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Sequence Analysis in Education: 
Principles, Technique, and Tutorial 
with R 

Mohammed Saqr, Sonsoles López-Pernas, Satu Helske, Marion Durand, 
Keefe Murphy, Matthias Studer, and Gilbert Ritschard 

1 Introduction 

Patterns exist everywhere in our life, from the sequence of genes to the order of steps 
in cooking recipes. Discovering patterns, variations, regularities, or irregularities is 
at the heart of scientific inquiry and, therefore, several data mining methods have 
been developed to understand patterns. Sequence analysis—or sequence mining— 
was developed almost four decades ago to address the increasing needs for pattern 
mining [1]. Ever since, a wealth of applications, algorithms, and statistical tools 
have been developed, adapted, or incorporated into the array of sequence analysis. 
Since sequence mining has been conceptualized, it has grown in scale of adoption 
and range of applications across life and social sciences [2] and education research 
was no exception (e.g., [3]). As a data mining technique, sequence mining has been 
commonly implemented to identify hidden patterns that would otherwise be missed 
using other analytical techniques and find interesting subsequences (parts of the 
sequence) that have practical significance or unexpected sequences that we did not 
know existed [4]. For instance, by mining sequences of collaborative dialogue, we 
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could identify which sequences are followed by more argumentative interactions, 
and what sequences are crucial to the collaborative process. A literature review of 
the common applications follows in the next section. 

Learning is a process that unfolds in time, a process that occurs in sequences of 
actions, in repeated steps, in patterns that have meanings and value for understand-
ing learners’ behavior [5]. The conceptualization of learning as a process entails 
two important criteria: process as a sequence of states that unfold in time and 
process as a transformative mechanism that drives the change from one state to 
another [6]. Thereupon, methods such as sequence mining have gained increasing 
grounds and amassed a widening repertoire of techniques in the field of education 
to study the learning process. In particular, sequence mining has been used to 
harness the temporal unfolding of learners’ behavior using digital data, transcripts 
of conversations, or behavioral states [7]. Nevertheless, sequence mining can be 
used to study non-temporal sequences such as protein sequences and other types of 
categorical data [8]. 

What makes sequences in education interesting is that they have patterns of 
repeated or recurrent sequences. Finding such patterns has helped typify learners’ 
behaviors and identify which patterns are associated with learning and which are 
associated with unfavorable outcomes [3]. Sequence mining can also describe a 
pathway or a trajectory of events, for example, how a student proceeds from 
enrolment to graduation [9], and help to identify the students who have a stable 
trajectory, who are turbulent, and who are likely to falter along their education [3]. 

2 Review of the Literature 

In recent years, sequence analysis has become a central method in learning analytics 
research due to its potential to summarize and visually represent large amounts of 
student-related data. In this section we provide an overview of some of the most 
representative studies in the published literature. A summary of the studies reviewed 
in this section can be seen in Table 1. A common application of sequence analysis is 
the study of students’ log data extracted from their interactions with online learning 
technologies (mostly learning management systems, LMSs) throughout a learning 
session [10–12]. In some studies, the session is well-delimited, such as the duration 
of a game [13] or moving window [14], but in most cases it is inferred from the data, 
considering a session as an uninterrupted sequence of events [10, 11]. Few are the 
studies in which longer sequences are studied, covering a whole course or even a 
whole study program [3, 9, 15]. In such studies, the sequences are not composed of 
instantaneous interactions but rather of states that aggregate students’ information 
over a certain period, for example, we can study students’ engagement [9], learning 
strategies [3], or collaboration roles [15] for each course in a study program. 

Most of the existing research has used clustering techniques to identify distinct 
groups of similar sequences. Agglomerative Hierarchical Clustering (AHC) has 
been the most used technique, with a wealth of distance measures such as Euclidean
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[3, 10], Longest Common Subsequence [13], Longest Common Prefix [16], and 
Optimal Matching [11]. Other works have relied on Markovian Models [15, 17] 
or differential sequence mining [18]. Throughout the remainder of the book, we 
provide an introduction to sequence analysis as a method, describing in detail the 
most relevant concepts for its application to educational data. We provide a step-by-
step tutorial of how to implement sequence analysis in a data set of student log data 
using the R programming language. 

3 Basics of Sequences 

Sequences are ordered lists of discrete elements (i.e., events, states or categories). 
Such elements are discrete (in contrast to numerical values such as grades) and 
are commonly organized chronologically. Examples include sequence of activities, 
sequence of learning strategies, or sequence of behavioral states [19]. A sequence 
of learning activities may include (play video—solve exercise—taking quiz—access 
instructions) [17], other examples include sequence of game moves e.g., (solve 
puzzle—request hint—complete game) [13], or collaborative roles, for instance, 
(leader—mediator - isolate) [15]. 

Before going into sequence analysis, let’s discuss a basic example of a sequence 
inspired by Saqr and López-Pernas [9]. Let’s assume we are tracking the engage-
ment states of students from a course to the next and for a full year that has 
five courses. The engagement states can be either engaged (when the student is 
fully engaged in their learning), average (when the student is moderately engaged), 
and disengaged (when the student is barely engaged). Representing the sequence 
of engagement states of two hypothetical students may look like the example on 
Table 2. 

The first student starts in course 1 with an Average engagement state, in Course 
2, the student is engaged, and so in all the subsequent courses Course 3, Course 4, 
and Course 5. The student in row 2 has a Disengaged state in course 2 onwards. 
As we can see from the two sequences here, there is a pattern that repeats in both 
sequences (both students stay 4 consecutive courses in the same state). In real-life 
examples, sequences are typically longer and in larger numbers. For instance, the 
paper by Saqr and López-Pernas [9] contains 106 students for a sequence of 15 
courses. Finding repeated patterns of engaged states similar to the first student or 
repeated patterns of disengaged states like the other student would be interesting and 
helpful to understand how certain subgroups of students proceed in their education 
and how that relates to their performance. 

Table 2 An example sequence
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3.1 Steps of Sequence Analysis 

Several protocols exist for sequence analysis that vary by discipline, research 
questions, type of data, and software used. In education, sequence analysis protocol 
usually follows steps that include preparing the data, finding patterns, and relating 
these patterns to other variables e.g., performance e.g., [11]. The protocol which 
will be followed in this manual includes six steps: 

(1) Identifying (or coding) the elements of the sequence, commonly referred to as 
alphabet 

(2) Specifying the time window or epoch (time scheme) or sequence alignment 
scheme 

(3) Defining the actor and building the sequence object 
(4) Visualization and descriptive analysis 
(5) Finding similar groups or clusters of sequences, 
(6) Analyzing the groups and/or using them in subsequent analyses. 

3.1.1 The Alphabet 

The first step of sequence analysis is defining the alphabet which are the ele-
ments or the possible states of the sequence [19]. This process usually entails 
“recoding” the states to optimize the granularity of the alphabet. In other words, 
to balance parsimony versus granularity and detail of the data. Some logs are 
overly detailed and therefore would require a careful recoding by the researcher [8]. 
For instance, the logs of Moodle (the LMS) include the following log entries for 
recoding students’ access to the quiz module: quiz_attempt, quiz_continue_attempt, 
quiz_close_attempt, quiz_view, quiz_view_all, quiz_preview. It makes sense here 
to aggregate (quiz_attempt, quiz_continue_attempt, quiz_close_attempt) into one 
category with the label attempt_quiz and (quiz_view, quiz_view all, quiz preview) to  
a new category with the label view_quiz. Optimizing the alphabet into a reasonable 
number of states also helps reduce complexity and facilitates interpretation. Of 
course, caution should be exercised not to aggregate meaningfully distinct states 
to avoid masking important patterns within the dataset. 

3.1.2 Specifying the Time Scheme 

The second step is to define a time scheme, time epoch or window for the analysis. 
Sometimes the time window is fairly obvious, for instance, in case a researcher 
wants to study students’ sequence of courses in a program, the window can be 
the whole program e.g., [9]. Yet, oftentimes, a decision has to be taken about 
the time window which might affect the interpretation of the resulting sequences. 
For example, when a researcher is analyzing the sequence of interactions in a 
collaborative task, he/she may consider the whole collaborative task as a time 
window or may opt to choose segments or steps within the task as time epochs.
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Fig. 1 Every line represents a click, a sequence of successive clicks is a session, and the session 
is defined by the inactivity period 

Table 3 A sequence of engagement states using fictional data 

In the same way, analyzing the sequence of tasks in a course, one would consider 
the whole course to be the time window for analysis or analyze the sequence of steps 
in each course task e.g., [ 20]. 

In online learning, the session has been commonly considered the time window 
e.g., [11, 17]. A session is an uninterrupted sequence of online activity which can 
be inferred from identifying the periods of inactivity as depicted in Fig. 1. As can 
be seen, a user can have multiple sessions across the course. There is no standard 
guideline for what time window a researcher should consider, however, it is mostly 
defined by the research questions and the aims of analysis. 

3.1.3 Defining the Actor 

The third important step is to define the actor or the unit of analysis of the sequences 
(see the actor in Table 3 or User in Table 4). The actor varies according to the type 
of analysis. When analyzing students’ sequences of actions, we may choose the 
student to be the actor and build a sequence of all student actions e.g., [20]. In online 
learning, sequence mining has always been created for “user sessions” i.e., each user 
session is represented as a sequence e.g., [17, 21] and therefore, a user typically has 
several sessions along the course. In other instances, you may be interested in the 
study of the sequences of the students’ states, for example engagement states in [9] 
where the student was the actor, or a group of collaborating students’ interactions 
as a whole such as [16] where the whole group is the actor. In the review of the 
literature, we have examples of such decisions. 

3.1.4 Building the Sequences 

This step is specific to the software used. For example, in TraMineR the step includes 
specifying the dataset on which the building of the sequences is based and telling
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Table 4 The first three columns are simulated sequence data and the three gray columns are 
computed 

User Action Time Lag Session Order 

Layla Calendar 9.1.2023 18:44 – Layla session 1 1 

Layla Lecture 9.1.2023 18:45 1 Layla session 1 2 

Layla Instructions 9.1.2023 18:47 2 Layla session 1 3 

Layla Assignment 9.1.2023 18:49 2 Layla session 1 4 

Layla Lecture 9.1.2023 18:50 1 Layla session 1 5 

Layla Video 9.1.2023 18:51 1 Layla session 1 6 

Sophia Lecture 9.1.2023 20:08 – Sophia session 1 1 

Sophia Instructions 9.1.2023 20:12 4 Sophia session 1 2 

Sophia Assignment 9.1.2023 20:14 2 Sophia session 1 3 

Sophia Assignment 9.1.2023 20:18 4 Sophia session 1 4 

Sophia Assignment 9.1.2023 20:21 3 Sophia session 1 5 

Carmen Lecture 10.1.2023 10:08 – Carmen session 1 1 

Carmen Video 10.1.2023 10:11 3 Carmen session 1 2 

Layla Instructions 10.1.2023 19:57 1506 Layla session 2 1 

Layla Video 10.1.2023 20:01 4 Layla session 2 2 

Layla Lecture 10.1.2023 20:08 7 Layla session 2 3 

Layla Assignment 10.1.2023 20:14 6 Layla session 2 4 

TraMineR the alphabet, the time scheme, and the actor id variable, as well as other 
parameters of the sequence object. This step will be discussed in detail in the 
analysis section. 

3.1.5 Visualizing and Exploring the Sequence Data 

The fourth step is to visualize the data and perform some descriptive analysis. 
Visualization allows us to summarize data easily and to see the full dataset at once. 
TraMineR includes several functions to plot the common visualization techniques, 
each one showing a different perspective. 

3.1.6 Calculating the Dissimilarities Between Sequences 

The fifth step is calculating dissimilarities or distances between pairs of sequences. 
Dissimilarity measures are a quantitative estimation of how different—or similar— 
the sequences are. Since there are diverse contexts, analysis objectives and sequence 
types, it is natural that there are several methods to compute the dissimilarities based 
on different considerations. 

Optimal matching (OM) may be the most commonly used dissimilarity measure 
used in social sciences and possibly also in education [22]. Optimal matching 
represents what it takes to convert or edit a sequence to become identical to another
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sequence. These edits may involve insertion, deletion (together often called indel 
operations) or substitution. For instance, in an example in Table 3, where we see 
a sequence of five students’ engagement states, we can edit Vera’s sequence and 
substitute the disengaged state with an average state; Vera’s sequence will become 
identical with Luis’ sequence. That is, editing Vera’s sequence takes one substitution 
to convert her sequence to that of Luis. We can also see that it will take four 
substitutions to convert Anna’s sequence to Maria’s sequence. In other words, 
Anna’s sequence is highly dissimilar to Maria. Different types of substitutions 
can be given different costs depending on how (dis)similar the two states are 
viewed (referred to as substitution costs). For example, the cost of substituting state 
engaged with state average might have a lower cost than substituting engaged with 
disengaged, since being disengaged is regarded most dissimilar to being engaged 
while average engagement is more similar to it. Since contexts differ, there are 
different ways of defining or computing the pairwise substitution costs matrix. 

Optimal matching derives from bioinformatics where transformations such as 
indels and substitutions are based on actual biological processes such as the 
evolution of DNA sequences. In many other fields such a transformation process 
would be unrealistic. In social sciences, [22] outlined five socially meaningful 
aspects and compared dissimilarity measures to determine how sensitive they are 
to the different aspects. These similarities are particularly relevant since learning, 
behavior, and several related processes e.g., progress in school or transition to the 
labor market are essentially social processes. We explain these aspects based on an 
example using fictional data in Table 3 following [9]. 

1. Experienced states: how similar are the unique states forming the sequence. 
For instance, Maria and Bob in Table 3 have both experienced the same states 
(engaged and average). 

2. Distribution of the states: how similar is the distribution of states. We can 
consider that two sequences are similar when students spend most of their time 
in the same states. For instance, Bob and Maria have 80% engaged states and 
20% average states. 

3. Timing: the time when each state occurs. For instance, two sequences can be 
similar when they have the same states occurring at the same time. For instance, 
Vera and Luis start similarly in a disengaged state, visit the average state in the 
middle, and finish in the engaged state. 

4. Duration: the durations of time spent continuously in a specific state (called 
spells) e.g., the durations of engaged states shared by the two sequences. 
For instance, Vera and Anna both had spells of two successive states in the 
disengaged state while Bob had two separate spells in the engaged state (both 
of length 2). 

5. Sequencing: The order of different states in the sequence, for instance, Vera and 
Luis had similar sequences starting as disengaged, moving to  average and then 
finishing as engaged. 

Of the aforementioned aspects, the first two can be directly determined from the 
last three. Different dissimilarity measures are sensitive to different aspects, and it is
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up to the researcher to decide which aspects are important in their specific context. 
Dissimilarity measures can be broadly classified in three categories [22]: 

1. distance between distributions, 
2. counting common attributes between sequences, and 
3. edit distances. 

Category 1 includes measures focusing on the distance between distributions 
including, e.g., Euclidean distance and .χ2-distance that compare the total time spent 
in each state within each sequence. The former is based on absolute differences in 
the proportions while the latter is based on weighted squared differences. 

Category 2 includes measures based on counting common attributes. For exam-
ple, Hamming distances are based on counting the (possibly weighted) sum of 
position wise mismatches between the two sequences, the length of the longest com-
mon subsequence (LCS) is the number of shared states between two sequences that 
occur in the same order in both, while the subsequence vector representation-based 
metric (SVRspell) is counted as the weighted number of matching subsequences. 

Category 3 includes edit distances that measure the costs of transforming one 
sequence to another by using edit operations (indels and substitutions). They include 
(classic) OM with different cost specifications as well as variants of OM such as OM 
between sequences of spells (OMspell) and OM between sequences of transitions 
(OMstran). 

Studer and Ritschard [22] give recommendations on the choice of dissimilarity 
measure based on simulations on data with different aspects. If the interest is 
on distributions of states within sequences, Euclidean and .χ2-distance are good 
choices. When timing is of importance, the Hamming distances are the most 
sensitive to differences in timing. With specific definitions also the Euclidean 
and .χ2-distance can be made sensitive to timing—the latter is recommended if 
differences in rare events are of particular importance. When durations are of 
importance, then OMspell is a good choice, and also LCS and classic OM are 
reasonable choices. When the main interest is in sequencing, good choices include 
OMstran, OMspell, and SVRspell with particular specifications. If the interest is 
in more than one aspect, the choice of the dissimilarity measure becomes more 
complex. By altering the specifications in measures such as OMstran, OMspell, 
and SVRspell the researcher could find a balance between the desired attributes. 
See [22] for more detailed information on the choice of dissimilarity measures and 
their specifications. 

Dissimilarities are hard to interpret as such (unless the data are very small), so 
further analyses are needed to decrease the complexity. The most typical choice is 
to use cluster analysis for finding groups of individuals with similar patterns [23]. 
Other distance—or dissimilarity—based techniques include visualizations with 
multidimensional scaling [24], finding representative sequences [25], and ANOVA-
type analysis of discrepancies [26].



Sequence Analysis in Education: Principles, Technique, and Tutorial with R 331

3.1.7 Finding Similar Groups or Clusters of Sequences 

The sixth step is finding similar sequences, i.e., groups or patterns within the 
sequences where sequences within each group or cluster are as close to each other 
as possible and as different from other patterns in other clusters as possible. For 
instance, we can detect similar groups of sequences that show access patterns to 
online learning which are commonly referred to as tactics e.g., [3]. Such a step 
is typically performed using a clustering algorithm which may—or may not— 
require dissimilarity measures as an input [23, 27]. Common clustering algorithms 
that use a dissimilarity matrix are the hierarchical clustering algorithms. Hidden 
Markov models are among the most non-distance based cluster algorithms. See 
the remaining chapters about sequence analysis for examples of these algorithms 
[28–30]. 

3.1.8 Analyzing the Groups and/or Using Them in Subsequent Analyses 

Analysis of the identified patterns or subgroups of sequences is an important 
research question in many studies and oftentimes, it is the guiding research question. 
For instance, researchers may use log data to create sequences of learning actions, 
identify subgroups of sequences, and examine the association between the identified 
patterns and performance e.g., [3, 17, 18], associate the identified patterns with 
course and course delivery [10], examine how sequences are related to dropout using 
survival analysis [9], or compare sequence patterns to frequencies [16]. 

3.2 Introduction to the Technique 

Before performing the actual analysis with R code, we need to understand how 
the data is processed for analysis. Four important steps that require more in-
depth explanation will be clarified here, those are: defining the alphabet, the 
timing scheme, specifying the actor, and visualization. Oftentimes, the required 
information to perform the aforementioned steps are not readily obvious in the data 
and therefore some preparatory steps need to be taken to process the file. 

The example shown in Table 4 uses fictional log trace data similar to those that 
come from LMSs. To build a sequence from the data in Table 4, we can use the 
Action column as an alphabet. If our aim here is to model the sequence of students’ 
online actions, this is a straightforward choice that requires no preparation. Since 
the log trace data has no obvious timing scheme, we can use the session as a time 
scheme. To compute the session, we need to group the actions that occur together 
without a significant delay between actions (i.e., lag) that can be considered as an 
inactivity (see Sect. 3.1.2). For instance, Layla’s actions in Table 4 started at 18:44 
and ended at 18:51. As such, all Layla’s actions occurred within 7 minutes. As 
Table 4 also shows, the first group of Layla’s actions occur within 1–2 minutes of
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Table 5 A sequence of engagement states using fictional data 

Actor 1 2 3 4 5 6 

Layla session1 Calendar Lecture Instructions Assignment Lecture Video 

Sophia session1 Lecture Instructions Assignment Assignment Assignment 

Carmen session1 Lecture Video 

Layla session2 Instructions Video Lecture Assignment 

lag. The next group of actions by Layla occur after almost one day, an hour and 
six minutes (1506 minutes) which constitutes a period of inactivity long enough 
to divide Layla’s actions into two separate sessions. Layla’s actions on the first 
day can be labeled Layla-session1 and her actions on the second day are Layla-
session2. The actor in this example is a composite of the student (e.g., Layla) and 
the session number. The same for Sophia and Carmen: their actions occurred within 
a few minutes and can be grouped into the sessions. Given that we have the alphabet 
(Action), the timing scheme (session), and the actor (user-session), the next step is to 
order the alphabet chronologically. In Table 4, the actions were sequentially ordered 
for every actor according to their chronological order. The method that we will use 
in our guide requires the data to be in so-called “wide format”. This is performed 
by pivoting the data, or creating a wide form where the column names are the order 
and the value of the Action column is sequentially and horizontally listed as shown 
in Table 5. 

The following steps are creating a sequence object using sequence mining 
software and using the created sequence in analysis. In our case, we use the 
TraMineR framework which has a large set of visualization and statistical functions. 
Sequences created with TraMineR also work with a large array of advanced tools, 
R packages, and extensions. However, it is important to understand sequence 
visualizations before delving into the coding part. 

3.3 Sequence Visualization 

Two basic plots are important here and therefore will be explained in detail. The 
first is the index plot (Fig. 2) which shows the sequences of stacked colored bars 
representing spells, with each token represented by a different color. For instance, 
if we take Layla’s actions (in session1) and represent them as an index plot, they 
will appear as shown in Fig. 2 (see the arrow). Where the Calendar is represented 
as a purple bar, the Lecture as a yellow bar, and instructions as an orange bar etc. 
Figure 2 also shows the visualization of sequences in Table 5 and you can see each 
of the session sequences as stacked colored bars following their order in the table. 
Nevertheless, sequence plots commonly include a large number of sequences that 
are of the order of hundreds or thousands of sequences and may be harder to read 
than the one presented in the example (see examples in the next sections). 

The distribution plot is another related type of sequence visualization. Distri-
bution plots—as the name implies—represent the distribution of each alphabet at
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Fig. 2 A table with ordered sequences of actions and the corresponding index plot; the arrow 
points to Layla’s actions 

Fig. 3 Index plot (top) and distribution plot (bottom) 

each time point. For example, if we look at Fig. 3 (top) we see 15 sequences in the 
index plot. At time point 1, we can count eight Calendar actions, two Video actions, 
two Lecture actions and one Instruction action. If we compute the proportions: we 
get 8/15 (0.53) of Calendar actions; for Video, Assignment, and Lecture we get 
2/15 (0.13) in each case, and finally Instructions actions account for 1/15 (0.067). 
Figure 3 (bottom) shows these proportions. At time point 1, we see the first block 
Assignment with 0.13 of the height of the bar, followed by the Calendar which 
occupies 0.53, then a small block (0.067) for the Instructions, and finally two equal 
blocks (0.13) representing the Video and Lecture actions. 

Since the distribution plot computes the proportions of activities at each time 
point, we see different proportions at each time point. Take for example, time point 
6, we have only two actions (Video and Assignment) and therefore, the plot has 50%
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for each action. At the last point 7, we see 100% for Lecture. Distribution plots 
need to be interpreted with caution and in particular, the number of actions at each 
time point need to be taken into account. One cannot say that at the seventh time 
point, 100% of actions were Lecture, since it was the only action at this time point. 
Furthermore, distribution plots do not show the transitions between sequences and 
should not be interpreted in the same way as the index plot. 

4 Analysis of the Data with Sequence Mining in R 

4.1 Important Packages 

The most important package and the central framework that we will use in our 
analysis is the TraMineR package. TraMineR is a toolbox for creating, describing, 
visualizing and analyzing sequence data. TraMineR accepts several sequence 
formats, converts to a large number of sequence formats, and works with other 
categorical data. TraMineR computes a large number of dissimilarity measures 
and has several integrated statistical functions. TraMineR has been mainly used 
to analyze live event data such as employment states, sequence of marital states, 
or other life events. With the emergence of learning analytics and educational data 
mining, TraMineR has been extended into the educational field [31]. In the current 
analysis we will also need the packages TraMineRextras, WeightedCluster, and 
seqhandbook, which provide extra functions and statistical tools. The first code 
block loads these packages. In case you have not already installed them, you may 
need to install them. 

library(TraMineR) 
library(TraMineRextras) 
library(WeightedCluster) 
library(seqhandbook) 
library(tidyverse) 
library(rio) 
library(cluster) 
library(MetBrewer) 
library(reshape2) 

4.2 Reading the Data 

The example that will be used here is a Moodle log dataset that includes three 
important fields: the User ID (user), the time stamp (timecreated), and the
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actions (Event.context). Yet, as we mentioned before, there are some steps that 
need to be performed to prepare the data for analysis. First, the Event.context 
is very granular (80 different categories) and needs to be re-coded as mentioned 
in the basics of sequence mining section. We have already prepared the file with 
a simpler coding scheme where, for example, all actions intended as instructions 
were coded as instruction, all group forums were coded as group_work, and all 
assignment work was coded as Assignment. Thus, we have a field that we can use 
as the alphabet titled action. The following code reads the original coded dataset. 

Seqdatas <-
import("https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Events.xlsx") 

# A tibble: 95,626 x 7 
Event.context user timecreated Component Event.name Log Action 
<chr> <chr> <dttm> <chr> <chr> <chr> <chr> 

1 Assignment: Fina~ 9d74~ 2019-10-26 09:37:12 Assignme~ Course mo~ Assi~ Assig~ 
2 Assignment: Fina~ 9148~ 2019-10-26 09:09:34 Assignme~ The statu~ Assi~ Assig~ 
3 Assignment: Fina~ 278a~ 2019-10-18 12:05:28 Assignme~ Course mo~ Assi~ Assig~ 
4 Assignment: Fina~ 53d6~ 2019-10-19 13:28:37 Assignme~ The statu~ Assi~ Assig~ 
5 Assignment: Fina~ aab7~ 2019-10-15 23:38:13 Assignme~ Course mo~ Assi~ Assig~ 
6 Assignment: Fina~ 82ed~ 2019-10-18 17:51:43 Assignme~ Course mo~ Assi~ Assig~ 
7 Assignment: Fina~ 4178~ 2019-10-18 15:22:56 Assignme~ Course mo~ Assi~ Assig~ 
8 Assignment: Fina~ 82ed~ 2019-10-22 13:46:51 Assignme~ The statu~ Assi~ Assig~ 
9 Assignment: Fina~ f2e9~ 2019-10-15 14:58:17 Assignme~ Submissio~ Assi~ Assig~ 

10 Assignment: Fina~ 53d6~ 2019-10-19 13:28:38 Assignme~ Course mo~ Assi~ Assig~ 
# i 95,616 more rows 

4.3 Preparing the Data for Sequence Analysis 

To create a time scheme, we will use the methods described earlier in the basis 
of the sequence analysis section. The timestamp field will be used to compute the 
lag (the delay) between actions, find the periods of inactivity between the actions, 
and mark the actions that occur without a significant lag together as a session. 
Actions that follow with a significant delay will be marked as a new session. The 
following code performs these steps. First, the code arranges the data according 
to the timestamp for each user (see the previous example in the basics section), 
this is why we use arrange(timecreated, user). The second step (#2) is to 
group_by(user) to make sure all sessions are calculated for each user separately. 
The third step is to compute the lag between actions. Step #4 evaluates the lag 
length; if the lag exceeds 900 seconds (i.e., a period of inactivity of 900 seconds), the 
code marks the action as the start of a new session. Step #5 labels each session with 
a number corresponding to its order. The last step (#6) creates the actor variable, by 
concatenating the username with the string “Session_” and the session number; the 
resulting variable is called session_id. 

sessioned_data <- Seqdatas |> 
arrange(timecreated, user) |> # Step 1 
group_by(user) |> # Step 2 
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mutate(Time_gap = timecreated - (lag(timecreated))) |> # Step 3 
mutate(new_session = is.na(Time_gap) | Time_gap > 900) |> # Step 4 
mutate(session_nr = cumsum(new_session)) |> # Step 5 
mutate(session_id = paste0 (user, "_", "Session_", session_nr)) #Step 6 

An important question here is what is the optimum lag or delay that we should 
use to separate the sessions. Here, we used 900 seconds (15 minutes) based on our 
knowledge of the course design. In the course where the data comes from, we did not 
have activities that require students to spend long periods of idle time online (e.g., 
videos). So, it is reasonable here to use a relatively short delay (i.e., 900 seconds) 
to mark new sessions. Another alternative is to examine the distribution of lags or 
compute the percentiles. 

quantile(sessioned_data$Time_gap, 
c(0.10, 0.50, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00), na.rm = TRUE) 

Time differences in secs 
10% 50% 75% 80% 85% 90% 95% 100% 

1 1 61 61 181 841 12121 1105381 

The previous code computes the proportion of lags at 10% to 100% and the 
results show that at 90th percentile, the length of lags is equal to 841 seconds, 
that is very close to the 900 seconds we set. The next step is to order the 
actions sequentially (i.e., create the sequence in each session) as explained in 
Sect. 3.1.2 and demonstrated in Table 4. We can perform such ordering using the 
function seq_along(session_id) which creates a new field called sequence that 
chronologically orders the action (the alphabet). 

sessioned_data <- sessioned_data |> 
group_by(user, session_nr) |> 
mutate(sequence = seq_along(session_nr)) |> 
mutate(sequence_length = length(sequence)) 

Some sessions are outliers (e.g., extremely long or very short)—there are usually 
very few—and therefore, we need to trim such extremely long sessions. We do so 
by calculating the percentiles of session lengths. 

quantile(sessioned_data$sequence_length, 
c(0.05, 0.1, 0.5, 0.75, 0.90, 0.95, 0.98, 0.99, 1.00), na.rm = 
TRUE) 

5% 10% 50% 75% 90% 95% 98% 99% 100% 
3 4 16 29 42 49 59 61 62
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We see here that 95% of sequences lie within 49 states long and therefore, we 
can trim these long sessions as well as sessions that are only one event long. 

sessioned_data_trimmed <- sessioned_data |> 
filter(sequence_length > 1 & sequence <= 49) 

The next step is to reshape or create a wide format of the data and convert each 
session into a sequence of horizontally ordered actions. For that purpose, we use the 
function dcast from the reshape2 package. For this function, we need to specify 
the ID columns (the actor) and any other properties for the users can be specified 
here also. We selected the variables user and session_id. Please note that only 
session_id is necessary (actor) but it is always a good idea to add variables that 
we may use as weights, as groups, or for later comparison. We also need to specify 
the sequence column and the alphabet (action) column. The resulting table is 
similar to Table 5. 

The last step is creating the sequence object using the seqdef function from 
the TraMineR package. To define the sequence, we need the prepared file from 
the previous step (similar to Table 5) and the beginning and end of the columns 
to consider i.e., the start of the sequence. We have started from the fourth column 
since the first three columns are meta-data (user, session_id, and session_nr). 
To include all columns in the data we use the ncol function to count the number 
of columns in the data. Creating a sequence object enables the full potential of 
sequence analysis. 

data_reshaped <- dcast(user + session_id + session_nr ~ sequence, 
data = sessioned_data_trimmed, 
value.var = "Action") 

Seqobject <- seqdef(data_reshaped, 4:ncol(data_reshaped)) 

[>] found missing values (’NA’) in sequence data 
[>] preparing 9383 sequences 
[>] coding void elements with ’%’ and missing values with ’*’ 
[>] 12 distinct states appear in the data: 

1 = Applications 
2 = Assignment 
3 = Course_view 
4 = Ethics 
5 = Feedback 
6 = General 
7 = Group_work 
8 = Instructions 
9 = La_types 
10 = Practicals 
11 = Social
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12 = Theory 
[>] 9383 sequences in the data set 
[>] min/max sequence length: 2/49 

An optional—yet useful—step is to add a color palette to create a better looking 
plot. Choosing an appropriate palette with separable colors improves the readability 
of the plot by helping easily identify different alphabets. 

Number_of_colors <- length(alphabet(Seqobject)) 
colors <- met.brewer(name = "VanGogh2", n =  Number_of_colors) 
cpal(Seqobject) <- colors 

4.4 Statistical Properties of the Sequences 

A simple way to get the properties of the sequences is through the function 
summary(). The functions show the total number of sequences in the object, the 
number of unique sequences, and lists the alphabet. A better way to dig deeper into 
the sequence properties is to use the seqstatd() function which returns several 
statistics, most notably the relative frequencies, i.e., the proportions of each state at 
each time point or the numbers comprising the distribution plot. The function also 
returns the valid states, that is, the number of valid states at each time point as well 
as the transversal entropy, which is a measure of diversity of states at each time 
point [32]. The code in the next section computes the sequence statistics and then 
displays the results. We show only the output of seq_stats$Frequencies where 
we see the frequency of each activity at each time point (Table 6). 

summary(Seqobject) 
seq_stats <- seqstatd(Seqobject) 
seq_stats$Frequencies 
seq_stats$Entropy 
seq_stats$ValidStates 

4.5 Visualizing Sequences 

Visualization has a summarizing power that allows researchers to have an idea about 
a full dataset in one visualization. TraMineR allows several types of visualizations 
that offer different perspectives. The most common visualization type is the distri-
bution plot (described earlier in Fig. 3). To plot a distribution plot one can use the 
powerful seqplot function with the argument type="d" or simply seqdplot().
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Table 6 Frequency of activities at each point 

Activity 1 2 3 4 5 6 7 8 . . .  49 

Applications 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.03 

Assignment 0.08 0.10 0.11 0.09 0.08 0.09 0.07 0.07 0.00 

Course_view 0.48 0.32 0.27 0.26 0.23 0.21 0.20 0.23 0.14 

Ethics 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 

Feedback 0.03 0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.00 

General 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.22 

Group_work 0.21 0.28 0.31 0.33 0.36 0.37 0.38 0.37 0.31 

Instructions 0.05 0.07 0.07 0.07 0.07 0.08 0.08 0.07 0.04 

La_types 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.09 

Practicals 0.09 0.12 0.12 0.11 0.11 0.11 0.11 0.12 0.07 

Social 0.01 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.00 

Theory 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 

Fig. 4 Sequence distribution 
plot 

seqplot(Seqobject, type = "d") 

The default distribution plot has an y-axis that ranges from 0 to 1.0 corresponding 
to the proportion and lists the number of sequences which in our case is 9383 
However, the default output of the seqdplot() function is rarely satisfactory and 
we need to use the function arguments to optimize the resulting plot. The help file 
contains a rather detailed list of arguments and types of visualizations that can be 
consulted for more options, which can be obtained like any other R function by 
typing ?seqplot. In this chapter we will discuss the most basic options. In Fig. 4, 
we use cex.legend argument to optimize the legend text size, we use the ncol 
argument to make the legend spread over six columns, the argument legend.prop 
to make the legend a bit far away from the main plot so they do not overlap and 
we use the argument border=NA to remove the borders from the plot. With such
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Fig. 5 Sequence distribution plot with customized arguments 

small changes, we get a much cleaner and readable distribution plot. Please note, 
that in each case, you may need to optimize the plot according to your needs. It is 
important to note here that in the case of missing data or sequences with unequal 
lengths like ours—which is very common—the distribution plot may show results 
that are made of fewer sequences at later time points. As such, the interpretation of 
the distribution plot should take into account the number of sequences, missing data, 
and timing (Fig. 5). An index plot may be rather more informative in cases where 
missing data is prevalent. 

seqplot(Seqobject, type = "d", cex.legend = 0.9, ncol = 6, cex.axis = 0.7, 
legend.prop = 0.1, border = NA) 

The index plot can be plotted in the same way using seqplot() with the 
argument type="I" or simply using seqIplot. The resulting plot (Fig. 6) has each 
sequence of the 9383 plotted as a line of stacked colored bars. One of the advantages 
of index plots is that they show the transitions between states in each sequence spell. 
Of course, plotting more than nine thousand sequences results in very thin lines 
that may not be very informative. Nevertheless, index plots are very informative 
when the number of sequences is relatively small. Sorting the sequences could 
help improve the visualization. On the right side, we see the index plot using the 
argument “sortv =”from.start”, under which sequences are sorted by the elements 
of the alphabet at the successive positions starting from the beginning of the time 
window.



Sequence Analysis in Education: Principles, Technique, and Tutorial with R 341 

Fig. 6 Sequence index plots 

seqplot(Seqobject, type = "I", cex.legend = 0.6, ncol = 6, cex.axis = 0.6, 
legend.prop = 0.2, border = NA) 

seqplot(Seqobject, type = "I", cex.legend = 0.6, ncol = 6, cex.axis = 0.6, 
legend.prop = 0.2, border = NA, sortv = "from.start") 

The last visualization type we discuss here is the mean time plot, which plots 
the total time of every element of the alphabet across all time, i.e., a frequency 
distribution of all states regardless of their timing. As the plot in Fig. 7 shows, group 
work seems to be the action that students performed the most, followed by course 
view. 

seqplot(Seqobject, type = "mt", cex.legend = 0.7, ncol = 6, cex.axis = 0.6, 
legend.prop = 0.15, border = NA, ylim = c(0, 5)) 
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Fig. 7 Mean time plot 

4.6 Dissimilarity Analysis and Clustering 

Having prepared the sequences and explored their characteristics, we can now 
investigate if they have common patterns, recurrent sequences, or groups of similar 
sequences. This is a two-stage process; we will need to compute dissimilarities 
(along with associated substitution costs) and then perform cluster analysis on 
the resulting matrix. For more details on the clustering technique, please refer to 
Chapter 8 [33]. In the case of log trace data, clustering has always been performed 
to find learning tactics or sequences of students’ actions that are similar to each 
other or, put another way, patterns of similar behavior (e.g., [3, 11]). For the present 
analysis, we begin with the most common method for computing the dissimilarity 
matrix, that is Optimal Matching (OM). OM computes the dissimilarity between two 
sequences as the minimal cost of converting a sequence to the other. OM requires 
some steps that include specifying a substitution cost matrix, indel cost. Later, we 
use a clustering algorithm to partition the sequences according to the values returned 
by the OM algorithm [34, 35]. 

A possible way to compute substitutions cost that has been commonly used— 
yet frequently criticized—in the literature is the TRATE method [36]. The TRATE 
method is data-driven and relies on transition rates; it assumes that pairs of states 
with frequent transitions between them should have “lower cost” of substitution (i.e., 
they are seen as being more similar). Thus, if we replace an action with another 
action that occurs often, it has a lower cost. This may be useful in some course 
designs, where some activities are very frequently visited and others are rare. The 
function seqsubm() is used to compute substitution costs with the TRATE method 
via:
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substitution_cost_TRATE <- seqsubm(Seqobject, method ="TRATE") 

If we print the substitution cost matrix (Table 7), we see that, for instance, 
the cost of replacing Applications with Applications is 0, whereas the cost of 
replacing Applications with Assignment (and vice versa) is higher (1.94). 
Since Course_view is the most common transition, replacing any action with 
Course_view tends to be the lowest in cost, which makes sense. Please note that 
the TRATE method is presented here for demonstration only. In fact, we do not 
recommend it to be used by default; readers should choose carefully what cost 
method best suits their data. 

Nevertheless, the most straightforward way of computing the cost is to use 
a constant cost; that is, to assume that the states are equally distant from one 
another. To do so, we can use the function seqsubm() and supply the argument 
method="CONSTANT". In the following example, we assign a common cost of 2 
(via the argument cval). We also refer below to other optional arguments which are 
not strictly necessary for the present application but nonetheless worth highlighting 
as options. 

substitution_cost_constant <- seqsubm( 
Seqobject, # Sequence object 
method = "CONSTANT", # Method to determine costs 
cval = 2, # Substitution cost 
time.varying = FALSE, # Does not allow the cost to vary over time 
with.missing = TRUE, # Allows for missingness state 
miss.cost = 1, # Cost for substituting a missing state 
weighted = TRUE) # Allows weights to be used when applicable 

To compute the OM dissimilarity matrix, the indel argument needs to be 
provided and we will use the default value 1 which is half of the highest substitution 
cost (2). We also need to provide the substitution cost matrix (sm). We opt for 
the matrix of constant substitution costs created above, given its straightforward 
interpretability. 

dissimilarities <- seqdist(Seqobject, method = "OM",indel = 1, 
sm = substitution_cost_constant) 

[>] 9383 sequences with 12 distinct states 

[>] checking ’sm’ (size and triangle inequality) 

[>] 4062 distinct sequences 

[>] min/max sequence lengths: 2/49 

[>] computing distances using the OM metric 

[>] elapsed time: 7.807 secs
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Fig. 8 Visualization of clusters using a dendrogram 

In the resulting pairwise dissimilarity matrix, every sequence has a dissimilarity 
value with every other sequence in the dataset, and therefore, the dissimilarity matrix 
can be large and resource intensive in larger matrices. In our case, the dissimilarity 
matrix is 9383 * 9383 (i.e., 88,040,689) in size. With these dissimilarities between 
sequences as input, several distance-based clustering algorithms can be applied to 
partition the data into homogeneous groups. In our example, we use the hierarchical 
clustering algorithm from the package stats by using the function hclust(), but  
note that the choice of clustering algorithm can also affect results greatly and should 
be chosen carefully by the reader. For more details on the clustering technique, 
please refer to Chapter 8 [33]. The seq_heatmap() function is used to plot a 
dendrogram of the index plot which shows a hierarchical tree of different levels 
of subgrouping and helps choose the number of clusters visually. 

clusters_sessionsh <- hclust(as.dist(dissimilarities), method = "ward.D2") 
seq_heatmap(Seqobject, clusters_sessionsh) 

To do the actual clustering, we use the function cutree() and with the argument 
k = 3  to cluster the sequence into three clusters according to the groups highlighted 
in Fig. 8. The  cutree function produces a vector of cluster numbers, we can create
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Fig. 9 Sequence distribution plot for the k=3 cluster solution 

more descriptive labels as shown in the example and assign the results to an R 
object called Groups. Visualizations of the clustering results can be performed 
in a similar fashion to the earlier visualizations of the entire set of sequences: 
via seqplot(), with the desired type of plot, and the addition of the argument 
group (Fig. 9). Readers have to choose the arguments and parameters according to 
contexts, research questions, and the nature of their data. 

Cuts <- cutree(clusters_sessionsh, k =  3) 
Groups <- factor(Cuts, labels = paste("Cluster", 1:3)) 
seqplot(Seqobject, type = "d", group = Groups, cex.legend = 0.8, ncol = 2, 

cex.axis = 0.6, legend.prop = 0.2, border = NA) 

However, the resulting clusters might not be the best solution and we need to try 
other dissimilarity measures and/or clustering algorithms, evaluate the results, and 
compare their fit indices. TraMineR provides several distance measures, the most 
common of which are: 

• Edit distances: Optimal matching "OM" or optimal matching with sensitivity 
to certain factors, e.g., optimal matching with sensitivity to spell sequence 
("OMspell") or with sensitivity to transitions ("OMstran"). 

• Shared attributes: Distance based on the longest common subsequence 
("LCS"), longest common prefix ("LCP"; which prioritizes sequence common 
initial states), or the subsequence vectorial representation distance ("SVRspell"; 
based on counting common subsequences).
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• Distances between distributions of states: Euclidean ("EUCLID") distance or 
Chi-squared (“CHI2”). 

Determining the distance may be done based on the research hypothesis, 
context, and the nature of the sequences. For instance, a researcher may decide 
to group sequences based on their common starting points (e.g., [16]) where the 
order and how a conversation starts matter. TraMineR allows the computation of 
several dissimilarities. The following code computes some of the most common 
dissimilarities and stores each in a variable that we can use later. 

# Edit distances and sequences 
dissimOMstran <- seqdist(Seqobject, method = "OMstran", otto = 0.1, 

sm = substitution_cost_constant, indel = 1) 
dissimOMspell <- seqdist(Seqobject, method = "OMspell", expcost = 0, 

sm = substitution_cost_constant, indel = 1) 
dissimSVRspell <- seqdist(Seqobject, method = "SVRspell", tpow = 0) 
dissimOM <- seqdist(Seqobject, method = "OM", otto = 0.1, 

sm = substitution_cost_constant, indel = 1) 

# Distances between state distributions 
dissimCHI2 <- seqdist(Seqobject, method = "CHI2", step = 1) 
dissimEUCLID <- seqdist(Seqobject, method = "EUCLID", step = 49) 

# Distances based on counts of common attribute e.g., duration (spell lengths) 
dissimOMspell <- seqdist(Seqobject, method = "OMspell", expcost = 1, 

sm = substitution_cost_constant, indel = 1) 
dissimLCS <- seqdist(Seqobject, method = "LCS") 
dissimLCP <- seqdist(Seqobject, method = "LCP") 
dissimRLCP <- seqdist(Seqobject, method = "RLCP") 

We can then try each dissimilarity with varying numbers of clusters and 
compute the clustering evaluation measures. The function as.clustrange from 
the WeightedCluster package computes several cluster quality indices including, 
among others, the Average Silhouette Width (ASW) which is commonly used in 
cluster evaluation to measure the coherence of the clusters. A value above 0.25 
means that the data has some structure or patterns, whereas a value below 0.25 
signifies the lack of structure in the data. The function also computes the Rˆ2 Value 
which represents the ratio of the variance explained by the clustering solution. The 
results can be plotted and inspected. We can see that four clusters seem to be a 
good solution. Table 8 and Fig. 10 show that the ASW and CHsq measures are 
maximized for the four-cluster solution, for which other parameters such as Rˆ2 
are also relatively good. Thus, we can use the four cluster solution. We note the 
use of the norm=“zscoremed” argument which improves the comparability of the 
various metrics in Fig. 10 by standardizing the values to make it easier to identify 
the maxima. Table 8, however, presents the values on their original scales. Finally,
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Table 8 Cluster performance metrics 

PBC HG HGSD ASW ASWw CH R2 CHsq R2sq HC 

.0.281 .0.336 .0.335 .0.268 .0.268 .2230.420 .0.192 .3565.535 .0.275 . 0.319 

.0.417 .0.489 .0.488 .0.307 .0.307 .1992.266 .0.298 .3553.441 .0.431 . 0.246 

.0.507 .0.614 .0.614 .0.333 .0.333 .1952.437 .0.384 .3985.571 .0.560 . 0.190 

.0.491 .0.635 .0.634 .0.272 .0.272 .1717.644 .0.423 .3524.149 .0.601 . 0.184 

.0.511 .0.677 .0.677 .0.287 .0.288 .1580.850 .0.457 .3301.251 .0.638 . 0.165 

.0.534 .0.736 .0.735 .0.308 .0.309 .1449.482 .0.481 .3178.407 .0.670 . 0.138 

.0.557 .0.812 .0.812 .0.324 .0.325 .1362.368 .0.504 .3110.913 .0.699 . 0.104 

.0.559 .0.831 .0.830 .0.327 .0.327 .1341.529 .0.534 .3124.571 .0.727 . 0.096 

.0.571 .0.865 .0.865 .0.329 .0.330 .1274.303 .0.550 .3085.893 .0.748 . 0.080 
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ASWw ( −1.91 / 1.16 ) 
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R2 ( −3.64 / 1.27 ) 
CHsq ( −1 / 3.18 ) 
R2sq ( −4.69 / 1.42 ) 
HC ( −1.39 / 2.53 ) 

Fig. 10 Cluster performance metrics. X-axis represents the number of clusters, Y-axis represents 
the fit index standardized value 

the ranges and other characteristics of each cluster quality metric are summarized in 
Table 9. For brevity, we proceed with only the Euclidean distance matrix. 

dissimiarities_tested <- dissimEUCLID 
Clustered <- hclust(as.dist(dissimiarities_tested), method = "ward.D2") 
Clustered_range <- as.clustrange(Clustered, diss = dissimiarities_tested, 

ncluster = 10) 
plot(Clustered_range, stat = "all", norm = "zscoremed", lwd = 2) 

Clustered_range[["stats"]] 

To get the cluster assignment, we can use the results from the Clustered_range 
object and plot the clusters using the previously shown distribution, index, and mean 
time plot types (Figs. 11, 12, and 13).
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Table 9 Measures of the quality of a partition. Note: Table is based on [23] with permission from 
the author [23] 

Name Abrv. Range Min/Max Interpretation 

Point Biserial 
Correlation 

PBC [. −1;1] Max Measure of the capacity of the 
clustering to reproduce the distances 

Hubert’s Gamma HG [. −1;1] Max Measure of the capacity of the 
clustering to reproduce the distances 
(order of magnitude) 

Hubert’s Somers’ 
D 

HGSD [. −1;1] Max Measure of the capacity of the 
clustering to reproduce the distances 
(order of magnitude) taking into 
account ties in distances 

Hubert’s C HC [0;1] Min Gap between the partition obtained and 
the best partition theoretically possible 
with this number of groups and these 
distances 

Average 
Silhouette Width 

ASW [. −1;1] Max Coherence of assignments. High 
coherence indicates high 
between-group distances and strong 
within-group homogeneity 

Average 
Silhouette Width 
(weighted) 

ASWw [. −1;1] Max As previous, for floating point weights 

Calinski-Harabasz 
index 

CH [0; .+∞[ Max Pseudo F computed from the distances 

Calinski-Harabasz 
index 

CHsq [0; .+∞[ Max As previous, but using squared 
distances 

Pseudo R2 R2 [0;1] Max Share of the discrepancy explained by 
the clustering solution (only to 
compare partitions with identical 
number of groups) 

Pseudo R2 R2sq [0;1] Max As previous, but using squared 
distances 

grouping <- Clustered_range$clustering$cluster4 
seqplot(Seqobject, type = "d", group = grouping, cex.legend = 0.9, ncol = 6, 

cex.axis = 0.6, legend.prop = 0.2, border = NA) 

seqplot(Seqobject, type = "I", group = grouping, cex.legend = 0.9, ncol = 6, 
cex.axis = 0.6, legend.prop = 0.2, border = NA) 

seqplot(Seqobject, type = "mt", group = grouping, cex.legend = 1, ncol = 6, 
cex.axis = .5, legend.prop = 0.2, ylim = c(0, 10)) 
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Fig. 11 Sequence distribution plot for the four clusters 

Fig. 12 Sequence index plot for the four clusters 

Given the clustering structure, we also use a new plot type: the implication 
plot from the TraMineRextras package. Such a plot explicitly requires a group 
argument; in each of these plots, at each time point, “being in this group implies 
to be in this state at this time point”. The strength of the rule is represented by a
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Fig. 13 Mean time plot for the four clusters 

plotted line and a 95% confidence interval. Put another way, the more likely states 
have higher implicative values, which are more relevant when higher than the 95% 
confidence level (Fig. 14). 

implicaton_plot <- seqimplic(Seqobject, group = grouping) 
plot(implicaton_plot, conf.level = 0.95, cex.legend = 0.7) 

Given the implication plot as well as the other plots, the first cluster seems to 
be a mixed cluster with no prominent activity. Cluster 2 is dominated by practical 
activities, Cluster 3 is dominated by group work activities, Cluster 4 is dominated by 
assignments. Researchers usually give these clusters a label e.g., for Cluster 1, one 
could call it a diverse cluster. See some examples here in these papers [3, 10, 11]. 

5 More Resources 

Sequence analysis is a rather large field with a wealth of methods, procedures, and 
techniques. Since we have used the TraMineR software in this chapter, a first place 
to seek more information about sequence analysis would be to consult the TraMineR 
manuals and guides [23, 27, 37]. More tools for visualization can be found in the 
package ggseqplot [38]. The ggseqplot package reproduces similar plots to 
TraMineR with the ggplot2 framework as well as other interesting visualizations 
[39]. This allows further personalisation using the ggplot2 grammar, as we have
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Fig. 14 Implication plot for the four clusters 

learned in Chapter 6 of this book on data visualization [40]. Another important 
sequence analysis package is seqHMM [41], which contains several functions to 
fit hidden Markov models. In the next chapter, we see more advanced aspects of 
sequence analysis for learning analytics [28–30]. 

To learn more about sequence analysis in general, you can consult the book by 
Cornwell (2015), which is the first general textbook on sequence analysis in the 
context of social sciences. Another valuable resource is the recent textbook by Raab 
and Struffolino [38], which introduces the basics of sequence analysis and some 
recent advances as well as data and R code. 
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