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3.2

3.2.1
Volcanoes and
volcanic activity

Volcanoes provide spectacular evi-
dence of the dynamic nature of plan-
et Barth and bring many long-term
benefits to society, including rich
soils, tourism and geothermal ener-
gy. Some erupt frequently and others
may appear benign for generations,
which means the risk they pose may
be underestimated. Understanding
the risk first requires characterisation
of the volcano and knowledge of the
type, magnitude and frequency of
past eruptions.

3.2.1.1
Global distribution of
volcanoes and volcanoes
in Europe

There are about 1 550 known terres-
trial volcanoes that have erupted in
the past =10 000 years and are there-
fore likely to erupt again in the future;
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they are described as ‘active’ (Siebert
et al., 2010; Cottrell, 2014).

Volcanic eruptions may
cause local to global
impacts; in order to
understand and mitigate
risks, the first step is to
recognise a volcano as
active and to characterise
its past activity.

Most have formed along colliding or
diverging tectonic plate boundaries
(e.g. the Pacific margins, the Mediter-
ranean, the Lesser Antilles and Ice-
land; Figure 3.7) and these account for
>94 % of known historical eruptions
(Siebert et al., 2015); the remainder
have formed above mantle ‘hotspots’
(e.g. Hawnaii).

In Europe, volcanism from Spain

(Bartolini et al., 2015) to Armenia (Sa-
vov etal., 2016) is mainly caused by the
convergence of the northward-mov-
ing African and Arabian lithospher-
ic plates with the Eurasian plate and
microplates in the Aegean Sea and
Anatolia (Figure 3.8). In Iceland, vol-
canism is caused by a combination of
rifting at the Mid-Atlantic Ridge and
a ‘hotspot’. There are 32 volcanoes
in Iceland (Ilyinskaya et al., 2015), 47
known volcanoes in continental Eu-
rope (Siebert et al., 2010), and many
more in autonomous regions, Euro-
pean dependencies and territories in
the Atlantic (Canary Islands, Azores,
Cabo Verde, Tristan da Cunha, As-
cension Island), the Lesser Antilles
(Montserrat, Guadeloupe, Martinig-
ue, Saba) and the Indian Ocean (La
Réunion). About 15 million people in
Europe live within just 30 km of an
active volcano; of these, more than
2.2 million live within 20 km of the
Campi Flegrei caldera in Italy and
more than 675 000 live within 10 km
of Vesuvius (Siebert et al., 2010).
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3.2.1.2
Eruption type, duration,
frequency and size

Globally, about 70 volcanoes erupt
each year and at any one time at
least 20 are erupting (Siebert et al.,
2010, 2015). Eruptions are complex
time-dependent events, which often
exhibit distinct phases including ef-
fusive (e.g. lava flows/domes) and/or
explosive types of activity (e.g. Gud-
mundsson et al., 2012) over durations

FIGURE 3.7

of hours to decades (Brown et al.,

2015).

Major controls on eruption type in-
clude magma chemistry, rheology and
volatile content. Eruptions can be
measured using magnitude (erupted
mass), but volume is often used as
a proxy for magnitude for explosive
eruptions (e.g. the Volcanic Explosiv-
ity Index, see Newhall and Self 1982,
Pyle 2015).

Some volcanoes erupt frequently (e.g.

Stromboli and Etna), whereas others
(e.g. Campi Flegrei) eruptinfrequently,
with hundreds of years between erup-
tions (e.g. Selva et al., 2012; Brown et
al., 2014). Global data show a power
law relationship between magnitude
and frequency, such that larger mag-
nitude eruptions are less frequent
(Deligne et al., 2010). In order to un-
derstand the distribution of eruption
types and magnitudes in time and
space at a given volcano (and, there-
fore, the likelihood and type of future

The locations of known Holocene (past = 10.000 years) terrestrial volcanoes of the world, most of which form
near tectonic plate boundaries (Bird, 2003).
Source: Smithsonian Institution (2013)
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eruptions), geological and geochron-
ological studies are an essential start-
ing point (e.g. Druitt et al., 1999; Orsi
et al., 2004; Thordarson and Larsen,
2007; Hicks et al., 2012).

3.2.13
Causes of volcanic
unrest and eruptions

Eruptions are caused by complex pro-

cesses including magma overpressuri-
sation. Most eruptions are preceded by

FIGURE 3.8
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one or multiple episodes of ‘volcanic
unrest’ as magma moves towards the
Earth’s surface (Acocella et al., 2015;
Parks et al., 2015). The movement of
magma through the crust (and its in-
teraction with hydrothermal systems)
causes pressure changes, which result
in ground deformation and earth-
quakes, and also induces detectable
changes in mass and/or density (Frey-
mueller et al., 2015). During magma
ascent, volatiles (gases) separate and
are ecither retained in the magma as

bubbles or escape to interact with the
hydrothermal system or be released at
the surface. (Aiuppa et al., 2013). An
episode of volcanic unrest may last
for a matter of days to a number of
years (average =500 days), and under-
standing the processes driving unrest
and eruption is an essential part of
effective early warning (Cashman et
al. 2013, Sparks and Cashman 2017).
Volcanoes that erupt infrequently
(e.g. calderas) may experience many
episodes of unrest (e.g. De Natale

Maximum known Volcanic Explosivity Index (0-8) of eruptions at European volcanoes in the past =10 000
years, based on the Smithsonian Institution Volcanoes of the World database (VOTW4.22). Volcanoes with
unknown eruption histories are marked as black triangles.
Source: Smithsonian Institution (2013)
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et al., 20006). In contrast, in a global
study of 228 volcanoes active be-
tween 2000 and 2011 (many of which
erupt frequently) the ‘Volcanic unrest
in Burope and Latin America’ project
(VUELCO) funded by the European
Union’s 7th Framework Programme
(FP7) showed that 47 % of docu-
mented petiods of volcanic unrest
led to an eruption (Phillipson et al.,
2013). Some episodes of detected un-
rest may not be caused by magma and
may be entirely tectonic or caused by
hydrothermal phenomena (e.g Segall,
2013; Biggs et al., 2009).

3.2.2
Monitoring systems
and early warning

Volcano observatories are the official
institutions in charge of monitoring
volcanoes. They may be dedicated to
a single volcano (e.g. the Montserrat
Volcano Observatory) or may operate
from national institutions and be re-
sponsible for multiple volcanoes in a
country (e.g. the Icelandic Met Office
and Istituto Nazionale di Geofisica e
Vulcanologia). Some institutions have
responsibility for volcanoes and vol-
cano observatories overseas (e.g. In-
stitut de Physique du Globe de Paris).

Volcano observatories have a key role
in early warning. They collect multiple
streams of diverse data, analyse the
data in near real-time, determine the
level of threat and make decisions on,
for example, raising alert levels (Villa-
gran de Leén, 2012). These decisions
must be based on sound evidence
(Marzocchi et al., 2012; Bretton et al.,
2015). The quality, range and sophis-
tication of monitoring methods has
increased dramatically in recent years

154

(Sparks et al., 2012), with advances in
computing underpinning improve-
ments in power, speed, data trans-
mission, data analysis and modelling
techniques. Long-term monitoring at
quiescent volcanoes is necessary to
establish baselines, and satellite re-
mote sensing provides many oppor-
tunities as the spatial and temporal
resolution of data improves (e.g. Har-
ris et al., 2016; Bagnardi et al., 2016).
Nevertheless, only a small fraction
of the world’s 1 550 volcanoes have
sufficient ground monitoring and the
necessary accompanying institution-
al capacities to effectively support
DRM, despite evidence that volcano
monitoring is cost-effective (Newhall
et al., 1997).

3221
Geophysical monitoring
(seismic, deformation, gas,
infrasound) and the need for
global monitoring

Episodes of unrest are highly variable
in character, so forecasting the onset
of an eruption remains a significant
challenge (Chiodini et al., 2016; Selva
et al., 2015; Marzocchi and Bebbing-
ton, 2012; Sigmundsson et al., 2010).
Accelerating rates of seismicity and
deformation may be detected before
eruptions (Sigmundsson et al. ,2010;
Saltogianni et al.,, 2014; Cannavo et
al., 2015) and tracking the location
of volcano-tectonic earthquakes in
near real time (Thorkelsson, 2012;
Sigmundsson et al., 2015, Pallister
and McNutt, 2015; Falsaperla and
Neri, 2015) may facilitate eruption
forecasting. Long-period earthquakes
and micro-earthquakes can be key
indicators of imminent eruption, es-
pecially during an ongoing eruption
(McNutt et al., 2015). Cyclic patterns

of activity can also enable forecasting
of hazardous events (Voight et al,
1999; Loughlin et al., 2002). Borehole
strainmeters have successfully been
used to forecast eruptions of Hekla
in Iceland (Roberts et al., 2011).

If appropriate monitoring
is in place at a volcano, it
may be possible to issue
short-term forecasts of
eruptions and volcanic
activity and to provide
early warnings for
different hazards.

Although satellite passes are not yet
frequent enough to use Interferomet-
ric Synthetic Aperture Radar (InSAR)
as a forecasting tool, it can be used in
combination with other data to gain
tremendous insights into volcanic
unrest and eruption (e.g. Gudmunds-
son et al., 2016; Spaans and Hoop-
er, 2016). InSAR is useful to detect
deformation at remote volcanoes and
at regional scales (Biggs et al., 2014;
Parks et al., 2015).

Gas emissions (Silva et al., 2015;
Aiuppa et al., 2013; Chiodini et al.,
2015), the chemistry, temperature and
level of crater lakes and groundwater
(Hernandez et al., 2007), and the geo-
chemistry and flow rates of glacial riv-
ers (Kristmansdéttir et al. ,1999) may
all show detectable changes before
and during eruptions. Gas emissions
can be monitored using ground-based,
airborne or satellite remote sensing
(Atuppa et al., 2007, 2010; Nadeau et
al., 2011; Conde et al., 2013). The gas



most easily detected and monitored
in the atmosphere during eruptions is
sulphur dioxide (SO2) (Oppenheimer
et al., 2013; Flower et al., 2016).

Petrology and geochemistry can be
used in near real time to character-
ise eruptive materials and understand
magmatic properties and dynamics
(Hartley et al., 2016; Pankhurst et
al., 2014). Rapid analysis of tephra
can detect whether or not there is a
magmatic component to phreatic
(steam-driven) eruptions (Suzuki et
al., 2013).

Environmental monitoring such as
dissolved constituents in rainwater,
ash leachates (Witham et al., 2005)
and particulate (air quality) monitot-
ing can potentially provide informa-
tion about both eruptive behaviour
and probable impacts on health,
the environment, infrastructure and
buildings (Gislason et al., 2015).

3.222
Additional and emerging
monitoring methods

Volcanic infrasound is a technique
that detects, locates and characterises
shallow or aerial acoustic sources at
volcanoes (Fee and Matoza, 2013; Ul-
ivieri et al., 2013). During the H2020
Atmospheric dynamics Research In-
fraStructure in Europe 2 (ARISE2)
project, episodes of lava fountaining
at Etna were recorded =600 km away,
providing evidence that near-real-
time notification of ongoing volcan-
ic activity at a regional scale can be
achieved (Johnson and Ripepe, 2011;
Marchetti et al., 2016).

Establishing mass eruption rate (a pa-
rameter needed to effectively forecast
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ash dispersal) and characterising ash
clouds in near real time is a current
challenge (Ripepe et al.,, 2013; Lamb
et al, 2015; Marzano et al., 2013,
2016). Monitoring the extrusion rate
of lava is crucial to anticipate the
evolution of active lava flow fields or
stability of lava domes. Time series
digital elevation models (DEMs) col-
lected by satellite at Merapi volcano in
2010 (through the International Space
Charter),
monitoring, enabled increasing extru-
sion rates to be identified, leading to
a rise in alert level and timely evacu-
ations that saved thousands of lives
(Surono et al., 2012; Pallister and Su-
rono, 2015). Extrusion rates can be es-
tablished from the ground, unmanned
aerial vehicles or aircraft using a va-
riety of methods (e.g. Wadge et al.
2014a, 2014b; Harris et al., 2005).

combined with ground

FIGURE 3.9

Characterisation of heat sources (Fig-
ure 3.9) during volcanic unrest and
eruption can support scientific under-
standing of eruptive behaviour and
timely response (Harris et al., 2016).
During the 2014-15 Bardarbunga
eruption in Iceland, the Middle Infra-
Red Observation of Volcanic Activi-
ty (MIROVA) system (Coppola et al.,
2015) was used to chart the evolution
of the eruption when access was lim-
ited and visibility was poor.

In seismology, deterministic eruption
forecasting based on the failure fore-
cast method (FFM) is showing poten-
tial (Boué et al., 2016).

Time series observations of volca-
noes and their emissions using static
or video cameras can yield important
insights into hazardous processes.
Citizen science, including community

Measuring the temperature of pyroclastic flow deposits in Montserrat

(block and ash flow deposits).

Source and Copyright BGS/Government of Montserrat
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monitoring, can fill observational and
information gaps, raise awareness of
hazards and risk, and engage com-
munities at-risk (e.g. Stevenson et al,,
2013; Stone et al., 2014; Wallace et al.,
2015). During the 2014-15 eruption at
Bardarbunga volcano, Iceland, people
could document their experiences of
poor air quality due to the gas-tich
eruption online (IMO, n.d).

WOVOdat is a searchable, web-ac-
cessible global relational database
containing monitoring
data from more than 100 eruption ep-
isodes; this will allow global trends in
unrest and eruption data to be interro-
gated to assist forecasting at individu-

time-series

al volcanoes (Venezky and Newhall,

FIGURE 3.10

2007; Widiwijayanti et al., 2015).

3.2.2.3
Communication, reporting
and alert levels

During unrest or eruption, scientists
communicate in a variety of ways
(reports, forecasts, alert levels) using
a variety of media (email lists, short
message service (SMS), social media,
television and radio) to suit the needs
of information users (Solana et al,
2008; Haynes et al., 2008a; Mothes
et al.,, 2015). Such users are diverse
and include civil aviation authorities,
civil protection authorities, business-
es, tourist operators, the media and
the public. Ideally, the content and

format of such communications are
tailored to users’ needs (e.g. Lechner
etal,, 2017; Doyle et al., 2014) and us-
ers have considered in advance their
thresholds for action (e.g. Marzocchi
etal., 2012; Hicks et al.,, 2014). During
an emergency, joint formal reports
can be particularly effective if scien-
tists and civil protection authorities
work well together, and if the content
and format has been designed specifi-
cally with users in mind (e.g. Scientific
advisory board of the Icelandic Civil
Protection, 2015).

A volcano Early Warning System
(EWS) requires that monitoring data
are collected and interpreted by scien-
tists, the level of threat is determined

Summary of alert levels and civil protection system response for Vesuvius volcano, Italy. Alert levels are es-
tablished by INGV Vesuvio based on changing monitoring parameters. The civil protection system responds in

each operative phase according to the alert level and the emergency plan.

Source: authors

ALERT LEVEL STATE OF THE VOLCANO ERUPTION PROBABILITY TIME OF ERUPTION OPERATIVE PHASE
No significant variation of monitored pa-
Base g edp Very low Undefined
.rameters
. Significant change of monitored param- Indefinite, or not less than I
Caution Low
eters .several months Gl
o . . Il
WG Further significant change in monitored Medium From months to weeks
.parameters Warning

Operative Phase I: Verification of contingency plans, constant contact between scientists and civil protection, checking of
functionality and immediate availability of resources, infrastructure and services needed for subsequent alert levels.

Operative Phase Il: Voluntary evacuation of red zone to alternative accommodation outside the zone of risk. All involved
in the emergency plan alert and prepared for Phase lIl.

Operative Phase Ill: Evacuation of the red zone within three days.
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and a decision to alert stakeholders is
made (Fearnley, 2013). Some volcano
observatories use Volcanic Alert Lev-
els (VALs) to communicate changes
in the status of volcanic activity that
imply a changing probability of erup-
tion (Gardner and Guffanti, 2000;
Fearnley, 2013; Winson et al., 2014)
or changing types of hazard (Potter et
al., 2014). Notification of a change in
VAL is usually accompanied by situa-
tion-specific information in the form
of a more detailed report. VALs are
developed to suit local situations and,
as such, they vary worldwide. Some
focus on unrest and eruption fore-
casting (Figure 3.10) and others ac-
knowledge the changing phenomena
and hazards of long-lived eruptions
(Potter et al., 2014). In situations in
which major and costly mitigation ac-
tions are triggered by volcanic EWSs
(e.g. the evacuation of urban areas),
quantitative, objective and rational
scientific decision-making is essential
to avoid accusations of ‘false alarms’
(see Chapter 3.2.3, Hincks et al.,
2014).

The global network of nine Volcanic
Ash Advisory Centres (VAACs) was
set up by the International Civil Avi-
ation Organization ICAO) following
aircraft encounters with ash clouds in
the 1980s (Guffanti et al., 2010). Vol-
cano observatories provide reports
to VAACs to support the initiation
of ash dispersal models and have the
option to set an ‘aviation colour code’
representing the status of volcanoes
in the context of likelihood of erup-
tion and potential for ash emissions
(Lechner et al., 2017). This system can
run in parallel to a VAL system.

In situations on the ground in which
it is acknowledged that there may be
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little time for response , alerts may be
sent out to authorities and the pub-
lic via SMS, telephone, radio or social
media (e.g. IMO, 2016; Stone et al.,
2014; Mothes et al., 2015). EWSs for
lahars and jokulhlaups (glacier floods
in Iceland) are variable in terms of
components but, in general, require
monitoring (e.g. acoustic flow moni-
tors) to detect flows in proximal en-
vironments that can alert authorities
to sound sirens downstream so that
communities can be evacuated.

3.2.5
Volcanic hazard
assessment

Volcanic hazards are diverse and
they can occur in different combina-
tions and interact in different ways
throughout the unrest, eruption and
post-eruption  period.

Volcanoes generate
multiple hazardous
processes, the short- and
long-term forecasting

of which involve diverse
methods to anticipate
hazard footprints in order
to enable anticipation and
mitigation of impacts.

Scientists are improving their ability
to assess and forecast these hazards,
their likely ‘footprints’, interactions
and impacts over different timescales.
Short-term and long-term forecasts,
to support crisis response and plan-
ning, respectively, are based on a vari-

ety of different approaches depending
primarily on data availability. Deter-
ministic and probabilistic approaches
to hazard are used and are appropriate
in different circumstances. .

3.23.1
Hazard forecasting

Short-term forecasts can enable com-
munities across broad areas to prepate
for imminent hazards and impacts.
For example, simple simulations of
expected atmospheric dispersal and
deposition of volcanic tephra based
on monitoring/observation patam-
eters, can be made available (e.g. for
Etna at INGV (n.d.) and for Mount
St Helens at USGS (2015), Hasega-
wa et al., 2015). Similarly, short-term
dispersal forecasts of SO, (which may
adversely affect human and live-stock
health) can enable mitigation actions
to be taken (e.g. Gislason et al., 2015).
Such forecasts can also be achieved
for lava flows and lahars, and, in some
places, mitigation of lava flow impacts
has been attempted using engineering
measures.

Volcanic hazard process models still
need further development to better
simulate key processes; this is espe-
cially true for pyroclastic flows, surges
and lahars, the assessment of which
currently lags behind that of tephra
dispersal and fall. The ability to model
interacting hazards is also important,
such as rainfall-triggered lahars (Jones
etal., 2015), eruption column collapse
into pyroclastic flows or pyroclastic
flows into lahars.

Long-term volcanic hazard assess-
ment is primarily based on charac-
terising the past eruptive activity of
a volcanic system and understanding
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the recurrence rates of eruptions and
the range of possibilities for future
eruptions. Such assessments are of-
ten presented as hazard maps. Ideally,
geological and historical studies are
needed to establish eruption histo-
ries but sometimes such information
is not available, further fieldwork is
needed, or data simply doesn’t exist.
For example, fine-grained deposits
(e.g. ash fall, surges, lateral blasts)

FIGURE 3.11

may be missing from the geological
record, so thorough consideration
of knowledge gaps and uncertainties
is paramount in any hazard analysis
(e.g. Engwell et al., 2013; Sparks et al.,
2013, Bonadonna et al. 2012, 2015).
Volcanologists can study analogue
volcanoes and global databases to ad-
dress knowledge gaps (e.ge Ogburn
et al., 2015), or use methods such as
expert elicitation in order to consider

Synthetic examples (not a real volcano) of the appearance of five hazard

map types found during the review:
(a) geology-based map,

(b) integrated qualitative map,

(c) administrative map,

(d) modelling-based map and

(e) probabilistic map.

Copyright: Cambridge University Press
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and quantify uncertainties (Aspinall,
2006, 2010). Uncertainty should be
acknowledged in all scientific deci-
sion-making, forecasts and assess-
ments.

3.23.2
Volcanic hazard maps

Volcanic hazard maps can commu-
nicate information about one or a
range of hazards including lahars,
pyroclastic flows and surges, tephra
fall (Macedonio et al., 2008), ballis-
tics, lava flows (Richter et al., 2010),
and, sometimes, less frequent haz-
ards such as debris avalanches and
monogenetic eruptions. An Interna-
tional Association of Volcanology
and Chemistry of the Earth’s Interior
(IAVCEI) working group is reviewing
current global practice (>200 pub-
lished hazard maps). They defined
five major classes of hazard map and
found that >60 % of maps are based
primarily on the geological history
of the volcano (Figure 3.11), despite
incomplete eruption histories that
do not represent all past and possi-
ble future scenarios. Furthermore,
>83 % of hazard maps use a quali-
tative ‘high-medium-low’ description
to indicate likelihood of impact, but
the meanings behind these terms are
open to broad interpretation (Calder
et al., 2015).

The IAVCEI working group have
established that there is no single ap-
proach that suits all situations; differ-
ent approaches may be suitable for
different needs. Nevertheless, there is
consensus that quantitative, account-
able and defendable hazard maps are
increasingly needed.

The group aims to collectively define



good practices. Scientific priorities
to enhance hazard maps include (1)
improved methods for probabilistic
analysis, especially for lahar, pyroclas-
tic flows and surges, (2) establishing
methods to undertake hazard assess-
ments for data-poor volcanoes and (3)
approaches for multihazard, multisce-
nario probabilistic modelling (Calder
et al.,, 2015). Although probabilistic
volcanic hazard maps exist for a few
of the wotld’s best studied volcanoes,
they are far from being the norm.

Haynes et al. (2007) recognised that
maps are rarely well understood by
users and that three-dimensional (3D)
visualisation can significantly help un-
derstanding.

3.233
Probabilistic volcanic hazard
assessment

A variety of methods are used, often
in combination, to generate probabil-
istic volcanic hazard assessments over
different timescales.

For example, statistical methods can
be used to assess recurrence rates and
locations of vents, which, when com-
bined with numetrical simulations of
volcanic processes (e.g. lava flow em-
placement, tephra dispersal and fall),
can create hazard curves for specific
locations or hazard maps for larger ar-
eas (Connor et al., 2015). There may
be high uncertainty in vent location,
particularly if a volcano has vents dis-
tributed across its flanks or the area
is a volcanic field comprising multiple
eruption centres (Connor et al., 2012;
Bebbington and Cronin, 2010).

Because of the variety and poten-
tial complexity of volcanic hazards,
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probabilistc hazard maps commonly
attempt to communicate information
about only a single hazard at a time
(Figure 3.11e). For example, volcan-
ic flows are tyically displayed as the
spatial variation of inundation prob-
ability over a given period of time.
Tephra fall might be assessed using
contours of probability given a haz-
ardous threshold of tephra thickness
(Jenkins et al., 2015a) or contours of
tephra thickness given a certain prob-
ability in order to better assess the
associated impact (e.g. Bonadonna,
20006; Biass et al. 2014, 2016a). Prob-
abilistic hazards assessments can be
local to global in scale.

The first probabilistic assessment of
global tephra fall hazard has been at-
tempted for the 2015 United Nations
International Strategy for Disaster
Reduction (UNISDR) Global Assess-
ment Report, based on a method de-
veloped for the regional scale (Jenkins
et al,, 2012, 2015a).

Once volcanic unrest begins there are
multiple potential eruptive outcomes
(scenarios) due to the dynamic com-
plexity of volcanic systems. In this
situation, probabilistic methods pro-
vide a basis for scientists to explore
those outcomes, allocate probability
estimates to them (Marzocchi et al.,
2012; Selva et al., 2010) and commu-
nicate them to authorities to support
rational decision-making (e.g. Sparks
2003, Marzocchi et al,, 2007). The
results can be tested using statistical
procedures and allow comparisons
between volcanoes and other natural
and non-natural hazards (e.g. Scan-
done et al., 1993; Bayarri et al., 2015).
Current  probabilistic  approach-
es build on the idea of event trees

(Newhall and Hoblitt, 2002) and on
Bayesian statistics (e.g. Papadopou-
los and Orfanogianaki, 2005). The
probability estimates allocated to each
outcome/scenario might be empiri-
cal, or be based on expert discussion
and elicitation, numerical simulations
or a combination of methods (e.g
Aspinall, 2006, 2010; Marzocchi and
Bebbington, 2012). These methods
are also useful if applied regularly at
long-lived or frequently active volca-
noes where probabilities change and
assessments can be compared over
time (Pallister et al., 2010; Wadge and
Aspinall, 2014). Similar approaches
have now been applied at Vesuvius
(Neri, 2008), Teide-Pico Viejo, Tener-
ife (Marti et al., 2008), and Auckland
Volcanic Fields, New Zealand (Lind-
say et al., 2010). The same principle
has also been developed to generate
tools (e.g. Marzocchi et al., 2008).

3.24
Volcanic risk
assessment

and mitigation

3.24.1
Vulnerability and exposure

Vulnerability is complex, dynamic
and spatially variable with many fac-
ets including systemic, social, func-
tional and economic vulnerability (e.g.
Enhancing resilience of communi-
ties and territories facing natural and
na-tech hazards (ENSURE) project,
Menoni et al., 2012). Exposure con-
tributes to vulnerability (Cutter 2013)
and includes the people and assets
exposed to the hazards. Volcanic un-
rest and eruptions tend to unfold over
weeks to years, thereby enhancing the
dynamic complexity of factors that
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contribute to vulnerability and expo-
sure (Galderisi et al., 2013; Zuccaro et
al., 2014).

Volcanic tephra fall is the hazard that
most frequently affects large popula-
tions and assets and has reasonable
vulnerability estimates in risk mod-
els (Spence et al., 2005; Jenkins et al.,
2015). Jenkins et al. (2014), as part
of the Mitigate and Asses risk from
Volcanic Impact on Terrain and hu-
man Activities (MIA-VITA) project,
developed guidelines and methodol-
ogies for carrying out initial physical
vulnerability assessments. This built
on previous projects including the
SPeeD project at Vesuvius and the
EXPLORIS project (e.g. Zuccaro et
al., 2008; Marti et al., 2008). Jenkins
et al. (2015) categorised tephra fall
impacts by sector and considered the
relationship between hazard inten-
sity (in that case ash thickness) and
damage or disruption to each sector
(buildings, critical infrastructure, ag-
riculture). More data need to be col-
lected to inform estimates of physical
vulnerability of buildings and infra-
structure, through: (1) collection of
post-eruption damage data (e.g. Bax-
ter et al., 2005; Wilson et al., 2011;
Biass et al., 2016a, 2016b; Charbon-
nier et al., 2013; Jenkins et al., 2015b),
(2) experimental testing of materials
failure, or (3) using theoretical calcu-
lations of material strengths (e.g. Jen-
kins et al, 2014). Damage data and
experimental data remain sparse so
theoretical calculations can contribute
to the development of vulnerability
functions, which provide the proba-
bility of a certain level of damage as a
function of hazard intensity (Jenkins
et al., 2014; see also Chapter 2.4).

A dynamic pressure scale for building
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FIGURE 3.12

Soufriere Hills Volcano and Plymouth, the capital of Montserrat, in Octo-
ber 1997.

Copyright: British Geological Survey/Government of Montserrat



damage by pyroclastic surges (Baxter
et al., 2005), developed after expe-
riences in Montserrat (Figure 3.12)
and at Mount St Helens, has conttib-
uted to simulation work at Vesuvius
and other European volcanoes in the
EXPLORIS project (Baxter et al,
2008).

Studies on social vulnerability in vol-
canic risk are increasing in number
and showing the value of semi-quanti-
tative and qualitative assessments (e.g.
Sword-Daniels, 2011; Sword-Daniels
et al.,, 2014). Hicks and Few (2015)
showed that during long-term erup-
tions, coping capacity, maintenance
of well-being, recovery of losses and
rebuilding of livelihoods are highly
variable within populations and tend
to be linked to preceding socioeco-
nomic conditions (Birkman, 2007).
Socio-economic impacts are most
likely to be experienced by those
with pre-existing and inter-related
sociocultural, political and econom-
ic vulnerabilities (Wisner et al., 2012;
Gaillard 2008). Volcanic activity can
have a disproportionate effect on live-
lihoods and economy because of high
systemic vulnerability (Wilson et al.,
2011, 2014; Jenkins et al., 2015a).

Comprehensive quantitative assess-
ment of the impacts of all types
of volcanic hazard is relatively new
but is most advanced for tephra fall
(Craig et al., 2016; Elissondo et al.,
2016; Wilson et al., 2011, 2012, 2014;
Magill et al.,, 2013). Socioeconomic
impacts due to tephra fall are most
likely to be documented in long-lived
eruptions (e.g. Sword-Daniels, 2011;
Sword-Daniels et al.,, 2014).
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3.24.2
Risk assessment
methodologies

Volcanic risk assessment is not as ad-
vanced as assessment of other haz-
ards such as flooding, earthquakes and
tropical cyclones. For the long-lasting
eruption at Soufriere Hills Volcano,
Montserrat, volcanic risk has been
assessed in a regular and consistent
way for 20 years (Aspinall et al., 2002;
Aspinall, 2006; Wadge and Aspinall,
2014). After deriving event scenario
probabilities and their uncertainties
by elicitation, risks and uncertainties
are quantified using Monte Catlo
modelling, and the risk is presented
as (1) societal risk expressed quanti-
tatively as a curve of the probability
of exceeding a given number of fa-
talities, (2) individual risk given as an
annualised probability of death (from
the volcano) for any person living in a
specific area and (3) occupational risk
given for people working under cer-
tain conditions in specific areas.

An example of a volcanic risk mod-
el is the KazanRisk loss model (risk-
frontiers.com/kazanrisk.htm), which
uses numerical dispersal modelling
of ash fall in Greater Tokyo to esti-
mate potential losses associated with
building damage, clean-up and reduc-
tions in agricultural productivity. At
regional to global scales, the CAPRA
risk modelling platform (ecapra.org)
has been used to provide preliminary
estimates of potential building dam-
age around active volcanoes in the
Asia-Pacific Region using simplified
volcanic hazard outputs from a sta-
tistical emulator (Jenkins et al., 2015a).
Because some crucial aspects of vul-
nerability must be assessed qualita-

tively, there is a need to find innova-
tive ways to integrate qualitative with
quantitative data to assess volcanic
risk (Hicks and Few, 2015). Nov-
el interdisciplinary approaches are
now being developed (e.g. STREVA
project) that combine volcanological
techniques, probabilistic decision sup-
port and social science methods to
ensure that the benefits of even un-
certain and incomplete knowledge are
acted upon to reduce risk (e.g. Hicks
et al., 2014; Barclay et al., 2014). Stir-
ling (2010) highlighted that different
analytical methods suit different epis-
temic conditions and acknowledging
the state of knowledge is a good start
in enabling effective risk analysis and
communication..

‘Forensic analysis’ of past disasters
provides a strong basis for learning
(e.g. Voight 1990, Loughlin et al. 2002,
Thordarson and Self, 2003; Bird et al.,
2010; Ragona et al., 2011), and lon-
gitudinal studies can reveal valuable
insights into causal processes behind
impacts and disasters (e.g. Integrat-
ed Research on Disaster Risk FOR-
IN project 2011). Such approaches
are also being applied to understand
recovery processes that are complex
and can last for decades (Sword-Dan-
iels et al., 2015).

3243
Civil Protection, scientists
and risk management

Volcano observatories and civil pro-
tection authorities, working together
as well as with the public, have re-
duced fatalities due to volcanic ac-
tivity worldwide. At least 50 000 lives
were saved in the 20th century (Auker
et al., 2013) and even more have been
saved since 1985 (Voight et al., 2013).
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Mutual understanding and trust de-
velop with an investment of time and
effort (Haynes et al., 2008a, 2008b)
and it is too late to start when an
emergency begins. Effective commu-
nication and decision-making during a
rapidly changing emergency situation
(Fischoff, 2013; Doyle et al., 2014)
will be facilitated by good planning,
preparation and response protocols
(Doyle et al., 2015; Bretton et al.,
2015). Interdisciplinary and transdis-
ciplinary approaches can bring a wide
range of methods and experiences
together (e.g. communities, scientists,
authorities) to facilitate better under-
standing, analysis and communication
of hazard and risk (Hicks et al., 2014;
Barclay et al., 2014, 2015).

Volcanic unrest and eruptions can be

FIGURE 3.13

prolonged, which may cause distup-
tion and have long-term socioeco-
nomic impacts. Tephra fall can cause
damage and disruption across sec-
tors and has potential health impacts
(Horwell and Baxter, 2006; Catlsen
et al.,, 2012); therefore, planning for
clean-up and recovery is essential
(Hayes et al., 2017).

Preparedness for volcanic unrest and
eruption often takes the form of con-
tingency plans,which can be practised
(Figure 3.13) by scientists, authorities
and other stakeholders, including the
public (Hicks et al., 2014). Different
types of exercises have been reported
around the world (Figure 3.13), rang-
ing from the training of small groups
to international reaction-chain exer-
cises (Lindsay et al., 2010; Ricci et al.,

An evacuation exercise for the entire population of Tristan da Cunha,

South Atlantic.

Source: photograph courtesy of Anna Hicks

162

2013). In high-risk urban settings (e.g.
Naples), there are significant costs to
mitigation actions, even to exercises,
so direct and indirect costs and bene-
fits need to be carefully considered to

support decision-making (Marzocchi
et al., 2012; Woo, 2014).

The 2010 eruption of Eyjafjallajokull
volcano in Iceland demonstrated that
even small eruptions can have global
impacts (Ragona et al., 2011). There-
fore, international collaboration is es-
sential to ensure that lessons learned
and scientific progress are translated
into planning and preparation across
all sectors (Schmidt et al., 2011, 2015;
Bonadonna et al., 2012).

3.2.5
Conclusions and key
messages

Partnership
Long-term collaboration and effec-
tive partnerships between scientists
(operational and research) and civil
protection authorities are particularly
important for effective evidence-based
risk management and emergency re-
sponse. The recent FUTUREVOLC
and MEDSUYV projects (FP7) showed
how Europe-wide research partner-
ships can support such national and
Europe-wide DRM efforts in particu-
lar. Engagement with users of scien-
tific and civil protection advice can
improve the format and content of
outputs, enhancing understanding, up-
take and effective decision-making at
all levels. The knowledge and experi-
ence of those at risk is increasingly rec-
ognised as important and their involve-
ment in the design and development of
DRM strategies can be highly effective.



Knowledge

Hazard, impact, vulnerability, loss and
recovery data are sparse in volcano-
logy but are needed to produce better
hazard and risk assessments. Detailed
study of all future eruptions and their
impacts is needed. Despite an overall
need for increased quantification in
volcanic risk, interdisciplinary collab-
oration is recommended to capitalise
on both quantitative and qualitative
approaches to risk, particularly in
situations in which data are scarce.
Progress in process understanding is
needed to enable better anticipation
of hazardous events. Frameworks
for the optimal combination of haz-
ard and vulnerability analysis across
multiple temporal and spatial scales is
needed for comprehensive risk assess-
ments and proactive policies of risk
reduction.

Innovation

There is an ongoing need for devel-
opment in monitoring techniques,
integrated analysis of ground and
space data, hazard and vulnerability
assessment methodologies and in-
terdisciplinary/transdisciplinary — sci-
ence. A next important step for the
volcanology community as a whole
is to enhance innovation in hazard
and risk assessment strategies. There
is an increasingly urgent need for
near-real-time global monitoring and
a reporting platform to support the
anticipation of volcanic events that
have wide-reaching or humanitarian
impacts. This will require collabora-
tive approaches and innovative inte-
gration of data in a wide variety of
formats and at different spatial and
temporal resolutions.
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