables z(2) are not observed, their realizations are treated as

missing. Therefore, they are integrated out so that one actually considers the marginal

distribution f�,�(x), x = [x(1), . . . , x(p)], of the manifest variables given by

f�,�(x) =

∫ [ p∏
j=1

gj(x
(j)|z)

]
h(z(2))dz(2). (3)

Note that gj(x
(j)|z) may be either normal or binomial according to j (or, indeed, another

distribution from the exponential family). The aim is to obtain estimators for the param-

eters αj and φj, with j = 1 . . . p. Once these estimators are known, any response pattern

can be linked to values of the latent variables.

Note also that (3) formulates the general approach used with missing values (see e.g.

Dempster, Laird, and Rubin, 1977). However, an explicit expression for (3) avoiding the

integration doesn't exist, so that a numerical approximation is needed. Then, the EM

algorithm can be used to �nd the (approximated) MLE ofα and φ, as it is for example

pointed out in Sammel, Ryan, and Legler (1997).

Let us now consider a sample of sizen, x1, . . . ,xn with xi = [x
(1)
i , . . . , x

(p)
i ], i = 1, . . . , n.

Let α be a (q+1)×p matrix of structural parameters,α = [α1, . . . , αp] and φ = [φ1, . . . , φp]

the vector of scale parameters. Then, the log-likelihood is given by:

l(α, φ|x) =
n∑

i=1

logf�,�(xi)

=
n∑

i=1

log
∫ [ p∏

j=1

exp
{

x
(j)
i αT

j z− bj(α
T
j z)

φj

+ cj(x
(j)
i , φj)

}]
h(z(2))dz(2) (4)
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where bj and cj are known functions that depend on the chosen distribution gj (see Mc-

Cullagh and Nelder (1989)).

Equation (4) contains a multidimensional integral which cannot be computed explicitly,

except when all the distributions gj(x
(j)|z) are normal. Consequently, an approximation of

this integral is needed. Then depending on the chosen approximation, the estimators will

be di�erent in that their performance in terms of bias and variance is di�erent.

3 Estimators based on the Laplace approximation
(LAMLE)

The Gauss-Hermite Quadrature (GHQ) approximation to the integral in (4) proposed by

Moustaki (1996) is easy to implement but su�ers from several drawbacks. Firstly, the

accuracy increases with the number of quadrature points, but decreases exponentially

with the number of latent variables q. As a consequence, it is impossible in practice to

handle more than two latent variables with GHQ. Secondly, making correct inference on

the resulting estimators seems to be very di�cult. Finally, the resulting estimator appears

to be biased; cf. section 5.

With the Laplace approximation, inference is easier and the error rate is of orderp−1,

where p is the number of manifest variables. This property means that the approximation

improves as the number of latent variables grows (more latent variables imposing more

manifest variables). The Laplace approximation is also well designed for functions with

a single optimum, which is the case of our likelihood function. In addition, the Laplace

approximation yields automatically estimates of individual scores ẑi(2) on the latent vari-

ables space (see section 3.3). Finally, in our simulations, we found that it leads to unbiased

estimators; cf. section 5.
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3.1 Approximation of the likelihood function

By (1) and (3), the marginal distribution f�,�(x) can be written as

f�,�(xi) =

∫
ep·Q(�,z,xi)dz(2), (5)

where

Q(α,φ, z,xi) =
1

p

[
p∑

j=1

[
x

(j)
i αT

j z− bj(α
T
j z)

φj

+ cj(x
(j)
i , φj)

]
−

zT
(2)z(2)

2
− q

2
log (2π)

]
. (6)

Applying the q-dimensional Laplace approximation to the density (5) (cf. De Bruijn (1981)

or Tierney and Kadane (1986, pp. 82-86)), we obtain

f�,�(xi) =

(
2π

p

)q/2

(det(−U(ẑi)))
−1/2 epQ(�,�,ẑi,xi)(1 + O(p−1)), (7)

where

U(ẑi) =
∂2Q(α,φ, z,xi)

∂zT ∂z

∣∣∣∣
z=ẑi

= −1

p
Γ(α,φ, ẑi), (8)

Γ(α,φ, z) =

p∑
j=1

1

φj

∂2bj(α
T
j z)

∂zT ∂z
+ Iq, (9)

and ẑi = [1 ẑi(2)] is the maximum of Q(α,φ, z,xi), i.e. the root of ∂Q(α, φ, z,xi)/∂z = 0

de�ned through the iterative equation

ẑi(2) := ẑi(2)(α,φ,xi) =

p∑
j=1

1

φj

(
x

(j)
i αj(2) −

∂bj(α
T
j ẑi)

∂zi(2)

)
, i = 1, . . . , n, (10)

with αj = [αj0,α
T
j(2)]

T .

Notice that there are n vectors zi(2) to be determined by the implicit equations (10)

and each zi(2) depends on all the parameters of the model and the observationxi.

3.2 LAMLE

The Laplace approximation allows to eliminate the integral from the marginal distribution

of xi. From (6), (7), (8), and (9), we obtain the approximate log-likelihood function
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l̃(α,φ|x) =
n∑

i=1

(
−1

2
log det

(
Γ(α, φ, ẑi)

)

+

p∑
j=1

[
x

(j)
i αT

j ẑi − bj(α
T
j ẑi)

φj

+ cj(x
(j)
i , φj)

]
−

ẑT
i(2)ẑi(2)

2

)
. (11)

The new estimators of α and φ based on the Laplace approximation (LAMLE) are found

by equating the derivative of (11) to zero and inserting (10) into (11). For the structural

parameters α, we have

∂l̃(α, φ|x)

∂αkl

=
n∑

i=1

[
−1

2
tr

(
Γ(α,φ, ẑi)

−1∂Γ(α, φ, ẑi)

∂αkl

)
+

1

φk

(
x

(k)
i − ∂bk(α

T
k z)

∂αT
k z

∣∣∣∣
z=ẑi

)
ẑil

]
= 0,

(12)

where ẑil is the lth element of the vector ẑi and ∂Γ
∂�kl

is the (q× q) matrix obtained from Γ

by di�erentiating all its elements with respect toαkl, k = 1, . . . , p, l = 0, . . . , q.

Similarly, for φ, we obtain

∂l̃(α,φ|x)

∂φk

=
n∑

i=1

[
−1

2
tr

(
Γ(α,φ, ẑi)

−1∂Γ(α,φ, ẑi)

∂φk

)

− 1

φ2
k

(x
(k)
i αT

k ẑi + bi(α
T
k ẑi)) +

∂ck(x
(j)
i , φk)

∂φk

]
= 0, k = 1, . . . , p . (13)

Hence, (12) and (13) provide a set of p(q +2) estimating equations de�ning the estimators

for the model parameters. In addition, (10) is required for the computation of alln · q
terms zi(2).

In the derivation of the estimating equations, the model has been kept as general as

possible without specifying the conditional distributions gj(x
(j)|z). In the Appendix, we

give speci�c expressions for the quantities used in the log-likelihood (11), the score functions

(12) and (13), and ẑi(2) in (10) for binomial and a mixture of binomial and normal manifest

variables. The computations for these cases are tedious but straightforward. The LAMLE

can be computed in principle for any mixture of distributions from the exponential family
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by using (12) and (13). In this paper, we focus our examples on binomial distributions and

a mixture of normal and binomial distributions.

3.3 Interpretation of the LAMLE

A way to interpret the estimators derived in section 3.2 is to consider theẑi(2) as "param-

eters" in (2). Then the "likelihood" would be

l∗(α,φ, z|x) =
n∑

i=1

log

(
p∏

j=1

gj(x
(j)|z)h(z(2))

)

=
n∑

i=1

( p∑
j=1

[
x

(j)
i αT

j zi − bj(α
T
j zi)

φj

+ cj(x
(j)
i , φj)

]

−
zT

i(2)zi(2)

2
− q

2
log (2π)

)
=

n∑
i=1

p ·Q(α,φ, zi,xi)

(14)

which di�ers from (11) by the additive factor −1
2

∑n
i=1 log det (Γ(α, φ, zi)). Taking the

derivative of l∗ with respect to α and φ doesn't lead to the same expressions for the

score function and hence, the estimators are di�erent. However, taking the derivative ofl∗

with respect to zi(2) leads to the same implicit equation (10) de�ning the ẑi(2) needed by

the Laplace approximation. Hence, the ẑi(2) are directly interpretable as the "maximum

likelihood estimators" of the individual latent scores. They can then be used for example

to represent graphically the subject on the latent variables space.

3.4 Statistical properties of the LAMLE

Let θ̂L be the vector containing all the LAMLE ofα and φ for a GLLVM. θ̂L is de�ned

by the estimating equations (12) and (13), where the ẑi(2) are de�ned by (10).

The LAMLE θ̂L belongs to the class of M -estimators (Huber, 1964, 1981) which are

implicitely de�ned through a generalΨ-function as the solution in θ of
n∑

i=1

Ψ(xi; θ) = 0.
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The Ψ-function for the LAMLE is given by (12) and (13). Then, under the conditions

given in Huber (1981, pp. 131-133) or Welsh (1996, p. 194), the LAMLE is consistent and

asymptotically normal, i.e.

n1/2(θ̂L − θ0)
D→ N(0, B(θ0)

−1A(θ0)B(θ0)
−T ).

as n →∞, where

A(θ0) = E
[
Ψ(x; θ0)Ψ

T (x; θ0)
]

B(θ0) = −E

[
∂Ψ(x; θ0)

∂θ

]
.

These conditions must be checked in each particular model.

Moreover, the function l̃(α,φ|x) in (11) plays the role of a pseudo-likelihood function

and it can be used to construct likelihood-ratio type tests as in Heritier and Ronchetti

(1994, p. 898), by de�ning ρ(x; θ) = −l̃(α,φ|x). This allows to carry out inference and

variable selection in GLLVM.

4 Constraints and correlated latent variables

The estimating equations which de�ne the LAMLE, or the MLE, may have multiple solu-

tions. In this section, we �rst investigate the number of constraints which are required to

make the solution unique and we propose a procedure to select those constraints. Then,

we extend the LAMLE to the case of correlated latent variables.

4.1 Constraining the LAMLE

Let us recall that the GLLVM model is based upon a GLM model. Therefore,

ν(E(x|z)) = α0 + αTz(2),

in which ν(·) is a link function and we de�ne z(2) to be centered and standardized. Let

H be an orthogonal matrix of dimension q × q. It is possible to rotate the matrix α by
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pre-multiplying it by H and to obtain a new matrix of parameters α∗ = Hα. Since z(2)

is centered and standardized and H is orthogonal, z∗(2) = Hz(2) has the same property.

Moreover, the rotation H does not change the following product:

α∗Tz∗(2) = αTHTHz(2) = αTz(2).

Therefore, a rotation of α gives a new matrix of parameters which is also a solution for

the same model. This is the same problem encountered in factor analysis, for example. If

a unique solution is required, it is necessary to impose constraints on the parametersα.

An orthogonal matrix of size q × q possesses q(q − 1)/2 degrees of freedom. In other

words, such a matrix needs at least q(q−1)/2 constraints on its elements to be unique and

this represents the number of constraints we have to impose to obtain a unique solution

for the model.

Proposition Let α̂ be a matrix of dimension q × p containing the LAMLE of α.

If all the elements of the upper triangle of α̂T are constrained, then α̂T is completely

determined, except for the sign of each column. If at least one constraint of thejth column,

with j = 2, . . . , q, is di�erent from zero, then the sign of the corresponding column is

determined.

The proof is given in Appendix B.

4.2 LAMLE of a GLLVM with correlated latent variables

The �exible form of the Laplace approximation allows to handle correlated latent variables.

Let Σ be the correlation matrix of the latent variables and consider latent variables with

unit variance. Then, the density of z(2) becomes

h(z(2)) = (2π)−q/2 |detΣ|−1/2 exp
(
−1

2
zT

(2)Σ
−1z(2)

)
.
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which implies that the functionsQ, de�ned by (6), is modi�ed as follows:

Q(α, φ, z,xi) =
1

p

[
p∑

j=1

[
x

(j)
i αT

j z− bj(α
T
j z)

φj

+ cj(x
(j)
i , φj)

]
−

zT
(2)Σ

−1z(2)

2
− q

2
log(2π)

]

(15)

Therefore, the implicit equation (10) de�ning z(2) becomes

ẑi(2) := ẑi(2)(α, φ,xi,Σ) = Σ

p∑
j=1

1

φj

(
x

(j)
i αj(2) −

∂bj(α
T
j ẑi)

∂zi(2)

)
. (16)

The LAMLE estimating equations with correlated latent variables are the modi�ed (12)

and (13) using (15) and, in addition, the q(q − 1)/2 equations for the elements σkl of Σ:

∂l̃(α,φ|x)

∂σkl

=
n∑

i=1

[
−1

2
tr

(
Γ(α,φ, ẑi,Σ)−1∂Γ(α,φ, ẑi,Σ)

∂σkl

)

−1

2
tr

(
Σ−1 ∂Σ

∂σkl

)
+

1

2
ẑT

i(2)Σ
−1 ∂Σ

∂σkl

Σ−1ẑi(2)

]
= 0. (17)

5 Numerical application

In this section, we compare the LAMLE (with uncorrelated latent variables) with the MLE

using the GHQ approximation and the LISREL estimators that we take as the benchmarks.

We consider a model containing one, two, and four latent variables. The code to compute

the MLE using the GHQ approximation was kindly provided by I. Moustaki. Since the

GHQ approximation for more than two latent variables is not available, we perform the

simulations with four latent variables only for the LAMLE and LISREL estimators.

5.1 Design

To study the behavior of the LAMLE and to compare it with the benchmarks, we generate

samples from GLLVM with known parameters. As we showed in section 2, this design can

be used to compare with LISREL estimators because they can be interpreted as GLM with

a probit link function.

Random samples of size n are generated in S-Plus. The procedure is as follows:
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1. Initialize all the parameters:

• p(q + 1) elements in the matrix α,

• p1 variances de�ning the vector φ for the normal variables.

2. Generate q independent standard normal vectors z of size n.

3. Generate a vector µ = E[X|z] of conditional means of all responses de�ned by

ν(µ) = αTz,

ν being the link functions corresponding to the distributions of each manifest variable.

4. Generate all responses x based upon the means µ that were calculated in 3. as well

as the scale parameters φ for the normal responses.

A quasi-Newton procedure (Dennis and Schnabel, 1983) is used to solve the implicit

equations (10), (12) and (13). The algorithm is written inC and the program is available

from the authors upon request. For the LISREL estimators, the covariance matrix is

computed using LISREL 8.51 and a factor analysis is then performed with S-Plus. Then,

the estimators for the binomial loadings are multiplied by 1.7 to make them comparable

with the LAMLE; see section 2.1.

5.2 Estimation

With one latent variable, it is possible to use up to 48 quadrature points with GHQ.

Thus, we are now comparing a GHQ approximation with 48 quadrature points with the

Laplace approximation and the LISREL method. We created 500 samples of size 200 with

5 manifest variables, 3 of them are normal and 2 are binomial. The values of the parameters

are presented in Table 1. Note that with other parameters values, we found similar results.
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Normal Binomial
α0 2.4 3.5 2.8 2.5 1.5
α1 3.3 3.6 3.5 0.7 0.5
φ 1.0 12.0 3.0

Table 1: Parameters for a model with one latent variable

Two sets of boxplots are presented in Figures 1 and 2: the �rst one for the estimators of

α1 and the second one for the scale parametersφ. A similar plot was obtained forα0 (not

shown here). Each set represents three boxplots. The left ones correspond to the LISREL

estimators, the center ones to the MLE with a GHQ approximation with 48 quadrature

points and the right ones to the LAMLE. Estimates have been centered by substracting

the true parameters values. Results are discussed in section 5.3.

With two latent variables, we use 8 and 16 quadrature points (to go beyond 16 points

would be too computer intensive). Again, 500 samples of size 200 were generated. They

are built with 5 normal and 5 binomial manifest variables. The parameterα21 is set to

zero (i.e. not estimated).

Normal items Binomial items
α0 5.0 -2.0 3.0 0.0 -8.0 2.0 -1.5 -1.2 -0.5 0.2
α1 4.0 2.0 -6.0 1.0 -3.0 0.1 0.0 -1.5 -0.8 -0.3
α2 � 6.0 4.0 8.0 -2.0 -2.3 0.5 1.4 0.1 0.0
φ 1.0 1.5 2.0 3.0 0.5

Table 2: Parameters for a model with two latent variables

In Figures 3 and 4, we present the distributions of the estimators using four boxplots.

Each corresponds respectively (from left to right) to the LISREL estimators, the MLE using

the GHQ approximation with 8 and 16 quadrature points and the LAMLE. We discuss the

results in section 5.3. It should be stressed that other sets of parameters produced similar

results.
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Finally, models with four latent variables can only be estimated by the MLE using the

Laplace approximation and the LISREL. 500 samples of size 400 were simulated. They

contain 8 normal and 8 binomial responses. The parameters are given in Table 3. The

parameters α21, α31, α22, α41, α42, and α43 are set to zero. Figures 5 and 6 present the

Normal items
α0 3.2 3.3 3.1 3.5 3.2 3.4 3.3 3.6
α1 -2.0 -4.0 7.0 0.0 5.0 -8.0 -8.0 -3.0
α2 � 1.0 -3.0 -2.0 0.0 3.0 4.0 5.0
α3 � � 3.0 0.0 -1.0 2.0 4.0 -9.0
α4 � � � 2.0 -4.0 2.0 6.0 -4.0
φ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Binomial items
α0 -0.7 0.9 0.8 0.8 0.1 0.3 0.4 -0.8
α1 0.6 0.6 -0.3 -0.6 0.0 0.5 0.3 -0.1
α2 0.1 0.2 -0.3 -0.2 -0.4 0.2 0.5 -0.3
α3 0.0 0.8 -0.3 -0.5 0.2 0.6 0.4 -0.5
α4 0.4 0.6 -0.3 -0.2 -0.7 -0.5 -0.2 -0.3

Table 3: Parameters for a model with four latent variables

results, with paired boxplots. The left ones correspond to the LISREL estimators and the

right ones to the LAMLE.

5.3 Discussion of the results

Models with a single latent variable are rather simple and the GHQ approximation with

48 quadrature points is expected to give good results. Figures 1 and 2 show no di�er-

ences between the GHQ approximation and the LAMLE. Even, in this model, with only

5 manifest variables, the LAMLE shows a performance of the same quality as the GHQ

approximation. Variances of the estimators are very close and no bias appears. The LIS-

REL estimator for the �rst binomial loading looks however biased. In conclusion, LAMLE

16



is as good as the MLE with the GHQ approximation for very low dimensional models for

GLLVM and the LISREL already shows problem with binomial manifest variables.

����������������������

Insert Figures 1 and 2 here

����������������������

In models containing two latent variables, the quality of GHQ is expected to deteriorate

because the implementation allows only for 16 quadrature points at most. On the other

hand, the LAMLE behavior should not change asp grows to 10. Large biases appear with

GHQ approximations for the parameters (see Figures 3 and 4). For instance,φ33 reveals a

bias that is so large, that every sample leads to an estimate always above the true value.

On the other hand, the LAMLE remain unbiased.

����������������������

Insert Figures 3 and 4 here

����������������������

A possible explanation of this di�erence is as follows. The GHQ approximation is based

upon the integration on pre-speci�ed quadrature points: these points are placed on a grid

which is �xed and does not depend on the form of the log-likelihood. With 16 and 8

quadrature points, this grid becomes coarser. Hence, it can happen that the peak of the

log-likelihood lies right in a hole; see Figure 7. In such a case, most of the information

contained in the log-likelihood is missed. On the other hand, the Laplace approximation

searches for the point that is the maximum of the likelihood and approximates adaptively

(i.e. for each xi) the function in its neighborhood.

17
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Insert Figure 7 here

����������������������

The LISREL estimators are unbiased for normal manifest variables but show important

biases for some of the binomial manifest variables (seeα18 and α26 for example).

With four latent variables, no comparisons between GHQ and the LAMLE are possible.

Actually, the most important fact is that the LAMLE is easily computable on dimensions

that were untractable for GLLVM before. The results of the estimators ofα1 and α3 are

presented in Figures 5 and 6. As it was already the case for one and two latent variables,

LAMLE are unbiased. On the other hand, the LISREL estimators for the loadings of

binomial manifest variables are signi�cantly biased. Similar plots were obtained for other

parameter's values.

����������������������

Insert Figures 5 and 6 here

����������������������

6 Conclusion

The aim of this paper was to propose a general method for estimating the parameters of a

GLLVM even in high dimensional models. The likelihood function of a GLLVM contains

integrals that need to be approximated. Moustaki (1996) proposed a GHQ approximation

which, although simple, can lead to biased estimates. Moreover, with such an approxima-

tion, the GLLVM model is limited to two latent variables. We proposed instead to use a

Laplace approximation for the likelihood function which allows to estimate models with

18



many latent variables. We showed that the LISREL approach can lead to highly biased

estimators for the loadings of binomial manifest variables whereas the LAMLE remain

unbiased. The estimators based on the Laplace approximation can be interpreted asM -

estimators, and as a consequence, inference is readily available. Moreover, the estimation

procedure provides automatically individual scores on the latent variables space. All the

procedures presented in this paper are implemented in a standalone software which is avail-

able from the authors upon request. Open research directions include the development of

variable selection procedures as in GLM based on the LAMLE.
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Appendix A: LAMLE for GLLVM with binomial and a
mixture of binomial and normal manifest variables
A.1 Binomial manifest variables

Let X|Z, with possible values 0, 1, . . . , m, have a binomial distribution with expectation

m · π(z). Using the canonical link function for binomial distributions, we have

π(z) =
exp(αTz)

1 + exp(αTz)
.

The scale parameter φ = 1 and the functions b and c in (1) are given by

b(αTz) = mlog(1 + exp(αTz)) (18a)

c(x, φ) = c(x) = log
(

m
x

)
, (18b)

and

g(x|z) =

(
m
x

)
π(z)x(1− π(z))(m−x). (19)

The log-likelihood for binomial responses, using the expressions in (11) is

l̃(α,φ|x) =
n∑

i=1

(
−1

2
log det

(
Γ(α, ẑi)

)

+

p∑
j=1

[
x

(j)
i αT

j ẑi −mlog(1 + exp(αT
j ẑi)) + log

(
m

x
(j)
i

)]
−

ẑT
i(2)ẑi(2)

2

)
, (20)

with

Γ(α, ẑi) =

p∑
j=1

m
exp(αT

j ẑi)

(1 + exp(αT
j ẑi))2

αj(2)α
T
j(2) + Iq =

p∑
j=1

mβjiαj(2)α
T
j(2) + Iq,

and βji = exp(αT
j ẑi)(1 + exp(αT

j ẑi))
−2. ẑi(2) is the solution of the implicit equation (see

(10)):

ẑi(2) =

p∑
j=1

(
x

(j)
i −m

exp(αT
j ẑi)

1 + exp(αT
j ẑi)

)
αj(2). (21)
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To compute the score functions, we �rst need

tr
(
Γ(α, ẑi)

−1∂Γ(α, ẑi)

∂αkl

)
= tr

(( p∑
j=1

mβjiαj(2)α
T
j(2) + Iq

)−1

( p∑
j=1

mβji

[
1− exp(αT

j ẑi)

1 + exp(αT
j ẑi)

∂αT
j ẑi

∂αkl

αj(2)α
T
j(2)

]
+ (1− δl0)(el ⊗αT

k + eT
l ⊗αk)

))
,

(22)

where ⊗ denotes the Kronecker product and el is the vector of length q whose elements

are zeros except the lth one which is 1. Moreover,

∂bj(α
T
j ẑi)

∂αT
j ẑi

= m
exp(αT

j ẑi)

1 + exp(αT
j ẑi)

. (23)

Finally, by means of the generalized theorem of implicit functions, we di�erentiate ẑi(2)

and obtain

∂ẑi(2)

∂αk0

= −mβkiΓ(α, ẑi)
−1αk(2) (24a)

∂ẑi(2)

∂αk(2)

= Γ(α, ẑi)
−1

(
−mβkiαk(2)ẑ

T
i(2) +

(
x

(k)
i −m

exp(αT
j ẑi)

1 + exp(αT
j ẑi)

)
Iq

)
. (24b)

The LAMLE of a model with binomial manifest variables is completely de�ned by the

pseudo log-likelihood (20) and its score functions (12) whose components are given by

(21), (22), (23), and (24).

A.2 Mixture of binomial and normal manifest variables

In practice, a mixture model with both normal and binomial responses is more realistic

than the models we presented in A.1. Let us suppose that among thep manifest variables,

the �rst p1 are normal and the last p − p1 follow a binomial distribution. To create the

approximate model, the procedure is the same as before except that all sums overj are

separated into two parts, depending on whether j is related to a normal or a binomial
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variable. Consequently, the pseudo log-likelihood takes the following form:

l̃(α,φ|x) =
n∑

i=1

(
−1

2
log det

(
Γ(α, φ, ẑi)

)

+

p1∑
j=1

[
αT

j ẑi

φj

(
x

(j)
i − αT

j ẑi

2

)
− 1

2

((
x

(j)
i

)2

φj

+ log(2πφj)

)]

+

p∑
j=p1+1

[
x

(j)
i αT

j ẑi −mlog(1 + exp(αT
j · ẑi)) + log

(
m

x
(j)
i

)]
−

ẑT
i(2)ẑi(2)

2

)
, (25)

where

Γ(α,φ, ẑi) =

p1∑
j=1

αj(2)α
T
j(2)

φj

+

p∑
j=p1+1

mβjkαj(2)α
T
j(2) + Iq = Γ1(α,φ) + Γ2(α, ẑi) + Iq.

ẑi(2) is obtained through the implicit equation:

ẑi(2) =

p1∑
j=1

1

φj

(x
(j)
i −αT

j ẑi)αj(2) +

p∑
j=p1+1

(
x

(j)
i −m

exp(αT
j ẑi)

1 + exp(αT
j ẑi)

)
αj(2). (26)

We di�erentiate (25) to obtain the score functions. As normal responses are present in the

model, score functions forφ are also required. The di�erent components of equations (12)

and (13) are

∂Γ(α,φ, ẑi)

∂αkl

= (1− δl0)
(
el ⊗αT

i + eT
l ⊗αi

)( 1

φk

D1 + mβkiD2

)

+

p∑
j=p1+1

mβji

(
1− exp(αT

j ẑi)

1 + exp(αT
j ẑi)

∂αT
j ẑi

∂αkl

αj(2)α
T
j(2)

)
, (27a)

where

D1 =

{
1 : 1 ≤ i ≤ p1

0 : p1 < i ≤ p
and D2 =

{
0 : 1 ≤ i ≤ p1

1 : p1 < i ≤ p
,

and

∂Γ(α,φ, ẑi)

∂φk

= − 1

φ2
k

αk(2)α
T
k(2) +

p∑
j=p1+1

mβji

1− exp(αT
j ẑi)

1 + exp(αT
j ẑi)

∂αT
j ẑi

∂φk

αj(2)α
T
j(2). (27b)

Moreover,

∂ẑi(2)

∂αk0

=

{
− 1

φk
Γ(α,φ)−1αk(2), if 1 ≤ i ≤ p1

−mβkiΓ(α, ẑi)
−1αk(2), otherwise

(28a)

22



∂ẑi(2)

∂αkl

=





1
φk

Γ(α,φ)−1

(
−αk(2)ẑ

T
i(2) + (x

(k)
i −αT

k ẑi)Iq

)
, if 1 ≤ i ≤ p1

Γ(α, ẑi)
−1

(
−mβkiαk(2)ẑ

T
i(2) +

(
x

(k)
i −m

exp(αT
j ẑi)

1+exp(αT
j ẑi)

)
Iq

)
, otherwise

(28b)

∂ẑi(2)

∂φk

= −Γ(α,φ)−1

(
1

φ2
k

(x
(k)
i −αT

i ẑi)αk(2)

)
, if 1 ≤ i ≤ p1. (28c)

Thus, the pseudo log-likelihood (25) is maximized when the score functions given by

(12) and (13) are set to zero, where expressions (21), (27) and (28) are used.

Appendix B: Proof of Proposition 1

First, we establish the Proposition for a square matrix α̂.

Let α̂ = (α̂ij)1≤i,j≤q and α̂∗ = (α̂∗ij)1≤i,j≤q be two square matrices of dimension q × q

and H = (hij)1≤i,j≤q an orthogonal matrix of dimension q × q. If α̂ and α̂∗ have the same

upper triangle, and if α̂ = Hα̂∗, then it is straightforward to show thatH is diagonal, i.e.

hij = ±δij, with 1 ≤ i, j ≤ q and δij the Kronecker symbol.

The extension to matrices of dimensionp×q is trivial as α̂ (resp. α̂∗) can be partitioned

into two blocks α̂1 and α̂2 (resp. α̂∗
1 and α̂∗

2) of dimensions q × q and (p− q)× q:
(

α̂1

α̂2

)
= H

(
α̂∗

1

α̂∗
2

)

It remains to show that if at least one constraint of a column is di�erent from zero, then

the sign of this column is determined. Let α̂·j (resp. α̂∗
·j) be the jth column of α̂ (resp.

α̂∗) and let α̂i′j′ be an element of the upper triangle of α̂. Assume that it is di�erent from

zero, which means

α̂i′j′ = α̂∗i′j′ = a 6= 0.

Then, α̂ = Hα̂∗ implies that α̂i′j′ = hi′i′α̂
∗
i′j′ = a and hi′j′ = 1. Hence, the sign of the jth

column of α̂ is determined.
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Figure 1: Estimation of α1 for a model with a single latent variable
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Figure 2: Estimation of the scale parametersφ for a model with a single latent variable
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Figure 3: Estimation of α1 for a model with two latent variables
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Figure 4: Estimation of α2 for a model with two latent variables
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Figure 5: Estimation of α1 for a model with four latent variables
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Figure 6: Estimation of α3 for a model with four latent variables
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