
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2019                                     Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of 

the published version may differ .

Positive psychotic symptoms are associated with divergent developmental 

trajectories of hippocampal volume during late adolescence in patients with 

22q11DS

Mancini, Valentina; Sandini, Corrado; Padula, Maria; Zoeller, Daniela; Schneider, Maude; Schaer, Marie; 

Eliez, Stéphan

How to cite

MANCINI, Valentina et al. Positive psychotic symptoms are associated with divergent developmental 

trajectories of hippocampal volume during late adolescence in patients with 22q11DS. In: Molecular 

Psychiatry, 2019. doi: 10.1038/s41380-019-0443-z

This publication URL: https://archive-ouverte.unige.ch//unige:126175

Publication DOI: 10.1038/s41380-019-0443-z

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:126175
https://doi.org/10.1038/s41380-019-0443-z


UNCORRECTED P
ROOF

Molecular Psychiatry
https://doi.org/10.1038/s41380-019-0443-z

1
ARTICLE

2 Positive psychotic symptoms are associated with divergent
3 developmental trajectories of hippocampal volume during late
4 adolescence in patients with 22q11DS

5 Valentina Mancini 1
● Corrado Sandini1 ● Maria C. Padula1,2 ● Daniela Zöller 1,3

● Maude Schneider1,4 ●

6 Marie Schaer1 ● Stephan Eliez1,5

7 Received: 15 January 2019 / Revised: 4 May 2019 / Accepted: 13 May 2019
8 © The Author(s), under exclusive licence to Springer Nature Limited 2019

9 Abstract
10 Low hippocampal volume is a consistent finding in schizophrenia and across the psychosis spectrum. However, there is a
11 lack of studies investigating longitudinal hippocampal development and its relationship with psychotic symptoms. The
12 22q11.2 deletion syndrome (22q11DS) has proven to be a remarkable model for the prospective study of individuals at high
13 risk of schizophrenia to unravel the pathophysiological processes predating the onset of psychosis. Repeated cerebral MRIs
14 were acquired from 140 patients with 22q11DS (53 experiencing moderate-to-severe psychotic symptoms) and 135 healthy
15 controls aged from 6 to 35 years and with up to 5 time points per participant. Hippocampal subfield analysis was conducted
16 using FreeSurfer-v.6 and FIRST-FSL. Then, whole hippocampal and subfield volumes were compared across the groups.
17 Relative to controls, patients with 22q11DS showed a remarkably lower volume of all subfields except for CA2/3. No
18 divergent trajectories in hippocampal development were found. When comparing patients with 22q11DS exhibiting
19 psychotic symptoms to those without psychosis, we detected a volume decrease during late adolescence, starting in CA1 and
20 spreading to other subfields. Our findings suggested that hippocampal volume is consistently smaller in patients with
21 22q11DS. Moreover, we have demonstrated that patients with 22q11DS and psychotic symptoms undergo a further decrease
22 in volume during adolescence, a vulnerable period for the emergence of psychosis. Interestingly, CA2/3, despite being
23 affected in patients with psychotic symptoms, was the only area not reduced in patients with 22q11DS relative to controls,
24 thus suggesting that its atrophy exclusively correlates with the presence of positive psychotic symptoms.

25Introduction

26It is widely acknowledged that the Q1hippocampus plays a
27crucial role in learning, memory retrieval and imagination
28[1]. Beyond its involvement in memory, converging lines of
29evidence supported by MRI [2–7] and postmortem studies
30[8, 9] has suggested that patients with Q2schizophrenia are
31characterized by a smaller hippocampus. In fact, a lower
32hippocampal volume has been found in patients across the
33psychosis spectrum [3, 10, 11], comprising first-episode
34psychosis patients (FEP) [12, 13] and subjects at high/
35ultrahigh (UHR) risk for psychosis [14, 15]. However, a
36meta-analysis has recently shown that there was no evi-
37dence for a significant reduction in the whole hippocampal

Q338volume in patients at clinical high risk for psychosis [16],
39suggesting that only subtler changes might be detectable
40early in disease progression. Indeed, a dose-response rela-
41tionship depending on the stage of the disease has been
42found in individuals at UHR for psychosis [10]. Q4
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43 To date, many studies have reported the involvement of
44 different combinations of hippocampal subfields—CA1,
45 CA2/3, CA4, dentate gyrus and subiculum—in patients
46 with clinical high risk for psychosis [12, 17, 18]. Conse-
47 quently, several theories aimed at explaining the relation-
48 ship between psychotic symptoms and hippocampal volume
49 reduction have devoted great attention to the functional
50 anatomy of the hippocampus [19]. In fact, each hippo-
51 campal subfield has a different density of pyramidal neurons
52 [20], diverse synaptic architecture and distinct patterns of
53 connectivity with cortical areas [21]. Notably, dentate
54 gyrus, CA3 and CA1 are part of the trisynaptic circuitry
55 responsible for encoding episodic memory [22], whereas
56 the subiculum extends the persistence of such information
57 conveying it to the neocortex [23].
58 Even though there is no consensus on which subfield is
59 central to the development of psychosis, CA3 and CA1 are
60 very likely to be involved [24].
61 One theory posits that CA3 hyperactivity is instrumental
62 to the onset of psychotic symptoms [25]. CA3 has a pivotal
63 role in the hippocampal autoassociative network responsible
64 for memory encoding and retrieval [26], so it might be
65 involved in the generation of false memories, perceived as
66 hallucinations by schizophrenic patients [25, 27].
67 On the other hand, CA1 appeared to be the earliest
68 affected area in UHR [28, 29] and FEP [18] patients. One
69 study demonstrated that increased cerebral blood volume
70 (CBV) in the left CA1 of UHR patients predicted its atrophy
71 and the development of psychosis [28]. Similarly, in mouse
72 models of ketamine-induced schizophrenia, CA1 exhibited
73 the highest CBV, paralleled by an increase in extracellular
74 glutamate concentration [30]. Therefore, elevated hippo-
75 campal activity and subsequent excitotoxicity might have a
76 mechanistic role in the development of atrophy [31].
77 Finally, another study showed that UHR patients who
78 developed schizophrenia had, at the first assessment, a
79 lower right hippocampal and CA1 volume and a steeper
80 CA3 volume decline over time [29], suggesting that CA1
81 and CA3 might have different roles in the development of
82 psychosis.
83 Overall, a volume decrease in specific subfields has been
84 demonstrated cross-sectionally [10–12, 15] andQ5 long-
85 itudinally [13, 14, 29, 30] in patients at clinical risk of
86 psychosis. Subjects with a genetic risk, such as siblings of
87 psychotic patients, also presented hippocampal abnormal-
88 ities [32–36], and hippocampal volume was demonstrated to
89 be highly heritable [37]. Therefore, lower hippocampal
90 volume is considered to be a putative endophenotype for
91 psychosis [38].
92 However, even though the clinical high risk phase of
93 psychosis has been extensively studied, there is a lack of
94 studies investigating the previous period [11], i.e., that
95 premorbid phase when possible brain dysfunctions are not

96yet accompanied by overt symptoms [39]. It is still debated
97as to whether a lower hippocampal volume is a cause or a
98consequence of psychotic symptoms [11], or whether this
99relationship is even more complex, with psychosis and
100volume decreases being bounded by reciprocal causation. In
101this regard, the study of populations with a genetic risk of
102psychosis provides a unique opportunity to evaluate patients
103from childhood to clarify the temporal relationship between
104hippocampal development and the onset of psychosis.
105The 22q11.2 deletion syndrome (22q11DS)—a neuro-
106developmental disorder caused by a 1.5-3 Mb deletion on
107the long arm of chromosome 22—is considered to be
108among the most important genetic risk factors for psychosis
109[40]. As up to 41% of patients with 22q11DS will develop a
110psychotic disorder by adulthood [41], the syndrome has
111been recognized as a valuable model for detecting early
112psychosis biomarkers. Furthermore, predictive measures of
113conversion to psychosis, such as UHR status, have been
114validated in patients with 22q11DS [42]. Deletion carriers
115have cognitive and learning deficits and are more prone to
116developing psychiatric disorders, such as attention-deficit/
117hyperactivity disorder (ADHD), anxiety and obsessive-
118compulsive disorder (OCD) [43]. A wide range of medical
119conditions, including congenital heart defects (CHD) and T-
120cell immunodeficiency, can accompany neuropsychiatric
121manifestations [43]. Brain abnormalities are also a common
122feature of the syndrome, as patients have an average 11%
123total brain volume decrease [44] and reduced gyrification in
124the frontal and parietal lobes [45]. Moreover, lower hip-
125pocampal volume—either driven by the hippocampal head
126[46] or body [47–49]—has been found [50], and the size of
127the hippocampal head has been positively correlated to the
128onset of hallucinations [49]. However, it remains unclear at
129which point during development the hippocampal volume
130of patients with 22q11DS diverges from healthy subjects,
131i.e., if hippocampal volume is already reduced in patients
132during childhood or whether it occurs later, during adoles-
133cent brain maturation.
134Consequently, the first objective of the present study was
135to investigate the developmental trajectory of hippocampal
136volume in a large cohort of patients with 22q11DS over a
137wide timespan using a longitudinal design. The second aim
138was to analyze the association between hippocampal
139development and the onset of positive psychotic symptoms.
140A longitudinal approach was chosen to provide insights into
141whether a smaller hippocampus at baseline and/or a further
142volume decrease is specific to 22q11DS patients experien-
143cing symptoms of psychosis.
144We employed a recently developed automated segmen-
145tation technique from FreeSurfer v6.0, which allows a better
146delineation of the hippocampal subfields [51] than its pre-
147vious version [52]. Furthermore, given previous studies
148highlighting the existence of selective morphological
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149 abnormalities in the anterior and mid-body hippocampus
150 across the psychosis spectrum [7, 13, 15, 53] and in patients
151 with 22q11DS [46–49], we complemented the analysis of
152 subfields with FIRST-FSL [54], another widely used tech-
153 nique, which provides information about the shape of the
154 hippocampus along the anteroposterior axis.
155 According to previous studies [46–50], we hypothesized
156 that by using these techniques, we would detect a global and
157 robust difference between patients with 22q11DS and
158 healthy controls. In light of the findings reported with UHR
159 patients [10, 13, 14, 29], we further proposed that 22q11DS
160 patients with moderate-to-severe psychotic symptoms
161 would have a volume reduction in critical subfields, such as
162 CA1 and CA3. Understanding the timing of hippocampal
163 development in patients with 22q11DS could help to predict
164 the emergence of psychotic symptoms in at-risk
165 populations.

166 Materials and methods

167 Participants

168 One hundred forty individuals with a genetically confirmed
169 diagnosis of 22q11DS and 135 healthy controls (HC) were
170 recruited in the context of an ongoing longitudinal study
171 being carried out in Geneva since 2001 (additional details in
172 Supplementary Information and Supplementary Table 1).
173 The age of the patients and HC ranged from 6 to 35
174 years, and the two groups were matched for age and sex. On
175 average, each participant was assessed at 2.14 time points,
176 which varied from 1 to 5 across participants (Table 1). The
177 presence of axis I disorders according to DSM-IV criteria
178 and current use of psychotropic medication in the group of
179 patients with 22q11DS are listed in Table 2.
180 Written informed consent was obtained from participants
181 and/or their parents. The study was approved by the can-
182 tonal ethics committee and conducted according to the
183 Declaration of Helsinki.

184 Psychiatric assessment

185 Patients with 22q11DS experience subthreshold psychotic
186 symptoms to a greater extent than the general population;
187 [55] therefore, they are a compelling model to explore the
188 underlying neurobiology. The presence of moderate-to-
189 severe psychotic symptoms was assessed at each time point
190 by means of the Structured Interview for Psychosis-Risk
191 Syndromes (SIPS), as the SIPS is a well-validated diag-
192 nostic tool for assessing psychotic symptoms in deletion
193 carriers [56, 57]. Patients with 22q11DS were categorized
194 as experiencing positive symptoms of psychosis, using a
195 cutoff score of 3 or higher in at least one of the

196corresponding items. Together with time and frequency
197criteria, this intensity threshold has been proven by several
198studies to be the most sensitive at detecting prodromal risk
199syndromes [58]. Negative symptoms of psychosis, with a
200score of 3 or higher in at least one negative SIPS subscale,
201were taken into account separately to enable clarification of
202the relative contribution of positive and negative symptoms
203to hippocampal development.
204Due to their young age, 33 patients were unable to
205complete the SIPS, thus reducing the sample group to 107
206patients. Negative symptoms were present in 72 patients,
207while positive symptoms were present in 52 patients,
208including 13 with a diagnosis of schizophrenia and 2 with
209schizoaffective disorder. Specifically, 15 patients had a
210score of 6 on one or more positive subscales at one or more
211time points.
212The inclusion of a heterogeneous group of deletions
213carriers with various degrees of positive psychotic symp-
214toms allowed us to compare larger subgroups to discover
215putative brain abnormalities underlying the presence of such
216symptoms. From now onwards, all the patients with
217moderate-to-severe positive psychotic symptoms will be
218referred to as 22q11DS psy+ patients.

219MRI acquisition

220Due to the wide timespan of this study, the scans were
221acquired with three different scanners: a 1.5T Philips Intera
222scanner was used for the first 151 scans, a 3T Siemens Trio
223for the subsequent 294 scans and a 3T Siemens Prisma for
224the remaining 138 scans. T1-weighted images were
225acquired at the Center for Biomedical Imaging (CIBM) in
226Geneva with a three-dimensional volumetric pulse. The
2271.5T scanner parameters were TR= 35 ms, TE= 6 ms, flip
228angle= 45°, NEX= 1, matrix size= 256 × 192, field of
229view= 24 cm2, slice thickness= 1.5 mm, 124 slices. The
230parameters for both 3T scanners were TR= 2500 ms, TE=
2313 ms, flip angle= 8°, acquisition matrix= 256 × 256, field
232of view= 23.5 cm, slice thickness= 3.2 mm, and
233192 slices.
234To avoid possible confounding factors, the scanner
235model was entered as a covariate in all the statistical
236analyses.
237T1-weighted images underwent fully automated image
238processing with FreeSurfer version 5.3.0, comprising skull
239stripping, intensity normalization, reconstruction of the
240internal and external cortical surface and parcellation of
241subcortical brain regions [59].

242Hippocampal segmentation

243A recently developed automated segmentation technique
244published with FreeSurfer version 6.0 was used to label the

Positive psychotic symptoms are associated with divergent developmental trajectories of hippocampal. . .
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245 hippocampal subfields. This algorithm employs a prob-
246 abilistic atlas built from a combination of ex vivo 7T MRI
247 data from autopsied brains and in vivo 3T images of the
248 neighboring structures in a Bayesian framework [51].
249 Compared to the previous version [52], this technique
250 provides a higher resolution and the segmentation of a

251larger number of structures, including the cornu ammonis
252regions (CA1, CA2/3, CA4 and their molecular layer
253(ML)), the granule cell layer of dentate gyrus (GC-DG), the
254hippocampal tail and fissure. Surrounding regions, such as
255subiculum, parasubiculum, presubiculum, the
256hippocampus-amygdala-transition-area and fimbria, are also

Table 1 Demographic
information

22q11DS patients Healthy controls T-test/ Chi square

Number of subjects (female%) 140 (51.4%) 135 (48.1%) p= 0.934

Number of subjects with 5 visits 8 3 p= 0.124

Number of subjects with 4 visits 16 11 p= 0.313

Number of subjects with 3 visits 21 19 p= 1.000

Number of subjects with 2 visits 42 47 p= 0.613

Number of subjects with 1 visit 57 65 p= 0.785

Number of scans (total) 308 275 N/A

Number of 1.5 T scans 71 80 p= 0.09

Number of 3 T (Trio) scans 162 132 p= 0.23

Number of 3 T (Prisma) scans 75 63 p= 0.75

Age range 6–35 y.o. 6–35 y.o. N/A

Mean age 16.24 ± 6.44 15.48 ± 5.87 p= 0.089

Mean age at first visit 13.53 ± 6.44 13.26 ± 5.33 p= 0.713

Mean distance between visits 3.80 ± 1.07 3.72 ± 1.55 p= 0.724

Table 2 Medical history
comprising psychiatric disorders
and medications in the whole
group of patients with 22q11DS
and in the subgroups with and
without SIPS positive score > 3

All 22q11DS 22q11DS SIPS
positive > 3

22q11DS SIPS
positive < 3

p-value

Number of subjects (%f) 140 (51.4%) 53 (50.94%) 54 (48.15%) 0.7725

Mean age 16.33 ± 6.44 17.64 ± 6.25 17.43 ± 6.18 0.7882

Number of scans (total) 308 134 125 N/A

Number of 1.5 T scans 71 33 27 0.564

Number of 3 T (Trio) scans 162 72 70 0.7139

Number of 3 T (Prisma) scans 75 29 28 0.883

Subjects medicated 67 (47.85%) 32 (60.38%) 26 (48.15%) 0.0767

Methylphenidate 37 (26.43%) 12 (22.64%) 17 (31.48%) 0.2089

Antidepressants 26 (18.57%) 14 (26.41%) 9 (16.7%) 0.0728

Antipsychotics 15 (10.71%) 15 (28.3%) 0 <0.001

Anxiolytics 17 (12.14%) 10 (18.87%) 6 (11.11%) 0.0742

Antiepileptic drugs 7 (5%) 4 (7.55%) 3 (5.56%) 0.5210

More than one class of medication 21 (15%) 13 (24.53%) 7 (12.96%) 0.0120

Subjects meeting criteria for
psychiatric diagnosis

97 (69.28%) 45 (84.9%) 33 (61.11%) 0.0010

ADHD 52 (37.14%) 24 (45.28%) 20 (37.04%) 0.2153

Anxiety disorders 46 (33.57%) 23 (42.59%) 17 (31.48%) 0.0784

Mood disorders 28 (20%) 13 (24.53%) 9 (16.67%) 0.1266

Psychotic disorders 20 (14.28 %) 20 (37.75%) 0 <0.001

OCD 12 (8.57%) 4 (7.55%) 3 (5.56%) 0.5210

More than one diagnosis 40 (28.57%) 22 (41.51%) 13 (24.07%) 0.0025

NB: due to the lack of SIPS data in younger patients, the sum of the two sub-groups does not correspond to
the whole group

V. Mancini et al.
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257 included. Given the purpose of the present study, the
258 volume of the whole hippocampus and 7 relevant subfields,
259 CA1, CA2/3, CA4, GC-DG, ML, tail and subiculum, were
260 analyzed. For an example of FreeSurfer segmentation in a
261 patient and an HC, see Fig. 1.
262 Because we used FreeSurfer v5.3 to preprocess the data
263 and v6.0 to perform hippocampal subfield segmentation, we
264 tested and confirmed the reliability of using different ver-
265 sions of FreeSurfer by means of intraclass correlation
266 coefficient analysis (Supplementary Table 5).
267 To understand whether the difference between patients
268 with 22q11DS and HC has a specific distribution along the
269 anteroposterior axis, a shape analysis via the FSL software
270 FIRST [54] was also performed. This technique provides a
271 surface mesh of the hippocampus for each subject in a
272 common 3D space, modeled on intensity distribution and
273 vertex analysis. Then, an average mask was created by
274 concatenating all the hippocampal meshes of patients with
275 22q11DS and controls.
276 All the obtained images were visually inspected and then
277 excluded from the analysis if the quality of the segmenta-
278 tion was inappropriate. Specifically, we carefully checked in
279 each subject that the hippocampal mask as whole was
280 correctly placed, with no portions of the hippocampus were
281 cut off or shifts of the mask beyond the borders of the
282 hippocampus. Then, we verified that there were no mis-
283 labeling of hippocampal subfields and extrahippocampal
284 regions; in this regard, as suggested by the quality control
285 procedure provided by the ENIGMA protocol (https://
286 pgcptsd.com/wpcontent/uploads/2017/08/PTSD_
287 Instructions_Subfields_part_IR_II.pd), any mislabeling of
288 single subfields was sufficient to exclude the whole seg-
289 mentation. We therefore excluded 2 scans of patients with
290 22q11DS from FreeSurfer segmentation and 5 scans (3
291 patients and 2 controls) from FIRST-FSL analysis.

292 Statistical analyses

293 Mixed modeling has proven to be an ideal method for
294 handling nested data, such as multiple time points [60].
295 Considering that participants had a variable number of time
296 points, with an inconstant time interval and age distribution
297 (Supplementary Fig. 1), a mixed model regression analysis,
298 described in previous papers [61, 62], was used to analyze
299 the longitudinal data from FreeSurfer. Briefly, population
300 parameters (age and diagnosis) were modeled as fixed
301 effects and within-subject factors as random effects by
302 using the nlmefit function in MATLAB R2017a (Math-
303 Works). The normal distribution of data in each group was
304 required and therefore evaluated by our statistical analysis
305 approach. Total intracranial volume, sex, scanner model and
306 antipsychotic medications were included as covariates.
307 Developmental trajectories were estimated by fitting

308random-slope models (constant, linear, quadratic or cubic,
309each corresponding to a different relationship between age
310and hippocampal volume) to our data, taking into account
311both within-subject and between-subject effects. Then, the
312most suitable model order was selected using the Bayesian
313information criterion, obtaining, e.g., a full quadratic model
314as follows:

Yij ¼ β0 þ βg1 � gi þ βa1 � aij þ βag1 � gi � aij þ βa2 � a2ij
þ βag2 � gi � a2ij þ ui0 þ ui1 � aij þ ϵij

315316

Y : hippocampal volume

i; j : subjects; scan½ �index
βxn : fixed effects

g : grouping variable

a : age

u : normally distributed random effect

ϵi : normally distributed error term

317318

319The significance of the between-group differences in the
320intercept and in the slope were evaluated by means of a log-
321likelihood ratio test between the full model and any of the
322following reduced models:
323Reduced group effect model
324Yij ¼ β0 þ βa1 � aij þ βa2 � a2ij þ ui0 þ ui1 � aij þ ϵij
325Reduced slope model
326

327Yij ¼ β0 þ βg1 � gi þ βa1 � aij þ βa2 � a2ij þ ui0 þ ui1 � aij þ ϵij
328Hence, we obtained a comparison between the intercept
329(group effect) and the slope of developmental trajectories
330(group × age interaction effect) of the hippocampal volume
331of each group. Finally, the results were adjusted for multiple
332testing with the false discovery rate correction. Where
333appropriate (i.e., in quadratic models), the age correspond-
334ing to the inflection point of each developmental trajectory
335was estimated at the intersection between the derivative of
336the curve in that point and the x-axis.
337We further tested whether the degree of psychotic symp-
338toms as measured by the SIPS for each positive subscale (P1:
339unusual thought content/delusional ideas, P2: suspiciousness/
340persecutory ideas, P3: grandiose ideas, P4: perceptual
341abnormalities/hallucinations, P5: disorganized communica-
342tion) was correlated with hippocampal volume in patients
343with 22q11DS by using the fitlme function in MATLAB
344R2017a (MathWorks). The results were covaried for age,
345age2, sex, ICV, antipsychotics and scan type and finally
346adjusted for multiple comparisons with FDR correction.
347FSL data were analyzed cross-sectionally, selecting the
348first time point for each participant. Statistical maps and
349analyses were included in FIRST-FSL and obtained fol-
350lowing the pipeline described on the FSL website (https://
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351 fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST/UserGuide). With the
352 ‘randomise’ function, significant differences between the
353 two groups were computed with a cluster-based multiple-
354 comparison correction, covarying for total intracranial
355 volume, sex, scanner model, age and antipsychotic medi-
356 cations. The output was a 3D mask showing a selective
357 inward or outward displacement in the affected regions,
358 depending on whether the hippocampus of the patients was
359 smaller or larger than the controls.

360 Results

361 Patients with 22q11DS have widespread reductions
362 in hippocampal volume

363 A smaller hippocampal volume was demonstrated bilat-
364 erally in patients with 22q11DS in comparison to HC by
365 using data from FreeSurfer and FIRST-FSL segmentations.
366 The mixed model analysis revealed strong group differ-
367 ences in the whole right and left hippocampal volume (p <

3680.001), with no difference in developmental trajectories
369(Fig. 1). Similarly, a consistently lower volume was
370detected bilaterally in all subfields (p < 0.001), except for
371CA2/3 (Table 3). As in a previous study on healthy parti-
372cipants [63], all the trajectories had a second-order model,
373meaning that the relationship between age and hippocampal
374volume was quadratic (Fig. 2).
375The statistical map obtained using FIRST-FSL confirmed
376a diffuse inward displacement in the hippocampus of
377patients with 22q11DS involving the head, the body and the
378tail of the hippocampus. In particular, the medial and lateral
379surfaces of the right and left hippocampi were more con-
380sistently affected, whereas the upper and lower hippo-
381campal surfaces showed some unaffected areas along the
382midline, irrespective of anatomical boundaries (Fig. 3).

38322q11DS psy+ patients have altered developmental
384trajectories of specific hippocampal subfields

385To further assess the association between the development
386of hippocampal volume and psychotic symptoms,

Fig. 1 Comparison between patients with 22q11Ds and HC. Upper
panel: an example of Freesurfer v.6.0 hippocampal segmentation with
coronal (a, b) and sagittal (c, d) sections in a healthy control (a, c) and
in a patient with 22q11DS (b, d) of the same age. Lower panel: mixed

model analysis of the developmental trajectories showing a marked
smaller hippocampal volume in patients with 22q11DS without dif-
ferences in the shape of the two curves

V. Mancini et al.
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387 patients with moderate-to-severe positive or negative
388 symptoms were compared to patients with low symptom
389 scores.

390The hippocampal volume of participants with at least one
391SIPS negative symptom score ≥3 did not differ from the
392group without negative symptoms (Table 3). In contrast,

Fig. 2 . Developmental
trajectories of hippocampal
subfields in patients with
22q11DS and HC
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393 22q11DS psy+ patients had a decreased hippocampal
394 volume (p= 0.002 on the right side and p= 0.0035 on the
395 left side) (Fig. 4) compared to patients without positive
396 symptoms. Moreover, 22q11DS psy+ patients had lower
397 volumes of distinct subfields: bilateral CA2/3, CA4 and
398 GC-DG and left CA1 and subiculum (Table 3). The right
399 CA1 approached significance (p= 0.053).
400 Slope differences were only detected for the right hip-
401 pocampus, with a developmental trajectory showing a
402 volume decrease starting from 18.5 years in 22q11DS psy+
403 patients (Supplementary fig. 4). Right-side subfields dis-
404 played similar developmental trajectories across subfields
405 with an inflection point corresponding to late adolescence:
406 CA1: 16.5 years, DG: 17.3 years, CA4: 18 years, CA2/3:
407 18.8 years (Supplementary Fig. 2).

408 22q11DS patients with hallucinations have aberrant
409 developmental trajectories

410 We evaluated whether hallucinations as measured by SCID-
411 I or DICA (see Supplemental Information and specifically
412 Supplementary Table 2 for further details) were specifically
413 associated with a decreased hippocampal volume. Patients
414 with 22q11DS who experienced hallucinations had a
415 bilaterally reduced volume of the whole hippocampus and
416 of all the subfields, except for the left tail, in comparison to
417 those without hallucinations. Regarding all the right-side
418 subfields, except for CA1 and GC-DG, 22q11DS patients
419 with hallucinations exhibited a significantly different inter-
420 action effect (Supplementary Fig. 3), comparable to that
421 found in the group of patients selected according to
422 SIPS score.

423The degree of positive symptoms is not correlated
424with hippocampal volume

425We did not find a significant correlation between any of the
426positive SIPS subscales and volume of the hippocampal
427subfields (Supplementary Table 3). Only the correlation
428with the P5 subscale (disorganized communication)
429approached significance (left hippocampus p= 0.06, R=
430−0.247; right hippocampus p= 0.06, R=−0.217).

43122q11DS patients with CHD have a smaller
432hippocampus

433The 22q11DS patients with major CHD who underwent
434heart surgery (22q11DS CHD+) had a smaller hippo-
435campus than those without cardiac malformations (see
436Supplementary Table 4 for demographic information in the
437two groups). All the subfields, except for CA2/3, were
438bilaterally decreased in 22q11DS CHD+. No interaction
439effect was detected, except for the right CA2/3. The left
440CA2/3 area did not show a group or interaction effect
441(Supplementary Fig. 4).

442Discussion

443A smaller hippocampal volume is an anatomical
444trait of patients with 22q11DS

445Our findings pointed to a smaller global hippocampal
446volume in patients with 22q11DS than HC, broadening the
447evidence of a reduced hippocampal head [46] and body
448[47–49] previously demonstrated in smaller samples.

Fig. 3 Results of FIRST-FSL vertex analysis of group differences
between patients with 22q11DS and HC. The orange overlay indicates
the hippocampal regions displaying significant inward displacement in

patients with 22q11DS. a medial surface; b lateral surface; c upper
surface; d bottom surface
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449 According to the FIRST-FSL shape analysis, a significant
450 volumetric difference without an anteroposterior gradient
451 was detected, thus confirming a diffuse volume reduction in
452 the group of patients with 22q11DS. Our results are there-
453 fore in line with previous MRI studies demonstrating a
454 lower hippocampal volume in nonsyndromic UHR patients
455 [14] and healthy relatives of schizophrenic patients [32, 33].
456 Similarly, all the subfields displayed a consistently
457 smaller volume except for CA2/3. The reason why CA2/3 is
458 the only subfield that was not affected remains elusive.
459 However, from the observation that CHD could influence
460 hippocampal volume in 22q11DS [64], we can formulate
461 some hypotheses. CA3 is the most ischemia-resistant area in
462 the hippocampus because of its more efficient vasculariza-
463 tion, provided by the large dorsal intrahippocampal arteries
464 [65]. If CHD had a pivotal role in determining a smaller
465 hippocampal volume in 22q11DS, then CA3 vasculariza-
466 tion would be a protective factor towards hypoperfusion due
467 to hemodynamic instability. Our data partially support this

468hypothesis, as all the subfields, except for CA2/3, were
469bilaterally reduced in 22q11DS patients with CHD. More-
470over, one study employing magnetic resonance angiography
471reported hypoplasia of the right posterior cerebral artery
472(PCA) in more than half of a sample of patients with
47322q11DS [66]. Notably, PCA is the major source of hip-
474pocampal vascularization [65], so minor vascular anomalies
475might explain why the whole group of patients with
47622q11DS had a smaller hippocampal volume than the
477HC group.
478In patients with 22q11DS, the whole hippocampus and
479its subfields showed no divergent volume trajectories.
480Hence, a lower hippocampal volume already characterized
481the group of patients from the age of 6. Developmental
482studies on healthy subjects have documented that the most
483significant increase in hippocampal volume occurs during
484the first years of life [67], especially between the ages of 1
485and 2 [68], while from 4 to 25 years of age, no global
486volume change was detected [69]. Likewise, the notion of

Fig. 4 Comparison between developmental trajectories of 22q11DS
psy+ and psy- patients. Upper panel: developmental trajectories of the
whole right and left hippocampal volume. Lower panel: each arrow

specifies the subfield showed in the plot according to the color dis-
played in the legend
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487 adult hippocampal neurogenesis in humans has recently
488 been disputed [70]. Unfortunately, the timespan of our
489 longitudinal dataset starts from the age of 6, so we cannot
490 exclude a different maturation of the hippocampus before
491 this period. However, patients with 22q11DS are known to
492 carry a wide range of brain abnormalities with prenatal
493 origin, such as cortical folding alterations [45]. A recent
494 study posits the DGCR2 gene, located in the 22q11.2
495 region, as a pivotal regulator of early stages of cortico-
496 genesis in utero [71], implying early embryonic pathologi-
497 cal processes conferring vulnerability to schizophrenia.
498 Interestingly, even TBX1, another gene haploinsufficient in
499 22q11DS and related to CHD, can alter proper neuronal
500 migration and disrupt corticogenesis [72]. However, CHD
501 could have alternatively acted through hemodynamic
502 mechanisms, since the presence of CHD in fetuses inhibited
503 the autoregulation mechanism aimed at maintaining con-
504 stant cerebral perfusion [73].
505 In conclusion, we demonstrated a consistently lower
506 hippocampal volume from the age of 6 in patients with
507 22q11DS, which might, therefore, be an anatomical trait of
508 the syndrome. The results with those with CHD offer
509 exploratory evidence for the role of cardiovascular anoma-
510 lies in determining a smaller hippocampal volume, pre-
511 sumably during corticogenesis.

512 22q11DS psy+ patients have a further hippocampal
513 volume decrease in specific subfields

514 We observed that positive but not negative psychotic
515 symptoms are related to a smaller hippocampal volume in
516 patients with 22q11DS. Regarding positive symptoms,
517 several studies have demonstrated a correlation with
518 decreased hippocampal volume [74–77]. However, the
519 results have been conflicting with regard to negative
520 symptoms [17, 74, 78]. This lack of an association between
521 hippocampal volume and negative symptoms could depend
522 on the absence of shared pathophysiological mechanisms
523 involving the hippocampus or on confounding factors
524 peculiar to our sample, such as the high rate of psychiatric
525 comorbidities.
526 Strikingly, CA2/3 was the only hippocampal subfield
527 that did not differ in the group of 22q11DS psy+ patients
528 when compared with HC, but CA2/3 underwent progressive
529 atrophy in the patients. As such, its later involvement could
530 be directly related to the appearance of positive symptoms.
531 The relationship between positive psychotic symptoms and
532 the hippocampus—especially the CA3 area—lies at the core
533 of theoretical frameworks connecting memory and halluci-
534 nations [25, 27] and has been further corroborated by
535 empirical evidence. Tamminga et al. proposed that hallu-
536 cinations arise from the imbalance between the independent
537 mechanisms of pattern separation and pattern completion,

538respectively, involved in distinguishing new sensory inputs
539that differ slightly from previously stored memories and in
540the retrieval of memories from fragmented sensory cues
541[27]. The CA3 area is responsible for both of these pro-
542cesses. If there is a DG hypofunction, which is heavily
543involved in pattern separation [79], then hyperactivity in
544CA3-driven pattern completion [80] leads to wrong asso-
545ciations and false memories, possibly resulting in halluci-
546nations [27, 81]. In keeping with this theory, it has been
547demonstrated that FEP and chronic schizophrenia patients
548have a selective impairment in pattern separation with
549respect to healthy controls [82–84]. Subsequently, as shown
550in other studies, hippocampal hyperactivity can later lead to
551atrophy [28, 85]. Consistent with this, only those patients
552with Parkinson’s disease experiencing hallucinations
553exhibited hippocampal atrophy [86]. Furthermore, 21% of
554patients with selective hippocampal stroke experienced
555transient hallucinations [87]. Hence, the connection
556between positive symptoms, especially hallucinations, and a
557decreased hippocampal volume becoming increasingly
558accepted in the literature.
559Nevertheless, the quest to understand the relationship
560between hippocampal dysfunction and psychosis is yet to be
561completed, as we still do not know at what point of
562development it occurs. Our findings showed that several
563right-side hippocampal subfields atrophied over time start-
564ing from late adolescence in 22q11DS psy+ patients.
565Accordingly, a multisite study demonstrated the highest rate
566of subthreshold positive symptoms in patients with
56722q11DS during adolescence [56], suggesting that hippo-
568campal volume decreases occurred in a period that was
569sensitive to the emergence of psychotic symptoms.
570Overall, in 22q11DS psy+ patients, atrophy started in
571the CA1 area and subsequently involved the DG, CA4 and
572CA2/3 subfields. Interestingly, a similar pattern of pro-
573gression has been previously described in the early phases
574of schizophrenia, with hippocampal volumetric deficits
575spreading over time from CA1 to CA2/3 and DG [18]. Our
576results not only confirmed such a progression but also
577specifically associated CA3 volumetric loss with the pre-
578sence of psychotic symptoms. Therefore, our findings add
579to the effort of defining the timeframe in which preclinical
580pathophysiological processes occur, leading to the onset of
581the first psychotic symptoms.
582On the other hand, the left-side hippocampus group
583differences started from the age of 6 without divergent
584trajectories. We do not know whether these asymmetrical
585trajectories were due to inadequate sample size or depend
586on some functional hemispheric specialization. Hippo-
587campal asymmetry, with a larger right side, has been
588demonstrated at every stage of healthy development in
589adults [88], children [89] and infants [90], as well as in
590patients with schizophrenia [91]. Likewise, in other studies,
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591 the right hippocampal volume had a different develop-
592 mental trajectory from the left [67], increasing more quickly
593 from childhood to adolescence [92]. Our findings of later-
594 alized trajectories might, therefore, reflect a different speed
595 of the pathophysiology of schizophrenia within the right
596 hippocampus and left hippocampus. A captivating hypoth-
597 esis is that the asymmetry of carotid and vertebral arteries
598 reported in deletion carriers [93] and related to the abnormal
599 development of the derivatives of the third and fourth
600 branchial arches might partly explain our lateralized find-
601 ings. However, future studies in larger samples are needed
602 to test whether asymmetrical trajectories of hippocampal
603 development are related to the risk of psychosis.

604 Lower hippocampal volume is associated with the
605 presence rather than the degree of positive
606 symptoms

607 We tested whether the severity of positive symptoms was
608 correlated with the degree of hippocampal volume loss in
609 each subfield. Although there is evidence for such a cor-
610 relation in independent samples of patients with schizo-
611 phrenia [74, 75], in our group of patients with 22q11DS, we
612 did not find any significant result. Nonetheless, we
613 demonstrated subfield-specific progressive involvement
614 starting in late adolescence, suggesting that there is indeed a
615 link between disease progression and hippocampal volume
616 decrease.
617 This discrepancy might be explained by the fact that
618 positive psychotic symptoms have an inherently fluctuating
619 nature that does not necessarily parallel the general pro-
620 gression of the disease [94], especially in patients with
621 22q11DS [42, 95].

622 Hippocampal volume as a vulnerability factor for
623 psychosis: hypotheses and perspectives

624 Considering our findings, it is worth noting that the volumes
625 of most of the areas expected to have a role in psychosis,
626 such as CA1, DG, CA4 and subiculum, were already lower
627 in the entire 22q11DS group compared to the HC group.
628 Therefore, we cannot ignore the fact that 22q11DS is per se
629 a risk factor for the development of psychosis. Furthermore,
630 22q11DS psy+ patients had a smaller left-side hippo-
631 campus starting from the age of 6. Taking into account
632 hallucinations instead of the SIPS score (Supplementary
633 Information), allowed us to include more patients between
634 the ages of 6 and 10, showing that patients with halluci-
635 nations had a smaller right-side hippocampus even during
636 childhood. Taken together with the observation that these
637 areas undergo a further decrease during late adolescence, it
638 is conceivable that a smaller hippocampal volume at

639baseline could be a vulnerability factor for developing
640positive psychotic symptoms and hippocampal atrophy.
641We, therefore, propose a framework that could explain
642our results in light of some recent findings. Increased hip-
643pocampal activity, either in cerebral blood flow [28] or
644glutamatergic tone [30, 80], has been shown to precede
645atrophy in psychotic patients and mouse models
646[28, 30, 96]. The most commonly accepted interpretation is
647that enhanced glutamatergic activity requires an increased
648blood supply and can lead to atrophy through excitotoxicity
649mechanisms [31]. Interestingly, a continuum of increased
650glutamate levels has been found from controls to psychotic
65122q11DS patients using MRS [97], suggesting that pre-
652morbid 22q11DS patients might have an excitatory/inhibi-
653tory imbalance that worsens along with the progression of
654psychosis. We can speculate that reduced hippocampal
655volume at baseline could lead to compensatory mechanisms
656involving enhanced glutamatergic transmission. Then,
657environmental factors known to interfere with hippocampal
658physiology, such as stress [98] and neuroinflammation [99],
659may act as a second hit in some patients, resulting in an
660abnormally increased demand, which would, in turn, lead to
661psychotic symptoms and additional atrophy.
662Further research is required to disentangle the relation-
663ship between hippocampal morphology and the excitatory/
664inhibitory imbalance in relevant subfields in patients with
66522q11DS.

666Limitations and conclusion

667Several limitations need to be taken into consideration when
668interpreting our results. First, compared to HC, patients with
66922q11DS had many psychiatric comorbidities. However,
670the aim of this analysis was to explore the overall effect of
671the 22q11.2 deletion on hippocampal development, irre-
672spective of phenotypic manifestations. Second, 22q11DS
673psy+ were comparable to those without positive symptoms
674regarding each psychiatric comorbidity, except for having
675more than one psychiatric diagnosis and taking anti-
676psychotic medications (Table 2). However, covarying for
677antipsychotic medications, which were shown in some
678studies to decrease hippocampal volume [100], did not
679affect any of our findings. Moreover, many other studies
680failed to demonstrate a direct relationship between hippo-
681campal volume and antipsychotics [2, 10, 17, 18]. To rule
682out any interference of CHD and psychiatric comorbidities
683as anxiety and mood disorders, we added those variables as
684covariates, and there was still a strong effect of psychotic
685symptoms, both regarding the group effect and the inter-
686action with age (Supplementary Table 6). Furthermore, we
687separately took into consideration anxiety and mood dis-
688orders and estimated the hippocampal developmental tra-
689jectories according to the diagnosis of each of these
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690 comorbidities. However, we did not find any evidence of an
691 effect on hippocampal volume (Supplementary Table 7).
692 Third, only 15 patients formally met the criteria for a
693 diagnosis of schizophrenia; therefore, we lacked the power
694 to predict the development of a full-blown disorder. Indeed,
695 the psychosis literature would greatly benefit from long-
696 itudinal investigations of hippocampal development pre-
697 dicting the conversion to psychosis in patients with
698 22q11DS.
699 Although three different scanners were employed over
700 time in data collection, the number of 22q11DS patients and
701 HC acquired with each scanner was comparable (Tables 1
702 and 2), and the results were covaried according to the
703 scanner model. Finally, the lack of data before the age of 6
704 and after 35 prevented us from obtaining a broader picture
705 of hippocampal development, although adolescence is
706 considered the most sensitive period for psychosis.
707 In summary, we demonstrated in a large sample of
708 patients with 22q11DS a decreased hippocampal volume
709 compared to HC, suggesting that this could be an anato-
710 mical trait of the syndrome. A progressive decrease in the
711 volume of the right hippocampus starting from late ado-
712 lescence was found in 22q11DS psy+ patients. With regard
713 to hippocampal subfields, CA1 was the first affected area,
714 while CA3 was the last, and its atrophy was exclusively
715 correlated with positive symptoms.
716 As far as we are concerned, no study in the general
717 population has ever longitudinally evaluated the occurrence
718 of psychotic symptoms and hippocampal volume changes
719 over such a broad timespan. Therefore, in light of our
720 findings and considering that healthy relatives of schizo-
721 phrenia patients carry hippocampal malformations [32–36],
722 future studies should address whether a smaller or abnormal
723 hippocampus is also present from childhood in non-
724 syndromic subjects who will later develop schizophrenia.

725 Code availability

726 The code employed to model hippocampal developmental
727 trajectories is available upon request.
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