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Introduction

This thesis is about biological modalities. Biological modalities are modalities such as

necessity, possibility and counterfactuality applied to biologically salient entities such as

ecosystems, populations, organisms, traits, cells or genes. For example, the authors of

the standard textbook on molecular biology write that a “molecule like hemoglobin was

necessary to allow multicellular animals to grow to a large size, since large animals could

no longer rely on the simple diffusion of oxygen through the body surface to oxygenate

their tissues adequately” (Alberts et al. 2008: 256). This claim contains three biological

modalities: biological necessity (a molecule which carries oxygen from the respiratory

organs to the rest of the body is biologically necessary in large multicellular animals),

biological possibility (even though hemoglobin is the actual oxygen-carrying molecule in

large multicellular animals, it is biologically possible that this function is carried out by

a different protein), and biological counterfactuality (if large multicellular animals did

not have an oxygen-carrying molecule, then they would not be viable). In what follows, I

will take an epistemic perspective on biological modalities. That is, I am concerned with

(conceptual) tools and heuristics aimed at better understanding the role of biological

modalities in biological explanations.

This thesis has three parts. In chapters 1–3, I sketch a theory of biological modalities.

In chapters 4–7, I provide an implementation based on a case study. Finally, in chapters

8 and 9, I discuss some applications. I will now provide a brief overview of each chapter.

In chapter 1, I motivate my research. I argue that there is a tension between (1) the

lack of philosophical interest in biological modalities and (2) the important explanatory

role biological modalities play in biological practice. The first claim is supported by

a quantitative analysis of major academic databases and a qualitative survey of the

philosophical literature. I defend the second claim by four ‘arguments from case study’

pertaining to coiled ammonoid shell form, sticky footpads and maximum body size, the

minimal bacterial genome and essential genes, and the habitability of exoplanets. I

1



Introduction 2

propose that a theory or logic of biological modalities could fill the epistemic lacunae

between (1) and (2) by providing truth-conditions for biological modalities, shedding

light on the relationship between biological and other modalities, and spelling out how

biological modalities can be graded.

In chapter 2, I offer two main of clarifications of how (not) to think about biological

modalities. First, I argue that defining biological possibility as non-violation of biologi-

cal laws is problematic since it requires a commitment to both realism about biological

laws and the better best systems account of special science laws; otherwise biological

possibility is reduced to physical or logical possibility, or its definition is rendered cir-

cular. Second, I examine three ideas regarding the grading of (biological) possibility,

namely (1) the distinction between kinds of possibility such as logical, physical and bio-

logical possibility and (2) between subkinds of biological possibility which roughly map

to the scale of biological phenomena under investigation and come in historical or ahis-

torical flavors, and (3) the observation that some subkinds of biological possibility are

comparative.

In chapter 3, I improve upon Daniel Dennett’s (1995) definition of biological possibility

by proposing two modifications. First, I provide a clarification of his definition by recon-

structing the Library of Mendel as relational structure. Second, I argue that the most

important shortcoming of Dennett’s definition, namely the underdefined accessibility re-

lation, can be overcome by interpreting the accessibility relation as a solution to a string

editing problem. According to the restated definition, x is biologically possible with

respect to a genome g if and only if there is some genome g′ such that there is an edit

script from g to g′ that fits certain cost requirements given a set of edit operations, and

x is an instance of g or a feature of the phenotypic products of g′. This new definition

schema is promising because it is rooted in biological practice and can be extended into

a family of modal logics.

In chapter 4, I propose to put into action the results obtained so far by constructing

logical models of hemoglobin variants. Hemoglobin is the protein in red blood cells

responsible for binding oxygen; normal adult hemoglobin consists of two alpha and

beta globin chains determined by the hemoglobin alpha and beta gene respectively.

The modeling goal is to attain the desiderata specified above (to wit, truth conditions,

inferential relationships, grading). To this end, I present a schema for the classification of

point mutations and impose three modeling restrictions: The hemoglobin variants must

be caused by (1) single (2) substitutions (3) at codon 6 of the hemoglobin beta gene.
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Finally, I briefly review why bioambient calculus, Zsyntax, and mathematical models in

molecular biology are not suitable for the task at hand.

In Chapter 5, I introduce a simple model of hemoglobin variants caused by single sub-

stitutions at codon 6 of the hemoglobin beta gene within the framework of propositional

modal logic. In the model, states are interpreted as codons, the binary relation is inter-

preted as single substitution, and the valuation is kept fixed and induces a partition of

blocks of codons that code for some amino acid. I argue that explicit truth conditions

for at least historical and ahistorical biological modalities are attained via the modal

language describing the model. This gives rise to a normal modal logic that is sound

and complete with respect to the class of serial, symmetric and dense frames. After

showing that the model can be simplified via bisimulation contraction, I argue that the

notion of silent mutation is ambiguous between mutants that are bisimilar to the wild

type and hence modally silent, and mutants that are not and hence modally active.

In chapter 6, I extend the simple model and language to account for comparative (his-

torical) biological possibility. This yields a ranking of hemoglobin variants v, v′, . . .

caused by single substitutions at codon 6 of the hemoglobin beta gene. I distinguish

four circumstances under which v is more possible than v′: (1) v is easier to bring about

that v′, implemented by a modal operator capturing Hamming distance. (2) There are

more possible v than v′, implemented by a modal operator counting variants. (3) There

are more ways to realize v than v′, implemented by a modal operator counting unique

sequences of single substitutions. (4) v is more probable than v′, implemented by a non-

epistemic probabilistic modal operator and a weighted binary relation interpreted as

single substitution. In addition, I discuss the conditions for the introduced modal oper-

ators’ loss of historical or local context, and I show the extension’s ability to incorporate

transition/transversion bias or amino acid scoring matrices.

In chapter 7, I show that the previously imposed modeling restrictions can be lifted via

a generalization of the simple model. This enables the construction of logical models

of any protein variant caused by any point mutation at the coding region of any gene.

In the generalized model, states are interpreted as genes, multiple binary relations are

interpreted as distinct point mutations, and the valuation is kept fixed and induces

a partition of blocks of genes that code for some protein. I identify two limitations,

namely (1) the limited expressive power and (2) the reliance on opaque modalities of the

language describing the generalized model.

In chapter 8, I present SMAC (Simple Model Amino acid Checker), a model checking
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tool implemented in Python and made publicly available at maxghuber.github.io/SMAC

under the Apache License. It allows the user to obtain the truth value of any formula

φ of the basic amino acid language in the simple model. SMAC builds a semantic tree

where the root is the codon of evaluation decorated with φ, descendants are codons

decorated with subformulas of φ, and the leafs jointly comprise all logically possible

truth makers of φ. Each branch is then evaluated bottom-up. I show that SMAC has

the total correctness property, and that SMAC scales exponentially for nested modal

operators where the exponent is given by the highest number of nested modal operators.

In chapter 9, I argue that the standard semantics of counterfactual conditionals are

a bad fit for biological counterfactuals. The standard semantics require a similarity

ordering of states which is explicated in terms of physical laws. However, such a similarity

ordering is pragmatically unattainable, and even if it were attainable, it would still entail

explanatory mismatches. As an alternative, I propose a similarity ordering in terms of

edit distance that is easily computable. This yields semantics for at least some biological

counterfactuals that does not rely on laws (physical or other). Finally, I show that these

semantics can be seamlessly integrated with the semantics of the biological modalities

introduced earlier.

https://maxghuber.github.io/SMAC/
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1. Motivation

The aim of this chapter is to motivate a theory of biological modalities. In section 1.1, I

will show that very little theoretical work on biological modalities has been undertaken

based on a quantitative analysis of academic databases. In section 1.2, I will argue bio-

logical modalities nevertheless play an important explanatory role in biological practice.

To this end, I will examine four paradigmatic examples of biological research. Finally, in

section 1.3, I will spell out a number of desiderata for a theory of biological modalities.

1.1 A lack of theory

In this section, I will argue that very little theoretical work on biological modalities has

been undertaken based on a quantitative analysis of academic databases. The above

discussion can hence be seen as a stand-in for a more classical review of the literature

that can be usually found at this place.

In order to do so, I have conducted a series of queries about biological, physical and

logical modalities on a range of databases that jointly represent academic publishing.

Before presenting and interpreting the obtained results in subsection 1.1.2, the databases

are presented and it is explained how the modalities under consideration have been

operationalized in subsection 1.1.1.

1.1.1 Methods

I compiled data from nineteen popular and/or renowned academic databases summarized

in Table 1.1. These fall into three categories: Multidisciplinary databases (CiteSeerX,

Google Scholar, JSTOR, ProQuest Dissertations & Theses Database, Microsoft Aca-

demic, ScienceDirect, Science.gov, SpringerLink, Web of Science, Wiley Online Library,

6
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WorldCat), social databases (Academia, ResearchGate), and domain specific databases,

namely biological databases (BioOne, PLOS, NCBI) and philosophical databases (Philoso-

pher’s Index, PhilPapers and Standford Encyclopedia of Philosophy). I submit that these

databases are jointly representative of how academics (and in particular, biologists and

philosophers) publish their findings respectively how their publications can be accessed.

To wit, try to find a post-1900 publication that is not in at least one of these databases.

This should prove to be extremely difficult since the most important academic publish-

ers are covered (see Larivière et al. 2015), open access publishing is covered, social or

informal publishing is covered, and the most important databases for biology respec-

tively philosophy are covered (however, non-indexed contributions to small conferences

or workshops could for example fall through the cracks).

These nineteen databases were then canvassed for biological, physical and logical modal-

ities. In order to do so, the kinds modalities under consideration had to be opera-

tionalized. Since all databases allow for exact search queries, each kind of modality was

represented as set of strings. For example, consider the operationalization of biological

modality:

BM = BP ∪BN (1.1)

BP = {‘biological possibility’, ‘biologically possible’} (1.2)

BN = {‘biological necessity, ‘biologically necessary’} (1.3)

In what follows, I will abbreviate the operationalization of biological modality as BM,

and the operationalization of physical and logical modalities as PM and LM respectively.

Note that PM and LM are defined analogously to BM as per (1.1)–(1.3). The obtained

data could be improved by adding to each operationalization further inflections and

variants of the modalities under consideration. For example, BM could be improved by

adding the strings ‘biological possibilities’ (plural), ‘biologically impossible’ (negation),

and so on. An easy way to achieve this would be via wildcard characters. However, not

all databases have search masks that allow for (compound) wildcard characters which is

why wildcard characters have not been implemented here.

In addition to the operationalzation, for each database, a search query had to be defined

given the syntax of the corresponding search mask. In all cases, whenever possible,

the search query forces a maximally inclusive full-text search. The search queries are

summarized in in Table 1.2.
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With the databases, the operationalization of the kinds of modalities and the query

syntax in place, the frequencies of each kind of modality for each database can be

computed in a straightforward manner:

F(BM) = ∑
x∈BM

F(x) (1.4)

where F(x) ∈ N is given by a search of string x in the database given the corresponding

query syntax as specified in Table 1.2. Then F(x) is the frequency of the string in the

database and F(BM) is the aggregate frequency of all strings in BM in the database.

A final component is yet missing: In order to allow for a comparison of frequencies across

databases, they need to be normalized. This can be achieved by using an extremely

common string as baseline. Using again BM as an example for some database, the

normalized frequency of BM, denoted by N(BM), is given as follows:

N(BM) =
F(BM)

F(baseline string)
(1.5)

So the normalized frequency is the ratio of the frequency to the baseline string for

each database. According to the Oxford English Corpus, ‘time’ is the most common

English noun and hence an ideal baseline string (for more details on the Oxford English

Corpus, see Culpeper 2009). However, there are more than fifty particles, short verbs

and adjectives that are more common; so why use ‘time’? There are three pragmatic

reasons: Many databases have search masks that 1. have a minimum string size that

excludes most particles, 2. exclude logical connectives such as ‘and’ from being searched

because they are part of the search mask’s syntax, or 3. return results for strings such

as ‘be’ or ‘the’ that are implausibly low. In light of these reasons, (1.5) can be adapted

accordingly:

N(BM) =
F(BM)

F(‘time’)
(1.6)

And similar for PM and LM.

1.1.2 Results and discussion

I will now turn to present the results. There are two main findings:

1. The frequency of BM is low.
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Database F(BP) F(BN) F(PP) F(PN) F(LP) F(LN) F(‘time’)

Academia 554 1095 5785 1398 8140 5400 629000
BioOne 22 10 30 4 29 16 114630
CiteSeerX 1298 627 16398 1193 17434 4772 4642595
Google Scholar 1225 9200 53180 11820 69900 56400 6450000
JSTOR 489 1422 5125 2571 14648 12928 5701480
Philosopher’s Index 4 11 56 50 385 358 26959
PhilPapers 3 4 58 53 172 198 1000
PLOS 86 15 102 6 88 10 161589
ProQuest 6 13 64 21 87 98 83407
Microsoft Academic 8557 1967 9136 3657 1479 882 7703
NCBI 296 253 60 79 242 231 39103967
ResearchGate 1149 1191 10810 1351 10080 3600 14100000
ScienceDirect 529 586 5774 700 3805 1999 9325482
Science.gov 844 597 1599 999 1301 1047 2889
SpringerLink 573 806 6395 1618 10808 6853 5991573
SEP 6 8 91 23 222 170 3180
Web of Science 75 53 376 53 232 211 13766290
Wiley Online Library 477 663 2944 780 4639 3435 4596552
WorldCat 189 261 2984 345 1113 1121 22343288

Table 1.3

Frequencies of kinds of modalities in sample databases as per April 13, 2016.

2. The frequency of BM is lower than the frequency of each of PM and LM.

Let me discuss these results in turn. I begin with the first result. The absolute frequen-

cies of BM, PM, LM and ‘time’ are summarized in Table 1.3. Two remarks about the

quality of the reported data are in order. First, there are data points which are easily

identified as artifacts. For example, PhilPapers, Microsoft Academic, and Science.gov

have all implausibly low results for ‘time’, although for different reasons: While PhilPa-

pers simply does not quantify results over a certain threshold, Microsoft Academic and

Science.gov employ a semantic respectively thematic search. That is, in both cases,

the input string ‘time’ is interpreted as a query about a category rather than an exact

match. Artifacts like these are easily caught via the Anderson-Darling test discussed

below. Second, it is important to underscore that an absolute frequency of n ∈ N for a

kind of modality, say BP, does not mean that there are n publications about biological

possibility in the corresponding database. More precisely, in order for a publication to be

counted as result, it is sufficient that any string in the set BP is mentioned; hence, it is

not necessary that the notion of biological possibility is defined and/or explained in the

publication. There are at least two methods to improve upon the data; that is, there are
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at least two methods to increase the chance that the modal notion under consideration

is indeed defined and/or explained in the publication:

1. The frequency of ‘biological possibility’ (and ‘biologically possible’) with respect

to a publication can be used as a proxy for the degree to which the publication

is about biological possibility. Put differently, the higher the frequency ‘biologi-

cal possibility’ (and ‘biologically possible’) for a given publication, the higher the

chance that the publication provides a definition and/or explanation of biological

possibility. For example, there are 23 mentions of ‘biological possibility’ and 7

mentions of ‘biologically possible’ but no mention of either ‘biological necessity’

and ‘biologically necessary’ in the book of Dennett (1995) which I have claimed to

provide the only explicit definition and explanation of biological possibility. How-

ever, an implementation of such a quantitative strategy is not feasible since none

of the search masks of the selected databases allow for this kind of second order

search, and, more importantly, all publications would need to be available for a

full-text search (which is not the case).

2. A more qualitatively oriented strategy is to manually screen and evaluate the

publications yielded by the query. However, this is extremely labor intensive, and

again all publications would need to be available (which is still not the case). While

I have manually checked the first dozen or so results for each database and string

in BP with the result of not finding any publication about the notion of biological

possibility in the required sense, this is merely anecdotal given the number of results

returned for some databases. For now, simply note that the sum of results for BM

over all three philosophical databases amounts to only 36 (including duplicates),

only one of which provides a definition and/or theory in the required sense; so at

least for the philosophical databases, most results are false positives.

In short, the reported low frequency of BM indicates an ever lower number of publications

that actively engage with biological modalities instead of merely employing them.

I will now turn to the second result. The normalized frequencies of BM, PM and LM

are summarized in Table 1.4. Since we are not interested in absolute frequencies, data

cleansing proves to be much easier in this case. In order to catch outliers, we check for

each kind of modality whether the normalized frequencies over all databases adhere to a

normal distribution. For this the Anderson-Darling test is used; the minimum number

of outliers is then removed (see Kvam and Vidakovic 2007: 90ff. for details). Note that

in all cases in which the validity of a data point was challenged with respect to abso-
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Database N(BP) N(BN) N(PP) N(PN) N(LP) N(LN)

Academia ((((0.000881 ((((0.001741 ((((0.009197 ((((0.002223 ((((0.012941 ((((0.008585
BioOne 0.000192 0.000087 0.000262 0.000035 0.000253 0.000140
CiteSeerX 0.000280 0.000135 ((((0.003532 0.000257 0.003755 0.001028
Google Scholar 0.000190 ((((0.001426 ((((0.008245 ((((0.001833 ((((0.010837 ((((0.008744
JSTOR 0.000086 0.000249 0.000899 0.000451 0.002569 0.002267
Philosopher’s Index 0.000148 0.000408 0.002077 ((((0.001855 ((((0.014281 ((((0.013279
PhilPapers ((((0.003000 ((((0.004000 ((((0.027000 ((((0.031000 ((((0.058000 ((((0.042000
PLOS ((((0.000532 0.000093 0.000631 0.000037 0.000545 0.000062
ProQuest 0.000072 0.000156 0.000767 0.000252 0.001043 0.001175
Microsoft Academic ((((1.110866 ((((0.118006 ((((0.137349 ((((0.255355 ((((0.739063 ((((0.446969
NCBI 0.000008 0.000006 0.000002 0.000002 ((((0.000006 ((((0.000006
ResearchGate 0.000081 0.000084 0.000767 0.000096 0.000715 0.000255
ScienceDirect 0.000057 0.000063 0.000619 0.000075 0.000408 0.000214
Science.gov ((((0.292143 ((((0.206646 ((((0.256490 ((((0.296989 ((((0.553479 ((((0.173416
SpringerLink 0.000096 0.000135 0.001067 0.000270 0.001804 0.001144
SEP ((((0.001887 ((((0.002516 ((((0.028616 ((((0.007233 ((((0.069811 ((((0.053459
Web of Science 0.000005 0.000004 0.000027 0.000004 0.000017 ((((0.000015
Wiley Online Libary 0.000104 0.000144 0.000640 0.000170 0.001009 0.000747
WorldCat 0.000008 0.000012 0.000134 0.000015 0.000050 0.000050

Table 1.4

Normalized frequencies of kinds of modalities in sample databases as per April

13, 2016. Crossed-out values indicate non-normally distributed normalized fre-

quencies per column as determined by the Anderson-Darling test.

lute frequencies, the corresponding normalized frequencies are marked as outliers. The

averages over all databases of the clean normalized frequencies are detailed in Figure 1.1.

To sum up this section, I have argued that there is a lack of theory with respect to

biological modalities based on a quantitative analysis of academic databases. I have pre-

sented two results in support of this claim: First, the number of publications that define

and/or explain biological modalities is extremely low. And, secondly, the low standing

of work on biological modalities as compared to work on physical and logical modalities.

This completes the first section of this chapter. In section 1.2, I will argue that even if

there is a lack of theory, biological modalities still play an important explanatory role

in biological practice. In section 1.3, I will then spell out a number of desiderata for a

theory of biological modalities.
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Figure 1.1

Histogram of the average normalized frequencies of biological, physical and

logical modalities with respect to the sample databases.

1.2 Biological modalities are explanatory

Above I have argued that there is a lack of theory with respect to biological modalities.

In this section, I will argue that biological modalities play an important explanatory role

in biological practice based on an analysis of four cases, namely the computational model

of coiled ammonoid shell form by David Raup (1962, 1966, 1967), the investigation of

sticky footpads and maximum body size by David Labonte et al. (2016), the design and

synthesis of a minimal bacterial genome by Clyde Hutchison et al. (2016), and the review

of habitability by Charles Cockell et al. (2016). This motivates, in part, the construction

of a theory of biological modalities which is undertaken in later chapters. In passing, I

will then identify a number desiderata for such a theory which will be compiled in the

next section.

The kind of argument employed in what follows could be dubbed ‘argument from case

study’ (or AC in short). It is instructive to consider its form:

1. A case x is representative of a scientific domain D.

2. A proposition p holds in x.
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∴ Therefore, p holds in D.

AC is an inductive argument and hence fallible. The strength of the support for the

conclusion is given by the fit of the case to the scientific domain. That is, the better a

case represents a scientific domain, the higher the chance that the truth of the proposition

in question carries over to the scientific domain. Here is how AC is applied to the task

at hand:

1. A case x is representative of biology.

2. Biological modalities play an important explanatory role in x.

∴ Therefore, biological modalities play an important explanatory role in biology.

Note that there might be a number of general epistemic issues related with this line of

reasoning; I am not interested to discuss these here (but note that instances of AC are

ubiquitous in philosophy of biology).1 Rather, I will focus on two specific worries which

I will discuss in turn:

The first worry is that the domain of biology is too large and heterogeneous, ranging

from astrobiology to zoology. So a case study in one subfield tells us relatively little

about biology or removed subfields. For example, a case study in molecular biology tells

us relatively little about the use of biological modalities in (say) ecology. In order to

address this worry, I will conduct more than one case study. In particular, I will consider

four cases which jointly cover astrobiology, biomechanics, ecology, evolutionary biology,

molecular biology, synthetic biology, and theoretical morphology.2

The second worry is that it is not clear what it means for a case to be representative

of biology respectively the identified subfields. Marie Kaiser (2013) distinguishes three

classes of cases (or paradigmatic examples) that are representative of biological practice;

building on this distinction, we have:

1. Historical cases in the sense of field-defining research. Impact factor, number of

citations, and so on, act as proxy for identifying such examples.

2. Textbook cases comprising results found in most or all standard textbooks.

1 While this does not prove the epistemic merit of AC, it provides a pragmatic reason for employing
AC.

2 Here I simply group the cases into the self-identified subfields and neither presume that these subfields
are discrete nor that the employed categorization has any metaphysical or epistemic import above
common usage.
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Case Subfields Class

Raup (1962, 1966, 1967) Theoretical morphology Historical case
Labonte et al. (2016) Evolutionary biology, biomechanics Cutting edge research
Hutchison et al. (2016) Molecular biology, synthetic biology Cutting edge research
Cockell et al. (2016) Astrobiology, ecology Cutting edge research

Table 1.5

The four analyzed cases, the subfields they represent and their kind of repre-

sentation.

3. Cutting edge research as defined by recent publications in leading journals (or

presentations at important conferences, and so on).

Two remarks are in order. First, these classes are not discrete since many historical

examples will end up in textbooks, some cutting edge research will prove to be histor-

ical, and good textbooks incorporate cutting edge research. For example, in molecular

biology, the discovery of the double-helix structure of DNA by Watson and Crick (1953)

is a historical case; the mechanism of oxidative phosphorylation as explained by Alberts

et al. (2008) is a textbook case; and any contribution in the latest issue of the Journal

of Molecular Biology is an example of cutting edge research. Second, of the four cases

to be discussed below, three are cutting edge research and one is a historical case. The

reason for this selection is to ensure the novelty of the discussion and results. For a

summary of the cases, see Table 1.5.

With AC in place, I will now turn to argue that biological modalities play an important

explanatory role in the selected cases. By AC, this will show that biological modalities

play an important explanatory role in the corresponding subfields of biology.

1.2.1 Coiled ammonoid shell form

David Raup’s computational model of coiled ammonoid shell form is a classical example

in what is sometimes called ‘theoretical morphology’ and has been discussed at length,

for example by Richard Dawkins (1996: chapter 6) and George McGhee (2007). For this

reason, I will abstain from an extensive exposition and focus on the role of biological

modalities in Raup’s research.

Ammonoids are a group of extinct marine cephalopod molluscs comprising more than

3700 species (Wiedmann and Kullmann 1996). The shells of ammonoids are coiled
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(a) Coiled shell form simulated by the analog computer PACE

TR-10.

(b) Three dimensional morphospace of coiled shell form. The

small red area indicates the region occupied by ammonoids.

Figure 1.2

Coiled shell form simulation and morphospace (Raup and Michelson 1965; Raup

1966). The shells are transverse to the plain of coiling.
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(spiral-like) and there is significant interspecific variation of shell form. In the 1950s and

early 1960s, several mathematical models of coiled shell growth were proposed (Fukutomi

1953; Owen 1953; Rudwick 1959; Stasek 1963). Raup (1962, 1966, 1967) and Raup

and Michelson (1965) were the first to provide a computational model (or computer

simulation) of coiled shell growth. Here the coiled shell is modeled as hollow cone

revolving around a fixed axis in a cylindrical coordinate system. The form of the shell

is determined by four variables:

1. The shape of the base of the cone,

2. the expansion rate of the cone per revolution around the coiling axis,

3. the distance between the cone and the coiling axis, and

4. the translation rate of the cone along the coiling axis.

By systematically varying the values of these variables, the range of possible coiled shell

form can be simulated. Figure 1.2a shows how this range can be graphically represented.

But what notion of possibility is in play here? Raup uses at least three notions, namely

“theoretically possible” (1965: 1294), “geometrically possible” (1966: 1178) and “phys-

ically possible” (1966: 1178). It is not clear whether Raup takes these notions have

distinct meanings or whether he simply uses them as rhetorical device to draw a con-

trast to what is biologically possible. For note that each of the three notions disregard

biologically salient information with respect to the animal’s evolvability, development,

fitness, and so on.

The range of thus possible coiled shell form is called the morphospace of coiled shell

form.3 Only a small region of the morphospace of coiled shell form is (or rather, was)

actually occupied by ammonoids as detailed in Figure 1.2b. For example, ammonoids

are not found in the region of overlapping coiled shell form. Raup suggests that empty

regions exhibit “physiologically impossible” (1966: 1185) shell forms respectively shell

forms “which are geometrically possible but biologically impossible” (1965: 1294). How-

ever, he does not tell us what he means by these notions of impossibility expect for the

trivial fact that they refer to non-actual shell forms.

Now, with the morphospace of coiled shell form in place, let me submit two observations.

First, modalities play an important explanatory role in constructing the morphospace

3 ‘Morphospace’ is sometimes also called ‘phenotypic space’ (e.g., Alberch 1989 and Klingenberg 2005)
or ‘design space’ which Sterelny and Griffiths (1999) attribute to Dennett (1995). However, as will
be shown in chapter 3, the notion of design space is defined in terms of logical (and not theoretical,
geometrical or physical) possibility.
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of coiled shell form: Non-biological possibility serves as limit to the kinds of ways in

which the values of the variables determining shell form can be varied, and the notion

of biological (im)possibility is used as explanans for the absence of certain coiled shell

forms from the fossil record. Second and less central to the line of attack of this section,

Raup uses a variety of distinct notions of possibility, namely biological, physiological,

geometrical, theoretical and physical possibility. However, aside from some implicitly

assumed intuitive understanding, he neither makes explicit the meaning of the used

grades of possibility nor how these grades are interrelated.

1.2.2 Sticky footpads and maximum body size

In a recent study, David Labonte et al. (2016) investigate the relationship between sticky

footpads and body size in more than 250 species. Sticky footpads enable animals such

as mites or geckos “to climb smooth vertical or inverted surfaces, thereby opening up

new habitats” (Labonte et al. 2016: 1297). Now, is a gecko simply a scaled up mite, and

how large could such an animal grow? In order to scale up and conserve an animal’s

ability to climb vertically via its sticky footpads, the mass m of the animal must be kept

proportional to the maximum force F acting on the sticky footpads. This is expressed

by (adapted from Labonte et al. 2016: 1297):

F = Aσ (1.7)

m∝ Aσ ∝mamb (1.8)

where:

� A is the surface area of the adhesive pad,

� σ is the maximum adhesive stress, and

� a, b are scaling coefficients for A and σ respectively such that a + b ≈ 1.

Now consider the following argument:

If animals maintain geometric similarity when increasing in size, A would

scale as m
2
3 , so that the adhesion per body weight for large geckos (m ≈ 100

g) is expected to be approximately 10
7
3 ≈ 200 times smaller than for tiny

mites (m ≈ 10 µg) if the pads’ adhesive strength σ remained unchanged

(b = 0) (Labonte et al. 2016: 1297).
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Let me provide a reconstruction of this argument: If we assume that a = 2
3 and b = 0,

then scaling up animals violates (1.8). That is, if an animal is scaled up geometrically, its

mass increases much faster than the surface area of its sticky footpads (see appendix A.

for details on geometric scaling); and if the maximum adhesive stress is not increased but

kept constant, then the scaled-up sticky footpads are too weak to support the scaled-up

animal’s climbing ability. In short, if a mite is scaled up to the size of a gecko, it will

fall off vertical surfaces. However, geckos (usually) do not fall off walls; so there must

be ways in which animals can be scaled up in compliance with (1.8). Labonte et al.

(2016: 1297) identify two such ways:

a >
2

3
(1.9)

b > 0 (1.10)

(1.9) states that the sticky footpad is scaled up faster than the rest of the animal’s body.

As a result, the footpad’s disproportionately large surface area can compensate for the

animal’s increase in mass. By contrast, according to (1.10), the adhesive property of

the sticky footpad is increased. As a consequence, the footpad can support more mass

per unit of surface area. Labonte et al. find evidence for both evolutionary strategies in

their dataset; I will briefly review them in what follows. With respect to (1.9), Labonte

et al. find that a = 1.02 across all taxa and hence an “extreme positive allometry” (2016:

1298) of sticky footpad area. This means that the larger an animal, the larger the surface

area of its sticky footpads as compared to the animal’s total surface area as shown in

Figure 1.3. However, turning now to (1.10), the allometry is less extreme for closely

related taxa; here b > 0 and a < 1.02, that is an increase in the adhesive property of the

sticky footpad but a more conservative (that is, geometric) ratio of footpad area to total

body surface is observed. Labonte et al. explain this finding in terms of “anatomical

constraints” (2016: 1299).4

Labonte et al. then derive an argument for the size limits of animals that rely on sticky

footpads for climbing. They write:

Scaling up the relative pad area of arthropods and small vertebrates to a hu-

man of 180 cm body length and 80 kg body mass would result in an adhesive

pad area of ≈ 106.91 × 800001.02 ≈ 0.81 m2, approximately two-fifths of the

total available body surface area [of approximately 2 m2]. The required mor-

4 What this means, I take it, is that an increase of b is in some sense more possible than an increase in
a.



1. MOTIVATION 21

Figure 1.3

Scaling of sticky footpads in 250 species (Labonte et al. 2016: 1299). The larger

an animal, the larger the surface area of its sticky footpads as compared to the

animal’s total surface area.
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phological changes, if at all possible, would thus be enormous, and difficult

to achieve over short evolutionary timescales. Our results therefore indicate

that phylogenetic inertia restricts the ‘design space’ for evolution at least for

closely related taxa (Labonte et al. 2016: 1298).

Note that an explicit size limit is not mentioned. It is hence instructive to unpack this

argument step by step. Labonte et al. first calculate that humans would need to have

enormous hands and feet in order to be able to climb like geckos; this assumes adhesive

pads at the endpoints of our limbs and the empirically determined scaling coefficient

for the surface area of said adhesive pads. They then provide two reasons for why this

is impossible. First, the morphological change is either impossible or too big. Second,

the morphological change requires (too) much evolutionary time. Surprisingly, Labonte

et al. do not mention a third reason, namely conceivable trade-offs, for example between

hand surface area and dexterity, and a corresponding decrease in overall fitness.

Let us consider the first reason in more detail. Here it is again unclear what kind of

possibility is in play. For example, the logical limit for adhesive pad area is half the

animal’s total surface area T :

A ≤
T

2
(1.11)

To see this, consider an infinitesimal flat animal with a front and a back side such that

T = TF + FB (1.12)

TF = TB (1.13)

where TF is the front surface area and TB is the back surface area. In accordance with

(1.11), assume that the whole front surface area constitutes the animal’s adhesive pad:

A = TF (1.14)

The crucial observation is that the effective adhesive pad area A cannot be increased

by making the back surface area of the animal sticky. That is, for every unit of TF

that attaches to a flat surface, a unit of TB cannot attach to the same surface. Now,

real animals are of course not infinitesimal flat. So the physical or biological limit for

adhesive pad area is given by must be strictly smaller than T
2 ; see Figure 1.4 for size

limits of adhesion-based climbing derived from the logical and a (hypothetical) biological

limit for adhesive pad area.
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Figure 1.4

Size limits of adhesion-based climbing. This graph shows the relation between

adhesion pad surface area A (blue) and two different size limits based on total

body surface area T for different animals, namely the logical limit T
2 (orange),

a hypothetical biological limit T
10 (green). For readability, all values are given

as log10 transformation. If blue is below orange on the y-axis, then the animal

on the x-axis is logically possible; and similar for green. For example, a walrus-

sized animal that climbs via sticky footpads is neither logically nor biologically

possible; a honey badger-sized animal is logically possible but biologically im-

possible; and a gecko-sized animal is both logically and biologically possible. A

in square meters is given by 106.91×m1.02 where m is mass in grams (see Labonte

et al. 2016: 1298); T is roughly calculated as m
2
3 (see Wang and Hihara 2004

for more refined methods).
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I will now turn to briefly comment on the explanatory role of biological modalities in

this paper. First, Labonte et al. rely on counterfactual reasoning. To wit, mites the

size of geckos or humans with hands and feet the size of baking trays are counterfactual

animals. What is more, the above argument to the effect that adhesion-based climbing

is impossible for humans perhaps even qualifies as biological thought experiment in the

sense of Guillaume Schlaepfer and Marcel Weber (forthcoming).5 Second, the size limits

of adhesion-based climbers are explained in terms of which a certain ratio of adhesive

pad to total body surface is 1. morphologically possible, 2. not restricted by phylogenetic

inertia, 3. not excluded by anatomical constraints, and similar notions. I submit that

1.-3. are instances of a kind of biological possibility which I will discuss below under the

heading of biohistorical possibility in chapter 2.

1.2.3 Minimal bacterial genome and essential genes

In a recent paper, Clyde Hutchison and his colleagues (2016) claim to have designed

and synthesized a minimal bacterial genome (MBG) called JCVI-syn3.0. Before taking

a closer look at their result and method, I will first clarify the meaning of MBG.

Intuitively, MBG is the smallest viable genome for a bacterium. However, it is important

to distinguish two slightly more involved ways in which Hutchison et al. employ this

notion:

1. MBG is a genome consisting of genes that are all essential for life.

2. MBG is the smallest genome that enables autonomous growth and replication.

Two remarks are in order: First, both definitions (and also the intuitive notion) are used

interchangeably.6 Second, Hutchison et al. (2016: 6253.8) are keen to point out that any

such definition must be relativized to a specific environment. That is, the essential

genes or number of genes that enable autonomous growth and replication depend on the

environment, and the environment used in the study at hand is maximally permissive

5 Schlaepfer and Weber identify three criteria: Thought experiments 1. serve the non-empirical eval-
uation of some theoretical proposition, 2. appeal to the imagination, and 3. involve counterfactual
scenarios. It is easy to see that the first and last criterion are satisfied: The theoretical proposition
that humans could evolve in a way that allows for adhesion-based climbing is rejected on the basis of
counterfactual scenario in which humans have disproportionally large extremities. However, it is not
clear whether the appeal to the imagination is required; after all, the a simple calculation is at the
heart of the argument of Labonte et al.

6 From this it cannot be deduced that Hutchison et al. define ‘life’ as autonomous growth and replication.
Rather, the notion of an essential gene is a technical term that will be explained below.
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(i.e., it supplies all required nutrients in abundance).

With MBG and the motivation in place, let us now take a closer look at JCVI-syn3.0

and the method of Hutchison et al. The general strategy for finding MBG is to take

the bacterium with the smallest genome and then to reduce its size whilst retaining the

bacterium’s autonomous growth and replication, and, for pragmatic reasons, a standard

(or elevated) growth rate. Historically, the model organism in question is Mycoplasma

genitalium with a 580-kilobase pair genome and 475 genes (see Fraser et al. 1995). Now,

JCVI-syn3.0 is a cell “that is controlled by a 531-kilobase pair synthetic genome [and

473 genes which] is substantially smaller than that of M. genitalium, and its doubling

rate is about five times as fast” (Hutchison et al. 2016: 6253.1f.).

To better appreciate this result, it is important to take a look at how Hutchison et al.

arrived at JCVI-syn3.0 for even though this new cell is smaller than M. genitalium,

the mere reduction in genes (minus two) might not be considered to be substantial.

Hutchison et al. used the Mycoplasma mycoides JCVI-syn1.0 genome as basis of their

minimization. JCVI-syn1.0 is a synthetic variant of the M. mycoides genome, has a size

of 1080 kilobase pairs and 901 genes, and was designed by Daniel Gibson et al. (2010)

at the same laboratory. Notwithstanding the larger size of M. mycoides, it was chosen

over M. genitalium due to its much faster growth rate. So JCVI-syn3.0’s genome is

interesting for two complimentary reasons: It is half the size of JCVI-syn1.0 but yields

the same growth rate, and it is about the same size as M. genitalium but enables a

highly elevated growth rate.

In order to minimize JCVI-syn1.0, its genes were grouped into three categories: Essential,

nonessential, and quasi-essential genes. The last category is a novelty and comprises

genes “that are needed for robust growth, though not absolutely required” (Hutchison

et al. 2016: 6253.1) and was critical in the development of JCVI-syn3.0 as detailed below.

This is interesting from a modal perspective since there seem to be at least two different

kinds of necessity in play, the latter of which admits itself for grades (to wit, quasi-

essential genes “spanned a continuum of growth impairment, varying from minimal to

severe” Hutchison et al. 2016: 6253.3).

An additional question is whether an essential or necessary gene is an epistemic or

metaphysical notion. In other words: When Hutchison et al. talk of essential genes,

do (respectively should) they intend to say something about the fundamental nature

of (bacterial) genomes, or are they simply employing a heuristic in order to cut down

the bacterium’s number of genes? Unsurprisingly, the answer is ‘both’; more precisely,
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Figure 1.5

Classification of gene essentiality by Tn5 mutagenesis (Hutchison et al.

2016: 6353.4). This image indicates the Tn5 inserts at the genes MMSYN1 0128

(lime), MMSYN1 0129 (blue), MMSYN1 0130 (gray) of JCVI-syn1.0 in the P0

(black triangles) and P4 (magenta triangles) dataset.

I submit that way the notion is employed in their paper is an operationalization of a

metaphysical notion. To see this, consider first the crucial role of Tn5 mutagenesis (a

kind of transposon mutagenesis) in order to identify essential, nonessential and quasi-

essential genes. The following process was employed (Hutchison et al. 2016: 6253.3): A

JVCIsyn1.0 cell was exposed to a single Tn5 insertion and then grown into a colony.

This was repeated 80’000 times. These colonies were then pooled. Analyzing a sample

revealed 30’000 unique mutations (dataset P0). The sample was then grown for 40

generations, revealing 14’000 unique mutation (dataset P4). This then gives rise to the

following classification schema of gene essentiality:

Genes fell into three major groups: 1. Genes that were not hit at all, or

that were sparsely hit in the terminal 20% of the 3’-end or the first few

bases of the 5’-end, were classified as essential [...] 2. Genes that were hit

frequently by both P0 and P4 insertions were classified as nonessential [...]

3. Genes hit primarily by P0 insertions but not P4 insertions were classified
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as quasi-essential, the deletion of which would cause growth impairments [...]

(Hutchison et al. 2016: 6253.3).

See Figure 1.5 for an example. A classification based on Tn5 mutagenesis is a fallible

heuristic; this is underscored by the fact that Hutchison et al. (2016: 6353.3) used deletion

analysis to confirm their classification, and is also illustrated the existence of redundant

genes for essential functions. These pairs of genes can be characterized as follows: For

some essential or quasi-essential function f , there are two genes g, g′ each of which is

sufficient to cause f ; if g is disrupted by Tn5 mutagenesis (or deleted in the deletion

analysis), f is still caused by g′. Hence g is classified as nonessential, and similar for g′.

But if both g and g′ are then left out in the next design-build-test cycle, f is missing

and the resulting cell is not viable.

The importance of the explanatory role of biological modalities in the case at hand

should be clear. To be maximially explicit, the notion of an essential gene is a modal

notion: Instead of ‘essential gene’, we could say ‘necessary gene’. Put differently, the

first definition of MBG can be restated as: MBG is a genome such that all its genes are

necessary (and perhaps sufficient) for life. Conversely for the second definition: MBG is

the smallest genome such that autonomous growth and replication are possible.

1.2.4 Habitability

In a recent paper by the astrobiologist Charles Cockell and a panel of his colleagues

(2016), ‘habitability’ is reviewed. This notion plays a crucial epistemic role in the search

for extraterrestrial life: Put roughly, providing criteria for the possibility of life is a

heuristic to exclude planetary bodies from the search set and hence increases efficiency

by facilitating an appropriate allocation of sparse resources. In what follows, I will spell

out in detail the definition of habitability provided by Cockell et al. and make explicit a

number of ways in which the modal import of ‘habitability’ comes into play.

Consider the proposed definition of habitability:

We define [‘habitability’] as the ability of an environment to support the ac-

tivity of at least one known organism [...] where ‘activity’ (and thus ‘living’)

is metabolic activity allowing for survival, maintenance, growth, or repro-

duction (Cockell et al. 2016: 89f.).
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This can be restated as follows for some environment E:

E is habitable iff there is a known organism x such that it is possible for x to live in E

(1.15)

Cockell et al. take care and effort to discuss and disarm a number of difficulties related to

using ‘activity’ as proxy for ‘living’. However, I want to focus on two different aspects of

(1.15), namely the notion of a known organism, and what exactly is meant by ‘possible’

(or ‘ability’ in the original formulation).

I begin by discussing the former. Cockell et al. do not explicitly say what they mean

by a known organism apart from the fact that its use relativizes (1.15) to the current

state of knowledge in biology. What can be gathered is that ‘known organism’ refers to

a type and not a token, and that the type in question is not a taxonomic class but rather

given by known design principles or biological mechanisms. For example, compare an

organism that relies on reduction-oxidation reactions to gain energy with an organism

that uses gravitational or radioactive energy; the former is known, the latter not. To see

this, consider the rationale for restricting (1.15):

We do not know whether terrestrial life represents a universal norm [...] How-

ever, by constraining habitability to known life, we avoid the term becoming

inextricably linked to the problem of defining life [...] or becoming defined

by speculative capacities of unknown organisms (Cockell et al. 2016: 89f.).

It is noteworthy that Cockell et al. distinguish between two kinds of modal reasoning to

which they attach contrary epistemic evaluations: An epistemically salient kind which is

concerned with possible habitats, and a kind which is concerned with possible organisms

and deemed epistemically problematic. The implicitly supplied reason is that the former

kind is based on actual habitats whereas the latter kind is speculative due to its lack of

an actual basis.

Let me now turn to the ‘ability’ in ‘habitability’. Cockell et al. (2016: 94) distinguish

between ‘instantaneous habitability’ and ‘continuous habitability’: The former is habit-

ability without any constraint on time; the latter is habitability on a geological timescale

(i.e., over millions of years). They provide material conditions for both cases. For illus-

tration, consider the four conditions identified for instantaneous habitability (adapted

from Cockell et al. 2016: 94):

1. A solvent such as water.
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2. Appropriate physicochemical conditions such as temperature.

3. Available energy such as sunlight.

4. The elements CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur).

If we plug these conditions into (1.15), we get:

E is (instantaneous) habitable iff E satisfies 1. to 4. for some known organism (1.16)

A couple of remarks are in order. First, ‘habitability’ is certainly a biological notion,

however, the kind of biological possibility in (1.15) seems to be reducible, at least par-

tially, to non-biological terms or explanations. Second, the kind of biological possibility

in (1.15) seems to be more fundamental than, say, an animal’s biological possibility to

grow allometric sticky footpads. Finally, with respect to conditions 1. to 4., 1. to 3. can

be satisfied in a number of different ways whereas 4. is non-negotiable.

1.3 Desiderata

The above discussion of the four cases yields a number of desiderata for a theory of

biological modalities. In this section, I will compile a list of desiderata and amend it

with more general considerations. This list will serve as rough guideline for subsequent

chapters. I will then explore on a qualitative level whether philosophy of biology provides

(some of) the resources to build a theory of biological modalities.

1.3.1 What is needed

Two kinds of desiderata need to be distinguished. The first kind pertains to the content

of a theory of biological modalities; by contrast, the second kind concerns what such a

theory can be used for, broadly construed.

With respect to the content of a theory of biological modalities, there a three main

questions that I am interested in answering:

How are biological modalities defined? (D1)

What is the relationship between biological and other modalities? (D2)

Are there different grades of biological modalities? (D3)
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Recall that the notion of a biological modality is an umbrella term for a range of rather

diverse notions and phenomena. Here I limit myself to biological possibility, biological

necessity, and biological counterfactuals. So items (D1)–(D3) should be understood

as questions about biological possibility, necessity, and counterfactuals. However, for

pragmatic considerations that will become apparent later, the main focus of inquiry in

chapters 2 and 3 will lie upon biological possibility.

Let me now briefly elaborate on how to parse the items in the list of desiderata. The

question (D1) of how biological modalities are defined requires two clarifications. First,

this question has descriptive and a normative reading; both readings will be addressed.

Second, a semantic concept of definition is assumed. That is, I read the question as asking

about the truth conditions of sentences or propositions employing biological modalities.

The question (D2) about the relationship between biological and other modalities re-

quires as answer an ordering of or a principle for ordering these modalities. For example,

does biological possibility imply physical possibility? Finally, the question (D3) about

different grades of biological possibility is aimed at elucidating whether or not there is

a monolithic notion of (say) biological possibility. In short, the three questions could

be synthesized into the following question: What is the logic of biological modalities?

Clarificatory work on all three questions will be undertaken in chapter 2.

I will now turn to the desiderata with respect to the operative range of a theory of

biological modalities. Such a theory should be:

Applicable to biological practice, (D4)

conducive to clarifying modal notions in biology, and (D5)

embedded in a well-understood and unified (formal) framework. (D6)

Why (D4)–(D6)? The most important (D4) is to ensure that biological practice is

taken seriously. That is, a theory of biological modalities should informed by biological

practice. Such a theory has therefore a strong epistemic (or pragmatic) component. (D5)

provides a broader target for the theory than formulated in the questions above. Finally,

(D6) is to ensure that the wealth of (formal) frameworks is taken into consideration in

order to prevent idiosyncrasy and having to reinvent the wheel.

To sum up, my goal is to provide an account or logic of biological modalities that helps

to better understand biological practice.
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1.3.2 What philosophy of biology has to offer

In philosophy of biology, publications about biological modalities (in the sense of sub-

section 1.1) either engage with biological modalities directly, indirectly or not at all. In

what follows, I will spell out these three categories in more detail, populate them with

examples whenever possible, and determine their value with respect to answering the

main questions formulated above.

The first category comprises explicit definitions of biological modalities. To my knowl-

edge and based on section 1.1, the only such definition is due to Daniel Dennett (1995)

and will be discussed in detail chapter 3. In a nutshell, he defines biological possibility

as a relation between genomes in the logical space of all genomes. While Dennett’s

definition has many shortcomings, it will nevertheless serve as stepping stone for the

construction of a number of modal logics of biological modalities in chapters 4–7.

The second category comprises explicit definitions of modal notions in biology. While

items in this category cannot help us in answering the three main questions formulated

above, they do help in better estimating the operative range of a theory of biological

modalities. For illustration, consider the following examples taken from three distinct

debates:

1. Arno Wouters (2003, 2007) argues that there is an important type of functional

explanation in biology which he calls ‘design explanation’ (see Wouters 2005 for

an overview of the function debate). Design explanations employ a notion of bi-

ological function as biological advantage. Here the function of a trait “are the

abilities resulting from that trait, due to which organisms possessing it have better

life chances than similar organisms lacking it, or in which this trait is replaced by

another” (Wouters 2003: 643). Crucial for the discussion at hand is the observation

that the notion of function as biological advantage relies on counterfactual com-

parison, namely the comparison between actual and non-actual organisms.7 For

example, consider the gecko (or other animals discussed in subsection 1.2.2): Its

sticky footpads have the biological function as advantage to climb smooth vertical

surfaces since the ability to climb smooth vertical surfaces opens up new habitats

and hence increases their life chances over similar animals without sticky footpads.

Two additional remarks are in order. First specifying the appropriate non-actual

7 I have argued elswhere (see my Huber 2013) that counterfactual comparison also plays a crucial role
in other popular notions of biologicla function based on Bas van Fraassen’s (1973) work on contrast
classes.
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organisms is a non-trivial task. In some cases, the appropriate non-actual organ-

isms are biologically possible; in other cases, the appropriate non-actual organisms

are biologically impossible. This difficulty is related to the following challenge put

forward by Ruth Millikan (1993): Counterfactual situations in which organisms

lack a certain trait are indeterminate. Put differently, the lack of (say) sticky foot-

pads can be realized in many different ways. Therefore, she concludes, counterfac-

tual comparisons lack definite truth values. Wouters replies that Millikan conflates

two notions of biological function, namely function as biological role which is not

contrastive and function as biological advantage which is contrastive. Second, even

assuming that this reply is convincing, the challenge of providing explicit truth

conditions for counterfactual comparisons or so-called ‘functional counterfactuals’

(Wouters 1999: 138–150) still remains unanswered.

2. Marcel Weber (forthcoming) argues against the causal parity thesis (i.e., the claim

that there are no privileged causes such as genes with respect to the development

of organisms) by introducing a new kind of counterfactual. Such a counterfactual

is special in that its antecedent is brought about by a biologically normal interven-

tion.8 Biologically normal interventions are defined as interventions in the sense

of Woodward (2003) supplemented with two additional constraints, namely that

“they 1. could be brought about by natural biological processes and 2. don’t kill

the organism considered” (Weber forthcoming: 32). However, similar to the exam-

ple of functional counterfactuals, an explicit semantics of the counterfactuals in

question is not provided.

3. Oliver Lean (2016) proposes a definition of arbitrariness in molecular biology. Fol-

lowing Ulrich Stegmann (2004), he takes arbitrariness to apply to the relations

between biological entities. Stegman defines arbitrary relations in terms of chemi-

cal laws, namely as relations that are not chemically necessary. By contrast, Lean

defines arbitrary relations in terms of biological intermediates. Here a biological

intermediate is an evolvable biological structure such as nucleic acid polymers or

proteins that causally mediates (in the sense of Pearl 2001) between the relata. For

example, consider the relation between cytoplasmic lactose and the lactase genes,

the former of which causes the expression of the latter. Lean argues that this rela-

tion is arbitrary since it is causally mediated by the lactase repressor (which is an

evolable biological structure): Cytoplasmic lactose causes a conformational change

8 I do not use Weber’s term of ‘biological counterfactual’ in order to avoid terminological ambiguities
especially with respect to chapter 9.
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in the lactase repressor which in turn causes the loss of the lactase repressor to

bind to the lactase genes thus enabling their expression.

I take it that all three examples could benefit from a theory of biological modalities; I

will get back to some of them in part III.

The last category comprises implicit definitions of biological modalities or modal notions.

For the purpose at hand, publications in this category are not relevant with the exception

of providing negative examples of what can go wrong such as the implicit assumption

to define biological modalities in terms of laws. For illustration, consider Bence Nanay’s

(2010) modal theory of biological function. Here biological function is defined in terms of

counterfactuals and relies on the standard semantics for counterfactual conditionals due

to David Lewis (1979). Put roughly, these semantics are based on a similarity ordering

measuring the extent to which laws of nature have been violated. In chapter 2, I will

reject the implicit definition of biological modalities in terms of laws. In addition, in

chapter 9, I will provide a semantics of biological counterfactuals that is not grounded in

laws. For a detailed critique of the modal theory of function, see my Leahy and Huber

(2014).

To sum up, philosophy of biology has not much to offer in terms of direct answers to the

three main questions stipulated in subsection 1.3.1. However, it provides some insight

into how to (not) formulate an account of biological modalities and where it could be

usefully applied.

1.4 Summary

I argue that there is a tension between (1) the lack of philosophical interest in bio-

logical modalities and (2) the important explanatory role biological modalities play in

biological practice. The first claim is supported by a quantitative analysis of major

academic databases and a qualitative survey of the philosophical literature. I defend

the second claim by four ‘arguments from case study’ pertaining to coiled ammonoid

shell form, sticky footpads and maximum body size, the minimal bacterial genome and

essential genes, and the habitability of exoplanets. I propose that a theory or logic of

biological modalities could fill the epistemic lacunae between (1) and (2) by providing

truth-conditions for biological modalities, shedding light on the relationship between bi-

ological and other modalities, and spelling out how biological modalities can be graded.



2. Clarifications

In this chapter, I will provide two clarifications with respect to biological modalities.

First, in section 2.1, I reject the intuitive idea that biological modalities are best defined

in terms of biological laws. Second, in section 2.2, I will disambiguate and spell out three

ways in which biological modalities can be graded.

2.1 Possibility as consistency with laws

What is logically respectively physically possible?1 An intuitive answer is: Well, what-

ever does not violate logical respectively physical laws. For illustration, consider an

example due to Daniel Dennett (1995: 105) which trades on the difference between two

fictional characters called Superman and Duperman: Superman can fly faster than the

speed of light whereas Duperman can fly faster than the speed of light without moving

anywhere. Superman is not physically possible since flying faster than the speed of light

violates the laws of physics; Superman is logically possible since flying faster than the

speed of light does not violate the laws of logic. By contrast, Duperman is neither phys-

ically nor logically possible since flying faster than the speed of light without moving

anywhere violates the laws of logic.2 So let me introduce a third fictional character, call

him Hyperman, and stipulate that he does not age. Hyperman is logically and physically

possible (see Knell and Weber 2009), but is he biologically possible? It is tempting to

1 In this section, I focus on defining possibility; due to the interdefinability between possibility and
necessity, all results also apply to necessity.

2 The example presupposes that if Duperman flies faster than the speed of light, he moves somewhere.
This is contested in the Futurama episode “A Clone of My Own” where the Planet Express space-
craft’s dark matter engine is explained to enable the spacecraft’s faster-than-light flight by moving the
universe instead of the spacecraft. If Duperman is granted to make use of a similar mechanism, he is
logically possible. In order to provide an example which adequately captures the difference between
physical and logical possibility, consider thus Ultraman who can fly faster than the speed of light
without flying faster than the speed of light. Ultraman is not only physically impossible, he is also
logically impossible since the logical law of non-contradiction is violated.

34
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answer: If a lack of senescence violates the laws of biology, Hyperman is biologically

possible; otherwise he is not.

In this section, I will argue that this intuitive answer does not make the cut. More pre-

cisely, in subsection 2.1.1, I will show that it is unproblematic to define logical possibility

as non-violation of logical laws. I will then in subsection 2.1.2 make explicit a number

of problems when defining physical possibility as non-violation of physical laws. Finally,

in subsection 2.1.3, I will reject the idea to define biological possibility as non-violation

of biological laws.

2.1.1 Laws of logic

Here is the standard way to spell out the idea of defining logical possibility as non-

violation of logical laws (e.g., Robertson and Atkins 2013, Vaidya 2015):

Definition 2.1 (Logical possibility)

A sentence φ is logically possible if and only if φ is consistent with the laws of logic.

Definition 2.1 is phrased in terms of sentences; alternatively, it can also be stated in

terms of facts or states of affairs, along the following lines: That a state of affairs

obtains is logically possible if and only if it is consistent with the laws of logic. However,

a requirement of getting this reformulation off the ground is to make explicit how the

logical notion of consistency can be applied to non-abstract entities. Since I have no

desire in doing so, I will stick with definition 2.1 as is.

Definition 2.1 requires further clarification. An initial complication concerns its definien-

dum and pertains to the distinction between possibility de dicto and possibility de re.

From a semantic perspective, the former attributes possibility to a sentence; the latter

attributes possibility to an individual. Consider again the example of Superman and his

ability to fly faster than the speed of light. There are two salient interpretations, the

first of which is de dicto and the second of which is de re:

1. It is logically possible that Superman flies faster than the speed of light.

2. Superman is such that it is logically possible for him to fly faster than the speed

of light.

However, the distinction between possibility de dicto and possibility de re can also be

drawn on purely syntactic (and hence less contagious) grounds. This requires quantified
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first-order modal logic (e.g., see Girle 2003: 48–94). For the purpose at hand, we can

get away with a cursory glance at this logic. In order to obtain the quantified modal

language, simply extend the classical first order language with the unary non-binding

operator ‘◇’ which is interpreted as logical possibility. Let ‘FTL’ be a unary predicate for

faster-than-light flight and let ‘superman’ be an individual constant denoting Superman:

◇∃x(x = superman ∧ FTL(x)) (2.1)

∃x(x = superman ∧◇FTL(x)) (2.2)

From a syntactic perspective, the difference between a sentence de dicto and a sentence

de re is simply a matter of what is in the scope of the ◇-modality: A sentence ψ

containing a modal operator is de dicto if and only if all modal operators in ψ have no

unbound individual variables in their scope; otherwise ψ is de re (Hughes and Cresswell

1968: 184). Hence (2.1) is de dicto because the diamond-operator has the closed formula

∃x(x = superman ∧ FTL(x)) (2.3)

within its scope; by contrast, (2.2) is de re because the ◇-modality has the unbound

individual variable x within its scope. So the logical possibility in play in the definiendum

of definition 2.1 is logical possibility de dicto since φ is a sentence and sentences are closed

formulas.

In what follows, I will by default refer to de dicto possibility. There are three reasons

for this. First, much of what I have to say about de dicto possibility also applies to

de re possibility; I will explicitly point out interesting cases of divergence. Second, my

formal tool of choice in chapters 4–7 will be propositional modal logic. In this formal

framework, the distinction between de dicto and de re modalities cannot be drawn. This

is a blind spot, but it is well-justified: Even though quantified modal first-order logic

is more expressive than propositional modal logic, it lacks many of the latter’s nice

features. Finally, I will address the distinction between de dicto and de re in a biological

context in chapter 7.

Let us now turn to the definiens of definition 2.1. Two clarifications are in order:

1. The notion of logic is ambiguous between different logics, for example classical

propositional logic, propositional para-consistent logic, propositional modal logic,

and so on. For simplicity, I will opt for classical propositional logic (CPL) in what

follows.
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2. From a syntactic perspective, how to spell out the notion of a law of CPL depends

on what proof system one prefers. In an axiomatic system, the laws of CPL are

simply the axioms of CPL. Then a sentence φ is consistent with the laws of CPL if

and only if a contradiction cannot be deduced from the union of φ and the axioms

of CPL via modus ponens. In an system of natural deduction, the laws of CPL

are the inference rules. Then φ is consistent with the laws of CLP if and only if

a contradiction cannot be deduced from φ via the inference rules. And so on for

other proof systems. Alternatively, from a semantic perspective, φ is consistent

with the laws of CLP if and only if the truth table of φ has at least one true

row. To wit, things get more complicated when considering more expressive logics

than CPL, but task of making explicit the notion of the corresponding logical laws

remains similar.

The notion of logical possibility defined along these lines is ubiquitous in many philo-

sophical debates albeit it does not go uncontested (e.g., see Seddon 1972).

2.1.2 Natural laws

Consider now the standard way to spell out the idea of defining physical possibility as

non-violation of physical laws; here definition 2.1 is taken as a template:

Definition 2.2 (Physical possibility)

A sentence φ is physically possible if and only if φ is consistent with the laws of

physics.

Instances or variants of definition 2.2 are quite common (e.g., see Kment 2012). Defini-

tion 2.2 is more problematic than definition 2.1 due to the contentious issue of explicating

physical laws. There are many rivaling (families of) accounts of physical laws (see Psillos

2003; Carroll 2010). I remain agnostic with respect to the nature of physical laws. How-

ever, I want to submit the following observation: Plugging popular accounts of physical

laws into definition 2.2 either reduces it to definition 2.1 or renders it circular. I will

discuss the horns of this dilemma in turn.

The first horn pertains to anti-realist accounts of physical laws. These accounts maintain

that physical laws do not exist. Here a prominent example is Bas van Fraassen (1989)
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explanatory project explanandum explanans

ML modalities laws

LM laws modalities

Table 2.1

Two explanatory directions for modalities and laws: Explaining modalities in

terms of laws (ML) versus explaining laws in terms of modalities (LM).

who argues that physical laws fail to meet important criteria of explanatory adequacy.3

Plugging an anti-realist account into definition 2.2 yields: A sentence φ is physically

possible if and only if φ is consistent with the empty set. But φ is trivially consistent

with the empty set if φ is not a contradiction. Therefore, φ is physically possible if

and only if φ is not a logical contradiction. So plugging an anti-realist account into

definition 2.2 reduces it to definition 2.1. This clearly misses the mark since physical

possibility is not logical possibility, or so we assumed.

In order to explicate the second horn, it is helpful to distinguish two distinct yet inter-

related explanatory projects which are easily conflated: The first project, call it ‘ML’,

explains modalities in terms of laws whereas the second project, call it ‘LM’, explains

laws in terms of modalities (see Table 2.1). Definitions 2.1 and 2.2 are instances of ML:

Logical respectively physical possibility is defined as non-violation of logical respectively

physical laws. LM is a subclass of the class of reductive accounts of physical laws. Re-

ductive accounts of physical laws explicate physical laws in lawless (for lack of a better

word) terms. The second horn pertains to LM: Plugging an LM-account of physical laws

into definition 2.2 renders the definition circular. I propose to distinguish two ways in

which this can happen:

1. Physical laws are explicated in terms of primitive modalities. A primitive modality

is a modality which is not (weak version) or cannot (strong version) be further

explicated. Plugging an explication of physical laws in terms of primitive modalities

3 “The major criteria concern what I call the problems of inference and identification. The accounts
must show that there is a valid inference from what laws there are to what regularities there are in
the world. The account must also identify the relevant aspects of the world that constitute or give
rise to its laws, if any. Typically these two tasks lead to a dilemma. If laws of nature are identified in
terms of some sort of necessity in nature which is simply postulated as fact, then there is no logical
reason to think that the inference from lawlike necessity to actuality is valid. (Calling the postulated
factor ‘necessity’ or ‘necessitation’ does not help.) If on the other hand the semantic account of law
statements is so constructed that the inference in question is logically valid, then typically the truth
conditions of law statements involve something unidentifiable” (van Fraassen 1993: 411).
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into definition 2.2 amounts to an explication of physical possibility in terms of

primitive modalities. This can mean one of two things. Either physical possibility

is a primitive modality; or physical modality is not primitive itself but a derivative

of primitive modalities. The first case is circular because no explication of physical

possibility is offered; the same holds for the second case with the complication of

a number of intermediate steps.

For example, consider the manipulationist framework of James Woodward (2003).

Here a physical law is an invariant generalization; a generalization is said to be

invariant if it supports so-called ‘same object counterfactuals’. That is, for some

object o, “[i]f the value assigned by the variable X to o were to be changed via an

intervention (e.g., from X(o) = 0 to X(o) = 1), then the value assigned by Y to o

would change in some way predicted by the generalization” (Woodward 2003: 281).

Plugging the manipulationist framework into definition 2.2 yields: A proposition

φ is physically possible if and only if φ is consistent with the generalizations which

support same object counterfactuals. But what are the truth conditions of same ob-

ject counterfactuals? Woodward “fail[s] to provide truth conditions ” (Reutlinger

2013) or at most provides “an account of truth conditions [which] is incomplete”

(Briggs 2012); hence same object counterfactuals are at least weakly primitive.

Plugging the manipulationist framework into definition 2.2 therefore boils down

to the statement that physical possibility is a special kind of modality. This is

circular or at least non-explanatory in the context of ML.

It is worthwhile to consider an objection to my rejection of the manipulationist

framework in the context of ML: It does not matter that same object counterfac-

tuals are weakly primitive because they are not strongly primitive. That is, even if

Woodward does not provide truth conditions of same object counterfactuals, such

truth conditions can in fact be provided. In response, it is clear that these truth

conditions must satisfy a number of constraints in order to be compatible with the

manipulationist framework (see Reutlinger 2013: chapter 3). Granting that some

truth conditions satisfy these constraints, these truth conditions must in turn be

stated in a manner which avoids the circularity charge. This will turn out to be

difficult due to the reliance of same object counterfactuals on the notion of an inter-

vention. An intervention is a modal notion because interventions are required to be

possible. What kind of possibility is in play here? If it is physical possibility, then

the resulting circularity is straightforward (see 2. below for details). Woodward

(2003: 128ff.) denies that interventions must be physically possible by providing
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a number of examples. It is methodologically awkward to assess these examples

since he relies on definition 2.2 to explicate physical possibility; perhaps this is

sufficient to underscore the problem of circularity. But let us go a step further.

Woodward claims that “an intervention on X with respect to Y will be ‘possible’

as long as it is logically or conceptually possible for a process meeting the condi-

tions for an intervention on X with respect to Y to occur” (Woodward 2003: 132).

However, Alexander Reutlinger (2012) shows that this notion of possibility is too

weak and severely hinders any attempt to provide adequate truth conditions of

same object counterfactuals. So the onus is (still) on proponents of the objection

to demonstrate that same object counterfactuals are weakly primitive.

2. Physical laws are explicated in terms of physical modalities. The resulting problem

is straightforward since definition 2.2 attains to explicate physical possibility; expli-

cating physical possibility in terms of physical possibility is circular. For example,

take the DTA-account (after Dretske 1977, Tooley 1977 and Armstrong 1983). Its

main idea is that a physical law is a second-order relation between universals. More

precisely, for universals F,G, if it is a law that F s are Gs, then a “certain relation,

a relation of non-logical or contingent necessitation, holds between F -ness and G-

ness” (Armstrong 1983: 85). Let us plug the DTA-account into definition 2.2: A

proposition φ is physically possible if and only if φ is consistent with the non-logical

or contingent necessitation relation(s) between the pertinent universals. This re-

sulting definition is circular given two assumptions: First and uncontroversially,

physical possibility and physical necessity are interdefinable. And second, non-

logical or contingent necessity is or is akin to physical necessity. Since logical and

metaphysical necessity are excluded from the start, physical necessity is the only

alternative.

The upshot of the discussion of the dilemma is this: In order to get definition 2.2 off

the ground, an account of physical laws is required. Such an account must satisfy two

constraints: First, it must be a realist account of physical laws in order to block a

reduction of physical possibility to logical possibility. Second, it cannot be an LM-

account of physical laws on pain of circularity. This is not to show that definition 2.2

is a non-starter for there is at least one account that might fit the profile, namely the

best systems account of David Lewis (1973). Here “a contingent generalization is a law

of nature if and only if it appears as a theorem (or axiom) in each of the true deductive

systems that achieves a best combination of simplicity and strength” (Lewis 1973: 73).

So a best system has two properties: First, it is a true deductive system meaning that
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the axioms and theorems of the deductive system are true. Second, the trade-off between

simplicity and strength is optimal; simplicity and strength cannot both be maximized

since adding and axiom increases the strength of a deductive system but decreases its

simplicity. Plugging the best systems account into definition 2.2 yields: A proposition φ

is physically possible if and only if φ is consistent with the best true deductive systems.

Put differently, φ is physically possible if and only if a contradiction cannot be deduced

from the union of φ and the axioms of the best true deductive system (for each best

true deductive system if there are ties between true deductive systems with respect to

simplicity and strength). So neither a reduction to definition 2.1 nor circularity is a

problem for the best systems account. However, the above discussion is meant to make

explicit some of the commitments involved in buying into defining physical possibility

as non-violation of physical laws: Important accounts of physical laws are ruled out and

one is at the mercy of the best systems account with all its problems (e.g., see Woodward

2014 for a recent discussion).

2.1.3 Biological laws

I will now turn to biological possibility. Let me first make precise the idea of defining

biological possibility as non-violation of biological laws:

Definition 2.3 (Biological possibility)

A sentence φ is biologically possible if and only if φ is consistent with the laws of

biology.

Definition 2.3 is an instance of a more general schema (e.g., employed by Robertson and

Atkins 2013):

Definition 2.4 (Special science possibility)

For some special science S, φ is S-possible if and only if φ is consistent with the

laws of S.

The difficulties related to plugging popular accounts of physical laws into definition 2.2

can be reiterated with respect to definition 2.3: Most accounts of biological laws cannot

be plugged into definition 2.3 on pain of reducing it to definition 2.1 or definition 2.2,

or rendering it circular. Let me review which accounts must be excluded on the basis of

one of these two problems.
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First, consider the problem of reducing biological possibility to logical or physical pos-

sibility. This concerns anti-realist accounts of biological laws. There are two variants of

this problem related to two species of anti-realism about biological laws:

1. Denying the existence of biological laws reduces biological possibility to logical

possibility. For example, John Beatty (2006) argues on the basis of the evolutionary

contingency thesis that laws of biology do not exist.4 Plugging Beatty’s account

into definition 2.3 yields: A sentence φ is biologically possible if and only if φ is

consistent with the empty set if and only if φ is not a logical contradiction. So

plugging Beatty’s account into definition 2.3 reduces it to definition 2.1.

2. Reducing biological laws to physical laws reduces biological possibility to physi-

cal possibility. Of course, there is variety of different kinds of reductionism (see

Brigandt and Love 2012 for an overview); here I have the epistemic kind in mind,

as exemplified by the so-called ‘conservative reductionism’ by Christian Sachse

(2012). Plugging such an account into definition 2.3 reduces biological possibility

to physical possibility: A sentence φ is biologically possible if and only if φ is

consistent with the laws of physics.

Note that this kind of problem applies more generally to all kinds of reductions of

biological laws. For example, consider the reduction of biological laws to mathe-

matical laws. Samir Okasha argues that the Price equation “is simply a mathemat-

ical tautology whose truth follows from the definition of the terms” since “nothing

is assumed about the nature of the ‘entities’, their mode of reproduction, the mech-

anisms of inheritance, the genetic basis of the character, or anything else” (2006:

24).5

Let us now turn to the circularity problem. It pertains to realist accounts of biological

laws which explicate laws in terms of modalities. This can happen in two ways analogous

what was proposed in the previous subsection:

4 The evolutionary contingency thesis states that all generalizations about biological entities “i. are
just mathematical, physical, or chemical generalizations (or deductive consequences of mathematical,
physical, or chemical generalizations plus initial conditions), or ii. are distinctively biological, in which
case they describe contingent outcomes of evolution” (Beatty 2006: 218) With respect to the second
disjunct, note that “to say that biological generalizations are evolutionarily contingent is to say that
they are not laws of nature—they do not express any natural necessity; they may be true, but nothing
in nature necessitates their truth” (Beatty 2006: 221). That is, the contingency thesis itself is an
example of LM and its associated problems.

5 This example is due to Mauro Dorato (2012) who provides an insightful discussion of reducing biolog-
ical laws to mathematical laws.
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1. Biological laws are explicated in terms of primitive modalities. The most salient

example here is again the manipulationist framework which has been applied to

biology (see Woodward 2010: 296). Similar considerations as in the previous section

apply.

2. Biological laws are explicated in terms of biological modalities. To my knowledge,

no such theory has been defended in print. However, a borderline case is Chris

Haufe (2013) who argues that biological laws are best understood in terms of

necessary chances. Such necessary chances are derived from mathematical laws

but claimed to be biological due to their interpretation. So if Haufe’s account is

plugged into definition 2.3, we get: A sentence φ is biologically possible if and only

if φ is consistent with the (predicted) necessary chances. This resulting definition

is circular since the notion of a necessary chance is assumed to be a biological

modality.

Given the above discussion, the constraints on an account of biological laws that can be

plugged into definition 2.3 are as follows: It must be a realist account of biological laws;

and it cannot be a LM-account of biological laws. The only candidate account that fits

this bill is the better best systems account of Markus Schrenk (2007) and Jonathan Cohen

and Craig Callender (2009). The better best systems account is intended to improve

upon the best systems accounts; crucial for the discussion at hand is the desideratum to

“allow for laws in the special sciences” (Cohen and Callender 2009: 4). However, similar

to the best systems account, the better best systems account faces a host of objections

(e.g., see Backmann and Reutlinger 2014).

In short, the strategy of explicating biological possibility in terms of biological laws

stands and falls with committing to a specific theory of special science laws. In other

words, explicating biological possibility in terms of biological laws is at best a detour

and at worst a dead end. This is not to deny that there might be important explicatory

relations between modalities, laws and causation:

A satisfactory definition of scientific law, a satisfactory theory of confirmation

or of disposition terms [. . . ], would solve a large part of the problem of

counterfactuals. Accordingly, the lack of a solution to this problem implies

that we have no adequate treatment of any of these other topics. Conversely,

a solution to the problem of counterfactuals would give us the answer to

critical questions about law, confirmation, and the meaning of potentiality

(Goodman 1947: 113).
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However, a different strategy promises more success for the task at hand: In chapter 3, I

will argue that biological possibility is best explicated in terms of a relational semantics.

2.2 Grades of possibility

Grading possibilities rests on two implicit assumptions: First, that there are distinct

possibilities, and, second, that these possibilities admit to comparison. Here I will be

concerned with three distinct ways in which the notion of grades of possibility can be

understood:

1. The distinction of different kinds possibility.

2. The distinction of different kinds of biological possibility.

3. The distinction of different possibilities within a given kind of possibility.

The goal of this section is to provide the conceptual basis for a number of discussions in

subsequent chapters.

2.2.1 Inferential relationship

What is the inferential relationship between logical, physical and biological possibility?

In order to answer this question, I will assume that logical possibility is given by defi-

nition 2.1, namely defined as non-violation of the laws of logic; I remain agnostic with

respect to physical and biological possibility. Furthermore, I will assume as uncontro-

versial two claims: First, everything that is physically or biologically possible is also

logically possible; and, second, not everything that is logically possible is also physi-

cally or biologically possible. Put differently, logical possibility is a necessary but not

suffiecient condition for both biological and physical possibility.

The inferential relationship between physical and biological possibility is then captured

by either Independence, Pluralism, Physico-Inclusivism, Bio-Inclusivism or

Reductionism as shown in Figure 2.1. Let me explain these positions in more de-

tail and provide some examples of their advocates:

1. Independence is the position that there is no inferential relationship between

biological and physical possibility. Somewhat stronger, this could be interpreted

as incommensurability in the classical sense (see Kuhn 1962).
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BP PP

LP

(a) Independence

BP PP

LP

(b) Pluralism

PP

BP

LP

(c) Physico-Inclusivism

BP

PP

LP

(d) Bio-Inclusivism

BP PP

LP

(e) Reductionism

Figure 2.1

Possible relationships between logical possibility (LP), physical possibility (PP)

and biological possibility (BP) represented as Venn diagrams. Independence:

BP and PP cannot be compared (for want of joint vocabulary or explanada);

nothing BP is PP and vice versa. Pluralism: BP and PP hold their own

but can be compared partially; some BP are PP and vice versa, but some BP

are not PP and vice versa. Physico-Inclusivism: BP is a special kind of

PP; everything BP is also PP, but some PP are not BP. Bio-Inclusivism: PP

is a special kind of BP; everything PP is also BP, but some BP are not PP.

Reductionism: PP is nothing but BP and vice versa.
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2. Physico-Inclusivism holds that physical possibility is a necessary but not suf-

ficient condition for biological possibility. This position is attractive because it

is consistent with (or even follows from) two popular ideas: First, the definition

of possibility in terms of laws, and, second, the assumption that biological laws

(whatever they are) are weaker but not reducible to physical laws. For example,

Physico-Inclusivism is explicitly endorsed by Dennett (1995: 107).

3. Bio-Inclusivism claims that biological possibility is a necessary but not sufficient

condition for physical possibility. This position is so glaringly incoherent that it has

not recently (or ever) been defended in print and does not merit further discussion.

4. Reductionism maintains that biological possibility is nothing but physical possi-

bility; the inferential relation between biological and physical possibility is hence

that of (logical) equivalence.

5. Pluralism maintains that biological possibility comes in all of the above flavors

(perhaps except Bio-Inclusivism). This yields a case-dependent inferential rela-

tion: Sometimes physical possibility (logically) implies biological possibility and

sometimes it does not.

An implicit assumption in the above discussion is that biological possibility is a mono-

lithic notion. However, this is not the case; below, I will argue that a range of different

notions of biological possibility have to be distinguished. Nevertheless, the inferential re-

lationship between physical possibility and any of these notions is captured by a variant

of Independence, Pluralism, Physico-Inclusivism, Bio-Inclusivism or Reduc-

tionism.

Before we continue, let me add a disclaimer: Some readers might object to my neglect

of other kinds of possibility, especially to the absence of metaphysical possibility. The

notion of metaphysical possibility as commonly understood is weaker than logical possi-

bility but stronger than physical possibility (Vaidya 2015). However, an exact definition

of this notion is contested and often depends on the particular usage in special debates

(e.g., on personal identity, metaphysical grounding, and so on). So while the way the

discussion is framed is certainly compatible with adding metaphysical possibility to the

mix, this would dramatically increase the complexity of the issues at hand without any

apparent epistemic advantages.
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2.2.2 Biological possibilities

The notion of biological possibility is an umbrella term for a range of distinct yet related

notions. To wit, in section 1.2, I have analyzed examples from astrobiology, biomechan-

ics, ecology, evolutionary biology, molecular biology, synthetic biology, and theoretical

morphology. In this section, I will undertake to categorize the encountered (and other)

notions of biological possibility. The aim of this categorization is to make plausible the

claim that each of these notions requires its own semantics. In order to do so, consider

two criteria or factors which I will call Scale and Historicity.

The first factor, Scale, is owed to the observation that wildly different domains of

biology rely on notions of biological possibility. One way to distinguish between theses

domains is by considering the scale of the biological phenomena under investigation.

Scale ranges from molecules over organisms to the biosphere. This heuristic is of

course far from perfect since it neglects biological practice and methodology. However,

it is simple and a relatively good fit with the self-identified biological domains mentioned

above.

Let me now turn to the second factor, Historicity. Daniel Dennett argues that there

are at least two notions of biological possibility:

It seems there might be two kinds or grades of biological impossibility: viola-

tion of a biological law of nature (if there are any), and “mere” biohistorical

consignment to oblivion. Historical impossibility is simply a matter of op-

portunities passed up (Dennett 1995: 106).

Even though the way in which this distinction is framed is problematic in light of the

previous section, the important take home message is that there is a notion of biological

possibility that takes into account evolutionary history whereas there is notion of bio-

logical possibility that does not. Call the former ‘historical’ and the latter ‘ahistorical’

biological possibility.

Given Scale and Historicity, we can roughly distinguish four (families of) notions of

biological possibility, namely historical versus ahistorical biological possibility on a small

(moleculular–organism) versus a large (organism–biosphere) scale:

1. HBS is historical biological possibility on a small scale,

2. HBL is historical biological possibility on a large scale,
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3. ABS is ahistorical biological possibility on a small scale, and

4. ABL is ahistorical biological possibility on a small scale.

A couple of remarks are in order. First, even though these notions are represented as

being discrete, they really are gradual. Second, let me hint at the semantics of these no-

tions: Historical biological possibilities require context sensitive truth conditions whereas

ahistorical biological possibilities do not. That is, whether or not something is biological

possible given a certain evolutionary history depends, well, on said evolutionary history.

For example, recall section 1.2 and David Raup’s investigation of ammonoid shell form.

Here we can distinguish the question of whether a certain shell form is possible given

a particular species of ammonoids from the question of whether a certain shell form is

possible given any species of ammonoids. Generally speaking, the more we abstract from

the evolutionary history of a particular species, the closer we get to an ahistorical notion

of biological possibility. Put differently, ahistorical biological possibility is a minimal

notion of biological possibility. Third, the inferential relationship between historical and

ahistorical biological possibility is asymmetric: Historical biological possibility implies

ahistorical biological possibility, but the inverse does not hold. Finally, the inferential

relationship between small-scale and large-scale possibility of the same kind of historic-

ity (that is, the relationship between HBS and HBL, and ABS and ABL respectively) is

more complicated.

For illustration, the factors of Scale and Historicity can be compiled into a coordinate

system as shown in Figure 2.2; there is a also number of additional examples based on

section 1.2.

I take it that these informal remarks are sufficient to establish the existence of distinct

yet intelligible notions of biological possibility. In chapters 3 and chapters 5, HBS, HBL,

ABS, and ABL will be made more precise. However, let me add two qualifiers: The

proposed categorization should be understood as heuristic for making explicit different

notions of biological possibility. Second, there certainly are additional factors that would

allow for a more fine grained differentiation between notions of biological possibility.

2.2.3 Comparative biological possibility

Can distinct biological possibilities of a certain kind (such as HBS, HBL, etc.) be

compared? That is, can it be made intelligible that something is more biologically

possible than something else? Given the cases considered in section 1.2, the answer is
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Figure 2.2

Different (families of) notions of biological possibility with HBS (red), HBL (yel-

low), ABL (green), and ABS (blue) where the x- and y-axis represent Scale

and Historicity respectively. The coordinate system is populated with exam-

ples related to the paradigmatic cases discussed in chapter 1:

1. Is this gene essential for M. mycoides in the sense of Hutchison et al.

(2016)?

2. Is this gene essential for bacteria?

3. Is this gene essential for organisms?

4. Is this gene’s function essential for organisms?

5. Is overlapping coiled shell form viable for ammonoids?

6. Is overlapping coiled shell form viable?

7. Is this exoplanet habitable in the sense of (1.15)?

8. Is this exoplanet habitable for any kind of organism, known or unknown?

9. Is this exoplanet habitable for a particular kind of known organsim?
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yes. To wit, consider three examples (the notions in play here are not always biological

possibility proper, but the relevant connections should be apparent):

1. Within the morphospace of coiled ammonoid shell form (that is, within the logical

space of such shell form, see subsection 1.2.1), non-overlapping shell form is more

biologically possible than overlapping shell form.

2. A quasi-essential gene is a gene whose disruption decreases the growth rate of a cell

to decrease (more technically, a quasi-essential gene has Tn5 inserts in the P0 but

not the P4 dataset, see subsection 1.2.3). The growth impairment can vary “from

minimal to severe” (Hutchison et al. 2016: 6253.3). Therefore, quasi-essential genes

can be ordered according to the severity of the growth reduction caused by their

disruption. For example, the more severe the growth impairment, the higher the

score of the disrupted quasi-essential gene.

3. Environments such as planets can be ordered by their habitability (that is, by their

similarity to habitats of known organisms, see subsection 1.2.4). For example, the

Habitable Exoplanets Catalog (see phl.upr.edu) provides two such orderings (one

conservative and one optimistic) of planets based on the so-called Earth Similarity

Index (or ESI in short, see Schulze-Makuch et al. 2011).6

So within a given grade of biological possibility B, we can ask whether something is

more B-possible than something else. More generally, for the range of B-possibilities

b, b′, b′′, . . . , is there an ordering that can be imposed? Put roughly, there are at least

four ways to do say, namely by stipulating that 1. b is more easy to bring about than

b′, 2. there are more b than b′, 3. there are more ways to bring about b than b′, and b is

more probable than b′. I will provide implementations of all interpretations in chapter 6

and also discuss their respective advantages and disadvantages.

2.3 Summary

I offer two main of clarifications of how (not) to think about biological modalities. First, I

argue that defining biological possibility as non-violation of biological laws is problematic

since it requires a commitment to both realism about biological laws and the better best

6 ESI is a statistical measure based on a planet’s stellar flux, radius, and other parameters. Note that
Schulze-Makuch et al. (2011) also propose the Planetary Habitability Index (PHI); PHI requires more
observational data than ESI but is very close in spirit to the material conditions of instantaneous
habitability as presented in susection 1.2.4.

http://phl.upr.edu/
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systems account of special science laws; otherwise biological possibility is reduced to

physical or logical possibility, or its definition is rendered circular. Second, I examine

three ideas regarding the grading of (biological) possibility, namely (1) the distinction

between kinds of possibility such as logical, physical and biological possibility and (2)

between subkinds of biological possibility which roughly map to the scale of biological

phenomena under investigation and come in historical or ahistorical flavors, and (3) the

observation that some subkinds of biological possibility are comparative.



3. Dennett on biological possibility

Daniel Dennett offers an explicit albeit incomplete definition of biological possibility

stating that “x is biologically possible if and only if x is an instantiation of an accessible

genome or a feature of its phenotypic products” (1995: 118). The lynchpin of his defini-

tion is the Library of Mendel which can be roughly characterized as “the logical space of

all genomes” (1995: 123). The goal of this chapter is to show how Dennett’s definition

can be used as a stepping stone towards a theory of biological modalities.

I will proceed as follows. In section 3.1, a number of technical notions will be introduced.

Some context for the Library of Mendel will be provided in section 3.2. In section 3.3, I

will unpack and improve upon Dennett’s definition by restating the Library of Mendel

as relational structure, and I will discuss the advantages and problems of the resulting

relational semantics. In section 3.4, I will argue that the most pressing problem can be

addressed by interpreting the accessibility relation in the Library of Mendel as solution

to a string editing problem.

3.1 Preliminaries

In this section, two (clusters of) technical notions will be introduced, namely relational

structures in subsection 3.1.1, and alphabets, strings and languages in subsection 3.1.2.

Readers familiar with these notions can go directly to section 3.2.

3.1.1 Relational structures

A relational structure is a set plus a binary relation on that set. Relational structures

are ubiquitous both in everyday life and in the sciences. For example, the table of the

Swiss Super League (Switzerland’s top football league for non-sports fans) is a relational

52
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structure: The set consists of football teams such as FC Basel 1893; the relation on

that set is a partial order interpreted as one team having more points than another (or

as having a better goal difference in case of a tie). There are many other examples of

relational structures of varying complexity, for example the natural numbers, Bayesian

networks, biological mechanisms, and so on. Formally, we define relational structures as

follows:

Definition 3.1 (Relational structure)

A relational structure is a tuple ⟨D,R⟩ where the domain D is a non-empty set and

R ⊆D ×D.

I will write dRd′ in order to abbreviate ⟨d, d′⟩ ∈ R where d, d′ ∈D.

Relational structures are important because they give rise to relational semantics (or

Kripke semantics, after Kripke 1959, 1963). In a nutshell, relational semantics define

the truth of certain sentences in terms of the relation(s) between elements of a set. The

most widespread application of this idea in philosophy is the definition of the truth

conditions of possibility in terms of the relations between possible worlds: ◇φ is true at

some world w if and only if there is a world w′ such that w has access to w′ and φ is true

at w′; the relational structure underlying these semantics is the set of possible worlds

plus the accessibility relation. Historically, the invention of relational semantics “turned

modal logic from a rather esoteric branch of syntax manipulation into an concrete and

intuitively compelling field” (Blackburn et al. 2001: x). Relational semantics and modal

logics will be formally introduced in chapter 5.

3.1.2 Alphabets, strings and languages

Put simply, an alphabet consists of some symbols; a string over an alphabet is any se-

quence of symbols built from said alphabet; and a language is a collection of strings.

However, it is important to stress the technical nature of these notions: They are bor-

rowed from bioinformatics (e.g., Gusfield 1997: 2ff.) and computer science (e.g., Hopcroft

et al. 2007: 29ff.) and hence bear little or no resemblance to their use in other scientific

contexts. For example, consider the language of English. In many contexts, English

would be defined via its syntax and semantics. Not in this context: English simply

consists of those strings over the Roman alphabet that are collected in (say) the Oxford

Dictionary, irrespective of grammar and meaning. The formal perspective on alphabets,
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strings and languages offered in what follows should hence be understood as nothing

more but a tool for reasoning about (the manipulation of) sequences of symbols. Let us

start off by defining alphabets and strings:

Definition 3.2 (Alphabet)

An alphabet Ω is a non-empty and finite set of symbols.

Definition 3.3 (String)

A string s over Ω is a sequence of elements of Ω.

Ω will be used as meta-variable for any alphabet; token alphabets are indicated by

subscripts. Floor corners will be used in order to refer to a token symbol of an alphabet.

I will use s with or without subscript as meta-variable for a string over any alphabet.

Other lowercase letters such as b, g, t, . . . with or without subscripts will be used as

variables for strings over specific alphabets. The value of such a (meta-)variable, namely

a string, is indicated by ceiling corners (both floor and ceiling corners are dropped when

there is no risk of confusion). Some examples of alphabets include ΩSmall = {a,b},

ΩSuits = {♣,♢,♡,♠} and ΩBig = Roman alphabet. The symbol ⌊a⌋ belongs to both ΩSmall

and ΩBig. ⌈a⌉ is a string over ΩSmall and ΩBig, ⌈cat⌉ and ⌈oknwefwebs⌉ are strings over

ΩBig.

Some auxiliary notions are required in order to define string concatenation, that is the

combination of strings to build a new string:

Definition 3.4 (String length)

The length ∣s∣ of a string s denotes the number of positions of s.

Definition 3.5 (Empty string)

The empty string λ is any string s such that ∣s∣ = 0.

Definition 3.6 (Symbol position)

For n ∈ N1, s(n) denotes the symbol at the n-th position of s.

With definitions 3.2–3.8 at hand, string concatenation can be defined:
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Definition 3.7 (String concatenation)

Let s, s′ be strings over an alphabet Ω. The concatenation s⊕ s′ denotes the string

that is formed by joining s and s′ at s(∣s∣) and s′(1); if s′ = λ, then s⊕ s′ = s.

The notion of a substring will be useful:

Definition 3.8 (Substring)

For 1 ≤ i, j ≤ ∣s∣, a substring s[i, j] of a string s is a string starting at s(i) and ending

at s(j).

For illustration, consider a toy alphabet ΩToy = {a, e,g,n,v} and two strings over ΩToy,

namely t = ⌈geneva⌉ and t′ = ⌈gene⌉. The length of these strings is ∣t∣ = 6 and ∣t′∣ = 4

respectively. t(1) = ⌊g⌋, t(2) = ⌊e⌋, t(3) = ⌊n⌋, and so on. t′ = ⌈gene⌉ = t[1,4] and

t[1, ∣t∣] = t are substrings of t. t⊕ t′ = ⌈genevagene⌉ is the concatenation of t and t′.

In order to define languages, two additional auxiliary notions are needed:

Definition 3.9 (Alphabet exponentiation)

For an alphabet Ω, a string s over Ω and n ∈ N0, Ωn = {s ∶ ∣s∣ = n}.

Definition 3.10 (Kleene closure)

The Kleene closure of an alphabet Ω is Ω∗ = ⋃
n∈N0

Ωn.

An alphabet to the n-th power is exactly the set of strings over the alphabet with a

length of n positions. The Kleene closure of an alphabet is the union of all of the

alphabet’s exponentiations. Put differently, the Kleene closure of an alphabet is the

set of all strings over the alphabet that can be built via concatenation. For example,

Ω0
Small = {λ}, Ω1

Small = {a,b}, Ω2
Small = {aa,ab,ba,bb}, and so on. Here the Kleene closure

is Ω∗
Small = {λ,a,b,aa,ab,ba,bb,aaa, . . .}.

Based on definitions 3.2–3.10, languages can be defined:

Definition 3.11 (Language)

Σ ⊆ Ω∗ is a language.

Σ will be used as meta-variable for any language; token languages are indicated by

subscripts. For example, all words on this page are a language over the set of symbols
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used on this page. Note that since the Kleene closure of an alphabet is countably infinite,

some languages are countably infinite.

3.2 Context

In this section, I discuss a creative predecessors of the Library of Mendel, namely Jorge

Luis Borges’ (1998) Library of Babel.1 This provides the context for the presentation

of the Library of Mendel in section 3.3 and anticipates some challenges discussed in

section 3.3.4.

The Library of Mendel is an adaption of Jorge Luis Borges’ (1998) short story “The

Library of Babel”. The setting of this story is a peculiar library:

The universe (which others call the Library) is composed of an indefinite,

perhaps infinite number of hexagonal galleries. In the center of each gallery

is a ventilation shaft, bounded by a low railing. From any hexagon one can see

the floors above and below — one after another, endlessly. The arrangement

of the galleries is always the same: Twenty bookshelves, five to each side, line

four of the hexagon’s six sides; the height of the bookshelves, floor to ceiling,

is hardly greater than the height of a normal librarian. [...] Each wall of each

hexagon is furnished with five bookshelves; each bookshelf holds thirty-two

books identical in format; each book contains four hundred ten pages; each

page, forty lines; each line, approximately eighty black letters. [...] There are

twenty-five orthographic symbols [namely] the space, the period, the comma,

and the twenty-two letters of the alphabet (Borges 1998: 112ff.).

Dennett (1995: 107–111) uses an interpretation of the Library of Babel as template for

the Library of Mendel. Central to his interpretation is the observation that the Library

of Babel is, in a sense, the logical space of all books. To elucidate this observation, it

is instructive to make the Library of Babel more precise by defining its alphabet, books

and language by means of the tools of the previous section.

Let us start with the alphabet:

1 A second source of inspiration for Dennett’s Library of Mendel is Richard Dawkins’ (1986) so-called
‘Biomorph Land’ which I will skip here for brevity.
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Definition 3.12 (Alphabet of the Library of Babel)

The alphabet of the Library of Babel ΩB contains “the space, the period, the comma,

and the twenty-two letters of the alphabet” (Borges 1998: 114).

Exactly which twenty-two letters Borges has in mind is not clear and does not matter for

the purpose of this section; Dennet assumes that the alphabet of the Library of Babel

contains “the upper- and lowercase letters of English and other European languages,

plus the blank and punctuation marks” (1995: 108).

Definition 3.13 (Books in the Library of Babel)

A book b in the Libary of Babel is a string s over ΩB such that ∣s∣ = 410 (pages) ×

40 (lines per page) × 80 (symbols per line) = 1.312 × 106.

Definition 3.14 (Language of the Library of Babel)

The language of the Library of Babel ΣB is Ω1.312×106

B .

Definition 3.14 states that the language of the Library of Babel contains exactly the books

with a length of 1.312 × 106 positions. In light of this definition, it is clear that even

though the language of the Library of Babel is “very-much-more-than-astronomically”

(Dennett 1995: 109) vast, it is finite. To be exact, the language of the Library of Babel

contains

∣ΩB∣∣b∣ = 251.312×106 (3.1)

books. Therefore, the language of the Library of Babel is not really the logical space of

all books. Rather, it is the logical space of all books over the alphabet of the Library of

Babel with a length of 1.312 × 106 positions. The logical space of all books is either the

Kleene closure of the alphabet of the Library of Babel or the Kleene closure of the union

of all alphabets. I will return this observation in section 3.3 when discussing the idea

that the Library of Mendel is “the logical space of all genomes” (Dennett 1995: 123).

There are two additional facts about the language of the Library of Babel important to

Dennett’s interpretation which I will discuss in turn.

The first fact is that most books in the language of the Library of Babel are meaningless.

That is, most (sub)books are sequences of symbols that do not constitute grammatically

well-formed sentences (or even words found in a dictionary) and are hence trivially
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meaningless. What is more, most grammatically well-formed books are also meaningless.

The second fact is that the books in the language of the Library of Babel are such that

we can travel from one book to another book. That is, there is a binary relation on the

language of the Library of Babel interpreted as travel relation. This idea can be found

in the short story and in Dennett’s interpretation: The narrator states that “[l]ike all

the men of the Library [of Babel], in my younger days I traveled” (Borges 1998: 112)

in search of a specific book; and Dennett asks us to “[i]magine traveling by spaceship

through the Moby Dick galaxy of the Library of Babel” (1995: 110). The Library of

Babel is hence a relational structure:

Definition 3.15 (Library of Babel)

The Library of Babel is a relational structure ⟨ΣB,RB⟩ where the domain is the

language of the Library of Babel ΣB and the binary relation is the travel relation

RB.

It is clear that an appropriate definition of the travel relation is a far from trivial task:

What, exactly, does it mean to travel from one book to another? Is there a traveler or

is this just a metaphor? What are the formal properties of the travel relation? And so

on. An equally daunting challenge has to be met in defining the Library of Mendel as

will be made explicit in section 3.3.4.

3.3 Dennett’s definition of biological possibility

In this section, I will unpack Dennett’s definition of biological possibility:

Definition 3.16 (Biological possibility)

Some “x is biologically possible if and only if x is an instantiation of an accessible

genome or a feature of its phenotypic products” (Dennett 1995: 118).

At the core of his definition is the Library of Mendel which can be roughly characterized

as “the logical space of all genomes” (Dennett 1995: 123). Dennett presents it in form of a

rather baroque thought experiment. In subsection 3.3.1, I will strip the Library of Mendel

down to its bare essentials by restating it as relational structure. I will then use this

relational structure to make definition 3.16 more explicit in subsection 3.3.2 and explain

its advantages in subsection 3.3.3. Finally, in subsection 3.3.4, a number problems
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with the definition will be discussed, most importantly the missing interpretation of the

accessibility relation.

3.3.1 The Library of Mendel

I will now restate the Library of Mendel as relational structure where the domain is

its language and the binary relation the accessibility relation. In order to get at the

language of the Library of Mendel, an alphabet and strings over this alphabet need to

be defined:

Definition 3.17 (Alphabet of the Library of Mendel)

The alphabet of the Library of Mendel ΩM is {A,C,G,T}.

Definition 3.18 (Description of a genome)

A description of a genome g in the Library of Mendel is a string over ΩM.

A genome is the totality of genetic information of a living being encoded in a chain

of nucleotides called deoxyribonucleic acid or DNA. Nucleotides are in part composed

of one of the four nucleobases adenine, cytosine, guanine and thymine; four types of

nucleotides are distinguished on the basis of these nucleobases (Alberts et al. 2008: 173–

177). Each type of nucleotide is represented by an unitalicized typewriter font capital

letter A, C, G or T respectively. A genome can hence be described or represented as string

over the alphabet of the Library of Mendel, namely as a sequence of representations of

nucleotides. For example, the human genome (more precisely, the human chromosome 1

reference sequence) starts with the string TAACCCTAAC (Gregory et al. 2006). This idea

is of course not originally Dennett’s; parlance of a genetic alphabet is widespread in the

biological sciences at least since the 1960s. In order to avoid confusion, I will clearly

distinguish between the alphabet of the Library of Mendel and the scientific notion of a

genetic alphabet in what follows. With definitions 3.17 and 3.18 at hand, the language

of the Library of Mendel can be stated:2

2 Dennett remarks that Library of Mendel is a wing of the Library of Babel. That is, since the alphabet
of the Library of Mendel is a subset of the alphabet of the Library of Babel, every description of
a genome is either a substring of a book or a concatenation of some (sub)books in the language of
the Library of Babel. While this remark is certainly true, it makes for a very messy distribution of
descriptions of genomes over several books. For example, the human genome has roughly 3× 109 base
pairs, so its description has a length of 3 × 109 positions. Since a book b in the Library of Babel has
a length of 1.312 × 106 positions, it holds that b1 ⊕ b2 ⊕ ⋅ ⋅ ⋅ ⊕ b2286 ⊕ b2287[1,768000] is the simplest



3. DENNETT ON BIOLOGICAL POSSIBILITY 60

Definition 3.19 (Language of the Library of Mendel)

The language of the Library of Mendel ΣM is Ω∗
M.

Definition 3.19 states that the language of the Library of Mendel includes every string

over the alphabet of the Library of Mendel. For example, it includes descriptions of all

the “nucleotide sequences for over 300 000 formally described species” (Benson et al.

2015) available at GenBank which is the most comprehensive gene data base. This is

not surprising; after all, the language of the Library of Mendel is countably infinite.

However, is Dennett correct in calling the language of the Library of Mendel the logical

space of all descriptions of genomes? This might seem like a frivolous question, but

it is not. To see this, note the qualifier that the language of the Library of Mendel

“ignores the (apparent) possibility of alternative genetic alphabets” (Dennett 1995: 112).

What Dennett seems to allude to is the idea of life forms not based on carbon, but for

example on silicon or boron (e.g., see Trevors and Abel 2004). The DNA-analogue of

such aliens would be chemically different from terrestrial DNA and hence constitute a

distinct genetic alphabet. Descriptions of their genomes are hence not captured by the

language of the Library of Mendel. More down to earth, take the RNA-world hypothesis,

namely the idea that “DNA- and protein-based life was preceded by a simpler life form

based primarily on RNA” (Joyce 2002). Again, albeit only having a partially different

genetic alphabet, genomes of RNA-world life forms are not included in the language of

the Library of Mendel.

There are at least three additional limiting cases. The first one concerns the expansion

of the genetic alphabet. As case in point, consider a recent result in synthetic biology:

The genetic alphabet can be expanded in vitro to a six-letter alphabet by adding two

nucleotides (d5SICS and dNaM to wit) forming a so-called unnatural base pair which is

argued to be functionally equivalent to a natural base pair (Malyshev et al. 2012). For

the second case, consider hypothetical organisms where phosphorus in the backbone of

nucleic acids is replaced by arsenic, giving rise to a distinct biochemistry of life (Wolfe-

Simon et al. 2009). In third and final case, the reading frame is changed. That is, instead

of encoding information in triplets, it could be encoded in longer or shorter sequences.

Note that this also involves the expansion or contraction of the genetic alphabet. For

example, assuming that 20 amino acids are required, “[o]nly a triplet code using four

bases and a doublet code using six bases have coding capacities in the right range”

description of the human genome in the Library of Babel. From a modeling perspective, it is hence
well-justified to introduce a separate and simpler language of the Library of Mendel.
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Cleland and Copley (2005: 166). In other words, other combinations of reading frames

and genetic alphabets are either too simple or too complex.

These cases show that the language of the Library of Mendel occupies a significantly

smaller space than the logical space of all descriptions of genomes.

With the domain of the relational structure that is the Library of Mendel in place, let

us turn to its binary relation. Consider again Dennett’s definition of biological possibil-

ity. He states that “x is biologically possible if and only if x is an instantiation of an

accessible [description of a] genome or a feature of its phenotypic products” (Dennett

1995: 118). What it means, exactly, for a description of a genome to be accessible will

be discussed in detail later in this section. For now, all that matters is that there is a

binary relation, interpreted as accessibility relation, on the language of the Library of

Mendel.3 This completes restating the Library of Mendel as relational structure:

Definition 3.20 (Library of Mendel)

The Library of Mendel is a relational structure ⟨ΣM,RM⟩ where the domain is the

language of the Library of Mendel ΣM and the binary relation is the accessibility

relation RM.

3.3.2 Restating Dennett’s definition

With the help of definition 3.20, Dennett’s definition of biological possibility as per 3.16

can be made explicit (meant in a normative and not in an exegetical sense):

Definition 3.21 (Biological possibility)

Some x is biologically possible at g ∈ ΣM if and only if there is some g′ ∈ ΣM such

that gRMg
′ and x is an instance of g′ or a feature of the phenotypic products of g′.

Definition 3.21 provides a prototypical relational semantics for biological possibility. The

qualifier ‘prototypical’ attaches to ‘semantics’ rather than ‘relational’: Definition 3.21

does not state truth conditions of sentences, but rather specifies necessary and sufficient

conditions on non-linguistic entities. For now, I will gloss over this distinction; it will be

discussed in more detail in chapter 5.

3 There also is a phenotypic variant of Library of Mendel due to Dawkins (1996) which he calls ‘museum
of possible life forms’.
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Let me clarify the structure and terminology of definition 3.21. Consider first the left

hand side of the biconditional and note that biological possibility is defined with respect

to g, namely a specific description of a genome in the language of the Library of Mendel.

On the right hand side of the biconditional, the condition for some x to be biologically

possible at g is stated. It is instructive to distinguish three separate subconditions which

I propose to call existential, relational and material subcondition respectively:

1. The existential subcondition requires that there is a description of a genome g′ in

the Library of Mendel which satisfies the relational subcondition and the material

subcondition.

2. The relational subcondition requires that g′ is accessible from g via the accessibility

relation.

3. The material subcondition is a disjunction:

(a) The first disjunct is satisfied if x is an instance of g′; an instance of g′ is a

genome represented by g′.

(b) The second disjunct is satisfied if x is a feature of the phenotypic products

of g′. This requires some explanation. The phenotype of an organism de-

scribes its “manifested morphology, physiology, and behavior” (Sterelny and

Griffiths 1999: 388) such as eye-color or mating behavior. The phenotype

is contrasted with the genotype of an organism, that is a description of its

genome. The relation between genotype and phenotype is extremely complex;

put very roughly, it is a many-to-many relation due to various developmen-

tal, environmental and stochastic causes (Lewontin 2011). Dennett’s strategy

is to simplify this relation by postulating a “reader-constructor” (1995: 113)

which turns descriptions of genomes into phenotypic products. Therefore, the

second disjunct is satisfied if x is a feature of the products of applying the

reader-constructor to g′.

This completes restating Dennett’s definition of biological possibility.

3.3.3 Advantages

Before turning to its problems, I should make explicit that definition 3.21 (respectively

the relational structure it is based on) is an interesting proposal well worth the effort of
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being fleshed out in light of the desiderata compiled in section 1.3. In what follows, I

will highlight three advantages:

First, since biological possibility is defined with respect to a specific description of a

genome in the language of the Library of Mendel, definition 3.21 offers a what is called

‘local’ or ‘internal’ perspective on biological possibility (see Blackburn et al. 2001). This

has two important consequences:

1. What is biologically possible at one description of a genome need not be possible at

another description of a genome. Biological possibility as stated in definition 3.21

is hence relative to (or sensitive to the context of) descriptions of genomes. To this

effect, Dennett remarks that his notion of biological possibility has “an important

property: some things will be ‘more possible’ than others — that is, nearer in the

multidimensional search space, and more accessible, ‘easier’ to get to” (1995). I

have already discussed the ins and outs of grading biological possibility in chapter 2.

In chapter 6, I will show how grading of biological possibility in the spirit of

definition 3.21 can be implemented more precisely.

2. More general notions of biological possibility can be built from the local perspec-

tive. For example, we could distinguish between a notion of biological possibility

proper and a notion of biohistorical possibility (see section 2.2): x is biologically

possible at some description of a genome versus x is biologically possible at a cer-

tain subset of descriptions of genomes. Or we could distinguish between a notion

of terrestrial biological possibility and a notion of extraterrestrial biological possi-

bility by replacing the Library in Mendel with a different relational structure; and

so on. I will implement a number of notions of biological possibility on the basis

of definition 3.21 in chapter 5.

Second, in relational semantics, possibility and necessity are interdefinable (◻φ is defined

as ¬◇ ¬φ); so with definition 3.21, biological necessity comes for free:

Definition 3.22 (Biological necessity)

Some x is biologically necessary at g ∈ ΣM if and only if for all g′ ∈ ΣM such that

gRMg
′, x is an instance of g′ or a feature of the phenotypic products of g′.

Note that the interdefinability also holds for any more general notion of biological pos-

sibility built from the local perspective. Other biological modalities require more work,

but are still attainable using the Library of Mendel. For example, in chapter 9, I will
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define biological counterfactuality in the style of Lewis (1973, 1979) but avoid some of

the traditional problems, most notably any ambiguity with respect to similarity.

Finally, the perhaps most exciting advantage is that definition 3.21 can be turned into

a full blown modal logic of biological modalities. From this two things follow:

1. Such a modal logic will not only enable us to spell out the inferential relationship

between sentences using a certain kind of biological modality; it will also allow

us to map the inferential relationship between different notions of (say) biological

possibility. For example, if something is biohistorically possible, it must also be

biologically possible, but not vice versa.

2. A modal logic of biological modalities will also put us in a position to tackle the

challenge of unraveling the inferential relationship between biological and non-

biological modalities without falling prey to the problems outlined in chapter 2.

In short, the local perspective is an advantage because it facilitates the construction

of a versatile tool kit suitable to dealing with (at least some and hopefully most of)

the examples of biological possibility discussed in chapter 1. So even if there are (at

least in scientific practice) many and incompatible notions of biological possibility, we

will still have a unified framework to compare and assess them. Furthermore, biological

necessity and other biological modalities can be captured by the same framework. Last

but not least, this framework enables us to map the inferential relationships between the

aforementioned modal notions.

3.3.4 Problems

I will now discuss some problems of definition 3.21 in descending order of importance.

It is instructive to consider them in order to attain guidelines for how to improve upon

definition 3.21. Note that these problems do not pertain to the adequacy of this defini-

tion; rather, only by solving these problems, we will get into a position to argue about

the adequacy of definition 3.21.

However, before doing so, briefly consider two objections Dennett (1995: 121ff.) antici-

pates with respect to his definition that also apply to definition 3.21. The first objection

is that definition 3.21 plays to gene centrism in the way it is based on the Library

of Mendel. Now gene centrism is “the doctrine that genes play some special role in

ontogeny, which is often described in terms of information-bearing or programming”
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(Weber forthcoming). Dennett’s reply is simply that gene centrism is (more or less)

correct, and I tend to agree. The second objection is that definition 2.3 is not phrased

in terms of biological laws. Dennett observes that definition 2.3 “does not rule out bi-

ological laws; it merely sets the burden of proof for those who want to propose any”

(1995). Let me offer an even stronger reply based on section 2.1: Even if there are

biological laws, defining biological possibility in terms of biological laws runs into the

problem either of reducing biological possibility to physical (or logical possibility), or of

being circular, for most accounts. As already stated, this does not exclude the possible

explanatory role of biological laws with respect to other, non-modal explananda.

I now turn to new problems with definition 2.3:

1. How is the accessibility relation defined? The accessibility relation carries much

weight in definition 3.21 in form of the relational subcondition. Therefore, without

a definition of the accessibility relation, the relational subcondition cannot be

satisfied and definition 3.21 does not get off the ground. Dennett recognizes that

“[w]e have to specify a starting point in the Library of Mendel, and a means of

‘travel’” (1995). Unfortunately, he does not provide the required definition but

persists in using the travel-metaphor.

In order to overcome this challenge, two steps need to be taken: First, a salient

interpretation of the accessibility relation must be provided. In section 3.4, I will

argue for an interpretation in terms of a solution to a string editing problem. In a

second step, the required necessary and sufficient conditions can then be stated.

2. Is the reader-constructor an abstraction or an idealization? The second problem

concerns the reader-constructor. Dennett concedes that the reader-constructor “is

a brutal oversimplification” but adds that “later we can reopen the question of

the developmental or embryological complications” (1995: 115). In a nutshell, his

strategy is hence to provide a simplified definition of biological possibility; if it

proves to be fruitful, work on removing the simplifications is to be undertaken.

An important implicit assumption of this strategy is that these simplifications

can indeed be removed. In order to make this assumption more precise, I will

use the distinction between abstractions and idealizations due to Stokhof and van

Lambalgen (2011).4 They observe that models always neglect certain variables

4 There are many rivaling ways to carve out the difference between abstractions and idealizations (e.g.,
see Godfrey-Smith 2009). I am using the distinction at hand merely as a tool without any further
commitments.
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of the modeled phenomenon. This can be achieved in one of two ways. Either

the variable is included in the model and assigned a value which is false, or the

variable is not included in the model at all. The first way is an abstraction, the

second is an idealization. Therefore, while it is “possible, at least in principle if not

always in practice, to ‘undo’ an abstraction” (Stokhof and van Lambalgen 2011: 9)

without building a new model, the inclusion of an idealization always requires a

new model. For example, “random mating, non-overlapping generations, infinite

population size, perfect Mendelian segregation, frequency-independent genotype

fitnesses, and the absence of stochastic effects” (Okasha 2012) are abstractions in

simple population genetic models. These abstractions can be undone, for example

by assigning a less-than-infinite value to the variable of population size.

With respect to the reader-constructor, Dennett’s implicit assumption is that the

mentioned simplifications are abstractions rather than idealizations. If these sim-

plifications were idealizations, their inclusion would require a new definition of

biological possibility. It is hence paramount to provide at least some indication of

how Dennett’s simplification could be removed. I will do so in chapter 7.

3. What about the environment? To complicate matters further, the environment

encompasses other organisms which in turn change the environment. Dennett

suggests to start with actual environments “in order to extrapolate cautiously

to earlier and later possibilities” (1995: 116). Both the mechanism for creating

environments and the method for cautiously extrapolating environments are black-

boxed. Here Dennett overlooks something quite important, namely that there is

an entanglement between biological possibility and what could be called geological,

geographical, or ecological possibility depending on how the notion of an environ-

ment is defined exactly (let us settle for ecological possibility). In section 2.2, we

have seen that we can distinguish historical from ahistorical biological possibility

where the latter is relative to a particular evolutionary history. In a similar vein,

ecological possibility is relative to a particular environment. How ecology fits into

the hierarchy of grades of biological possibilities is far from clear, however. More

generally, constraints on biological possibility such as evolutionary history or envi-

ronment translate into distinct notions of biological possibility in addition to the

ones introduced above.

4. Populations or individuals? As discussed in section 2.2, there a different notions

of biological possibility depending on the scale of the biological phenomena under
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consideration. It could be objected that definition 3.21 is unable to handle phe-

nomena on a scale larger than an individual organism since possibility is defined on

the basis of an individual genome. This objection is countered by simply plugging

(one of) the reference genome(s) of a species or population into definition 3.21.

This is not to deny that there are substantial epistemic and technological chal-

lenges involved in assembling any reference genome (for an overview, see Church

et al. 2011 and Baker 2012). However, these potential difficulties do not stem from

definition 3.21 but rather from the implicit assumption that there are biological

phenomena at the scale of species or populations.

In short, the missing interpretation of the accessibility relation is the most pressing

problem and will be addressed in the next section. Other problems, if not already

answered, will be tackled in chapter 7.

3.4 Interpreting the accessibility relation

This section addresses the most pressing problem with respect to definition 3.21, namely

the missing interpretation of the accessibility relation: I will propose to interpret the

accessibility relation as solution to a string editing problem. In subsection 3.4.1, the

string editing problem is introduced; in subsection 3.4.2, some arguments in favor of my

proposal are provided.

3.4.1 String editing problem

Roughly put, a string editing problem is finding the lowest cost transformation of an

initial string i into a target string t (Szpankowski 2010). The most basic transformation

of a string is an edit operation:

Definition 3.23 (Edit operation)

Let i, t, x, y be strings and let s, s′ be strings such that ∣s∣ ≤ 1 and ∣s′∣ ≤ 1 but not

∣s∣ = ∣s′∣ = 0. An edit operation E is a pair ⟨s, s′⟩. An edit operation from i to t,

denoted by i
E
Ð→ t, is E such that i = x⊕ s⊕ y and t = x⊕ s′ ⊕ y (Wagner and Fischer

1974: 169).

The standard edit operations are substitution (s ≠ λ and s′ ≠ λ), deletion (s ≠ λ and

s′ = λ) and insertion (s = λ and s′ ≠ λ). Multiple edit operations can be composed into
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an edit script:

Definition 3.24 (Edit script)

Let i, t, x be strings. An edit script S is a sequence of edit operations ⟨E1,E2, . . . ,En⟩

where n ∈ N1. An edit script from i to t, denoted by i
S
Ð→ t, is S such that xi−1

Ei
Ð→ xi

for 0 < i < n where x0 = i and xn = t (Wagner and Fischer 1974: 169).

For illustration of definitions 3.23–3.24, consider the strings ⌈Geneva⌉, and ⌈Genoa⌉ the

following two edit scripts:

S1 = ⟨⟨⌈e⌉ , λ⟩ , ⟨⌈v⌉ , λ⟩ , ⟨λ, ⌈o⌉⟩⟩ (3.2)

S2 = ⟨⟨⌈e⌉ , ⌈o⌉⟩ , ⟨⌈v⌉ , λ⟩⟩ (3.3)

S1 reads ‘delete ⌈e⌉; delete ⌈v⌉; insert ⌈o⌉’ and is an edit script from ⌈Geneva⌉ to ⌈Genoa⌉

since:

⌈Geneva⌉
⟨⌈e⌉,λ⟩
ÐÐÐ→ ⌈Genva⌉

⟨⌈v⌉,λ⟩
ÐÐÐ→ ⌈Gena⌉

⟨λ,⌈o⌉⟩
ÐÐÐ→ ⌈Genoa⌉ (3.4)

whereas S2 reads ‘substitute ⌈e⌉ with ⌈o⌉; delete ⌈v⌉’ and is also an edit script from

⌈Geneva⌉ to ⌈Genoa⌉ since:

⌈Geneva⌉
⟨⌈e⌉,⌈o⌉⟩
ÐÐÐÐ→ ⌈Genova⌉

⟨⌈v⌉,λ⟩
ÐÐÐ→ ⌈Genoa⌉ (3.5)

Note that an edit script as per definition 3.24 is ambiguous if no target string is provided.

For example, without specifying ⌈Genoa⌉ as target string, ⌈Gonea⌉ is also the result of

applying S2 to ⌈Geneva⌉ since:

⌈Geneva⌉
⟨⌈e⌉,⌈o⌉⟩
ÐÐÐÐ→ ⌈Goneva⌉

⟨⌈v⌉,λ⟩
ÐÐÐ→ ⌈Gonea⌉ (3.6)

This can be avoided by providing an algorithmic definition of edit scripts; see appendix B.

for an example (for the related discussion of opaque versus transparent modalities, see

section 7.2.2). However, what follows holds both for definition 3.24 and for any algorith-

mic definition of edit scripts.

Now, S1 involves more edit operations than S2 to attain the same goal. So with respect

to simplicity, S1 is better than S2. A principled way to compare edit scripts is by means

of a cost function:
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Definition 3.25 (Edit script cost)

Let E be the set of edit operations and let γ ∶ E → R+ be the cost function. The

cost of an edit script S = ⟨E1,E2, . . . ,En⟩, denoted by γ(S), is given by (Wagner and

Fischer 1974: 169):

γ(S) =
n

∑
i=1

γ(Ei) (3.7)

According to definition 3.25, we stipulate a cost for each (type of) edit operation; the

cost of an edit script is then the sum of the costs of its constituent edit operations. We

can now define the minimum cost of an edit script:

Definition 3.26 (Edit distance)

Let i, t be strings. The edit distance from i to t, denoted by δ(i, t), is min{γ(S) ∶ i
S
Ð→

t} if ∣{γ(S) ∶ i
S
Ð→ t}∣ > 0, and undefined otherwise (Wagner and Fischer 1974: 169).

Definition 3.26 states that the edit distance from i to t is the cost of the least costly edit

script(s) from i to t. It is important to underscore that edit distance is relative, first, to

the set of viable edit operations from which edit scripts can be constructed, and, second,

to the cost function; this will now be illustrated briefly:

First, consider the dependency of edit distance on the set of viable edit operations. Com-

pare two important variants of edit distance, namely Hamming distance (after Richard

Hamming 1950) and Levenshtein distance (after Vladimir Levenshtein 1966): Intuitively,

Hamming distance is the number of positions at which two strings of equal length do

not have the same symbol. Here the set of edit operations is restricted to substitution

and the cost function is constant, namely γ(E) = 1 for any E . The Hamming distance

between ⌈cat⌉ and ⌈car⌉ is 1, the Hamming distance between ⌈Geneva⌉ and ⌈Genoa⌉ is

undefined. By contrast, Levenshtein distance is the number of changes required to trans-

form i into t. The set of edit operations consists of substitution, deletion and insertion;

the cost function is also constant. The Levenshtein distance between ⌈cat⌉ and ⌈car⌉ is

1, the Levenshtein distance between ⌈Geneva⌉ and ⌈Genoa⌉ is 2.

Second, consider the dependency of edit distance on the cost function. Let D be a set of

strings which we interpret as words in a dictionary, say the Oxford English Dictionary.

We want to compare different edit scripts from ⌈cat⌉ to ⌈heart⌉. The edit operations in

play are substitution, insertion and deletion. However, we have a general preference for
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edit scripts which have words in the dictionary as their intermediates. That is, we prefer

edit scripts such as

⌈cat⌉
S3
Ð→ ⌈heart⌉ = ⌈cat⌉

⟨⌈c⌉,⌈h⌉⟩
ÐÐÐÐ→ ⌈hat⌉

⟨λ,⌈e⌉⟩
ÐÐÐ→ ⌈heat⌉

⟨λ,⌈r⌉⟩
ÐÐÐ→ ⌈heart⌉ (3.8)

over edit scripts such as

⌈cat⌉
S4
Ð→ ⌈heart⌉ = ⌈cat⌉

⟨λ,⌈e⌉⟩
ÐÐÐ→ ⌈ceat⌉

⟨λ,⌈r⌉⟩
ÐÐÐ→ ⌈ceart⌉

⟨⌈c⌉,⌈h⌉⟩
ÐÐÐÐ→ ⌈heart⌉ (3.9)

since ⌈hat⌉ and ⌈heat⌉ are words ins the dictionary whereas ⌈ceat⌉ and ⌈ceart⌉ are not.

Our preference could be implemented by stipulating the following cost function:

γ(E) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if i
E
Ð→ t and t ∈D

100 otherwise
(3.10)

We can now give a formal definition of the string editing problem:

Definition 3.27 (String editing problem)

Let i, t be strings. The string editing problem with respect to i, t is finding i
S
Ð→ t

such that γ(S) = δ(i, t).

Definition 3.27 states that the string editing problem with respect to i, t consists in

finding the least costly edit script from i to t. Let us call any such edit script a solution

(there need not be a unique least costly edit script). It should be noted that a string

editing problem is usually solved computationally (e.g., Apostolico 2010); however, in

what follows, we can assume that the solution to any string editing problem is given.

3.4.2 Accessibility relation as solution to a string editing problem

I propose to interpret the accessibility relation as a solution to a string editing problem

along the following lines:

Definition 3.28 (Accessibility relation)

For g, g′ ∈ ΣM, gRMg
′ if and only if there is a solution to a string editing problem

with respect to g, g′.
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For clarification, let me preempt an objection. It could be argued that definition 3.28

is empty: For any pair of descriptions of genomes g, g′ in the Library of Mendel, there

is a least costly edit script from g to g′. Put differently, every string editing problem

with respect to g, g′ has a solution. Therefore, so the argument goes, the accessibility

relation RM is the trivial relation ΣM × ΣM. The upshot of this objection is that RM

does not do any work with respect to defining biological possibility. Consider plugging

definition 3.28 into definition 3.21: Some x is biologically possible at g ∈ ΣM if and only

if there is some g′ ∈ ΣM such that there is a least costly edit script from g to g′ and x is

an instance of g′ or a feature of the phenotypic products of g′. If RM = ΣM × ΣM, this

is equivalent to: Some x is biologically possible at g ∈ ΣM if and only if there is some

g′ ∈ ΣM and x is an instance of g′ or a feature of the phenotypic products of g′.

I have two replies this objection. First, the objection ignores the parameters, namely

the set of available edit operations and the cost function. For example, if the required

solution is framed in terms of Hamming distance or Levenshtein distance as explicated

above, RM is not the trivial relation. Since definition 3.28 does not specify these parame-

ters, it should be understood as schema for how different notions of biological possibility

can be cashed out depending on how we choose the values of the aforementioned pa-

rameters. So definition 3.28 can be read as follows: For g, g′ ∈ ΣM, gRMg
′ if and only if

there is an edit script from g to g′ that fits certain cost requirements and given a set of

edit operations. However, and this is my second reply, I submit that there is indeed a

notion of biological possibility that is captured by a trivial accessibility relation, namely

the weakest notion of biological possibility in the proposed framework. All other no-

tions of biological possibility are built from restricting definition 3.28 by specifying the

parameters in question.

I will now turn to provide a two reasons for why my proposal is promising in light of the

methodological desiderata spelled out in chapter 1:

First, the string editing problem is rooted in biological practice. For example, the

standard algorithm for global alignment (a subproblem of the string editing problem),

was developed by Needleman and Wunsch (1970) in order to align nucleotide sequences.

Many other subproblems, such as inexact string matching or finding the longest common

substring, play an important role in computational biology (see Gusfield 1997 for an

overview).

To bring this point home, let me show that the accessibility relation can be understood

as variant of genetic distance. Genetic distance (or evolutionary distance) is the measure
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of difference between pairs of homologous DNA sequences (call them h and h′); it is used

in various contexts, most notably phylogenetic analysis. Genetic distance comes in many

different flavors (see Nei 1972 for the most widely used notion), but is usually cashed

out in terms of the number or fraction of positions at which the nucleotides of h and h′

differ. It is important to distinguish between observed genetic distance and true genetic

distance (Strimmer and Haesler 2009: 112f.): Observed genetic distance is simply the

Hamming distance between h and h′. By contrast, true genetic distance is (the cost of)

the edit script from h to h. Biologists are mostly interested in true genetic difference

since observed genetic distance neglects the evolutionary history of DNA sequences. To

see this, consider an example. Let h = ⌈AAA⌉ and h = ⌈TAA⌉. Here the observed genetic

distance between h and h′ is 1; however, assume that the true genetic distance is 3, for

example as follows:

⌈AAA⌉
⟨⌈A⌉,⌈G⌉⟩
ÐÐÐÐ→ ⌈GAA⌉

⟨⌈G⌉,⌈A⌉⟩
ÐÐÐÐ→ ⌈AAA⌉

⟨⌈A⌉,⌈T⌉⟩
ÐÐÐÐ→ ⌈TAA⌉ (3.11)

In order to get at the true genetic distance between h and h′, three steps have to be

undertaken:

1. Establish the observed genetic distance between h and h′.

2. Choose a nucleotide substitution model. Such a model specifies the rate at which

nucleotides change on a position of a sequence. For example, the most simple model

is due to Jukes and Cantor (1969) and “specifies that the equilibrium frequencies of

the four nucleotides are 25% each, and that during evolution any nucleotide has the

same probability to be replaced by any other” (Strimmer and Haesler 2009: 117).

3. Infer or simulate the true genetic distance based on the observed genetic distance

and the chosen substitution model.

How, then, does the accessibility relation compare to the notion of genetic distance? On

the one hand, the accessibility relation is similar to observed genetic distance in that

evolutionary history is neglected. That is, if g, g′ are related, then they are related via

the least costly edit script from g to g′ and not via an evolutionary more likely but also

more costly edit script. On the other hand, the accessibility relation is similar to true

genetic distance in that an edit script (and not only its cost) is provided. There are also

some significant dissimilarities, the most important of which are following: Observed

genetic distance is an empirical notion whereas the accessibility relation is not. And

true genetic distance is a probabilistic notion whereas the accessibility relation is not (in
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section 6.3, however, I will show that the definition of the accessibility relation can be

modified to take into account the transition matrix of nucleotide substitution models,

giving rise to a probabilistic relational semantics of biological modalities).

Second, the proposed interpretation provides a well-defined modeling framework in the

sense of section 1.3. By this I mean that the formal properties of the Library of Mendel

and the accessibility relation are unambiguous. This is important with respect to the

task of constructing modal logics of biological modalities. The interpretation in terms

of a solution to a string editing problem is also versatile: Definition 3.28 can easily be

modified by imposing constraints on the solution to the string editing problem. This is

advantageous, because it can be shown that some of Dennett’s simplifications are indeed

only abstractions and not idealizations. In addition, some of the notions of biological

possibility briefly discussed in sections 2.2 and 3.3.3 will be implemented exactly by

imposing such constraints.

3.5 Summary

I improve upon Daniel Dennett’s definition of biological possibility by proposing two

modifications. First, I provide a clarification of his definition by reconstructing the

Library of Mendel as relational structure. Second, I argue that the most important

shortcoming of Dennett’s definition, namely the underdefined accessibility relation, can

be overcome by interpreting the accessibility relation as a solution to a string editing

problem. According to the restated definition, x is biologically possible with respect

to a genome g if and only if there is some genome g′ such that there is an edit script

from g to g′ that fits certain cost requirements given a set of edit operations, and x is

an instance of g or a feature of the phenotypic products of g′. This new definition is

promising because it is rooted in biological practice and can be extended into a family

of modal logics.



II. Logical models of hemoglobin variants
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4. Preliminaries

In chapters 4–7, I will put into action Dennett’s restated definition of biological possibil-

ity and my schema for interpreting the corresponding accessibility relation by providing

a detailed case study. In the chapter at hand, I will set the stage for constructing a range

of logical models of hemoglobin variants in chapters 5–7. In section 4.1, the modeling

goals and restrictions are made explicit. In section 4.2, related work and some of the

employed technical tools are briefly reviewed.

The rough outline for chapters 5–7 is as follows: In chapter 5, I will construct a sim-

ple logical model of hemoglobin variants which will serve as basis for the subsequent

discussion. In chapter 6, a number of implementations of how to add grades to the

simple model are investigated. Finally, in chapter 7, I will outline how the modeling

restrictions imposed in chapter 4 can be lifted in order to provide logical models of any

variant caused by any point mutation at the coding region of any gene. Furthermore,

the limitations of the proposed approach are discussed.

4.1 Modeling goals and restrictions

Hemoglobin is the protein in red blood cells responsible for binding oxygen and hence

functionally associated with respiration. In humans, normal adult hemoglobin (HbA)

consists of two alpha globin chains and two beta globin chains as depicted in Figure 4.1;

these are determined by the hemoglobin alpha gene (HBA) and the hemoglobin beta gene

(HBB) (see Berg et al. 2012: 195–213 for more details). Mutations or deletions of either

type of chain cause a variety of diseases including sickle-cell disease and thalassemia (see

Rees et al. 2010).

In line with the desiderata expressed in section 1.3, the logical models of hemoglobin

variants are aimed at answering the following questions:
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Figure 4.1

Structure of HbA with magenta and green alpha globin chains and turquoise and

yellow beta globin chains (PDB 2d5z viewed from the front as per Gutmanas

et al. 2014 based on Yokoyama et al. 2006).
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� Which variants of hemoglobin are logically, physically and biologically possible?

� Are there multiple senses in which variants of hemoglobin are biologically possible?

If yes, how can they be distinguished?

� How are the possible yet non-actual variants of hemoglobin to be explained?

� To what extent can the obtained results be generalized?

I now turn to discuss the modeling restrictions. It is crucial to note that the intended

models are rather complex: There are 1226 HbA variants according to HbVar (database

of human hemoglobin variants and thalassemia mutations as per April 2016, see Giardine

et al. 2014). In order to reduce complexity, three restrictions will be employed (in

chapter 7, it will be explained how they can be lifted):

First, the models are restricted to variants of HbA caused by single point mutations. A

point mutation is the change of a single nucleotide of a nucleotide sequence. There are

several ways to classify (point) mutations (e.g., Dunnen and Antonarakis 2000, 2001,

Griffiths et al. 2010). Figure 4.2 provides a flowchart for the classification of point muta-

tions that will be used in the remainder of this book. This classification is partial in the

sense that it neglects both chromosomal mutations (e.g., translocations, transpositions)

and gene mutations that change more than one nucleotide (e.g., duplications, sequence

repeats, large indels). In addition, it is a hybrid between classifications at two distinct

levels: The DNA level (changes of the nucleotide sequence of a gene) and the protein

level (functional consequences of these changes).

In the following, the different classes of point mutations are briefly explained. Take a

mutated nucleotide sequence m of a wild type w. At the DNA level, point mutations

are either substitutions or indels (insertions or deletions):

� Substitution: m is the result of substituting a single nucleotide of w. Example:

m = CAA, w = AAA. Note that an empty substitution (here any substitution of A

with A in w) is not classified as substitution since it does not constitute a change

of the wild type.1

� Indel: m is the result of inserting respectively deleting a single nucleotide of w.

Example: m = CAAA respectively m = AA, w = AAA.

In addition, substitutions are either transversions or transitions depending on whether

1 This might be debatable since an empty substitution does constitute a token change of the wild type
even if it does not constitute a type change of the wild type.
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Figure 4.2

Flowchart for a classification of point mutations based on Dunnen and An-

tonarakis (2000, 2001) and Griffiths et al. (2010). The input (green) is a mu-

tated nucleobase sequence m of a wild type w. Outputs are (sub-)classifications

of the mutation on the DNA level (blue) and the protein level (yellow). Decision

nodes (red) are labeled 1–6 and interpreted as follows:

1. Are m and w different at more than one base position?

2. Do m and w have the same length?

3. Is the substitution in m of the same chemical type (purine respectively

pyrimidine) as the substituted base in w?

4. Do m and w specify the same (chain of) amino acid(s)?

5. Does m cause a chain termination as compared to w?

6. Is the (chain of) amino acid(s) specified by m functionally similar to the

one specified by w?

For example, m = AAA given w = AGA is classified as point mutation/substitu-

tion/transition/missense mutation/synonymous mutation.
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Figure 4.3

Possible transitions (dotted line) and transversions (solid line) based on Lemey

et al. (2009). A transition is a substitution either from purine to purine or from

pyrimidine to pyrimidine; a transversion is a substitution either from purine

to pyrimidine or from pyrimidine to purine. Adenine (A) and guanine (G) are

purines (red), cytosine (C) and thymine (T) are pyrimindines (green). Both

transitions and transversions are symmetric and irreflexive.

or not the substitution in m matches the chemical type (purine respectively pyrimidine)

of the substituted base in w. Figure 4.3 provides more details.

At the protein level, indels are frameshift mutations. By contrast, substitutions are

in-frame mutations since substituting a nucleotide does not change the length of the

nucleotide sequence. Substitutions are either silent mutations, nonsense mutations or

missense mutations:

� Silent mutation: m and w code for the same (chain of) amino acid(s). Example:

Both m = AAG and w = AAA code for lysine.

� Nonsense mutation: m terminates translation whereas w does not. Example: m =

TAA terminates translation, w = AAA codes for lysine.

� Missense mutation: m and w each code for a different (chain of) amino acid(s).

Example: m = CAA codes for glutamine, w = AAA codes for lysine.

Missense mutations are either synonymous mutations or nonsynonymous mutations de-

pending on whether or not the translation of m is functionally equivalent to the trans-

lation of w; note that this is depending on the context.

Second, the models are restricted to variants of HbA caused by mutations of the nu-

cleotides 19–21 (codon 6) of the coding region of HBB.2 The restriction to a single codon

2 The initiation codon is not counted.
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of a gene is required since models of either HBA or HBB would still be rather complex:

For example, HBB has a length of 1606 nucleotides, beta globin has a length of 146

amino acids (excluding the initiator methionine), and there are 860 known variants of

HbA caused by mutations of HBB. The nucleotide sequence of codon 6 is GAG and codes

for glutamine. Note that the choice of HBB over HBA and the choice of codon 6 over

any of the other 145 codons is arbitrary, at least from a modeling perspective. How-

ever, codon 6 is interesting for biological and historical reasons: HbS, a variant of HbA

caused by a substitution of adenine with thymine at nucleotide 20 of the coding region

of HBB (and hence on codon 6) is the most common form of sickle-cell disease (Rees

et al. 2010: 2020); and peptide fingerprinting of HbS led Vernon Ingram (1956, 1957) to

the discovery that protein function can be drastically altered by the change of a single

amino acid (Morange 1998: 125).

Putting together both restrictions, the task is to provide logical models of HbA variants

caused by single point mutations at codon 6 of HBB. Note that ‘caused’ is to be under-

stood as ‘fully caused’ in the following sense: An HbA variant that is caused by a single

point mutation at codon 6 in conjunction with some other mutation does not fit the bill

of ‘fully caused’. For example, HbArlingtonPark is caused by a single substitution at

codon 6 in conjunction with a single substitution at codon 95 of HBB. According to Hb-

Var, there are at least seventeen HbA variants partially caused by a single substitution

at codon 6. Table 4.1 provides a list of all known HbA variants that fit the restrictions.

Note that all these variants except one are due to substitutions. For simplicity, and as

third restriction, let us exclude frameshift mutations. The final form of the task is hence

to provide logical models of HbA variants caused by single substitutions at codon 6 of

HBB.

4.2 Related work

In this section, I will provide a brief overview over logical models in molecular biol-

ogy. This serves as foil for my logical models presented in the next chapters. We can

distinguish two (families of) logical models in molecular biology, namely models in the

framework of ambient calculus and Zsyntax.

Ambient calculus is a process algebra and was created by Luca Cardelli and Andrew

3 Beta 6 (-A); modified C-terminal sequence: (6)Gly-Arg-Ser-Leu-Pro-Leu-Leu-Pro-Cys-Gly-Ala-
(17)Arg-COOH.
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HbA variant DNA level Protein level Class of point mutation

Codon 6 (-A) HBB:c.20delA beta 6 (-A)3 deletion/frameshift mutation
HbMachida HBB:c.19G↷ C beta 6 Glu>Gln subst./transversion/mis./syn.
HbC HBB:c.19G↷ A beta 6 Glu>Lys subst./transition/mis./nonsyn.
HbG-Makassar HBB:c.20A↷ C beta 6 Glu>Ala subst./transversion/mis./syn.
HbS HBB:c.20A↷ T beta 6 Glu>Val subst./transv./mis./nonsyn.
HbLavagna HBB:c.20A↷ G beta 6 Glu>Gly subst./transition/missense/syn.

Table 4.1

Known variants of HbA caused by single point mutations at codon 6 of HBB

based on HbVar (see Giardine et al. 2014). Column one specifies the name of

the HbA variant. The second column indicates the mutation at the DNA level.

Column three indicates the mutation at the protein level. The fourth column

classifies the mutation according to Figure 4.2; the classification as synonymous

respectively nonsynonymous depends on whether or not the clinical presentation

of the variant is normal. Nomenclature follows the HGNC guidelines (see Povey

et al. 2001); see Table 4.2 for amino acid abbreviations.

Gordon in order to model “mobile agents, the ambients where agents interact and the

mobility of the ambients themselves” (2000: 177). For example, ambient calculus can

be used to model mobile computation over the Internet. Ambient calculus was then

applied to molecular biology by Aviv Regev et al. and this so called bioambient calculus

“is suitable for representing various aspects of molecular localization and compartmen-

talization, including the movement of molecules between compartments, the dynamic

rearrangement of cellular compartments, and the interaction between molecules in a

compartmentalized setting” (2004: 143). That is, bioambient calculus can be used to

model biochemical mechanisms, the bioambients such as cells, organelles or vesicles

where the biochemical transitions take place, and the mobility of the bioambients them-

selves. Bioambient calculus has also been extended by modal logics. For example, Radu

Mardare et al. (2005) propose a model checker for biological systems by extending bioam-

bient calculus with temporal modal logic; as a further example, Anya Yermakova and

Alexandru Baltag (2012) combine bioambient calculus with dynamic epistemic logic in

order to model information flow in biological systems.

Let me now turn to Zsyntax. Zsyntax was created by Giovanni Boniolo et al. (2010, 2013,

2015) and is a formal language aimed to model biochemical reactions as deductions. For
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Abbreviation Symbol Name Codon(s)

Ala A alanine GCA,GCC,GCG,GCT
Arg R arginine AGA,AGG,CGA,CGC,CGG,CGT
Asn N asparagine AAC,AAT
Asp D aspartate GAC,GAT
Cys C cysteine TGC,TGT
Gln Q glutamine CAA,CAG
Glu E glutamate GAA,GAG
Gly G glycine GGA,GGC,GGG,GGT
His H histidine CAC,CAT
Ile I isoleucine ATA,ATC,ATT
Leu L leucine CTA,CTC,CTG,CTT,TTA,TTG
Lys K lysine AAA,AAG
Met M methionine ATG

Phe F phenylalanine TTC,TTT
Pro P proline CCA,CCC,CCG,CCT
Ser S serine AGC,AGT,TCA,TCC,TCG,TCT
Thr T threonine ACA,ACC,ACG,ACT
Trp W tryptophan TGG

Tyr Y tyrosine TAC,TAT
Val V valine GTA,GTC,GTG,GTT
Ter ∗ termination TAA,TAG,TGA

Table 4.2

Symbolic amino acid abbreviations, symbols, names, and possible codons (IU-

PAC 1984).

example, Zsyntax can express chemical equations such as (Boniolo et al. 2015: 402):

2H2O +O2 →H2O (4.1)

The most interesting feature of Zsyntax is that it allows for context-sensitive reactions

which are modeled by via a non-monotonic conjunction operator. Boniolo et al. rely

on a decidedly syntactic or proof theoretic perspective. By contrast, my discussion of

biological modalities so far as been and will be mostly semantic driven (perhaps with

the exception of chapter 8).

To preempt an objection, there is of course a plethora of mathematical models in molec-

ular biology such as nucleotide substitution models (e.g., Strimmer and Haesler 2009).

However, these models are described in terms of a mixture of natural language and
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mathematics; in short, they lack a formal language and do hence not qualify as logical

models.

4.3 Summary

I propose to put into action the results obtained so far by constructing logical models

of hemoglobin variants. Hemoglobin is the protein in red blood cells responsible for

binding oxygen; normal adult hemoglobin consists of two alpha and beta globin chains

determined by the hemoglobin alpha and beta gene respectively. The modeling goal is to

attain the desiderata specified above (to wit, truth conditions, inferential relationships,

grading). To this end, I present a schema for the classification of point mutations and

impose three modeling restrictions: The hemoglobin variants must be caused by (1)

single (2) substitutions (3) at codon 6 of the hemoglobin beta gene. Finally, I briefly

review why bioambient calculus, Zsyntax, and mathematical models in molecular biology

are not suitable for the task at hand.



5. Simple model

In this chapter, I will introduce a simple logical model of hemoglobin variants caused by

single point mutations at codon 6 of HBB. In section 5.1, the simple model is defined

within the framework of propositional modal logic. The kind of biological modalities

captured by the model are discussed in section 5.2. In section 5.3, I will make explicit

how the simple model compares to normal modal logics. In section 5.4, I will show how

the simple model can be made smaller via bisimulation contraction in order to facilitate

its practical application. Finally, in section 5.5, I will argue that the (small) simple

model allows for a distinction between active and inert silent mutations.

One way to understand the simple model is as minimal working example. The notion of

a minimal working example stems from computer science and refers to the least amount

of code that exactly reproduces a problem or feature of a program. Due to their reduced

complexity (as compared to the corresponding full-blown programs), minimal working

examples are hence heuristic devices in debugging or documenting programs. In the case

at hand, the simple model is a minimal working example of models with higher degrees

of freedom (such as the models presented in chapter 7) that still produces interesting

results and allows for a discussion of biological modalities.

5.1 Definitions

In this chapter, I work within the framework of propositional modal logic (Blackburn

et al. 2001). I start with the definition of a simple model:

84



5. SIMPLE MODEL 85

Definition 5.1 (Simple model)

A simple model M is a quadruple ⟨C,R,Φ, V ⟩ such that:

� C is the set of codons. A codon c ∈ C is represented as string over the alphabet

{A,C,G,T} such that ∣c∣ = 3.

� R ⊆ C ×C is a binary relation interpreted as single substitution.

� Φ is the set of atomic propositions interpreted as the set of amino acids. The

lowercase letters p, q with or without subscript range over Φ; the capital letters

A,R, . . . denote the corresponding amino acids (including termination) as per

Table 4.2.

� V ∶ Φ → P(C) is a valuation which assigns to each atomic proposition p ∈ Φ

some set of codons V (p) ⊆ C. Intuitively, the valuation indicates which codons

code for which amino acids.

In a simple model, the DNA level is encoded in the frame (domain C plus binary relation

R) whereas the protein level is encoded in the valuation. There is exactly one empirically

adequate valuation. The empirically adequate valuation assigns to each codon the amino

acid it actually codes for (see Table 4.2). Note that this empirically adequate valuation

induces a partition of the set of codons C. In what follows, all other valuations will be

neglected.1 Consequently, there is exactly one empirically adequate simple model which

I will call the simple model.

The graphical representation of the simple model is somewhat awkward due to its size:

Its domain has ∣C ∣ = ∣{A,C,G,T}∣∣c∣ = 43 = 64 elements and its substitution relation has

∣R∣ = 576 elements since each of the 64 codons has three positions and for each position

there are three possible substitutions (recall that an empty substitution does not qualify

as substitution in the biological sense). The simple model can be represented as Boolean

matrix BM (or adjacency matrix in terms of graphs) as shown in Figure 5.1. Partial

simple models can be represented in the usual way as directed graphs: The nodes are

given by a subset of codons and drawn as circles, the edges are given by a subset of the

substitution relation and drawn as arrows. In addition, the amino acid coded for at a

node is drawn in the node. Such partial representations are useful to zoom in on certain

substructures of interest.

1 This is not to say that other valuations are not logically and perhaps even physically possible.
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Figure 5.1

The simple model M represented as Boolean matrix BM. The indices on the top

and on the left are the codons in lexicographical order; the indices on the bottom

and on the right are the corresponding valuations. For bc,c′ ∈ B
M, a green field

indicates that codon c′ can be reached from codon c via single substitution; a

white field indicates that it cannot be reached. For example, bGAG,AAG ∈ B
M is

green, so AAG can be reached from GAG via single substitution; bGAG,AAA ∈ B
M is

white, so AAA cannot be reached from GAG via single substitution. Note that

BM is symmetric since the substitution relation is symmetric.
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I now turn to the definition of the basic amino acid language:

Definition 5.2 (Basic amino acid language)

The basic amino acid language L is used to describe simple models M = ⟨C,R,Φ, V ⟩.

The syntax of L is given by the following Backus-Naur form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ ◇ φ

where p ∈ Φ. The standard abbreviations for the classical connectives ∧,→,↔ are

used; in addition, it is convenient to use:

◻φ ∶= ¬◇ ¬φ (5.1)

◇nφ ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

◇1 ⋅ ⋅ ⋅ ◇n φ if n > 0

φ if n = 0
(5.2)

where n ∈ N. That a formula φ of L is true in M at a codon c ∈ C is written as

M, c ⊩ φ. The semantics of L are given recursively:

M, c ⊩ p iff c ∈ V (p) (5.3)

M, c ⊩ ¬φ iff not M, c ⊩ φ (5.4)

M, c ⊩ φ ∨ ψ iff M, c ⊩ φ or M, c ⊩ φ (5.5)

M, c ⊩ ◇φ iff M, c′ ⊩ φ for some c′ ∈ C such that cRc′ (5.6)

For ease of presentation, let us call a codon at which φ holds a φ-codon. The literal

meaning of ◇φ is that a φ-codon can be reached via single substitution. The intended

meaning of ◇φ is that φ is possible via single substitution. The basic amino acid language

L hence offers a reductive account of possibility via single substitution captured by the

◇-modality. Furthermore, the literal meaning of ◇nφ is that a φ-codon can be reached

via a sequence of n single substitutions. The intended meaning of ◇nφ is that φ is

possible at the n-th level via single substitution. Note that the semantics of course

remain fixed of the basic amino acid language would describe simple models lacking an

empirically adequate valuation.
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5.2 Biological possibility

In this section, I will discuss what kind of possibility is in play here. There are at least

three candidates: Logical possibility, physical possibility and biological possibility. The

short answer is that the ◇-modality captures (some kind of) biological possibility. In

order to give a more qualified answer, it is helpful to first consider in detail the simple

model as logical model of HbA variants caused by single substitutions at codon 6 of

HBB. I want to submit three observations:

1. When counting HbA variants caused by single substitutions at codon 6 of HBB,

the DNA level has to be distinguished from the protein level. At the DNA level, a

variant is given by a single substitution at codon 6. At the protein level, a variant

is given by a change of position 6 of beta globin caused by a single substitution

at codon 6. Hence the DNA level is independent from the protein level, but the

inverse does not hold.

The simple model is a logical model of HbA variants caused by single substitutions

at codon 6 of HBB at the protein level: If ◇p is true at codon 6, then the HbA

variant where position 6 of beta globin has been changed to p is possible given

codon 6. In other words, the simple model is a logical model of position 6 of beta

globin caused by single substitutions at codon 6 of HBB. ◇A, ◇D, ◇E, ◇G, ◇K,

◇Q, ◇V and ◇∗ are true at codon 6. Therefore, eight variants of HbA are possible:

One variant for each of the amino acids A, D, E, G, K, Q, V at position 6 of beta

globin; and one variant for ∗ where beta globin ends at position 6.

2. There is a discrepancy between the HbA variants predicted to be possible by the

simple model and the HbA variants in the HbVar database: Only HbG-Makassar

(E replaced with A), HbLavagna (E replaced with G), HbC (E replaced with K),

HbMachida (E replaced with Q) and HbS (E replaced with V) are in HbVar whereas

the simple model also predicts HbA variants where E is replaced with E, D and ∗.

The absence of E is due to the fact that is not a variant but rather HbA, at least

on the protein level. In general, there are various possible explanations for the

absence of D and ∗: These variants have never been caused, or have never been

observed, or are not possible contrary to the simple model.

3. The simple model is a non-specific logical model of HbA variants caused by single

substitutions at codon 6 of HBB. That is, the simple model is a general model of

variants caused by single substitutions at any codon of any gene. To see this, note
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that the simple model does not encode any empirical information specific to either

codon 6 or HBB such as upstream or downstream context. This is not to say it does

not encode any empirical information; as made explicit above, the simple model is

distinguished by an empirically adequate valuation from other simple models.

With these three observations in place, let us now turn to answer the question of what

kind of possibility (logical, physical or biological) is captured by the ◇-modality of the

basic amino acid language L. Note that an answer to this question depends on what re-

lationship between logical, physical and biological possibility is assumed. In section 2.2,

I have argued for two uncontroversial claims with respect to the relationship between

logical possibility and both physical and biological possibility: First, everything that

is physically or biologically possible is also logically possible; and, second, not every-

thing that is logically possible is also physically or biologically possible. Given these

claims and neglecting complications of scope etc., the relationship between physical and

biological possibility can be characterized by what I called Independence, Plural-

ism, Physico-Inclusivism, Bio-Inclusivism or Reductionism. Now, if for example

Reductionism is assumed, then the ◇-modality trivially captures both physical and

biological possibility. However, neither of Bio-Inclusivism, Reductionism and Inde-

pendence is compatible with the simple model and can hence be excluded, as I will

show next:

The simple model is not compatible with Bio-Inclusivism or Reductionism. Too see

this, note that the substitution relation is irreflexive since a codon without a change of

the type of one of its token nucleobases with respect to some wild type does not fall

under the biological concept of a mutant. However, it is physically possible to replace a

token nucleobase with a token nucleobase of the same type. This is an instance of PP but

not BP; therefore, Bio-Inclusivism and Reductionism must be excluded. A related

point can be made with respect to the fact that the set of atoms in L only includes

proteinogenic amino acids as compared to all physically possible amino acids.

This leaves room for Independence, Pluralism and Physico-inclusivism. The gen-

eral idea here is to make use of what could be called compositionality with respect to

possibility: By assumption, physical and biological possibility are constructed by im-

posing constraints on logical possibility. Now, if biological possibility is constructed by

imposing constraints on physical possibility, then Independence must be excluded. I

submit that exactly this is the case: An apt albeit verbose characterization of the kind

of possibility captured by the ◇-modality is the following: Logical possibility at the
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protein level constrained both by biological facts about gene expression (encoded in the

valuation) and by the biological concept of mutation (encoded in the binary relation).

Therefore, the ◇-modality captures biological possibility and the simple model is com-

patible with both Pluralism and Physico-Inclusivism. But we can go a step further.

In section 2.2, I have proposed to use the factors of Scale and Historicity in order

to distinguish different notions of biological possibility. In the case of the ◇-modality,

the value of Scale, namely the molecular level, is already given. However, where does

the ◇-modality score with respect to Historicity? In order to answer this question,

it is useful to briefly recall the distinction between the local and global truth of a formula:

Definition 5.3 (Local truth)

A formula φ ∈ L is locally true at a codon c ∈ C in the simple model M = ⟨C,R,Φ, V ⟩

if and only if M, c ⊩ φ.

So the semantic clauses of L as per definition 5.2 are all phrased in terms of local truth.

Based on local truth, global truth (or model truth) can be defined:

Definition 5.4 (Global truth)

A formula φ ∈ L is globally true in the simple model M = ⟨C,R,Φ, V ⟩, written as

M ⊩ φ, if and only if φ is locally true at all c ∈ C.

By the same token, validity can be defined based on global truth as global truth in all

models.2 The difference between local and global truth is one of perspective (Blackburn

et al. 2001: 18). So when we say that a formula is locally true we take the perspective of

a codon; by contrast, when we say that a formula is globally true we take the perspective

of the simple model. Now, I propose to cash out the difference between historical and

ahistorical biological possibility by adopting exactly this bifurcation of perspectives. We

can then define historical and ahistorical biological possibility along the following lines:

Definition 5.5 (Historical biological possibility)

A formula φ ∈ L is HB-possible at a codon c ∈ C in the simple model M = ⟨C,R,Φ, V ⟩

if and only if M, c′ ⊩ φ for some c′ ∈ C such that cRc′.

Definition 5.5 states that historical biological possibility is captured by the ◇-modality.

2 The notion of the validity of a formula (as compared to validity tout court) does not apply here since
we have fixed the valuation of the simple model; global truth and validity hence coincide with respect
to the simple model.
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Contrast this with ahistorical biological possibility:

Definition 5.6 (Ahistorical biological possibility)

A formula φ ∈ L is AB-possible in a model M = ⟨C,R,Φ, V ⟩ if and only if M, c ⊩ φ

for some c ∈ C.

In short, in the simple model, historical biological possibility is relativized to a codon

whereas ahistorical biological possibility is relativized to the simple model itself. Note

that definition 5.6 provides a weak notion of historical biological possibility. By this I

mean that the only thing that makes definition 5.6 historical is that it takes a local per-

spective. Stronger versions can implemented by extending the simple model as to add

further constraints. For example, recall the example of the cost function that privileges

words in the English Oxford Dictionary as intermediates in an edit script over ran-

dom strings discussed in section 3.4); constraints such as viability or certain functional

properties could be implemented in an analogous manner.

5.3 Simple model logic

The basic amino acid language gives rise to the normal modal logic KDBC4 which is

sound and complete with respect the the class of serial, symmetric and dense relational

structures of which the simple model is an instance (see appendix C. for details). Here I

will briefly show that the single biological substitution relation is serial, symmetric and

dense, and briefly comment on the corresponding axioms.

The single biological substitution relation is serial. That is, for each codon c ∈ C, there

exists a codon c′ ∈ C such that cRc′. Informally, this means that each codon is prone to

single substitution. Therefore, the D-axiom holds in the simple model:

M ⊩ ◻φ→◇φ (5.7)

The single biological substitution relation is symmetric. That is, for all codons c, c′ ∈ C,

if cRc′, then c′Rc. Informally, this means that a single substitution on a codon can be

reversed. Therefore, the B-axiom holds in the simple model:

M ⊩ φ→ ◻◇ φ (5.8)

The single biological substitution relation is dense. That is, for all codons c, c′ ∈ C, if
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cRc′, then there exists a codon c′′ ∈ C such that cRc′′ and c′′Rc′. Informally, this means

that a single substitution can be extended into into a sequence of single substitutions.

Therefore, the C4-axiom holds in the simple model:

M ⊩ ◇φ→◇2φ (5.9)

Two observations are important. First, these axioms hold also for simple models without

empirically adequate valuation. Second, what to make of the axioms (5.7)–(5.9)? Given

the intended meaning of the ◇-operator as biological possibility via single substitution,

(5.7) states that biological possibility implies biological possibility. So whatever HbA

variant is biologically necessary is also biologically possible. (5.8) states that whatever

HbA variant is actual is such that it being biologically possible is biologically necessary.

Put differently, an actual HbA variant that is biologically impossible is biologically im-

possible. (5.9) states that biological possibility implies biological possibility at the second

level. So whatever HbA variant is biologically possible is also biologically possible in a

less direct way or sense.

5.4 Small simple model

Even though the simple model is much smaller than the Library of Mendel (see sec-

tion 3.3.1), it is still rather large for what concerns its practical application. However,

it can be made smaller by bisimulation contraction (see Blackburn and van Benthem

2007): Take the bisimilarity class of each codon in the simple model and construct a

new model by relating the bisimilarity classes if some of their members are related via

single substitution in the simple model. For this recall the definition of a bisimilarity

class:

Definition 5.7 (Bisimilarity class)

The bisimilarity class of a codon c ∈ C in a simple model M = ⟨C,R,Φ, V ⟩ is the set

{c′ ∶M, c⇆M, c′} and written as ∥c∥.

Bisimilarity classes are in turn based on the definition of bisimulation:
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Definition 5.8 (Bisimulation)

Z ⊆ C × C ′ is a bisimulation between two simple models M = ⟨C,R,Φ, V ⟩ and

M′ = ⟨C ′,R′,Φ′, V ′⟩ iff for c ∈ C and c′ ∈ C ′:

� If cZc′, then c and c′ share a valuation, and

� if cZc′ and cRx, then there is a x′ ∈ C ′ such that xZx′ and c′R′x′, and

� if cZc′ and c′R′x′, then there is a x ∈ C such that xZx′ and cRx.

Two simple models M,M′ or two states c, c′ are bisimilar, written as M ⇆ M′

respectively as M, c⇆M′, c′, if there is a bisimulation between them.

Intuitively, the bisimilarity class of a codon is constituted by the codons that code for

the same amino acid and exactly match the types of codons that can be reached via

single substitution in the simple model. For example, there are two distinct D-codons

reachable from codon 6 via single substitution that are bisimilar as detailed in Figure 5.2.

Consider now the definition of the small simple model based on the simple model

M = ⟨C,R,Φ, V ⟩:

Definition 5.9 (Small simple model)

The small simple model S is a quadruple ⟨CS,RS,ΦS, V S⟩ where:

� CS is the set of bisimilarity classes ∥c∥ of codons c ∈ C.

� RS ⊆ CS ×CS is a binary relation such that ∥c∥RS∥c′∥ if there are c ∈ ∥c∥ and

c′ ∈ ∥c′∥ such that cRc′.

� ΦS = Φ.

� V S ∶ ΦS → CS is a valuation function such that ∥c∥ ∈ V S(p) if c ∈ V (p).

The small simple model can be represented as Boolen matrix BS as shown in Figure 5.3.

By construction, the simple model and the small simple model are bisimilar. Since

basic modal formulas of are invariant for bisimulation (Hennessy-Milner Theorem, see

Hennessy and Milner 1985), each codon and its respective bisimilarity class satisfy the

same formulas of the basic amino acid language L. For the purpose of discussion, we

can hence trade in the simple model for the less complex small simple model without

loss of generality.



5. SIMPLE MODEL 94

(a) Partial simple model M

(b) Partial small simple model S

Figure 5.2

Codons that can be reached from GAC,GAT (bold circles) in the simple model

before and after bisimilarity contraction (bisimilarity classes are drawn as rect-

angles). GAC and GAT are bisimilar since they code for the same amino acid and

for each p-codon that can be reached from GAC via single substitution, there is a

p-codon that can be reached from GAT via single substitution (and vice versa).

Therefore GAC and GAT constitute a bisimilarity class in the small simple model

(bold rectangle).
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Figure 5.3

The small simple model S represented as Boolean matrix BS. The rows and

columns are the bisimilarity classes in lexicographical order. The indices on the

top and on the left are the codons in lexicographical order; the indices on the

bottom and on the right are the corresponding valuations. For b∥c∥,∥c′∥ ∈ B
S,

a green field indicates that the bisimilarity class ∥c′∥ can be reached from the

bisimilarity class ∥c∥ via single substitution; a white field indicates that it cannot

be reached. For example, b∥GAG∥,∥AAG∥ ∈ BS is green, so ∥AAG∥ can be reached

from ∥GAG∥ via single substitution; b∥GAG∥,∥AAA∥ ∈ B
S is white, so ∥AAA∥ cannot

be reached from ∥GAG∥ via single substitution. Again, BS is symmetric since

the substitution relation is symmetric.
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5.5 Active versus inert silent mutations

In the small simple model, there are 44 bisimilarity classes: 24 singleton bisimilarity

classes and 20 bisimilarity classes with two members. I will now consider these bisim-

ilarity classes in more detail; this will allow me to introduce the distinction between

active and inert silent mutations. At the DNA level, for c, c′ ∈ ∥c∥ where c ≠ c′, c is a

transition at the third position with respect to c′ (and vice versa since transitions are

symmetric); and, at the protein level, c is a silent mutation of c′ (and vice versa since

silent mutations are symmetric). That is, each member of a non-singleton bisimilarity

class is a transition/silent mutation at the third position with respect to the other mem-

ber of that class. For example, codon 6 of HBB, GAG, and GAA are in a bisimilarity class,

hence GAG is a transition/silent mutation at the third position with respect to GAA (and

vice versa).

However, not all sets of codons where each member is a transition at the third position

with respect to the other members of that set are such that they constitute a bisimilarity

class. For example, ATA is a transition at the third position with respect to AAG (and vice

versa), but ATA codes for I whereas ATG codes for ∗; so ATA and ATG are not bisimilar.

More importantly, not all sets of codons where each member is a silent mutation at

the third position with respect to the other members of that set are such that they

constitute a bisimilarity class. For example, AAA is silent mutation at the third position

with respect to AAG (and vice versa), but AAA can reach an I-codon via single substitution

whereas AAA cannot; so AAG and AAA are not bisimilar.

Figuratively speaking, this means that some silent mutations make modal noise whereas

others do not: If the mutant caused by a silent mutation is not bisimilar to the wild

type, the possible HbA variants for the mutant differ from the possible HbA variants

for the wild type (despite the mutant coding for the same amino acid as the wild type).

I hence propose to append the classification of point mutations given by Figure 4.2 as

follows: Call a silent mutation ‘inert’ if the mutant and the wild type are bisimilar, and

‘active’ otherwise. In contrast to inert silent mutations, active silent mutations impact

fitness. For example, take TCC which codes for serine S and consider two distinct silent

mutations at the third position, namely the active silent mutation TCC ↷ A resulting in
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Figure 5.4

Distribution of inert and active silent mutations over the third position of all

codons in the (small) simple model.

TCA, and the inert silent mutation TCC↷ T resulting in TCT. It now holds:

M,TCA ⊩ ◇∗ (5.10)

M,TCT ⊮ ◇∗ (5.11)

That is, a single substitution resulting in termination ∗ (or nonsense mutation in short)

is biologically possible at TCA but not at TCT. Therefore, the active silent mutation

but not the inert silent mutation impacts the possible variants of TCC hence providing

the basis for an impact on fitness.3 To illustrate, simply consider the weak assumption

that a nonsense mutation has a stronger impact on fitness than other classes of point

mutations. Note that the framework provided in chapter 6 provides the tools to quantify

the first kind of impact.

I turn now to the distribution of inert and active silent mutations in the (small) sim-

ple model as summarized in Figure 5.4. A preliminary observation is that only single

substitutions at the third position of each codon need to be considered; single substi-

tutions at other positions are never inert silent mutations. Consider first the tran-

sitions: All C ↷ T transitions at the third position are inert silent mutations. By

contrast, only 25% of all A ↷ G transitions at the third position are inert silent mu-

tations (CAA ↷ G, CCA ↷ G, GAA ↷ G, GCA ↷ G); 62.5% are active silent mutations

(AAA ↷ G, ACA ↷ G, AGA ↷ G, CGA ↷ G, CTA ↷ G, GGA ↷ G, GTA ↷ G, TAA ↷ G, TCA ↷ G,

3 This distinction can also be cashed out in terms of dispositions, counterfactual stability, robustness,
modal probabilies, and son.
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TTA ↷ G); and 12.5% are non-silent mutations (ATA ↷ G, TGA ↷ G). And second, the

transversions: 53.12% of the transversions at the third position are active silent mu-

tations (AAA/G↷ C/T, ATA↷ C/T, CCA/G↷ C/T, CGA/G↷ C/T, CTA/G↷ C/T, GCA/G↷ C/T,

GGA/G↷ C/T, GTA/G↷ C/T, TCA/G↷ C/T); 46.88% are non-silent mutations (ACA/G↷ C/T,

AGA/G↷ C/T, ATG↷ C/T, CAA/G↷ C/T, GAA/G↷ C/T, TAA/G↷ C/T, TGA/G↷ C/T, TTA/G↷ C/T);

and none of them are inert silent mutations.

5.6 Summary

I introduce a simple model of hemoglobin variants caused by single substitutions at

codon 6 of the hemoglobin beta gene within the framework of propositional modal logic.

In the model, states are interpreted as codons, the binary relation is interpreted as single

substitution, and the valuation is kept fixed and induces a partition of blocks of codons

that code for some amino acid. I argue that explicit truth conditions for at least historical

and ahistorical biological modalities are attained via the modal language describing the

model. This gives rise to a normal modal logic that is sound and complete with respect

to the class of serial, symmetric and dense frames. After showing that the model can

be simplified via bisimulation contraction, I argue that the notion of silent mutation is

ambiguous between mutants that are bisimilar to the wild type and hence modally inert,

and mutants that are not and hence modally active.



6. Graded models

In this chapter, I will be concerned with grading biological possibility. As explained in

section 2.2, the idea of grading possibility is somewhat ambiguous. Here I will focus

on what I called comparative biological possibility, namely determining a ranking for

the possibilities within one kind of biological possibility. More precisely, I will focus on

the ranking of possible HbA variants caused by single substitutions at codon 6 of HBB.

That is, for two HbA variants v, v′, the task is to spell out under what circumstances

v is more possible than v′. For this, it is useful to distinguish two stages of modeling,

namely the conceptual stage and the stage of implementation.

First, at the conceptual stage, the intended meaning for the ‘more possible’ locution

must be fixed. Here I will consider four ways to do so:

1. Simplicity: v is more possible than v′ iff it is more easy to bring about v than v′

2. Quantity: v is more possible than v′ iff there are more possible v than v′

3. Process: v is more possible than v′ iff there are more ways to realize v than v′

4. Probability: v is more possible than v′ iff v is more probable than v′

A couple of remarks are in order. Simplicity depends of course on how exactly ‘more

easy’ is defined. What I intend here is in line with definition 3.27 of a string editing

problem: v is more easy to bring about than v′ iff the least costly edit script from (say)

the wild type to v is less costly than the least costly edit script from the wild type to v′.

Probability is in effect a reduction of comparative possibility to probability. Similar

to Simplicity, Probability depends on how exactly ‘more probable’ is defined. I

submit that the probabilistic model discussed below is open to various interpretations of

probability; the most detailed example employing an amino acid scoring matrix based

probability function relies on a frequentist interpretation of probability. In contrast

to Simplicity and Probability, the interpretation of Quantity is straightforward:

99
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Whether there are more possible v than v′ can be counted in the model. The same holds

for Process: There are more ways to realize v than v′ iff there are more unique paths to

v than to v′ in the model (that is, the relevant pairs in the binary relation are counted).

Second, at the level of implementation, the simple model or the basic amino acid language

is changed as to reflect the choice at the conceptual stage. Note that the availability of

technical tools at the implementation stage somewhat constrains the conceptual stage.

There are at least three available techniques to change the simple model or the basic

amino acid language in order to implement graded modalities (see Legastelois et al.

2015 for a general overview): Count the codons that are reachable via the substitution

relation, use a weighted substition relation, or use weighted codons. In what follows,

some of these techniques or extensions thereof will be applied to implement Simplicity,

Quantity, Process and Probability.

In section 6.1, Simplicity is implemented as Hamming distance whilst keeping the

simple model and the basic amino acid language fixed. In section 6.2, Quantity and

Process are implemented by keeping the simple model fixed but changing the basic

amino language such that codons and unique sequences of substitutions can be counted.

In section 6.3, Probability is implemented by changing both the simple model and the

basic amino acid language. The upshot of each section is a ranking of the possible HbA

variants caused by single substitutions at codon 6 of HBB.

6.1 Simplicity

The basic amino acid language L is not suitable to implement any of Quantity, Pro-

cess or Probability. However, Simplicity can be implemented via the ◇n-modality

of L. The ◇n-modality allows for what I called levels of possibility. For example, ◇1A,

◇2H and ◇3C are true at codon 6 of HBB ; the literal meaning is that A, H and C can

be reached via single substitution, via two subsequent single substitutions, and via three

subsequent single substitutions respectively. The intended meaning is that A, H and C

are possible, possible to the second level, and possible to the third level respectively;

more precisely, that HbA variants where position 6 of beta globin has been changed to

A, H and C are are possible, possible to the second level, and possible to the third level

respectively. These levels of possibility can be understood as a measure of how easy it

is to bring about a certain HbA variant via single substitution. As mentioned above,

Simplicity allows for many different implementations depending on the exact criterion
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for what counts as easy; here the criterion is ‘the less substitutions, the easier’. Consider

introducing the following abbreviation to express this in L (for i, j ∈ N):

φ >◇ ψ ∶= ◇iφ ∧◇jψ and i < j (6.1)

The literal meaning of φ >◇ ψ, in line with Simplicity, is that a φ-codon can be

reached with fewer single substitutions than a ψ-codon; the intended meaning is that

φ is more possible than ψ. However, (6.1) leads to contradictions or at least gibberish.

For example, A is more possible than H at codon 6 since ◇1A ∧◇2H is true at codon 6

and 1 < 2. But H is more possible than A at codon 6 since ◇2H∧◇3A is true at codon 6

and 2 < 3; so H is more possible than A and A is more possible than H. More generally,

when using the ◇n-modality for grading, two limitations need to be observed:

First, it holds that:

If n ≥ 3, then M ⊩ ◇nφ→◇3φ ∨◇2φ ∨◇1φ ∨ φ (6.2)

That is, the ◇n modality bottoms out at the third level in the simple model. To see

this, note that the substitution relation can be used to compute the Hamming distance

between codons (see chapter 3). The Hamming distance is the number of positions at

which two strings of equal length do not have the same symbol. The simple model

encodes codons as strings and the substitution relation between two codons c and c′

holds if and only if the Hamming distance between c and c′ equals 1. By counting the

number of substitutions required to connect two arbitrary codons in the simple model,

the Hamming distances in the simple model can be computed as shown in Figure 6.1.

Now, if M, c ⊩ ◇nφ, then there is a c′ and a sequence of substitutions cR1, . . . ,Rnc
′ such

that M, c′ ⊩ φ. But since the maximal Hamming distance between c and c′ has a lower

limit of 0 and an upper limit of 3, either c = c′, or there is a sequence of substitutions

cR1, . . . ,Ric
′ where 1 ≤ i ≤ 3. Therefore, M, c ⊩ ◇3φ ∨◇2φ ∨◇1φ ∨ φ.

And second, M, c ⊩ ◇nφ for 0 ≤ n ≤ 3 does not correspond to a Hamming distance

of n between c and a φ-codon. One reason for this is that the substitution relation is

symmetric.

Given these limitations, the ◇n-modality can be used to construct a Hamming distance

operator that suits the purpose of grading possibility in line with Simplicity. In the

simple model, the Hamming distance between c and a p-codon is given by taking min-

imum of {n ∶ M, c ⊩ ◇np} as shown in Figure 6.2. In L, this can be expressed by
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Figure 6.1

Hamming distances in the simple model M represented as matrix HM. The

indices on the top and on the left are the codons in lexicographical order; the

indices on the bottom and on the right give the valuation. For hc,c′ ∈ HM,

a black, green, blue or red field indicates a Hamming distance of 0, 1, 2 or 3

respectively. For example, hGAG,AAA is blue, so the Hamming distance between

GAG and AAA is 2. Note that HM is symmetric.
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Figure 6.2

Minimum Hamming distances between codons and amino acids in the simple

model M represented as matrix MM. The indices on the top and on the left are

the codons which are arranged in blocks B according to the partition induced

by the valuation (∀B∃!pV (p) = B), separated by bold lines, in lexicographical

order of the valuation which is given by the indices on the bottom and the

right. For mc,B ∈ MM colored fields indicate the codon(s) c′ ∈ B such that the

Hamming distance between c and c′ is minimized with respect to B. Black,

green, blue and red fields indicate a minimum Hamming distance of 0, 1, 2, or 3

respectively. For example, mGAG,∗ is green, so the minimum Hamming distance

between GAG and the ∗-block is 1. Note that MM is not symmetric.
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introducing the following abbreviations (for n, i, j ∈ N):

Hnφ ∶= ◇nφ ∧ ¬◇n−1 φ ∧ ⋅ ⋅ ⋅ ∧ ¬◇0 φ (6.3)

φ >H ψ ∶= Hiφ ∧Hjψ and i < j (6.4)

Hnφ expresses that the Hamming distance to a φ-codon is n. The literal meaning of

φ >H ψ is that the Hamming distance to a φ-codon is smaller than the Hamming distance

to a ψ-codon; the intended meaning is that φ is more possible than ψ. Returning to the

above example, H1A, H2H and H3C are true at codon 6, so A is more possible than H and

H is more possible than C (and A is more possible than H). Abusing the notation, this

yields the following full ranking of possible HbA variants caused by single substitutions

at codon 6 of HBB :

M,GAG ⊩ E >H ∗,A,D,G,K,Q,V >H H,L,M,N,P,R,S,T,W,Y >H C,F, I (6.5)

6.2 Quantity and process

The idea of counting accessible states in order to attain graded modalities was introduced

by Goble (1970) and Fine (1972); it has since then been refined by various authors. In

what follows, I will extend the standard framework of graded modal logic as presented

by Pacuit and Salame (2004) in two directions: First, in addition to a modality that

counts accessible codons, a modality that counts unique sequences of single substitu-

tions is introduced. Second, these modalities are allowed to look farther than at a single

substitution. This will enable me to implement both Quantity and Process. I start

by defining the counting amino acid language:

Definition 6.1 (Counting amino acid language)

The counting amino acid language LC is used to describe simple models M =

⟨C,R,Φ, V ⟩. The syntax of LC is given by the following Backus-Naur form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ δmn φ

where p ∈ Φ, δ ∈ {◇,⟐} and m,n ∈ N. The standard abbreviations for the classical
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connectives ∧,→,↔ are used; in addition, it is convenient to use:

βmn φ ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

¬◇m
n ¬φ if β = ◻

¬⟐m
n ¬φ if β = ⊡

(6.6)

δ0
nφ ∶= φ (6.7)

δm0 φ ∶= δ
mφ (6.8)

δ!mn φ ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

δmn−1φ ∧ ¬δ!
m
n φ if n > 0

¬δm if n = 0
(6.9)

φ >mδ ψ ∶= δ!mi φ ∧ δ!
m
j ψ and i > j (6.10)

φ▷m
δ ψ ∶=

m

⋀
k=1

(δ!kik ∧ δ!
k
jk
) and

m

∑
k=1

ik >
m

∑
k=1

jk (6.11)

where i, j ∈ N. The semantics of LC are identical to L as per definition 5.2 for

non-modal formulas. The semantics for the modal operators are:

M, c ⊩ δmn φ iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣{c′ ∶ cR1 . . .Rmc
′ and M, c′ ⊩ φ}∣ > n if δ = ◇

∣{⟨c, . . . , c′⟩ ∶ cR1 . . .Rmc
′ and M, c′ ⊩ φ}∣ > n if δ = ⟐

(6.12)

The ◇m
n -modality combines the ‘true in at least n + 1 states from here’ ◇n-modality

with the ‘true somewhere m steps from here’ ◇m-modality. ◇m
n φ expresses that at least

n + 1 φ-codons can be reached via a sequence of m single substitutions; ◻mn φ expresses

that φ does not hold at all but n codons that can be reached via a sequence of m single

substitutions; and ◇!mn φ expresses that exactly n φ-codons can be reached via a sequence

of m single substitutions. The literal meaning of φ >m◇ ψ is that more φ-codons than

ψ-codons can be reached via a sequence of m single substitutions; the intended meaning,

in line with Quantity, is that φ is more possible than ψ within a level of possibility

m. The literal meaning of φ▷m
◇ ψ is that more φ-codons than ψ-codons can be reached

via the union of sequences of 1, . . . ,m single substitutions; the intended meaning, in

line with Quantity, is that φ is more possible than ψ across the levels of possibility

1, . . . ,m.

While the ◇m
n -modality counts codons, the ⟐m

n -modality counts unique sequences of

single substitutions: ⟐m
n φ expresses that some φ-codon(s) can be reached via at least n+1

unique sequences of m single substitutions; ⊡mn φ expresses that φ does not hold at some

codon(s) that can be reached via all but n unique sequences of m single substitutions; and
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⟐!mn φ expresses that some φ-codon(s) can be reached via at exactly n unique sequences

of m single substitutions. The literal meaning of φ >m⟐ ψ is that there are more unique

sequences of m single substitutions to reach some φ-codon(s) than there are unique

sequences of m single substitutions to reach some ψ-codon(s); the intended meaning,

in line with Process, is that φ is more possible than ψ within a level of possibility

m. The literal meaning of φ▷m
⟐ ψ is that there are more unique sequences of 1, . . . ,m

unique single substitutions to reach some φ-codon(s) than there are unique sequences

of 1, . . . ,m single substitutions to reach some ψ-codon(s); the intended meaning, in line

with Process, is that φ is more possible than ψ across the levels of possibility 1, . . . ,m.

In what follows, I will spell out the grading of HbA variants caused by single substitutions

at codon 6 of HBB in terms of these implementations of Quantity and Process. Here

the notion of the global grading Γ will be useful as limit for the loss of local context of

the evaluation codon. Put differently, Γ indicates an ahistorical grading of HbA variants.

Γ is given by an ordering according to the size of the blocks in the partition of the set of

codons induced by the valuation in the simple model M = ⟨C,R,Φ, V ⟩; in other words,

Γ is given by an ordering of the fraction of p-codons:

Γ = L,R,S >γ A,G,P,T,V >γ ∗, I >γ C,D,E,F,H,K,N,Q,Y >γ M,W (6.13)

such that

p >γ q iff γ(p) > γ(q) (6.14)

where p, q ∈ Φ and

γ(p) =
∣V (p)∣

∣C ∣
(6.15)

is the fraction of p-codons in the simple model.

6.2.1 Counting codons

Consider first Quantity respectively the ◇m
n -modality. Here the grading within a level

of possibility has to be distinguished from the grading across levels of possibility. I start

with discussing the former, namely the >m◇-comparator. In the simple model, it holds
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that:

If m ≥ 3, then γ>m
◇

(p) = γ(p) for all p ∈ Φ (6.16)

where

γ>m
◇

(p) =
n ∶M, c ⊩ ◇!mn p

∣{c′ ∶ cR1 . . .Rmc′}∣
(6.17)

is the fraction of p-codons that can be reached via sequences m single substitutions

from codon c. That is, the >m◇-comparator yields the global grading for the third level

of possibility or higher. To see this, note the Hamming distance between all codons is

maximally three (see section 6.1); so with three subsequent single substitutions, each p-

codon can be reached and the count of p-codons equals the size of the block of p-codons

in the simple model:

If M ⊩ ◇!mn p and m ≥ 3, then n = ∣V (p)∣ (6.18)

This gives the following ranking of HbA variants within each level of possibility at codon

6 of HBB :

M,GAG ⊩ D >1
◇ ∗,A,E,G,K,Q,V (6.19)

M,GAG ⊩ A,G,V >2
◇ ∗,D,E,K,Q >2

◇ M,P,S,T,W (6.20)

If M,GAG ⊩ p >m◇ q and m ≥ 3, then p >γ q (6.21)

See Figure 6.3 for numerical examples.

I now turn to the grading of HbA variants across levels of possibility, namely the ▷m
◇-

comparator. In the simple model, it holds that:

lim
m→∞

γ▷m
◇

(p) = γ(p) for all p ∈ Φ (6.22)

where

γ▷m
◇

(p) =

m

∑
i=1

n ∶M, c ⊩ ◇!inp

m

∑
i=1

∣{c′ ∶ cR1 . . .Ric
′}∣

(6.23)

is the fraction of p-codons that can be reached via sequences of 1, . . . ,m single substitu-
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Figure 6.3

Grading of HbA variants within levels of possibility at codon 6 of HBB according

to Quantity in the simple model where γ>1
◇

(p) (blue), γ>2
◇

(p) (red), γ>3
◇

(p)

(green), and γ(p) (purple) for all p ∈ Φ (x-axis).

tions from codon c. That is, the ▷m
◇-comparator induces a grading that converges to the

global grading for high values of m. Depending on how fine-grained a ranking is desired,

m can be significantly lowered, however. In what follows, I will assume that rounding

to the second decimal place gives a ranking which is sufficiently fine grained. Given this

assumption, in the simple model it holds that:

If m ≥ 100, then γ▷m
◇

(p) ≈ γ(p) for all p ∈ Φ (6.24)

That is, the ▷m
◇-comparator yields the global grading for the hundredth level of possi-

bility or higher. This gives the following grading of HbA variants across levels at codon
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Figure 6.4

Grading of HbA variants across levels of possibility at codon 6 of HBB according

to Quantity in the simple model where γ▷1
◇

(p) (blue), γ▷2
◇

(p) (red), γ▷3
◇

(p)

(green), γ▷100
◇

(p) (purple), and γ(p) (turquois) for all p ∈ Φ (x-axis).

6 of HBB :

M,GAG ⊩ D▷1
◇ ∗,A,E,G,K,Q,V

(6.25)

M,GAG ⊩ A,G,V ▷2
◇ D▷2

◇ ∗,E,K,Q▷2
◇ H,N,L,R,Y ▷2

◇ M,P,S,T,V

(6.26)

M,GAG ⊩ A,G,V ▷3
◇ L,R▷3

◇ S▷3
◇ ∗,D,E,K,P,Q,T▷3

◇ H,N,Y ▷3
◇ I▷3

◇ C,F,M,W

(6.27)

If M,GAG ⊩ p▷m
◇ q and m ≥ 100, then p >γ q

(6.28)

See Figure 6.4 for numerical examples and appendix D. for details.
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6.2.2 Counting unique sequences of substitutions

Consider now Process respectively the ⟐m
n -modality. Again, the grading within a level

of possibility has to be distinguished from the grading across levels of possibility. I start

with discussing the former, namely the >m⟐-comparator. Similar to the ◇m
n -modality,

the ⟐m
n -modality loses the local context of its evaluation codon with higher levels of

possibility. More specifically, in the simple model it holds that:

lim
m→∞

γ>m
⟐

(p) = γ(p) for all p ∈ Φ (6.29)

where

γ>m
⟐

(p) =
n ∶M, c ⊩ ⟐!mn p

∣{⟨c, . . . , c′⟩ ∶ cR1 . . .Rmc′}∣
=
n ∶M, c ⊩ ⟐!mn p

9m
(6.30)

is the fraction of unique sequences of m single substitutions that reach some p-codon(s)

from codon c. For all practical purposes (that is, rounded to two decimal places), it

holds that:

If m ≥ 8, then γ>m
⟐

(p) ≈ γ(p) for all p ∈ Φ (6.31)

That is, the >m⟐-comparator yields the global grading for the eighth level of possibility or

higher. This gives the following grading of HbA variants within each level of possibility

at codon 6 of HBB :

M,GAG ⊩ D >1
⟐ ∗,A,E,G,K,Q,V (6.32)

M,GAG ⊩ E >2
⟐ A,G,V >2

⟐ ∗,D,H,K,L,N,Q,R,Y >2
⟐ M,P,S,T,W (6.33)

M,GAG ⊩ A,G,V >3
⟐ D,L,R >3

⟐ ∗,E,S >3
⟐ K,Q >3

⟐ P,T >3
⟐ H,N,Y >3

⟐ C,F, I,M,W (6.34)

If M,GAG ⊩ p >m⟐ q and m ≥ 8, then p >γ q (6.35)

See Figure 6.5 for numerical examples.

I now turn to the grading of HbA variants across levels of possibility, namely the ▷m
⟐-

comparator. In the simple model it holds that:

lim
m→∞

γ▷m
⟐

(p) = γ(p) for all p ∈ Φ (6.36)
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Figure 6.5

Grading of HbA variants within levels of possibility at codon 6 of HBB according

to Process in the simple model where γ>1
⟐

(p) (blue), γ>2
⟐

(p) (red), γ>3
⟐

(p)

(green), γ>8
⟐

(p) (purple), and γ(p) (turquois) for all p ∈ Φ (x-axis).

where

γ▷m
⟐

(p) =

m

∑
i=1

n ∶M, c ⊩ ⟐!inp

m

∑
i=1

∣{⟨c, . . . , c′⟩ ∶ cR1 . . .Ric}∣

=

m

∑
i=1

n ∶M, c ⊩ ⟐!inp

m

∑
i=1

9i
(6.37)

is the fraction of unique sequences of 1, . . . ,m single substitutions that reach some p-

codon(s) from codon c. Again, for all practical purposes (that is, rounded to two decimal

places), it holds that:

If m ≥ 8, then γ▷m
⟐

(p) ≈ γ(p) for all p ∈ Φ (6.38)

That is, the ▷m
⟐-comparator yields the global grading for the eight level of possibility

or higher. This gives the following grading of HbA variants across levels at codon 6 of
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Figure 6.6

Grading of HbA variants across levels of possibility at codon 6 of HBB according

to Process in the simple model where γ▷1
⟐

(p) (blue), γ▷2
⟐

(p) (red), γ▷3
⟐

(p)

(green), γ▷8
⟐

(p) (purple), and γ(p) (turquois) for all p ∈ Φ (x-axis).

HBB :

M,GAG ⊩ D▷1
⟐ ∗,A,E,G,K,Q,V

(6.39)

M,GAG ⊩ E▷2
⟐ A,G,V ▷2

⟐ D▷2
⟐ ∗,K,Q▷2

⟐ H,L,N,R,Y ▷2
⟐ M,P,S,T,W

(6.40)

M,GAG ⊩ A,G,V ▷3
⟐ D,E▷3

⟐ ∗,L,R▷3
⟐ K,Q,S▷3

⟐ P,T▷3
⟐ H,N,Y ▷3

⟐ I,M,W ▷3
⟐ C,F

(6.41)

If M,GAG ⊩ p▷m
⟐ q and m ≥ 8, then p >γ q

(6.42)

See Figure 6.6 for numerical examples and appendix D. for details.
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6.3 Probability

There are a number of probabilistic modal logics which are mostly used in formal epis-

temology in order to model various notions of knowledge and belief. Here I will propose

an implementation of Probability based on the probabilistic modal logic of Shirazi

and Amir (2007, 2008) which models probabilistic knowledge.1

6.3.1 Probabilistic model

In this section, I work within the framework of Shirazi and Amir (2007, 2008) which

in turn is based on Fagin and Halpern (1994). For this, I adapt their logic to a non-

epistemic context and extend it via a number of modalities and comparative operators.

By this I mean that the probabilistic model and the probabilistic amino acid language

are not defined in terms of knowledge and believe of an actor; I do not mean that the

discussed probability distributions are non-epistemic or non-heuristic. I start by defining

a probabilistic model:

Definition 6.2 (Probabilistic model)

A probabilistic model MP is a quadruple ⟨CP, PP,ΦP, V P⟩ such that:

� CP is the set of codons C as per definition 5.1.

� PP ∶ CP × CP → R is a conditional probability function interpreted as single

substitution. The probability that c′ ∈ CP can be reached from c ∈ CP via

single substitution is written as PP(c′∣c) and constrained by:

0 ≤ PP(c′∣c) ≤ 1 (6.43)

∑
c′∈CP

PP(c′∣c) = 1 (6.44)

� ΦP is the set of atomic propositions Φ as per definition 5.1.

� V P ∶ ΦP → P(CP) is the valuation V as per definition 5.1.

I now turn to the definition of the probabilistic amino acid language:

1 Another suitable starting point are discrete conditional probabilistic models for knowledge and con-
ditional belief due to Baltag and Smets (2006a,b, 2007).
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Definition 6.3 (Probabilistic amino acid language)

The probabilistic amino acid language LP is used to describe probabilistic models

MP = ⟨CP, PP,ΦP, V P⟩. The syntax of LP is given by the following Backus-Naur

form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ } φ = α

where p ∈ ΦP and α ∈ R. The standard abbreviations for the classical connectives

∧,→,↔ are used; in addition, it is convenient to use:

φ >} ψ ∶= }φ = α ∧}ψ = β and α > β (6.45)

where α,β ∈ R. The semantics of LP are identical to L as per definition 5.2 for

non-modal formulas. The semantics for the modal operator are:

MP, c ⊩ }φ = α iff ∑
c′∈S

PP(c′∣c) = α (6.46)

where S = {c′ ∈ CP ∶MP, c′ ⊩ φ}.

}φ = α expresses that a φ-codon can be reached via a single substitution with a proba-

bility of α. The literal meaning of φ >} ψ is that the probability of reaching of φ-codon

via single substitution is higher than the probability of reaching a ψ-codon via single

substitution; the intended meaning, in line with Probability, is that φ is more possible

than ψ.

In the following, the grading of HbA variants caused by single substitutions at codon 6 of

HBB will be discussed in the context of Probability. What distinguishes Probabil-

ity from Simplicity, Quantity and Process is that with the choice of the probability

function, additional empirical content can be added to the model. I will focus on three

distinct probability functions and corresponding models: First, a constant probability

function; the intention here is to underscore some features and limitations of the prob-

abilistic amino acid language. Second, I will show how empirical content can be added

at the DNA level by providing a probability function which captures the so-called tran-

sition/transversion bias. And finally, I do the same for the protein level by constructing

a probability function based on amino acid scoring matrices.
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6.3.2 Constant probability function

Let MC = ⟨CC, P C,ΦC, V C⟩ be a probabilistic model with a constant probability function

P C such that:

P C(c′∣c) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
9 if cRc′

0 otherwise
(6.47)

where R is the substitution relation of the simple model. That is, from each codon,

nine codons can be reached via single substitution, and reaching each such codon gets

assigned the same probability. This gives the following ranking of HbA within the first

level of possibility at codon 6 of HBB (missing amino acids are not possible since they

have a zero probability of being reached via single substitution):

MC,GAG ⊧ D >} ∗,A,E,G,K,Q,V (6.48)

For example, aspartate D is more possible than termination ∗ at codon 6 since:

∑
c∈S

P C(c∣GAG) = P C(GAC∣GAG) + P C(GAT∣GAG) =
1

9
+

1

9
=

2

9
(6.49)

∑
c∈S′

P C(c∣GAG) = P C(TAA∣GAG) + P C(TAG∣GAG) + P C(TGA∣GAG) = 0 +
1

9
+ 0 =

1

9
(6.50)

where S = {c ∈ CC ∶ MC, c ⊩ D} and S′ = {c ∈ CC ∶ MC, c ⊩ ∗}; and similar for

A,E,G,K,Q and V.

Now, what about the grading within higher levels of possibility and the grading across

levels of possibility? Unfortunately, neither can be expressed in the probabilistic amino

acid language. To see this, consider a nested formula such as }(}φ = α) = β. It expresses

that with a probability of β a codon can be reached via single substitution at which there

is a probability of α that a φ-codon can be reached via single substitution. However,

the probability that a φ-codon can be reached via two subsequent single substitutions

cannot be computed on the basis of α and β; see Figure 6.7 for an example. In order to

achieve a grading within higher levels of possibility and across levels of possibility, the

probabilistic amino acid language has to be extended:
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Definition 6.4 (Extended probabilistic amino acid language)

The extended probabilistic amino acid language LE is used to describe probabilistic

models ⟨CP, PP,ΦP, V P⟩. The syntax of LE is given by the following Backus-Naur

form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ }m φ = α

where p ∈ ΦP, m ∈ N and α ∈ R. The standard abbreviations for the classical

connectives ∧,→,↔ are used; in addition, it is convenient to use:

φ >m} ψ ∶= }mφ = α ∧}mψ = β and α > β (6.51)

φ▷m
} ψ ∶=

m

⋀
i=1

}iφ = αi ∧
m

⋀
i=1

}iφ = βi and
m

∑
i=1

αi >
m

∑
i=1

βi (6.52)

where α,β ∈ R. The semantics of LE are identical to L as per definition 5.2 for

non-modal formulas. The semantics for the modal operator are:

MP, c ⊩ }mφ = α iff ∑
t∈(CP)m

g(t) = α (6.53)

where (CP)m = CP × ⋅ ⋅ ⋅ ×CP

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

such that t ∈ (CP)m is an m-tuple ⟨c1, . . . , cm⟩ and

g ∶ (CP)m → R is a function such that:

g(⟨c1, . . . , cm⟩) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

m−1

∏
i=1

PP(ci+1∣ci) if MP, cm ⊩ φ and c1 = c

0 otherwise

(6.54)

}mφ = α expresses that the probability of reaching a φ-codon via a sequence of m single

substitutions is α. The }m-can be thought of as the probabilistic variant of the ◇-

and ⟐-modality of the counting amino acid language (see definition 6.1). Note that the

}1-modality is equivalent to the }-modality of the probabilistic amino acid language.

At the heart of the extension, however, are the two comparators >m} and ▷m
} . The literal

meaning of φ >m} ψ is that the probability of reaching a φ-codon via a sequence of m

single substitutions is higher than the probability of reaching a ψ-codon via a sequence

of m single substitutions; the intended meaning is that φ is more possible than ψ within

a level of possibility m. The literal meaning of φ▷m
} ψ is that the probability of reaching

a φ-codon via a sequence of up to m single substitutions is higher than the probability of
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Figure 6.7

This partial representation of the probabilistic model MC as directed graph

shows all possible sequences of two single substitions to reach an A-codon from

codon 6 of HBB (bold circle). For any pair of nodes ⟨n,n′⟩, an arrow from n to n′

represents P C(n′∣n) = 1
9 . The probability that an A-codon can be reached from

codon 6 via two subsequent single substitutions is 8× 1
9 ×

1
9 = 8

81 since there are

eight double-arrows (i.e., composed arrows) reaching an A-codon from codon 6.

In LP , this cannot be expressed. However, we can express that }(}A = 1
3) =

1
9

which tells us that the probabilistic model is such that there is exactly one

codon that can be reached via single substitution (dashed arrow) from which

exactly three A-codons can be reached via single substitution (dotted arrows).

By contrast, in LE we can express that }2A = 8
81 , as wanted.
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Figure 6.8

Grading of HbA variants within levels of possibility at codon 6 of HBB according

to Probability in the probabilistic model MC where }1p = α (blue), }2p = α

(red), }3p = α (green), }8p = α (purple), and γ(p) = α (turquois) for all p ∈ Φ

(x-axis).

reaching a ψ-codon via a sequence of up to m single substitutions; the intended meaning

is that φ is more possible than ψ across the levels possibility 1, . . . ,m.

So with LE in place, consider the grading of HbA within higher levels and possibility

and across levels of possibility. I start with the former. In the probabilistic model MC,

it holds that:

lim
m→∞

}mp = γ(p) for all p ∈ ΦC (6.55)

That is, for high values of m, the probability that a p-codon can be reached via a

sequence of m single substitutions is the probability of drawing a p-codon from the set

of codons CC. Note that in contrast to section 6.2, γ(p) as stated in (6.15) is interpreted

probabilistically. For all practical purposes (that is, rounded to two decimal places), it

holds that:

If m ≥ 8, then }m p ≈ γ(p) for all p ∈ ΦC (6.56)
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This can be expressed by employing the >m}-comparator and yields the following grading

of HbA variants within each level of possibility at codon 6 of HBB :

MC,GAG ⊩ D >1
} ∗,A,E,G,K,Q,V (6.57)

MC,GAG ⊩ E >2
} A,G,V >2

} ∗,D,H,K,L,N,Q,R,Y >2
} M,P,S,T,W (6.58)

M,GAG ⊩ A,G,V >3
} D,L,R >3

} ∗,E,S >3
} K,Q >3

⟐ P,T >3
} H,N,Y >3

} C,F, I,M,W (6.59)

If MC,GAG ⊩ p >m} q and m ≥ 8, then p >γ q (6.60)

See Figure 6.8 for numerical examples and appendix D. for details. Note that by con-

struction of the model at hand, this grading is identical to the grading within levels of

possibility in the simple model provided above in section 6.2 by Process respectively

the ⟐m
n -modality. More precisely, given the semantics of the }m-modality as stated in

definitions (6.53) and (6.54), the probability α in }mp = α is computed by taking the

sum of the probabilities of each unique sequence of m single substitutions that reaches

a p-codon. But since each such sequence has equal weight thanks to the underlying

constant probability function, α is simply the number of sequences (relative to the total

number of unique sequences). And this is what is captured by the ⟐m
n -modality as per

definition (6.12).

This completes the discussion of the probabilistic model with a uniform probability

distribution.

6.3.3 Transition/transversion bias based probability function

Let me now turn to probabilistic models with more interesting probability functions.

On the DNA level, substitutions are classified either as transitions or as transver-

sions (see Figure 4.3). Given that there are twice as many possible transversions

(A↷ C,C↷ G,G↷ T,T↷ A and vice versa) as there are possible transitions (A↷ G,C↷ T

and vice versa), the expected ratio of transitions to transversions is:

κexpected =
number of possible transitions n

number of possible transversions
=

n

2 × n
=

4

2 × 4
= 0.5 (6.61)

However, κobserved is significantly higher than κexpected for most genes and species where:

κobserved =
number of observed transitions

number of observed transversions
(6.62)
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HS HS∗ DM EC∗

A↷ G and T↷ C 0.13 0.17 0.18 0.12
G↷ A and C↷ T 0.38 0.37 0.30 0.44

A↷ C and T↷ G 0.12 0.09 0.10 0.14
A↷ T and T↷ A 0.14 0.14 0.09 0.13
G↷ C and C↷ G 0.14 0.10 0.13 0.06
G↷ T and C↷ A 0.09 0.13 0.20 0.11

κexpected 0.5 0.5 0.5 0.5
κobserved 1.04 1.17 0.92 1.27
κbias 2.08 2.34 1.84 2.54

Table 6.1

Transition/transversion bias in Homo sapiens (HS), Drosophila

melanogaster(DM) and Escherichia coli (EC) based on Lynch (2007: 125).

The top rows indicate transitions; the middle rows indicate transversions;

the bottom rows indicate the expected and observed ratios of transitions to

transversions as well as the corresponding transition/transition bias. The data

is based on direct observations of reporter constructs respectively phylogenetic

analyses of pseudogenes if marked with an asterix.

The factor of the mismatch between κobserved and κexpected is the so-called transition/

transversion bias:

κbias =
κobserved

κexpected
(6.63)

It is generally assumed that κbias ≈ 2 for most genes and species (but see Keller et al.

2007 for the inevitable counter-example) even though the exact cause of transition/

transversion bias is still an open question (see Stoltzfus and Norris 2015); see Table 6.1

for some examples.

In the following, I will construct a probabilistic model MB = ⟨CB, PB,ΦB, V B⟩ that

takes into account transition/transversion bias. This enables a transition/transversion

bias sensitive grading of HbA variants caused by single substitutions at codon 6 of HBB.

Put differently, by building transition/transversion bias into the model, the abstraction

of not distinguishing between transitions and transversions is removed. This is achieved

in two steps:

First, fix the transition/transversion bias. For lack of data specific to HBB, we assume
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that:

κbias(HBB) = κbias(human) (6.64)

The genome wide transition/transversion bias for humans κbias(human) is 2.08 or 2.34

depending on whether κobserved(human) is derived from direct observations of reporter

constructs or phylogenetic analyses of pseudogenes (Lynch 2007: 125). As per Table 6.1,

we have:

κbias(HBB) =
κobserved(HBB)

κexpected(HBB)
=

1.04

0.5
= 2.08 (6.65)

Second, define the probability function PB. Here, in addition to the constraints (6.43)

and (6.44) imposed by definition 6.2, in order to accommodate (6.65), it must hold that:

∑
c′∈S

PB(c′∣c)

∑
c′∈S′

PB(c′∣c)
= 1.04 (6.66)

where S = {c′ ∈ CB ∶ c ↷ c′ is a transition} and S′ = {c′ ∈ CB ∶ c ↷ c′ is a transversion}.

For construction, take again R, namely the substitution relation of the simple model.

Then the probability function PB is given by:

PB(c′∣c) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0.51
3 if cRc′ and c↷ c′ is a transition

0.49
6 if cRc′ and c↷ c′ is a transversion

0 otherwise

(6.67)

So we increase the probability of transitions over transversions in the model in order

to account for the transition/transversion bias. Note that this assumes a uniform prob-

ability distribution within both the block of transitions and the block of transversions

for ease of presentation (a more detailed treatment requires transparent modalities, see

subsection 7.2.2). This yields the following grading of HbA within levels of possibility
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Figure 6.9

Grading of HbA variants within levels of possibility at codon 6 of HBB according

to Probability in the probabilistic model MB where }1p = α (blue), }2p = α

(red), }3p = α (green), }7p = α (purple), and γ(p) = α (turquois) for all p ∈ Φ

(x-axis).

at codon 6 of HBB :

MB,GAG ⊧ E,G,K >1
} D >1

} ∗,A,Q,V

(6.68)

MB,GAG ⊧ E >2
} G >2

} K,R >2
} A,V >2

} D >2
} ∗,Q >2

} N >2
} H,L,M,T,W,Y >2

} P,S

(6.69)

MB,GAG ⊧ R >7
} L,S >7

} G >7
} A,P,T,V >7

} ∗,E,K >7
} I >7

} C,D,F,N,H,Q,Y >7
} M >7

} W

(6.70)

See Figure 6.9 for numerical examples and appendix D. for details. Here it is important

to note that in contrast to the examples of gradings within levels of possibility discussed

above, a prediction for whether and when the global grading is reached is not provided.

The reason is that the employed algorithm does not scale well for large inputs; this is

related to issues discussed in more detail in section 8.3.
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6.3.4 Amino acid scoring matrix based probability function

Instead of defining the probability function of a probabilistic model based on observations

at the DNA level as in the previous subsection, the probability function can also be

defined based on observations at the protein level. In this subsection, I will show how

tools and results from bioinformatics can be employed to achieve this purpose. More

specifically, I will construct a probabilistic model where the probability function is built

from the PAM amino acid scoring matrix. Note that from a modeling perspective this

is unusual: The frame (that is, the probability function) is defined at least partially in

terms of the valuation.

I start by briefly introducing amino acid scoring matrices. In sequence alignment al-

gorithms, scoring matrices are used in order quantify the probability of substitutions

(Xiong 2006: 41). Let a be a variable ranging over the amino acids. An amino acid scor-

ing matrix is a 20 × 20 real matrix M with the amino acids as rows and columns where

each element ma,a′ is as score interpreted as the probability of substituting an amino

acid a′ with an amino acid a. Such matrices come in two flavors, analytic and empirical.

In analytic matrices, the scores are derived from the chemical properties of the amino

acids. By contrast, in empirical matrices, the scores are based on observations of the

actual alignments of (highly) similar sequences; in general, empirical matrices are better

predictors than analytic matrices (Xiong 2006: 42). Two of the most popular amino acid

scoring matrices are PAM (Point Accepted Mutation matrix, Dayhoff et al. 1978) and

BLOSUM (Block Subsitution Matrix, Henikoff and Henikoff 1992).

I will now consider PAM in more detail. Note that for this section, not the actual scores

but rather the probability distribution from which these scores are derived is important.

This is why I will focus on PAM mutation probability matrices and neglect the more

common PAM log-odds scoring matrices in what follows.

Consider first some terminology. A PAM unit n ∈ N is a measure of evolutionary distance

and defined as n accepted point mutations per 100 amino acids. The crucial notion here

is of course that of an accepted point mutation:

An accepted point mutation in a protein is a replacement of one amino acid

by another, accepted by natural selection. It is the result of two distinct

processes: the first is the occurrence of a mutation in the portion of the gene

template producing one amino acid of a protein: the second is the acceptance

of the mutation by the species as the new predominant form. To be accepted,
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the new amino acid usually must function in a way similar to the old one:

chemical and physical similarities are found between the amino acids that

are observed to interchange frequently (Dayhoff et al. 1978: 345).

Given the classification of point mutations in chapter 4, at the protein level, an accepted

point mutation is hence usually either a silent mutation or a synonymous missense mu-

tation; consequently, at the DNA level, an accepted point mutation is usually a substi-

tution. Put differently, since frameshift mutations are usually deleterious, deletions and

insertions are usually not accepted by natural selection. However, as I shall argue below,

it is incorrect to equate accepted point mutations with accepted substitutions.

I now turn to the construction of PAM matrices. A quick word on notation: PAM1,

PAM200, PAMn matrices are PAM matrices with an evolutionary distance of 1, 200,

n PAM units. Consider first the PAM1 mutation probability matrix P as shown in

Figure 6.10. Here an element pa,a′ ∈ P denotes the probability that an amino acid a′

is replaced by an amino acid a in one PAM. P is constructed as follows (adapted from

Dayhoff et al. 1978: 348):

pa,a′ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

θ ×m(a′) × na,a′

∑
a′′∈A

na′′,a′
if a ≠ a′

1 − θ ×m(a′) otherwise

(6.71)

where:

� A is the set of amino acids. I will use a with or without index as variable to range

over A.2

� N is a 20 × 20 symmetric real matrix with the amino acids as rows and columns

where each element na,a′ ∈ N denotes the number of observed accepted point mu-

tations involving the amino acids a, a′ as shown in Figure 6.11. Dayhoff et al. base

N on an analysis of “closely related sequences from 34 [protein] superfamilies”

(1978: 346) from which they assemble 71 phylogenetic trees under maximum par-

simony (henceforth referred to as their dataset). For each tree, the accepted point

mutations can then be read off from parent/child pairs.

2 I do not use Φ and p, q as introduced in the language describing the simple model (see definition 5.2)
to refer to the set of amino acids respectively arbitrary amino acids in order to distinguish the math-
ematical model family of PAM from logical models.
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Figure 6.10

PAM1 mutation probability matrix P (Dayhoff et al. 1978: 348). An element

pa,a′ ∈ P×10−4 is the probability that an amino acid a′ is replaced by an amino

acid a in one PAM. For example, pA,A × 10−4 = 0.9867 is the probability that

alanine is replaced by alanine in one PAM; pA,R×10−4 = 0.0001 is the probability

that alanine is replaced by arginine in one PAM.
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� m ∶ A → R is a function which assigns to each amino acid its relative mutability

as per Table 6.2. With respect to the dataset of Dayhoff et al., for an amino acid

a ∈ A, m(a) denotes:

number of mutations involving a

number of occurences of a
(6.72)

� θ is a proportionality constant. The number of amino acids per 100 amino acids

that are not replaced in P is 99. This is expressed by (Dayhoff et al. 1978: 348):

100 × ∑
a∈A

f(a) × pa,a = 99 (6.73)

where f ∶ A→ R is a function that assigns to each amino acid its relative frequency

as per Table 6.2. With respect to the dataset of Dayhoff et al., f(a) denotes:

number of occurences of a

sum of occurences of all amino acids
(6.74)

By (6.71), (6.73) reduces to:

100 × ∑
a∈A

f(a) × (1 − θ ×m(a)) = 99 (6.75)

By solving (6.75) for θ, we have θ ≈ 0.000133.3

So a non-diagonal element pa,a′ ∈ P denotes the probability that an amino acid a′ is

replaced by an amino acid a in one PAM. By contrast, a diagonal element pa,a ∈ P

denotes the probability that the amino acid a is not replaced in one PAM. Consider two

numerical examples. The non-diagonal element pA,E denotes the probability that E is

replaced by A in one PAM:

pA,E =
θ ×m(E) × nA,E

∑
a∈A

na,E
=

0.000133 × 102 × 42.2

211
= 0.0017 (6.76)

The diagonal element aE,E denotes the probability that E is not replaced in one PAM:

pE,E = 1 − θ ×m(E) = 1 − 0.000133 × 102 = 0.9865 (6.77)

Higher-level PAM mutation probability matrices can then be derived from the PAM1

3 The solution is approximate since some elements of N are illegible in the only obtainalble copy of
Dayhoff et al. (1978).
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Figure 6.11

Matrix N of the number observed accepted point mutations in the dataset

(Dayhoff et al. 1978: 346). An element na,a′ ∈N×10−1 is the number of observed

accepted point mutations resulting in a change from amino acid a′ to amino acid

a or from a to a′. Fractions are due to ambiguous parent nodes in the dataset.
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a m(a) f(a) a m(a) f(a)

A 100 0.087 L 40 0.085
R 65 0.041 K 56 0.081
N 134 0.04 M 94 0.015
D 106 0.047 F 41 0.04
C 20 0.033 P 56 0.051
Q 93 0.038 S 120 0.07
E 102 0.05 T 97 0.058
G 49 0.089 W 18 0.01
H 66 0.034 Y 41 0.03
I 96 0.037 V 74 0.065

Table 6.2

Relative mutabilities and frequencies (with respect to the dataset) of the amino

acids (Dayhoff et al. 1978: 347).

mutation probability matrix by matrix multiplication (Dayhoff et al. 1978: 349f.):

PAMn = PAM1n = Pn = P × ⋅ ⋅ ⋅ ×P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

(6.78)

With PAM mutation probability matrices in place, I now construct a probabilistic model

which I will call ‘Dayhoff model’. The main idea here is to define the probability function

of the Dayhoff model based on the PAM1 mutation probability matrix P. This requires

a reinterpretation of the probability function, however. To see this, recall two things:

1. The probability function in the probabilistic model is interpreted as the conditional

probability of reaching some codon via single substitution (see definition 6.2).

2. A point accepted mutation is usually a single substitution (see above). However,

there are some elements pa,a′ ∈ P such that pa,a′ > 0 even though it is impossible

that the replacement of amino acid a′ with amino acid a was caused by a single

substitution. That is, some accepted point mutations observed in the dataset of

Dayhoff et al. cannot be single substitutions or even point mutations; see Table 6.3

for examples of such mismatches with respect to glutamate.

In order resolve this tension, there are two options: Either clean the dataset such as to

exclude all mutations that are not caused by single substitutions or reinterpret the prob-

ability function as the conditional probability of reaching some codon via an accepted

point mutation. The first option is not feasible for practical and theoretical considera-
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tions. This leaves open the second option:

Definition 6.5 (Dayhoff model)

The Dayhoff model is a probabilistic model MD = ⟨CD, PD,ΦD, V D⟩ where:

� CD,ΦD, V D are standard (see definition 6.2).

� PD ∶ CD×CD → R is a conditional probability function interpreted as accepted

point mutation. The probability that c′ ∈ CD can be reached from c ∈ CD via

an accepted point mutation is written as PD(c′∣c) and given by:

PD(c′∣c) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pa,a′ if c′ ∈ V D(a) and c ∈ V D(a′)

0 otherwise
(6.79)

where c, c′ ∈ CD, pa,a′ ∈ P and a, a′ ∈ A.

So in contrast to a probabilistic model, the probability function in the Dayhoff model is

interpreted as accepted point mutation rather than as single substitution. It is easy to

see that the probability function adheres to the constraints (6.43) and (6.44) since it is

defined terms of the PAM1 mutation probability matrix.

From the reinterpretation of the probability function and 6.79 follows that each block of

codons in the partition induced by the valuation V D constitutes a bisimilarity class in

D:

If c ∈ V D(p), then ∥c∥ = V D(p) (6.80)

where c ∈ CD and p ∈ ΦD. In other words, all p-codons are such that they exactly match

the probabilities and types of codons that can be reached via accepted point mutations

in the Dayhoff model. This result is not surprising since the probability function is based

on the PAM1 mutation probability matrix; in turn, this matrix is based on observations

of changes in amino acids. Put differently, we had seen in chapter 5 that the simple

model encodes the DNA level via its frame and the protein level via its valuation; the

same holds true for probabilistic models. The Dayhoff model is distinguished from the

simple model and other probabilistic models in that the DNA level does not matter since

all p-codons are lumped together.

I will now employ bisimilarity contraction in oder to make this observation more precise;

this has the added benefit of significantly reducing the complexity of the Dayhoff model.
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a pa,E > 0 cERca a pa,E > 0 cERca

A 3 3 L 3 7

R 7 7 K 3 3

N 3 7 M 7 7

D 3 3 F 7 7

C 7 7 P 3 7

Q 3 3 S 3 7

E 3 3 T 3 7

G 3 3 W 7 7

H 3 7 Y 3 7

I 3 7 V 3 3

Table 6.3

Mismatches between the PAM1 mutation probability matrix P and the simple

model M = ⟨C,R,Φ, V ⟩ with respect to replacements of glutamate E. Here a is

an amino acid, pa,E ∈ P, and ca ∈ C is an a-codon such that cERca expresses that

in the simple model, an E-codon can be reached via single substitution from an

a-codon. For example, there is a none-zero probability that E is replaced with

N according to P whereas this is impossible in the simple model.

Consider the definition of the small Dayhoff model:

Definition 6.6 (Small Dayhoff model)

The small Dayhoff model is a probabilistic model X = ⟨CX, PX,ΦX, V X⟩ where:

� CX is the set of bisimilarity classes of ∥c∥ of codons c ∈ CD.

� PX is a conditional probability function such that PX(∥c′∥∣∥c∥) = α if there are

c ∈ ∥c∥ and c′ ∈ ∥c∥ such that PD(c′∣c) = α.

� ΦX = ΦD.

� V X ∶ ΦX → CX is a valuation function such that ∥c∥ ∈ V X(p) if c ∈ V D(p).

Note that by (6.80), CX can be interpreted as the set of amino acids without loss of

generality. The extended probabilistic amino acid language can be used to describe the

small Dayhoff model. The most important observation is (for p = a and p′ = a′):

If ∥c∥ ∈ V X(p′), then X, ∥c∥ ⊩ }mp = pa,a′ ∈ P
m (6.81)
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That is, the m-th level probability of reaching a p-codon from a p′-codon is in the

(small) Dayhoff model is the probability given by the PAMmmutation probability matrix

for replacing the amino acid a′ with the amino acid a. Therefore, all PAM mutation

probability matrices are fully captured by the (small) Dayhoff model and the extended

probabilistic amino acid language via the }m-modality.

6.4 Summary

I extend the simple model and language to account for comparative (historical) biological

possibility. This yields a ranking of hemoglobin variants v, v′, . . . caused by single substi-

tutions at codon 6 of the hemoglobin beta gene. I distinguish four circumstances under

which v is more possible than v′: (1) v is easier to bring about that v′, implemented by

a modal operator capturing Hamming distance. (2) There are more possible v than v′,

implemented by a modal operator counting variants. (3) There are more ways to realize

v than v′, implemented by a modal operator counting unique sequences of single substi-

tutions. (4) v is more probable than v′, implemented by a non-epistemic probabilistic

modal operator and a weighted binary relation interpreted as single substitution. In ad-

dition, I discuss the conditions for the introduced modal operators’ loss of historical or

local context, and I show the extension’s ability to incorporate transition/transversion

bias or amino acid scoring matrices.



7. Generalized model

In this chapter, I will outline how the modeling restrictions imposed in chapter 4 can be

lifted in order to provide logical models of any variant caused by any point mutation at

the coding region of any gene. In section 7.1, I will show that these restriction can be

lifted via a generalization of the simple model. In section 7.2, I will discuss a number of

limitations of the generalized model.

7.1 Lifting modeling restrictions via generalization

All logical models so far presented in chapters 5 and 6 are restricted to variants of HbA

caused by single substitutions at codon 6 of HBB as defined in chapter 4. To wit, there

are three restrictions to be lifted:

1. The restriction to variants of HbA caused by single substitutions at codon 6 of

HBB.

2. The restriction to variants of HbA caused by single substitutions at codon 6 of

HBB.

3. The restriction to variants of HbA caused by single substitutions at codon 6 of HBB .

Getting rid of the first restriction comes for free: As pointed out in section 5.2, the

simple model is a non-specific model of HbA variants caused by single substitutions at

codon 6 of HBB. That is, the simple model does not encode any empirical information

specific to either codon 6 or HBB such as upstream or downstream context. The same

holds for the other models discussed in chapters 5 and 6.

By contrast, lifting the second and the third restriction can be achieved to some extent

via a generalization of the simple model:

132
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Definition 7.1 (Generalized model)

A generalized model MG is a quintuple ⟨GG,MG,RG
µ ,Φ

G, V G⟩ such that:

� GG is the set of genes. A gene g ∈ GG is represented as string over the alphabet

{A,C,G,T}.

� For each class of point mutation µ ∈ MG = {substitution,deletion, insertion},

RG
µ ⊆ GG ×GG is a binary relation interpreted as single substitution, deletion

and insertion respectively.

� ΦG is the set of atomic propositions interpreted as the set of proteins. The

lowercase letters p, q, . . . range over Φ.

� V G ∶ ΦG → P(GG) is a valuation which assigns to each atomic proposition

p ∈ ΦG some set of genes V G(p) ⊆ GG. Intuitively, the valuation indicates

which genes code for which proteins.

Similar to the simple model, I will only be concerned with an empirically adequate

valuation. It is instructive to spell out further similarities and differences between the

generalized model MG and the simple model M:

� The domain of MG consists of genes whereas the domain of M consists of codons;

the domain of the former is hence larger than the domain of the latter by several

orders of magnitude. The domain of MG is still finite, however.

� In contrast to M, MG not only contains a binary relation interpreted as single sub-

stitution, but also a binary relation for single deletion and one for single insertion.

Note that single substitution is symmetric whereas both single deletion and single

insertion are antisymmetric.

� The atomic propositions of MG are strings over the set of atomic propositions of

M.

� Similar to M, the DNA level in MG is encoded in the frame whereas the protein

level is encoded in the valuation. Again, there is exactly one empirically adequate

valuation, namely the valuation which assigns to each gene the protein it actually

codes for; all other valuations will be neglected. The resulting empirically adequate

generalized model I call the generalized model.

Furthermore, consider briefly the differences and similarities between the generalized

model MG and the Library of Mendel ⟨ΣM,RM⟩ discussed in chapter 3:
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� The domain of MG consists of genes whereas the domain of ⟨ΣM,RM⟩ consists

of genomes; the former is finite whereas the latter is countably infinite (see sec-

tion 3.3).

� The binary relation of MG is interpreted and well-defined whereas the binary

relation of ⟨ΣM,RM⟩ is not (see section 3.4.1).

I now turn to the definition of the basic protein language.

Definition 7.2 (Basic protein language)

Generalized models MG = ⟨GG,MG,RG
µ ,Φ

G, V G⟩ are described via the basic protein

language LG . The syntax of LG is given by the following Backus-Naur form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ ◇µ φ

where p ∈ ΦG and µ ∈MG. The standard abbreviations for the classical connectives

∧,→,↔ are used; in addition, it is convenient to use:

◻µφ ∶= ¬◇µ ¬φ (7.1)

⟨M⟩φ ∶= ◇µ1 ∨ ⋅ ⋅ ⋅ ∨ ◇µnφ (7.2)

[M]φ ∶= ¬⟨M⟩¬φ (7.3)

where n = ∣MG∣. That a formula φ of LG is true in MG at a gene g ∈ GG is written

as MG, g ⊩ φ. The semantics of LG are given recursively:

MG, g ⊩ p iff c ∈ V G(p) (7.4)

MG, g ⊩ ¬φ iff not MG, g ⊩ φ (7.5)

MG, g ⊩ φ ∨ ψ iff MG, g ⊩ φ or MG, g ⊩ φ (7.6)

MG, g ⊩ ◇µφ iff MG, g′ ⊩ φ for some g′ ∈ G such that gRG
µ g

′ (7.7)

The literal meaning of ◇µφ is that a φ-codon can be reached via a single µ point muta-

tion. The intended meaning of ◇µφ is that φ is possible via a single µ point mutation.

The literal meaning of ⟨M⟩φ is that a φ-codon can be reached via a single point mutation.

Put differently, the (redundant) explicit semantics of the ⟨M⟩-modality are:

MG, g ⊩ ⟨M⟩φ iff ∃g′ ∈ G s.t. MG, g′ ⊩ φ and gRGg′ where RG = ⋃
µ∈MG

RG
µ (7.8)
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The intended meaning of ⟨M⟩φ is that φ is possible via a single point mutation.

With the generalized model and the basic protein language in place, it is straightforward

to see how the second and third restriction can be lifted. I will take these in turn:

The second restriction, namely the restriction to single substitutions, is lifted in the

generalized model by introducing a binary relation for each of the three classes of point

mutations. This is mirrored in the multimodal basic protein language which caters for

possibility via single substitution, single deletion, single insertion or single point mutation

tout court. The third restriction, namely the restriction to codon 6 of HBB, is lifted since

the domain of the generalized model contains any gene and is not limited to a specific

codon. A final restriction was to understand ‘caused’ as ‘fully caused’ (see section 4);

this restriction was intended to exclude multiple point mutations. This restriction is

lifted by treating such mutations as serialized occurrences of single point mutations

whilst neglecting their ordering. This is unproblematic in most cases, however, there are

exceptions; see the next subsection on the distinction between opaque and transparent

modalities for details on how to deal with these exceptions.

For illustration, consider two examples. Figure 7.1 depicts the (partial) generalized

model of known variants of HbA caused by single point mutations at codon 6 of HBB

(see Table 4.1). Figure 7.2 depicts the (partial) generalized model of HbRothschild,

HbArlingtonPark and HbC-Rothschild each of which are caused by a combination of

multiple point mutations at HBB.

To sum up, I have shown that the modeling restrictions imposed in chapter 4 can all

be lifted are hence abstractions rather than idealizations in the sense of Stokhof and

van Lambalgen (2011). That is, while the generalized model is much less tractable than

the simple model, it retains all other (especially conceptual) results, as wanted.

7.2 Limitations

In this section, a number of limitations of the generalized model and the basic protein

language are discussed. In subsection 7.2.1, I will show how the limited expressive power

of the basic protein language can be increased. In subsection 7.2.2, I will touch upon

the distinction between opaque and transparent modalities.
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Figure 7.1

The (partial) generalized model MG of the known HbA variants caused by single

point mutations at codon 6 of HBB represented as directed graph. Full arrows

represent substitution, dashed arrows represent deletion.
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(a) HbRothschild (b) HbArlingtonPark

(c) HbC-Rothschild

Figure 7.2

The (partial) generalized models of HbA variants caused by multiple point

mutations at HBB represented as directed graphs. (a) HbRothschild is caused

by a substitution of thymine with either adenine or cytosine at codon 37. (b)

HbArlingtionPark is caused by a substitution of both guanine with adenine at

codon 6 and adenine with guanine at codon 95. (c) HbC-Rothschild is caused

by a substitution of both guanine with adenine at codon 6 and thymine with

either adenine or cytosine at codon 37. Note that according to the generalized

model, HbC-Rotschild is possible at HBB only at the second level.
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7.2.1 Expressiveness

The basic protein language is limited in that it is a propositional modal language. It

is well conceivable that more expressive power is needed, for example to distinguish be-

tween what is biologically possible de re versus what is biologically possible de dicto (see

section 2.1). In what follows, I will outline a first-order modal language based on the

framework of Blackburn and van Benthem (2007: 66ff.). In order to do so, I start with

the definition of a first-order generalized model:

Definition 7.3 (First-order generalized model)

A first-order generalized model MF is a septuple ⟨GF,MF,RF
µ,D

F,NF,ΠF, V F
g ⟩ such

that:

� GF = GG, MF =MG, and RF
µ = R

G
µ .

� DF is the domain of quantification interpreted as the set of proteins. The

lowercase letters x, y with or without subscript range over DF.

� NF is the set of names of proteins such as alpha globin or beta globin.

� ΠF is the set of n-ary predicates P (t1, . . . , tn) where t with or without subscript

is a term (that is, name or variable).

� V F
g is a valuation function for each g ∈ GF such that:

V F
g (ξ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

d ∈DF if ξ ∈ NF

S ⊆ (DF)n if ξ ∈ ΠF
(7.9)

Intuitively, the valuation function maps proteins to names and subsets of the

n-fold Cartesian product of D to n-ary predicates at each gene.

Again, I am exclusively concerned with empirically adequate valuations. In addition, I

have assumed that the domain of quantification is constant (instead of independent or

varying, see Girle 2003: 60–63 for an overview) across genes in the first-order generalized

model.

I now turn to the definition of the first-order protein language:
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Definition 7.4 (First-order protein language)

First-order generalized models MF = ⟨GF,MF,RF
µ,D

F,NF,ΠF, V F
g ⟩ are described

via the first-order protein language LF . The syntax of LF is given by the following

Backus-Naur form:

φ ∶= P (t1, . . . , tn) ∣ t = t′ ∣ ¬φ ∣ φ ∨ φ ∣ ◇µ φ ∣ ∃xφ

where P (t1, . . . , tn) ∈ ΠF, and µ ∈MF. The standard abbreviations for the classical

connectives ∧,→,↔ are used; in addition to ◻µ, ⟨M⟩, and [M] as per definition 7.1,

it is convenient to use:

∀xφ ∶= ¬∃x¬φ (7.10)

Let ● be an assignment such that:

●(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

V F
g (t) if t ∈ NF

d ∈DF otherwise
(7.11)

That a formula φ of LF is true in MF under assignment ● at gene g ∈ GF is written

as MF, ●, g ⊩ φ. The semantics of LF are given recursively:

MF, ●, g ⊩ P (t1, . . . , tn) iff ⟨●(t1), . . . , ●(tn)⟩ ∈ V
F
g (P ) (7.12)

MF, ●, g ⊩ t = t′ iff ● (t) = ●(t′) (7.13)

MF, ●, g ⊩ ¬φ iff not MF, ●, g ⊩ φ (7.14)

MF, ●, g ⊩ φ ∨ ψ iff MF, ●, g ⊩ φ or MF, ●, g ⊩ φ (7.15)

MF, ●, g ⊩ ◇µφ iff MF, ●, g′ ⊩ φ for some g′ ∈ GF such that gRF
µg

′ (7.16)

MF, ●, g ⊩ ∃xφ iff MF, ●′, g ⊩ φ for some ●′ such that ●′ ∼x ● (7.17)

where ●′ ∼x ● if ●′(y) = ●(y) for all y such that y ≠ x. That is, ● and ●′ assign the

same proteins to all variables but can differ with respect to the protein they assign

to x. That a formula φ of LF is true in MF at gene g ∈ GF is written as MF, g ⊩ φ

and defined by the following semantic clause:

MF, g ⊩ φ iff MF, ●, g ⊩ φ for all ● (7.18)
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Predicate Interpretation

Expressed(t) t is expressed
Lethal(t) t is lethal
SickleCell(t) t causes sickle-cell disease
Known(t) t is in HbVar
Fitter(t, t′) t is fitter than t′

Table 7.1

Predicates of the first-order protein language. Note that this list is by no means

exhaustive.

With the first-order protein language in place, all kinds of observations can be expressed.

For illustration, consider some possible predicates defined in Table 7.1. Two remarks

are in order. First, Expressed(t) serves a similar role as the predicate interpreted as

actual existence which is usually found in languages describing constant domain models.

The reason for wanting such a predicate is simple: Since the domain is the same for

all genes and since the domain includes all proteins, all proteins exist at all genes. In

order to distinguish random proteins from proteins expressed at a gene, Expressed(t)

is employed. There are of course some problems with this approach (see Garson 2014

for an overview), but they need not concern us here. Second, Fitter(t, t′) is somewhat

awkward but reflects common usage, for example as witnessed by Weinreich et al. (2006).

I take it that the other predicates are clear and will now discuss a number of observations

that can be expressed with these sample predicates; for continuity, I will again focus on

hemoglobin. To start off, consider the following sentences:

MF,HBB ⊮ ∃x(Expressed(x) ∧ SickleCell(x)) (7.19)

MF,HBB ⊩ ⟨M⟩∃x(Expressed(x) ∧ SickleCell(x)) (7.20)

(7.19) states that it is false that HBB expresses a protein that causes sickle-cell disease;

(7.19) is false since HBB expresses beta globin. By contrast, (7.20) states that at HBB,

there is a single point mutation results in the expression of a protein that causes sickle-

cell disease; (7.20) is true since HBB:c.20A↷ T can be reached via a single substitution

and expresses HbS that causes sickle-cell disease. Let me continue with something more



7. GENERALIZED MODEL 141

challenging (for sake of illustration, assume n ≥ 100):

MF,HBB ⊮ ∀x[M]n(Expressed(x) → Lethal(x)) (7.21)

MF,HBB ⊩ ∀x ◻ndeletion (Expressed(x) → Lethal(x)) (7.22)

(7.21) states that it is false that at HBB, any sequence of n point mutations is such that

it results in a gene where any protein is lethal if expressed; (7.21) is false since there is a

sequence of n point mutations (namely substitutions) such that the resulting gene is type

identical to HBB if n is even (otherwise the relevant resulting gene is HBB:c.21G↷ A

and hence qualitatively identical to HBB since the mutation is silent, as wanted). By

contrast, (7.22) states that at HBB, any sequence of n single deletions is such that it

results in a gene (in the technical sense of this section) where any protein is lethal if

expressed. To clarify, a lethal deletion in this context is one that causes a severe form of

beta thalassemia such as beta thalassemia major (see Galanello and Origa 2010 for an

overview). Two qualifications are required which I will discuss in turn.

First, whether (7.22) holds is an empirical question that cannot be answered here. The

reason is that the first-order generalized model contains many unknown HbA variants

(that is, variants that are not recorded in HbVar). So while all known large deletions at

HBB are (more or less) lethal, there might be exceptions that have not been observed

yet. More generally, can a valuation in such cases be empirically adequate? If not, then

the problem can perhaps be solved via a many-valued first-order modal logic that allows

for indeterminate truth values whenever the valuation is not empirically adequate.1 Note

that this problem or limitation does not apply to the generalized model introduced in

section 7.1 since the empirically adequate valuation can be constructed analytically.

Second, humans are heterozygous for HBB so there are two alleles or instances of HBB in

somatic cells (one from each parent). Beta thalassemia major is an autosomal recessive

disorder. That is, beta thalassemia major causally depends on both HBB alleles bearing

thalassemia mutations. Put differently, by only considering one allele, it cannot be

determined whether beta thalassemia major occurs. Therefore, the truth value of (7.22)

cannot be determined. More generally, the generalized first-order model (and also the

generalized model if additional propositional atoms are introduced) is in effect limited to

homozygous genes. On a charitable reading of Dennett, we can assume that the Library

of Mendel contains genomes with the appropriate zygosity; so this problem is specific to

the generalized (first-order) model. There at least two possible solutions:

1 I am not aware of any such logic but the starting point is Fitting (1991).
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1. Replace the set of genes with the set of genomes with the required zygosity. While

this is a simple fix, it reduces the tractability of the model.

2. Define the semantics of predicates that are sensitive to zygosity via a superval-

uation. I have sketched such a solution for the generalized first-order model in

appendix E..

Consider now a final sample sentence:

MF,HBB ⊩ [M]n¬∃x(Expressed(x) ∧Known(x) ∧ Fitter(x,HbA)) (7.23)

(7.23) states that no matter the sequence of point mutations, there is no known variant

that is fitter than HbA.

7.2.2 Opaque versus transparent modalities

The ◇µφ modality of the basic protein language respectively the RG
µ relation of the

generalized model is opaque. By this I mean that the position on the string at which a

substitution, deletion or insertion occurs is neglected. As a consequence, it holds that:

MG ⊮ ◇deletion ◇insertion φ→◇substitutionφ (7.24)

MG ⊮ ◇insertion ◇deletion φ→◇substitutionφ (7.25)

Nevertheless, in some cases, a deletion followed by an insertion amounts to a substitution.

If need be, this can be achieved via a what I call transparent ◇µ,nφ modality respectively

RG
µ,n relation where n ∈ N represents the position on the string at which µ occurs. The

relevant semantic clause is:

MG, g ⊩ ◇µ,nφ iff MG, g′ ⊩ φ for some g′ ∈ GG such that gRG
µ,ng

′ (7.26)

Then:

MG ⊩ ◇deletion,n◇insertion,n φ→◇substitution,nφ (7.27)

MG ⊩ ◇insertion,n◇deletion,n φ→◇substitution,nφ (7.28)

For example:

MG,HBB ⊩ ◇deletion,20 ◇insertion,20 HbS→◇substitution,20HbS (7.29)
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Note that the modalities of the basic amino acid language and the counting amino acid

language (respectively the relation of the simple model) is opaque.

7.3 Summary

I show that the previously imposed modeling restrictions can be lifted via a generaliza-

tion of the simple model. This enables the construction of logical models of any protein

variant caused by any point mutation at the coding region of any gene. In the general-

ized model, states are interpreted as genes, multiple binary relations are interpreted as

distinct point mutations, and the valuation is kept fixed and induces a partition of blocks

of genes that code for some protein. I identify two limitations, namely (1) the limited

expressive power and (2) the reliance on opaque modalities of the language describing

the generalized model.
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8. SMAC

SMAC (Simple Model Amino acid Checker) is a model checking tool implemented in

Python and made publicly available at maxghuber.github.io/SMAC under the Apache

License Version 2. It allows the user to obtain the truth value of any formula of the basic

amino acid language L in the simple model M = ⟨C,R,Φ, V ⟩ as defined in chapter 5,

both locally and globally. In what follows, the main algorithm is briefly explained in

section 8.1, the proof of its total correctness is given in section 8.2 and its computational

complexity is discussed in section 8.3.

8.1 Algorithm

I begin with a high level description of the model checking algorithm. Two steps can

be distinguished. First, the semantic structure of a formula φ given some codon of

evaluation c ∈ C is mapped to a tree in the following way: The root is decorated with φ

and c. If φ is an atom, then the tree is finished. If not, φ is either a negation, a disjunction

or a modal formula; if φ = ¬(ψ), then the root has one child which is decorated with ψ

and c; if φ = ψ ∨χ, then the root has two children, one which is decorated with ψ and c,

and one which is decorated with χ and c; if φ = ◇(ψ), then the root has nine children,

each decorated with ψ and a unique codon that can be reached via single substitution

from the codon of evaluation. This process is then applied recursively to the children of

the root. The resulting tree is such that the semantic complexity of a formula at a node

on a branch strictly decreases with the depth of the node (the leaf of every branch is an

atom). Second, the tree is then evaluated as follows: If the root is an atom p ∈ Ψ, then

φ is true if c ∈ V (p). If not, φ is either a negation, a disjunction or a modal formula; if

φ = ¬(ψ), then φ is true if its child is labeled false; if φ = ψ ∨ χ or φ = ◇(ψ) then φ is

true if at least one of its children are labeled true. So in order to evaluate a branch, this

process must be applied recursively until the leaf is evaluated.

145
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Figure 8.1

Visualization of the construction rules of tree for atoms, negation, disunction

and diamond. Rectangles represent nodes and the big arrow represents (a single

iteration of) tree. Note that the construction rules for disjunction and diamond

are equivalent to the construction rules for conjunction and box (not depicted).

I now turn to a more formal description of the model checking algorithm. Consider first

the definition of a node:

Definition 8.1 (Node)

A node N is a quadruple ⟨φ, c,K, s⟩ such that:

� φ ∈ L is a formula of the basic amino acid language,

� c ∈ C is a codon,

� K is a n-tuple representing the children of N where n ∈ N0; by default, K is a

0-tuple,

� s ∈ {0,1} is the status of N , interpreted as ‘unresolved’ respectively ‘resolved’;

by default, s is unresolved.

For ease of presentation, I define two auxiliary functions:

� h ∶ φ → {p ∈ Ψ,¬,∨,∧,◇,◻} is a function that returns the the highest-ranking

operator of φ. For example, h(E) returns E, h(¬E) returns ¬, and h(E∨Y) returns

∨.
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� If h(φ) is unary, then φ = h(φ)(ψ). Now φ/h(φ) is a function that returns ψ. For

example, ¬E/¬ = E. If h(φ) is binary, then φ = (ψ1)h(φ)(ψ2); so φ/h1(φ) is a

function that returns ψ1 and φ/h2(φ) is a function that returns ψ2. For example,

(E ∨Y)/∨1 = E and (E ∨Y)/∨2 = Y.

With these definitions at hand, a tree can be defined:

Definition 8.2 (Tree)

A tree T is the output of tree(M,N) where M = ⟨C,R,Φ, V ⟩ and N = ⟨φ, c,K, s⟩

such that:

def tree(M,N): 1

if h(φ) == ¬: 2

N ′ = ⟨φ/h(φ), c,K ′, s′⟩ 3

K = ⟨N ′⟩ 4

if (h(φ) == ∨ or h(φ) == ∧): 5

N ′ = ⟨φ/h1(φ), c,K
′, s′⟩ 6

N ′′ = ⟨φ/h2(φ), c,K
′′, s′′⟩ 7

K = ⟨N ′,N ′′⟩ 8

if (h(φ) == ◇ or h(φ) == ◻): 9

for substitution in {c′ ∶ cRc′} 10

N ′ = ⟨φ/h(φ),substitution,K ′, s′⟩ 11

K = K.append(N ′) 12

for child in K: 13

tree(M,child) 14

return N 15

According to this definition, an update with tree transforms a node, interpreted as

root, into a tree given the simple model; consider Figure 8.1 for a visualization of the

corresponding construction rules. Note that all possible truth-makers are constructed.

That is, if a node’s formula is a disjunction, both disjuncts are constructed as children;

and if a node’s formula is a diamond, all codons that can be reached via single substi-

tution from the node’s codon are constructed as children. The resulting tree can then

be checked in order to obtain the truth value of the root’s formula given the root’s codon:

Definition 8.3 (Local truth)

A formula φ is true at a codon c ∈ C in the simple model M = ⟨C,R,Φ, V ⟩ if the

value ‘True’ is returned by localtruth(M, T ) where T = ⟨φ, c,K, s⟩ such that:



8. SMAC 148

def localtruth(M, T): 1

if h(φ) == p ∈ Ψ: 2

if c in V (φ): 3

φ = True 4

else: 5

φ = False 6

s = resolved 7

if h(φ) == ¬: 8

for T ′ in K: 9

while s′ is not resolved: 10

localtruth(M, T ′) 11

if φ′ == True: 12

φ = False 13

else: 14

φ = True 15

s = resolved 16

if (h(φ) == ∨ or h(φ) == ◇): 17

counter = 0 18

for T ′ in K: 19

while s′ is not resolved: 20

localtruth(M, T ′) 21

if φ′ == True: 22

counter += 1 23

break 24

if counter > 0: 25

φ = True 26

else: 27

φ = False 28

s = resolved 29

if (h(φ) == ∧ or h(φ) == ◻): 30

counter = 0 31

for T ′ in K: 32

while s′ is not resolved: 33

localtruth(M, T ′) 34

if φ′ == True: 35

counter += 1 36

if counter == ∣K ∣: 37

φ = True 38

else: 39

φ = False 40

s = resolved 41

return φ 42
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Based on local truth, global truth is easily obtained:

Definition 8.4 (Global truth)

A formula φ is true the simple model M = ⟨C,R,Φ, V ⟩ if for all c ∈ C the value

‘True’ is returned by localtruth(M, T ) where T = ⟨φ, c,K, s⟩.

Finally, note that SMAC can be extended in a straightforward manner to account for

(most of) the graded models discussed in chapter 6 or the generalized model presented

in chapter 7.

8.2 Total correctness

I now prove that total correctness holds of SMAC by proving that total correctness holds

of tree and localtruth. For this, two conditions have to be satisfied assuming correct

input data:

1. Stop property:

(a) tree stops.

(b) localtruth stops.

2. Partial correctness:

(a) tree returns the correct output.

(b) localtruth returns the correct output.

Lemma 8.1 (Stop property tree)

tree has the stop property.

Proof of lemma 8.1: Assume that M = ⟨C,R,Φ, V ⟩ and N = ⟨φ, c,K, s⟩ are correct. We

show that tree has the stop property by showing that the recursive clause (see defini-

tion 8.2, lines 13–14) stops. (The loop at lines 10–12 stops trivially after nine iterations

since there are exactly nine codons that can be reached via single substitution from

any codon). By definition 5.2, every formula φ ∈ L is built recursively from atoms. By

assumption, φ is such a formula. Therefore, by only passing the formula(s) in the scope

of the highest ranking operator of φ to the recursion (see definition 8.2, lines 3–4, 6–8,
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11–12), it is guaranteed that, after finitely many steps, an atom is passed. Since nodes

with atom labels do not have children, tree stops after finitely many steps. ∎

Lemma 8.2 (Partial correctness tree)

Partial correctness holds of tree.

Proof of lemma 8.2: Assume that M = ⟨C,R,Φ, V ⟩ and N = ⟨φ, c,K, s⟩ are correct.

We show that partial correctness holds of tree by showing that if tree(M,N) returns

T = ⟨φ, c,K, s⟩, then T represents all possible truth-makers of φ at c (call this property

of T ‘extended for φ at c’). We do so by induction on the complexity of φ. Assume that

tree(M,N) returns T :

Base: φ = p ∈ Ψ.

1. By assumption, tree(M,N) returns T = ⟨p, c,K, s⟩.

2. By 1 and the semantics of atoms (definition 5.2), T is extended for p at c.

Inductive hypothesis: Assume that partial correctness holds of tree for all ψ,χ that

are less complex than φ: If tree(M, ⟨ψ, c,K, s⟩) returns T = ⟨ψ, c,K, s⟩, then T is

extended for ψ at c (and similar for χ).

Inductive step (five cases):

1. φ = ¬ψ.

i. By assumption, tree(M,N) returns T = ⟨¬ψ, c,K, s⟩.

ii. By 1i. and the clause for negation (definition 8.2, lines 2–4), there is

N ′ ∈K where N ′ = ⟨ψ, c,K ′, s′⟩.

iii. By 1ii., the recursive clause (definition 8.2, lines 13–14) and lemma 8.1,

tree(M,N ′ returns T ′ = ⟨ψ, c,K ′, s′⟩.

iv. By 1iii. and induction hypothesis, T ′ is extended for ψ at c.

v. By 1iv. and the semantics for negation (definition 5.2), T is extended for

¬ψ at c.

2. φ = ψ ∨ χ.

i. By assumption, tree(M,N) returns T = ⟨ψ ∨ χ, c,K, s⟩.
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ii. By 2i. and the clause for disjunction (definition 8.2, lines 5–8), there are

N ′,N ′′ ∈K where N ′ = ⟨ψ, c,K ′, s′⟩ and N ′′ = ⟨χ, c,K ′′, s′′⟩.

iii. By 2ii., the recursive clause (definition 8.2, lines 13–14) and lemma 8.1,

tree(M,N ′) returns T ′ = ⟨ψ, c,K ′, s′⟩ and tree(M,N ′′) returns T ′′ =

⟨χ, c,K ′′, s′′⟩.

iv. By 2iii. and induction hypothesis, T ′ is extended for ψ at c and T ′′ is

extended for χ at c.

v. By 2iv. and the semantics for disjunction (definition 5.2), T is extended

for ψ ∨ χ at c.

3. φ = ◇ψ.

i. By assumption, tree(M,N) returns T = ⟨◇ψ, c,K, s⟩.

ii. By 2i. and the clause for the ◇-modality (definition 8.2, lines 9–12), there

are N1, . . . ,N9 ∈K such that Ni = ⟨ψ, ci,Ki, si⟩ and cRci for 1 ≤ i ≤ 9.

iii. By 3ii., the recursive clause (definition 8.2, lines 13–14) and lemma 8.1,

tree(M,Ni) returns Ti = ⟨ψ, ci,Ki, si⟩.

iv. By 3iii. and induction hypothesis, Ti is extended for ψ at ci.

v. By 3iv. and the semantics for the ◇-modality (definition 5.2), T is ex-

tended for ◇ψ at c.

4. φ = ψ ∧ χ. Similar to 2.

5. φ = ◻ψ. Similar to 3.

Therefore, T is extended for φ at c. ∎

Lemma 8.3 (Stop property localtruth)

localtruth has the stop property.

Proof of lemma 8.3: Assume that M = ⟨C,R,Φ, V ⟩ and T = ⟨φ, c,K, s⟩ are correct. We

show that localtruth has the stop property by showing that each recursive clause (see

definition 8.3, lines 10–11, 20–21 and 33–34) stops. (The loops in which each of these

clauses are embedded trivially stop after a maximum of nine iterations since there are

maximally nine children per node, see Lemma 8.2). For any such clause, there are ex-

actly two cases: s is resolved, or s is not resolved. In the first case, localtruth trivially
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stops. In the second case, we need to show that all children T ′ = ⟨φ′, c′,K ′, s′⟩ of T are

such that s′ is resolved. But since all leaves of the finite tree contained in T are atoms,

s′ must be resolved. (This can be made explicit by induction on the complexity of φ′

which is skipped here.) Therefore, localtruth has the stop property. ∎

Lemma 8.4 (Partial correctness localtruth)

Partial correctness holds of localtruth.

Proof of lemma 8.4: Assume that M = ⟨C,R,Φ, V ⟩ and T = ⟨φ, c,K, s⟩ are correct. We

show that partial correctness holds of localtruth by showing that if localtruth(M, T )

returns the value ‘True’, then M, c ⊩ φ. We do so by induction on the complexity of φ.

Assume that localtruth(M, T ) returns the value ‘True’:

Base: φ = p ∈ Ψ.

1. By assumption, localtruth(M, ⟨p, c,K, s⟩) returns ‘True’.

2. By 1. and the clause for atoms (definition 8.3, lines 2–7), c ∈ V (p).

3. By 2. and semantics of atoms (definition 5.2), M, c ⊩ p.

Inductive hypothesis: Assume that partial correctness holds of localtruth for all ψ,χ

that are less complex than φ: If localtruth(M, ⟨ψ, c,K, s⟩) returns ‘True’, then

M, c ⊩ ψ (and similar for χ).

Inductive step (five cases):

1. φ = ¬ψ.

i. By assumption, localtruth(M, ⟨¬ψ, c,K, s⟩) returns ‘True’.

ii. By 1i and the clause for negation (definition 8.3, lines 8–16), there is a

⟨ψ, c′,K ′, s′⟩ ∈K such that localtruth(M, ⟨ψ, c′,K ′, s′⟩) returns ‘False’.

iii. By 1ii and induction hypothesis, not M, c′ ⊩ ψ.

iv. By lemma 8.2, c′ = c.

v. By 1iii and 1iv, not M, c ⊩ ψ.

vi. By 1v and the semantics of negation (definition 5.2), M, c ⊩ ¬ψ.

2. φ = ψ ∨ χ.
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i. By assumption, localtruth(M, ⟨ψ ∨ χ, c,K, s⟩) returns ‘True’.

ii. By 2i. and the clause for disjunction (definition 8.3, lines 17–29), there is a

⟨ψ, c′,K ′, s′⟩ ∈ K such that localtruth(M, ⟨ψ, c′,K ′, s′⟩) returns ‘True’

or there is a ⟨χ, c′′,K ′′, s′′⟩ ∈K such that localtruth(M, ⟨χ, c′′,K ′′, s′′⟩)

returns ‘True’.

iii. Assume that there is a ⟨ψ, c′,K ′, s′⟩ ∈K such that localtruth(M, ⟨ψ, c′,K ′, s′⟩)

returns ‘True’.

iv. By 2iii. and induction hypothesis, M, c′ ⊩ ψ.

v. By lemma 8.2, c′ = c.

vi. By 2iv. and 2v., M, c ⊩ ψ.

vii. By 2vi. and the semantics of disjunction (definition 5.2), M, c ⊩ ψ ∨ χ.

viii. Assume that there is a ⟨χ, c′′,K ′′, s′′⟩ ∈K such that localtruth(M, ⟨χ, c′′,K ′′, s′′⟩)

returns ‘True’.

ix. By 2viii. and similar to 2iv.–2vii, M, c ⊩ ψ ∨ χ.

x. By 2ii., 2vii. and 2ix., M, c ⊩ ψ ∨ χ.

3. φ = ◇ψ.

i. By assumption, localtruth(M, ⟨◇ψ, c,K, s⟩) returns ‘True’.

ii. By 3i. and the clause for the ◇-modality (definition 8.3, lines 17–29),

there is a ⟨ψ, c′,K ′, s′⟩ ∈ K such that localtruth(M, ⟨ψ, c′,K ′, s′⟩) re-

turns ‘True’.

iii. By 3ii. and induction hypothesis, M, c′ ⊩ ψ.

iv. By lemma 8.2, cRc′.

v. By 3iii, 3iv. and the semantics of the ◇-modality (definition 5.2), M, c ⊩

◇ψ.

4. φ = ψ ∧ χ. Similar to 2.

5. φ = ◻ψ. Similar to 3.

Therefore, M, c ⊩ φ. ∎
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Figure 8.2

Diagram showing the exponential runtime of SMAC for nested modalities given

an input formula ◇nE. The x-axis represents n, the y-axis indicates the running

time as average over 10 trials in seconds. Note that this requires a 64 bit

implementation of Python.

Theorem 8.1 (Total correctness SMAC)

Total correctness holds of SMAC.

Proof of theorem 8.1: Directly from lemmas 8.1–8.4. ∎

8.3 Computational complexity

SMAC does not scale well for largish inputs. More precisely, the running time of the

composed tree and localtruth (see definitions 8.2 and 8.3) is determined by the input

formula φ: If φ contains nested modal operators, then the algorithm scales exponentially

where the exponent is given by the (highest) number n of nested modal operators (O(2n)

in Landau notation).

The main reason for this bad performance is that SMAC represents formulas as trees.

Representing formulas as trees is intuitive since the logically possible truth-makers of a
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Figure 8.3

Diagram showing the polynomial runtime of SMAC for non-nested modalities

given an input formula ◇1E ∧ ⋅ ⋅ ⋅ ∧ ◇nE. The x-axis represents n, the y-axis

indicates the running time as average over 10000 trials in microseconds.

modal operator are represented as the children of a node. However, it is also costly. To

see this, consider a formula with nested modalities such as ◇nE. Neglecting detail, the

required tree has at least 9n branches; so for n = 10, there are approximately 3.5 billion

branches. The pragmatic cutoff is at n = 7 as illustrated in Figure 8.2. Note that if

the formula only contains non-nested modal operators, then the algorithm is solvable in

polynomial time. See Figure 8.3 for an example.

The algorithm can be optimized. For example, instead of first constructing all branches

of the tree and evaluating in a second step, branches could be constructed and evaluated

sequentially. To see this, take a node with ◇φ (and similar for φ ∨ ψ). Here only one

child where φ holds must be constructed. The inverse holds for ◻φ (and φ ∧ ψ). Here

only one child where φ does not hold must be constructed. Which child to construct first

could be determined randomly; or, perhaps more promising, based on context-dependent

probabilities. However, let me underscore that these optimizations do not exclude the

worst case where all truth-makers (respectively the tree in full) have to be constructed.

A more efficient algorithm that might be applied to the simple model is for example

discussed by Shirazi and Amir (2008).
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8.4 Summary

I present SMAC (Simple Model Amino acid Checker), a model checking tool implemented

in Python and made publicly available at maxghuber.github.io/SMAC under the Apache

License. It allows the user to obtain the truth value of any formula φ of the basic

amino acid language in the simple model. SMAC builds a semantic tree where the root

is the codon of evaluation decorated with φ, descendants are codons decorated with

subformulas of φ, and the leafs jointly comprise all logically possible truth makers of φ.

Each branch is then evaluated bottom-up. I show that SMAC has the total correctness

property, and that SMAC scales exponentially for nested modal operators where the

exponent is given by the highest number of nested modal operators.

https://maxghuber.github.io/SMAC/


9. Biological counterfactuals

In section 9.1, I will present David Lewis’ (1973) semantics of counterfactual conditionals

(LSC in short) both informally and formally. In section 9.1, after briefly reviewing the

standard worries, I will make explicit a number of problems specific to applying LSC

to biological counterfactuals.1 Finally, in section 9.3, I will provide a new semantics of

biological counterfactuals based on the results of part II.

9.1 Lewis’ semantics of counterfactual conditionals

In this section, I will informally introduce LSC and then provide a formalization in the

spirit of the models in part II. Both the informal and the formal part are based on my

Leahy and Huber (2014).

Lewis’ semantics employs possible worlds and similarity among possible worlds as basic

notions in providing a semantics for counterfactuals such as:

If Bill had come to the party, it would have been fun. (9.1)

In order to check whether a counterfactual such as (9.1) is true in the actual world, one

goes to the possible world that is maximally similar to the actual world and where the

antecedent is true (that is, the world as it would have been if Bill had come to the party)

and checks whether or not the party was fun there. If it was, then the counterfactual is

true; if it was not, then the counterfactual is false. In the following, @ will be used to

denote the actual world.

However, two complications are required. First, it may not be that there is a single

maximally similar world to @ where the antecedent is true. Consider: Bill did not come

1 I do not distinguish between ‘biological counterfactuals’ and ‘biological counterfactual conditionals’.

157
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to the party, but if he had, would he have arrived at 19:45 or at 20:00? There may

be a world w where Bill arrived at 19:45 and a distinct world w′ where Bill arrived

at 20:00, where both w and w′ are equally good candidates for being the most similar

world to @ where Bill came. That is, non-identical worlds may be tied for similarity.

So we need to complicate the truth conditions for counterfactuals. In order to check

whether a counterfactual conditional such as φ↝ ψ is true in @, find the set of possible

worlds that are maximally similar to @ and where the antecedent φ is true and check

whether the consequent ψ is true at all those worlds. If it is, then the counterfactual is

true; if it is not, then the counterfactual is false. The members of the set of maximally

similar antecedent worlds are called ‘evaluation worlds’ for any conditional with that

antecedent.

Second, for some sentence φ, there may not be a maximally similar world to @ where φ

is true. This can happen in two ways:

1. There are no φ-worlds. For Lewis, any counterfactual with such an antecedent is

vacuously true.

2. There is an infinite sequence of φ-worlds, each more similar to @ than the last.

In this case we cannot speak of the (set of) maximally similar world(s) to @. For

example, Jim is 180 cm tall. Are there worlds maximally similar to @ where Jim

is over 180 cm tall? How tall is he in those worlds? If he is 180.5 cm in w, it seems

that w′, where he is 180.25 cm, is more similar to @ (since Jim’s height in w′ is

closer to his height in @ than is his height in w). But then consider w′′, where Jim

is 180.125 cm. World w′′ is more similar to @ than is w′. We can continue this

sequence infinitely, and never get to a maximally similar φ-world.

This latter possibility complicates Lewis’ truth conditions for counterfactuals substan-

tially, but need not bother us for the purposes of this chapter. None of the antecedents

we will consider are ones for which there is an infinite sequence of possible worlds, each

more similar to @ than the last, where the antecedent is true. So for each antecedent φ

we consider we may safely refer to the set of maximally similar φ-worlds to @. There-

fore, a counterfactual φ ↝ ψ is true just in case the maximally similar φ-worlds are all

ψ-worlds.

I now turn to formalize LSC. I will begin by defining a Lewis model:
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Definition 9.1 (Lewis model)

A Lewis model L is a quadruple ⟨WL,≤L,ΦL, V L⟩ such that:

� WL is a non-empty set interpreted as the set of possible worlds. In addition,

stipulate that @ ∈WL.

� ≤L is a total preorder (i.e., a transitive and total binary relation) on WL
@ ⊆WL

where WL
@ is interpreted as the set of possible worlds that are accessible from

@. ≤L is interpreted as comparative similarity relation with respect to @.

� ΦL is the set of atomic propositions.

� V L ∶ ΦL → P(WL) is a valuation function which assigns to each atomic propo-

sition p ∈ ΦL some set of worlds V L(p) ⊆WL. Intuitively, V L(p) is interpreted

as the set of worlds w ∈WL where p is true.

For w,w′ ∈WL
@, w ≤L w′ expresses that w is at least as similar to @ as w′. For simplicity,

let w <L w′ abbreviate that it is not the case that w′ ≤L w; so w <L w′ expresses that

w is more similar to @ than w′. The similarity relation will be discussed alongside the

accessibility relation in more detail in the next section.

The Lewis language is the language of propositional logic with the addition of the binary

‘↝’-operator for counterfactual conditionals:

Definition 9.2 (Lewis language)

The Lewis language LL is used to describe Lewis models ML = ⟨WL,≤L,ΦL, V L⟩.

The syntax of LL is given by the following Backus-Naur form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ φ↝ φ

where p ∈ ΦL. The standard abbreviations for the classical connectives ∧,→,↔ are

used. That a formula φ of LL is true in ML at a world w ∈ WL is written as

ML,w ⊩ φ. The semantics of LL are given recursively:

ML,w ⊩ p iff w ∈ V L(p) (9.2)

ML,w ⊩ ¬φ iff not ML,w ⊩ φ (9.3)

ML,w ⊩ φ ∨ ψ iff ML,w ⊩ φ or ML,w ⊩ φ (9.4)
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ML,@ ⊩ φ↝ ψ iff (9.5)

∀w ∈WL
@ s.t. ML,w ⊩ φ ∶ ∃w′ ∈WL

@ s.t. ML,w′ ⊩ φ and w′ ≤L w, and

∀w′′ ∈WL
@ such that ML,w′′ ⊩ φ and w′′ ≤L w′ ∶ML,w′′ ⊩ ψ

A counterfactual conditional such as φ ↝ ψ expresses that if φ had been the case, ψ

would be the case. Given the basic Lewis language, the semantics of counterfactual con-

ditionals are quite involved as witnessed by (9.5). Fortunately, (9.5) can be simplified

by requiring Lewis models ML to be limited (see Lewis 1973: 19f.):

Definition 9.3 (Limited Lewis model)

A Lewis model ML = ⟨WL,≤L,ΦL, V L⟩ is limited if and only if ≤L is well-founded.

If a Lewis model ML is limited, then the set of accessible worlds WL
@ ⊆WL has at least

one world w ∈ WL
@ which is maximally similar to @. In other words, infinite chains of

ever more similar possible worlds in WL
@ are excluded. For any limited Lewis model ML,

let ML
@ ⊆WL

@ be the set of maximally similar possible worlds with respect to @:

w ∈ML
@ if and only if ¬∃w′ ∈WL

@ such that w′ <L w (9.6)

By the same token, if there is an φ-world, then there is a nonempty set of maximally

similar possible φ-worlds ML
@/φ ⊆W

L
@ with respect to @:

w ∈Mφ
@/φ

if and only if ML,w ⊩ φ and ¬∃w′ ∈WL
@ such that w′ <L w and ML,w′ ⊩ φ

(9.7)

For the class of limited Lewis models, the semantic clause for counterfactual conditionals

(9.5) can hence be replaced by the more simple (see Lewis 1973: 19f.):

ML,@ ⊩ φ↝ ψ iff ∀w ∈ML
@/φ ∶M

L,w ⊩ ψ (9.8)

That is, a counterfactual conditional φ↝ ψ is true at the actual world in a Lewis model

if and only if all maximally similar (and accessible) φ-worlds are also ψ-worlds. With the

Lewis language in place, note that the provided semantics are not general. To see this,

consider that the semantic clauses for counterfactual conditionals (9.5) and (9.8) are only

defined with respect to the actual world. That is, I have simplified the semantics by

defining the comparative similarity ordering only relative to the actual world. A general
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semantics would define an accessibility relation and a comparative similarity ordering

for every possible world in any Lewis model. In other words, the presented model is a

pointed model and the Lewis language is used to describe such pointed models. However,

these simplifications are adopted because they ease presentation without harm to my

purposes as I am not not concerned with any embedded counterfactual conditionals here.

This completes formalizing LCS.

9.2 Problems

There are number of problems with LCS that have been discussed in detail elsewhere

(e.g., Schulz 2011). However, in this section, I am concerned exclusively with problems

that stem from applying LSC to biological counterfactuals.

The main problem with LCS is the comparative similarity relation. To see this, recall

first the definition of a Lewis model: In order to construct a Lewis model, a similarity

ordering needs to be induced on the set of accessible worlds. But how can we tell whether

or not world w is more similar to the actual world than world w′? Lewis’ (1979) approach

is to consider what violations of natural law are required to transform the actual world

into w respectively w′; he calls such violations ‘miracles’.2 Assuming that neither of

w,w′ is numerically identical to the actual world, Lewis proposes that w is more similar

to the actual world than w′ if and only if the miracle required to transform the actual

world into w is smaller than the miracle required to transform the actual world into

w′. Lewis offers a “system of weights or priorities” (1979: 472) to get a grip on the size

(for lack of a better term) of a miracle. In what follows, I will refer to this system as

‘minimal violation principle’ (MVP in short, verbatim from Lewis 1979: 472):

1. It is of the first importance to avoid big, widespread, diverse violations of law.

2. It is of the second importance to maximize the spatio-temporal region throughout

which perfect match of particular fact prevails.

3. It is of the third importance to avoid even small, localized, simple violations of

law.

4. It is of little or no importance to secure approximate similarity of particular fact,

even in matters that concern us greatly.

2 This approach was intended to supplement LCS after having been charged of being too vague with
respect to the comparative similarity relation, for example by Kit Fine (1975).
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So MVP is used to determine an ordering of worlds in terms of miracles which is inter-

preted in turn as ordering of worlds in terms of similarity as required by definition 9.1.

There are a number of general issues with MVP: Are the clauses in the right order? Are

there clauses missing? And so on. However, as mentioned above, these general issues

do not concern us here. Rather, I want to make the case that MVP spells trouble for

applying LCS to biological counterfactuals. Here are the two reasons to support my

claim:

First, assume that MVP as given is correct. In order to tackle specific biological coun-

terfactuals such as presented in section 1.2, we need to be able to provide a similarity

ordering in practice. That is, a concrete Lewis model needs to be constructed. How-

ever, this is an unfeasible task since worlds are too big and there are too many worlds.

What is more, even if we had the (computational) resources to build a Lewis model,

an ordering of worlds based on MVP is in many cases not epistemically available. Sec-

ond, assume that these pragmatic and epistemic concerns with respect to MVP can be

overcome. Since similarity is cashed out in terms of physical laws but not all biological

explanations are reducible to explanations in terms of physical laws, there is an explana-

tory mismatch. In order to better understand the notion of an explanatory mismatch,

consider the following two examples:

1. Small physical change, big biological change. Take codon GAG which codes for

glutamine and consider two of its variants, namely GAA which also codes for glu-

tamine and TAG which terminates translation. According to MVP, GAA and TAG

are equisimilar to GAG since the same type of miracle is required to transform GAG

into GAA and TAG respectively. However, from a biological perspective, the former

is a silent mutation whereas the latter is a nonsense mutation. In other words, a

glutamine-world is more similar to glutamine-world than to a termination-world.

2. Large physical change, small biological change. Take codon TCA which codes fo ser-

ine and consider two of its variants, namely AGC which also codes for serine and TAA

which terminates translation. According to MVP, TAA is more similar to TCA than

AGC since the miracle required to transform TCA into AGC is bigger than the miracle

required to transform TCA into TAA.3 However, from a biological perspective, the

former is a silent mutation whereas the latter is a nonsense mutation. In other

words, a serine-world is more similar to serine-world than to a termination-world.

3 Whatever the exact arithmetic of miracles is, assume that the transformation from TCA into TAA

requires one miracle. Then the transformation from TCA into AGC requires three miracles of this type.
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There are two objections to this argument. I discuss them briefly with respect to the

first example. It could be argued that GAA and TAG are not equisimilar to GAG since

the required substitutions occur at different rates. For this objection to get off the

ground, the assumed rates must be (deducible from) a physical law (and not just “par-

ticular fact[s]” Lewis 1979: 472). Furthermore, assuming there are probabilistic laws,

why should a transformation into an unlikely event be a bigger violation of such a law

than a transformation into another, more likely event? In any case, it is easy to find

analogous examples where the required substitutions occur at identical rates. Second, it

could be argued that GAA and TAG are not equisimilar to GAG since GAA is a glutamine-

world whereas TAG is not. However, this objection misses the point: On the reductionist

view (be it ontological or explanatory), there is nothing more to the difference between

the glutamine-world and the termination-world than their respective physical basis; and

the miracles to bring about each world are type identical.

To recapitulate, the main problem with LCS is its inadequacy with respect to biological

counterfactuals which stems from basing the comparative similarity relation on MVP.

Two remarks are in order: First, the discussed problem does not touch the correctness of

the semantics of counterfactual conditionals as stated in (9.5) and (9.8) since the Lewis

language is used to describe an already constructed Lewis models. The problem is more

basic: If it is not feasible to construct Lewis models for pragmatic and epistemic reasons,

then the provided semantics of counterfactual conditionals are utterly useless. Second,

the problem is not limited to biology but carries over to other special sciences.

There are three strategies in response to the inadequacy of LCS. The first strategy is

to tweak MVP by adding clauses for special science laws. This strategy is employed by

Jeff Dunn (2011) and by Daniel Dohrn and Thomas Kroedel (2013). While I remain

agnostic about this strategy with respect to the special sciences general, I submit that

it is a non-starter for biology based on the arguments presented in section 2.1, namely

the contentious hierarchy of the clauses (relation between physical and biological laws),

the circularity worry, and the question of whether there actually are biological laws.

The second strategy is give up on providing semantics for biological counterfactuals.

For example, Marco Nathan (forthcoming) argues that one should rather focus on the

pragmatic role that counterfactuals play in predictions and explanations. Finally, a third

strategy is to amend LCS by replacing MVP with a more adequate principle. In other

words, the third strategy is to induce the similarity ordering via a principle different

than MVP. In the next section, I will explore an implementation of this strategy.
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9.3 Semantics for biological counterfactuals

In this section, I will provide a semantics for biological counterfactuals that avoids the

problems encountered with LCS. The most important move is to replace the Lewis model

with a model more adequate to biology. The resulting semantics for counterfactual

conditionals remain true to the spirit of LCS.

I begin by defining an adequate Lewis model (adequate, to be sure, for the application

to biological counterfactuals):

Definition 9.4 (Adequate Lewis model)

An adequate Lewis model MA is a quadruple ⟨CA,≤Ac ,Φ
A, V A⟩ such that:

� CA is the set of codons C as per definition 5.1.

� For each c ∈ CA, ≤Ac is a total preorder on CA and interpreted comparative

similarity relation with respect to c.

� ΦA is the set of atomic propositions Φ as per definition 5.1.

� V A ∶ ΦA → P(CA) is the valuation V as per definition 5.1.

An adequate Lewis model is hence a simple model as per definition 5.1 where the single

substitution relation has been replaced with a comparative similarity relation.

Three remarks about this relation are in order. First, for c, c′, c′′ ∈ CA, c′ ≤Ac c
′′ expresses

that c′ is at least as similar to c as c′′. For simplicity, let c′ <Ac c
′′ abbreviate that it

is not the case that c′′ ≤Ac c′; so c′ <Ac c′′ expresses that c′ is more similar to c than

c′′. My second remark concerns the way in which the similarity ordering is induced. In

contrast to the similarity ordering of LCS which is between worlds and induced by the

non-violation principle, the similarity ordering in the adequate Lewis model is induced

by comparing edit distances between codons (recall definition 3.26):

c′ ≤Ac c
′′ iff δ(c, c′) ≤ δ(c, c′′) (9.9)

That is, c′ is at least as similar to c as c′′ if and only if the edit distance from c to c′ is equal

or smaller as compared to the edit distance from c to c′′. Note that this is rather a schema

of how the similarity ordering is induced since there are many different implementations

of edit distance. For example, all of the grades of biological possibility respectively their
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model basis discussed in chapter 6 qualify. Finally, for ease of presentation, in what

follows I will assume that the comparative similarity relation is well-founded (that is,

that the adequate Lewis model is limited).

There are three main advantages of the adequate Lewis model MA over the Lewis model

ML with respect to biological counterfactuals:

1. In light of section 2.1 where I have identified the problems of defining biological

modalities in terms of biological laws, the most important advantage of MA over

ML is that in contrast to the latter, the former does not rely on physical or bi-

ological laws. More precisely, the similarity ordering in ML is stated in terms

of minimizing the violation of physical and/or biological laws. By contrast, the

similarity ordering in ML does neither invoke physical nor biological laws.

2. MA is less metaphysically and/or epistemically loaded than ML. Whatever possi-

ble worlds are, codons are simpler objects. One does not have to be a modal realist

to appreciate this point; even on formalist accounts of possible world, codons can

be represented as smaller sets of propositions. More importantly, MA does not

require an accessibility relation on top of the comparative similarity relation. This

point needs a twofold qualification: Below I argue, first, that MA can be merged

with M, and, second, that MA can be generalized analogously to the method pre-

sented in chapter 7. In both cases, an accessibility relation will be required. The

advantage of my account is that the accessibility relation is well-defined in terms of

edit distance and not based on the vague and intuition fueled idea of conceivability.

3. This is related to the first advantage, but worth stating explicitly: The comparative

similarity relation in MA is well-defined for many implementations of edit distance

whereas the comparative similarity relation in ML is not well-defined. What is

more, the comparative similarity relation in MA is decidable given interesting

implementations of edit distance such as Hamming distance.

I will now turn to defining the adequate Lewis language:

Definition 9.5 (Adequate Lewis language)

Adequate models MA = ⟨CA,≤Ac ,Φ
A, V A⟩ are described by the adequate Lewis lan-

guage LA. The syntax of LA is given by the following Backus-Naur form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ φ↝ φ
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where p ∈ ΦA. The standard abbreviations for the classical connectives ∧,→,↔

are used. That a formula φ of LA is true in MA at a codon c ∈ CA is written as

MA, c ⊩ φ. The semantics of LA are given recursively:

MA, c ⊩ p iff c ∈ V A(p) (9.10)

MA, c ⊩ ¬φ iff not MA, c ⊩ φ (9.11)

MA, c ⊩ φ ∨ ψ iff MA, c ⊩ φ or MA, c ⊩ φ (9.12)

MA, c ⊩ φ↝ ψ iff ∀c′ ∈MA
c/φ ∶M

A, c′ ⊩ ψ (9.13)

where MA
c/φ ⊆ C

A is the set of maximally similar φ-codons with respect to c:

c′ ∈MA
c/φ iff MA, c′ ⊩ φ and ¬∃c′′ ∈ CA such that c′′ <Ac c

′ and MA, c′′ ⊩ φ (9.14)

Note that the adequate Lewis model can be generalized analogously to the simple model

as discussed in chapter 7.

9.4 Total models and languages

An additional advantage of the presented semantics of biological counterfactuals is that

they integrate seamlessly with the semantics of biological possibility presented in part II.

More precisely, we can combine any model presented in part II with the adequate Lewis

model; these models in turn can be described a combination of an amino acid language

and the adequate Lewis language.4 For future reference, call the result of combining a

model x with the adequate Lewis model a total model x, and call the result of combin-

ing an amino acid language y with the adequate Lewis language a total language y. A

total model and corresponding total language therefore provide an integrated semantics

for biological possibility, necessity and counterfactuality of a certain grade. This satis-

fies desideratum (D6) stated in subsection 1.3.1 of giving a unified treatment of these

modalities.

Let me now make the idea of combining models respectively languages more precise. For

illustration, consider combining the simple model M with the adequate Lewis model M,

and combining the basic amino acid language L with the adequate Lewis language LA.

I begin by defining the former:

4 This does not hold for the probabilistic model and language, or is at least not as straightforward.
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Definition 9.6 (Total simple model)

A total simple model MT is a quintuple ⟨CT,RT,≤Tc ,Φ
T, V T⟩ such that:

� CT is the set of codons C as per definition 5.1.

� RT ⊆ CT ×CT is a symmetric binary relation interpreted as single substitution

as per definition 5.1.

� For each c ∈ C, ≤Tc is a total preorder on CT interpreted as comparative simi-

larity relation with respect to c as per definition 9.4.

� ΦA is the set of atomic propositions Φ as per definition 5.1.

� V A ∶ ΦA → P(CA) is the valuation V as per definition 5.1.

Let me now turn to the definition of the total basic amino acid language:

Definition 9.7 (Total basic amino acid language)

Total simple models ⟨CT,RT,≤Tc ,Φ
T, V T⟩ are described by the total basic amino acid

language LT . The syntax of LA is given by the following Backus-Naur form:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ ◇ φ ∣ φ↝ φ

where p ∈ ΦT . The standard abbreviations for the classical connectives ∧,→,↔ are

usedin addition, it is convenient to use:

◻φ ∶= ¬◇ ¬φ (9.15)

The semantics of LT are given recursively as per definitions 5.2 and 9.5; the seman-

tics for the modal operators are:

MT, c ⊩ ◇φ iff MT, c′ ⊩ φ for some c′ ∈ CT such that cRTc′ (9.16)

MT, c ⊩ φ↝ ψ iff ∀c′ ∈MT
c/φ ∶ T

T, c′ ⊩ ψ (9.17)

where MT
c/φ ⊆ C

T is the set of maximally similar φ-codons with respect to c:

c′ ∈MT
c/φ iff MT, c′ ⊩ φ and ¬∃c′′ ∈ CT such that c′′ <Tc c

′ and MT, c′′ ⊩ φ (9.18)
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9.5 Summary

I argue that the standard semantics of counterfactual conditionals are a bad fit for bi-

ological counterfactuals. The standard semantics require a similarity ordering of states

which is explicated in terms of physical laws. However, such a similarity ordering is

pragmatically unattainable, and even if it were attainable, it would still entail explana-

tory mismatches. As an alternative, I propose a similarity ordering in terms of edit

distance that is easily computable. This yields semantics for at least some biological

counterfactuals that does not rely on laws (physical or other). Finally, I show that these

semantics can be seamlessly integrated with the semantics of the biological modalities

introduced earlier.



Conclusion

In order to understand the epistemic role of biological modalities in biological explana-

tions, a theory of biological modalities is required. Such a theory must provide truth

conditions of biological modalities, enable an analysis of the inferential relationships be-

tween biological and other kinds of modalities, and take into account the heterogeneous

nature of biological modalities by explicating how biological modalities can be graded.

However, defining biological modalities in terms of (biological) laws turns out to be a

blind alley. This leads to the three main results of this thesis: First, a sketch of a more

promising alternative is constructed by improving upon Dennett’s definition of biolog-

ical possibility, summarized by in this schema: x is CE possible with respect to some

genome g if and only if there is some genome g′ such that x is an instance of g′ or a

feature of the phenotypic products of g′, and there is an edit script from g to g′ that

fits certain cost requirements C given a set of edit operations E. Second, the potential

of the sketched theory is demonstrated via an implementation within the framework of

modal logic based on a case study of hemoglobin variants. And third, two applications

of this implementation are provided, namely the model checking tool SMAC and a law-

less semantics for biological counterfactuals. In short, this thesis lays the groundwork

for a better understanding of the epistemic role of biological modalities in biological

explanations. Possible future work mirrors the limitations of the presented results: The

theory as stated can hardly account for biological modalities at larger scales, namely

the population level or higher. Perhaps this limitation can be overcome by expanding

the base of the above schema; more likely, however, a completely different approach is

required. In addition, the given implementation is static and timeless whereas (most) bi-

ological phenomena are not. Here dynamic modal logics look promising. Finally, there is

a rather straightforward application to conceptual issues involving biological constraints

(e.g., Green and Jones 2016), biological functions and contrast classes (e.g., Wouters

2007), and dispositional notions of health (e.g., Werkhofen 2016).
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A. Geometric scaling

We show that surface area A of some animal is proportional to its mass m raised to the
2
3 power:

A∝m
2
3 (A.1)

For this, two assumptions are required. First, the three-dimensional shape of the animal

is represented by a sphere. Let r be the radius of the sphere. Then its surface area and

volume V of the are given by:

A = 4πr2 (A.2)

V =
4

3
πr3 (A.3)

Second, neglecting density, the animal’s mass is proportional to its volume:

m∝ V (A.4)

Now, by canceling the proportionality constants 4π and 4
3π, (A.2) and (A.3) can be

rewritten as:

A∝ r2 (A.5)

V ∝ r3 (A.6)

If we solve (A.6) for r, we get:

V
1
3 ∝ r (A.7)
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By (A.5) and (A.7):

A∝ (V
1
3 )2 ∝ V

2
3 (A.8)

Finally, (A.1) follows from (A.4) and (A.8). It goes without saying that geometric

scaling of animals is an idealization; for more realistic methods, see for example Wang

and Hihara (2004).

B. Computable edit script

For a computable definition of edit scripts, replace definitions 3.23–3.24 with the follow-

ing:

Definition B.1 (Computable edit script)

Let i, t be strings. An edit script S is a sequence of operations ⟨E1,E2, . . . ,En⟩ where

n ∈ N1. An application of S to i, denoted by S(i), builds a string via the serial

application of operations to position i(i) where 0 < i ≤ ∣i∣. Set t = λ, m = 1 and i = 1.

Then, for Em = ⟨x, y⟩ until m = n: If x = y = λ, set t = t⊕ i[i], m =m+ 1 and i = i+ 1

(copy operation); if x ≠ λ and y ≠ λ, set t = t⊕y, m =m+1 and i = i+1 (substitution

operation); if x ≠ λ and y = λ, set m = m + 1 and i = i + 1 (deletion operation); if

x = λ and y ≠ λ, set t = t⊕ y and m =m + 1 (insertion operation).

C. Modal logics

This section provides a brief introduction to propositional modal logics based on Black-

burn et al. (2001). Let M = ⟨R, V ⟩ be a model where R is a relational structure as per

definition 3.1 and V is a valuation function, and let L be an arbitrary modal language.

Then a modal logic can be defined syntactically:

Definition C.1 (Modal logic, syntactic)

A modal logic LΓ over a generator Γ ⊆ L is a set such that:

1. If φ ∈ Γ, then φ ∈ LΓ,

2. if φ ∈ Γ and ψ is an abbreviation of φ, then ψ ∈ LΓ,
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3. if φ is a propositional tautology, then φ ∈ LΓ,

4. if φ,φ→ ψ ∈ LΓ, then ψ ∈ LΓ, and

5. if φ ∈ LΓ and ψ is a substitution instance of φ, then ψ ∈ LΓ

Definition C.1 states that a modal logic over a generator contains 1. all sentences of the

generator, 2. their abbreviations and 3. all propositional tautologies, and is closed under

4. modus ponens and 5. uniform substitution (Blackburn et al. 2001: 191f.). Concerning

notation, L with or without subscript will be used as meta-variable for any modal logic;

N with or without subscript will be used as meta-variable for any normal modal logic

(see below); other bold uppercase Roman letters denote specific modal logics.

Two remarks with respect to the generator and propositional tautologies are in order.

First, definition C.1 is an algorithm for constructing a modal logic based on a generator.

Therefore, modal logics can be individuated by their generator: every element in the

power set of a modal language can figure as generator and can hence be used to construct

a modal logic. Second, sentences such as ◇φ ∨ ¬◇ φ are propositional tautologies even

though they contain non-classical operators. In the light of the syntactic definition C.1,

a modal logic is hence simply a classical propositional logic with the addition of the

diamond-operator (and its dual, the box-operator).

In order to define a modal logic semantically, the notion of validity is required:

Definition C.2 (Validity)

That a sentence φ ∈ L is valid in a relational structure R = ⟨D,R⟩ at an element

d ∈D is written as R, d ⊩ φ:

R, d ⊩ φ iff M, d ⊩ φ for all models M = ⟨R, V ⟩ (C.1)

That φ is valid in R is written as R ⊩ φ:

R ⊩ φ iff R, d ⊩ φ for all d ∈D (C.2)

That φ is valid in a class of relational structures [R] is written as [R] ⊩ φ:

[R] ⊩ φ iff R ⊩ φ for all R ∈ [R] (C.3)
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Definition C.2 states that a sentence is valid at an element of a relational structure’s

domain if and only if it is true for all models over the relational structure (Blackburn

et al. 2001: 24). That is, the relational structure is kept constant whereas the valuation

is varied. A modal logic can now be defined semantically:

Definition C.3 (Modal logic, semantic)

A modal logic L[R] of a class of relational structures [R] is {φ ∶ [R] ⊩ φ} ⊆ L.

Definition C.3 states that a modal logic of a class of relational structures is the subset of

sentences of a modal language that are valid on this class. The correspondence between

syntactic and semantic definitions of modal logics is captured in terms of soundness and

completeness (Blackburn et al. 2001: 195f.):

Definition C.4 (Soundness)

A modal logic LΓ is sound with respect to a class of relational structures [R] if

LΓ ⊆ L[R].

Definition C.5 (Completeness)

A modal logic LΓ is complete with respect to a class of relational structures [R] if

L[R] ⊆ LΓ.

Definition C.4 states that a modal logic is sound with respect to a class of relational

structures if all its sentences are valid on the class. That is, if all its sentences are true

in all models over all relational structures of the class. Definition C.4 states that a

modal logic is complete with respect to a class of relational structures if it contains all

sentences that are valid on the class. Therefore, if a modal logic is sound and complete

with respect to a class of relational structures, it contains exactly the sentences that are

valid on the class.

Many important completeness results pertain to so-called normal modal logics. Here is

a syntactic definition of normal modal logics:

Definition C.6 (Normal modal logic)

A normal modal logic NΓ over a generator Γ ⊆ L is a modal logic LΓ such that:

1. If φ ∈ LΓ, then φ ∈NΓ,
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2. ◻(φ→ ψ) → (◻φ→ ◻ψ) ∈NΓ, and

3. if φ ∈NΓ, then ◻φ ∈NΓ

Definition C.6 states that a normal modal logic over a generator is the modal logic over

the same generator that satisfies two additional constraints (Blackburn et al. 2001: 193f.):

First, it must contain the K-axiom:

◻(φ→ ψ) → (◻φ→ ◻ψ) (C.4)

Second, it must be closed under necessitation. To be maximally explicit, a normal

modal logic over a generator contains all propositional tautologies, all sentences of the

generator (and their abbreviations), the K-axiom, and is closed under modus ponens,

uniform substitution and necessitation.

Since modal logics can be individuated by their generator, normal modal logics can also

be individuated by their generator. For example, K is the normal modal logic over the

empty generator, and K is sound and complete with respect to the class of all relational

structures.

At this point, it is unavoidable to say a few words about the confusing nomenclature

of (normal) modal logics. That N∅ is called K has analytic and historic reasons. The

analytic reason is that K is the smallest normal modal logic; that is, it is the smallest

modal logic that contains the K-axiom and is closed under necessitation. Historically, the

K-axiom derives its name from the work of Saul Kripke (1959) who pioneered relational

semantics of modal logics. The most straightforward algorithm to name normal logics

in light of these two reasons is hence to add the names of the elements of the generator

to K (Blackburn et al. 2001: 194). For example, take the T-axiom ◇φ → ◇◇ φ. Then

KT =N{◇φ→◇◇φ} is the normal modal logic over Γ = {◇φ→◇◇φ}. However, difficulties

stem from the fact that the same axiom is known by different names. For example, the

T-axiom is also known as M-axiom and by many other names (for an overview see Halleck

2013).

D. Graded models support

The basic functions for computing the numerical results in sections 6.2 and 6.3 (especially

Figures 6.3–6.9) are briefly outlined as implemented in Python 2.7.9.



Appendix 175

#Returns n for ◇!mn p in the simple model at startcodon:

def diamond(startcodon , aminoacid , m):

truthmakers = truthmakers(aminoacid)

paths = paths(startcodon , m)

counter = set()

for path in paths:

codon = path [(3*m):(3*m)+3]

if codon in truthmakers:

counter.add(codon)

return len(counter)

#Returns n for ⟐!mn p in the simple model at startcodon:

def diamonddot(startcodon , aminoacid , m):

truthmakers = truthmakers(aminoacid)

paths = paths(startcodon , m)

counter = 0

for path in paths:

codon = path [(3*m):(3*m)+3]

if codon in truthmakers:

counter += 1

return float(counter)

#Returns ⟐mp = α in the constant resp. biased probabilistic

#model at startcodon:

def diamondprob(startcodon , aminoacid , m, selector ):

truthmakers = truthmakers(aminoacid)

paths = paths(startcodon , m)

sumoverpaths = float (0)

for path in paths:

codon = path [(3*m):(3*m)+3]

if codon in truthmakers:

pathproduct = product(path , selector)

sumoverpaths = sumoverpaths + pathproduct

return sumoverpaths

#Amino acids:

aminoacids = [’A’, ’R’, ’N’, ’D’, ’C’, ’Q’, ’E’, ’G’, ’H’, ’I’, ’L’,

’K’, ’M’, ’F’, ’P’, ’S’, ’T’, ’W’, ’Y’, ’V’, ’*’]

#Returns codons at which aminoacid is true:

def truthmakers(aminoacid ):

if aminoacid == ’A’:

return set([’GCA’, ’GCC’, ’GCG’, ’GCT’])

if aminoacid == ’R’:

return set([’AGA’, ’AGG’, ’CGA’, ’CGC’, ’CGG’, ’CGT’])

if aminoacid == ’N’:

return set([’AAC’, ’AAT’])

if aminoacid == ’D’:

return set([’GAC’, ’GAT’])
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if aminoacid == ’C’:

return set([’TGC’, ’TGT’])

if aminoacid == ’Q’:

return set([’CAA’, ’CAG’])

if aminoacid == ’E’:

return set([’GAA’, ’GAG’])

if aminoacid == ’G’:

return set([’GGA’, ’GGC’, ’GGG’, ’GGT’])

if aminoacid == ’H’:

return set([’CAC’, ’CAT’])

if aminoacid == ’I’:

return set([’ATA’, ’ATC’, ’ATT’])

if aminoacid == ’L’:

return set([’CTA’, ’CTC’, ’CTG’, ’CTT’, ’TTA’, ’TTG’])

if aminoacid == ’K’:

return set([’AAA’, ’AAG’])

if aminoacid == ’M’:

return set([’ATG’])

if aminoacid == ’F’:

return set([’TTC’, ’TTT’])

if aminoacid == ’P’:

return set([’CCA’, ’CCC’, ’CCG’, ’CCT’])

if aminoacid == ’S’:

return set([’AGC’, ’AGT’, ’TCA’, ’TCC’, ’TCG’, ’TCT’])

if aminoacid == ’T’:

return set([’ACA’, ’ACC’, ’ACG’, ’ACT’])

if aminoacid == ’W’:

return set([’TGG’])

if aminoacid == ’Y’:

return set([’TAC’, ’TAT’])

if aminoacid == ’V’:

return set([’GTA’, ’GTC’, ’GTG’, ’GTT’])

if aminoacid == ’*’:

return set([’TAA’, ’TAG’, ’TGA’])

#Returns all single substitutions for codon:

def substitutions(codon):

alphabet = set([’A’, ’C’, ’G’, ’T’])

substitutions = set()

i = 0

while i < len(codon ):

for letter in alphabet:

substitution = list(codon)

substitution[i] = letter

substitution = ’’.join(substitution)

substitutions.add(substitution)

i += 1

substitutions.remove(codon)

substitutions = list(substitutions)
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return substitutions

#Returns all unique sequences of m single substitutions for

#startcodon:

def paths(startcodon , m):

fullpaths = list()

codons = substitutions(startcodon)

for codon in codons:

path = ’’.join([ startcodon , codon])

fullpaths.append(path)

depth = 1

while depth < m:

paths = fullpaths [:]

fullpaths = list()

for path in paths:

codon = path[len(path)-3:len(path)]

newpaths = substitutions(codon)

for newpath in newpaths:

fullpath = ’’.join([path , newpath ])

fullpaths.append(fullpath)

depth += 1

return fullpaths

#Returns probability of a give sequence of single substitutions:

def product(path , selector ):

m = (len(path )/3)-1

product = float (1)

while m > 0:

start = path [(3*m) -3:(3*m)]

stop = path [(3*m):(3*m)+3]

stopletter = 0

for letter in start:

if letter is not stop[stopletter ]:

startbase = letter

stopbase = stop[stopletter]

else:

stopletter += 1

product = product*probability(startbase , stopbase , selector)

m -= 1

return product

#Returns P of substitution in the constant resp. biased

#probabilistic model:

def probability(startbase , stopbase , selector ):

if selector == ’constant ’:

return float (1)/9

if selector == ’biased ’:

transition = float (0.51)/3

transversion = float (0.49)/6
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if startbase == ’A’:

if stopbase == ’G’:

return transition

else:

return transversion

if startbase == ’G’:

if stopbase == ’A’:

return transition

else:

return transversion

if startbase == ’C’:

if stopbase == ’T’:

return transition

else:

return transversion

if startbase == ’T’:

if stopbase == ’C’:

return transition

else:

return transversion

E. First-order allele model

It is shown how the limitation to homozygous genes of the first-order generalized model

MF respectively the first-order protein language LF discussed in section 7.2.1 can be

overcome. This is achieved via a model that has pairs of alleles as states and a language

that defines truth over several alleles. I start by defining the first-order allele model:

Definition E.1 (First-order allele model)

A first-order allele model MA is a octuple ⟨AA,GA,MA,RA
µ ,D

A
g ,N

A,ΠA, V A
a ⟩ such

that:

� GA = GF, MA =MF, NA = NF, and ΠA = ΠF.

� AA = GA ×GA is the set of allele pairs a = ⟨g, g′⟩.

� DA
g is the domain of quantification for each g ∈ GA, .

� RA
µ ⊆ AA×AA is a binary relation for each class of point mutation µ ∈MA such

that:

⟨g, g′⟩RA
µ⟨g

′′, g′′′⟩ iff gRF
µg

′′ and g′ = g′′′ (E.1)
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That is, the relation connects pairs of alleles where only one of the alleles is

allowed to bear a point mutation. In other words, the relation is interpreted

as ceteris paribus point mutation for heterozygous genes. Note that we might

require ⟨g, g′⟩ (but not ⟨g′′, g′′′⟩) to be an actual allele pair/heterozygous gene.

� V A
⟨g,g′⟩ is a valuation function for each ⟨g, g′⟩ ∈ AF such that:

V A
⟨g,g′⟩(ξ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⟨d ∈DA
g , d

′ ∈DA
g′⟩ if ξ ∈ NA

⟨S ⊆ (DA
g )

n, S′ ⊆ (DA
g′)

n⟩ if ξ ∈ ΠA
(E.2)

Square brackets as in V A
⟨g,g′⟩(ξ)[n] are used to denote the n-th element of

V A
⟨g,g′⟩(ξ).

Note that the first-order allele model employs varying domains instead of a constant

domain as employed be the first-order generalized model. I now define the first-order

allele language:

Definition E.2 (First-order allele language)

First-order allele models ⟨AA,GA,MA,RA
µ ,D

A
g ,N

A,ΠA, V A
a ⟩ are described via the

first-order protein allele language LA. The syntax of LA is given by the following

Backus-Naur form:

φ ∶= PS (t1, . . . , tn) ∣ ¬φ ∣ φ ∨ φ ∣ ◇µ φ ∣ ∃xφ

where P (t1, . . . , tn) ∈ ΠA, S ∈ {λ,and,or,xor, . . .}, and µ ∈ MA. The standard

abbreviations for the classical connectives ∧,→,↔ are used; the abbreviations ◻µ,

⟨M⟩, [M], and ∀x are used as per definition 7.4 That a formula φ of LA is true in

MA under assignment ● an allele pair a = ⟨g, g′⟩ ∈ AA is written as MA, ●, a ⊩ φ. Let

● be an assignment such that:

●(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

V A
a (t) if t ∈ NA

⟨d ∈DA
g , d

′ ∈DA
g′⟩ otherwise

(E.3)

Square brackets as in V ● (t)[n] are used to denote the n-th element of ●(t). The

semantics of LA are given recursively (restricted to 1-ary predicates for ease of
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presentation):

MA, ●, a ⊩ PS (t) iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

●(t)[1] ∈ V A
a (P )[1] if S = λ

●(t)[1] ∈ V A
a (P )[1]S ● (t)[2] ∈ V A

a (P )[2] otherwise
(E.4)

MA, ●, a ⊩ ¬φ iff not MA, ●, a ⊩ φ (E.5)

MA, ●, a ⊩ φ ∨ ψ iff MA, ●, a ⊩ φ or MA, ●, a ⊩ φ (E.6)

MA, ●, a ⊩ ◇µφ iff MA, ●, a′ ⊩ φ for some a′ ∈ AA such that aRA
µa

′ (E.7)

MA, ●, a ⊩ ∃xφ iff MA, ●′, a ⊩ φ for some ●′ such that ●′ ∼x ● (E.8)

where ●′ ∼x ● if ●′(y) = ●(y) for all y such that y ≠ x. That a formula φ of LA is

true in MA at pair of alleles a ∈ AA is written as MA, a ⊩ φ and defined by:

MA, a ⊩ φ iff MA, ●, a ⊩ φ for all ● (E.9)

For illustration, consider two forms of beta thalassemia, namely beta thalassemia major

and beta thalassemia minor. The former requires both alleles to be affected, the latter

requires exactly one. Beta thalassemia can be caused in many different ways; an example

is HBB:c.48G↷ A (with HbVar ID 793 which I will use as an identifier). It is caused by

the substitution of guanine with adenine at codon 15 of HBB, resulting in a stop codon.

Take the predicate BetaThalassemia(t) and interpret it as ‘t causes beta thalassemia’.

Now consider the following sentences:

MA, ⟨HBB ,HBB⟩ ⊮ ∃xBetaThalassemiaand(x) (E.10)

MA, ⟨HBB ,793⟩ ⊮ ∃xBetaThalassemiaand(x) (E.11)

MA, ⟨793,793⟩ ⊩ ∃xBetaThalassemiaand(x) (E.12)

So in LA, we can express that beta thalassemia major is (not) caused by taking our

predicate and letting it being evaluated at both alleles. For the super truth conditions,

we can use standard logical connectives such as ‘and’ in (E.10)–(E.12) the case. By using

‘xor’ instead, we can express that beta thalassemia minor is caused:

MA, ⟨HBB ,HBB⟩ ⊮ ∃xBetaThalassemiaxor(x) (E.13)

MA, ⟨HBB ,793⟩ ⊩ ∃xBetaThalassemiaxor(x) (E.14)

MA, ⟨793,793⟩ ⊮ ∃xBetaThalassemiaxor(x) (E.15)
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Other predicates such as Lethal(t) used in subsection 7.2.1 can be defined in a similar
fashion.
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Summary

Chapter 1 I argue that there is a tension between (1) the lack of philosophical interest
in biological modalities and (2) the important explanatory role biological modalities play
in biological practice. The first claim is supported by a quantitative analysis of major
academic databases and a qualitative survey of the philosophical literature. I defend
the second claim by four ‘arguments from case study’ pertaining to coiled ammonoid
shell form, sticky footpads and maximum body size, the minimal bacterial genome and
essential genes, and the habitability of exoplanets. I propose that a theory or logic of
biological modalities could fill the epistemic lacunae between (1) and (2) by providing
truth-conditions for biological modalities, shedding light on the relationship between
biological and other modalities, and spelling out how biological modalities can be graded.

Chapter 2 I offer two main of clarifications of how (not) to think about biological
modalities. First, I argue that defining biological possibility as non-violation of biologi-
cal laws is problematic since it requires a commitment to both realism about biological
laws and the better best systems account of special science laws; otherwise biological
possibility is reduced to physical or logical possibility, or its definition is rendered cir-
cular. Second, I examine three ideas regarding the grading of (biological) possibility,
namely (1) the distinction between kinds of possibility such as logical, physical and bio-
logical possibility and (2) between subkinds of biological possibility which roughly map
to the scale of biological phenomena under investigation and come in historical or ahis-
torical flavors, and (3) the observation that some subkinds of biological possibility are
comparative.

Chapter 3 I improve upon Daniel Dennett’s definition of biological possibility by
proposing two modifications. First, I provide a clarification of his definition by recon-
structing the Library of Mendel as relational structure. Second, I argue that the most
important shortcoming of Dennett’s definition, namely the underdefined accessibility re-
lation, can be overcome by interpreting the accessibility relation as a solution to a string
editing problem. According to the restated definition, x is biologically possible with
respect to a genome g if and only if there is some genome g′ such that there is an edit
script from g to g′ that fits certain cost requirements given a set of edit operations, and
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x is an instance of g or a feature of the phenotypic products of g′. This new definition is
promising because it is rooted in biological practice and can be extended into a family
of modal logics.

Chapter 4 I propose to put into action the results obtained so far by constructing logical
models of hemoglobin variants. Hemoglobin is the protein in red blood cells responsible
for binding oxygen; normal adult hemoglobin consists of two alpha and beta globin chains
determined by the hemoglobin alpha and beta gene respectively. The modeling goal is to
attain the desiderata specified above (to wit, truth conditions, inferential relationships,
grading). To this end, I present a schema for the classification of point mutations and
impose three modeling restrictions: The hemoglobin variants must be caused by (1)
single (2) substitutions (3) at codon 6 of the hemoglobin beta gene. Finally, I briefly
review why bioambient calculus, Zsyntax, and mathematical models in molecular biology
are not suitable for the task at hand.

Chapter 5 I introduce a simple model of hemoglobin variants caused by single substi-
tutions at codon 6 of the hemoglobin beta gene within the framework of propositional
modal logic. In the model, states are interpreted as codons, the binary relation is inter-
preted as single substitution, and the valuation is kept fixed and induces a partition of
blocks of codons that code for some amino acid. I argue that explicit truth conditions
for at least historical and ahistorical biological modalities are attained via the modal
language describing the model. This gives rise to a normal modal logic that is sound
and complete with respect to the class of serial, symmetric and dense frames. After
showing that the model can be simplified via bisimulation contraction, I argue that the
notion of silent mutation is ambiguous between mutants that are bisimilar to the wild
type and hence modally inert, and mutants that are not and hence modally active.

Chapter 6 I extend the simple model and language to account for comparative (his-
torical) biological possibility. This yields a ranking of hemoglobin variants v, v′, . . .
caused by single substitutions at codon 6 of the hemoglobin beta gene. I distinguish
four circumstances under which v is more possible than v′: (1) v is easier to bring about
that v′, implemented by a modal operator capturing Hamming distance. (2) There are
more possible v than v′, implemented by a modal operator counting variants. (3) There
are more ways to realize v than v′, implemented by a modal operator counting unique
sequences of single substitutions. (4) v is more probable than v′, implemented by a non-
epistemic probabilistic modal operator and a weighted binary relation interpreted as
single substitution. In addition, I discuss the conditions for the introduced modal oper-
ators’ loss of historical or local context, and I show the extension’s ability to incorporate
transition/transversion bias or amino acid scoring matrices.
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Chapter 7 I show that the previously imposed modeling restrictions can be lifted via
a generalization of the simple model. This enables the construction of logical models
of any protein variant caused by any point mutation at the coding region of any gene.
In the generalized model, states are interpreted as genes, multiple binary relations are
interpreted as distinct point mutations, and the valuation is kept fixed and induces
a partition of blocks of genes that code for some protein. I identify two limitations,
namely (1) the limited expressive power and (2) the reliance on opaque modalities of the
language describing the generalized model.

Chapter 8 I present SMAC (Simple Model Amino acid Checker), a model checking
tool implemented in Python and made publicly available at maxghuber.github.io/SMAC
under the Apache License. It allows the user to obtain the truth value of any formula
φ of the basic amino acid language in the simple model. SMAC builds a semantic tree
where the root is the codon of evaluation decorated with φ, descendants are codons
decorated with subformulas of φ, and the leafs jointly comprise all logically possible
truth makers of φ. Each branch is then evaluated bottom-up. I show that SMAC has
the total correctness property, and that SMAC scales exponentially for nested modal
operators where the exponent is given by the highest number of nested modal operators.

Chapter 9 I argue that the standard semantics of counterfactual conditionals are a bad
fit for biological counterfactuals. The standard semantics require a similarity ordering
of states which is explicated in terms of physical laws. However, such a similarity or-
dering is pragmatically unattainable, and even if it were attainable, it would still entail
explanatory mismatches. As an alternative, I propose a similarity ordering in terms of
edit distance that is easily computable. This yields semantics for at least some biological
counterfactuals that does not rely on laws (physical or other). Finally, I show that these
semantics can be seamlessly integrated with the semantics of the biological modalities
introduced earlier.

https://maxghuber.github.io/SMAC/


Résumé

Cette thèse de doctorat a pour sujet les modalités biologiques. Les modalités biologiques

sont des modalités comme la nécessité, la possibilité ou la contrefactualité qui portent

sur des objets biologiques comme des écosystèmes, des populations, des organismes, des

traits, des cellules ou des gènes. Par exemple, les auteurs d’un livre de cours standard de

la biologie moléculaire écrivent qu’une << molécule comme l’hémoglobine était nécessaire

pour permettre aux animaux multicellulaires de grandir jusqu’à une taille grande, car les

grands animaux ne peuvent plus utiliser la diffusion d’oxygène par la surface des leurs

corps pour oxygéner leurs tissus >> (Alberts et al. 2008: 256, ma traduction). Cet énoncé

contient trois modalités biologiques : la nécessité biologique (une molécule qui apporte

l’oxygène d’appareil respiratoire au tissu du corps entier est une nécessité biologique pour

les grands animaux multicellulaires), la possibilité biologique (même si l’hémoglobine est

la molécule effective qui transporte l’oxygène dans les grands animaux multicellulaires, il

est biologiquement possible que cette fonction soit assurée par une protéine différente),

et la contrefactualité biologique (si les grands animaux multicellulaires n’avaient pas une

molécule qui transporte l’oxygène, ils ne seraient pas viables).

Dans ce travail de thèse, j’adopte une perspective épistémique sur les modalités bio-

logiques. Cela signifie que je développe des outils conceptuels qui ont pour but une

compréhension améliorée du rôle explicatif des modalités biologiques. Si mes résultats

portent aussi sur des questions métaphysiques ou ontologiques, c’est un accident heureux.

Ma thèse est organisée en trois parties. Dans les chapitres 1 à 3, je conçois une théorie

des modalités biologiques. Dans les chapitres 4 à 7, je mets en place une implémentation

de cette théorie dans le cadre de la logique modale et basée sur l’exemple des variantes

d’hémoglobine. Finalement, dans les chapitres 8 et 9, je discute quelques applications

de la théorie et de son implémentation. Je présente ci-dessous un résumé de chaque

chapitre.

194
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Motivation

Dans ce chapitre je révèle un désaccord entre (1) l’absence d’intérêt théorique pour les

modalités biologiques et (2) le rôle explicatif important des modalités biologiques dans

la pratique de la biologie contemporaine.

L’affirmation (1) est soutenue par deux arguments. Premièrement, une analyse quanti-

tative des dix-neuf bases de données académiques les plus importantes (voir tableau 1.1)

montre que la fréquence absolue des modalités biologiques est faible (voir tableau 1.3)

et aussi que la fréquence des modalités biologiques relative aux fréquences des modalités

logiques et physiques est faible (voir figure 1.1). Soit dit en passant, cette analyse

nécessite une opérationnalisation des modalités en termes de chaines de caractères qui

permet une analyse des bases de données académiques (voir tableau 1.2) et une normali-

sation des fréquences (voir tableau 1.4). Deuxièmement, une analyse qualitative de la

littérature philosophique révèle une seule définition explicite des modalités : la définition

de la possibilité biologique de Daniel Dennett (1995). En bref, Dennett définit la possi-

bilité biologique comme relation entre génomes dans l’espace logique des génomes. Les

avantages et les faiblesses de cette définition sont discutés en détail dans le chapitre 3. La

combinaison des deux résultats indique l’absence d’intérêt théorique pour les modalités

biologiques.

Je défends l’affirmation (2) par des arguments d’exemple. Un argument d’exemple est

un argument ampliatif de la forme suivante :

P1 Un exemple X est représentatif d’un domaine scientifique D.

P2 Une proposition p est vraie dans X.

∴ Donc p est vraie dans D.

Voici le schéma d’argument d’exemple pertinent pour ce chapitre :

P1 Un exemple X est représentatif de la biologie.

P2 Les modalités biologiques jouent un rôle explicatif important dans X.

∴ Donc les modalités biologiques jouent un rôle explicatif important en biologie.

Le soutien de la conclusion dépend de la convergence de l’exemple avec le domaine sci-

entifique : plus l’exemple est une représentation fidèle du domaine, plus la probabilité

que la proposition soit vraie dans le domaine est grande. Comme difficulté additionnelle,



Résumé 196

la biologie est un domaine hétérogène qui s’étend de l’exobiologie jusqu’à la zoologie.

Marie Kaiser (2013) distingue trois classes d’exemples représentatifs : les exemples his-

toriques, les exemples pédagogiques et les exemples de l’actualité de la recherche. Dans

la suite, je me focalise sur un exemple historique, les coquilles spirales d’ammonöıdes, et

trois exemples de l’actualité de la recherche : les pieds adhésifs et la taille maximale, le

génome minimal et les gènes essentiels, et l’habitabilité sur les exoplanètes. Ces exem-

ples couvrent l’exobiologie, la biomécanique, l’écologie, la biologie d’évolution, la biologie

moléculaire et la biologie synthétique. Je suppose donc que l’argument d’exemple est une

forme d’argument praticable et que la première prémisse est satisfaite pour chaque exem-

ple. Je vais maintenant établir brièvement la deuxième prémisse (soit le rôle explicatif

important des modalités biologiques) pour chaque exemple.

Première exemple. David Raup (1962, 1966, 1965, 1967) a simulé par ordinateur la

croissance des coquilles spirales d’ammonöıdes. Une coquille spirale est modélisée par

un cône creux qui tourne autour un axe fixe. L’espace morphologique des coquilles

spirales est construit en modifiant pas à pas les valeurs des variables pertinentes (voir

figure 1.2a). Or seulement une petite région de l’espace morphologique est occupée par

des ammonöıdes (voir figure 1.2b). Raup explique que les autres régions sont << physio-

logiquement impossibles >> (1966: 1185, ma traduction) ou << géométriquement possibles

mais biologiquement impossibles >> (1965: 1294, ma traduction).

Le deuxième exemple concerne le traveDavid Labonte et al. (2016) enquêtent sur la

relation des pieds adhésifs à la taille des animaux de plus de 250 espèces. Des animaux

comme les geckos ou les mites ont des pieds adhésifs qui leur permettent << de monter

des surfaces lisses verticales >> (Labonte et al. 2016: 1297, ma traduction). Labonte et al.

trouvent une allométrie positive forte de la surface des tampons des pieds adhésifs et en

concluent qu’une telle croissance est biologiquement impossible pour l’humain.

Troisième exemple. Clyde Hutchison et al. (2016) affirment avoir conçu et synthétisé le

génome bactérien minimal qui se compose exactement des gènes essentiels ou nécessaires

pour le développement autonome et la reproduction des bactéries.

Quatrième exemple. Charles Cockell et al. (2016) proposent une nouvelle définition du

concept de l’habitabilité : un environnement E sur une exoplanète est habitable si et

seulement si il existe un organisme connu, tant qu’il est possible pour cet organisme de

vivre dans E.

Ainsi l’argument d’exemple montrent que les modalités biologiques jouent un rôle expli-

catif important dans les sous-domaines de la biologie considérés ci-dessus.
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En conclusion, je propose qu’une théorie des modalités biologiques pourrait résoudre

la lacune épistémique entre (1) et (2) car elle pourrait fournir les conditions de vérité

pour les modalités biologiques, illuminer les relations inférentielles entre les modalités

biologiques et les autres modalités (à savoir les modalités logiques et physiques), et

montrer la manière dont les modalités biologiques peuvent être classées.

Clarifications

Dans ce chapitre je clarifie deux traits importants des modalités biologiques. Tout

d’abord je rejette une définition populaire de la possibilité biologique. Puis je présente

une distinction entre trois types de classification de la possibilité biologique.

Commençons avec une définition populaire de la possibilité biologique :

Definition R.1 (Possibilité biologique)

Une proposition φ est biologiquement possible si et seulement si l’ensemble de φ et

des lois de la biologie est cohérent.

La definition R.1 est motivée par la définition suivante :

Definition R.2 (Possibilité logique)

Une proposition φ est logiquement possible si et seulement si l’ensemble de φ et des

lois de la logique est cohérent.

Plus généralement, les définitions R.1 et R.2 sont des instances du schéma suivant :

Definition R.3 (Possibilité scientifique)

Soit S une science au sens large. Une proposition φ est S-possible si et seulement

si l’ensemble de φ et des lois de S est cohérent.

La définition R.2 est peu problématique car les notions des lois de la logique et de la

cohérence d’un ensemble sont bien définis (bien sûr, la signification exacte des lois de la

logique dépend du formalisme en jeu et de savoir si un pluralisme logique est vrai ou non).

Par contraste, la notion de lois de la biologie est très controversée. Or, considérons un

dilemme : pour n’importe quelle théorie courante des lois de la biologie T , (1) T implique

une réduction de la définition R.1 à la définition R.2 ou à une instance de R.3 où S est
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identifiée comme science fondamentale (i.e. la physique), ou (2) T rend circulaire la

définition R.1. Ni (1) ni (2) ne sont acceptables : la proposition (1) n’est pas acceptable

car l’existence (ou au moins l’importance explicative) de la possibilité biologique est

rejetée ; la proposition (2) n’est pas acceptable car notre but est une explication de la

possibilité biologique.

Voici les arguments en faveur de (1) : ce problème porte sur les théories antiréalistes des

lois biologiques. Il y en a de deux espèces. Premièrement les théories qui nient l’existence

des lois biologiques. Par exemple, John Beatty (2006) défend, sur la base de la thèse de la

contingence de l’évolution, que les lois biologiques n’existent pas. Mais φ est trivialement

cohérent avec l’ensemble vide si φ n’est pas une contradiction. Donc la définition R.1

est réduite à la définition R.2. Deuxièmement, les théories qui argumentent pour une

réduction des lois biologiques aux lois de la physique (bien entendu ce réductionnisme

connâıt plusieurs versions, par exemple le réductionnisme conservatif de Christian Sachse

2012). Si les lois de la biologie ne sont rien d’autre que les lois de la physique, alors la

possibilité biologique est réduite à la possibilité physique.

Considérons maintenant les arguments en faveur de (2). Ce problème porte sur les

théories réalistes des lois biologiques qui expliquent la notion de loi en termes de modalités.

Il y en a de deux espèces. Premièrement les théories qui expliquent une loi en termes

de modalités primitives. Par exemple, la théorie manipulationiste de James Woodward

(2003) est basée sur des conditionnels contrefactuels du même objet (anglais : same

object counterfactuals) qui sont primitifs. Mais si les lois biologiques sont expliquées en

termes des modalités primitives, et si la possibilité biologique est expliquée en termes

de lois biologiques, alors la possibilité biologique est expliquée en termes de modalités

primitives. Ce résultat est peu utile. Deuxièmement, les théories qui expliquent une loi

en termes de modalités biologiques. Par exemple, Chris Haufe (2013) propose que les lois

de la biologie soient des chances nécessaires qui sont dérivées de lois mathématiques, le

caractère biologique ne concernant que leur interprétation. Ici la circularité est évidente.

La seule théorie populaire des lois qui n’est pas affectée par ce dilemme est la théorie

des meilleurs meilleurs systèmes (anglais : better best systems) de Markus Schrenk

(2007) et Jonathan Cohen et Craig Callender (2009) ; mais cette théorie présente

d’autres problèmes graves (voir par exemple Backmann and Reutlinger 2014). Donc

la définition R.1 n’est pas accessible ou requiert une profession de foi en faveur de la

théorie des meilleurs meilleurs systèmes. Une alternative plus viable sera développée

dans le chapitre 3.
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Considérons maintenant la deuxième clarification. Au premier abord la notion d’une

classification de la possibilité biologique concerne plusieurs projets. (1) La distinction

entre différents types de possibilité comme la possibilité logique, la possibilité physique et

la possibilité biologique. Comment peut-on caractériser les relations inférentielles entre

ces types de possibilité ? Supposons que la possibilité physique et la possibilité biologique

requièrent la possibilité logique mais pas l’inverse. Alors la relation inférentielle entre la

possibilité physique et la possibilité biologique est soit indépendante, soit partielle, soit

asymétrique, soit symétrique (pour plus des détails, voir figure 2.1). (2) La distinction

entre différents types de possibilité biologiques. Par exemple, la possibilité biologique

historique n’est pas identique à la possibilité biologique stricte, et la possibilité biologique

des molécules n’est pas identique à la possibilité biologique des biosphères (pour plus des

détails, voir figure 2.2). (3) La possibilité biologique comparative dans le cadre d’un do-

maine de possibilité. Par exemple, dans le cadre de l’espace morphologique des coquilles

spirales des ammonöıdes, les coquilles spirales sans recouvrement sont biologiquement

plus possibles que les coquilles spirales chevauchantes (voir ci-dessus). Cette notion est

discutée en détail au chapitre 6.

La possibilité biologique selon Dennett

Daniel Dennett propose (et il peut-être le seul à le faire, voir chapitre 1) une définition

explicite de la possibilité biologique :

Definition R.4 (Possibilité biologique)

<< x est biologiquement possible si et seulement si x est une instance d’un génome ac-

cessible [dans la Bibliothèque de Mendel] ou une propriété des produits phénotypiques

de ce génome >> (1995: 118, ma traduction) où la Bibliothèque de Mendel est

<< l’espace logique de tous les génomes >> (1995: 123, ma traduction).

Le but de ce chapitre est de proposer en deux étapes une amélioration de cette définition.

Premièrement, j’exprime une version plus précise de la définition R.4 qui est fondée sur

une reconstruction de la Bibliothèque de Mendel comme structure relationnelle :
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Definition R.5 (Bibliothèque de Mendel)

La Bibliothèque de Mendel est une structure relationnelle ⟨Σ,R⟩ où :

� Le domaine Σ est la fermeture de Kleene de l’alphabet {A,C,G,T} où A,C,G,T

représentent les nucléotides (adénine, cytosine, guanine ou thymine). Intui-

tivement le domaine comprend tous les génomes qui sont logiquement possible

étant donné {A,C,G,T}.

� R ⊆ Σ ×Σ est une relation binaire interprétée comme relation d’accessibilité.

Pour plus de détails, voir les définitions 3.1–3.20.

La définition R.5 permet une précision de la définition R.4 :

Definition R.6 (Possibilité biologique)

N’importe quel x est biologiquement possible à g ∈ Σ si et seulement si il existe un g′ ∈

Σ où gRg′ et x est une instance de g′ ou une propriété des produits phénotypiques

du g′.

Deuxièmement, j’identifie plusieurs problèmes avec la définition R.6 : savoir si l’hypothèse

implicite de la définition d’un << lecteur-constructeur >> (Dennett 1995: 113, ma tra-

duction) qui transforme les génomes en produits phénotypiques est une abstraction ou

une idéalisation, l’absence de l’environnement dans la définition, et l’ambigüıté de la

définition entre les individus et les populations. Or le problème principal de la définition

R.6 est le fait que la relation d’accessibilité n’est pas définie. Autrement dit on ne sait

pas si gRg′ à moins que g ait accès à g′. Mais qu’est-ce que cela signifie ? Je propose de

résoudre ce problème par une interprétation de la relation d’accessibilité dans le cadre

de l’édition de châınes de caractères.

Voici la définition de la distance d’édition :

Definition R.7 (Distance d’édition)

Soit s, s′ des châınes de caractères, γ ∶ E → R+ la fonction de coût pour l’ensemble

des opérations d’édition E = {E ,E ′, . . .}, et S = ⟨E1,E2, . . . ,En⟩ un script d’édition

(voir la définition 3.23 pour l’operation d’édition et définition 3.24 pour le script
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d’édition). La distance d’édition de s à s′ est notée δ(s, s′) :

δ(s, s′) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min{γ(S) ∶ s
S
Ð→ s′} si ∣{γ(S) ∶ s

S
Ð→ s′}∣ > 0

indéfini autrement
(R.1)

où

γ(S) =
n

∑
i=1

γ(Ei) (R.2)

Donc nous obtenons le schéma :

Definition R.8 (Relation d’accessibilité)

Pour g, g′ ∈ Σ : gRg′ si et seulement si δ(g, g′) ≤ α où α ∈ R+.

La définition R.8 est un schéma car la signification de la relation d’accessibilité dépend de

la sensibilité α et du concept de la distance d’édition et ce concept dépend des opérations

d’édition disponibles et de la fonction de coût respective. Par exemple, supposant α = 1,

R entendue en termes de la distance de Hamming n’est pas identique à R entendue en

termes de la distance de Levenshtein.

En conclusion, les résultats des deux étapes présentées (soit la reformulation de la

définition de la possibilité biologique de Dennett basée sur une structure explicitement

relationnelle et l’interprétation de la relation d’accessibilité dans le cadre de l’édition de

châınes de caractères) ont un avantage clair : ils constituent un point de départ à la

construction de modèles logiques pour rendre la signification des modalités biologiques

en accord avec les desiderata formulés au chapitre 1.

Préliminaires de la modélisation logique

Dans les chapitres 5 à 7 je mets en pratique les résultats obtenus jusqu’à présent à

partir d’une étude de cas détaillée. Ce cas concerne la construction des modèles logiques

des variantes de l’hémoglobine en accord avec les desiderata formulés au chapitre 1

(soit les conditions de vérité, les relations inférentielles, la classification). L’hémoglobine

est une protéine dans les globules rouges responsable du transport de l’oxygène et donc

fonctionnellement associée à la respiration. Chez l’humain l’hémoglobine normale adulte

se compose de deux châınes de la globine alpha et de deux châınes de la globine beta
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qui sont déterminées par le gène HBA et par le gène HBB respectivement (voir Berg

et al. 2012: 195–213 et figure 4.1). Or les modèles requis sont plutôt complexes : il y a

au moins 1226 variantes connues de l’hémoglobine selon la base de données HbVar (avril

2016, voir Giardine et al. 2014). Pour réduire la complexité des modèles, j’impose donc

trois restrictions.

Premièrement, les modèles sont limités à des variantes de l’hémoglobine causées par des

mutations ponctuelles singulières (voir figure 4.2 pour une classification des mutations

ponctuelles). Deuxièmement, les modèles sont limités à des variantes de l’hémoglobine

causées par des mutations des nucléotides 19–21 (soit le codon 6) de la séquence codante

du gène HBB. La séquence des nucléotides du codon 6 est GAG et encode la glutamine.

Du point de vue de la modélisation logique, ce choix est arbitraire ; mais le codon

6 est biologiquement intéressant : la variante de l’hémoglobine HbS causée par une

substitution de l’adénine à la thymine au nucléotide 20 est de la forme la plus fréquente

de la drépanocytose (Rees et al. 2010: 2020). Finalement, les mutations de décalage de

trame sont exclues pour des raisons de simplicité.

Conjointement ces trois restrictions définissent donc la tâche suivante : la construc-

tion des modèles logiques des variantes de l’hémoglobine causées par des substitutions

singulières au codon 6 du gène HBB.

Modèle simple

Dans le cadre de la logique modale propositionnelle (Blackburn et al. 2001), j’introduis un

modèle logique des variantes de l’hémoglobine causées par des substitutions singulières

au codon 6 du gène HBB. Je commence avec la définition du modèle simple :

Definition R.9 (Modèle simple)

Un modèle simple M est un quadruple ⟨C,R,Φ, V ⟩ où :

� C est l’ensemble des codons. Un codon c ∈ C est représenté par une châıne de

caractères sur l’alphabet {A,C,G,T} où ∣c∣ = 3.

� R ⊆ C × C est une relation binaire interprétée comme substitution singulière

dans le sens biologique.

� Φ est l’ensemble des propositions atomiques interprété comme l’ensemble des
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acides aminés. Les minuscules p, q sans ou avec indices sont les variables de

Φ ; les majuscules A,R, . . . dénomment les acides aminés correspondantes (voir

tableau 4.2).

� V ∶ Φ→ P(C) est une fonction d’évaluation qui assigne un ensemble des codons

V (p) ⊆ C à chaque proposition atomique p ∈ Φ. Intuitivement, l’évaluation

indique pour chaque acide aminé les codons qui l’encodent.

Dans le modèle simple, le niveau d’ADN est encodé par le cadre (soit le domaine C

avec la relation binaire R) alors que le niveau des protéines est encodé par l’évaluation.

Notez que seule une évaluation est adéquate du point de vue empirique et que les

autres évaluations sont ignorées par la suite. Cette évaluation produit une partition

de l’ensemble des codons. La représentation graphique du modèle simple est difficile à

cause de la taille du domaine ∣C ∣ = ∣{A,C,G,T}∣∣c∣ = 43 = 64 et de la taille de la relation

binaire ∣R∣ = 64× 9 = 576, mais elle est tout de même réalisable avec une matrice binaire

(voir figure 5.1).

Voici le langage de base des acides aminés :

Definition R.10 (Langage de base des acides aminés)

Le langage de base des acides aminés L est utilisé pour décrire les modèles simples

M = ⟨C,R,Φ, V ⟩. La syntaxe de L est donnée par la forme Backus-Naur suivante :

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ ◇ φ

où p ∈ Φ. On utilise les abréviations standards pour les opérateurs classiques ∧,→,↔.

En outre il est utile de stipuler :

◻φ ∶= ¬◇ ¬φ (R.3)

◇nφ ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

◇1 ⋅ ⋅ ⋅ ◇n φ si n > 0

φ si n = 0
(R.4)

où n ∈ N. La vérité d’une proposition φ de L à un codon c ∈ C est écrite comme
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M, c ⊩ φ. Voilà la sémantique de L :

M, c ⊩ p ssi c ∈ V (p) (R.5)

M, c ⊩ ¬φ ssi non M, c ⊩ φ (R.6)

M, c ⊩ φ ∨ ψ ssi M, c ⊩ φ ou M, c ⊩ φ (R.7)

M, c ⊩ ◇φ ssi M, c′ ⊩ φ pour quelques c′ ∈ C où cRc′ (R.8)

Par exemple, le sens littéral de la proposition ◇φ est qu’un codon φ puisse être atteint

par une substitution singulière ; le sens intentionnel est qu’un codon φ soit possible par

une substitution singulière. Notez bien que la notion de possibilité biologique en jeu

ici diffère des possibilités physique et logique : la substitution singulière dans le sens

biologique n’est pas réflexive tandis que la substitution singulière physique ou logique

est réflexive.

Cela nous donne la logique modale normale KDBC4 qui est correcte et complète par

rapport à la classe des cadres qui sont sérielles, symétriques et denses (comme le cadre

du modèle simple).

Les concepts de possibilité biologique historique et de la possibilité biologique stricte

peuvent être définis en termes du langage de base des acides aminés sur la base de la

définition de la vérité locale et globale :

Definition R.11 (Possibilité biologique historique)

Une proposition φ ∈ L est bio-historiquement possible à un codon c ∈ C dans le

modèle simple M = ⟨C,R,Φ, V ⟩ si et seulement si M, c′ ⊩ φ pour quelques c′ ∈ C où

cRc′.

Selon la définition R.11, la possibilité biologique historique est entièrement saisie par

l’opérateur ◇ au contraire de la possibilité biologique stricte :

Definition R.12 (Possibilité biologique stricte)

Une proposition φ ∈ L est biologiquement possible dans le modèle simple M =

⟨C,R,Φ, V ⟩ si et seulement si M, c ⊩ φ pour quelques c ∈ C.

En outre je montre que le modèle simple peut être simplifié davantage par contraction

bisimilaire (voir définition 5.9 et figure 5.3) et je défends l’argument que la mutation si-

lencieuse confond deux types de mutation : (1) Les mutations silencieuses inactives sont
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des mutations silencieuses qui sont bisimilaires au codon du type naturel. Intuitivement,

deux codons sont bisimilaires s’ils codent pour le même acide aminé et s’ils s’accordent

sur les types des codons qui sont accessibles par la relation de la substitution singulière

(pour une explication plus précise voir définition 5.8). Du point de vue du langage de

base des acides aminés, les codons bisimilaires sont indiscernables et donc les muta-

tions silencieuses inactives sont inactives vis-à-vis des des modalités. Autrement dit les

mutations silencieuses inactives ne changent ni le phénotype actuel ni les phénotypes

biologiquement possibles. (2) Par contre les mutations silencieuses actives sont des mu-

tations silencieuses qui ne sont pas bisimilaires au codon de type naturel ; ils changent

donc les phénotypes biologiquement possibles alors même que le phénotype actuel reste

stable.

Modèles gradués

Dans ce chapitre je propose diverses extensions du modèle simple et du langage de base

des acides aminés dans le but de tenir compte de la possibilité biologique comparative. La

possibilité biologique comparative concerne la détermination d’un ordre hiérarchique des

possibilités biologiques. Donc pour deux variantes v, v′ d’hémoglobine causées par des

substitutions singulières au codon 6 du gène HBB, le but est d’expliquer les conditions

dans lesquelles v est plus possible que v′. Quatre distinctions au niveau concept sont

distinguées :

1. Simplicité : v est plus facile à obtenir que v′.

2. Quantité : Il existe plus de possibles v que de possibles v′.

3. Processus : Il existe plus de processus pour obtenir v que pour obtenir v′.

4. Probabilité : v est plus probable que v′.

Évidemment la condition Simplicité dépend du concept de simplicité ; dans le cadre

de la définition R.7, j’affirme que : v est plus facile à obtenir que v′ si est seulement si le

script d’édition le moins cher du type naturel à v coûte moins cher que le script d’édition

le moins cher du type naturel à v′. Simplicité est implémentée par un opérateur modal

interprété comme distance de Hamming (soit une certaine distance d’édition). Le cas est

similaire pour Probabilité ; ici j’adopte une interprétation fréquentiste mais le modèle

simple est compatible avec les autres interprétations de la probabilité. Probabilité est
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implémentée par un opérateur modal probabiliste et une relation binaire pondérée (pour

plus des détails voir définitions 6.2–6.4).

Je vais maintenant expliquer plus en détail les implémentations de Quantité et Pro-

cessus. Lou Goble (1970) et Kit Fine (1972) on introduit l’idée de compter les états

accessibles pour classer les modalités ; ici je propose deux extensions : (1) En plus d’un

opérateur modal pour compter les codons qui sont accessible par des substitutions sin-

gulières relatives à un codon d’évaluation, j’introduis un opérateur modal pour compter

les séquences uniques des substituions singulières qui produisent un certain acide aminé

relatif à un codon d’évaluation. (2) Ces nouveaux opérateurs modaux s’étendent sur des

séquences de substitutions singulières.

Voici la définition du langage compteur d’acides aminés :

Definition R.13 (Langage compteur d’acides aminés)

Le langage compteur d’acides aminés LC est utilisé pour décrire les modèles simples

M = ⟨C,R,Φ, V ⟩. La syntaxe de L est donnée par la forme Backus-Naur suivante :

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ δmn φ

où p ∈ Φ, δ ∈ {◇,⟐} et m,n ∈ N. On utilise les abréviations standards pour les

opérateurs classiques ∧,→,↔. En outre il est utile de stipuler :

βmn φ ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

¬◇m
n ¬φ si β = ◻

¬⟐m
n ¬φ si β = ⊡

(R.9)

δ0
nφ ∶= φ (R.10)

δm0 φ ∶= δ
mφ (R.11)

δ!mn φ ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

δmn−1φ ∧ ¬δ!
m
n φ si n > 0

¬δm si n = 0
(R.12)

φ >mδ ψ ∶= δ!mi φ ∧ δ!
m
j ψ et i > j (R.13)

φ▷m
δ ψ ∶=

m

⋀
k=1

(δ!kik ∧ δ!
k
jk
) et

m

∑
k=1

ik >
m

∑
k=1

jk (R.14)

où i, j ∈ N. La sémantique de LC est identique à la sémantique de L pour les

propositions non-modales (voir définition R.10). Voici la sémantique des opérateurs
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modaux :

M, c ⊩ δmn φ ssi

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣{c′ ∶ cR1 . . .Rmc
′ et M, c′ ⊩ φ}∣ > n if δ = ◇

∣{⟨c, . . . , c′⟩ ∶ cR1 . . .Rmc
′ et M, c′ ⊩ φ}∣ > n si δ = ⟐

(R.15)

Considérons par exemple la condition Quantité et l’opérateur modale ◇m
n . Il faut dis-

tinguer entre la comparaison ou classification limitée à un niveau de possibilité biologique

(soit le comparateur >m◇ dont le niveau est une séquence de m substitutions singulières)

et la comparaison ou gradation entre des niveaux des possibilités biologiques (soit le

comparateur ▷m
◇ dont les niveaux vont de 1 à m). Considérons le premier comparateur.

Dans le modèle simple on trouve que :

Si m ≥ 3, alors γ>m
◇

(p) = γ(p) pour toutes p ∈ Φ (R.16)

où

γ>m
◇

(p) =
n ∶M, c ⊩ ◇!mn p

∣{c′ ∶ cR1 . . .Rmc′}∣
(R.17)

est la fraction de codons p qui sont accessibles par des séquences m des substitutions

singulières relatives à c et

γ(p) =
∣V (p)∣

∣C ∣
(R.18)

est la fraction des codons p dans le modèle simple. Donc le contexte local du codon

d’évaluation est perdu pour les possibilités biologiques à partir du troisième niveau.

Autrement dit, on peut accéder à partir de c à n’importe quel codon par une séquence

des trois substitutions singulières. Le nombre des codons p est identique à la taille du

bloc des codons p dans le modèle simple :

Si M ⊩ ◇!mn p et m ≥ 3, alors n = ∣V (p)∣ (R.19)

Cela nous donne la classification suivante des variantes de l’hémoglobine causées par

des substitutions singulières au codon 6 du gène hémoglobine beta (pour les données
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numériques, voir figure 6.3) :

M,GAG ⊩ D >1
◇ ∗,A,E,G,K,Q,V (R.20)

M,GAG ⊩ A,G,V >2
◇ ∗,D,E,K,Q >2

◇ M,P,S,T,W (R.21)

Si M,GAG ⊩ p >m◇ q et m ≥ 3, alors p >γ q (R.22)

Modèle généralisé

Dans ce chapitre je montre en premier lieu comment les restrictions de la modélisation

imposées au chapitre 4 peuvent être levées. Puis je discute quelques limitations de ma

solution.

Rappelons que les modèles logiques des chapitres 5 et 6 sont limités aux variantes de

l’hémoglobine causées par des substitutions singulières au codon 6 du gène HBB. Par une

généralisation du modèle simple (voir définition R.9) on obtient des modèles logiques de

n’importe quelle variante causée par n’importe quelle mutation ponctuelle à la séquence

codante de n’importe quel gène.

Voici le modèle généralisé :

Definition R.14 (Modèle généralisé)

Un modèle généralisé est un quintuple ⟨GG,MG,RG
µ ,Φ

G, V G⟩ où :

� GG est l’ensemble des gènes. Un gène g ∈ GG est représenté par une châıne de

caractères sur l’alphabet {A,C,G,T}.

� Toute classe de mutation ponctuelle µ ∈MG = {substitution,délétion, insertion},

RG
µ ⊆ GG×GG est une relation binaire interprétée comme substitution, délétion

et insertion respectivement.

� ΦG est l’ensemble des propositions atomiques interprété comme l’ensemble des

protéines. Les minuscules p, q sans ou avec indices sont les variables de ΦG.

� V G ∶ ΦG → P(GG) est une fonction d’évaluation qui assigne un ensemble des

V G(p) ⊆ GG à chaque proposition atomique p ∈ ΦG. Intuitivement l’évaluation

indique pour chaque protéine les gènes qui l’encodent.

Considérons les similarités et les différences entre (1) le modèle généralisé MG et le

modèle simple M et (2) MG et la Bibliothèque de Mendel (voir définition R.5). (1)
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Les éléments du domaine de MG sont des gènes alors que éléments du domaine de M

sont des codons ; le domaine de MG est plus grand de plusieurs ordres de grandeur que

celui de M. Contrairement à M, MG n’a pas seulement une relation binaire unique

interprétée comme substitution singulière, mais aussi des relations binaires interprétées

comme délétion singulière et insertion singulière. Les propositions atomiques de MG

sont des châınes de caractères sur l’ensemble des propositions atomiques de M. Pour

toute paire M et MG le niveau d’ADN est encodé par le cadre alors que le niveau des

protéines est encodé par l’évaluation. (2) Les éléments du domaine de MG sont des gènes

alors que les éléments du domaine de la Bibliothèque de Mendel sont des génomes. La

relation binaire de MG est bien définie alors que l’interprétation et la définition de la

relation binaire de la Bibliothèque de Mendel sont absentes.

Voici le langage de base des protéines :

Definition R.15 (Langage de base des protéines)

Les modèles généralisés MG = ⟨GG,MG,RG
µ ,Φ

G, V G⟩ sont décrits par le langage de

base des protéines LG . La syntaxe de LG est donnée par la forme Backus-Naur

suivante :

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ ◇µ φ

où p ∈ ΦG et µ ∈ MG. On utilise les abréviations standards pour les opérateurs

classiques ∧,→,↔. En outre il est utile de stipuler :

◻µφ ∶= ¬◇µ ¬φ (R.23)

⟨M⟩φ ∶= ◇µ1 ∨ ⋅ ⋅ ⋅ ∨ ◇µnφ (R.24)

[M]φ ∶= ¬⟨M⟩¬φ (R.25)

où n = ∣MG∣. La vérité d’une proposition φ de LG à un gène g ∈ GG est écrite comme

MG, g ⊩ φ. Voilà la sémantique de LG :

MG, g ⊩ p ssi c ∈ V G(p) (R.26)

MG, g ⊩ ¬φ ssi non MG, g ⊩ φ (R.27)

MG, g ⊩ φ ∨ ψ ssi MG, g ⊩ φ ou MG, g ⊩ φ (R.28)

MG, g ⊩ ◇µφ ssi MG, g′ ⊩ φ pour quelques g′ ∈ G où gRG
µ g

′ (R.29)

Le langage de base des protéines a quelques limitations. Les deux plus importantes sont :

(1) Le langage basal des protéines est un langage propositionnel ; le pouvoir expressif
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est donc limité. Par exemple, la distinction entre la possibilité biologique de dicto et

la possibilité biologique de re ne peut pas être exprimée. Pour résoudre ce problème

j’introduis un modèle généralisé exprimé dans un langage des protéines du premier ordre

(pour plus des détails, voir les définitions 7.3 et 7.4). (2) L’opérateur ◇µφ du langage

de base des protéines est opaque : la position où les substituions, délétions ou insertions

prennent place n’est pas spécifié. Cela empêche d’avoir des équivalences souhaitées, mais

ce problème peut être résolu.

En conclusion, le modèle généralisé est bien supérieur à la Bibliothèque de Mendel mais

présente tout de même des limitations.

SMAC

Dans ce chapitre je présente brièvement le Simple Model Amino acid Checker ou SMAC.

SMAC est un outil de vérification des modèles qui est implémenté avec Python et qui

est disponible pour le public sur maxghuber.github.io/SMAC sous la licence Apache.

SMAC permet d’obtenir la valeur de vérité de n’importe quelle proposition dans le

modèle simple M = ⟨C,R,Φ, V ⟩ tant local que global.

Voici une description au niveau abstrait de l’algorithme principal (pour une description

plus précise, voir les définitions 8.2 et 8.3). Soit c ∈ C le codon d’évaluation ou le codon

actuel et φ une proposition du langage basal d’acides aminés. Il faut distinguer deux

étapes.

Premièrement, la structure sémantique de φ dans le modèle simple est représentée par

un arbre de la manière suivante : la racine a les étiquettes φ et c. Si φ est une proposi-

tion atomique, la construction de l’arbre est terminée. Sinon il suit que φ est soit une

négation, soit une disjonction, soit une proposition modale. Si φ = ¬ψ, la racine a un fils

qui a ψ et c comme étiquettes. Si φ = ψ ∨ χ, la racine a deux fils ; l’un a les étiquettes

ψ et c et l’autre a les étiquettes χ and c. Si φ = ◇ψ, la racine a neuf fils dont chacun a

l’étiquette ψ et un codon unique qui est accessible par c via la relation de substitution

singulière R. Ce processus de construction est appliqué récursivement à tous les fils

de la racine (voir figure 8.1). Ainsi la complexité sémantique des étiquettes diminue

strictement avec la profondeur des nœuds et les feuilles ont une proposition atomique

pour une de leurs étiquettes.

Deuxièmement, l’arbre est évalué. Si la racine a une proposition atomique p ∈ Ψ comme

https://maxghuber.github.io/SMAC/
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étiquette, elle est désignée comme vraie si c ∈ V (p). Sinon il suit que φ est soit une

négation, soit une disjonction, soit une proposition modale. Si φ = ¬ψ, φ la racine est

désignée comme vraie si son fils est désigné comme vrai. Si φ = ψ ∨ χ ou φ = ◇ψ, la

racine est désignée comme vraie si un de ses fils est désigné comme vrai. Donc pour

évaluer un nœud, ce processus doit être appliqué récursivement aux fils jusqu’à ce qu’on

arrive aux feuilles.

Je prouve que SMAC a la propriété de la correction totale, c’est-à-dire la propriété de la

correction partielle et la propriété de terminaison. En supposant des entrées correctes,

une proposition bien formée φ et un codon d’évaluation existant c ∈ C, SMAC donne

une évaluation vraie seulement si φ est vraie à c dans le modèle simple donc SMAC a la

propriété de la correction partielle. Et SMAC s’arrête en supposant des entrées correctes

donc SMAC a la propriété de terminaison (pour plus de détails voir théorème 8.1).

La performance de SMAC est sous-optimale pour les entrées de grandes tailles. Plus

précisément, la durée d’exécution est déterminée par la proposition φ : si φ contient des

opérateurs modaux imbriqués, la durée d’exécution a une croissance exponentielle dont

l’exposant est donné par le nombre maximale n des opérateurs modaux imbriqués (soit

O(2n) en notation de Landau). La performance peu impressionnante de SMAC est dûe

à la représentation des propositions par des arbres qui coûte chère : tous les vérifacteurs

logiquement possibles sont construits. Prenons une proposition ◇nE et négligeons les

détails : l’arbre d’évaluation dont SMAC a besoin comporte au moins 9n branches.

Donc pour n = 10, l’arbre comporte au moins 3.5 milliards de branches. La limite

pragmatique est n = 7 (voir figure 8.2). Or si la proposition d’entrée ne contient pas

des opérateurs modaux imbriqués (par exemple la proposition ◇1E ∧ ⋅ ⋅ ⋅ ∧ ◇nE), SMAC

résoud la proposition en un temps polynomial (voir figure 8.2).

La performance de SMAC peut être optimisée. Par exemple au lieu de construire dans

un premier temps tous les branches de l’arbre et d’effectuer l’évaluation par la suite, les

branches peuvent être construites et évaluées en séquence. Donc pour un nœud avec

l’étiquette ◇φ (ou φ ∨ ψ), on termine la construction des fils après avoir construit un

nœud qui est désigné comme vrai (et l’inverse pour ◻φ ou φ∧ψ). Au pire il faut quand

même construire tous les branches.
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Contrefactuels biologiques

Grosso modo un énoncé conditionnel contrefactuel, désigné par φ↝ ψ, est un condition-

nel où l’antécédent φ est faux. Par exemple, si j’avais un doctorat, alors je ne devrais

pas écrire cette thèse ; ou si les cochons avaient des ailes, alors ils pourraient voler. Selon

la sémantique standard des conditionnels contrefactuels de David Lewis (1973), φ ↝ ψ

est vrai dans le monde actuel (soit notre monde) si est seulement si tous les mondes

φ les plus similaires au monde actuel sont aussi des mondes ψ (pour plus de détails,

voir les définitions 9.1– 9.3). Notez qu’un monde φ ou ψ est un monde possible où φ

respectivement ψ est vrai. La sémantique standard a quelques problèmes bien connus

(par exemple voir Schulz 2011). Dans ce chapitre je me focalise sur les problèmes qui

proviennent de l’application de la sémantique standard aux conditionnels contrefactuels

biologiques, puis je propose une solution basée sur les résultats des chapitres précédents.

Le problème principal de la sémantique standard est la relation de similarité : comment

peut-on déterminer si un monde possible w est plus similaire au monde actuel qu’un

monde possible w′ ? L’idée de Lewis (1979) est de considérer les violations des lois

naturelles qui sont requis pour transformer le monde actuel en w respectivement w′.

Ces violations sont appelées ‘miracles’. Supposant que ni w ni w′ n’est numériquement

identique au monde actuel, w est donc plus similaire au monde actuel que w′ si est

seulement si les miracles requis pour transformer le monde actuel en w sont plus petits

que les miracles requis pour transformer le monde actuel en w′. Lewis nous offre un

<< système de poids ou priorités >> (1979: 472, ma traduction) pour juger de la taille des

miracles. Appelons-le ‘principe minimal des violations’ (PMV en bref) :

Il est de la plus grande importance d’éviter les violations grandes, répandues

et diverses des lois. Il est d’une importance moindre de maximiser les régions

spatio-temporelles dont les faits particuliers sont préservés. Il est d’une im-

portance encore moindre d’éviter aussi les violations petites, locales et sim-

ples des lois. Il est de peu d’importance voire d’aucune de garantir la simi-

larité approximative des faits particuliers, même concernant les faits qui nous

affectent profondément (Lewis 1979: 472, ma traduction).

Les difficultés de PMV sont bien connues et ne sont donc pas rappelées ici. Mais il y a

deux problèmes nouveaux portant sur les conditionnels contrefactuels biologiques. (1)

Supposons que PMV est correcte. Or, pour évaluer des conditionnels contrefactuels bi-

ologiques (pour des exemples, voir chapitre 1), il faut implémenter PMV ; mais ce n’est
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pas possible pour des raisons épistémiques (souvent les mondes possibles ou les miracles

requis ne sont pas disponibles pour les scientifiques) et pratiques (même si les mondes

possibles et les miracles étaient disponible épistémiquement, la puissance computation-

nelle requise ne serait pas disponible). (2) Supposons que les problèmes épistémiques

et pratiques sont résolus. PMV entrâıne des décalages explicatifs : PMV est formulée

en termes de lois naturelles ou physiques mais ce n’est pas vrai que tous les explica-

tions biologiques peuvent être réduites aux explications en termes des lois naturelles ou

physiques. Par exemple, considérons un miracle petit qui implique un changement large

au niveau de la biologie. Le codon GAG encode la glutamine. Prenons deux variantes de

GAG : GAA qui encode également la glutamine et TAG qui est un codon de terminaison.

Selon PVM, GAA et TAG sont équisimilaires à GAG car le même type de miracle est re-

quis pour transformer GAG en GAA et en TAG. Or, d’un point de vue biologique, GAA est

une mutation silencieuse tandis que TAG est une mutation non-sens. Autrement dit, un

monde glutamine est biologiquement plus similaire à un monde glutamine qu’un monde

de terminaison.

Il y a trois réponses possibles : (1) Ajouter des clauses aux lois des sciences spéciales

(Dunn 2011 et Dohrn et Kroedel 2013). Basé sur les arguments présentés en chapitre 2,

cette réponse n’est pas disponible pour la biologie. (2) Abandonner le projet de fournir

des conditions de vérité pour les conditionnelles contrefactuels biologiques (Nathan forth-

coming). Cette réponse n’est pas attractive car j’ai montré ci-dessus que ces contre-

factuels sont explicatifs. (3) Rejeter PVM et formuler une sémantique plus adéquate

pour les conditionnelles contrefactuels biologiques. Voici ma suggestion :

Definition R.16 (Modèle adéquat)

Un modèle adéquat MA est un quadruple ⟨CA,≤Ac ,Φ
A, V A⟩ où :

� CA est l’ensemble des codons C (voir définition R.9).

� Pour tous c ∈ CA, ≤Ac est un pré-ordre total sur CA interprété comme relation

de similarité comparative relative à c.

� ΦA est l’ensemble des propositions atomiques (voir définition R.9).

� V A ∶ ΦA → P(CA) est la fonction d’évaluation V (voir définition R.9).

En bref, le principe PVM est donc remplacé par (on rappelle la définition R.7) :

c′ ≤Ac c
′′ ssi δ(c, c′) ≤ δ(c, c′′) (R.30)
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Voici la sémantique convenable :

Definition R.17 (Langage adéquat)

Pour décrire les modèles adéquats MA = ⟨CA,≤Ac ,Φ
A, V A⟩ le langage adéquat LA est

utilisé. La syntaxe de LA est donnée par la forme Backus-Naur suivante :

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ φ↝ φ

où p ∈ ΦA. On utilise les abréviations standards pour les opérateurs classiques

∧,→,↔. La vérité d’une proposition φ de LA à un codon c ∈ CA est écrite comme

MA, c ⊩ φ. Voilà la sémantique de LA :

MA, c ⊩ p ssi c ∈ V A(p) (R.31)

MA, c ⊩ ¬φ ssi non MA, c ⊩ φ (R.32)

MA, c ⊩ φ ∨ ψ ssi MA, c ⊩ φ ou MA, c ⊩ φ (R.33)

MA, c ⊩ φ↝ ψ ssi ∀c′ ∈MA
c/φ ∶M

A, c′ ⊩ ψ (R.34)

où MA
c/φ ⊆ C

A est l’ensemble des codons φ maximal similaire à c:

c′ ∈MA
c/φ ssi MA, c′ ⊩ φ et ¬∃c′′ ∈ CA où c′′ <Ac c

′ et MA, c′′ ⊩ φ (R.35)

Pour conclure, notez que cette sémantique peut être combinée aux sémantiques construi-

tes aux chapitres 5 à 7.
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