
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 2024 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Sequence Analysis in Education: Principles, Technique, and Tutorial with

R

Saqr, Mohammed; López-Pernas, Sonsoles; Helske, Satu; Durand, Marion; Murphy, Keefe;

Studer, Matthias; Ritschard, Gilbert

How to cite

SAQR, Mohammed et al. Sequence Analysis in Education: Principles, Technique, and Tutorial with R.

In: Learning Analytics Methods and Tutorials. Saqr, M. & López-Pernas, S. (Ed.). Cham : Springer

Nature Switzerland, 2024. p. 321–354. doi: 10.1007/978-3-031-54464-4_10

This publication URL: https://archive-ouverte.unige.ch/unige:178387

Publication DOI: 10.1007/978-3-031-54464-4_10

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:178387
https://doi.org/10.1007/978-3-031-54464-4_10
https://creativecommons.org/licenses/by/4.0

Sequence Analysis in Education:
Principles, Technique, and Tutorial
with R

Mohammed Saqr, Sonsoles López-Pernas, Satu Helske, Marion Durand,
Keefe Murphy, Matthias Studer, and Gilbert Ritschard

1 Introduction

Patterns exist everywhere in our life, from the sequence of genes to the order of steps
in cooking recipes. Discovering patterns, variations, regularities, or irregularities is
at the heart of scientific inquiry and, therefore, several data mining methods have
been developed to understand patterns. Sequence analysis—or sequence mining—
was developed almost four decades ago to address the increasing needs for pattern
mining [1]. Ever since, a wealth of applications, algorithms, and statistical tools
have been developed, adapted, or incorporated into the array of sequence analysis.
Since sequence mining has been conceptualized, it has grown in scale of adoption
and range of applications across life and social sciences [2] and education research
was no exception (e.g., [3]). As a data mining technique, sequence mining has been
commonly implemented to identify hidden patterns that would otherwise be missed
using other analytical techniques and find interesting subsequences (parts of the
sequence) that have practical significance or unexpected sequences that we did not
know existed [4]. For instance, by mining sequences of collaborative dialogue, we

M. Saqr (�) · S. López-Pernas · M. Durand
School of Computing, University of Eastern Finland, Joensuu, Finland
e-mail: mohammed.saqr@uef.fi

S. Helske
INVEST Research Flagship Center & Department of Social Research, University of Turku,
Turku, Finland

K. Murphy
Department of Mathematics and Statistics, Hamilton Institute, Maynooth University, Maynooth,
Ireland

M. Studer · G. Ritschard
Institute of Demography and Socioeconomics & Centre LIVES, University of Geneva, Geneva,
Switzerland

© The Author(s) 2024
M. Saqr, S. López-Pernas (eds.), Learning Analytics Methods and Tutorials,
https://doi.org/10.1007/978-3-031-54464-4_10

321

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54464-4protect T1	extunderscore 10&domain=pdf

 885 45222 a 885 45222 a

mailto:mohammed.saqr@uef.fi
mailto:mohammed.saqr@uef.fi
mailto:mohammed.saqr@uef.fi
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10
https://doi.org/10.1007/978-3-031-54464-4_10

322 M. Saqr et al.

could identify which sequences are followed by more argumentative interactions,
and what sequences are crucial to the collaborative process. A literature review of
the common applications follows in the next section.

Learning is a process that unfolds in time, a process that occurs in sequences of
actions, in repeated steps, in patterns that have meanings and value for understand-
ing learners’ behavior [5]. The conceptualization of learning as a process entails
two important criteria: process as a sequence of states that unfold in time and
process as a transformative mechanism that drives the change from one state to
another [6]. Thereupon, methods such as sequence mining have gained increasing
grounds and amassed a widening repertoire of techniques in the field of education
to study the learning process. In particular, sequence mining has been used to
harness the temporal unfolding of learners’ behavior using digital data, transcripts
of conversations, or behavioral states [7]. Nevertheless, sequence mining can be
used to study non-temporal sequences such as protein sequences and other types of
categorical data [8].

What makes sequences in education interesting is that they have patterns of
repeated or recurrent sequences. Finding such patterns has helped typify learners’
behaviors and identify which patterns are associated with learning and which are
associated with unfavorable outcomes [3]. Sequence mining can also describe a
pathway or a trajectory of events, for example, how a student proceeds from
enrolment to graduation [9], and help to identify the students who have a stable
trajectory, who are turbulent, and who are likely to falter along their education [3].

2 Review of the Literature

In recent years, sequence analysis has become a central method in learning analytics
research due to its potential to summarize and visually represent large amounts of
student-related data. In this section we provide an overview of some of the most
representative studies in the published literature. A summary of the studies reviewed
in this section can be seen in Table 1. A common application of sequence analysis is
the study of students’ log data extracted from their interactions with online learning
technologies (mostly learning management systems, LMSs) throughout a learning
session [10–12]. In some studies, the session is well-delimited, such as the duration
of a game [13] or moving window [14], but in most cases it is inferred from the data,
considering a session as an uninterrupted sequence of events [10, 11]. Few are the
studies in which longer sequences are studied, covering a whole course or even a
whole study program [3, 9, 15]. In such studies, the sequences are not composed of
instantaneous interactions but rather of states that aggregate students’ information
over a certain period, for example, we can study students’ engagement [9], learning
strategies [3], or collaboration roles [15] for each course in a study program.

Most of the existing research has used clustering techniques to identify distinct
groups of similar sequences. Agglomerative Hierarchical Clustering (AHC) has
been the most used technique, with a wealth of distance measures such as Euclidean

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 323

Ta
bl

e
1

Su
m

m
ar

y
of

 th
e

re
vi

ew
ed

 a
rt

ic
le

s
ab

ou
t s

eq
ue

nc
e

an
al

ys
is

 in
 le

ar
ni

ng
 a

na
ly

tic
s

R
ef

.
C

on
te

xt
T

im
e

sc
he

m
e

A
ct

or
A

lp
ha

be
t

C
lu

st
er

in
g

al
go

ri
th

m

[1
8]

 4
0

st
ud

en
ts

L
ea

rn
in

g
ac

tiv
ity

 (
5

da
ys

)
St

ud
en

t
L

M
S

ev
en

ts
D

if
fe

re
nt

ia
l s

eq
ue

nc
e

m
in

in
g

(c
or

e
al

go
ri

th
m

)

[1
4]

 1
 m

id
dl

e
sc

ho
ol

 c
la

ss
 (

40

st
ud

en
ts

)
L

ea
rn

in
g

ac
tiv

ity
 (

5
da

ys
)

St
ud

en
t

L
M

S
ev

en
ts

 (
e.

g.
, R

ea
d,

L

in
ka

dd
)

D
if

fe
re

nt
ia

l s
eq

ue
nc

e
m

in
in

g
(c

or
e

al
go

ri
th

m
, S

PA
M

c)

[1
1]

 1
 u

ni
ve

rs
ity

 c
ou

rs
e

(2
90

 s
tu

de
nt

s)

Se
ss

io
n

St
ud

en
t-

se
ss

io
n

L
M

S
ev

en
ts

A
H

C
 (

O
pt

im
al

 m
at

ch
in

g)

C
ou

rs
e

St
ud

en
t-

co
ur

se

Ta
ct

ic
s

ob
ta

in
ed

 f
ro

m

pr
ev

io
us

 c
lu

st
er

in
g

A
H

C
 (

E
uc

lid
ea

n
di

st
an

ce
)

[1
0]

 3
 c

ou
rs

es
: o

ne
 u

ni
ve

rs
ity

 c
ou

rs
e

w
ith

 3
 c

ou
rs

e
of

fe
ri

ng
s

(1
13

5
st

ud
en

ts
),

 a
no

th
er

 u
ni

ve
rs

ity

co
ur

se
 w

ith
 2

 c
ou

rs
e

of
fe

ri
ng

s
(4

87
 s

tu
de

nt
s)

, a
nd

 a
 M

O
O

C
 w

ith

a
si

ng
le

 o
ff

er
in

g
(3

68
 s

tu
de

nt
s)

Se
ss

io
n

St
ud

en
t-

se
ss

io
n

L
M

S
ev

en
ts

 (
e.

g.
,

co
nt

en
t_

ac
ce

ss
, d

ow
nl

oa
d)

Fi

rs
t O

rd
er

 M
ar

ko
v

M
od

el

C
ou

rs
e

St
ud

en
t-

co
ur

se

Ta
ct

ic
s

ob
ta

in
ed

 f
ro

m

pr
ev

io
us

 c
lu

st
er

in
g

A
H

C
 (

E
uc

lid
ea

n
di

st
an

ce
)

[9
]

15
 u

ni
ve

rs
ity

 c
ou

rs
es

 (
10

6
st

ud
en

ts
)

St
ud

y
pr

og
ra

m
 (

15
 c

ou
rs

es
)

St
ud

en
t

E
ng

ag
em

en
t s

ta
te

 (
e.

g.
,

A
ct

iv
e,

 A
ve

ra
ge

)
H

id
de

n
M

ar
ko

v
M

od
el

s

[1
3]

 1
 e

du
ca

tio
na

l e
sc

ap
e

ro
om

 g
am

e
in

 a
 u

ni
ve

rs
ity

 c
ou

rs
e

(9
6

st
ud

en
ts

)
E

sc
ap

e
ro

om
 g

am
e

(1
h

45
m

in
)

Te
am

G
am

e
ac

tiv
ity

 (
e.

g.
, h

in
t

ob
ta

in
ed

, p
uz

zl
e

so
lv

in
g)

A

H
C

 (
L

on
ge

st
 C

om
m

on

Su
bs

eq
ue

nc
e)

(c
on

tin
ue

d)

324 M. Saqr et al.

Ta
bl

e
1

(c
on

tin
ue

d)

R
ef

.
C

on
te

xt
T

im
e

sc
he

m
e

A
ct

or
A

lp
ha

be
t

C
lu

st
er

in
g

al
go

ri
th

m

[1
5]

10

 u
ni

ve
rs

ity
 c

ou
rs

es

(3
29

 s
tu

de
nt

s)

St
ud

y
pr

og
ra

m
 (

10
 c

ou
rs

es
)

St
ud

en
t

R
ol

es
 in

 th
e

gr
ou

p
(e

.g
.,

L
ea

de
rs

,
M

ed
ia

to
rs

)
M

ix
tu

re
 H

id
de

n
M

ar
ko

v
M

od
el

s

[3
]

10
 u

ni
ve

rs
ity

 c
ou

rs
es

(1

35
 s

tu
de

nt
s)

Se

ss
io

n
St

ud
en

t-
se

ss
io

n
L

M
S

ev
en

t (
e.

g.
, C

ou
rs

e
m

ai
n

vi
ew

,
Fo

ru
m

 c
on

su
m

e)

M
ix

tu
re

 H
id

de
n

M
ar

ko
v

M
od

el
s

C
ou

rs
e

St
ud

en
t-

co
ur

se
Ta

ct
ic

s
ob

ta
in

ed
 f

ro
m

 p
re

vi
ou

s
cl

us
te

ri
ng

 (
e.

g.
, L

ec
tu

re
 r

ea
d,

Fo

ru
m

 r
ea

d)

A
H

C
 (

E
uc

lid
ea

n
di

st
an

ce
)

St
ud

y
pr

og
ra

m
 (

10
 c

ou
rs

es
)

St
ud

en
t

C
ou

rs
e-

le
ve

l s
tr

at
eg

ie
s

fr
om

pr

ev
io

us
 c

lu
st

er
in

g
(e

.g
.,

L
ig

ht

in
te

ra
ct

iv
e,

 M
od

er
at

e
in

te
ra

ct
iv

e)

A
H

C
 (

E
uc

lid
ea

n
di

st
an

ce
)

[1
6]

1

un
iv

er
si

ty
 c

ou
rs

es
,

4
C

ou
rs

e
of

fe
ri

ng
s

(2
00

 s
tu

de
nt

s)

W
ee

k
G

ro
up

 o
f

st
ud

en
ts

In

te
ra

ct
io

n
ty

pe
 o

n
fo

ru
m

 (
e.

g.
,

D
is

cu
ss

, A
rg

ue
)

Se
ss

io
n

St
ud

en
t-

se
ss

io
n

In
te

ra
ct

io
n

ty
pe

 o
n

fo
ru

m
 (

e.
g.

,
D

is
cu

ss
, A

rg
ue

)
A

H
C

 (
L

on
ge

st
 C

om
m

on
 P

re
fix

)

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 325

[3, 10], Longest Common Subsequence [13], Longest Common Prefix [16], and
Optimal Matching [11]. Other works have relied on Markovian Models [15, 17]
or differential sequence mining [18]. Throughout the remainder of the book, we
provide an introduction to sequence analysis as a method, describing in detail the
most relevant concepts for its application to educational data. We provide a step-by-
step tutorial of how to implement sequence analysis in a data set of student log data
using the R programming language.

3 Basics of Sequences

Sequences are ordered lists of discrete elements (i.e., events, states or categories).
Such elements are discrete (in contrast to numerical values such as grades) and
are commonly organized chronologically. Examples include sequence of activities,
sequence of learning strategies, or sequence of behavioral states [19]. A sequence
of learning activities may include (play video—solve exercise—taking quiz—access
instructions) [17], other examples include sequence of game moves e.g., (solve
puzzle—request hint—complete game) [13], or collaborative roles, for instance,
(leader—mediator - isolate) [15].

Before going into sequence analysis, let’s discuss a basic example of a sequence
inspired by Saqr and López-Pernas [9]. Let’s assume we are tracking the engage-
ment states of students from a course to the next and for a full year that has
five courses. The engagement states can be either engaged (when the student is
fully engaged in their learning), average (when the student is moderately engaged),
and disengaged (when the student is barely engaged). Representing the sequence
of engagement states of two hypothetical students may look like the example on
Table 2.

The first student starts in course 1 with an Average engagement state, in Course
2, the student is engaged, and so in all the subsequent courses Course 3, Course 4,
and Course 5. The student in row 2 has a Disengaged state in course 2 onwards.
As we can see from the two sequences here, there is a pattern that repeats in both
sequences (both students stay 4 consecutive courses in the same state). In real-life
examples, sequences are typically longer and in larger numbers. For instance, the
paper by Saqr and López-Pernas [9] contains 106 students for a sequence of 15
courses. Finding repeated patterns of engaged states similar to the first student or
repeated patterns of disengaged states like the other student would be interesting and
helpful to understand how certain subgroups of students proceed in their education
and how that relates to their performance.

Table 2 An example sequence

326 M. Saqr et al.

3.1 Steps of Sequence Analysis

Several protocols exist for sequence analysis that vary by discipline, research
questions, type of data, and software used. In education, sequence analysis protocol
usually follows steps that include preparing the data, finding patterns, and relating
these patterns to other variables e.g., performance e.g., [11]. The protocol which
will be followed in this manual includes six steps:

(1) Identifying (or coding) the elements of the sequence, commonly referred to as
alphabet

(2) Specifying the time window or epoch (time scheme) or sequence alignment
scheme

(3) Defining the actor and building the sequence object
(4) Visualization and descriptive analysis
(5) Finding similar groups or clusters of sequences,
(6) Analyzing the groups and/or using them in subsequent analyses.

3.1.1 The Alphabet

The first step of sequence analysis is defining the alphabet which are the ele-
ments or the possible states of the sequence [19]. This process usually entails
“recoding” the states to optimize the granularity of the alphabet. In other words,
to balance parsimony versus granularity and detail of the data. Some logs are
overly detailed and therefore would require a careful recoding by the researcher [8].
For instance, the logs of Moodle (the LMS) include the following log entries for
recoding students’ access to the quiz module: quiz_attempt, quiz_continue_attempt,
quiz_close_attempt, quiz_view, quiz_view_all, quiz_preview. It makes sense here
to aggregate (quiz_attempt, quiz_continue_attempt, quiz_close_attempt) into one
category with the label attempt_quiz and (quiz_view, quiz_view all, quiz preview) to
a new category with the label view_quiz. Optimizing the alphabet into a reasonable
number of states also helps reduce complexity and facilitates interpretation. Of
course, caution should be exercised not to aggregate meaningfully distinct states
to avoid masking important patterns within the dataset.

3.1.2 Specifying the Time Scheme

The second step is to define a time scheme, time epoch or window for the analysis.
Sometimes the time window is fairly obvious, for instance, in case a researcher
wants to study students’ sequence of courses in a program, the window can be
the whole program e.g., [9]. Yet, oftentimes, a decision has to be taken about
the time window which might affect the interpretation of the resulting sequences.
For example, when a researcher is analyzing the sequence of interactions in a
collaborative task, he/she may consider the whole collaborative task as a time
window or may opt to choose segments or steps within the task as time epochs.

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 327

Fig. 1 Every line represents a click, a sequence of successive clicks is a session, and the session
is defined by the inactivity period

Table 3 A sequence of engagement states using fictional data

In the same way, analyzing the sequence of tasks in a course, one would consider
the whole course to be the time window for analysis or analyze the sequence of steps
in each course task e.g., [20].

In online learning, the session has been commonly considered the time window
e.g., [11, 17]. A session is an uninterrupted sequence of online activity which can
be inferred from identifying the periods of inactivity as depicted in Fig. 1. As can
be seen, a user can have multiple sessions across the course. There is no standard
guideline for what time window a researcher should consider, however, it is mostly
defined by the research questions and the aims of analysis.

3.1.3 Defining the Actor

The third important step is to define the actor or the unit of analysis of the sequences
(see the actor in Table 3 or User in Table 4). The actor varies according to the type
of analysis. When analyzing students’ sequences of actions, we may choose the
student to be the actor and build a sequence of all student actions e.g., [20]. In online
learning, sequence mining has always been created for “user sessions” i.e., each user
session is represented as a sequence e.g., [17, 21] and therefore, a user typically has
several sessions along the course. In other instances, you may be interested in the
study of the sequences of the students’ states, for example engagement states in [9]
where the student was the actor, or a group of collaborating students’ interactions
as a whole such as [16] where the whole group is the actor. In the review of the
literature, we have examples of such decisions.

3.1.4 Building the Sequences

This step is specific to the software used. For example, in TraMineR the step includes
specifying the dataset on which the building of the sequences is based and telling

328 M. Saqr et al.

Table 4 The first three columns are simulated sequence data and the three gray columns are
computed

User Action Time Lag Session Order

Layla Calendar 9.1.2023 18:44 – Layla session 1 1

Layla Lecture 9.1.2023 18:45 1 Layla session 1 2

Layla Instructions 9.1.2023 18:47 2 Layla session 1 3

Layla Assignment 9.1.2023 18:49 2 Layla session 1 4

Layla Lecture 9.1.2023 18:50 1 Layla session 1 5

Layla Video 9.1.2023 18:51 1 Layla session 1 6

Sophia Lecture 9.1.2023 20:08 – Sophia session 1 1

Sophia Instructions 9.1.2023 20:12 4 Sophia session 1 2

Sophia Assignment 9.1.2023 20:14 2 Sophia session 1 3

Sophia Assignment 9.1.2023 20:18 4 Sophia session 1 4

Sophia Assignment 9.1.2023 20:21 3 Sophia session 1 5

Carmen Lecture 10.1.2023 10:08 – Carmen session 1 1

Carmen Video 10.1.2023 10:11 3 Carmen session 1 2

Layla Instructions 10.1.2023 19:57 1506 Layla session 2 1

Layla Video 10.1.2023 20:01 4 Layla session 2 2

Layla Lecture 10.1.2023 20:08 7 Layla session 2 3

Layla Assignment 10.1.2023 20:14 6 Layla session 2 4

TraMineR the alphabet, the time scheme, and the actor id variable, as well as other
parameters of the sequence object. This step will be discussed in detail in the
analysis section.

3.1.5 Visualizing and Exploring the Sequence Data

The fourth step is to visualize the data and perform some descriptive analysis.
Visualization allows us to summarize data easily and to see the full dataset at once.
TraMineR includes several functions to plot the common visualization techniques,
each one showing a different perspective.

3.1.6 Calculating the Dissimilarities Between Sequences

The fifth step is calculating dissimilarities or distances between pairs of sequences.
Dissimilarity measures are a quantitative estimation of how different—or similar—
the sequences are. Since there are diverse contexts, analysis objectives and sequence
types, it is natural that there are several methods to compute the dissimilarities based
on different considerations.

Optimal matching (OM) may be the most commonly used dissimilarity measure
used in social sciences and possibly also in education [22]. Optimal matching
represents what it takes to convert or edit a sequence to become identical to another

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 329

sequence. These edits may involve insertion, deletion (together often called indel
operations) or substitution. For instance, in an example in Table 3, where we see
a sequence of five students’ engagement states, we can edit Vera’s sequence and
substitute the disengaged state with an average state; Vera’s sequence will become
identical with Luis’ sequence. That is, editing Vera’s sequence takes one substitution
to convert her sequence to that of Luis. We can also see that it will take four
substitutions to convert Anna’s sequence to Maria’s sequence. In other words,
Anna’s sequence is highly dissimilar to Maria. Different types of substitutions
can be given different costs depending on how (dis)similar the two states are
viewed (referred to as substitution costs). For example, the cost of substituting state
engaged with state average might have a lower cost than substituting engaged with
disengaged, since being disengaged is regarded most dissimilar to being engaged
while average engagement is more similar to it. Since contexts differ, there are
different ways of defining or computing the pairwise substitution costs matrix.

Optimal matching derives from bioinformatics where transformations such as
indels and substitutions are based on actual biological processes such as the
evolution of DNA sequences. In many other fields such a transformation process
would be unrealistic. In social sciences, [22] outlined five socially meaningful
aspects and compared dissimilarity measures to determine how sensitive they are
to the different aspects. These similarities are particularly relevant since learning,
behavior, and several related processes e.g., progress in school or transition to the
labor market are essentially social processes. We explain these aspects based on an
example using fictional data in Table 3 following [9].

1. Experienced states: how similar are the unique states forming the sequence.
For instance, Maria and Bob in Table 3 have both experienced the same states
(engaged and average).

2. Distribution of the states: how similar is the distribution of states. We can
consider that two sequences are similar when students spend most of their time
in the same states. For instance, Bob and Maria have 80% engaged states and
20% average states.

3. Timing: the time when each state occurs. For instance, two sequences can be
similar when they have the same states occurring at the same time. For instance,
Vera and Luis start similarly in a disengaged state, visit the average state in the
middle, and finish in the engaged state.

4. Duration: the durations of time spent continuously in a specific state (called
spells) e.g., the durations of engaged states shared by the two sequences.
For instance, Vera and Anna both had spells of two successive states in the
disengaged state while Bob had two separate spells in the engaged state (both
of length 2).

5. Sequencing: The order of different states in the sequence, for instance, Vera and
Luis had similar sequences starting as disengaged, moving to average and then
finishing as engaged.

Of the aforementioned aspects, the first two can be directly determined from the
last three. Different dissimilarity measures are sensitive to different aspects, and it is

330 M. Saqr et al.

up to the researcher to decide which aspects are important in their specific context.
Dissimilarity measures can be broadly classified in three categories [22]:

1. distance between distributions,
2. counting common attributes between sequences, and
3. edit distances.

Category 1 includes measures focusing on the distance between distributions
including, e.g., Euclidean distance and .χ2-distance that compare the total time spent
in each state within each sequence. The former is based on absolute differences in
the proportions while the latter is based on weighted squared differences.

Category 2 includes measures based on counting common attributes. For exam-
ple, Hamming distances are based on counting the (possibly weighted) sum of
position wise mismatches between the two sequences, the length of the longest com-
mon subsequence (LCS) is the number of shared states between two sequences that
occur in the same order in both, while the subsequence vector representation-based
metric (SVRspell) is counted as the weighted number of matching subsequences.

Category 3 includes edit distances that measure the costs of transforming one
sequence to another by using edit operations (indels and substitutions). They include
(classic) OM with different cost specifications as well as variants of OM such as OM
between sequences of spells (OMspell) and OM between sequences of transitions
(OMstran).

Studer and Ritschard [22] give recommendations on the choice of dissimilarity
measure based on simulations on data with different aspects. If the interest is
on distributions of states within sequences, Euclidean and .χ2-distance are good
choices. When timing is of importance, the Hamming distances are the most
sensitive to differences in timing. With specific definitions also the Euclidean
and .χ2-distance can be made sensitive to timing—the latter is recommended if
differences in rare events are of particular importance. When durations are of
importance, then OMspell is a good choice, and also LCS and classic OM are
reasonable choices. When the main interest is in sequencing, good choices include
OMstran, OMspell, and SVRspell with particular specifications. If the interest is
in more than one aspect, the choice of the dissimilarity measure becomes more
complex. By altering the specifications in measures such as OMstran, OMspell,
and SVRspell the researcher could find a balance between the desired attributes.
See [22] for more detailed information on the choice of dissimilarity measures and
their specifications.

Dissimilarities are hard to interpret as such (unless the data are very small), so
further analyses are needed to decrease the complexity. The most typical choice is
to use cluster analysis for finding groups of individuals with similar patterns [23].
Other distance—or dissimilarity—based techniques include visualizations with
multidimensional scaling [24], finding representative sequences [25], and ANOVA-
type analysis of discrepancies [26].

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 331

3.1.7 Finding Similar Groups or Clusters of Sequences

The sixth step is finding similar sequences, i.e., groups or patterns within the
sequences where sequences within each group or cluster are as close to each other
as possible and as different from other patterns in other clusters as possible. For
instance, we can detect similar groups of sequences that show access patterns to
online learning which are commonly referred to as tactics e.g., [3]. Such a step
is typically performed using a clustering algorithm which may—or may not—
require dissimilarity measures as an input [23, 27]. Common clustering algorithms
that use a dissimilarity matrix are the hierarchical clustering algorithms. Hidden
Markov models are among the most non-distance based cluster algorithms. See
the remaining chapters about sequence analysis for examples of these algorithms
[28–30].

3.1.8 Analyzing the Groups and/or Using Them in Subsequent Analyses

Analysis of the identified patterns or subgroups of sequences is an important
research question in many studies and oftentimes, it is the guiding research question.
For instance, researchers may use log data to create sequences of learning actions,
identify subgroups of sequences, and examine the association between the identified
patterns and performance e.g., [3, 17, 18], associate the identified patterns with
course and course delivery [10], examine how sequences are related to dropout using
survival analysis [9], or compare sequence patterns to frequencies [16].

3.2 Introduction to the Technique

Before performing the actual analysis with R code, we need to understand how
the data is processed for analysis. Four important steps that require more in-
depth explanation will be clarified here, those are: defining the alphabet, the
timing scheme, specifying the actor, and visualization. Oftentimes, the required
information to perform the aforementioned steps are not readily obvious in the data
and therefore some preparatory steps need to be taken to process the file.

The example shown in Table 4 uses fictional log trace data similar to those that
come from LMSs. To build a sequence from the data in Table 4, we can use the
Action column as an alphabet. If our aim here is to model the sequence of students’
online actions, this is a straightforward choice that requires no preparation. Since
the log trace data has no obvious timing scheme, we can use the session as a time
scheme. To compute the session, we need to group the actions that occur together
without a significant delay between actions (i.e., lag) that can be considered as an
inactivity (see Sect. 3.1.2). For instance, Layla’s actions in Table 4 started at 18:44
and ended at 18:51. As such, all Layla’s actions occurred within 7 minutes. As
Table 4 also shows, the first group of Layla’s actions occur within 1–2 minutes of

332 M. Saqr et al.

Table 5 A sequence of engagement states using fictional data

Actor 1 2 3 4 5 6

Layla session1 Calendar Lecture Instructions Assignment Lecture Video

Sophia session1 Lecture Instructions Assignment Assignment Assignment

Carmen session1 Lecture Video

Layla session2 Instructions Video Lecture Assignment

lag. The next group of actions by Layla occur after almost one day, an hour and
six minutes (1506 minutes) which constitutes a period of inactivity long enough
to divide Layla’s actions into two separate sessions. Layla’s actions on the first
day can be labeled Layla-session1 and her actions on the second day are Layla-
session2. The actor in this example is a composite of the student (e.g., Layla) and
the session number. The same for Sophia and Carmen: their actions occurred within
a few minutes and can be grouped into the sessions. Given that we have the alphabet
(Action), the timing scheme (session), and the actor (user-session), the next step is to
order the alphabet chronologically. In Table 4, the actions were sequentially ordered
for every actor according to their chronological order. The method that we will use
in our guide requires the data to be in so-called “wide format”. This is performed
by pivoting the data, or creating a wide form where the column names are the order
and the value of the Action column is sequentially and horizontally listed as shown
in Table 5.

The following steps are creating a sequence object using sequence mining
software and using the created sequence in analysis. In our case, we use the
TraMineR framework which has a large set of visualization and statistical functions.
Sequences created with TraMineR also work with a large array of advanced tools,
R packages, and extensions. However, it is important to understand sequence
visualizations before delving into the coding part.

3.3 Sequence Visualization

Two basic plots are important here and therefore will be explained in detail. The
first is the index plot (Fig. 2) which shows the sequences of stacked colored bars
representing spells, with each token represented by a different color. For instance,
if we take Layla’s actions (in session1) and represent them as an index plot, they
will appear as shown in Fig. 2 (see the arrow). Where the Calendar is represented
as a purple bar, the Lecture as a yellow bar, and instructions as an orange bar etc.
Figure 2 also shows the visualization of sequences in Table 5 and you can see each
of the session sequences as stacked colored bars following their order in the table.
Nevertheless, sequence plots commonly include a large number of sequences that
are of the order of hundreds or thousands of sequences and may be harder to read
than the one presented in the example (see examples in the next sections).

The distribution plot is another related type of sequence visualization. Distri-
bution plots—as the name implies—represent the distribution of each alphabet at

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 333

Fig. 2 A table with ordered sequences of actions and the corresponding index plot; the arrow
points to Layla’s actions

Fig. 3 Index plot (top) and distribution plot (bottom)

each time point. For example, if we look at Fig. 3 (top) we see 15 sequences in the
index plot. At time point 1, we can count eight Calendar actions, two Video actions,
two Lecture actions and one Instruction action. If we compute the proportions: we
get 8/15 (0.53) of Calendar actions; for Video, Assignment, and Lecture we get
2/15 (0.13) in each case, and finally Instructions actions account for 1/15 (0.067).
Figure 3 (bottom) shows these proportions. At time point 1, we see the first block
Assignment with 0.13 of the height of the bar, followed by the Calendar which
occupies 0.53, then a small block (0.067) for the Instructions, and finally two equal
blocks (0.13) representing the Video and Lecture actions.

Since the distribution plot computes the proportions of activities at each time
point, we see different proportions at each time point. Take for example, time point
6, we have only two actions (Video and Assignment) and therefore, the plot has 50%

334 M. Saqr et al.

for each action. At the last point 7, we see 100% for Lecture. Distribution plots
need to be interpreted with caution and in particular, the number of actions at each
time point need to be taken into account. One cannot say that at the seventh time
point, 100% of actions were Lecture, since it was the only action at this time point.
Furthermore, distribution plots do not show the transitions between sequences and
should not be interpreted in the same way as the index plot.

4 Analysis of the Data with Sequence Mining in R

4.1 Important Packages

The most important package and the central framework that we will use in our
analysis is the TraMineR package. TraMineR is a toolbox for creating, describing,
visualizing and analyzing sequence data. TraMineR accepts several sequence
formats, converts to a large number of sequence formats, and works with other
categorical data. TraMineR computes a large number of dissimilarity measures
and has several integrated statistical functions. TraMineR has been mainly used
to analyze live event data such as employment states, sequence of marital states,
or other life events. With the emergence of learning analytics and educational data
mining, TraMineR has been extended into the educational field [31]. In the current
analysis we will also need the packages TraMineRextras, WeightedCluster, and
seqhandbook, which provide extra functions and statistical tools. The first code
block loads these packages. In case you have not already installed them, you may
need to install them.

library(TraMineR)
library(TraMineRextras)
library(WeightedCluster)
library(seqhandbook)
library(tidyverse)
library(rio)
library(cluster)
library(MetBrewer)
library(reshape2)

4.2 Reading the Data

The example that will be used here is a Moodle log dataset that includes three
important fields: the User ID (user), the time stamp (timecreated), and the

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 335

actions (Event.context). Yet, as we mentioned before, there are some steps that
need to be performed to prepare the data for analysis. First, the Event.context
is very granular (80 different categories) and needs to be re-coded as mentioned
in the basics of sequence mining section. We have already prepared the file with
a simpler coding scheme where, for example, all actions intended as instructions
were coded as instruction, all group forums were coded as group_work, and all
assignment work was coded as Assignment. Thus, we have a field that we can use
as the alphabet titled action. The following code reads the original coded dataset.

Seqdatas <-
import("https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Events.xlsx")

A tibble: 95,626 x 7
Event.context user timecreated Component Event.name Log Action
<chr> <chr> <dttm> <chr> <chr> <chr> <chr>

1 Assignment: Fina~ 9d74~ 2019-10-26 09:37:12 Assignme~ Course mo~ Assi~ Assig~
2 Assignment: Fina~ 9148~ 2019-10-26 09:09:34 Assignme~ The statu~ Assi~ Assig~
3 Assignment: Fina~ 278a~ 2019-10-18 12:05:28 Assignme~ Course mo~ Assi~ Assig~
4 Assignment: Fina~ 53d6~ 2019-10-19 13:28:37 Assignme~ The statu~ Assi~ Assig~
5 Assignment: Fina~ aab7~ 2019-10-15 23:38:13 Assignme~ Course mo~ Assi~ Assig~
6 Assignment: Fina~ 82ed~ 2019-10-18 17:51:43 Assignme~ Course mo~ Assi~ Assig~
7 Assignment: Fina~ 4178~ 2019-10-18 15:22:56 Assignme~ Course mo~ Assi~ Assig~
8 Assignment: Fina~ 82ed~ 2019-10-22 13:46:51 Assignme~ The statu~ Assi~ Assig~
9 Assignment: Fina~ f2e9~ 2019-10-15 14:58:17 Assignme~ Submissio~ Assi~ Assig~

10 Assignment: Fina~ 53d6~ 2019-10-19 13:28:38 Assignme~ Course mo~ Assi~ Assig~
i 95,616 more rows

4.3 Preparing the Data for Sequence Analysis

To create a time scheme, we will use the methods described earlier in the basis
of the sequence analysis section. The timestamp field will be used to compute the
lag (the delay) between actions, find the periods of inactivity between the actions,
and mark the actions that occur without a significant lag together as a session.
Actions that follow with a significant delay will be marked as a new session. The
following code performs these steps. First, the code arranges the data according
to the timestamp for each user (see the previous example in the basics section),
this is why we use arrange(timecreated, user). The second step (#2) is to
group_by(user) to make sure all sessions are calculated for each user separately.
The third step is to compute the lag between actions. Step #4 evaluates the lag
length; if the lag exceeds 900 seconds (i.e., a period of inactivity of 900 seconds), the
code marks the action as the start of a new session. Step #5 labels each session with
a number corresponding to its order. The last step (#6) creates the actor variable, by
concatenating the username with the string “Session_” and the session number; the
resulting variable is called session_id.

sessioned_data <- Seqdatas |>
arrange(timecreated, user) |> # Step 1
group_by(user) |> # Step 2

336 M. Saqr et al.

mutate(Time_gap = timecreated - (lag(timecreated))) |> # Step 3
mutate(new_session = is.na(Time_gap) | Time_gap > 900) |> # Step 4
mutate(session_nr = cumsum(new_session)) |> # Step 5
mutate(session_id = paste0 (user, "_", "Session_", session_nr)) #Step 6

An important question here is what is the optimum lag or delay that we should
use to separate the sessions. Here, we used 900 seconds (15 minutes) based on our
knowledge of the course design. In the course where the data comes from, we did not
have activities that require students to spend long periods of idle time online (e.g.,
videos). So, it is reasonable here to use a relatively short delay (i.e., 900 seconds)
to mark new sessions. Another alternative is to examine the distribution of lags or
compute the percentiles.

quantile(sessioned_data$Time_gap,
c(0.10, 0.50, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00), na.rm = TRUE)

Time differences in secs
10% 50% 75% 80% 85% 90% 95% 100%

1 1 61 61 181 841 12121 1105381

The previous code computes the proportion of lags at 10% to 100% and the
results show that at 90th percentile, the length of lags is equal to 841 seconds,
that is very close to the 900 seconds we set. The next step is to order the
actions sequentially (i.e., create the sequence in each session) as explained in
Sect. 3.1.2 and demonstrated in Table 4. We can perform such ordering using the
function seq_along(session_id) which creates a new field called sequence that
chronologically orders the action (the alphabet).

sessioned_data <- sessioned_data |>
group_by(user, session_nr) |>
mutate(sequence = seq_along(session_nr)) |>
mutate(sequence_length = length(sequence))

Some sessions are outliers (e.g., extremely long or very short)—there are usually
very few—and therefore, we need to trim such extremely long sessions. We do so
by calculating the percentiles of session lengths.

quantile(sessioned_data$sequence_length,
c(0.05, 0.1, 0.5, 0.75, 0.90, 0.95, 0.98, 0.99, 1.00), na.rm =
TRUE)

5% 10% 50% 75% 90% 95% 98% 99% 100%
3 4 16 29 42 49 59 61 62

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 337

We see here that 95% of sequences lie within 49 states long and therefore, we
can trim these long sessions as well as sessions that are only one event long.

sessioned_data_trimmed <- sessioned_data |>
filter(sequence_length > 1 & sequence <= 49)

The next step is to reshape or create a wide format of the data and convert each
session into a sequence of horizontally ordered actions. For that purpose, we use the
function dcast from the reshape2 package. For this function, we need to specify
the ID columns (the actor) and any other properties for the users can be specified
here also. We selected the variables user and session_id. Please note that only
session_id is necessary (actor) but it is always a good idea to add variables that
we may use as weights, as groups, or for later comparison. We also need to specify
the sequence column and the alphabet (action) column. The resulting table is
similar to Table 5.

The last step is creating the sequence object using the seqdef function from
the TraMineR package. To define the sequence, we need the prepared file from
the previous step (similar to Table 5) and the beginning and end of the columns
to consider i.e., the start of the sequence. We have started from the fourth column
since the first three columns are meta-data (user, session_id, and session_nr).
To include all columns in the data we use the ncol function to count the number
of columns in the data. Creating a sequence object enables the full potential of
sequence analysis.

data_reshaped <- dcast(user + session_id + session_nr ~ sequence,
data = sessioned_data_trimmed,
value.var = "Action")

Seqobject <- seqdef(data_reshaped, 4:ncol(data_reshaped))

[>] found missing values (’NA’) in sequence data
[>] preparing 9383 sequences
[>] coding void elements with ’%’ and missing values with ’*’
[>] 12 distinct states appear in the data:

1 = Applications
2 = Assignment
3 = Course_view
4 = Ethics
5 = Feedback
6 = General
7 = Group_work
8 = Instructions
9 = La_types
10 = Practicals
11 = Social

338 M. Saqr et al.

12 = Theory
[>] 9383 sequences in the data set
[>] min/max sequence length: 2/49

An optional—yet useful—step is to add a color palette to create a better looking
plot. Choosing an appropriate palette with separable colors improves the readability
of the plot by helping easily identify different alphabets.

Number_of_colors <- length(alphabet(Seqobject))
colors <- met.brewer(name = "VanGogh2", n = Number_of_colors)
cpal(Seqobject) <- colors

4.4 Statistical Properties of the Sequences

A simple way to get the properties of the sequences is through the function
summary(). The functions show the total number of sequences in the object, the
number of unique sequences, and lists the alphabet. A better way to dig deeper into
the sequence properties is to use the seqstatd() function which returns several
statistics, most notably the relative frequencies, i.e., the proportions of each state at
each time point or the numbers comprising the distribution plot. The function also
returns the valid states, that is, the number of valid states at each time point as well
as the transversal entropy, which is a measure of diversity of states at each time
point [32]. The code in the next section computes the sequence statistics and then
displays the results. We show only the output of seq_stats$Frequencies where
we see the frequency of each activity at each time point (Table 6).

summary(Seqobject)
seq_stats <- seqstatd(Seqobject)
seq_stats$Frequencies
seq_stats$Entropy
seq_stats$ValidStates

4.5 Visualizing Sequences

Visualization has a summarizing power that allows researchers to have an idea about
a full dataset in one visualization. TraMineR allows several types of visualizations
that offer different perspectives. The most common visualization type is the distri-
bution plot (described earlier in Fig. 3). To plot a distribution plot one can use the
powerful seqplot function with the argument type="d" or simply seqdplot().

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 339

Table 6 Frequency of activities at each point

Activity 1 2 3 4 5 6 7 8 . . . 49

Applications 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.03

Assignment 0.08 0.10 0.11 0.09 0.08 0.09 0.07 0.07 0.00

Course_view 0.48 0.32 0.27 0.26 0.23 0.21 0.20 0.23 0.14

Ethics 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07

Feedback 0.03 0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.00

General 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.22

Group_work 0.21 0.28 0.31 0.33 0.36 0.37 0.38 0.37 0.31

Instructions 0.05 0.07 0.07 0.07 0.07 0.08 0.08 0.07 0.04

La_types 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.09

Practicals 0.09 0.12 0.12 0.11 0.11 0.11 0.11 0.12 0.07

Social 0.01 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.00

Theory 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02

Fig. 4 Sequence distribution
plot

seqplot(Seqobject, type = "d")

The default distribution plot has an y-axis that ranges from 0 to 1.0 corresponding
to the proportion and lists the number of sequences which in our case is 9383
However, the default output of the seqdplot() function is rarely satisfactory and
we need to use the function arguments to optimize the resulting plot. The help file
contains a rather detailed list of arguments and types of visualizations that can be
consulted for more options, which can be obtained like any other R function by
typing ?seqplot. In this chapter we will discuss the most basic options. In Fig. 4,
we use cex.legend argument to optimize the legend text size, we use the ncol
argument to make the legend spread over six columns, the argument legend.prop
to make the legend a bit far away from the main plot so they do not overlap and
we use the argument border=NA to remove the borders from the plot. With such

340 M. Saqr et al.

Fig. 5 Sequence distribution plot with customized arguments

small changes, we get a much cleaner and readable distribution plot. Please note,
that in each case, you may need to optimize the plot according to your needs. It is
important to note here that in the case of missing data or sequences with unequal
lengths like ours—which is very common—the distribution plot may show results
that are made of fewer sequences at later time points. As such, the interpretation of
the distribution plot should take into account the number of sequences, missing data,
and timing (Fig. 5). An index plot may be rather more informative in cases where
missing data is prevalent.

seqplot(Seqobject, type = "d", cex.legend = 0.9, ncol = 6, cex.axis = 0.7,
legend.prop = 0.1, border = NA)

The index plot can be plotted in the same way using seqplot() with the
argument type="I" or simply using seqIplot. The resulting plot (Fig. 6) has each
sequence of the 9383 plotted as a line of stacked colored bars. One of the advantages
of index plots is that they show the transitions between states in each sequence spell.
Of course, plotting more than nine thousand sequences results in very thin lines
that may not be very informative. Nevertheless, index plots are very informative
when the number of sequences is relatively small. Sorting the sequences could
help improve the visualization. On the right side, we see the index plot using the
argument “sortv =”from.start”, under which sequences are sorted by the elements
of the alphabet at the successive positions starting from the beginning of the time
window.

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 341

Fig. 6 Sequence index plots

seqplot(Seqobject, type = "I", cex.legend = 0.6, ncol = 6, cex.axis = 0.6,
legend.prop = 0.2, border = NA)

seqplot(Seqobject, type = "I", cex.legend = 0.6, ncol = 6, cex.axis = 0.6,
legend.prop = 0.2, border = NA, sortv = "from.start")

The last visualization type we discuss here is the mean time plot, which plots
the total time of every element of the alphabet across all time, i.e., a frequency
distribution of all states regardless of their timing. As the plot in Fig. 7 shows, group
work seems to be the action that students performed the most, followed by course
view.

seqplot(Seqobject, type = "mt", cex.legend = 0.7, ncol = 6, cex.axis = 0.6,
legend.prop = 0.15, border = NA, ylim = c(0, 5))

342 M. Saqr et al.

Applications Assignment Course_view Ethics Feedback General Group_work Instructions La_types Practicals Social Theory

M
ea

n
tim

e
(n

=
93

83
)

0
1

2
3

 4
5

Applications
Assignment

Course_view
Ethics

Feedback
General

Group_work
Instructions

La_types
Practicals

Social
Theory

Fig. 7 Mean time plot

4.6 Dissimilarity Analysis and Clustering

Having prepared the sequences and explored their characteristics, we can now
investigate if they have common patterns, recurrent sequences, or groups of similar
sequences. This is a two-stage process; we will need to compute dissimilarities
(along with associated substitution costs) and then perform cluster analysis on
the resulting matrix. For more details on the clustering technique, please refer to
Chapter 8 [33]. In the case of log trace data, clustering has always been performed
to find learning tactics or sequences of students’ actions that are similar to each
other or, put another way, patterns of similar behavior (e.g., [3, 11]). For the present
analysis, we begin with the most common method for computing the dissimilarity
matrix, that is Optimal Matching (OM). OM computes the dissimilarity between two
sequences as the minimal cost of converting a sequence to the other. OM requires
some steps that include specifying a substitution cost matrix, indel cost. Later, we
use a clustering algorithm to partition the sequences according to the values returned
by the OM algorithm [34, 35].

A possible way to compute substitutions cost that has been commonly used—
yet frequently criticized—in the literature is the TRATE method [36]. The TRATE
method is data-driven and relies on transition rates; it assumes that pairs of states
with frequent transitions between them should have “lower cost” of substitution (i.e.,
they are seen as being more similar). Thus, if we replace an action with another
action that occurs often, it has a lower cost. This may be useful in some course
designs, where some activities are very frequently visited and others are rare. The
function seqsubm() is used to compute substitution costs with the TRATE method
via:

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 343

substitution_cost_TRATE <- seqsubm(Seqobject, method ="TRATE")

If we print the substitution cost matrix (Table 7), we see that, for instance,
the cost of replacing Applications with Applications is 0, whereas the cost of
replacing Applications with Assignment (and vice versa) is higher (1.94).
Since Course_view is the most common transition, replacing any action with
Course_view tends to be the lowest in cost, which makes sense. Please note that
the TRATE method is presented here for demonstration only. In fact, we do not
recommend it to be used by default; readers should choose carefully what cost
method best suits their data.

Nevertheless, the most straightforward way of computing the cost is to use
a constant cost; that is, to assume that the states are equally distant from one
another. To do so, we can use the function seqsubm() and supply the argument
method="CONSTANT". In the following example, we assign a common cost of 2
(via the argument cval). We also refer below to other optional arguments which are
not strictly necessary for the present application but nonetheless worth highlighting
as options.

substitution_cost_constant <- seqsubm(
Seqobject, # Sequence object
method = "CONSTANT", # Method to determine costs
cval = 2, # Substitution cost
time.varying = FALSE, # Does not allow the cost to vary over time
with.missing = TRUE, # Allows for missingness state
miss.cost = 1, # Cost for substituting a missing state
weighted = TRUE) # Allows weights to be used when applicable

To compute the OM dissimilarity matrix, the indel argument needs to be
provided and we will use the default value 1 which is half of the highest substitution
cost (2). We also need to provide the substitution cost matrix (sm). We opt for
the matrix of constant substitution costs created above, given its straightforward
interpretability.

dissimilarities <- seqdist(Seqobject, method = "OM",indel = 1,
sm = substitution_cost_constant)

[>] 9383 sequences with 12 distinct states

[>] checking ’sm’ (size and triangle inequality)

[>] 4062 distinct sequences

[>] min/max sequence lengths: 2/49

[>] computing distances using the OM metric

[>] elapsed time: 7.807 secs

344 M. Saqr et al.

Ta
bl

e
7

Su
bs

tit
ut

io
n

co
st

 m
at

ri
x

fo
r

th
e

T
R

A
T

E
 m

et
ho

d

Fr
om

 \
To

A
pp

lic
at

io
ns

A

ss
ig

nm
en

t
C

ou
rs

e_
vi

ew

E
th

ic
s

Fe
ed

ba
ck

G

en
er

al

G
ro

up
_w

or
k

In
st

ru
ct

io
ns

L

a_
ty

pe
s

Pr
ac

tic
al

s
So

ci
al

T

he
or

y

A
pp

lic
at

io
ns

.0
.0

00
.1
.9

39
.1
.8

68
.1
.9

66
.1
.9

88
.1
.7

49
.1
.9

46
.1
.9

85
.1
.9

82
.1
.9

56
.2
.0

00
. 1
.9

94

A
ss

ig
nm

en
t

.1
.9

39
.0
.0

00
.1
.7

50
.1
.9

96
.1
.9

70
.1
.9

36
.1
.9

61
.1
.9

60
.1
.9

22
.1
.9

62
.1
.9

93
. 1
.9

82

C
ou

rs
e_

vi
ew

.1
.8

68
.1
.7

50
.0
.0

00
.1
.8

79
.1
.7

43
.1
.8

01
.1
.5

24
.1
.5

64
.1
.7

49
.1
.7

50
.1
.7

35
. 1
.8

54

E
th

ic
s

.1
.9

66
.1
.9

96
.1
.8

79
.0
.0

00
.1
.9

91
.1
.9

50
.1
.9

07
.1
.9

91
.1
.9

40
.1
.9

45
.1
.9

88
. 1
.9

45

Fe
ed

ba
ck

.1
.9

88
.1
.9

70
.1
.7

43
.1
.9

91
.0
.0

00
.1
.9

92
.1
.8

79
.1
.9

26
.1
.9

90
.1
.9

78
.1
.9

99
. 1
.9

96

G
en

er
al

.1
.7

49
.1
.9

36
.1
.8

01
.1
.9

50
.1
.9

92
.0
.0

00
.1
.9

36
.1
.9

09
.1
.8

42
.1
.9

61
.1
.9

85
. 1
.9

47

G
ro

up
_w

or
k

.1
.9

46
.1
.9

61
.1
.5

24
.1
.9

07
.1
.8

79
.1
.9

36
.0
.0

00
.1
.8

62
.1
.9

24
.1
.9

56
.1
.8

73
. 1
.9

38

In
st

ru
ct

io
ns

.1
.9

85
.1
.9

60
.1
.5

64
.1
.9

91
.1
.9

26
.1
.9

09
.1
.8

62
.0
.0

00
.1
.9

31
.1
.9

54
.1
.8

50
. 1
.9

83

L
a_

ty
pe

s
.1
.9

82
.1
.9

22
.1
.7

49
.1
.9

40
.1
.9

90
.1
.8

42
.1
.9

24
.1
.9

31
.0
.0

00
.1
.9

64
.1
.9

81
. 1
.9

07

Pr
ac

tic
al

s
.1
.9

56
.1
.9

62
.1
.7

50
.1
.9

45
.1
.9

78
.1
.9

61
.1
.9

56
.1
.9

54
.1
.9

64
.0
.0

00
.1
.9

78
. 1
.9

48

So
ci

al
.2
.0

00
.1
.9

93
.1
.7

35
.1
.9

88
.1
.9

99
.1
.9

85
.1
.8

73
.1
.8

50
.1
.9

81
.1
.9

78
.0
.0

00
. 1
.9

94

T
he

or
y

.1
.9

94
.1
.9

82
.1
.8

54
.1
.9

45
.1
.9

96
.1
.9

47
.1
.9

38
.1
.9

83
.1
.9

07
.1
.9

48
.1
.9

94
.0
.0

00

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 345

1 3 5 7 9 11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

Fig. 8 Visualization of clusters using a dendrogram

In the resulting pairwise dissimilarity matrix, every sequence has a dissimilarity
value with every other sequence in the dataset, and therefore, the dissimilarity matrix
can be large and resource intensive in larger matrices. In our case, the dissimilarity
matrix is 9383 * 9383 (i.e., 88,040,689) in size. With these dissimilarities between
sequences as input, several distance-based clustering algorithms can be applied to
partition the data into homogeneous groups. In our example, we use the hierarchical
clustering algorithm from the package stats by using the function hclust(), but
note that the choice of clustering algorithm can also affect results greatly and should
be chosen carefully by the reader. For more details on the clustering technique,
please refer to Chapter 8 [33]. The seq_heatmap() function is used to plot a
dendrogram of the index plot which shows a hierarchical tree of different levels
of subgrouping and helps choose the number of clusters visually.

clusters_sessionsh <- hclust(as.dist(dissimilarities), method = "ward.D2")
seq_heatmap(Seqobject, clusters_sessionsh)

To do the actual clustering, we use the function cutree() and with the argument
k = 3 to cluster the sequence into three clusters according to the groups highlighted
in Fig. 8. The cutree function produces a vector of cluster numbers, we can create

346 M. Saqr et al.

Fig. 9 Sequence distribution plot for the k=3 cluster solution

more descriptive labels as shown in the example and assign the results to an R
object called Groups. Visualizations of the clustering results can be performed
in a similar fashion to the earlier visualizations of the entire set of sequences:
via seqplot(), with the desired type of plot, and the addition of the argument
group (Fig. 9). Readers have to choose the arguments and parameters according to
contexts, research questions, and the nature of their data.

Cuts <- cutree(clusters_sessionsh, k = 3)
Groups <- factor(Cuts, labels = paste("Cluster", 1:3))
seqplot(Seqobject, type = "d", group = Groups, cex.legend = 0.8, ncol = 2,

cex.axis = 0.6, legend.prop = 0.2, border = NA)

However, the resulting clusters might not be the best solution and we need to try
other dissimilarity measures and/or clustering algorithms, evaluate the results, and
compare their fit indices. TraMineR provides several distance measures, the most
common of which are:

• Edit distances: Optimal matching "OM" or optimal matching with sensitivity
to certain factors, e.g., optimal matching with sensitivity to spell sequence
("OMspell") or with sensitivity to transitions ("OMstran").

• Shared attributes: Distance based on the longest common subsequence
("LCS"), longest common prefix ("LCP"; which prioritizes sequence common
initial states), or the subsequence vectorial representation distance ("SVRspell";
based on counting common subsequences).

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 347

• Distances between distributions of states: Euclidean ("EUCLID") distance or
Chi-squared (“CHI2”).

Determining the distance may be done based on the research hypothesis,
context, and the nature of the sequences. For instance, a researcher may decide
to group sequences based on their common starting points (e.g., [16]) where the
order and how a conversation starts matter. TraMineR allows the computation of
several dissimilarities. The following code computes some of the most common
dissimilarities and stores each in a variable that we can use later.

Edit distances and sequences
dissimOMstran <- seqdist(Seqobject, method = "OMstran", otto = 0.1,

sm = substitution_cost_constant, indel = 1)
dissimOMspell <- seqdist(Seqobject, method = "OMspell", expcost = 0,

sm = substitution_cost_constant, indel = 1)
dissimSVRspell <- seqdist(Seqobject, method = "SVRspell", tpow = 0)
dissimOM <- seqdist(Seqobject, method = "OM", otto = 0.1,

sm = substitution_cost_constant, indel = 1)

Distances between state distributions
dissimCHI2 <- seqdist(Seqobject, method = "CHI2", step = 1)
dissimEUCLID <- seqdist(Seqobject, method = "EUCLID", step = 49)

Distances based on counts of common attribute e.g., duration (spell lengths)
dissimOMspell <- seqdist(Seqobject, method = "OMspell", expcost = 1,

sm = substitution_cost_constant, indel = 1)
dissimLCS <- seqdist(Seqobject, method = "LCS")
dissimLCP <- seqdist(Seqobject, method = "LCP")
dissimRLCP <- seqdist(Seqobject, method = "RLCP")

We can then try each dissimilarity with varying numbers of clusters and
compute the clustering evaluation measures. The function as.clustrange from
the WeightedCluster package computes several cluster quality indices including,
among others, the Average Silhouette Width (ASW) which is commonly used in
cluster evaluation to measure the coherence of the clusters. A value above 0.25
means that the data has some structure or patterns, whereas a value below 0.25
signifies the lack of structure in the data. The function also computes the Rˆ2 Value
which represents the ratio of the variance explained by the clustering solution. The
results can be plotted and inspected. We can see that four clusters seem to be a
good solution. Table 8 and Fig. 10 show that the ASW and CHsq measures are
maximized for the four-cluster solution, for which other parameters such as Rˆ2
are also relatively good. Thus, we can use the four cluster solution. We note the
use of the norm=“zscoremed” argument which improves the comparability of the
various metrics in Fig. 10 by standardizing the values to make it easier to identify
the maxima. Table 8, however, presents the values on their original scales. Finally,

348 M. Saqr et al.

Table 8 Cluster performance metrics

PBC HG HGSD ASW ASWw CH R2 CHsq R2sq HC

.0.281 .0.336 .0.335 .0.268 .0.268 .2230.420 .0.192 .3565.535 .0.275 . 0.319

.0.417 .0.489 .0.488 .0.307 .0.307 .1992.266 .0.298 .3553.441 .0.431 . 0.246

.0.507 .0.614 .0.614 .0.333 .0.333 .1952.437 .0.384 .3985.571 .0.560 . 0.190

.0.491 .0.635 .0.634 .0.272 .0.272 .1717.644 .0.423 .3524.149 .0.601 . 0.184

.0.511 .0.677 .0.677 .0.287 .0.288 .1580.850 .0.457 .3301.251 .0.638 . 0.165

.0.534 .0.736 .0.735 .0.308 .0.309 .1449.482 .0.481 .3178.407 .0.670 . 0.138

.0.557 .0.812 .0.812 .0.324 .0.325 .1362.368 .0.504 .3110.913 .0.699 . 0.104

.0.559 .0.831 .0.830 .0.327 .0.327 .1341.529 .0.534 .3124.571 .0.727 . 0.096

.0.571 .0.865 .0.865 .0.329 .0.330 .1274.303 .0.550 .3085.893 .0.748 . 0.080

2 4 6 8 10

−
4

−
2

0
2

N clusters

In
di

ca
to

rs

PBC (−5.08 / 1.3)
HG (−2.53 / 1.39)
HGSD (−2.53 / 1.39)
ASW (−1.92 / 1.18)
ASWw (−1.91 / 1.16)
CH (−1.28 / 2.71)
R2 (−3.64 / 1.27)
CHsq (−1 / 3.18)
R2sq (−4.69 / 1.42)
HC (−1.39 / 2.53)

Fig. 10 Cluster performance metrics. X-axis represents the number of clusters, Y-axis represents
the fit index standardized value

the ranges and other characteristics of each cluster quality metric are summarized in
Table 9. For brevity, we proceed with only the Euclidean distance matrix.

dissimiarities_tested <- dissimEUCLID
Clustered <- hclust(as.dist(dissimiarities_tested), method = "ward.D2")
Clustered_range <- as.clustrange(Clustered, diss = dissimiarities_tested,

ncluster = 10)
plot(Clustered_range, stat = "all", norm = "zscoremed", lwd = 2)

Clustered_range[["stats"]]

To get the cluster assignment, we can use the results from the Clustered_range
object and plot the clusters using the previously shown distribution, index, and mean
time plot types (Figs. 11, 12, and 13).

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 349

Table 9 Measures of the quality of a partition. Note: Table is based on [23] with permission from
the author [23]

Name Abrv. Range Min/Max Interpretation

Point Biserial
Correlation

PBC [. −1;1] Max Measure of the capacity of the
clustering to reproduce the distances

Hubert’s Gamma HG [. −1;1] Max Measure of the capacity of the
clustering to reproduce the distances
(order of magnitude)

Hubert’s Somers’
D

HGSD [. −1;1] Max Measure of the capacity of the
clustering to reproduce the distances
(order of magnitude) taking into
account ties in distances

Hubert’s C HC [0;1] Min Gap between the partition obtained and
the best partition theoretically possible
with this number of groups and these
distances

Average
Silhouette Width

ASW [. −1;1] Max Coherence of assignments. High
coherence indicates high
between-group distances and strong
within-group homogeneity

Average
Silhouette Width
(weighted)

ASWw [. −1;1] Max As previous, for floating point weights

Calinski-Harabasz
index

CH [0; .+∞[Max Pseudo F computed from the distances

Calinski-Harabasz
index

CHsq [0; .+∞[Max As previous, but using squared
distances

Pseudo R2 R2 [0;1] Max Share of the discrepancy explained by
the clustering solution (only to
compare partitions with identical
number of groups)

Pseudo R2 R2sq [0;1] Max As previous, but using squared
distances

grouping <- Clustered_range$clustering$cluster4
seqplot(Seqobject, type = "d", group = grouping, cex.legend = 0.9, ncol = 6,

cex.axis = 0.6, legend.prop = 0.2, border = NA)

seqplot(Seqobject, type = "I", group = grouping, cex.legend = 0.9, ncol = 6,
cex.axis = 0.6, legend.prop = 0.2, border = NA)

seqplot(Seqobject, type = "mt", group = grouping, cex.legend = 1, ncol = 6,
cex.axis = .5, legend.prop = 0.2, ylim = c(0, 10))

350 M. Saqr et al.

Fig. 11 Sequence distribution plot for the four clusters

Fig. 12 Sequence index plot for the four clusters

Given the clustering structure, we also use a new plot type: the implication
plot from the TraMineRextras package. Such a plot explicitly requires a group
argument; in each of these plots, at each time point, “being in this group implies
to be in this state at this time point”. The strength of the rule is represented by a

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 351

Applications Course_view Feedback General Instructions Practicals Social Theory

1
0

2
4

6
8

 10

Applications Course_view Feedback General Instructions Practicals Social Theory

2

0
2

4
 6

8
10

Applications Course_view Feedback General Instructions Practicals Social Theory

3

0
2

4
 6

8
 10

Applications Course_view Feedback General Instructions Practicals Social Theory

4

0
2

4
6

8
 10

Applications
Assignment

Course_view
Ethics

Feedback
General

Group_work
Instructions

La_types
Practicals

Social
Theory

Fig. 13 Mean time plot for the four clusters

plotted line and a 95% confidence interval. Put another way, the more likely states
have higher implicative values, which are more relevant when higher than the 95%
confidence level (Fig. 14).

implicaton_plot <- seqimplic(Seqobject, group = grouping)
plot(implicaton_plot, conf.level = 0.95, cex.legend = 0.7)

Given the implication plot as well as the other plots, the first cluster seems to
be a mixed cluster with no prominent activity. Cluster 2 is dominated by practical
activities, Cluster 3 is dominated by group work activities, Cluster 4 is dominated by
assignments. Researchers usually give these clusters a label e.g., for Cluster 1, one
could call it a diverse cluster. See some examples here in these papers [3, 10, 11].

5 More Resources

Sequence analysis is a rather large field with a wealth of methods, procedures, and
techniques. Since we have used the TraMineR software in this chapter, a first place
to seek more information about sequence analysis would be to consult the TraMineR
manuals and guides [23, 27, 37]. More tools for visualization can be found in the
package ggseqplot [38]. The ggseqplot package reproduces similar plots to
TraMineR with the ggplot2 framework as well as other interesting visualizations
[39]. This allows further personalisation using the ggplot2 grammar, as we have

352 M. Saqr et al.

1

1 4 7 10 14 18 22 26 30 34 38 42 46

0
10

30
50

70

Conf. 0.95

2

1 4 7 10 14 18 22 26 30 34 38 42 46

0
10

30
50

70

Conf. 0.95

3

1 4 7 10 14 18 22 26 30 34 38 42 46

0
10

30

50
70

Conf. 0.95

4

1 4 7 10 14 18 22 26 30 34 38 42 46
0

10
30

50
70

Conf. 0.95

Applications
Assignment
Course_view

Ethics
Feedback
General

Group_work
Instructions
La_types

Practicals
Social
Theory

Fig. 14 Implication plot for the four clusters

learned in Chapter 6 of this book on data visualization [40]. Another important
sequence analysis package is seqHMM [41], which contains several functions to
fit hidden Markov models. In the next chapter, we see more advanced aspects of
sequence analysis for learning analytics [28–30].

To learn more about sequence analysis in general, you can consult the book by
Cornwell (2015), which is the first general textbook on sequence analysis in the
context of social sciences. Another valuable resource is the recent textbook by Raab
and Struffolino [38], which introduces the basics of sequence analysis and some
recent advances as well as data and R code.

Acknowledgments This paper has been co-funded by the Academy of Finland (decision numbers
350560 and 331816), the Academy of Finland Flagship Programme (decision number 320162), the
Strategic Research Council (SRC), FLUX consortium (decision numbers: 345130 and 345130),
and the Swiss National Science Foundation (project “Strengthening Sequence Analysis”, grant
No.: 10001A_204740).

References

1. Abbott A (1983) Sequences of social events: concepts and methods for the analy-
sis of order in social processes. Hist Methods J Quant Interdiscip Hist 16:129–147.
https://doi.org/10.1080/01615440.1983.10594107

2. Piccarreta R, Studer M (2019) Holistic analysis of the life course: Methodological challenges
and new perspectives. Adv Life Course Res 41:100251

3. Saqr M, López-Pernas S, Jovanović J, Gašević D (2023) Intense, turbulent, or wallowing in the
mire: A longitudinal study of cross-course online tactics, strategies, and trajectories. Internet
High Educ 57:100902

 -563 53032 a -563 53032
a

Sequence Analysis in Education: Principles, Technique, and Tutorial with R 353

4. Fournier-Viger P, Lin JC-W, Kiran RU, Koh YS, Thomas R (2017) A survey of sequential
pattern mining. Data Sci Pattern Recogn 1:54–77

5. Alexander PA, Schallert DL, Reynolds RE (2009) What is learning anyway? A topographical
perspective considered. Educ Psychol 44:176–192

6. Schmitz B (2006) Advantages of studying processes in educational research. Learning and
Instruction 16:433–449

7. Saqr M, Peeters W, Viberg O (2021) The relational, co-temporal, contemporaneous, and
longitudinal dynamics of self-regulation for academic writing. Res Pract Technol Enhanced
Learn 16:29

8. Liao TF, Bolano D, Brzinsky-Fay C, Cornwell B, Fasang AE, Helske S, Piccarreta R, Raab M,
Ritschard G, Struffolino E, Studer M (2022) Sequence analysis: Its past, present, and future.
Soc Sci Res 107:102772

9. Saqr M, López-Pernas S (2021) The longitudinal trajectories of online engagement over a full
program. Comput Educ 175:104325

10. Matcha W, Gašević D, Ahmad Uzir N, Jovanović J, Pardo A, Lim L, Maldonado-Mahauad J,
Gentili S, Pérez-Sanagustín M, Tsai Y-S (2020) Analytics of learning strategies: Role of course
design and delivery modality. J Learn Anal 7:45–71

11. Jovanović J, Gašević D, Dawson S, Pardo A, Mirriahi N, Others (2017) Learning analytics to
unveil learning strategies in a flipped classroom. Internet High Educ 33:74–85

12. Saqr M, Matcha W, Uzir NA, Jovanovic J, Gašević D, López-Pernas S (2023) Transferring
effective learning strategies across learning contexts matters: A study in problem-based
learning. AJET 35–57. https://doi.org/10.14742/ajet.8303

13. López-Pernas S, Saqr M, Gordillo A, Barra E (2023) A learning analytics perspective on
educational escape rooms. Interact Learn Environ 31(10):6509–6525

14. Kinnebrew JS, Loretz KM, Biswas G (2013) A contextualized, differential sequence mining
method to derive students’ learning behavior patterns. J Educ Data Min 5:190–219

15. Saqr M, López-Pernas S (2022) How CSCL roles emerge, persist, transition, and evolve over
time: A four-year longitudinal study. Comput Educ 189:104581

16. Saqr M, López-Pernas S (2023) The temporal dynamics of online problem-based learning:
Why and when sequence matters. Int J Comput Support Collab Learn 18:11–37

17. Matcha W, Gašević D, Uzir NA, Jovanović J, Pardo A (2019) Analytics of learning strategies:
Associations with academic performance and feedback. In: ACM international conference
proceeding series, pp 461–470

18. Kinnebrew JS, Biswas G (2012) Identifying learning behaviors by contextualizing differential
sequence mining with action features and performance evolution. In: Proceedings of the 5th
international conference on educational data mining, EDM 2012, pp 57–64

19. Raab M, Struffolino E (2022) Sequence analysis. SAGE Publications
20. López-Pernas S, Saqr M (2021) Bringing synchrony and clarity to complex multi-channel data:

A learning analytics study in programming education. IEEE Access 9: 166531–166541
21. López-Pernas S, Saqr M, Viberg O (2021) Putting it all together: Combining learning analytics

methods and data sources to understand students’ approaches to learning programming. Sustain
Sci Pract Pol 13:4825

22. Studer M, Ritschard G (2016) What matters in differences between life trajectories: A
comparative review of sequence dissimilarity measures. J R Stat Soc Ser A Stat Soc 179:481–
511

23. Studer M (2013) WeightedCluster library manual. Pract Guide Creat Typol Trajectories Soc
Sci 2296–1658

24. Piccarreta R, Lior O (2010) Exploring sequences: a graphical tool based
on multi-dimensional scaling. J R Stat Soc Ser A (Stat Soc) 173:165–184.
https://doi.org/10.1111/j.1467-985x.2009.00606.x

25. Gabadinho A, Ritschard G (2013) Searching for typical life trajectories applied to childbirth
histories. Gendered life courses–Between individualization and standardization A European
approach applied to Switzerland, pp 287–312

26. Studer M, Ritschard G, Gabadinho A, Müller NS (2011) Discrepancy analysis of state
sequences. Sociol Methods Res 40:471–510

 8244 22940 a 8244 22940
a

 -563
53934 a -563 53934 a

354 M. Saqr et al.

27. Gabadinho A, Ritschard G, Müller NS, Studer M (2011) Analyzing and visualizing state
sequences in R with TraMineR. J Stat Softw 40:1–37

28. López-Pernas S, Saqr M, Helske S, Murphy K (2024, this volume) Multichannel sequence
analysis in educational research using r. In: Saqr M, López-Pernas S (eds) Learning analytics
methods and tutorials: A practical guide using R. Springer

29. Helske J, Helske S, Saqr M, López-Pernas S, Murphy K (2024, this volume) A modern
approach to transition analysis and process mining with markov models: A tutorial with R.
In: Saqr M, López-Pernas S (eds) Learning analytics methods and tutorials: A practical guide
using R. Springer

30. López-Pernas S, Saqr M (2024, this volume) Modelling the dynamics of longitudinal processes
in education. A tutorial with R for the VaSSTra method. In: Saqr M, López-Pernas S (eds)
Learning analytics methods and tutorials: A practical guide using R. Springer

31. Bergner Y, Shu Z, Davier A von (2014) Visualization and confirmatory clustering of sequence
data from a simulation-based assessment task. In: Educational data mining 2014

32. Billari FC (2001) The analysis of early life courses: Complex descriptions of the transition to
adulthood. J Population Res 18:119–142. https://doi.org/10.1007/bf03031885

33. Murphy K, López-Pernas S, Saqr M (2024, this volume) Dissimilarity-based cluster analysis of
educational data: A comparative tutorial using R. In: Saqr M, López-Pernas S (eds) Learning
analytics methods and tutorials: A practical guide using R. Springer

34. Abbott A, Tsay A (2000) Sequence analysis and optimal matching methods in sociology:
Review and prospect. Sociol Methods Res 29:3–33

35. Studer M, Ritschard G (2015) What matters in differences between life trajectories: a
comparative review of sequence dissimilarity measures. J R Stat Soc Ser A Stat Soc 179:481–
511. https://doi.org/10.1111/rssa.12125

36. Taub M, Banzon AM, Zhang T, Chen Z (2022) Tracking changes in students’ online self-
regulated learning behaviors and achievement goals using trace clustering and process mining.
Front Psychol 13:813514

37. Gabadinho A, Ritschard G, Studer M, Nicolas SM (2009) Mining sequence data in R with the
TraMineR package: A users guide for version 1.2. University of Geneva, Geneva, vol 1

38. Raab M (2022) ggseqplot: Render Sequence Plots using ‘ggplot2’. https://maraab23.github.io/
ggseqplot

39. Wickham H, Chang W, Wickham MH (2016) Package ‘ggplot2’. Create elegant data visuali-
sations using the grammar of graphics. Version 2(1):1–189

40. López-Pernas S, Misiejuk K, Kopra J, Tikka S, Heinäniemi M, Saqr M (2024, this volume)
Visualizing and reporting educational data with r. In: Saqr M, López-Pernas S (eds) Learning
analytics methods and tutorials: A practical guide using R. Springer

41. Helske S, Helske J (2019) Mixture hidden Markov models for sequence data: the seqHMM
package in R. J Stat Softw 88(3):1–32. https://doi.org/10.18637/jss.v088.i03

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

 15198 16298
a 15198 16298 a

 1319 25153 a 1319 25153 a

https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Sequence Analysis in Education: Principles, Technique, and Tutorial with R
	1 Introduction
	2 Review of the Literature
	3 Basics of Sequences
	3.1 Steps of Sequence Analysis
	3.1.1 The Alphabet
	3.1.2 Specifying the Time Scheme
	3.1.3 Defining the Actor
	3.1.4 Building the Sequences
	3.1.5 Visualizing and Exploring the Sequence Data
	3.1.6 Calculating the Dissimilarities Between Sequences
	3.1.7 Finding Similar Groups or Clusters of Sequences
	3.1.8 Analyzing the Groups and/or Using Them in Subsequent Analyses

	3.2 Introduction to the Technique
	3.3 Sequence Visualization

	4 Analysis of the Data with Sequence Mining in R
	4.1 Important Packages
	4.2 Reading the Data
	4.3 Preparing the Data for Sequence Analysis
	4.4 Statistical Properties of the Sequences
	4.5 Visualizing Sequences
	4.6 Dissimilarity Analysis and Clustering

	5 More Resources
	References

