OF GENEVE

Chapitre de livre 1990 Published version

This is the published version of the publication, made available in accordance with the publisher’s policy.

Casais, Eduardo

How to cite

CASAIS, Eduardo. Managing Class Evolution in Object-Oriented Systems. In: Object Management =
Gestion d'objets. Tsichritzis, Dionysios (Ed.). Genéve : Centre universitaire d’informatique, 1990. p.

133-195.

This publication URL: https://archive-ouverte.unige.ch/unige:158330

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:158330
https://creativecommons.org/licenses/by/4.0

Managing Class Evolution in Object-Oriented
Systems

Eduardo Casais

Abstract

Software components developed with an object-oriented language undergo considerable repro-
gramming before they become reusable in a wide range of applications or domains. Tools and
methodologics are therefore needed to cope with the complexity of designing, updating and reor-
ganizing vast collections of classes, This paper describes several techniques for controlling
change in object-oriented systems, illustrates their functionality with selecied examples and dis-
cusses their advantages and their limitations. As a complement to traditional approaches like ver-
sion management, we propose new algorithms for automatically restructuring a hierarchy when
classes are added to it. These algorithms not only help in handiing modifications to libraries of
software components, but they also provide useful guidance for detecting and correcting improp-
er class modelling.

1. Introduction

1.1 The problem

Object-oriented languages are currently considered a promising approach for coping with the
problems plaguing software development. Mechanisms like classification and the uniformity of
the object model support the large-scale reuse and recombination of pre-defined software com-
ponents—thus boosting programmer productivity. Subclassing allows additional definitions to
be easily accommodated in a class hierarchy, through marginal extensions to inherited proper-
ties. With genericity and delayed binding, some characteristics of a class can be left unspecified,
to be determined at a later time. Together with interactive tools like browsers and debuggers, a
high-level graphical interface, and a set of standard reusable classes, object-oriented environ-
ments endow programmers with a rich toolkit for exploratory prototyping and present consider-
able advantages over traditional methodologies for developing applications incrementally
[12][16][21].

However, software developers working with an object-oriented system are frequently led
to modify extensively or even to reprogram existing classes so that they fully suit their needs.
This is typically achieved by redefining variables, reimplementing methods, rearranging inher-
itance links, etc. Such modifications indicate that the collection of software components is not
entirely satisfactory, since it cannot be reused in its current form. As an example, the library pro-
vided with Eiffel had to be partly redesigned when the second major version of the language was
released, mainly to standardize class interfaces [38]. This problem occurred in spite of accumu-
lated and documented experience in building comparable libraries with other programming lan-
guages—an unequivocal sign that class design is an intrinsically complex task.

There are a number of reasons that explain why such difficulties arise with the object-ori-
ented approach:

133

134 Managing Class Evolution in Object Oriented Systems

CONTENTS

1. Introduction
1.1 The problem — 1.2 The solutions

MODIFYING CLASS DEFINITIONS
2. Class tailoring
2.1 Issues — 2.2 Language mechanisms — 2.3 Excuses — 2.4 Evaluation

3. Class surgery
3.11Issues — 3.2 Class invariants — 3.3 Primitives for class evolution — 3.4 Completeness
and correctness — 3.5 Evaluation

4. Class versioning
4.1 Issues — 4.2 The organization of version management — 4,3 Version identification —
4.4 Versioning and class evolution — 4.5 Evaluation

CLASS REORGANIZATION

5. Empirical guidelines
5.1 Issues — 5.2 General redesign rules — 5.3 Evaluation

6. Restructuring inter-attribute dependencies
6.1 Issues — 6.2 The Law of Demeter — 6.3 Application and examples — 6.4 Mechanical
reorganization — 6.5 Evaluation

7. Advanced class reorganization techniques
7.1 Issues — 7.2 Model and terminology — 7.3 Principle of the algorithm — 7.4 Applica-
tion — 7.5 Evaluation — 7.6 Assessing the potential of class reorganization

CHANGE PROPAGATION
8. Change avoidance

9. Conversion
9.1 Issues — 9.2 Instance transformation — 9.3 Immediate and delayed conversion —
9.4 Evaluation

10. Filtering
10.1 Issues — 10.2 Version compatibility — 10.3 Filtering mechanisms — 10.4 Making
class changes transparent — 10.5 Evaluation

11. Conclusion

References

¢ User needs are rarely stable: additional constraints and tunctionality have to be constant-
ly integrated into existing applications, resulting in considerable program restructuring.

» Software components are difficult to classify in pre-defined taxonomies. Specializing a
category whenever a particular entity does not quite fit into it leads to the famous “one
instance class” problem [34].

E. Casais

135

Experience shows that stable, reusable classes are not designed from scratch, but are
“discovered” through an iterative process of testing and improvement [25]. In particular,
because of the variety of mechanisms provided by object-oriented languages, the best
choice for representing a real-world entity in terms of classes is not always readily ap-
parent [23].

In principle, a hierarchy constitutes a standard kernel of functionality that can only be
extended with additional subclasses. This may hamper the design and development of in-
novative software components if the modelling of objects in the hierarchy does not fol-
low the advances in its corresponding application domain.

Reusing software raises complex integration issues when teams of programmers share
classes that do not originate from a common, compatible hierarchy. Classes may require
significant adaptations—like reassigning inheritance dependencies or renaming proper-
ties—to be exchanged between different environments.

In fact, an important assumption must be satisfied for applying such powerful techniques
as inheritance, genericity or delayed binding to application development. Real-world concepts
have to be properly encapsulated as classes, so that they can be specialized or combined in a
large number of programs. Inadequate inheritance structure, missing abstractions in the hierar-
chy, overly specialized components or deficient object modelling may seriously impair the reus-
ability of a class collection. The collection must therefore evolve to eliminate such defects and
improve its robustness and reusability.

1.2 The solutions

Among the approaches that have been proposed to control evolution in object-oriented systems,
we identify the following general categories:

Tailoring consists in adapting slightly class definitions when they do not lead to easy sub-
classing. Most object-oriented languages provide built-in constructs for making limited
adjustments to class hierarchies.

Surgery. Every possible change to an object definition can be decomposed into specific,
primitive update operations. Maintaining the consistency of a class hierarchy requires
that the consequences of applying these primitives be precisely determined.

Versioning enables teams of programmers to record the history of class modifications
during the design process, to control the creation and dissemination of software compo-
nents, and to try different paths in a coordinated way when modelling complex applica-
tion domains.

Reorganization of a class library is needed after significant, non-trivial changes are
brought to it, like the introduction or the suppression of classes. Reorganization proce-
dures use information on class structures and on the operations performed by program-
mers on these structures to discover imperfections in the hierarchy and to suggest alter-
native designs.

136 Managing Class Evolution in Object Oriented Systems

A second problem, related to class evolution, is that instances must be updated after their
representation is modified. We consider in detail three techniques to tackle this crucial issue:

 Change avoidance consists in preventing any impact from class modifications on exist-
ing instances, for example by restricting the kind of changes that are brought to object
definitions.

» Conversion physically transforms objects affected by a class change so that they conform
to the new definition.

o Filtering hides the differences between objects belonging to several variants of the same
class. This result is achieved by encapsulating instances with an additional software layer
that extends their normal properties.

This article is divided in three parts. The first part explains the principies behind class tai-
loring, class surgery and class versioning, referring when appropriate to the research prototypes
or industrial products that implement these techniques. For cach approach, we illustrate its func-
tionality with simple examples, and we give an appreciation of its advantages and of its short-
comings. The second part is devoted to class rcorganization. It discusscs informal guidelines for
restructuring inheritance hierarchies and explains how these guidelines can be automated. Some
recent results of the research performed by the author for developing class reorganization algo-
rithms are highlighted; this paper should therefore not be considered strictly as a survey. Our au-
tomatic reorganization algorithms are described through several examples, and our contribution
is evaluated in the context of the general class design problem. The third part considers the prob-
lem of propagating class changes to instances, and analyses how change avoidance, conversion
and filtering relate to class modification methods. The conclusion compares the potential of the
various methodologies and argues for an integrated approach to class evolution.

MODIFYING CLASS DEFINITIONS

The strategies adopted for modifying class hierarchies generally do not allow the programmer
to perform free, uncontrolled changes to a collection of classes. The available methods make
quite different assumptions on the scope and on the aims of the update operations that can be
carried out on object descriptions. They are used at various points during application develop-
ment, according to their perspective of class evolution.

» With tailoring, existing class definitions are not directly modified; adaptations are ap-
plied to inherited properties when deriving new subclasses. Keeping a stable hierarchy
is a fundamental goal with this approach.

« Surgery considers all the implications of direct modifications to a class, and studies what
additional adjustments are required to leave the whole hierarchy in a valid state. No mat-
ter how the classes evolve, a number of essential integrity constraints have to be satisfied.

Versioning records the major steps in class design and revision, as a way to deal with si-
multaneous updates to a hierarchy and to capture the intrinsic variations that exist in the
modelling of an application domain, without loss of information.

E. Casais 137

2. Class Tailoring

2.1 Issues

Object-oriented programming draws a large part of its power and fiexibility from the concept of
inheritance. A class groups a number of attributes that are used either to store information (vari-
ables), or to implement the operations that an object supports (methods). New class structures
are easily derived from previous ones through subclassing: one just needs to specify the parents
from which the new definition acquires its essential properties, and then to augment this kemel
of functionality with some additional, more specialized behaviour. In principle, a subclass has
access to all attributes inherited from its ancestors, and so can build on the basic services they
provide [42][48]. Inheritance has revealed itself to be an extremely powerful mechanism for in-
cremental programming; its use has typically resulted in the development of medium size to
large hierarchies of software components comprising, among others, fundamental data struc-
tures (trees, stacks, queues, etc.), user interface tools (windows, menus), and graphical elements
(lines, polygons) [12][22][49].

Quite often, programming does not follow the ideal scenario where superclasses, extended
with additional attributes, naturally give rise to new object descriptions. Inherited variables and
methods do not necessarily satisfy all the constraints to be enforced in specialized subclasses.
Typically, one prefers an optimized implementation of a method to the general, and perhaps in-
efficient algorithm defined in a superclass. Similarly, a variable with a restricted range may be
more appropriate than one admitting any value. Moreover, subclassing serves several purposes
simultaneously, like code sharing, type validation, or modelling generalization/specialization re-
lationships; these various goals are difficult to reconcile in a unique structure [23]. Tailoring
mechanisms alleviate these problems by allowing the programmer to replace unwanted charac-
teristics from standard classes with properties better suited to new applications.

2.2 Language mechanisms

Object-oriented languages have always provided simple constructs for tailoring classes. These
mechanisms have proved useful to overcome the difficulties caused by strict inheritance, which
forces the programmer either to reuse all attributes from a superclass or to split a hierarchy in
numerous partial class definitions—a solution feasible only if multiple inheritance is available.
The Eiffel language constitutes a good example of the possibilities afforded by such mechanisms
[37]; we present here an overview of its tailoring capabilities—which for the most part exist, per-
haps in a different form, in many other programming languages.

» Renaming is the simplest way to effectively modify a class definition. Renamed variables
and methods can no longer be referred to by their previous identifier, but they keep all
their remaining properties, like their type or their argument list.

* Redefinition enables the programmer to actually alter the implementation of attributes.
The body of a method may be replaced with a different implementation, which is then
executed in the place of the code inherited from the superclass when the corresponding
operation is invoked on an instance of the subclass. Eiffel also allows the type of inher-
ited variables, parameters and function results to be redeclared, provided the new type is

138 Managing Class Evolution in Object Oriented Systems

compatible with the old one. Finally, the pre and post-conditions of a2 method may be re-
defined, as long as the new pre-condition (respectively the new post-condition) is weaker
(respectively stronger) than the original one.

« Interfaces are not statically defined in Eiffel. A subclass may choose to change its list of
visible attributes entirely, even when these are inherited. An attribute declared as private
in an ancestor may be made accessible; conversely, a previously visible attribute may be
excluded from the subclass interface.

The following excerpt from the Eiffel library illustrates the use of these various tailoring
mechanisms. Notice the changes in class interfaces, the redefinition of the variable parent, and
the renaming and overriding of the operations for creating tree objects.

- Trees where each node has a fixed number of children (The number of children is
- arbitrary but cannot be changed once the node has been created).

class FIXED_TREE [T]

export
start, finish, is_leal, arily, child, value, change_value, node_value,
change_node_value, first_child, last_child, position, parent, first, last,
right_sibling, left_sibling, duplicate, is_root, islast, isfirst, go,
delete_child, change_child, attach_to_parent, change_righl, change_left,
go_to_child, wipe_out

inherlt

feature
parent : FIXED_TREE [T];
Create (n: INTEGER; v : T) s
-~ Create node with node_value v and n void children.

end; . Create

end - class FIXED_TREE

- Binary trees.

class BINARY_TREE [T]
export
start, finish, is_leal, arity, child, value, change_value, node_value,
change_node_value, left, right, has_left, has_right, has_both, has_none,
change_left_child, change_right_child

Inherit
FIXED_TREE [T]
rename
Create as fixed_Create, first_child as left, last_child as right
redefine
parent
feature
parent 5 like Current;

Create (v:T)lIs

-- Create tree with single node of node value v
do

fixed_Create (2, v)
ensure

E. Casais 139

node_value = v;
right.Void and left.Void
end; -- Create

-~ Methods has_left, has_right, has_both, has_none, change_left_child,
- and change_right_child are defined here.

end -- class BINARY_TREE [T]

Other techniques integrated with a programming language have been proposed for config-
uring objects. In HyperCard, individual cards can extend or modify the definition inherited from
their common background; this amounts to a per-instance tailoring of objects. With the object-
oriented variants of LISP, the programmer chooses how to combine inherited methods in a new
class, and thus controls the way the behaviour of subclasses is determined. In particular, itis pos-
sible to extend (with :before or :after methods), shadow (with primary methods), or refer selec-
tively to (with :around methods) the operations of a superclass [27][39].

These techniques assume that all adaptations to existing classes are carried out through sub-
classing, by overriding some inherited properties. Sometimes however, adaptations cannot be
limited to local class adjustments: global changes to the hierarchy are required. Objective-C pro-
vides a mechanism where a user-defined class can “pose” as any other class in the hierarchy.
When the “posing” class is installed in the system, it shadows the original definition. Objects
depending on the “posed” class, whether by inheritance or by instantiation, do not have to be
changed: the method dispatching scheme guarantees that a message sent to an object of the
posed class actually result in invoking a procedure in a posing object. The posing class may
override any method of the posed class, and define additional operations; it has access to all orig-
inal, now shadowed, properties. The posing mechanism serves to change a class definition when
its source code is unavailable.

2.3 Excuses

An approach analogous to the attribute redefinition techniques is described in [8]. The author
proposes a formal mechanism for “excusing” abnormal cases that arise when modelling an ap-
plication domain and that do not fit within the existing hierarchy. For example, a system keeping
information on students may have to cope with the case of people who did part of their studies
in foreign countries with different grading schemes and academic titles. Another problem occurs
when attributes with contradicting properties are inherited through different paths. The tradition-
al example, originally studied as a test for default reasoning in artificial intelligence, is based on
the situation where a person is at the same time a Quaker (and therefore a pacifist) and a Repub-
lican (and therefore opposes pacifism). IS-A relations often exhibit such inconsistencies that can
rarely be avoided when a hierarchy is initially constructed.

Possible solutions to overcome these problems include the disciplined use of strict inherit-
ance (which leads either to the creation of intermediate classes for purely technical reasons, or
to a decrease in the degree of sharing among classes, if they have to specify individually their
version of the conflicting attributes), the dissociation of classes and types (which defeats poly-
morphism), or resorting to default reasoning techniques (whose properties are not always well-

140 Managing Class Evolution in Object Oriented Systems

determined). The excuse mechanism is suggested as an alternative, flexible way for managing
non-strict inheritance.

With the excusing approach, contradictions between the definition of a class and its ances-
tor must be explicitly acknowledged. Thus, while

class STUDENT
varlables
Name y STRING;
Address : STRING;
Degree : (Bachelor, Masters, Doctor-of-Philosophy);
end;

denotes the standard class of students,
class FOREIGN-STUDENT

Inherlts STUDENT;
variables
Degree (Licence, Diplémo, Doctorat)
excuses Degree on STUDENT;
end;

represents a subclass where the Degree attribute of STUDENT is redeclared. Since the new type
of Degree is not a refinement of the previous one, an explicit excuse has to be provided to inform
the system that this situation represents an exception and not a programming error. This excuse
is inherited by all subclasses of FOREIGN-STUDENT; in the case where the Degree attribute is
once again superseded, it may be necessary to excuse its new type with respect to the one of FOR-
EIGN-STUDENT—and with the one of STUDENT as well—if they are incompatible.

In his paper, the author sketches a system for integrating types with excuses. The develop-
ment of such a scheme would facilitate the type checking of expressions, the detection of unsafe
operations on objects (that refer to values or attributes that have been redeclared in incompatible
ways), and the correct handling of database queries (without overlooking exceptional entities).
Formally, consider

class X

varlables
a T
end;

class Y
Inherits X;
variables
a = S excuses aon X;

end;
where Y is a subclass of X, and T and S denote the type of attribute a. Then, for every instance x
€ X, the following condition holds: x.a € TV (x € Y A x.a € §). This basic property of excuses
is used for reasoning about expressions involving entities from exceptional classes, as happens
when trying to retrieve all students with a Masters degree; the system should avoid processing
instances from FOREIGN-STUDENT, because their Degree attribute does not conform to the in-
formation normally associated with students and could even have a different physical represen-
tation.

E. Casais 141

2.4 Evaluation

Tailoring techniques are useful for performing small adjustments to a class collection. The over-
riding of inherited attributes enables the programmer to escape from a rigid inheritance structure
that is not always well-suited to application modelling. It facilitates the handling of exceptions
locally, and does not require the factoring of common properties into numerous intermediate
classes. Tailoring mechanisms correspond to constructs of object-oriented languages; conse-
quently, they can be considered as a standard programming technique and they can be imple-
mented efficiently within compilers.

On the other hand, over-reliance on tailoring and excuses may quickly lead to an incompre-
hensible specialization structure, overloaded with special cases, and, as far as persistent object-
oriented systems are concerned, difficult to manage efficiently with current database technology.
Introducing exceptions in a hierarchy destroys its specialization structure and obscures the de-
pendencies between classes, since a property cannot be assumed to hold in every object derived
from a particular definition. Renaming and interface redeclaration may completely break down
the standard type relations between classes and subclasses. When signature compatibility is not
respected, polymorphism becomes impossible: an instance of a class may no longer be used
where an instance of a superclass is allowed. Nothing prevents programmers to radically alter
the semantics of a method by changing its implementation, say by replacing the code for com-
puting the area of a polygon with one that returns its perimeter. Changing attribute representa-
tions also cancels many of the benefits of code sharing provided by inheritance.

If tailoring is allowed, one must be wary of developing a collection of disorganized classes.
Exceptions should not only be accommodated, but also integrated into the type hierarchy when
they become too numerous to be considered as special cases. Unfortunately, the techniques we
have described in this section do not really help in detecting design flaws in object descriptions.

3. Class Surgery
3.1 Issues

Whenever changes are brought to the modelling of an application domain, corresponding mod-
ifications must be applied to the classes representing real-world concepts. This kind of operation
disturbs an class hierarchy much more profoundly than the tailoring techniques we have de-
scribed in the previous pages: instead of overriding some inherited properties when new sub-
classes are defined, it is the structure of existing classes themselves which is to be revised. Be-
cause of the multiple connections between class descriptions, care has to be taken so that the con-
sistency of the hierarchy is guaranteed.

This problem also arises in the area of object-oriented databases, where it has been exten-
sively investigated [4][29][43][50]. There, the available methods determine the consequences of
class changes—on other definitions and on existing instances as well—so that possible integrity
violations be avoided. These methods can be broken down into a number of steps:

142 Managing Class Evolution in Object Oriented Systems

1. The first step consists of determining a set of integrity constraints that a class collection
must satisfy. For example, all instance variables should bear distinct names, no loops are
allowed in the hierarchy, and so on.

2. A taxonomy of all possible updates to the system is then established. These changes con-
cern the structure of classes, like “add a method”, or “rename a variable”; they may also
refer to the hierarchy as whole, as with “delete a class” or “add a superclass to a class”.

3. For each of these update categories, a precise characterization of its effects on the class
hierarchy is given, and the conditions for its applicatioh are analysed. In general, addi-
tional reconfiguration procedures have to be applied in order to preserve class invariants.
It is, for example, illegal to delete an attribute from a class C if this attribute is really in-
herited from an ancestor of C. If the attribute can be deleted, it must also be recursively
dropped from all subclasses of C, or possibly replaced by another attribute with the same
identifier inherited through another subclassing path.

4. Finally, the effects of schema changes are reflected on the persistent store. If necessary,
instances belonging to modified classes are converted to conform to their new descrip-
tion. For example, additional storage space must be allocated for objects whose defini-
tion has been augmented with additional attributes.

The next sections examine in detail these various aspects of schema evolution management.
We base our discussion mainly on the research performed around the following object-oriented
database systems:

¢ GemStone, a commercial system developed at Servio Logic, that extends the basic
Smalltalk object model with persistency and database functionality. The OPAL language
is used for defining classes and manipulating objects.

« ORION, a research prototype developed at MCC. ORION is intended to serve as a gen-
eral-purpose persistent object-oriented environment integrated with Common LISP.

« O, a prototype object-oriented database system developed by the GIP Altair for support-
ing application development in a wide range of domains and programming languages
(Basic, C, LISP).

+ OTGen, a research system developed at Carnegie Mellon University for investigating is-
sues dealing with object-oriented database management.

Since instance conversion techniques are an important issue common to other approaches,
most notably versioning, we defer their description to the part devoted to change propagation on
page 182.

3.2 Class invariants

Every class collection contains a number of integrity constraints that must be maintained across
schema changes. These constraints, generally called class invariants in the literature, impose a
certain structure on class definitions and on the inheritance graph; depending on the object mod-
el, they may allow more or less restricted types of class hierarchies.

143

E. Casais
GemStone ORION 0, OTGen

Representation /

Inheritance graph v 4 v/ v
Distinct name 4 4 4
Full inheritance 4 4 v v
Distinct origin 4 4

Type compatibility v 4 v 4
Type variable s/
Reference consistency 4 v/

Table 1 Comparison of four object-oriented database systems with respect to
their class invariants. Some constraints (like the representation and
type variable invariants) are in fact implicit in most models. The in-
variants associated to O, are implied by more general integrity con-
straints.

Representation invariant. This constraint is explicit only in the GemStone system. It
states that the properties of an object (attributes, storage format, etc.) must reflect those
defined by its class.

Inheritance graph invariant. The structure deriving from inheritance dependencies is re-
stricted to form a connected, directed graph without circuits (so that classes may not re-
cursively inherit from themselves), and rooted at a special predefined class called OB-
JECT. The GemStone system does not implement multiple inheritance and so requires the
graph to be a tree.

Distinct name invariant. All classes, methods and variables must be distinguished by a
unique name. In addition, ORION requires inheritance links between classes to be un-
ambiguously labelled; two links may therefore bear identical names, except if they are
directed to the same class.

Full inheritance invariant. A class inherits all attributes from its ancestors, except those
that it explicitly redefines. Naming conflicts occurring because of multiple inheritance
are resolved by applying some precedence scheme and selecting one attribute as the one
being inherited.

Distinct origin invariant. No repeated inheritance is admissible in ORION and O,: an at-
tribute inherited several times via different pathé appears only once in a class represen-
tation.

Type compatibility invariant. The type of a variable redefined in a subclass must be con-
sistent with its domain as specified in the superclass. In all systems this constraint means
that the new type must be a subclass of the original one. O, also requires a strict compat-
ibility between the method signatures of a class and those of its descendents.

144 Managing Class Evolution in Object Oriented Systems

« Type variable invariant. The type of each instance variable must correspond to a class in
the hierarchy.

« Reference consistency invariants. GemStone guarantees that there are no dangling refer-
ences to objects in the database. When a user holds a reference to an object, then both the
object and the reference to it are retained. Instances can only be deleted when they are
no longer referred to. OTGen requires that two references to the same object before mod-
ification also point to the same entity after modification. '

The designers of ORION list additional rules to select the most meaningful way 1o maintain
these invariants in the presence of ambiguous class descriptions or when a class schema is mod-
ified. These rules serve in particular to solve name clashes caused by multiple inheritance, to de-
fine how properties are propagated from a class to its subclasses, and to manipulate the inherit-

ance graph.
3.3 Primitives for class evolution

Updates to a schema are inferred from an analysis of the static structure of classes [40]. These
changes are subsequently assigned to a relevant category in a pre-determined taxonomy that
covers all possibilities for schema evolution. Every definition affected by these modifications
must then be adjusted. If the invariant properties of the inheritance hierarchy cannot be pre-
served, the transformation of the class structure is rejected.

e Adding an attribute, whether it is a variable or a method, is an operation that must be
propagated to all descendents of the class where it is initially applied, in order to preserve
the full inheritance invariant. When a naming or a type compatibility conflict occurs, or
when the signature of the new method does not match the signature of other methods
with the same name related to it via inheritance, one either disallows the operation (as in
O, and GemStone), or resorts to conflict resolution rules. Thus, in ORION, if an attribute
with the same name exists in the original class schema, it is replaced with the new one.
On the other hand, an attribute from a subclass bearing an identical name with the new,
inherited one takes precedence over it. In all systems, instances of all modified schemas
are assigned an initial value for their additional variables which is either specified by the
user or the special nil value. ’

 Deleting an attribute is allowed only if the variable or method is not inherited from an
ancestor. Because of the full inheritance and representation invariants, the attribute must
also be dropped from all subclasses of the definition where it is originally suppressedl.
If a subclass, or the class itself, inherits a variable or a method with an identical name
through another inheritance path, this new attribute replaces the deleted one. Of course,
" all instances lose their values for deleted attributes. O, forbids the suppression of at-
tributes if the operation results in naming conflicts or in type mismatches with other at-
tributes.

1. It is interesting to note that this propagation is not performed automatically in Gem-
Stone.

E. Casais 145

Scope of changes GemStone ORION o)

[

Instance variables
add a variable
remove a variable
rename a variable
redefine the type of a variable
change the origin
change the default value
Methods
add a method
remove a method
rename a method
redefine the signature
change the code
change the origin
Other attributes
add a shared value
change a shared value
remove a shared value
remove a composite link
Classes
add a class
remove a class
rename a class
Other class properties
make a class indexable
make a class non-indexable
Inheritance links
add a superclass to a class
remove a superclass
change superclass precedence

A NS
SNSNSNS

AN
A R T S S S N S S S NN
NSNSNSNS

AN
SSNS

AN

Table2 A comparison of schema evolution taxonomies.

* Attribute renaming is tforbidden if the operation gives rise to ambiguities in the class it-
self or in its subclasses, or, in GemStone, if the attribute is inherited from an ancestor. If
this is not the case, the change is propagated to all schemas affected by the renaming.

» The type of a variable (or of a method argument) can rarely be arbitrarily modified be-
cause of the subtyping relations imposed by the compatibility invariant. In ORION and
GemStone, the domain of a variable can be generalized—but not beyond its original
type, if the attribute is inherited.

GemStone also allows a variable to be specialized, except if the new domain causes a
compatibility violation with a redefinition in a subclass. Operations that are neither spe-

146

Managing Class Evolution in Object Oriented Systems

cializations nor generalizations are not directly supported; moreover, type changes are
not propagated to subclasses. Instances violating new typing constraints have their vari-
ables reinitialized to nil,

Other attribute properties, like the default value of a variable, the realization of a meth-
od—or, in Smalltalk, the grouping of messages into categories—can be modified. These
operations usually do not require any elaborate consistency checks. Changing the origin
of an attribute is an operation supported only in ORION. It serves to override default in-
heritance precedence rules and is logically handled as a suppression followed by the in-
sertion of an attribute. Subclasses are adapted to conform to the new inheritance pattern.

Shared values correspond to the class variables of Smalltalk and to the shared slots of
CLOS. In ORION, instance variables can be converted to shared variables and their glo-
bal value can be modified; the operation is propagated to the subclasses affected by these
changes. A variable can also revert to being a normal instance variable, in which case its
value is reinitialized to nil,

Some environments extend the standard object model with other kinds of attributes.
ORION defines composite links as special variables used to implement aggregation hi-
erarchies. Suppressing a composite link breaks an aggregation relation by disconnecting
an entity from its dependent object.

* Adding a class 10 an existing hierarchy is a fundamental operation for object-oriented

programming, and as such it appears in all systems examined here. Connecting a new
class to the leaves of a hierarchy is trivial—possible conflicts caused by multiple inher-
itance are solved with standard precedence rules. GemStone allows inserting a class in
the middle of an inheritance graph, provided the new class does not initially define any
property: this basic template may be subsequently augmented by applying the attribute
manipulation primitives described in the preceding pages. With O,, a new class may be
connected to only one superclass and one subclass initially, The definition must specify
which inherited attributes are superseded—the redeclaration must comply with subtyp-
ing compatibility rules—as well as the newly introduced attributes.

Removing a class causes inheritance links to be reassigned from its ancestors to its sub-
classes. All instance variables that have the class as their type are assigned the sup-
pressed class’s superclass as their new domain. GemStone assumes that a class to be dis-
carded no longer defines any property and that no associated instances exist in the data-
base. O, forbids class deletion when this would result in dangling references in other
definitions, when instances belonging to the class still exist, or when the deletion leaves
the inheritance graph disconnected.

Renaming a class is allowed only if the new identifier is unique among all class names
in the inheritance hierarchy.

As with attributes, each object model may define supplementary class properties and
their corresponding manipulation primitives. Indexable classes in GemStone store infor-
mation that is accessed by an integer offset instead of by name, like normal variables,
and for which space is allocated dynamically. Classes may have their indexable part re-

E. Casais 147

moved, except when this part is inherited; the modification is not propagated to subclass-
es. Classes may be made indexable, provided this operation does not violate a typing
constraint in an already indexable subclass.

o Adding a superclass to a schema is illegal if the inheritance graph invariant cannot be
preserved. In particular, no circuits must be introduced in the hierarchy. The consequenc-
es of this operation are analogous to those of introducing attributes in an object descrip-
tion.

« The deletion of a class S from the list of ancestors of a class C must not leave the inher-
itance graph disconnected, O, provides a parameterized modification primitive that en-
ables the programmer to choose where to link a class which has become completely dis-
connected from the inheritance graph (by default, it is connected to OBJECT). One may
also specify whether the attributes acquired through the suppressed inheritance link are
preserved and copied to the definition of C.

In most other systems, if § is the unique superclass of C, inheritance links are reassigned
to point from the immediate superclasses of S to C. In the other cases, C just loses one of
its ancestors; no redirection of inheritance dependencies is performed. Of course, the
properties of S no longer pertain to the representation of C, nor to those of its subclasses.
The primitives for suppressing attributes from a class are applied to convert the definition
of all classes and instances affected by this change.

* Reordering inheritance dependencies results in effects similar to those of changing the
precedence of inherited attributes.

3.4 Completeness and correctness

Two important issues have to be addressed to ensure that these primitives capture interesting ca-
pabilities. The first one concerns completeness: does the set of proposed operations actually cov-
er all possibilities for schema modifications? The second question deals with correctness: do
these operations really generate class structures that satisfy all integrity constraints?

These problems have been studied in the context of the ORION methodology, where it has
been demonstrated that a subset of its class transformation primitives exhibits the desired qual-
ities of completeness and, partially, of correctness. In contrast, the GemStone approach does not
strive for completeness: only meaningful operations, which can be implemented without undue
restrictions or loss of performance are provided. An interesting result is provided by the O, ap-
proach, where it is shown that although a set of basic update operations may be complete at the
schema level (i.e. all changes to a class hierarchy can be derived from a composition of these
essential operations), this same set may not be complete at the instance level, when changes are
carried out on objects and not on classes. For example, renaming an attribute in a class definition
is equivalent to deleting the attribute and then reintroducing it with its new name; if the same
sequence of operations is applied to a variable of an object, the information stored in the attribute
is lost.

Ensuring correctness of class changes is much more difficult than it appears at first sight:
additional adjustments have to be performed in order to guarantee the consistency of all class

148 Managing Class Evolution in Object Oriented Systems

representations. Thus, because a method implementation may depend on other methods and
variables, one cannot consider the deletion of one attribute in isolation. This operation may have
far-reaching consequences if an attribute is excluded from a class interface. Similarly, introduc-
ing a new method in a class may raise problems because the code of the method may refer to
attributes that are not yet present in the class definition and because of implicit scoping changes.
If the method supersedes an inherited routine, subclasses referring to the previous method may
become invalid. The transformation of method definitions to take into account the consequences
of class updates is not easily amenable to automation, and is not implemented in any of the sys-
tems mentioned here. The O, approach recognizes that class definitions have to be augmented
with information on inter-attribute dependencies, scoping constraints (when referring to at-
tributes that can be inherited from multiple ancestors), and interface usage (which methods from
an object’s interface are used by a method in another schema) in order to be able to guarantee
the behavioural consistency of class modifications. This requires a thorough, and perhaps im-
practical, analysis of all methods’ code.

3.5 Evaluation

Decomposing all class moditications into update primitives and determining their consequences
brings several advantages. During class design, this approach helps developers detect the impli-
cations of their actions on the class collection and maintain the consistency of class specifica-
tions. During application development, it guides the propagation of schema changes to individ-
ual instances. For example, renaming an instance variable, changing its type or specifying a new
default value usually has no impact on an application using the modified class. Introducing or
discarding attributes (variables or methods), on the other hand, generally leads to changes in pro-
grams and requires the reorganization of the persistent store—although the conversion proce-
dure can be deferred in some situations.

Depending on its modelling capabilities and on the integrity constraints, an object-oriented
programming environment may provide different forms of class surgery. It is easy to envision a
system where class definitions are first retrieved with a class browser, and then modified with a
language-sensitive editor where each editing operation corresponds to a schema manipulation
primitive like those of ORION or GemStone. Such an environment would nevertheless fall short
of providing a fully adequate support for the design and evolution processes. Class surgery forms
a solid and rigorous framework for defining “well-formed” class modifications; in this respect,
it improves considerably over uncontrolled manipulations of class hierarchies that are more or
less the rule with current object-oriented programming environments. But it limits its scope to
local, primitive kinds of class evolution: it gives no guidance as to when the modifications
should be performed, and does not deal with the global management of multiple, successive
class changes carried out during software development.

4. Class Versioning

4.1 Issues

Ensuring that class modifications are consistent is not enough; they must also be carried out in
a disciplined fashion. This is of utmost importance in environments where a number of program-

E. Casais 149

mers collectively reuse and adapt classes developed by their peers and made available in a
shared repository of software components. The early experiences with the Smalltalk system
demonstrated that the lack of a proper methodology for controlling the extensions and alterations
brought to the standard class library quickly resulted in a disastrous situation: although every
user eventually had, at his workstation, an environment perfectly tuned to his needs, the varia-
tions between individual class hierarchies were sufficient to hinder the further exchange of soft-
ware, or at least to make its porting non-trivial [28].

In the case of single-user environments, the exploratory way of programming advocated by
the proponents of the object-oriented approach requires some support so that a software devel-
oper may correct his mistakes by reverting to a previous stable class configuration. When exper-
imenting with several variants of the same class—to test the efficiency of different algorithms,
for example—care has to be taken to avoid mixing up class definitions and dependencies.

The acute need for structuring class evolution quickly prompted Smalltalk programers to
develop ingenious schemes for recording, grouping and disseminating information on system
changes [44]. The notion of project was introduced into the Smalltalk system to separate the
workspaces relative to several development tasks. An independent log file associated with each
such workspace enables programmers to record and manage the history of revisions brought to
the classes of a project. However, all information is still shared among projects. Thus, every
class added to the hierarchy in a project is immediately available to all other projects; updates to
aclass or a global variable are visible in the other workspaces. More elaborate mechanisms rely
on a central database to store data about class changes, bug reports, bug corrections and other
“goodies” [44]. A browser facilitates the retrieval and insertion of items in the database, which
is accessible by all users on a local network connecting Smalltalk workstations together. Because
the database acts like a common information pool, complicated procedures are required to incor-
porate all bug corrections into the hierarchy, to detect conflicts among the proposed updates, to
clean up class definitions, to get rid of obsolete objects, and finally to generate a new running
version of the Smalltalk system valid for all users. These techniques do not seem to scale well
for large, distributed programming environments. Current approaches favour a more structured
organization of software development and a tighter control of evolution based on class version-
ing.

Versioning basically consists in checkpointing successive, and in principle consistent states
of a class structure. The creation and manipulation of versions raises complex issues that we dis-
cuss in the following sections.

» How is version management organized with respect to software development and shar-
ing?

» How does one distinguish between different versions of the same class?

* What are the circumstances that justify the creation of new versions, and how is this op-
eration carried out?

» What can be done to handle the relations between different and perhaps incompatible
versions?

150 Managing Class Evolution in Object Oriented Systems

It should be noted that versioning can be applied at the level of instances as well. In fact,
many approaches, derived from techniques used notably in the field of CAD/CAM, originally
considered versioning for objects and not for class definitions. Since we are mainly interested in
class design and evolution, we will not deal with this possibility. Furthermore, managing in-
stance versions and class versions are quite similar tasks, so most of the techniques we describe
in this article find their use in both domains,

4.2 The organization of version management

An environment for version management is divided in several distinct working spaces, each one
providing a specific set of privileges and capabilities for manipulating different kinds of versions
[11]. Three such contexts are generally recognized in the literature:

= A private working space supports the design and development activities of one program-
mer. The programmer acts as the administrator of his private space. The information
stored in his private environment—in particular the software components he is currently
designing or modifying—is not accessible to other users.

« All classes and data produced during a project are stored in a corresponding context,
which is placed under the responsibility of a project administrator. They are made avail-
able to all people cooperating in the project, but remain hidden from other users, since
they cannot yet be considered as tested and validated.

A public context contains all released classes from all projects, as well as data on their
status. This information is visible to all users of the system.

It is natural to associate one kind of version with each working space:

» Released versions appear in the public context. They are considered immutable and can
therefore neither be updated nor deleted, although they may be copied and give rise to
new transient versions.

= Working versions exist in project and possibly private contexts. They are considered sta-
ble and cannot be modified—but they can be deleted by their owner, that is, the project
administrator or the user of a private context. Working versions are promoted to released
versions when they are installed in the public repository; they may give rise to new tran-
sient versions.

« A transient version is derived from a released, a working or another transient version. It
belongs to the user who created it, and it is stored in his private environment. Transient
versions can be updated, deleted, and promoted to working versions.

A typical scenario begins when a project is set up to build a new application. The program-
mers engaged in the development copy from the public repository class definitions they want to
reuse or modify for the project: these definitions are added to their private environments as tran-
sient versions. Each programmer individually updates these classes and perhaps creates other
definitions (via usual subclassing techniques) in his context as additional transient versions. In
order to try different designs for the same class, or to save the result of his programming activity,
he may derive new transient versions from those he is currently working on, while simultaneous-

151

E. Casais
Transient Working Released
Location
public context v
Pproject contexts v/
private contexts 4 v
Admissible operations
update v
delete / 4
Origin
from a transient version by derivation | promotion
from a working version by derivation promotion
from a released version by derivation

Table 3 Principal characteristics of version types. Some systems consider only
two kinds of versions (transient and released) and two levels of contexts
(private and public) for managing their visibility.

ly promoting the latter to working versions. When he achieves a satisfactory design for a soft-
ware component, he installs it as a working version in the project context. Of course, these work-
ing versions can subsequently be copied by his colleagues and give rise to new transient versions
in their respective environments. Once software components have reached a good stage of ma-
turity in terms of reliability and design stability, they are released by the project administrator
and made publicly available in the central repository.

Since all operations of version derivation and freezing are done concurrently, careful algo-
rithms are required to ensure that the system remains consistent. Fortunately, all updates are ap-
plied to local, transient objects, and not directly to global, shared definitions. As a consequence,
concurrency control does not have to be as elaborate as traditional database transaction mecha-
nisms. Some systems, like IRIS, implement simple schemes enabling programmers to prevent
other users from deriving new versions from an existing object by setting a lock on it [18].

4.3 Version identification

An essential problem to deal with concerns the identity of classes. It is no longer enough to refer
to a software component by its name, since it might correspond to multiple variants of the same
class. An additional version number, and possibly a context name, must be provided to identify
unambiguously the component referred to.

When the version number is absent from a reference, a default class is assumed. Typical
choices for resolving the dynamic binding of version references include:
» The very first version of the class referred to.

« Its most recent version. The idea behind this decision is that this version can be consid-
ered the most up-to-date definition of a class. This is a solution commonly used in object-
oriented databases to bind version references in interactive queries.

152 Managing Class Evolution in Object Oriented Systems

« Its most recent version at the time the component making the reference was created. This
is the preferred option for dealing with dynamic references in class specifications.

A default class definition specified by the administrator in charge of the context. This
definition, called a generic version, can be coerced to be any element in a version deri-
vation history.

The default version is first searched for in the context where the reference is initially dis-
covered to be unresolved; the hierarchy of contexts is then inspected upward until finding the
appropriate definition. Thus, to bind an incomplete reference to a class made in a project context
(i.e. a reference consisting only in the class name, without additional information), the system
first examines the class hierarchy in the current context; if this context does not contain the class
definition referred to, the search proceeds in the public repository. No private context is inspect-
ed, for stable versions are not allowed to refer to transient versions, which can be in the process
of being revised. Similarly, dynamic references to classes in the public context cannot be re-
solved by looking for unreleased components In a project context. Nawrally, dynamic binding
can be resolved at the level of a private context for all classes pertaining to it.

If only the most recent version gives rise to new versions, there is in principle no need for
a complex structure to keep track of the history of classes: their name and version number suffice
to determine their relationship to each other. The situation where versioning is not sequential,
i.e., where new versions derive from any previous version, requires that the system record a hi-
erarchy of versions somewhat similar to the traditional class hierarchy. When a version is copied
orinstalled in a context, the programmer decides where to connect it in the derivation hierarchy.
AVANCE provides an operation to merge several versions of the same class; with this scheme,
the derivation history takes the form of a directed graph without circuits [7].

The information on derivation dependencies is generally associated with the generic ver-
sion of a class version set. Version management systems like IRIS or AVANCE implement a se-
ries of primitives for traversing and manipulating the derivation graph [5][7]. Programmers can
thus retrieve the predecessors and the successors of a particular version, obtain the first or the
most recent version of a class on a particular derivation path, query their status (transient, re-
leased, date of creation, owner), determine which version was valid at a certain point in the past
and bind a reference to it, freeze or derive new versions, etc.

The management of versions and related data obviously entails significant storage and pro-
cessing overhead. This is why in most systems one is required to explicitly indicate that classes
are versionable by making them descendents of a special class from which they inherit their
properties of versions. This class is often called Version, as in AVANCE and IRIS; the former
system defines another class, Checkpointable, that provides reduced, lower-level versioning func-
tionality.

4.4 Versioning and class evolution

The derivation of class versions is partly automatic and partly the result of user decisions. It is
evidently impossible to delegate full responsibility to the system for determining when a tran-
sient version should be frozen and a new transient one created, or if a component is sufficiently

E. Casais 153

polished to be released. Such actions must be based on design knowledge which is best mastered
by the software developers themselves. The automatic generation of new versions triggered, for
example, by update operations on object definitions is a scheme that has found limited applica-
tion in practice.

Another difficulty arises because of the superimposition of versioning on the inheritance
graph. For example, when creating a new variant for a class should one derive new versions for
the entire tree of subclasses attached to it as well? A careful analysis of the differences between
two successive versions of the same class gives some directions for handling this problem [7].

« If the interface of a class is changed, then new versions should be created for all classes
depending on it, whether by inheritance (i.e. its subclasses) or by their instance variables
(i.e. classes using variables whose type refers to the now modified definition).

« If only non-public parts are changed, like the methods visible only to subclasses (such
methods are called “protected methods” in C++), the type of its variables, or its inherit-
ance structure, then versioning can be limited to its existing subclasses.

« If only the realizations of methods are changed, no new versions for other classes are re-
quired; this kind of change is purely internal and does not affect other definitions.

For reasons analogous to those exposed above, some approaches prefer to avoid introduc-
ing a possibly large number of new versions automatically and rely instead on a manual proce-
dure for reestablishing the consistency of the inheritance hierarchy. The users whose programs
reference the class that has been updated are simply notified of the change and warned that the
references may be invalid. Two strategies are commonly adopted to do this: either a message is
directly sent to the user, or the classes referencing the modified object definition are tagged as
invalid. In the latter case, class version timestamps are frequently used to determine the validity
of references [11]. Thus, a class should never have a “last modification” date that exceeds the
“approved modification” date of the versions it is referred by. When this situation occurs, the
references to the class are considered inconsistent, since recent adaptations have been carried out
on the component, but have not yet been acknowledged on its dependent classes. It is up to the
programmer to determine the effects of the class changes on other definitions and to reset the
approved revision timestamp to indicate that the references have become valid again.

Maintaining compatibility between entities belonging to different versions is a major issue,
and an object-oriented system should provide support for dealing with this aspect of version
management. Application developers may want to view objects instantiated from previous class
versions as if they originated from the currently stable version, or they may want to forbid ob-
jects from old versions to refer to instances of future variants. These effects are seldom achieved
by fully automatic means. For every new version, one must program special functions for map-
ping between old and new class structures. These functions filter the messages sent to objects,
so that proper actions can be taken, like translating between method names, returning a default
value when accessing a non-existent variable, or simply aborting an unsuccessful operation. We
describe in more detail the functionality of such systems in the part devoted to update propaga-
tion.

154 Managing Class Evolution in Object Oriented Systems

4.5 Evaluation

Versioning is a particularly appealing approach for managing class development and evolution.
Recording the history of class modifications during the design process brings several benefits: it
enables the programmer to try different paths when modelling complex application domains,
and it helps avoid confusion when groups of people are engaged in the production of a library
of common, interdependent classes. Versioning also appears useful when keeping track of vari-
ous implementations of the same component for different software environments and hardware
platforms. Besides, the hierarchical decomposition of the programming environment into work-
spaces, the attribution of precise responsibilities to their administrators, and the possibilities af-
forded by this kind of organization (for example, the separation of the long-term improvement
of reusable components from the short-term development of new applications) are considered to
be particularly valuable for increasing the quality and efficiency of object-oriented programming
[47].

The main drawback ot versioning techniques resides in the considerable overhead they im-
pose on the development environment. Programmers have to navigate through two interconnect-
ed structures, the wraditional inheritance hierarchy and the version derivation graph. They have
to take into account a greater set of dependencies when designing a class. The system must store
all information needed for representing versions and their reciprocal links, and implement noti-
fication. Moreover, version management methodologies still lack some support for design tasks:
at what point does a version stop to be a variant of an existing class to become a completely dif-
ferent object definition?

In spite of their overhead, class and object versioning techniques have proved invaluable in
important application domains like CAD/CAM, VLSI design and Office Information Systems.
They have therefore been integrated in several object-oriented environments, including Orwell
[47], AVANCE [6], ORION [4] and IRIS [18].

CLASS REORGANIZATION

In an object-oriented environment, programmers are supposed to build applications chiefly in a
bottom-up fashion, by reusing existing classes. Classes often require adaptations so that they ful-
ly suit the needs of software developers. Such modifications indicate that the current hierarchy
is not satisfactory: if software components cannot be reused as they are, then one is well-advised
to look for missing abstractions, to try making some classes more general, to increase modular-
ity.

Tools that automatically restructure a class collection and suggest alternative designs can
reduce the efforts required to improve a class hierarchy. The available methods range from in-
formal guidelines for detecting and then correcting class deficiencies, to algorithmic approaches
that adjust object definitions on the basis of structural criteria. As we show in the following sec-
tions, all these techniques face significant difficulties because of the lack of a clear supporting
design model and because of the very general applicability of object-oriented mechanisms, no-
tably inheritance.

E. Casais 155

5. Empirical Guidelines

5.1 Issues

The object-oriented approach aims at dramatically increasing programmer productivity by rely-
ing on the massive reuse of numerous pre-packaged software components. The experience
gained with Smalltalk demonstrates that this goal can indeed be achieved, provided that the de-
sign of objects fulfils some important requirements:

» The application domain must be adequately represented in terms of objects.
» Standardized class interfaces must be adopted to allow polymorphism.
« Classes must encapsulate behaviour general enough to serve in many applications.

+ The functionality must be properly decomposed into the various levels of a class hierar-
chy.
Object definitions exhibiting these desirable properties are easier to combine and refine for
building new applications or other software components.

Since software components cannot be assumed to be perfectly reusable the first time they
are built, developers of object-oriented libraries must be supplied with tools to assess the quality
of an inheritance hierarchy, to spot design imperfections, and to improve class definitions. Some
authors propose general, informal principles for carrying out reorganization tasks. These princi-
ples are based on the lessons drawn from the building of large collections of reusable classes,
like the Smalltalk hierarchy, the Eiffel library, the ET++ class collection [49], etc.

5.2 General redesign rules

According to Johnson and Foote [25], a reorganization methodology should deal with three main
characteristics of a class hierarchy:

« The standardization of class interfaces. Objects answering the same set of messages are
easier to combine. The structure of the inheritance hierarchy is simpler and more under-
standable-—since one may assume that definitions with identical interfaces satisfy simi-
lar properties. Common class interfaces allow polymorphism—objects with equivalent
interfaces may be substituted with each other in a type safe way. Table 4 illustrates the
result of applying this principle to the basic data structures of the Eiffel library.

» The building of an abstract, coherent class hierarchy. Abstract classes exhibit a higher
degree of reusability—because they define general properties and are not tied to a partic-
ular, narrow application. Inheritance relationships consistently based on specialization
facilitate the analysis of the hierarchy and the modelling in terms of existing classes—as
opposed to the situation where inheritance is used for code sharing or implementation
purposes.

» The modularization of functionality. Small, cohesive classes are more resilient to change,
while large classes grouping loosely related functions are difficult to adapt and utilize in
other programs.

156

Managing Class Evolution in Object Oriented Systems

Interface STACK ARRAY QUEUE H-TABLE
Old version
push enter add insert
pop remove_oldest delete
top entry oldest value
New version
put put put put
remove remove remove
item item item item

Tabled4 Class interfaces for some basic data struclures of the Eiffel library. The
conventions adopled in the second version of the language have resulted
in greater naming consistency across object definitions.

Several practical rules corresponding to each of these categories have been proposed [25].
As far as interface standardization is concerned, they are as follows:

Adopt a uniform terminology for classes belonging to a similar group of concepts.
Standardize the interface of classes that communicate with each other.

Decrease the number of arguments of a method, either by splitting the method into sev-
cral simpler procedures, or by creating a class to represent a group of arguments that ap-
pear often together. A method with a reduced number of parameters is more likely to bear
a signature similar to some other method in a different class; both methods may then be
given the same name, thus increasing interface standardization.

Eliminate code that explicitly checks the type of an object. Rather than introducing large
case statements to execute some actions on the basis of an object’s class, one should in-
voke a standard message in the object and let it carry out the appropriate actions, as in
the example in Figure 1

The next set of rules is used to find more general classes and introduce higher-level abstrac-
tions into the hierarchy.

Factor out behaviour common to several classes into a shared superclass. Introduce ab-
stract classes (with deferred methods) if convenient to avoid attribute redefinitions.

Minimize the accesses to variables so as to reduce the dependency of methods on the in-
ternal class representation. This can be achieved for example by resorting to special ac-
cessors instead of referring directly to variables.

Ensure that inheritance links match specialization relationships. If necessary, revert class
dependencies to make the hierarchy conform to this constraint. For example, ELLIPSE

E. Casais 157

Handling class differences by explicit type testing:

class A
variables
vV : OBJECT,
methods
M
begin
if V.Class () = B then
V.Method-X (); -- do something;
elself V.Class () = C then
V.Method-Y (); -- do something completely different;
end If
end M;
end;

Delegating class-specific code:

class A
variables
v o OBJECT;
methods
M
begin

i.I:TestCIass 0;

end M
end;
class B
methods
TestClass
begin
self.Method-X (); -- do something;
end TestClass;
end;
class C
methods
TestClass
begin
self.Method-Y (); -- do something completely different;
end TestClass;

end;

Figure 1 Reorganizing classes to avoid explicit type testing.

should be a superclass of CIRCLE, even if it is possible (and perhaps advantageous for
implementation purposes) to install it as a descendent of CIRCLE in the hierarchy [23].

We end with the rules used to modularize the functionality of object definitions.

« Split large classes into smaller classes.

158 Managing Class Evolution in Object Oriented Systems

« Factor out implementation differences into subclasses, or via multiple inheritance, into
“mixins”; if possible, delegate functionality to other objects.

« Separate groups of methods that do not communicate. Such sets of methods represent ei-
ther totally independent behaviour or different views of the same object, which are per-
haps better represented by distinct classes.

+ Decouple methods from global attributes or internal class properties by sending messag-
es to parameters instead of to self or to instance variables.

These design principles are obviously intertwined; for example, the methods derived from
the decomposition of a large procedure most probably require less arguments than the original
routine. Similarly, suppressing test cases diminishes the size of methods. Factoring out common-
alities in superclasses results in smaller subclass descriptions, with fewer redundant declara-
tions.

5.3 Evaluation

All these guidelines are of course very general. They provide no accurate criteria to drive the
restructuring process: the software maintainer is left on his own to detect the situations warrant-
ing a reorganization of the hierarchy and the best way to accomplish it. An important require-
ment is that the reorganization of a class should affect its clients as little as possible; this imposes
additional constraints on the kind of modifications that may be safely applied to object defini-
tions and to the inheritance graph. Some authors propose using a shortened description of a class
(excluding details about method implementation) as a starting point for generalization [38]. An-
other technique consists in associating pre and post-conditions to each method and then analys-
ing these invariants to discover abstraction opportunities.

Fortunately, some of the rules appearing in this informal reorganization framework are
amenable to a rigorous formulation and a subsequent automation. Software developers can thus
take advantage of both the informal, but extensive framework—which gives them considerable
freedom for choosing class evolution paths, and its detailed formalization—with its facilities for
in depth analysis of certain choices.

6. Restructuring Inter-Attribute Dependencies

6.1 Issues

The list of reorganization rules exposed in the previous section clearly shows that avoiding un-
necessary coupling between object definitions and reducing inter-attribute dependencies are two
important prerequisites for well-designed classes. This is clearly justified from a software engi-
neering point of view, since tightly encapsulated classes are easier to reuse and to maintain. Two
major issues have to be addressed:

» What are the inferior or “harmful” dependencies?

+ How can unsafe expressions be automatically replaced with adequate constructs?

E. Casais 159

This problem has been studied by Liebermann et al. [32](33]; the results of their investiga-
tions have been condensed in a short design principle known as the Law of Demeter, and in a
small set of techniques for transforming object definitions so that they comply with this law.

6.2 The Law of Demeter

The Law of Demeter distinguishes three types of inter-attribute dependencies, and three corre-
sponding categories of relationships between class definitions:

« A class C, is an acquaintance class of method M in class C,, if M invokes a method de-
fined in C, and C; does not correspond to the class of an argument of M, to the class of
a variable of C,, to C, itself, or to a superclass of the aforementioned classes.

A class C, is a preferred-acquaintance class of method M in C,, if C; corresponds to the
class of an object directly created in M or to the class of a global variable used in M.

» Aclass C, is a preferred-supplier class of method M in C,, if M invokes a method defined
in C}, and C, corresponds to the class of a variable of Cj, or to the class of an argument
of M, to C, itself, to a superclass of the aforementioned classes, or to a preferred-acquain-
tance class of M.

These definitions form what is called the ‘“‘class form” of the law. .

In its weak version, the law simply aims at minimizing the number of acquaintance classes
over all methods. A stricter version states that methods may only have preferred-supplier class-
es. The so-called “object form” of the law prohibits references inside a method to objects that
are not created directly by the method, are not variables introduced by the class where the meth-
od is defined, and do not correspond to arguments passed to the method, to global variables or
to the pseudo-variable self (identifying the object executing the method).

In all versions of the law, the basic goal remains the same: a method should only access at-
tributes which are closely related to it or to the class it belongs to. Typically, a method should
not traverse the structure of an object to manipulate its internal variables. It should not access
variables pertaining to its class definition when they are actually inherited from a superclass. It
should not directly send messages to foreign objects created by another method. The elimination
of these dependencies promotes information hiding and restricts the visible properties of classes
to narrow interfaces. As a consequence, the degree of coupling between classes, the size of the
methods and the number of their arguments diminish—thus facilitating the application of pro-
gram validation techniques, increasing the chances for reuse, and simplifying software mainte-
nance.

6.3 Application and examples

We illustrate the main reorganization aspects dealt with by the Demeter approach for a group of
simple object descriptions. The example is an adaptation of the case discussed in [32].

Let us assume the following definitions:

class LIBRARY
varlables
Catalog CATALOG;

160 Managing Class Evolution in Object Oriented Systems

Loans : LOAN;
methods
Search-book (title : STRING) returns LIST[BOOK]
begin
books-found : LIST[BOOK];

books-found := Catalog.Microfiches.Search-book (title);
books-found.Merge (Catalog.Optical-Disk.Search-book (title));
return (books-found);

end Search-book;

i

class CATALOG
variables
Microfiches : MICROFICHE;
Optical-Disk : CD-ROM;

melh;l;ls
end;

class CD-ROM
variables
Book-References FILE[BOOK];

methods
Search-book (title : STRING) returns LIST[BOOK]
begin :
book g BOOK;
books-found : LIST[BOOK];
books-found.New ();
Book-References.First ();
loop
exit when Book-References.End ();
book := Book-References.Current ();
If title.Equal (book.Title) then
books-found.Add (book)
end-If;
Book-References.Next ();
end loop;
return (books-found);
end Search-Book;

end;
class MICROFICHE
varlables
Book-References FICHES[BOOK];
meth&is
Search-book (title : STRING) returns LIST[BOOK]
begin
end ééarch-book;

end;

E. Casais 161

class BOOK
variables
Title H STRING;
SubTitle : STRING;
Authors LIST[STRING];
metht;'ds
end;

The definition of class LIBRARY obviously does not conform to the law: method Search-
book accesses internal components of Catalog—the variables Microfiches and Optical-Disk; it sends
messages to these variables and receives as result objects that are not subparts of LIBRARY in-
stances and whose type—LIST[BOOK}—is not a preferred-supplier class of LIBRARY. We also
note that the algorithm for retrieving all references stored on the optical disk violates elementary
encapsulation constraints: it manipulates the internal structure of books to find whether their title
matches a specific search criterion.

It is clear that the details of scanning microfiche and CD-ROM files to find a particular ref-
erence should be delegated to the CATALOG class. This would make the querying methods of LI-
BRARY immune to alterations in the internal structure of the catalog—for example the replace-
ment of the microfiches with an additional CD-ROM file. A first transformation (called “push-
ing” by Lieberherr et al.) allows us to get rid of this problem.

class LIBRARY

varlables
Catalog CATALOG;
Loans " LOAN;
methods
Search-book (title : STRING) returns LIST[BOOK]
begin

return (Catalog.Search-book (title));
end Search-book;

end;

-~ The definition of LIBRARY is now correct.

class CATALOG
variables
Microfiches 3 MICROFICHE;
Optical-Disk H CD-ROM;
methods
Search-book (title : STRING) returns LIST[BOOK]
begin

books-found : LIST[BOOK];
books-found := Microfiches.Search-book (litle);
books-found.Merge (Optical-Disk.Search-book (litle));
return (books-found);

end Search-book;

end; N

162 Managing Class Evolution in Object Oriented Systems

- The definitions of CD-ROM, MICROFICHE and BOOK remain unchanged.

This organization is still not adequate: the CATALOG class manipulates objects, returned by
the Search-book methods of Microfiches and Optical-Disk, that do not belong to it. Moreover, the
type of these objects does not correspond to a preferred-supplier class of CATALOG. In this case,
it is rather difficult to delegate further the processing of searches for references to the compo-
nents of CATALOG: merging the results of several sub-queries should remain the responsibility
of the catalog object. On the other hand, this cannot be done without accessing LIST[BOOK] en-
tities, which is in principle incorrect.

The Law of Demeter proposes to deal with such situations by making use of an additional
method:

class CATALOG
variables
Microfiches : MICROFICHE;
Optical-Disk ~ : CD-ROM;
methods
Search-book {title : STRING) returns LIST[BOOK]
begin

return (self.Merge-refs (Microfiches.Search-book (title),
Optical-Disk.Search-book (title)));
end Search-book;

i\.lierge-rets (microfiche-refs : LISTIBOOK]; cd-rom-refs : LIST[BOOK])
returns LIST[BOOK]
begin
return (microfiche-refs.Merge (cd-rom-refs));
end Merge-refs;
end;

The definition of CATALOG now fully complies with the law. Search-book no longer manip-
ulates objects of type LIST[BOOK], but instead passes them to Merge-refs for processing. Because
the latter method declares microfiche-refs and cd-rom-refs as arguments, it may invoke methods on
them freely; LIST[BOOK] is effectively a preferred-supplier class of Merge-refs. The introduction
of such a method may appear artificial, but it makes explicit the dependency between the CATA-
LOG and LIST[BOOK] classes. The programmer is informed about these dependencies at the level
of method signatures, while in the previous situation he had to delve into the code of Search-book
to detect them.

The last transformation concerns the implementation of Search-book in CD-ROM. Ensuring
the proper encapsulation of BOOK objects requires that their variables which are publicly visible
be manipulated through special-purpose procedures like the slot accessors of CLOS. It is casy
to derive the appropriate adjustments to the definitions of CD-ROM and BOOK that enforce this
rule. According to the strictest interpretation of the law, BOOK objects cannot be considered pre-
ferred-suppliers of CD-ROM. A technique similar to the one described above for CATALOG sup-
presses this inconsistency, although it produces a somewhat cumbersome program structure.
Conversely, it is perfectly legal to let Search-book manipulate the object books-found, of type
LIST[BOOK], since this object is actually created by method itself.

E. Casais 163

class CD-ROM
varlables
Book-References s FILE[BOOK];

methods
Search-book (title : STRING) returns LIST[BOOK]
begin
books-found : LIST[BOOK];
books-found.New ();
Book-References.First ();
loop
exit when Book-References.End ();
I title.Equal (self.RefTitle (Book-References.Current ())) then
books-found.Add (Book-References.Current ());
end-If;
Book-References.Next ();
end loop;
return (books-found);
end Search-Book;
RefTitle (reference : BOOK) returns STRING
begin
return (reference.Get-Title);
end GetRefTitle;

—_—

class BOOK
varlables
Title : STRING;
SubTitle : STRING;
Authors LIST[STRING];

methods
Get-Title returns STRING
begin
return (Title);
end Get-Title;

i

The Demeter approach provides still another reorganization technique, the “lifting” meth-
od, but it can be applied only in rarer circumstances. The reader should refer to [33] for more
details about this technique.

6.4 Mechanical reorganization

In [32], the authors sketch an algorithm for mechanically transforming programs that do not con-
form to the law into an equivalent legal form. A first trivial adaptation consists in replacing all
direct references to inherited variables and to subcomponents of a variable by calls to specialized
accessors in charge of retrieving or setting their value. All other violations are assumed to occur
within nested expressions, when objects returned by a method become the target for further mes-
sages, as in the class definition below:

class Cq

methods
Mo returns C,

164 Managing Class Evolution in Object Oriented Systems

Xp Cz;
X3 : GCg;
Xy ¢ Cn:
- X, of class Cy is an argument of Mg or a variable of Co.

Xz = X1.My ()i
X3 =X2.Ma ();
Xp = Xp1. M.y ()i
return (x,,);
end Mo;
end;

In a first step, the responsibility for carrying out the My method is delegated to class C;.
Thus, Cp now satisfies the law, since it no longer invokes a method on the object retumed by My;
remember that this object is not a preferred supplier of M.

class Gy
methods
M returns C,
begin
return (X;.New-M; ());
end Mo:
end;
class 01
methods
New-M; returns C,
begin
X2 Ca
X3 Ca;
Xy, : Cp
Xp = 89".M1 (),
X3 =X2.M2 ();
Xn = Xp-1-Mn_1;
return (x,);
end New-My;
end;

By an analogous transformation, we eliminate all method invocations on objects x3 to x,
from C,’s definition:

class C1
methods
New-M, returns C,,
begin
X2 4 02;
Xp = self.Mq ();
return (x,.New-M, (});
end New-M,;
end;

class C,

E. Casais 165

methods
New-M, returns C,
begin
Xg Cs;
Xn ¢ Cni
X3 = 8elf.M; ();
X4 = X3.M3 ();
Xp = Xp-1-Mp.1i
return (x,);
end New-My;
end;

We repeat this process until classes Ci_;_.1 are of the form:

class C;
methods
New-M; returns C,,
begin
Xy ¢ Gis
Xip1 = Se".Mi 0:
return (x;,1.New-M;,1 (0);
end New-M;;
end;

and class C, is:

class C,
methods
New-M,, returns C
begin
return (self.M, ());
end New-M,;
end;

These classes, except for Co and C,,, do not yet conform to the law of Demeter. For each of
them, we must determine whether the return value of the M; method is an instance of a preferred-
supplier class of C;. We must consider two cases:

< M returns a variable pertaining to C;. Since x;,; identifies a component of C;, the method
New-M; conforms naturally to the law of Demeter.

* M; does not return a variable belonging to C;. New-M; must then be recoded so that X;, 4
becomes a preferred-supplier object of C;. This is achieved by introducing an auxiliary
method—as was done in the example of the previous section.

class C;
methods
New-M; returns C,
begin
return (self.Suppl-M; (self.M; ()));
end New-M;;
Suppl-M; (X;,4 : Ci,q) returns C,
begin
return (X, .New-M; 1 ());
end Suppl-M;;
end;

166 Managing Class Evolution in Object Oriented Systems

This description omits a number of elements that must be taken into account in more real-
istic situations. In particular, arguments passed with a message must also be checked for con-
formance to the law, since they might be the result of evaluating nested expressions involving
non-preferred-supplier objects.

The other reorganization techniques available in the Demeter framework—"pushing” and
“lifting"—produce interesting class structures, that are generally more intuitive than the system-
atic replacement of dubious dependencies with forwarding calls to auxiliary methods. Unfortu-
nately, these techniques cannot be easily automated.

6.5 Evaluation

In spite of the fact that it can be only partly automated, the Law of Demeter provides a sound
and useful conceptual framework for disciplining object-oriented programming and improving
class design. Its application has revealed to be beneficial for guiding the design of modular ob-
jeet-oriented libraries. Rut, as Sakkinen points out, putting the law into practice raises several
difficultics [45].

The Demeter rules cannot be completely enforced at compile-time with languages that al-
low message-passing expressions to be generated dynamically (for example, with LISP macros)
or to be given as arguments (i.e. the method to invoke on an object is not known a priori), or that
allow the introduction or redefinition of methods at run-time. Langunages like LISP-CLOS,
Smalltalk and Objective-C fall, to a various extent, into this category. Object aliasing (i.e. refer-
ring to the same entity through different names) also complicates the checking of expressions
for conformance to the law. In general, the “class form” law of Demeter does not seem to be fully
effective for untyped languages: since objects manipulated by the language expressions are not
declared to belong to a certain class, it is not possible to determine the conformity of programs
to the law by a static examination of their source code. Violations of the law can only be moni-
tored and detected during program execution. This is why in practice the “object form” of the
law appears to be more tractable as a framework for checking expressions at compile-time.

As far as typed languages are concerned, applying the Demeter principles is not always
straightforward either. First, there are some pathological cases where the spirit of the law is vi-
olated, although all dependencies and message-passing patterns formally respect all Demeter
rules stated on section 6.2. Fortunately, such anomalies are rare and occur only in very contrived
situations. More importantly, the law requires significant enhancements and reformulation to
handle language peculiarities correctly. Smalltalk allows classes and metaclasses to be targets
for message-passing instructions, so these entities could presumably be considered to be pre-
ferred-suppliers of all methods referring to them. Eiffel implements a form of genericity where
classes can bind type arguments inherited from their ancestors. Thus, for the generic class
LIST[T], LIST[BOOK] is a descendent that binds the generic argument T to the class BOOK. It would
be perfectly legitimate to view BOOK as a preferred-acquaintance or even a preferred-supplier
of LIST[BOOK] methods. In the case of C++, the law of Demeter has to deal with mechanisms
like friend functions or type casts. It must also take into account the fact that the objects and the
constructs of the language do not exhibit equivalent properties. Basic data types like integers and
characters, or structures and arrays do not behave like user-defined classes and may not be ma-

E. Casais 167

nipulated with the same primitives. For example, arrays are not explicitly created by invoking a
constructor operation. Although appropriate adaptations have been proposed for C++, translat-
ing the law of Demeter into equivalent terms for a specific object-oriented language is not al-
ways a trivial task.

It must be noted that some of the issues considered by the law are already handled by the
mechanisms of existing programming languages. In CLOS, generic reader and writer functions
for accessing variables can be automatically generated when a new class is declared. With C++,
the methods and variables of a class are separated into three categories with different scoping
constraints. Public attributes are visible to all clients of a class; protected attributes are only ac-
cessible to its subclasses; private attributes are not visible outside a class definition. These con-
structs greatly help in enforcing the encapsulation rules advocated by the Demeter approach, but
they are insufficient for coping with the other dependency problems or disciplining the use of
object-oriented mechanisms; this is precisely why programming style guidelines and design
methodologies like the law of Demeter are useful.

7. Advanced Class Reorganization Techniques

7.1 Issues

Several authors point out that improper class modelling is a common phenomenon and consider
the recasting of class hierarchies as an unavoidable aspect of the design process [17][23][38].
From this point of view, the traditional separation between development and maintenance activ-
ities loses much of its relevance. The goal then is to deal with the imperfections of a class hier-
archy. These imperfections may stem directly from the coding activities of a software developer
who is producing new unstructured programs from a well-designed class library. Alternatively,
the defects may be already present in the hierarchy, but are only revealed when attempts at class
reuse fail or meet with considerable obstacles in spite of a careful modelling of the new applica-
tion. A good reorganization methodology should detect the places in a class hierarchy warrant-
ing redesign and propose better ways to structure dubious class definitions.

We propose a new approach for automating precisely these tasks. We emphasize inherit-
ance and the structuring of classes and class attributes as the essential abstraction mechanisms
that drive the modelling of applications and the constitution of class hierarchies. This is in line
with the general idea of object-oriented programming, which assumes that a great part of soft-
ware development rests on the reuse capabilities afforded by inheritance. In contrast, the Deme-
ter approach focuses on the calling and dependency patterns between methods.

Our fundamental hypothesis is that design flaws can be uncovered at the time an object de-
scription is added to a hierarchy. The new class may refine, override or eliminate altogether the
properties inherited from its ancestors—which were found in the existing library and supposedly
encapsulate some interesting functionality in a rensable form. The redefinitions may correspond
to:

+ Inadequate application of object-oriented mechanisms for deriving the new subclass.

168 Managing Class Evolution in Object Oriented Systems

» Defective structures in the library of reusable components, which hinder the incorpora-
tion of properties inherited from superclasses into new applications.

As Johnson and Foote note [25], a frequent problem lies in the fact that programmers often
overlook intermediate abstractions needed for establishing clean inheritance dependencies, and
develop components too specialised to be effectively reusable. The consequences of early class
specialization are often manifest when modules are created, and become acute when other peo-
ple try to reuse these same modules. By extracting as much information as possible from the in-
heritance and redefinition patterns of classes, one should be able to improve libraries of software
components and gain insight into the modelling of class hierarchies.

The analysis of the tailoring operations proceeds in several stages:

» All redefinitions of inherited properties are decomposed into more primitive operations,
which apply only to a limited class characteristic. For example, the redefinition of a
method signature can be broken down into the renaming of the arguments and into the
redeclaration of their type.

» Typical redefinition patterns are assigned to individual categories. Such categories rep-
resent typical ways for deriving new classes from existing ones; as such, they correspond
to various semantics of the general inheritance mechanism.

« According to each of these categories, the new class definition is adjusted to make all ab-
straction steps explicit. The hierarchy is also reorganized so as to eliminate the need for
non-legitimate uses of inheritance, i.e. those that do not strictly correspond to one of the
aforementioned categories.

The reorganization process may create intermediate nodes in the inheritance graph, shuffle
attributes among them and rearrange inheritance paths. It is carried out by an algorithm that we
describe informally in the next pages.

7.2 Model and terminology

Our approach is based on a very simple model that encompasses the major characteristics of
most object-oriented databases and programming languages. We have deliberately avoided the
inclusion of language-specific constructs closely matching those of actual systems in order to
avoid compromising the generality of our methodology.

‘A class defines a set of attributes, which can be either variables or methods. Variables are
repositories for information hidden inside objects. A variable has a name and a type, which cor-
responds to the name of a class. The idea is that only objects from the specified class (or com-
patible with that class) may be assigned to the variable. We assume that the typing mechanism
is integrated with class relationships, although it may not necessarily be grounded on it!, Prim-
itive types like INTEGER or BOOLEAN have therefore an associated class.

1. CLOS constitutes a good example of this possibility: any traditional LISP object, like a list or an integer,
can be tested for membership to a class, thanks to a common typing scheme for fundamental LISP types
and user-defined classes. However, the definition and manipulation of objects from both categories are car-
ried out by totally distinct mechanisms.

E. Casais 169

Methods form the executable part of an object; they correspond to functions and procedures
in traditional programming languages. A method is identified by its name; it may define a list of
arguments that must be supplied to the method when it is invoked. Arguments are identified by
their name and have an associated rype, that, as with variables, corresponds to a class in the sys-
tem. Arguments may be classified into input parameters—that only serve to provide some infor-
mation to the method—output parameters—that serve to return results to the invoker of the
method—and inpur-output parameters—objects that are exchanged between the calling and the
called method, and that can be modified freely by the latter. Since operations on objects are per-
formed by sending messages, it is often not possible to determine whether an argument belongs
to the input, output or input-output parameters in the absence of any explicit declaration in meth-
od headers; this would require an analysis of the side-effects of all messages that can be sent to
an argument. Current object-oriented programming languages frequently make a distinction be-
tween the arguments supplied to a method and the result returned by it. In this case, it is natural
to presume that arguments are all input-output objects, while the result is just an output value.

The code that a method executes upon invocation is called its implementation. A method
may call other methods or refer to the variables defined in its class. For each implementation, we
associate the list of methods and the list of variables it depends on for its proper execution. By
default, the names appearing in these lists refer to the attributes defined in the class the method
and its implementation belong to. If it is necessary to override scoping constraints to refer di-
rectly to a method or a variable defined in a superclass, we assume that the attribute identifier
can be prefixed with the superclass name. The implementation of a method may be deferred; in
this case, the class only defines the method signature (name and arguments) and leaves the code
unspecified, to be determined in a subclass. Constructing so-called abstract or deferred classes
is a technique widely used in object-oriented programming.

The attributes of a class are either inherited from other classes or introduced by the class
itself. Because of multiple inheritance, naming conflicts may occur between attributes bearing
identical identifiers but acquired through different subclassing paths. We suppose that some dis-
ambiguating mechanism allows one to distinguish correctly between attributes with similar
names. It is reasonable to assume that attributes introduced in a class take precedence over those
with the same name defined in the class’s ancestors. The structure deduced from inheritance
links between classes is restricted to form a directed graph without circuits, so that no class can
directly or indirectly inherit from itself.

A class may redefine the attributes inherited from its superclasses. For each ancestor, and
for each redefined attribute pertaining to this ancestor, there is a specification of how its charac-
teristics are overridden in the subclass. For example, it is possible to redeclare the type of a meth-
od argument and leave the remaining properties of the attribute unchanged. As with new, intro-
duced attributes, a redefinition supersedes the inherited characteristic in the class definition.

Our model also allows inherited attributes to be rejected when a new subclass is added to a
hierarchy, in which case they should not appear at all in the subclass definition. Rejecting at-
tributes is not really a subclassing operation, but rather a modification of the inheritance schema.
No current object-oriented language allows one to reject or to selectively inherit attributes from
a superclass; to achieve this result, the hierarchy must be reorganized, by separating rejected and

170 Managing Class Evolution in Object Oriented Systems

accepted attributes into different classes. Our approach assumes that the need for such modifi-
cations becomes apparent when extending the class hierarchy; it is therefore interesting to inte-
grate this evolution pattern with our reorganization algorithm.

The attributes defined by a class are either public, i.e. accessible from the outside of an ob-
ject, or private, inaccessible from other objects. Variables are in principle private to an object,
but, if needed, they can be manipulated via special accessor methods.The interface of a class de-
termines which of its methods are made publicly visible. The interface is not inherited and may
be freely overridden in subclasses.

We use the general term of property to designate any of the characteristics belonging to a
class definition, that is, its attributes, the redefinition pcrfonned by the class, its inheritance links
and the specification of its interface. A property may exhibit several facets; for example, a meth-
od may be considered from the point of view of its name, its signature, the type of its arguments,
its implementation, etc.

7.3 Principle of the algorithm

In order to avoid lengthy developments, we present only a general outline of our algorithm.
Some details of its anatomy can be fairly easily inferred from the examples given in this and the
next section; more complete information on its reorganization and simplification components,
described below, can be found in [10].

The algorithm is built around three major components that operate on a class definition
newly installed as a subclass in an existing hierarchy. This new class may contain any kind of
attribute redefinition; it may also reject inherited properties and add its own set of characteristics
to those acquired from its ancestors. The algorithm isolates the various abstraction steps that
compose the set of redefinitions; for each of these steps, a new class is created, thus making ex-
plicit the succession of logical subclassing operations needed to arrive at the new class schema.

When the redefinitions are actually caused by a deficiency in the structure of inherited su-
perclasses, the algorithm reorganizes the hierarchy to suppress these defects and ensure that the
inheritance graph is only composed of legitimate subclassing relationships. This step is carried
out by a separate procedure that traces unwanted properties (i.e. those that are redeclared be-
cause they can neither be inherited nor refined in their present form) up the hierarchy until reach-
ing the nodes where they are introduced. For each of these classes, a node is created that contains
properties common to both the superclasses of the initial hierarchy and to the newly introduced
subclass. The inheritance links are then redirected to point from the subclass to these additional
nodes rather than to the previous ancestors. These reorganization operations also result in the
creation of supplementary classes.

A third and final pass is required to suppress redundant nodes from the graph. Basically, all
new classes that do not introduce any additional properties relative to their ancestors, or which
have only one descendent, are merged with other class definitions.

As an example of the first restructuring step (called the decomposition step), consider the
following definition:

171

E. Casais
class DEQUE
exports
Put-front, Put-back, Get-front, Get-back.;
variables
First 2 INTEGER;
Last : INTEGER;
Counter : INTEGER;
Store : ARRAY[OBJECT];
methods
Put-front (item : OBJECT)
begin
- Add the new item at the front of the deque.
end Put-front;
Put-back (item : OBJECT)

begin
-- Addthe new item at the end of the deque.
end Put-back;
Get-front returns OBJECT
begin
- Retrieve the item at the front of the deque.
end Get-front;
Get-back returns OBJECT
begin
-- Retrieve the item at the back of the deque.
end Get-back;
end;

Let us suppose that a programmer inherits from this class to build a description for stacks
of real numbers:

class STACK
inherlts
DEQUE;
exports
Push, Pop;
redefines
Put-front, Get-front, Store;
renames
Put-front as Push, Get-front as Pop;
varlables
Store : ARRAY[REAL];
methods
Push (item 3 REAL)
begin
super.Put-front (item);
end Put-front;
Pop returns REAL
begin
super.Get-front;
end Get-front;
end;

This subclass actually embodies several abstraction steps: a change in the terminology for
the data structure, a change in the interface, and a specialization. To make these various utiliza-
tions of inheritance explicit, the decomposition procedure adds two intermediate classes ar-
ranged in the following hierarchy:

172 Managing Class Evolution in Object Oriented Systems

class STACK,
Inherits
DEQUE;
exports
Push, Pop, Get-back, Put-back;
renames
Put-front as Push, Get-front as Pop;
end;

class STACK;
inherits
STACKy;
exports
Push, Pop;
end;

class STACK
inherits
STACKy;
exports
Push, Pop;
redefines
Push, Pop, Store;
variables
Store 4 ARRAY[REAL];
methods
Push (item : REAL)
begin
super.Put-front (item);
end Put-front;
Pop returns REAL
begin
supet.Get-front;
end Get-front;
end;

Each one of the three abstraction levels corresponds to a consistent, typical utilization of
inheritance:

* STACK, identifies the origin of the inheritance path and the renaming of properties ac-
quired from its ancestors. Renaming operations may hint at an inconsistent terminology
for specifying classes in the library—contrary to the rules stated in section 5.2—and may
justify additional adjustments to the class collection.

¢ STACK; does not redefine any inherited attribute, but restricts the visible interface to op-
erations Push and Pop, so that a deque is actually manipulated as a stack; STACK, is a
view of DEQUE. Notice that since STACK; does not redeclare any inherited attribute, it
actually corresponds to the general definition of a stack, that can store any kind of ob-
jects.

The last class, STACK, is a specialization of the more general STACK, definition: instanc-
es from STACK can only handle objects of type REAL.

As an example of subclassing that warrants a reorganization of the existing hierarchy, con-
sider the following situation:

E. Casais

class LARGE-DEQUE

Inherits
DEQUE;
exports
Put-front, Put-back, Get-front, Get-back;
redefines
First, Last, Put-front, Put-back, Get-front, Get-back;
rejects
Store; - There is no longer any need for this variable;
-- LARGE-DEQUE uses a linked list instead of an array.
varlables
First g NODE;
Last H NODE;
methods

-~ The code in every method, rather than dealing with a fixed width array,
- takes advantage of the possibiiity to have nodes of the deque allocated

- dynamically.
Put-front (item : OBJECT)
begin
-- Add the new item at the front of the deque.
end Put-front;
Put-back (item : OBJECT)
begin
-~ Addthe new item at the end of the deque.
end Put-back;
Get-front returns OBJECT
begin
- Retrieve the item at the front of the deque.
end Get-front;
Get-back returns OBJECT
begin
- Retrieve the item at the back of the deque.
end Get-back;
end;

173

LARGE-DEQUE provides services similar to those of DEQUE, except for their implementa-
tion. It is clear that there is an abstract class underlying the description of both DEQUE (which
should perhaps be called FIXED-SIZE-DEQUE) and LARGE-DEQUE. The reorganization algorithm
is able to infer from the redefinitions and rejections performed by the latter class that the sub-
classing operation cannot be decomposed into normal inheritance relationships, and that the

original hierarchy must be fixed.
class DEQUE,

-- This class describes an abstract deque.

exports

Put-front, Put-back, Get-front, Get-back.;
varlables

First : OBJECT;

Last H OBJECT;

Counter : INTEGER;
methods

Put-front (item : OBJECT)

begin

174 Managing Class Evolution in Object Oriented Systems

deferred;
end Put-front;
Put-back (item : OBJECT)
begin
deferred;
end Put-back;
Get-front returns OBJECT
begin
deferred;
end Get-front;
Get-back returns OBJECT
begin
deferred;
end Get-back;
end;

class LARGE-DEQUE

- This class implements a variahle sized deque
Inherits
DEQUEy;
exports
Put-front, Put-back, Get-front, Get-back;
redefines
First, Last, Put-front, Put-back, Get-front, Get-back;
variables
First H NODE;
Last " NODE;
methods
Put-front (item : OBJECT)
begin
-- Add the new item at the front of the deque.
end Put-front;
Put-back (item : OBJECT)
begin
- Add the new item at the end of the deque.
end Put-back;
Get-front returns OBJECT
begin
-~ Retrieve the item at the front of the deque.
end Get-front;
Get-back returns OBJECT
begin
- Retrieve the item at the back of the deque.
end Get-back;
end;

class DEQUE

-- This class implements a fixed sized deque.
Inherits

DEQUE,;
exports

Put-front, Put-back, Get-front, Get-back;

redefines
First, Last, Put-front, Put-back, Get-front, Get-back;

175

E. Casais
variables
First 3 INTEGER;
Last : INTEGER;
Counter : INTEGER;
Store H ARRAY[OBJECT];
methods
Put-front (item : OBJECT)
begin

-~ Add the new item at the front of the deque.
end Put-front;
Put-back (item : OBJECT)
begin
-- Add the new item at the end of the deque.
end Put-back;
Get-front returns OBJECT
begin
-~ Retrieve the item at the front of the deque.
end Get-front;
Get-back returns OBJECT
begin
-~ Retrieve the item at the back of the deque.
end Get-back;
end;
DEQUE and LARGE-DEQUE are now concrete subclasses of the abstract DEQUE, class. No-
tice that the signature of the methods are identical in all classes, that the variable Counter is need-
ed for both DEQUE and LARGE-DEQUE, and that the First and Last attributes present in the ab-

stract class are specialized in its descendents.

7.4 Application

By now, the reader should have a good intuitive understanding of the principles behind our class
restructuring approach. In this section, we highlight the essential decomposition and reorganiza-
tion operations that can be applied to a class hierarchy upon the introduction of a new class def-
inition. Our restructuring method proceeds in several distinct steps, considering only a limited
range of class properties at a time. The redefinitions of each property is often broken down into
additional substeps, as explained below. We try to analyze class structures in a top-down fashion,
from their most general to their most detailed characteristics. Thus, we first deal with classes as
interrelated sets of named attributes; we then separate these attributes into public and private at-
tributes. In the next step, we deal with the structure of method signatures, and then with the type
of the variables and of the arguments. The last stage of the reorganization deals with method im-
plementations.

Inheritance and renaming. This step only considers the inheritance links from the new class to
existing ancestors in the hierarchy. Redefinitions of inherited properties (attributes or inter-
faces) may not be immediately applied—except for the renaming of attributes. STACK, ex-
emplifies this reorganization step.

Interface restriction. All inherited attributes that should not appear in the new class’s interface
are excluded from it—as in the STACK; class in the previous example—provided some of
them remain visible. In this case, a supplementary subclass is created with the new interface
definition; this subclass is a view of its ancestor. If all inherited attributes become private to

176

Managing Class Evolution in Object Oriented Systems

the new class, no additional node is inserted. The hierarchy is reorganized so that all inher-
ited attributes that belong to the interface are originally visible in the ancestors; the idea is
that no inherited private attribute may be made public, although any inherited public at-
tribute may become private (via a restriction operation). If necessary, the nodes higher up
in the hierarchy are reorganized to comply with this constraint,

Class extension. Introduced attributes are inserted into the class definition and those that must

be part of the class interface are made public. For example, if STACK defined two additional
methods like Empty and Full to query the status of the stack, these would appear in the in-
terface at this point. The implementation of introduced methods is deferred to a lower sub-
class. If only introduced attributes are part of the class interface, the relationship with its
ancestor is called a modularization. This relationship captures typical inheritance patterns
like the following:

class BYTE-FILE

exports
Read, Write, Seek, Open, Close;

;ﬁd;
class SEQUENTIAL-FILE
inherlts
BYTE-FILE;

exports
Read-Int, V\{rite-lnt, Read-Char, Write-Char, ..., Reset, Rewrite;

;hd;

Signature simplification. When input arguments disappear from a method signature, this is an

indication that the class requires less information to carry out the same service—perhaps
because it assumes some default values for the now superfluous parameters. An additional
subclass is created to make this protocol simplification explicit. If DEQUE had been defined
as:

class DEQUE
exports
Put, Get;

methods
Put (item : OBJECT, location : 0..1)
begin
-~ Putitem at front or back of the deque according to “location™.
end Put;
Get (location 0..1) returns OBJECT
begin
-- Retrieve item at front or back of the deque according to “location”.
end Get;
end;
then STACK would probably have been a simplification of a deque:
class STACK
Inherits

DEQUE;
exports

E. Casais 177

Put, Get;
redefines
Put, Get;
methods
Put (item : OBJECT)
begin
super.Put (item, 0);
end Put;
Get returns OBJECT
begin
super.Get (0);
end Get;
end;

Uncoupling. Suppressing input-output arguments from the signature of methods is an important
abstraction step: it indicates that the new class encapsulates more state, and that it is no
longer necessary to exchange information between this class and its clients. A new class is
created where all method redefinitions corresponding to an urncoupling are introduced.
These methods remain deferred; if there are other redeclarations to carry out on these meth-
ods (type of arguments, implementation), they are to be analysed and explicited in another
subclass.

At this stage, the hierarchy must be reorganized for all methods for which no simple redef-
inition of their argument list may be found. Let us take an example:

class M
methods

Do-Something(a: X,b:Y,c:Z,d: W) ...

end;

class N
Inherits M;
redefines Do-Something;
methods
Do-Something(a: X, e:U,f:V) ...
end;

Three new classes are introduced in the hierarchy. A first class, common to M and N, defines
the Do-Something method and is inherited by both M and N:

class MN
methods

Do-Something (a: X,i:T) ...

end;

class M
Inherits MN;
redefines Do-Something;
methods
Do-Something (a : X, i : MT) ...
end;

class N
Inherlts MN; P
redefines Do-Something;
methods

178

Managing Class Evolution in Object Oriented Systems

Do-Something (a : X, i : NT) ...
end;

Notice that now M and N specialize a generic parameter called i. The types NT and MT are
defined as follows:

class MT
exports
Set-b, Get-b, Set-c, Get-c, Set-d, Get-d;
variables
b : Y;
e Z;
d 3 W;
methods
-~ All methods are accessors for the variables.
end;
class NT
exports
Set-e, Get-e, Set-f, Get-f;
varlables
e u;
f 3 V;
methods
- All methods are accessors for the variables.
end;

All manipulations of b, ¢ and d (respectively e and f) in the original implementation of Do-
Something in class M (respectively N) must be replaced with calls to the appropriate acces-
sors exported by i.

Other simpler kinds of reorganization may be required for arguments that change catego-
ries, like input parameters that are redeclared as input-output arguments.

Subtyping. We consider now the redeclaration of argument and variable types. A new class is

created for all attributes that are redefined according to a subtype relationship. Our notion
of subtype is identical to the one that is generally proposed in the literature. Class A is a
subtype of B if and only if:

« The interface of A defines at least the methods present in the interface of B;

« The return values of A’s methods are subtypes of those of B’s methods;

» The input arguments of B’s methods are subtypes of the input arguments of A’s methods;
« Input-output arguments for all methods common to A and B are identical.

Subtyping is an inheritance relationship with interesting properties: an instance from class
A can replace an object from class B, since all messages sent to it will be understood and
the results will correspond at least to what the client of the class is expecting. The behav-
ioural compatibility between classes is assumed as long as the conformance at the level of
signatures hold.

E. Casais 179

Specialization. Specialization is an inheritance relationship with much weaker properties than
subtyping, but that conveys important semantic content. In the example of section 7.3, the
specialization of STACKj, a class for managing stacks of objects of any kind, into STACK, a
stack for managing real numbers, corresponds to our idea of specialization. Specialization
is an important conceptual category among all utilizations of inheritance, and it should be
distinguished as such.

Type redeclarations that are neither subtyping nor specializations entail a reorganization of
the hierarchy. This reorganization creates intermediate nodes that are subsequently refined
to give rise to the previously inherited attributes (whose definition had to be redeclared) on
the one hand, and to the new class attributes on the other hand. If possible, new classes are
added to the hierarchy to represent the common properties of the inherited and redeclared

types. Thus,

class M
varlables
Var : A;
end;

class N
Inherlts M;
redefines Var;
variables
Var : B;
- Bis not a specialization or a subtype of A.

end;
results in the following structure, if A and B have no common superclasses:

class MN
varlables
Var : GENERIC;
end;

class M
Inherits MN;
redefines Var;
varlables
Var : A;
- Ais abinding of the generic type of Var.

end;

class N
inherits MN;
redefines Var;
variables
Var : B;
-~ Bis also a binding of the generic type of Var.

end;

180 Managing Class Evolution in Object Oriented Systems

MN is a purely generic class where the type of Var has to be bound in its descendents. If A
and B have some superclasses in common, then it is possible to define a class called, say,
AB-COMMON, that inherits from these common classes. Class MN defines then Var as being
of type GENERIC[AB-COMMON]; this indicates a structure of constrained genericity, a tech-
nique available in some object-oriented languages, notably Eiffel.

Concretization. The implementation of deferred methods is specified at this stage. In fact, this is
done only for methods whose definition cannot be frozen sooner because their implemen-
tation depends on attributes that arc rcfincd in lower subclasses. The class library is reorga-
nized so as to eliminate unwanted implementations from the current class definition, or to
purge it from all rejected attributes—in a manner similar to the second example of section
73,

7.5 Evaluation

With our reorganization approach, an inheritance graph may have to be thoroughly moditied in
order to accommodate a new object definition. In particular, a number of intermediate classes
are inserted berween the original definitions and the new schema, attributes are shuffled among
classes, inheritance links may be redirected, etc.

Additional classes frequently represent shared modules of functionality; they correspond to
constructs, such as the “mixins” of LISP, whose main purpose is not describe real-world entities,
but rather to support the implementation of other classes. More importantly, the classes intro-
duced during the decomposition, and also during the reorganization processes can serve as a
rough estimate for the abstractions that are missing from the modelling of an application domain.
Such defects are unavoidable; it is exceptional to achieve a stable, definitive class design without
going through several iterations. New classes and inheritance links correspond to the places in
the hierarchy warranting redesign.

Of course, the reorganization algorithms should be considered as an aid to design and main-
tenance, not as a compulsory procedure to apply blindly to a collection of software components.
It seems evident that, because these algorithms perform strictly structural transformations on ob-
ject descriptions, their results require user intervention to compensate for the lack of knowledge
concerning the application domain and the concepts embodied in the class collection. It is up to
the software developer to examine the outcome of the reorganization, to adjust it, and perhaps
to embark on more comprehensive restructuring activities. When typical evolution and reorga-
nization patterns emerge, they can be catalogued and help guide the design process [31].

However, it remains to be seen whether a reorganization algorithm like the one we propose
is really effective as an automatic software engineering assistant, or if simpler and less ambitious
tools provide a more adequate functionality for supporting class modelling.

7.6 Assessing the potential of class reorganization

Not all possibilities for reorganizing classes are taken into account by our approach. In particu-
lar, there is no facility for splitting methods, restructuring their code, or changing the client/serv-
er relationship between classes—for example, there is no automatic transformation of inherit-

E. Casais

181

ance into delegation. We do not believe that these are shortcomings inherent to our methodology
for the following reasons:

Some of the reorganization issues are already addressed by other approaches. We have
already described at some length the Law of Demeter and the dependency restructuring
capabilities afforded by this methodology. There are also techniques for producing struc-
tured, goto-less programs from unstructured code [36], or for transforming abstract data
structures [1][30]. These techniques are not intended for object-oriented environments,
but they may find some use in this context.

The results of our algorithm actually provide useful information for detecting opportu-
nities for further reorganization. For example, modularization relationships hint at pos-
sibilities to use variables and delegation instead of inheritance, but transforming class
definitions to adopt such a structure is extremely difficult, because of the sensitive issues
associated with the binding of the self reference.

Some of the problems facing software reorganization are simply not tractable. As an ex-
ample, the attempts to extract the commonalities from the comparison of several proce-
dures that constitute different instances of the same algorithm have met with very limited
success [14]. The analysis of a table lookup module and of a root finding method to de-
duce a general binary search algorithm cannot be automated and requires considerable
skill to be carried out manually.

In fact, the rather ad-hoc nature of all class reorganization approaches discussed so far high-
lights three problems with object-oriented programming:

The lack of a formal object model prevents the determination of interesting properties of
a class hierarchy (for example redundance-free inheritance relationships) and the appli-
cation of transformations that preserve or improve these properties. Ideally, one would
like to have the equivalent of the normal forms and the normalization algorithms avail-
able for the relational database model [35].

We have always dealt with a very general description of classes. Obviously, finding a
general way to reorganize any kind of class hierarchy is much more difficult than han-
dling evolution in domain-specific object models, with more restricted structures and be-
haviours, and richer semantics. Applying reorganization to “scripts” [13], for example,
may reveal to be more fruitful than restructuring C++ code.

Reorganization attacks the object modelling problem backwards, i.e. when imperfec-
tions are discovered in a class library. It could perhaps be more profitable to support the
initial design phases with better tools and methodologies. A great part of our reorganiza-
tion algorithms is spent trying to separate different modelling utilizations of inheritance;
it would be more interesting to force software developers to respect some design guide-
lines and work with operations like specialization, subtyping, modularization, etc, in-
stead of letting them resort to the general, powerful, but unwieldy and undisciplined in-
heritance mechanism.

182 Managing Class Evolution in Object Oriented Systems

CHANGE PROPAGATION

Modifications brought to class specifications must be propagated to objects instantiated on the
basis of old definitions [41]. Many environments require aborting, recompiling and restarting
whole applications when class definitions are modified; in this case, no special mechanisms for
updating instances are needed or possible. On the other hand, change propagation is a crucial
issue for systems that implement persistent objects (notably object-oriented databases) or that
allow dynamic class redefinitions at run-time (like LISP-CLOS). Discarding existing instances
is evidently not feasible, since they may be involved in running applications and may contain
useful, and perhaps long-lived information. To maintain the overall consistency of the system,
all entities must nevertheless conform to the representation determined by the class they belong
to. We distinguish three approaches to achieve this result:

» The simplest way to deal with change propagation consists in making sure that class ev-
olution does not affect existing instances in any way. As we show in the followiig sec-
tion, change avoidance is in many cases not an altogether unrealistic assumption.

« Instances can be transformed to become conformant with their new class description.
Conversion implies that the structure of old entities has to be mapped to a new schema;
avoiding loss of information is a delicate issue with such a procedure.

 Rather than physically updating objects, one can wrap them with an interface that filters
all accesses to them and takes appropriate actions to make them compatible with their
new class definition. Managing conformance relationships between successive class
variants is the main problem to consider with the filtering approach.

There is not necessarily a one-to-one correspondence between these update propagation
techniques and the class evolution methodologies we have described in the previous sections.
Most methodologies try to reduce the costs associated with class evolution by drawing, when
possible, on several approaches for adapting instances to class modifications.

8. Change Avoidance

Many class modifications do not actually require that instances be updated or enhanced with a
compatibility preserving layer. Detecting when these situations arise is important, since one can
then avoid the inconvenience of change propagation without giving up system consistency.

Class tailoring is the prime candidate for change avoidance: tiloring operations are carried
out only for the purpose of defining additional subclasses; they do not at all impact previous su-
perclasses. No matter how inherited properties are overridden, the modifications appear and take
effect only at the level of the subclasses performing the redeclarations. New subclasses obvious-
ly have no associated instances, so there is no need to care about converting or filtering proce-
dures. The language compiler or the interpreter enforces the changes and is able to bypass the
characteristics acquired from superclasses efficiently, notably by using dynamic binding. Thus,
object-oriented systems avoid updating instances at least when subclassing operations are con-
sidered.

E. Casais 183

Even when a class is directly updated, via class surgery, this does not always imply that in-
stances created when an older schema was in effect must be transformed to comply with the new
definition. Many evolution primitives exhibit no side-effects and can safely be applied without
reorganizing running applications. Among the modification operations listed in section 3.3, the
following bear no consequences on object structures:

« Adding a new class is an operation without any effects, since instances of the class do
not exist. The restrictions imposed when inserting a class in the middle of an inheritance
hierarchy—such as disallowing the introduction of additional variables—guarantee that
subclass definitions, and hence their instances, are not affected by this operation.

» Renaming classes, methods and variables only affects the description of classes, not the
structure of instances. This may not true for programs that explicitly manipulate class or
attribute names. Objects that pass method names as arguments to other methods, or that
store and manage information on class or attribute names, for example by relying on
functions like class-of (which, in CLOS, returns the class name of an object), may be-
come invalid after renaming operations.

« Changing the default value of a variable or a shared slot has no effect on instances, since
these values pertain to the class definitions, not to the objects themselves.

+ The implementation of a method can be changed freely: the code is associated and kept
with a class definition, to be shared among all individual entities.

» Because no arbitrary changes to the domain of variables and arguments are allowed, one
can guarantee that the values stored within existing objects remain compatible with their
new type.

Many of the reorganization algorithms described in the previous section do not destroy in-
formation present in the graph when the reorganization process is launched. Even when inherit-
ance links and properties are rearranged, previous class definitions remain valid—so that we can
in principle dispense with a conversion of their entities.

9. Conversion

9.1 Issues

Transforming all entities whose class has been modified seems like the most natural approach
for dealing with change propagation, and it has in fact been adopted in several object-oriented
systems. This technique implies that instances are physically updated so that their structure
matches the description of the class they belong to. Two important requirements must be met:

» Because there is in general not a direct or a unique correspondence between old and new
class definitions, care has to be taken to avoid losing information.

« The conversion process has to be organized in such a way that it interferes as little as pos-
sible with the normal system operations.

A consequence of the first requirement is that ad-hoc reconfiguration procedures have to be
programmed to accompany automatic conversion processes—whose capabilities to preserve the

184 Managing Class Evolution in Object Oriented Systems

semantics of an application domain are obviously limited. The second requirement forces all
conversion procedures to behave as atomic transactions (i.e. transformations must be applied
completely to the objects involved in the conversion) and puts strong restrictions on their dura-
tion.

9.2 Instance transformation

CLOS provides a good example of how automatic conversion can be enhanced by the program-
mer to take supplementary integrity constraints into account [27]. In CLOS, instances whose
class definition has been modified are automatically transformed to conform to their new repre-
sentation. These transformations are performed according to the rules listed in Table 5. CLOS
deletes from the objects all attributes which have been dropped from their class, including their
associated accessors, adds and initializes those attributes that have been introduced in the class
definition, and adapts the attributes whose status has passed from shared to local (or vice-ver-
su)!, This conversion is carried ont hy a standard function called update-instance-for-radefined-

New slot
0O1d slot Shared Local None
Shared preserved preserved discarded
Local initialized preserved discarded
None initialized initialized —

Table 5 Default conversions carried out by CLOS on objects after a class modifi-
cation. A slot corresponds to a variable. Preserved slots have their values
left untouched. Discarded slots are removed and their values are lost. Ini-
tialized slots are assigned a value determined by the class the instance
belongs to.

class, which is inherited by every class in a hierarchy and can be customized by the program-
mer—typically with an :after or a :before daemon. The arguments passed to this function, and
available for further processing in the user-specified method, are the following:

o The list of names of attributes added to the class definition.
« The list of names of attributes discarded from the class.

» Alist containing attribute names with their original value, for all attributes dropped from
the class definition as well as those converted from local to shared.

+ Optional initialization arguments.

1. A shared slot is a variable shared by all instances of the same class; it is equivalent to a class variable in
Smalltalk. A local slot corresponds to a normal instance variable.

E. Casais 185

This technique enables the programmer to take proper actions to correct and augment the
default restructuring and reinitialization procedures provided by CLOS; it is thus possible to de-
termine freely the mapping from an old to a new object schema.

The OTGen system provides a similar kind of functionality for transforming instances af-
fected by a class modification, although this capability is presented to the user as a table-driven
interface rather than as a programming feature attached to the inheritance hierarchy [29]. A table
lists all class definitions whose instances have to be converted and suggests default transforma-
tions to apply—which can of course be overridden or extended by the user. The transformation
operations possible with OTGen are as follows:

« Transfer objects belonging to the old class definition to the new database. Unchanged ob-
jects are simply copied from a database to another without any conversions.

Delete objects from the database if their class has been deleted.

Recursively transform the variables of an object into new values, according to the trans-
formation rules listed here.

Initialize the variables of an object. When the previous and new types of a variable are
incompatible, the default action taken by OTGen consists in assigning a special nil value
to it. The user can override the standard behaviour of the system by providing its own
initial value, or perhaps giving a formula to compute the new value (for example to con-
vert a number to an equivalent string of characters).

+ Perform context-dependent changes. One may initialize variables based on previous in-
formation stored in the objects, or separate the instances from a class into two other cat-
egories based on the information they contain.

* Move information between classes, for example by shuffling variables among classes,
without losing associated information.

+ Introduce new objects for classes created while updating the hierarchy, and initialize
their variables on the basis of information already stored in the database.

» Change local values to shared values.

Providing a framework to handle the most common transformations certainly eases the task
of the programmer. It is however difficult to guarantee that such a pre-determined set of primi-
tives effectively covers all possibilities for object conversion. When complex adaptations cannot
be expressed with these operations, one is eventually forced to resort to special-purpose pro-
grams as in CLOS.

9.3 Immediate and delayed conversion

An important constraint with conversion concerns the time at which objects must be trans-
formed.

Immediate conversion consists in transforming all objects at once, as soon as the corre-
sponding class modifications are committed. This solution does not find much favour in practice,
because it may entail the full unloading and reloading of the persistent object store and long ser-

186 Managing Class Evolution in Object Oriented Systems

vice interruptions if a significant number of entities has to be converted. Furthermore, it raises
major problems in distributed environments, where controlling the transformation of objects dis-
persed over several machines is far from straightforward. On the other hand, this technique pro-
vides ample opportunities for optimizing the storage and access paths to objects as part of the
conversion process. Immediate conversion has been implemented in the GemStone object-ori-
ented database system [43].

Lazy conversion consists in adapting instances on an individual basis, but only when they
are accessed for the first time after a class modification. This method requires keeping track of
the status of each object. When successive revisions are carried out on the same class, the system
must record each associated conversion procedure, to be able to transform objects that are refer-
enced after a long period of inactivity. Lazy conversion does not incur the drawbacks of system
shutdown imposed by immediate conversion, at the price of degraded response time when in-
stances are initially accessed after a class modification. This problem should be particularly ap-
parent when a series of conversions must be cequentially applicd to a dormant object, ie. vne
that has not been used while its class was repeatedly being revised. Lazy conversion is neverthe-
less an appealing approach for applications with short-lived instances, that arc rapidly garbage-
collected and therefore do not even need to be converted. Lazy conversion attracts a lot of inter-
est and is already proposed as the standard mechanism for CLOS. In order to compare the re-
spective merits of immediate and lazy conversion, the O, system will eventually implement both
techniques [50].

9.4 Evaluation

Conversion, and in particular lazy conversion, seems like a very attractive technique for propa-
gating changes in an object-oriented system. It requires the programming of transformation
functions, even when the environment supports automatic conversion, but there appear to be no
other alternatives for resolving intricate compatibility conflicts. When the conversion of instanc-
es is infeasible, scope restriction techniques borrowed from the filtering approach may prove
helpful.

10. Filtering

10.1 Issues

Conversion enforces the consistency of instance representation by physically reorganizing the
objects involved in a class modification. Whether it is immediate or deferred, this operation en-
tails non-negligible processing costs and may sometimes be superfluous: under some circum-
stances, one may not need to convert instances—because they have become obsolete due toclass
modification, or because they represent information that is not allowed to be modified for legal
reasons, like accounting records. In these situations, it is preferable to ensure a partial compati-
bility between old and new object schemas, so that certain important applications may still use
them, but without striving for making them perfectly interchangeable.

Filtering (or screening, as it is often called in the literature) is a general framework for deal-
ing with this problem, most often used in combination with version management. It proceeds by

E. Casais 187

wrapping a software layer around objects, The layer intercepts all messages sent to the enclosed
object; these messages are then handled according to the object’s version, to make it conform to
the current or to a previous class description, or to cause an exception to be raised when an ap-
plication uses an object with an unsuitable definition. Three major issues must be examined with
this approach:
» How does one characterize the degree of compatibility between different class versions?
« How can one map instances from a class version to another?

» How far can a filtering mechanism hide class changes to the users?

10.2 Version compatibility

Fundamentally, filtering is a mechanism for viewing entities of a certain class version as if they
belonged to another version of the same class. From the predecessor-successor relationship be-
tween versions, we identify two types of compatibility [2]:

« A version C; is backwards compatible with an earlier version C; if all instances of C; can
be used as if they belonged to C;.

* A version C; is forwards compatible with a later version C; if all instances of C; can be
used as if they belonged to C;.

In the first case, applications can use old instances as if they originated from new defini-
tions, With the second form of compatibility, old programs can manipulate entities created on
the basis of later versions.

Each class C is associated with a partial ordering of versions { C; }. We assume that, at any
point in time, some C; is considered the valid version of class C. Very often, the valid version
corresponds to the most recent version of the class. Building on these definitions, we say thata
class version C; is consistent with respect to version D; of another class D (C # D) if one of the
following conditions is satisfied [2]:

* D; was the currently valid version of D when C; was committed. This is the usual situa-
tion; C; references up-to-date, contemporaneous properties of D.

* D, was the currently valid version of D when C; was committed, D; is a later version of
D, and D, is forwards compatible with D;. Here C; references an obsolete definition of D,
but the forwards compatibility property allows it to work with instances created accord-
ing to the new schema.

* D, was the currently valid version of D when C; was committed, D; is an earlier version
of D, and D, is backwards compatible with D;. Here C; is supposed to manipulate an up-
to-date representation of D; thanks to the backwards compatibility, it is nevertheless able
to use instances generated from old versions.

10.3 Filtering mechanisms

Most primitives for class evolution destroy compatibility between successive versions and re-
quire the development of filters to compensate for their effects, The operations that causes prob-
lems when invoked on a non-compatible object are fairly primitive, and can be classified in a

188 Managing Class Evolution in Object Oriented Systems

limited number of categories. Adding or removing attributes generates access violations when
an object attempts to invoke a deleted method, or to read from or write into a non-existent vari-
able. Changing variable or parameter types causes exceptions when assigning or passing an il-
legal value to a variable or a method argument, when retrieving an unknown value from a vari-
able, or when a method returns unexpected results. These effects are summarized in Table 6.

A simple way to deal with this problem is to replace each access primitive with a routine
specifically programmed to perform the mapping between different class structures. Thus, for
each variable that violates compatibility constraints, one provides a particular procedure for ac-
cessing it in reading mode, and another procedure for accessing it in writing mode. These pro-
cedures may perform various transformations, like mapping the variable to a set of other at-
tributes [2]. For example, if the “birthday” attribute of a person class has been replaced with an
“‘age” variable, one has to provide the following procedures 10 ensure backwards compatibility:

A read accessor that determines the age of a person based on the time elapsed between
his recorded birthday and the current date.

« A write accessor that stores the age of a person as a birthday, computed on the hasis of
the current date and the age given as argument to the accessor.

Similarly, one must define two symmetrical operations to guarantee forwards compatibili-
ty:
« A read accessor for the birthday computes its value from the current time and the age
stored in the object.

« Instead of directly storing the birthday, a write accessor records the age of the person,
determined from the birthday given as argument to the accessor and the current date.

More generally, one can define so-called substitute functions for carrying out these map-
pings between objects with different structures as follows: .

* A substitute read function RC;A(/) is given an instance / of version i of class C. It maps
the values of a group of attributes from this object to a valid value of attribute A of ver-
sion j of C. In other words, it makes instances of class version C; appear as if they con-
tained the attribute A of class version C; for reading operations.

¢ A substitute write function WCA(1,V) is given an instance / of version i of class C, and
a value V for attribute A of C;. It maps the value V into a set of values for a group of at-
tributes defined in C.. In other words, this function makes instances of class version C;
appear as if they could store information in attribute A, although this information is ac-
tually recorded in other variables.

Needless to say, it may be quite difficult in practice to find strictly equivalent translations
from one class definition to another.

A second approach favours the use of handlers to be invoked before or after a failed access
to the attribute they are attached to—a technique resembling LISP :before and :after daemons,
and which has been implemented in the ENCORE system [46]. Pre-handlers typically take over
when attempting to access a non-existent attribute, or when trying to assign an illegal value to

189

E. Casais
Scope of change Compatibility Consequences
add a variable backwards undefined variable
in old objects
delete a variable forwards undefined variable
in new ob_]ects
extend the type backwards writing illegal values
into old objects
forwards rcadlng unknown
data from new objects
restrict the type forwards writing illegal values
into new objects
backwards reading unknown
data from old objects
add a method backwards undefined method
in old ob_]ccts
delete a method forwards undefined method
in new Ob_]CC[S
extend argument type backwards passing illegal
values to old objects
forwards getting unknown
data from new ob]ects
Testrict argument type forwards passing 1llegal
values to new objects
backwards getting unknown

change argument list

backwards and
forwards

data from old objects

similar to dropping
and adding a method

Table 6

Consequences of class changes on version compatibility. The middle col-

umn indicates which kind of compatibility is affected by a modification, the
right column describes the exceptions raised when accessing an object
from the old or the new class definition.

it. A pre-handler may perform a mapping like those carried out by the substitute functions, co-
erce its argument to a valid value, or simply abort the operation. A post-handler executes when

190 Managing Class Evolution in Object Oriented Systems

an illegal value is returned to the invoking object; a common behaviour in this case consists in
returning a default value.

10.4 Making class changes transparent

Where should filters be defined? As originally stated, the technique based on handlers requires
global modifications in all versions of the same class. More precisely,

« Whenever an attribute is added to a class, pre-handlers for the attribute must be intro-
duced in all other versions of the class.

» Pre-handlers must be added to a version that suppresses attributes from a class definition.

« When a version extends the domain of an attribute, pre and post-handlers must be intro-
duced in all other versions.

* When the domain of an attribute is restricted, the class version redeclaring the attribute
type must be wrapped with a pre handler and a post-handler.

This solution is obviously inelegant: it requires that old class definitions be adjusted to re-
flect new developments, it entails a lot of cross-checking between version definitions and leads
to a combinatorial explosion of handler complexity thatis avoided only at the cost of introducing
special kinds of inheritance links in the class hierarchy.

The model of substitute functions allows one to exploit the derivation history for mapping
between versions that have no direct relationships. Thus, one can map a version C; to another
version C; if there exist either substitute functions for them (RC;X, WC;X, where X denotes an
attribute of C;), or a succession of substitute functions that transitively apply to them (i.e. there
are substitute functions for mapping between C; and Cy, then C, and C), and eventually C; and C;
for example). Depending on compatibility properties, one can even relate class definitions
placed in different derivation paths in a version hierarchy. Furthermore, substitute functions are
defined just in the newer versions; previous class definitions remain unchanged.

When compatibility between versions cannot be achieved, one may install scope restric-
tions that isolate objects pertaining to different definitions from each other:

« A forward scope restriction makes instances from a new version inaccessible to objects
from older versions.

« A backward scope restriction makes instances from older versions unreachable from ob-
jects of new versions.

By relying on scope restrictions and compatibility relationships, it is possible to partition
the instance set of a class in such a way that operations may be applied to any object regardless
of its version. Naturally, interoperability decreases with such a scheme, since the entities from
different versions of the same class can no longer be referred to and accessed as members of one
large pool of objects.

10.5 Evaluation

From our discussion, it appears that filtering cannot really fulfil its objective of making class
changes transparent without considerable complexity and overhead. The programmer must not

E. Casais 191

only develop a series of special-purpose functions for mapping between the variants of a class,
but must also accept a degradation of application performance as these handlers accumulate, re-
placing the originally simple and efficient accessors. In practice, this complexity does not appear
fully warranted: with lazy conversion, for example, one has also to define ad-hoc procedures for
transforming entities from one version to another, but these procedures are called only once for
every object; their execution is therefore not as expensive as the systematic run-time checks and
exception raising implied by screening techniques. On the positive side, filtering provides a rig-
orous framework for defining and dealing with compatibility issues in object-oriented systems.

Screening has been implemented in some systems, but there its application scope is notably
reduced. ORION does not immediately convert instances affected by a class change so as to
avoid reorganizing the database [4]; when an instance is fetched, and before its attributes are ac-
cessed, deleted variables are made inaccessible (after, if needed, the physical destruction of the
objects they refer to). Default values are automatically supplied to account for the introduction
of new properties. Rearrangements of inheritance patterns are reflected by hiding unwanted
properties and supplying default values for newly inherited ones. In Eiffel, methods can be
tagged as obsolete, thus effectively providing a two-level kind of versioning. Obsolete methods
can still be invoked, but they no longer appear in the documentation produced by the system,
and references to them generate warnings at compile-time.

11. Conclusion

Object-oriented development reveals its iterative nature as successive stages of subclassing, tai-
loring, class modification, version creation and reorganization allow software engineers to build
increasingly general, reusable and robust classes. We expect therefore software information sys-
tems to take advantage of a large spectrum of tools and techniques for managing class evolution.
Even without comprehensive object-oriented CASE environments, software developers will
certainly draw significant benefits from partial capabilities for mastering change in class hierar-
chies—in the same way as programmers rely on the Smalltalk browser to inspect and reuse class
collections, although this specific tool does not seem to scale well for large hierarchies. What
remains to do, then, is to validate the existing approaches in the context of real industrial or com-
mercial development and production environments.

It appears clearly that an object-oriented environment would draw a maximum advantage
from the integration of the various evolution management approaches described in this paper.
For example, reorganization methodologies could be used in combination with versioning to try
different class designs in a secure and disciplined fashion, without losing information on previ-
ous arrangements of the class hierarchy. Some techniques however do present significantly more
potential for solving or alleviating the problems of class evolution than others.

» Tailoring will remain a standard approach for adjusting inherited properties to the needs
of new applications—the concept of subclassing would lose most of its power in the ab-
sence of attribute redefinition. Because free tailoring can lead to chaotic inheritance
structures, we expect this set of techniques to be severely constrained in the context of a
class design methodology.

192

Managing Class Evolution in Object Oriented Systems

Class surgery appears to be a prime candidate for integration with structured, language-
sensitive development tools. Future object-oriented environments will likely provide
language-sensitive tools. Thus, instead of using a standard Unix text editor to create and
correct their programs, software engineers will probably rely on a browser or a graphical
editor to review and modify their code, much like in the Smalitalk [21] or in the ET++
[19] environments. Attaching integrity constraints and invariant preserving checks to
such tools would greatly enhance their functionality and should not raise insurmountable
difficulties.

Versioning appears indispensable in the context of software communities, where very
large class collections must be shared by groups of programmers over long periods of
time [20].

Coordinating the work of several programmers, taking into account the needs of custom-
ers using different hardware platforms and software environments, keeping track of de-
sign decisions and recording all information needed to build and debug a particular soft-
ware release also require comprehensive capabilities for version management.

Reorganization methods should play a prominent role during the design process. Their
potential is currently limited by the lack of a rigorous object model and the generality of
object-oriented mechanisms that prevents more application specific (and more interest-
ing) reorganizations. Further work is needed in this area to arrive at algorithms that cap-
ture the semantics of a class hierarchy and embody advanced design criteria. The current
rules used by reorganization methods are either too general and vague (“split large class-
es into smaller components™) or too focused on specific details of class structures (thus,
our algorithms are incapable of recognizing possible “frameworks” in a collection of
classes to be reorganized, although they detect and decompose interface redefinitions
into several consistent steps).

We expect the tools and the compilers in an object-oriented environment to be capable
of implementing change avoidance techniques whenever possible. It is our conviction
that lazy conversion will prevail as the technique for propagating change to instances.
Screening seems cumbersome to use and might entail unaccepiable overhead when ap-
plied in its full extent.

We have demonstrated that class evolution is actually an aspect of the more general prob-
lem of class design. Techniques for managing class modification and reorganization would
therefore benefit substantially from advances in design methodologies, the determination of
sound programming styles, and the disciplining of object-oriented mechanisms, in particular in-
heritance.

References

[1]

2]

Serge Abiteboul and Richard Hull, “Restructuring Hierarchical Database Objects,” Theoretical Computer
Science, no. 62, pp. 3-38, North-Holland, 1988.

Matts Ahlsén, Anders Bjdrerstedt, Stefan Britts, Christer Hultén and Lars Stderlund, "Making Type Chang-
es Transparent,” SYSLAB report 22, SYSLAB-S, University of Stockholm, Stockholm, 26 February 1984,

E. Casais

[31

4]

(51

[61

[8]

[9

[10]
(11
[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22

Lo

[23]

193

Robert Balzer, “Evolution as a New Basis for Reusability,” in Proceedings of the Workshop on Reusability in
Programming, pp. 80-82, Newport RI, September 1983.

Jay Banerjee, Won Kim, Hyoung-Joo Kim and Henry F, Korth, “Semantics and Implementation of Schema
Evolution in Object-Oriented Databases,” in Proceedings of the ACM-SIGMOD Conference on Management
of Data, eds. Umeshwar Dayal and Irv Traiger, pp. 311-322, Association for Computing Machinery, San
Francisco, 27-29 May 1987.

David Beech and Brom Mahbod, “Generalized Version Control in an Object-Oriented Database,” in Proceed-
ings 4th IEEE International Conference on Data Engineering, pp. 14-22, Los Angeles, February 1988,
Anders Bjtirnerstedt and Stefan Britts, “AVANCE: An Object Management System,” in OOPSLA 88 Pro-
ceedings, ed. Norman Meyrowitz, pp. 206-221, San Diego, 25-30 September 1988.

Anders Bjrnerstedt and Christer Hultén, “Version Control in an Object-Oriented Architecture,” in Object-
Oriented Concepls, Databases, and Applications, eds, Won Kim and Frederic H. Lochovsky, pp. 451-485,
Addison-Wesley/ACM Press, 1989.

Alexander Borgida, “Modelling Class Hierarchies with Contradictions,” SIGMOD Records, vol. 17, no. 3,
pp. 434-443, ACM, September 1988.

Alexander Borgida and Keith E. Williamson, “Accommodating Exceptions in Databases, and Refining the
Schema by Leaming from them,” in Proceedings VLDB 1985, eds, Alain Pirotte and Yannis Vassiliou, pp.
72-81, Stockholm, 21-23 August 1985.

Eduardo Casais, “Reorganizing an Object System,” in Object Oriented Development, ed. D. C. Tsichrilzis,
pp. 161-189, Centre Universitaire d’Informatique, Gendve, 1989.

Hong-Tai Chou and Won Kim, “A Unifying Framework for Version Control in a CAD Environment,” in 12th
VLDB Conference Proceedings, pp. 336-344, Kyoto, 25-28 August 1986.

Brad J. Cox, Object-Oriented Progr ing—An Evolutionary Approach, Addison-Wesley, Reading, Massa-
chuselts, 1986.

L. Dami, E. Fiume, O. Nierstrasz and D, Tsichritzis, “Temporal Scripts for Objects,” in Active Object Envi-
ronments, ed. D. C. Tsichritzis, pp. 144-161, Centre Universitaire d’Informatique, Gengve, 1988,

Nachum Dershowilz, “Programming by Analogy,” in Machine Learning: an Artificial Intelligence Approach
(vol. IT), eds. Ryszard S. Michalski, Jaime G. Carbonell and Tom M. Mitchell, pp. 395-423, Morgan Kauf-
mann oublishers, Los Altos (CA), 1986.

V. Dhar and M, Jarke, “Dependency Directed Reasoning and Leaming in Systems Maintenance Support,”
IEEE Transactions on Software Engineering, vol. 14, no. 2, pp. 211-227, [EEE, February 1988,

Jim Dietrich and Jack Milton, “Experimental Prototyping in Smalltalk,” IEEE Software, vol. 4, no. 3, pp. 50—
64, IEEE, May 1987.

Gerhard Fischer, Andreas C. Lemke and Christian Rahtke, “From Design to Redesign,” in Proceedings of the
Yth International Conference on Software Engineering, pp. 369-376, IEEE, Monterey CA, 30 March-2 April
1987.

D. H. Fishman, J. Annevelink, D. Beech, E. Chow, T, Connors, J. W. Davis, W. Hasan, C, G. Hoch, W. Kent,
S. Leichner, P. Lyngback, B. Mahbod, M. A. Neimat, T. Risch, M. C. Shan and W. K. Wilkinson, “Overview
of the IRIS DBMS,” in Object-Oriented Concepts, Datab and Appli eds. Won Kim and Frederic
H. Lochovsky, pp. 219-250, Addison-Wesley/ACM Press, 1989.

Erich Gamma, André Weinand, and Rudolf Marty, “Integration of a Programming Environment into ET++:
A Case Swdy,” in Proceedings of the Third European Conference on Object-Oriented Programming
(ECOOP 89), pp 283-297, Nottingham, 10-14 July 1989.

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, and X. Pintado, “Class Management for Software Commu-
nities,” in Object Management, ed. D. C. Tsichritzis, Centre Universitaire d'Informatique, 1990.

Adele Goldberg, The Smalltalk Programming Environment, Addison-Wesley, Reading, Massachuselts, 1984.
Adcle Goldberg and Daniel Robson, Smalltalk-80: The Language and its Implementation, Addison-Wesley,
Reading, Massachuselts, 1983.

Daniel C. Halbert and Patrick D. O’Brien, “Using Types and Inheritance in Object-Oriented Programming,”
IEEE Software, pp. 71-79, IEEE, September 1987.

194

[24

[has}

[25]
[26]
27
[28]
[29]
[301

(31)

(32]
331
[34]
[35]
136]
37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Managing Class Evolution in Object Oriented Systems

Matthias Jarke and Thomas Rose, “Managing Knowledge about Information System Evolution,” SIGMOD
Records, vol. 17, no. 3, pp. 303-311, ACM, September 1988.

Ralph E. Johnson and Brian Foote, “Designing Reusable Classes,” Journal of Object-Oriented Programming,
PP. 22-35, June-July 1988.

J. Karimi and B. R. Konsynski, “An Automated Software Design Assistant,” IEEE Transactions on Software
Engineering, vol. 14, no. 2, pp. 194-210, IEEE, February 1988.

Sonya E. Keene, Object-Oriented Programming in Common LISP: A Programmer's Guide to CLOS, Addi-
son-Wesley, Reading, Massachusetts, 1989.

Glenn Krasner, Smalltalk-80: Bits of History, Words of Advice, Addison-Wesley, Reading, Massachusetts,
1984,

Barbara Staudt Lerner and A. Nico Habermann, “Beyond Schema Evolution to Database Reorganization,”
research paper on databases, Camegie Mellon University, Pittsburgh, February 1990.

Nicole Lévy, Ouiils d’ aide d la construction et d la transformation de types abstraits algébriques, These de
3™ cycle, Université de Nancy, 1984,

Qing Li and Dennis McLeod, “Object Flavor Evolution through Learning in an Object-Oriented Database
System,” in Proceedings of the 2nd International Conference on Expert Database Systems, ed. Larry Kersch-
berg, pp. 241-256, George Mason Umiversity, 25-27 April 1988,

K. Lieberherr, 1. Holland and A, Riel, “Object-Oriented Programming: an Objective Sense of Style,” in OOP-
SLA 88 proceedings, pp. 323-334,25 30 september 1988,

KarlJ. Lieberherr and Ian M. Holland, *“Assuring Good Style for Object-Oriented Programming,” IEEE Soft-
ware, pp. 3848, IEEE, Scptember 1989.

Henry Licberman, “Using Prototypical Objects to Implement Shared Behavior in Object-Oriented Systems,”
in Proceedings of OOPSLA 86, pp. 214-223, 29 September-2 October 1986.

Y. E. Lien, “Relational Database Design,” in Principles of Database Design, ed. S. Bing Yao, pp. 211-254,
Prentice Hall, Englewood Cliffs, 1985.

B. Maher and D. H. Sleeman, “Automatic Program Improvement: Variable Usage Transformations,” ACM
Transactions on Programming Languages and Systems, vol. 5, no. 2, pp. 236-264, ACM, April 1983.

Bertrand Meyer, Object-Oriented Software Construction, Series in Computer Science, Prentice-Hall Interna-
tional, 1988.

Bertrand Meyer, “The New Culture of Software Development: Reflections on the Practice of Object-Oriented
Design,” in TOOLS 89 proceedings, pp. 13-23, Paris, 13~15 November 1989.

David A. Moon, “Object-Oriented Programming with Flavors,” in Proceedings of the Conference on Object-
oriented Programming Systems, Languages and Applications (OOPSLA ' 86) Special Issue of SIGPLAN No-
tices, vol. 21, no. 11, pp. 1-8, Portland, Oregon, 2 September—29 October 1986.

K. Narayanaswamy, “Static Analysis-based Program Evolution Support in the Common Lisp Framework,”
in Proceedings of the 10th International Conference on Saftware Engineering, pp. 222-230, IEEE, Sin-
gapore, 11-15 April 1988.

G. T. Nguyen and D. Rieu, “Schema Change Propagation in Object-Oriented Databases,” inIFIP 89 proceed-
ings, ed. G. X. Ritter, pp. 815-820, Elsevier Science Publisher B.V. (North-Holland), 1989.

0. M. Nierstrasz, “Object-Oricnted Concepts,” in Active Object Environments, ed. D. C. Tsichritzis, pp. 1-
17, Centre Universitaire d'Informatique, Gendve, 1988.)

D. Jason Penney and Jacob Stein, “Class Modification in the GemStone Object-Oriented DBMS,” in Proceed-
ings of the Conference on Object-Orignted Programming Systems, Languages, and Applications (OOPSLA
*87) Special Issue of SIGPLAN Notices, vol. 22, no, 12, pp. 111-117, Orlando, FL, 4-8 October 1987.
Steve Putz, “Managing the Evolution of Smalltalk-80 Systems,” in Smalltalk-80: Bits of History, Words of
Advice, ed. Glenn Krasner, pp. 273-286, Addison-'Wesley, Reading, Massachusetts, 1984,

Markku Sakkinen, “Comments on the Law of Demeter and C++,” SIGPLAN Notices, vol. 23, no. 12, pp. 34—
44, ACM, 1988.

E. Casais 195

[46] Andrea H. Skarra and Stanley B. Zdonik, “The Management of Changing Types in an Object-Oriented Data-
base,” in Research Directions in Object-Oriented Programming, eds. Bruce Shriver and Peter Wegner, pp.
393-415, The MIT Press, Cambridge, Massachusetts, 1987.

[47]1 Dave Thomas and Kent Johnson, “Orwell: a Configuration Management System for Team Programming,” in
OOPSLA 88 Proceedings, pp. 135-141, 25-30 September 1988.

[48] Peter Wegner and Stanley B. Zdonik, “Inheritance as an Incremental Modification Mechanism or What Like
Is and Isn’t Like," in ECOOP 88 Proceedings, eds. Stein Gjessing and Kristen Nygaard, Lecture Notes in
Computer Science, pp. 55-77, Springer Verlag, Oslo, 15-17 August 1988.

[49]1 André Weinand, Erich Gamma, and Rudolf Marty, “ET++: An Object-Oriented Application Framework in
C++," in Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA '88) Special Issue of SIGPLAN Notices, vol. 23, no. 11, pp. 46-57, November 1988,

[50] Roberto Zicari, “Schema Updates in the O, Object-Oriented Database System,” report 89-057, Politecnico di
Milano, Dipartimento di Elettronica, Milano, October 1989.

