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Résumé

Dans cette thèse nous étudions la cohomologie continue et continue
bornée et quelques-unes de ces applications à des espaces hyperboliques
réels et complexes. Cette thèse comprend deux parties.
Dans la première partie, nous montrons que la cohomologie continue des
groupes hyperboliques réels est réalisée sur le bord, c’est-à-dire par le com-
plexe des applications mesurables sur le bord de l’espace hyperbolique réel.
En dimension 3 ceci est un résultat de Bloch. La généralisation est non-
triviale. Tandis qu’en dimension 3 le stabilisateur de 3 points est trivial, en
dimension supérieure à 3 ce stabilisateur est seulement compact et il n’est
pas clair que ses groupes de cohomologie à coefficients dans des espaces de
Fréchet non-localement convexes sont triviaux. Ce résultat peut être une
première étape vers une démonstration de la conjecture de Dupont et Mo-
nod qui affirme que l’application de comparaison naturelle de la cohomologie
continue bornée vers la cohomologie continue est un isomorphisme pour les
groupes de Lie semi-simples connexes de centre fini. La surjectivité a déjà
été montrée pour une grande classe de ces groupes. Par contre, pour l’in-
jectivité la conjecture reste largement ouverte ; elle est seulement confirmée
dans quelques cas en basse dimension. Une conséquence immédiate de notre
résultat est l’injectivité de l’application de comparaison pour les groupes
hyperboliques réels en degré trois.
Dans la deuxième partie, nous donnons des estimations pour la norme de
Gromov de la classe de cohomologie en dimension supérieure de Isom(H2

C,R).
En conséquence nous obtenons les nouvelles bornes explicites suivantes pour
le volume simplicial d’une surface fermée hyperbolique complexe :

2

π2
Vol(M) ≤ ‖M‖ ≤ 9

π2
Vol(M).

Il existe très peu de bornes explicites connues pour le volume simplicial,
un invariant introduit par Gromov pour mesurer la complexité topologique
d’une variété.
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Introduction

Bounded cohomology of groups was first introduced by Trauber. It be-
came an active field of research due to the pioneering work “Volume and
bounded cohomology” by Gromov [Gro82] showing its connection with ge-
ometry and topology. Burger and Monod extended this theory to locally
compact groups [Mon01]. In this thesis we study this continuous bounded
cohomology and some of its applications.

The thesis falls into two parts. All results in Part I are from [Pie15] and the
text of chapters 4 and 5 overlaps almost completely with this preprint. Part
II concerns giving estimates on the Gromov norm of the top dimensional
class in H4

c (Isom(H2
C);R). As a consequence, we obtain an explicit upper

bound for the simplicial volume of closed oriented manifolds that are locally
isometric to H2

C. We will now describe these two parts.

Part I

The natural comparison map

c : H∗c,b(G;R)→ H∗c (G;R)

between continuous bounded cohomology and continuous cohomology is in
general neither injective nor surjective. However, there is the following con-
jecture:

Conjecture 1. [Mon06] [Dup79] Let G be a semisimple connected Lie group
with finite center. Then the comparison map c : H∗c,b(G;R) → H∗c (G;R) is
an isomorphism.

While there is a lot of evidence for the surjectivity part of Conjecture
1 (see e.g. [LafSch06], [HarOtt12]), for the injectivity part there are only a
few results in low degree. For degree 2 injectivity was proven by Burger and
Monod in [BurMon99]. In degree 3 and 4 it has been proven for SL2(R) by
Burger-Monod [BurMon02] and Hartnick-Ott [HarOtt15] respectively.

Let G be a semisimple connected Lie groups with finite center. Denote by
the K the maximal compact subgroup of G and by P the minimal parabolic
subgroup of G. While both continuous cohomology and continuous bounded
cohomology can be realized by the complex

0→ Cc(,b)(G/K;R)G → Cc(,b)((G/K)2;R)G → Cc(,b)((G/K)3;R)G → . . .

1



2 Introduction

of continuous (bounded) maps defined on the symmetric space G/K, it is
a special feature of the continuous bounded cohomology of semisimple Lie
groups that it can be realized by the boundary resolution

0→ L∞(G/P ;R)G → L∞((G/P )2;R)G → L∞((G/P )3;R)G → . . . ,

i.e. the continuous bounded cohomology of G is equal to the cohomology of
the complex of measurable essentially bounded maps defined on its Fursten-
berg boundary G/P .

We say that the continuous cohomology of G is measurably realized on
its Furstenberg boundary G/P if it is isomorphic to the cohomology of the
cocomplex (C((G/P )∗+1;R)G, δ∗), where C stands for measurable cochains
defined almost everywhere. If this is the case then the comparison map,
since it is natural with respect to resolutions [Mon01, Proposition 9.2.3],
is induced by the map L∞((G/P )2;R)G → C((G/P )∗+1;R)G and this may
give new information concerning Conjecture 1. Therefore an intermediate
step in proving Conjecture 1 can be

Conjecture 2. Let G be a semisimple connected Lie groups with finite cen-
ter. Then the continuous cohomology of G is measurably realized on its
Furstenberg boundary G/P .

There is some evidence for Conjecture 2. In [Gon93], [Gon95] Goncharov
defines measurable cocycles on the space of flags F l(Cm) representing the
Borel classes in H2n−1

c (SLm(C);R) for n = 2, 3 and m ≥ 2n − 1 using the
classical di- and trilogarithm. These cocycles are all bounded. We prove
Conjecture 2 for G = Isom+(Hn):

Theorem 4.1.1. Let n ≥ 2. The continuous cohomology of Isom+(Hn) is
measurably realized on the boundary ∂Hn of real hyperbolic space (with the
natural action). Furthermore, all cocycles have essentially bounded repre-
sentatives in this boundary resolution.

This immediately implies a particular case of Conjecture 1.

Corollary 5.1.1. The comparison map from continuous bounded cohomol-
ogy to continuous cohomology for real hyperbolic space Hn is injective in
degree 3, i.e.

c : H3
c,b(Isom+(Hn);R) ↪→ H3

c (Isom+(Hn);R).

For n = 3 the above theorem is a result of Bloch [Blo00, Section 7.4].
The main difficulty in the generalization from n = 3 to higher dimensions
comes from the fact that for n ≥ 4 the stabilizer of 3 points in ∂Hn is not
trivial. This prevents a straightforward generalization of Bloch’s proof for
degree p > 3.
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Recall that, via the van Est isomorphism, H∗c (Isom+(Hn);R) can be iden-
tified with the de Rham cohomology of the compact dual of Hn, which is
the n-sphere. The cohomology group H∗c (Isom+(Hn);R) is thus well-known
and therefore Theorem 4.1.1 gives new information about the quotient

ker
(
δ : C((∂Hn)p+1;R)Isom+(Hn) → C((∂Hn)p+2;R)Isom+(Hn)

)
im
(
δ : C((∂Hn)p;R)Isom+(Hn) → C((∂Hn)p+1;R)Isom+(Hn)

) .

In particular, H3
c (Isom+(H3);R) is one dimensional and it is generated by

the volume function Vol ∈ L∞((∂H3)4;R)Isom+(H3) which sends four points
in the boundary to the volume of the ideal simplex they span. Hence Bloch’s
result implies that, up to scalar multiplication, Vol is the only cocycle in de-
gree 3 defined on the boundary. He used this to show that the Bloch-Wigner
dilogarithm is essentially the only measurable function on CP 1 that satisfies
the five term relation. Indeed, applying such a function to the cross ratio
of 4 points in ∂H3 gives a measurable cocycle and thus a multiple of the
volume function.

One further tool for computing the continuous bounded cohomology of Lie
groups can be stability results. In [Mon04] Monod proves that the continu-
ous bounded cohomology of SLn is stable over n. More precisely, for any local
field k and 0 ≤ q ≤ n−1 he shows that the standard embedding GLn−1(k) ↪→
SLn(k) induces an isomorphism Hq

c,b(SLn(k)) ∼= Hq
c,b(GLn−1(k)). He proves

this using nontrivial coefficients of L∞ type and a spectral sequence argu-
ment. We prove such a stability result for the isometry group Isom(Hn

(C)) of

real (or complex) hyperbolic space using simpler methods.

Part II

Simplicial volume was introduced by Gromov in [Gro82]. It gives a
topological measure of the complexity of a manifold. Until now its exact
value has only been computed for hyperbolic manifolds ([Gro82], [Thu78])
and for closed manifolds covered by H2 × H2 [Buc08b]. Except for these
results no explicit upper bounds for the simplicial volume are known. There
are some more nonvanishing results. For example, in the case of negative
curvature the simplicial volume is bounded from below by the Riemannian
volume and therefore nonzero [Gro82], [Thu78]. Also, the simplicial volume
of oriented closed connected locally symmetric spaces of non-compact type
is nonzero [LafSch06]. However, in general there is also no explicit lower
bound known. Let [cΦ] ∈ H2

c,b(PU(2, 1);R) be the Kähler class. We prove

Theorem 7.1.2.
2

9
π2 ≤ ‖[cΦ ∪ cΦ]‖∞ ≤ π2



4 Introduction

As cΦ∪cΦ is proportional to the image under the van Est isomorphism of
the volume form in Ω4(H2

C;R)PU(2,1) applying the Gromov-Thurston propor-
tionality principle for locally symmetric spaces of noncompact type [Buc08a]
gives explicit bounds for the simplicial volume ‖M‖ of a closed complex hy-
perbolic surface M :

Corollary 7.1.3. Let M be a closed oriented manifold which is locally iso-
metric to H2

C. Then

2

π2
Vol(M) ≤ ‖M‖ ≤ 9

π2
Vol(M).

We furthermore obtain the following Milnor-Wood inequality relating
the Euler number χ(ξ) of a GL+(4,R)-bundle ξ to the Euler characteristic
of a closed complex hyperbolic surface M :

Corollary 7.1.6. Let ξ be a flat GL+(4,R)-bundle over a closed complex
hyperbolic surface M . Then

|χ(ξ)| ≤ 3

2
χ(M).

Outline

Let us now describe how this thesis is organized by giving a short sum-
mary of the content of each chapter.

Part I

In Chapter 1 we introduce the classical theory of continuous coho-
mology of groups and the continuous bounded cohomology of groups. We
describe the different resolutions that compute these groups that we use in
this thesis and the natural comparison map H∗c,b(G;R)→ H∗c (G;R). In the
last section we discuss some background needed for part II of this thesis,
namely the Gromov-Thurston proportionality principal, Hirzebruch’s pro-
portionality principle and the Euler class.

In Chapter 2 we turn to the theory of measurable cohomology. After giving
the definition we discuss in some detail the subtleties that come with dealing
with equivalence classes of functions. We furthermore discuss some of the
properties and techniques, such as dimension shifting, that we need later on.

In Chapter 3 we discuss the spectral sequence associated to a double
complex. We will construct this spectral sequence through exact couples
following [BottTu82].

In Chapter 4 we apply the spectral sequence of Chapter 5 to the dou-
ble complex C(Gp;C((∂Hn)q+1;R)), with G = Isom+(Hn). We obtain
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Theorem 4.1.1. Let n ≥ 2. The continuous cohomology of Isom+(Hn) is
measurably realized on the boundary ∂Hn of real hyperbolic space (with the
natural action). Furthermore, all cocycles have essentially bounded repre-
sentatives in this boundary resolution.

In Chapter 5 we show how Theorem 4.1.1 implies the following injec-
tivity result.

Corollary 5.1.1. The comparison map from continuous bounded cohomol-
ogy to continuous cohomology for real hyperbolic space Hn is injective in
degree 3, i.e.

c : H3
c,b(Isom+(Hn);R) ↪→ H3

c (Isom+(Hn);R).

We also discuss how this result already follows from a more elementary
argument. By similar reasoning we then obtain the following two stability
results:

Lemma 5.2.1. Let k ≤ n and suppose that Hk
c,b(Isom(Hn

(C));R) = 0. Then

Hk
c,b(Isom(Hn+1

(C) );R) = 0.

and

Theorem 5.2.2. If k + 1 ≤ n then there exists an injection

Hk
c,b(Isom(Hn

(C));R) ↪→ Hk
c,b(Isom(Hn+1

(C) );R).

Part II

Chapter 6 is a short introduction into complex hyperbolic geometry.
We describe the different models of Hn

C, its boundary, and its isometry group.
We end with a discussion of the Cartan angular invariant and its relation to
the Kähler class.

In Chapter 7 we turn to complex hyperbolic manifolds. We obtain a
lower bound for the Gromov norm of the cup product of the Kähler class
[cΦ] ∈ H2

c,b(PU(2, 1);R) with itself so that together with the trivial upper
bound we obtain

Theorem 7.1.2.
2

9
π2 ≤ ‖[cΦ ∪ cΦ]‖∞ ≤ π2

As cΦ ∪ cΦ is proportional to the image under the van Est isomorphism
of the volume form in Ω4(H2

C;R)PU(2,1) applying the proportionality princi-
ple gives estimates for the simplicial volume ‖M‖ of a complex hyperbolic
surface M :
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Corollary 7.1.3. Let M be a closed oriented manifold which is locally iso-
metric to H2

C. Then

2

π2
Vol(M) ≤ ‖M‖ ≤ 9

π2
Vol(M).

We furthermore obtain the following Milnor-Wood inequality relating
the Euler number χ(ξ) of a GL+(4,R)-bundle ξ to the Euler characteristic
of M :

Corollary 7.1.6. Let ξ be a GL+(4,R)-bundle over a closed complex hy-
perbolic surface M . Then

|χ(ξ)| ≤ 3

2
χ(M).
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Chapter 1

Continuous (bounded)
cohomology

1.1 Definitions

Let G be a locally compact second countable (l.c.s.c.) group where lo-
cally compact is Hausdorff by definition. We will consider abstract groups
as topological groups with respect to the discrete topology. Let A be the
dual of a separable Banach space on which G acts continuously and by linear
isometries. We call such a module A a coefficient G-module. For more infor-
mation about these modules and why they are the appropriate coefficients
for continuous bounded cohomology see [Mon01]. In this thesis we will only
consider continuous bounded cohomology with trivial R-coefficients. Let

Cpc,b(G;A) := {f : Gp+1 → A | f continuous and bounded},

with the G-action given by

(g · f)(g0, . . . , gp) := g · (f(g−1g0, . . . , g
−1gp)).

We denote by Cpc,b(G;A)G the space of G-invariant functions. Let

δ : Cc,b(G
p+1;A)G → Cc,b(G

p+2;A)G

be the standard homogeneous coboundary operator, i.e. for a cochain α ∈
Cc,b(G

p+1;A)G and g0, . . . , gp+1 ∈ G

δα(g0, . . . , gp+1) :=

p+1∑
i=0

(−1)iα(g0, . . . , ĝi, . . . , gp+1).

The complex (Cpc,b(G;A), δ) is called the bounded homogeneous resolution.
We define the continuous bounded cohomology groups as the cohomology of
this complex, i.e.

Hp
c,b(G;A) :=

ker(δ : Cpc,b(G;A)G → Cp+1
c,b (G;A)G)

im(δ : Cp−1
c,b (G;A)G → Cpc,b(G;A)G)

.

Forgetting about the boundedness condition, i.e. considering the G-modules

Cpc (G;A) := {f : Gp+1 → A | f continuous},

9



10 Chapter 1. Continuous (bounded) cohomology

we obtain the homogeneous resolution (Cpc (G;A), δ) and the continuous co-
homology groups

Hp
c (G;A) :=

ker(δ : Cpc (G;A)G → Cp+1
c (G;A)G)

im(δ : Cp−1
c (G;A)G → Cpc (G;A)G)

,

where for continuous cohomology we allow as coefficients A all Fréchet spaces
with a continuous G-action.

The supremum norm on Cpc,b(G;A)G induces a seminorm ‖·‖∞ on Hp
c,b(G;A)

defined by taking the infimum over all supremum norms, i.e.

‖[β]‖∞ := inff∈[β]supḡ∈Gp+1f(ḡ).

This norm is called the Gromov norm.

1.2 Resolutions

We have defined the continuous (bounded) cohomology groups as the
cohomology of the (bounded) homogeneous resolution. The functorial ap-
proach, which is classical for continuous cohomology and which was devel-
oped by Burger and Monod for continuous bounded cohomology, shows that
these cohomology theories are also realized by other complexes. Here we will
list the different resolutions we use in this thesis. For the proofs we refer to
[Gui80] and [BorWal00] for continuous cohomology and [Mon01] for contin-
uous bounded cohomology.

For both theories, instead of the homogeneous resolution defined before,
one can consider the inhomogeneous resolution

0→ A→ Cc(,b)(G;A)→ Cc(,b)(G
2;A)→ Cc(,b)(G

3;A)→ . . . ,

with inhomogeneous coboundary operator

d : Cc(,b)(G
p;A)→ Cc(,b)(G

p+1;A)

given by

dα(g1, . . . , gp+1) =g1 · α(g2, . . . , gp+1) +

p∑
i=1

(−1)iα(g1, . . . , gigi+1, . . . , gp)

+ (−1)p+1α(g1, . . . , gp).

The isomorphism between this resolution and the homogeneous resolution
is induced by the map Cc(,b)(G

p;A)→ Cc(,b)(G
p+1;A)G given by

α 7→ {(g0, . . . , gp) 7→ g0 · α(g−1
0 g1, g

−1
1 g2, . . . , g

−1
p−1gp)}.

A particularly useful resolution for continuous bounded cohomology is
obtained in [Mon01, Theorem 7.5.3]:
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Theorem 1.2.1. Let S be an amenable regular G-space and A a coefficient
G-module. Then the cohomology of the complex

0→ L∞w∗(S;A)G → L∞w∗(S
2;A)G → L∞w∗(S

3;A)G → . . .

(with the standard homogeneous coboundary operator and L∞w∗(S;A) the
space of weak-* measurable essentially bounded maps) is canonically iso-
metrically isomorphic to H∗c,b(G;A)

In particular, since the minimal parabolic subgroup P of a semisimple Lie
group G is amenable, this implies that H∗c,b(G;R) is isometrically isomorphic
to the cohomology of the complex

0→ L∞(G/P ;R)G → L∞((G/P )2;R)G → L∞((G/P )3;R)G → . . .

Therefore the bounded continuous cohomology of a semisimple Lie group G
is measurably realized on its Furstenberg boundary.

For all these resolutions we can furthermore consider the subcomplexes

Altpc(,b)(G;A)G ⊂ Cpc(,b)(G;A)G

and
Alt∞w∗(G/P ;A)G ⊂ L∞w∗(G/P ;A)G

consisting of alternating maps. The homogeneous coboundary operator re-
stricts to these complexes and they (isometrically) realize the same coho-
mology groups.

Let G be a semisimple Lie group with finite center and no compact factors
and letK be its maximal compact subgroup. We denote by X = G/K the as-
sociated symmetric space. An important resolution for continuous cohomol-
ogy is given by the complex of G-invariant differential forms (Ω∗(X ;R)G, d).
An isomorphism with the standard homogeneous resolution is provided by
the explicit description on the cochain level of the van Est isomorphism by
Dupont: Let ∆(g0x, . . . , gpx) be the “geodesic coned simplex” with vertices
g0x, . . . , gpx defined inductively as follows: The simplex ∆(g0x, g1x) is the
geodesic segment from g0x to g1x and given the simplex ∆(g0x, . . . , gix)
the simplex ∆(g0, . . . , gix, gi+1x) is the union of all geodesic segments from
gi+1x to the points of ∆(g0x, . . . , gix). Then

Theorem 1.2.2 (van Est isomorphism). The continuous cohomology of G
with real coefficients is isomorphic to Ω∗(X ;R)G. An explicit description
of this isomorphism on the cocycle level sends the differential form ω ∈
Ωp(X ;R)G to the cocycle cω ∈ Cc(Gp+1;R) defined by

cω(g0, . . . , gp) =

∫
∆(g0x,...,gpx)

ω,

for any fixed basepoint x in X .
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Remark 1.2.3. That there are no coboundaries in the above resolution fol-
lows from the fact that every G- invariant differential form on G/K is closed.
Indeed, let ω ∈ Ωn(G/K)G. Fix a basepoint 0 = eK in G/K and let s0 be the
geodesic symmetry at this point. Then s∗0ω = (−1)nω and s∗0dω = (−1)ndω.
It follows that

(−1)ndω = d((−1)nω) = d(s∗0ω) = s∗0(dω) = (−1)n+1dω,

and thus dω = 0.

1.3 Comparison map

The inclusion
C∗c,b(G;R) ↪→ C∗c (G;R)

induces a natural comparison map

c : H∗c,b(G;R)→ H∗c (G;R),

which is in general neither surjective nor injective. It is conjectured ([Dup79],
[Mon06]) to be an isomorphism for all semisimple connected Lie groups with
finite center. There is a lot of evidence for the surjectivity part of this con-
jecture (see e.g. [LafSch06], [HarOtt12]). On the other hand, injectivity has
so far only been established in a few cases. For degree 2 it was proven by
Burger and Monod in [BurMon99]. In degree 3 and 4 it has been proven for
SL2(R) by Burger-Monod [BurMon02] and Hartnick-Ott [HarOtt15] respec-
tively. For Isom+(H3) injectivity in degree 3 follows from a result of Bloch
[Blo00], our Theorem 4.1.1 in the case n = 3. In hyperbolic 3-space the vol-
ume function of an ideal simplex is given by a multiple of the Bloch-Wigner
dilogarithm of the cross ratio of its 4 vertices in ∂H3. In this context, the
five-term relation for the dilogarithm is the cocycle condition for the volume
function. Let Isom+(H3) be the group of orientation preserving isometries
of H3. Since H3

c (Isom+(H3);R) is one dimensional, Theorem 4.1.1 implies
that up to scalar multiplication the volume function is the only Isom+(H3)-
invariant measurable cocycle on the boundary. As there are no coboundaries
in degree 3, injectivity of the comparison map is an immediate consequence.
Hence Theorem 4.1.1 implies injectivity in degree 3 for Isom+(Hn) for all
n ≥ 2. We will discuss this further in Chapter 5. In Bloch’s case, i.e. for
n = 3, it also implies that the space of a.e. equivalence classes of measurable
functions (∂H3)4 → R that are Isom+(H3)-invariant and that satisfy the co-
cycle condition is one-dimensional and generated by the volume function.

1.4 Proportionality principles

Let M be a closed oriented manifold of dimension n. The `1-norm ‖ · ‖1
with respect to the basis of singular simplices on the space of real-valued
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chains C∗(M ;R) is given by∥∥∥∥∥∥
k∑
j=1

ajσj

∥∥∥∥∥∥
1

=
k∑
j=0

|aj |.

The `1-seminorm of a homology class in α ∈ H∗(M ;R) is then defined as
the infimum of the `1-norm of its representatives, i.e.

‖α‖1 := inf


k∑
j=0

|aj |

∣∣∣∣∣∣α =

 k∑
j=1

ajσj

 .

The simplicial volume ‖M‖ of M is the `1-seminorm of the the real valued
fundamental class [M ] ∈ Hn(M ;R):

‖M‖ := ‖[M ]‖1.

Denote by 〈β, α〉 the canonical pairing of a cohomology class β ∈ Hp(M ;R)
with a homology class α ∈ Hp(M ;R). Recall that the Gromov norm ‖β‖∞
is the semi-norm given by the infimum of the sup-norms of all cocycles
representing β:

‖β‖∞ = inf{‖b‖∞ | [b] = β} ∈ R≥0 ∪ {+∞}.

Then we have:

Proposition 1.4.1. [BenPet92, Proposition F.2.2] For any α ∈ Hp(M ;R)
and β ∈ Hp(M ;R)

|〈β, α〉| ≤ ‖β‖∞ · ‖α‖1.

The simplicial volume and the volume of M are related by the Gromov-
Thurston proportionality principal (see [Gro82, Thu78]) which is given by

‖M‖ =
Vol(M)

c(M̃)
,

where c(M̃) is a positive constant (possibly infinite) which only depends on

the universal cover M̃ of M . In fact, for locally symmetric spaces of non-
compact type, Bucher obtains in [Buc08a] that the proportionality constant

c(M̃) = ‖ω
M̃
‖∞,

with ω
M̃
∈ Hn

c (Isom0(M̃);R) the image of the volume form under the van
Est isomorphism. So we have
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Proposition 1.4.2. Let M be a locally symmetric space of noncompact type.
Then

‖M‖ =
Vol(M)

‖ω
M̃
‖∞

,

with ω
M̃
∈ Hn

c (Isom0(M̃);R) the image of the volume form under the van
Est isomorphism.

Recall that χ(M) denotes the Euler-Poincaré characteristic of M and is
defined as the alternating sum of the Betti numbers of M :

χ(M) :=
n∑
i=0

(−1)idim(H i(M ;R)).

The volume of M is also proportional to χ(M). Indeed, by Hirzebruch’s
proportionality principle,

Proposition 1.4.3. [Hir58] Let M be a closed, oriented, locally symmetric
space of noncompact type of dimension n and let Xu be the compact dual
of its universal cover X = M̃ . Suppose that χ(M) and χ(Xu) are nonzero.
Then

Vol(M)

χ(M)
= (−1)

n
2 · Vol(Xu)

χ(Xu)
.

As an immediate consequence, we obtain

Corollary 1.4.4. Let M be a closed, oriented, locally symmetric space of
noncompact type of dimension n and let Xu be the compact dual of its uni-
versal cover X = M̃ . Suppose that χ(Xu) is nonzero. Then

‖M‖ = (−1)
n
2 · Vol(Xu)

χ(Xu)
· χ(M)

‖ωX ‖∞
.

The Euler class associates to oriented vector bundles ξ over M a class
εn(ξ) ∈ Hn(M ;R). The Euler number χ(ξ) of such a vector bundle is by
definition the pairing of the Euler class with the fundamental class [M ] ∈
Hn(M ;R) of M :

χ(ξ) := 〈εn(ξ), [M ]〉.

The Euler number is a generalization of the Euler-Poincaré characteristic.

Lemma 1.4.5. [MilSta74, Corollary 11.12] Let M be a closed oriented
smooth manifold. The Euler number of the tangent bundle of M is equal
to its Euler characteristic:

χ(M) = χ(TM).
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Definition 1.4.6. Let M be a closed oriented smooth manifold and let
ξ be a GL+(n,R)-bundle over M . A connection on ξ is said to be flat
if its curvature form vanishes identically. The bundle ξ is called flat if it
can be endowed with such a flat connection. Equivalently, this means that
the bundle ξ is induced by a representation ρ : π1M → GL+(n,R). The
manifold M admits a flat structure if the GL+(n,R)-bundle associated to
its tangent space is flat.

Lemma 1.4.7. [IvaTur82] Let M be a closed oriented smooth manifold and
let ξ be a flat GL+(n,R)-bundle over M . Then

‖εn(ξ)‖∞ ≤
1

2n
.

In fact Bucher and Monod showed in [BucMon12] that ‖εn(ξ)‖∞ = 1
2n .

Combining Lemma 1.4.7 with Proposition 1.4.1 we obtain the following in-
equality for the Euler number χ(ξ):

Lemma 1.4.8. Let M be a closed oriented smooth manifold and let ξ be a
flat GL+(n,R)-bundle over M . Then

|χ(ξ)| ≤ 1

2n
· ‖M‖.
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Chapter 2

Measurable cohomology

2.1 The definition

Let G again be a l.c.s.c. group and let A be a Polish Abelian G-module
(to be defined below). Furthermore, let Cp(G;A) denote the G-module of
measurable maps Gp+1 → A identifying those which agree almost every-
where (a.e.) endowed with the same action as the modules Cpc(,b)(G;A),
i.e.,

(g · f)(g0, . . . , gp) := g · (f(g−1g0, . . . , g
−1gp)).

Note that since Cp(G;A) consists of equivalence classes of functions all
equalities like the above only hold a.e. We will discuss this G-module in
more detail in the next section. Let δ : Cp(G;A)G → Cp+1(G;A)G be the
standard homogeneous coboundary operator. The measurable cohomology
groups for G with coefficients in A are given by

Hp
m(G;A) :=

ker(δ : Cp(G;A)G → Cp+1(G;A)G)

im(δ : Cp−1(G;A)G → Cp(G;A)G)
.

In the case of measurable cohomology no functorial approach seems to exist
but as before the standard inhomogeneous resolution (C(Gp;A), d) realizes
Hp
m(G;A) and by Buchsbaum’s criterion (see Section 2.3) also some other

cocomplexes can be shown to realize the same cohomology group.

2.2 The G-module C(X;A)

Let X be a l.c.s.c. space on which G acts measurably and that is endowed
with a G-invariant measure class [µ].

Remark 2.2.1. When X = G we will endow it with the class of its Haar
measures [µG]. If X = G/H, with H < G a closed subgroup then we will en-
dow the homogeneous space G/H with the class of the natural quasi-invariant
measures.

Definition 2.2.2. A Polish space is a separable topological space Y for
which there exists a compatible metric ρ such that (Y, ρ) is a complete
metric space. A Polish group is a topological group which is also a Polish
space in its topology.

17
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Example 2.2.3. The l.c.s.c. space X is an example of a Polish space.

Definition 2.2.4. A Polish Abelian G-module (A, ρ) is a Polish group A
with a jointly continuous action of G and a translation invariant metric ρ.
It is a F-space if A is furthermore a separable real topological vector space
in its Polish topology and a Fréchet space if it is a locally convex F-space.

Let (A, ρ) be a Polish Abelian G-module. We define C(X;A) to be the
G-module of µ-a.e. equivalence classes of Borel maps X → A, i.e. two Borel
maps f, g : X → A are in the same class if they only differ on a set of
µ-measure zero, where µ is any measure in the G-invariant measure class
associated to X.

Remark 2.2.5. Note that one could also define C(X;A) as consisting of
µ-measurable functions up to equivalence, this will give the same space since
any class of measurable functions contains a Borel function. Indeed, by
Lusin’s theorem if f : X → A is a measurable function there exists a sequence
Fn of closed subsets of X such that µ(G \ Fn) < 1

n and f restricted to Fn
is continuous. Then F = ∪Fn has a complement of measure zero, f is
continuous on F and can be extended to a Borel function on its complement.

Let ν be a probability measure in the measure class [µ], i.e. ν(X) = 1,
and let ρ̃ be a metric equivalent to ρ on A in which A has finite diameter.
We endow C(X;A) with the topology of convergence in probability with
respect to ν :

Definition 2.2.6. Let {fn} be a sequence of measurable functions fn : X →
A. Then fn → f in probability if for every ε > 0 there exists Nε ∈ N such
that

ν ({x ∈ X | ρ̃(fn(x), f(x)) ≥ ε}) < ε,

for all n ≥ Nε. A corresponding metric is given by

d(f1, f2) := inf{r > 0 | ν({x ∈ X | ρ̃(f1(x), f2(x)) > r}) ≤ r}.

Remark 2.2.7. When A = R this gives the usual F-space structure on
C(G;R) and this space is often denoted as L0(G).

Remark 2.2.8. If two functions f, g : X → A agree almost everywhere then
their distance is zero in the metric of convergence in probability. Hence the
space of all measurable functions from X to A endowed with the topology of
convergence in probability is not Hausdorff. It is for this reason that one is
led to consider maps up to a.e. equivalence.

Proposition 2.2.9. The G-module C(X;A) is complete: If the sequence
{fn} is a Cauchy sequence in probability of measurable functions fn : X → A
then there exists a measurable function f : X → A such that fn → f in
probability. Furthermore, there exists a subsequence {fnk

} such that fnk
→ f

pointwise a.e.
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Proof. (Following the proof of Theorem 4.17 in [Men07]) Let Vε,n,m = {x ∈
X | ρ(fn(x), fm(x)) ≥ ε}. There exists an increasing sequence {ni} in N such
that ν(V2−i,ni,m) < 2−i for all m ≥ ni, in particular ν(V2−i,ni,ni+1

) < 2−i.
Define Ai = V2−i,ni,ni+1

and Bk = ∪∞i=kAi. Then ν(Bk) ≤
∑∞

i=k 2−i = 21−k

and if x /∈ Bk then for all i ≥ j ≥ k:

ρ(fnj (x), fni(x)) ≤
i−1∑
r=j

ρ(fnr(x), fnr+1(x)) ≤
i−1∑
r=j

2−r ≤ 21−k.

Hence {fni(x)} is a Cauchy sequence in A for all x /∈ Bk. Let B = ∩kBk,
so that ν(B) = 0. By the above, if x /∈ B then the limit of {fni(x)}
exists in A. We call this limit f(x) and define the function f : X → A to
be equal to f(x) if x /∈ B, for x ∈ B we set f(x) = 0 so that fni → f
pointwise almost everywhere. Furthermore, fni → f in probability since
ρ(fni(x), f(x)) ≤ 21−i for all x /∈ Fi and ν(Fi) → 0 as i → ∞. Using the
triangle inequality it immediately follows that also fn → f in probability.

Remark 2.2.10. The converse of the second part of Proposition 2.2.9 is
also true. That is, if there exists a subsequence {fnk

} of {fn} such that
fnk
→ f pointwise a.e. then fn → f in probability. This is not true for the

convergence in measure with respect to a non-finite measure.

Proposition 2.2.11. The G-module C(X;A) is separable.

Proof. (based on Remark 4.26 in [Men07]). Let S(X;A) ⊂ C(X;A) be the
subspace of simple functions, i.e. measurable functions assuming only a finite
set of values. From Remark 2.2.10 it follows that this is a dense subspace
of C(X;A). Let O be a countable basis of X and let Of be the countable
family of finite unions of open sets O ∈ O. Let B be a ν-measurable set
and let ε > 0. Since ν(B) < ∞ there exist an open set O ⊃ B and a
compact set K ⊂ B such that ν(O \ K) < ε. Thus there is a Of ∈ Of
such that ν((B \ Of ) ∪ (Of \ B)) < ε. Then, since A is separable, the set
F = {f ∈ S(X;A) | f−1(a) ∈ Of for all a ∈ A} is a countable dense subset
of S(X;A) and therefore of C(X;A).

Proposition 2.2.9 and Proposition 2.2.11 imply that C(X;A) is a Polish
group. Furthermore, with G-action defined by

(g · f)(x) := g · f(g−1x),

it is a Polish Abelian G-module [Moo76a, Proposition 12]. An important
property of these modules is that they satisfy the following Fubini theorem:

Theorem 2.2.12. Let X and Y both be l.c.s.c. spaces on which G acts
measurably and that are endowed with G-invariant measure classes. Let
A be a Polish Abelian G-module. Then C(X × Y ;A) ∼= C(X;C(Y ;A)) ∼=
C(Y ;C(X;A)).
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For the proof we refer to Theorem 1 in [Moo76a].

Example 2.2.13. An important case is X = Gp+1. We write Cp(G;A) :=
C(Gp+1;A). These are the G-modules in the homogeneous resolution of the
measurable cohomology group H∗m(G;A) with action given by

(g · f)(g0, . . . , gp) := g · f(g−1g0, . . . , g
−1gp).

Remark 2.2.14. The space C(X;A) is not locally convex since the only
convex neighborhood of 0 is the space itself. Indeed, if C(X;A) contains
a nonempty proper convex open subset then it follows from the geometric
Hahn-Banach theorem (see e.g. [SchWol99, Section II.3.1]) that there exists
a nonzero continuous linear functional on C(X;A). Suppose that L is such
a functional. Then there exists a C > 0 such that for all f ∈ B(0, δ) one has
|L(f)| < C. Let Y ⊂ C(X;A) be a measurable subset with µ(Y ) < δ and
denote by χY the characteristic function of this subset. Then λ·χY ∈ B(0, δ)
for all λ > 0 and thus

|L ◦ (λ · χY )| = λ · |L ◦ χY | < M.

It follows that L ◦ χY = 0 and therefore L = 0.

2.3 Buchsbaum’s criterion and dimension shifting

Buchsbaum’s criterion

Denote by P (G) the category of Polish Abelian G-modules. A short
exact sequence

0 // A
i // B

j // C // 0

in P (G) is exact algebraically and such that the maps i and j are continuous
homomorphisms intertwining the action of G. An effaceable cohomological
functor H∗(G, ·) on P (G) is a covariant functor from P (G) to the category
of Abelian groups such that

1. H0(G,A) = AG

2. Every short exact sequence 0→ A→ B → C → 0 of Polish Abelian
G-modules induces a long exact sequence in cohomology

0→ H0(G;A)→ H0(G;B)→ H0(G;C)→ H1(G;A)→ . . .

· · · → Hk(G;B)→ Hk(G;C)→ Hk+1(G;A)→ . . . , (2.1)

3. H∗(G;A) is effaceable in the category of Polish Abelian G-modules.
That is, for any Polish Abelian G-module A and any a ∈ Hk(G;A)
there exists a short exact sequence

0→ A→ B → C → 0

such that the image of a in Hk(G;B) vanishes.
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By Buchsbaum’s criterion [Buc60] such an effaceable cohomological functor
is unique (if it exists). C.C. Moore proved that measurable cohomology
satisfies the above requirements and is therefore the unique effaceable co-
homological functor on P (G) [Moo76a, Section 4]. Let us briefly discuss
why the three above conditions hold for the measurable cohomology H∗m.
The fact that H0

m(G;A) = AG is immediate from the definition. For the
third condition, Moore proves that Hp(G;C(G;A)) = 0 for p > 0 [Moo76a,
Theorem 4]. Then any cohomology class [α] ∈ Hk

m(G;A) is effaced by the
inclusion ι : A ↪→ C(G;A) (sending a ∈ A to the constant function ≡ a).
Indeed, ι∗(α) = δβ with β : Gp → C(G;A) defined by

β(g1, . . . , gp)(g) := (−1)pα(g1, . . . , gp, g).

Lastly, the second condition, i.e. the existence of long exact sequences, is
ensured by the existence of Borel sections: Let H < G be a closed subgroup
and denote by p : G→ G/H the natural projection map.

Definition 2.3.1. A Borel map f : X → Y from a locally compact space
to a Polish space is locally totally bounded if for any compact subset K ⊂ X
the image f(K) is precompact in Y .

We prove below:

Lemma 2.3.2. There exists a section s : G/H → G of the natural projection
map p : G→ G/H that is Borel and locally totally bounded, i.e. that sends
every compact subset of G/H to a precompact subset of G.

Now let

0 // A
i // B

j // C // 0

be a short exact sequence of Polish Abelian G-modules. The induced se-
quence

0 // Cq(G;A)
i∗ // Cq(G;B)

j∗ // Cq(G;C) // 0

is then also exact: The map i∗ : Cq(G;A)→ Cq(G;B) is clearly injective and
the induced maps i∗ and j∗ are continuous. Furthermore, by Lemma 2.3.2
there is a Borel map s : C → B with j ◦ s = idC and thus if α ∈ Cq(G;C)
then s∗ ◦ α ∈ Cq(G;B) is mapped to f . Hence j∗ is surjective and the
sequence is exact. Then a long exact sequence as in the second condition
can be constructed in the standard way.

Since in general there exists no continuous cross section G/H → G con-
tinuous cohomology has no long exact sequences when we allow all Polish
Abelian G-modules as coefficients. However, when restricting to Fréchet
modules there do exist continuous cross sections and continuous cohomol-
ogy is the unique effaceable cohomological functor on this category. In
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[AusMoo13] T. Austin and C.C. Moore prove that measurable cohomology
is also effaceable when restricted to Fréchet modules. We will discuss this
proof in Section 2.5.

Proof of Lemma 2.3.2. We follow the proof in Section 5.1.1 in [War72]. Since
G is a l.c.s.c. group it is a kω-space (see [FraTho77, 10)]) and therefore it is
a direct limit of an ascending sequence {Kn}n∈N of compact subsets. Note
that this implies in particular that any compact subset of G is a subset of
some Kn [FraTho77, 3)].
By the Borel selection theorem, see e.g. [Fre05, Section 423], for all n ∈ N
there exists a Borel subset Bn ⊂ Kn such that p(Bn) = p(Kn) and p re-
stricted to Bn is an injective map. The Bn can furthermore be chosen such
that Bn ⊂ Bn+1. Indeed, by induction, if B1 ⊂ B2 ⊂ · · · ⊂ Bn then we
define

Bn+1 = (B̃n+1 \ π−1(π(Bn))) ∪Bn,

where B̃n+1 is a Borel subset of Kn+1 on which p is one-to-one and such
that p(Bn+1) = p(Kn+1). It follows that

B :=
⋃
n∈N

Bn

is a Borel subset of G that intersects each left coset gH in exactly one point.
Furthermore, if K ⊂ G is compact then p−1(p(K)) ∩ B is compact. Indeed,
let K ⊂ G be a compact subset. Then K ⊂ Kn for some n. Thus, as
p(Kn) = p(Bn) it follows that p−1(p(K)) ∩ B ⊂ Kn. This implies that B
gives us a locally totally bounded Borel section s:
If L ⊂ G/H is compact then, for example by Proposition 18 in [Bou74,
IX §2 N◦ 10], there exists a compact K ⊂ G such that L ⊂ p(K). Hence
s(L) := p−1(L) ∩ B is contained in the precompact subset p−1(p(K)) ∩ B
and is therefore itself precompact.

Dimension shifting

Effacement together with the existence of long exact sequences allow
for the technique of dimension shifting, that is we can rewrite a cohomology
group as a cohomology group of lower degree (but with different coefficients).
Then by induction on degree, some algebraic properties that clearly hold in
lower degree may be shown to hold in higher degrees as well. We will use this
technique in the proof of Theorem 4.1.1. Concretely, let ι : A ↪→ C(G;A) be
the embedding of the G-module A into C(G;A) as the closed submodule of
constant maps. Since Hp(G;C(G;A)) = 0 for p > 0 the long exact sequence
obtained from short exact sequence

0→ A ↪→ C(G;A) � C(G;A)/ι(A)→ 0
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gives isomorphisms Hp
m(G;A) ∼= Hp−1

m (G;C(G;A)/ι(A)) for all p > 0. The
connecting map Hp

m(G;A)→ Hp−1
m (G;C(G;A)/ι(A)) is induced by the map

Q : Cp(G;A)→ Cp−1(G;C(G;A)) given by

(Qα)(g0, . . . , gp−1)(g) := (−1)pα(g0, . . . , gp−1, g), (2.2)

for α ∈ Cp(G;A) and g, g0, . . . , gp−1 ∈ G. If α is a cocycle it follows directly
that δ(Qα)(g0, . . . , gp) is the constant map g 7→ α(g0, . . . , gp) and thus the
image of Qα under the quotient map C(G;A) � C(G;A)/ι(A) defines a
class in Hp−1

m (H;C(G;A)/ι(A)). Furthermore, it can be shown that this
image only depends on the cohomology class of α and that Q indeed induces
the connecting map. For the inhomogeneous resolution the connecting map
Q on cochains is given by

(Qα)(g1, . . . , gp−1)(g) := (−1)pα(g1, . . . , gp−1, g
−1
p−1g

−1
p−2 · · · g−1

1 g), (2.3)

for α ∈ C(Gp;A) and g, g1, . . . , gp−1 ∈ G.

2.4 The Eckmann-Shapiro Lemma

Let H < G be a closed subgroup of the l.c.s.c. group G and let A be a
Polish Abelian H-module. Define

IndGH(A) = {f ∈ C(G;A) | f(gh) = h−1 ·f(g) for almost all (h, g) ∈ H×G}.

This is a Polish Abelian G-module with the action of G given by:

(g · f)(g′) = f(g−1g′).

Proposition 2.4.1 (Eckmann-Shapiro Lemma). Let H < G be a closed
subgroup of the locally compact second countable group G and let A be a
Polish Abelian H-module. Then Hk

m(G; IndGH(A)) ∼= Hk
m(H;A).

Lemma 2.4.2. The map ι : A → C(G;A) that embeds A into C(G;A) as
the submodule of constant maps, i.e.

ι(a)(g) = a, for a.e. g ∈ G,

induces an isomorphism (IndGH(A))G ∼= AH

Let s be a locally totally bounded Borel section of p such that s(H) = e.

Definition 2.4.3. The locally totally bounded map r : G → H is defined
by

r(g) = g · s(g−1H), (2.4)

for g ∈ G. Furthermore, the locally totally bounded map λ : G×G/H → H
is defined by

λ(g, g′H) = s(g′H)−1 · g · s(g−1g′H), (2.5)

for g ∈ G and g′H ∈ G/H.
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Proposition 2.4.4. The map % : C(G/H;A)→ IndGH(A) defined by

%(f)(g) = r(g−1) · f(gH)

gives an isomorphism of topological groups C(G/H;A) ∼= IndGH(A). The
action of G on C(G/H;A) induced by the action of G on IndGH(A) is

(g · f)(g′H) = λ(g, g′H) · f(g−1g′H). (2.6)

Proof of Proposition 2.4.1. This follows from Buchsbaum’s criterion. As
discussed in Section 2.3 measurable cohomology is the unique effaceable
cohomological functor on P (H). Thus to prove the proposition we will show
that H∗m(G; IndGH(·)) also satisfies the three conditions of Buchsbaum’s cri-
terion stated in the beginning of Section 2.3:

1. By Lemma 2.4.2 we have H0(G; IndGH(A)) = AH .

2. If

0 // A
i // B

j // C // 0

is a short exact sequence of Polish Abelian H-modules let

0 // IndGH(A)
i∗ // IndGH(B)

j∗ // IndGH(C) // 0

be the induced sequence of Polish AbelianG-modules. Then clearly i∗

is injective and the maps i∗ and j∗ are both continuous. Furthermore,
if s : G/H → G and s̃ : C → B are Borel sections and f ∈ IndGH(C)
then the map defined by g 7→ r(g−1) · s̃(f(s(gH))) is send to f by
j∗. Hence the induced sequence is a short exact sequence and this
implies the existence of long exact sequences.

3. From Proposition 2.4.4 and Theorem 2.2.12 it follows that

IndGH(C(H;A)) ∼= C(G/H;C(H;A))
∼= C(G/H ×H;A)
∼= C(G;A),

The first isomophism is given in Proposition 2.4.4. It is defined
such that it intertwines with the action by G, where the action on
C(G/H;C(H;A)) is as defined in equation 2.6:

(g · f)(g′H)(h) = λ(g, g′H) · f(g−1g′H)(λ(g, g′H)−1h)

The canonical second isomorphism intertwines with the G-action as
well. For the last isomorphism, we define for f ∈ C(G;A) the map
f̃ ∈ C(G/H ×H;A) by

f̃(gH)(h) := s(gH)−1 · f(s(gH)h).
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Then

(g · f̃)(g′H)(h) = λ(g, g′H) · f̃(g−1g′H)(λ(g, g′H)−1h)

= λ(g, g′H) · s(g−1g′H)−1f(s(g−1g′H)λ(g, g′H)−1h)

= s(g′H)−1 · g · f(g−1s(g′H)h),

and

g̃ · f(g′H)(h) = s(g′H)−1 · (g · f)(s(g′H)h)

= s(g′H)−1 · g · f(g−1s(g′H)h).

Thus this also defines an isomorphism which intertwines with the
G-actions and therefore

Hk(G; IndGH(C(H;A))) = Hk(G;C(G;A)) = 0 for k > 1,

and any cohomology class [α] ∈ Hk(G; IndGH(A)) is effaced by the
inclusion ι : A ↪→ C(H;A).

Proof of Lemma 2.4.2. Let a ∈ AH so that h · a = a for all h ∈ H. Then

ι(a)(gh) = a = h−1 · a = h−1 · ι(a)(g),

for all g ∈ G and h ∈ H. So ι(a) is indeed a map in IndGH(A). Furthermore,
for all g, g′ ∈ G we have

(g · ι(a))(g′) = ι(a)(g−1g′) = a = ι(a)(g′),

and hence ι(a) is a G-invariant map.
The map ι is clearly injective and continuous thus all that is left to show
is that it is a surjection from AH onto (IndGH(A))G. Let f ∈ (IndGH(A))G.
Since f is G-invariant for any g ∈ G we have g · f = f a.e., i.e. the set

E = {g′ ∈ G | f(g−1g′) 6= f(g′)}
has measure zero for all g ∈ G. Hence, by Fubini, Eg′ = {g ∈ G | f(g−1g′) 6=
f(g′)} has measure zero for almost every g′ ∈ G. Let

N = {g′ ∈ G | Eg′ is not a set of measure zero}.
Then N has measure zero and for g′ /∈ N , f(g−1g′) = f(g′) for almost every
g ∈ G. It follows that f(g′) = a a.e. for a ∈ A some constant. Now since
f ∈ IndGH(A),

f(g′h−1) = h · f(g′) for almost all pairs (g′, h) ∈ G×H.
Hence h·a = a for almost all h ∈ H. Since the action of H on A is continuous
it then follows that in fact h · a = a for all h ∈ H. Thus

f(g) = a, for a.e. g ∈ G and with a ∈ AH ,
i.e. f = ι(a) ∈ (IndGH(A))G with a ∈ AH .
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Proof of Proposition 2.4.4. Following the proof of Proposition 17 in [Moo76a]:
• % is well-defined:

Since r is Borel the map %(f) is as well. Furthermore, if one changes
f on a set of measure zero then %(f) also only changes on a set of
measure zero. Hence if f1, f2 are in the same class in C(G/H;A), i.e.
they agree a.e., then %(f1) and %(f2) are in the same class in C(G;A).

• %(f) ∈ IndGH(A), i.e. %(f)(gh) = h−1 · %(f)(g) for almost all pairs
(g, h) ∈ G×H: Indeed,

%(f)(gh) = r(h−1g−1) · f(ghH)

= h−1g−1 · s(gH) · f(gH)

= h−1 · r(g−1) · f(gH)

= h−1 · %(f)(g)

and hence the defining conditions hold in fact for all pairs (g, h) ∈
G×H.
• % is continuous:

Let fn → f in probability. Then, by Proposition 2.2.9, {fn} has a
subsequence {fni} converging a.e. pointwise to f , say for x /∈ N with
N ⊂ G/H a set of measure zero. By the Fubini theorem the pre-
image of N under the projection map, p−1(N) ⊂ G, has also measure
zero. We have

%(fni)(g) = r(g−1) · fni(gH)→ r(g−1) · f(gH) for all g /∈ p−1(N),

and it thus follows that the subsequence {%(fni)} of {%(fn)} converges
to %(f) almost everywhere. Hence %(fn)→ %(f) in probability.
• % is bijective and therefore an isomorphism of topological groups:

It is clear that % is injective. Since a surjective morphism between
two Polish topological groups is open (see for example [HofMor07])
it is enough to show that % is a surjection to conclude that it gives
an isomorphism of topological groups. So let F ∈ IndGH(A). We will
construct F ′′ ∈ IndGH(A) such that

F ′′ = F a. e., and

F ′′(gh) = h−1 · F ′′(g) for all h ∈ H, g ∈ G.

Then by the first condition F ′′ is equivalent to F in IndGH(A) and by
the second condition it is in the image of %.
Since F (gh) = h−1 ·F (g) for almost all (g, h) ∈ G×H by the Fubini
theorem there is a set N of measure zero in G such that if g /∈ N ,
F (gh) = h−1 · F (g) holds for almost all h ∈ H. Denote by N c the
complement of N in G and define a function F ′ on N c ×H by

F ′(g, h) = h−1 · F (g) for g ∈ N c, h ∈ H.
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Suppose now that g1 /∈ N and g1 = g · h1 for g /∈ N . Then h−1 ·
F (g1) = F (g1h) for almost every h ∈ H. Furthermore, F (g1h) =
F (gh1h) = h−1h−1

1 · F (g) for almost every h1h ∈ H and hence for
almost every h ∈ H. But then, since both sides are continuous in h:

h−1 · F (g1) = h−1h−1
1 F (g) for all h ∈ H,

and it follows that

F ′(gh1, h) = F ′(g, h1h) for all g, gh1 ∈ N c.

Let L = {y ∈ G | ∃h ∈ H s.t. yh /∈ N} which is a subset of G
that contains N c. Let y ∈ L. Then there is a h−1 ∈ H such that
yh−1 /∈ N . Write g = yh−1 so that y = gh with g /∈ N . Now we can
define a function F ′′ on L by

F ′′(y) = F ′′(gh) = F ′(g, h).

Then F ′′ is a Borel function and

F ′′(gh) = h−1 · F ′′(g).

The function F ′′ can be extended to a Borel function on the whole of
G (since Lc ⊂ N has measure zero) such that it satisfies the require-
ments mentioned above.
• The action of G on f ∈ C(G/H;A) induced by the action of G on

IndGH(A) via % is defined by

%(g · f)(g′) = %(f)(g−1g′)

and thus

r(g′−1) · (g · f)(g′H) = r(g′−1g) · f(g−1g′H).

This implies

(g · f)(g′H) = r(g′−1)−1 · r(g′1g) · f(g−1g′H)

= λ(g, g′H) · f(g−1g′H).

The proof of the Eckmann-Shapiro Lemma is complicated by the fact
that the maps in Cp(G;A) are only defined almost everywhere. However,
sometimes it is possible to write down the isomorphism explicitly.
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Example 2.4.5. If cochains in Hq
m(G, IndGH(A)) are continuous, as for ex-

ample in degree 1, we can give explicit maps on the cochain level which
induce the isomorphism of the Eckmann-Shapiro lemma. Define

un : Cc(G
q+1;A)H → Cc(H

q+1;A)H

by
un(σ)(h0, . . . , hq) = σ(h0, . . . , hq),

for h0, . . . , hq ∈ H. Note that this is well defined because σ is continuous in
Gq+1. The map

vn : Cc(G
q+1;C(G/H;A))G → Cc(G

q+1;A)H

can be defined as follows: Let β ∈ Cc(Gq+1;C(G/H;A)) and g ∈ G. Define
Fg(β) ∈ Cc(Gq+1;A) by

Fg(β)(g0, . . . , gq) := β(s(gH)g0, . . . , s(gH)gq)(gH),

for g0, . . . , gq ∈ G. Then if β is G-invariant, Fg(β) is independent of g and
gives an element in Cc(G

q+1;A)H . We define vn(β) to be this element and
then we can define

φ = un ◦ vn : Cc(G
q+1;C(G/H;A))G → Cc(H

q+1;A)H .

Its inverse in cohomology is given by

ψ(α)(g0, . . . , gq)(gH) = α(λ(g0, gH), . . . , λ(gq, gH)),

with λ as defined in equation 2.5, α ∈ Cc(Hp+1;A)G, and g, g0, . . . , gq ∈ G.

2.5 Isomorphism with continuous cohomology

Just as for continuous bounded cohomology and continuous cohomology
there is a natural inclusion of cochains

C∗c (G;A) ↪→ C∗(G;A)

which induces a comparison map

H∗c (G;A)→ H∗m(G;A)

from measurable cohomology to continuous cohomology. Austin and Moore
prove in [AusMoo13] that this map is an isomorphism for all Fréchet coeffi-
cients A:

Theorem 2.5.1. [AusMoo13, Theorem A] Let G be a l.c.s.c. group and let
A be a Fréchet G-module. Then H∗m(G;A) ∼= H∗c (G;A).



2.5. Isomorphism with continuous cohomology 29

Their proof is based on applying Buchsbaum’s criterion. Since in gen-
eral there exists no continuous cross section G/H → G, continuous coho-
mology has no long exact sequences when we allow all Polish G-modules as
coefficients. However, when restricting to Fréchet modules there do exist
continuous cross sections and continuous cohomology is the unique efface-
able cohomological functor on this category. Austin and Moore prove that
measurable cohomology is also effaceable when restricted to Fréchet mod-
ules. The crucial step in the proof is [AusMoo13, Proposition 33] which
states that for any cohomology class in H∗m(G;A) there exists a locally to-
tally bounded representative. The main ingredients of its proof are dimen-
sion shifting and the fact that a locally totally bounded measurable cocycle
ᾱ : Gp → C(G;A)/ι(A) can be lifted to a locally totally bounded measurable
map α : Gp → C(G;A). That there exist such a lift follows from the Borel
selection theorem, i.e. Lemma 2.3.2. Then, as the two theories also agree
in degree zero, Buchsbaum’s criterion applies. Below we give the details of
this proof of which we will use techniques in section 4.5.

Proposition 2.5.2. Any cohomology class in Hp
m(G;A) can be represented

by a measurable cocycle ψ : Gp → A that is locally totally bounded.

Proof. The proof is by induction on the degree p of Hp
m(G;A). In degree

p = 1 cohomology classes have a continuous representative by Proposition
2.5.5 below and thus in degree 1 the proposition holds for any Polish Abelian
G-module A.
Now let p ≥ 2 and let α : Gp → A be a cocycle. Let β := Qα ∈
Cp−1(G;C(G;A)), with Q the connecting map for the inhomogeneous res-
olution as defined in equation 2.3 in Section 2.3. Denote by β̄ the cor-
responding cocycle in the quotient Cp−1(G;C(G;A)/ι(A)). By induction,
there exists a locally totally bounded representative κ̄ of the class [β̄] ∈
Hp−1
m (G;C(G;A)/ι(A)) and thus β̄ = κ̄ + dλ̄ for some measurable map

λ̄ : Gp−2 → C(G;A)/ι(A).
From the Borel selection theorem, i.e. Lemma 2.3.2, it follows that there
exists measurable lifts κ and λ of κ̄ and λ̄ such that κ is still locally totally
bounded. Thus

β = κ+ dλ+ η,

for some η : Gp−1 → ι(A) ⊂ C(G;A) and therefore α = dκ + dη (when we
identify the constant map (dκ + dη)(g1, . . . , gp) with its constant value in
A). Now

dκ = α− dη
is a locally totally bounded representative of [α]:
For any compact K ⊂ G:

dκ(Kp) ⊂
⋃
g∈K

(g · κ(Kp−1))− κ(Kp−1) + · · ·+ (−1)p+1κ(Kp−1).
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Therefore, as κ is locally totally bounded it follows that dκ(Kp) is precom-
pact as a subset of C(G;A). Since the topology of the closed subgroup
ι(A) ⊂ C(G;A) agrees with the subspace topology this implies that dκ is
locally totally bounded when considered as a cocycle Gp → A.

Now we can prove Theorem 2.5.1:

Proof of Theorem 2.5.1. Both theories are equal to AG in degree 0 and they
also agree in degree 1 as measurable cocycles α : G → A in the inhomoge-
neous resolution always have a continuous representative (see Proposition
2.5.5 below). Furthermore, if p > 1 one can show that any cohomology class
in Hp

m(G;A) has a representative cocycle ψ that is effaced by the inclusion

ι : A ↪→ Cc(G;A) (2.7)

That is, there exists a κ : Gp−1 → Cc(G;A) such that δκ = ψ where ψ is
viewed as a function Gp → Cc(G;A) taking values in ι(A) ⊂ Cc(G;A). It
then follows that the measurable cohomology H∗m is effaceable if restricted
to the category of Fréchet modules (In general, i.e. when A is a Polish
module, H∗m is effaced by the inclusion A ↪→ C(G;A) but C(G;A) is in
general not locally convex so in particular not a Fréchet module which is
why we have to restrict to Cc(G;A) here). Then both theories are effaced
by the inclusion A ↪→ Cc(G;A), have long exact sequences (when restricted
to the category of Fréchet G-modules) and agree in degree 1. It follows by
Buchsbaum criterion that the two theories agree in all degrees.
The map κ : Gp−1 → Cc(G;A) can be defined by

κ(g1, . . . , gp−1)(g) :=

(−1)p
∫
G
ψ(g1, . . . , gp−1, g

−1
p−1 · · · g−1

1 gh)η(h)dµG(h), (2.8)

where η : G → R≥0 is a compactly-supported continuous function with∫
G ηdµG = 1, with µG the Haar measure on G. Then κ indeed takes values

in the G-module Cc(G;A) of continuous functions since η is continuous and
the Haar measure µG is left-invariant.
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Now the usual calculation gives:

dκ(g1, . . . , gp)(g)

= (g1 · κ(g2, . . . , gp))(g) +

p−1∑
i=1

(−1)iκ(g1, . . . , gigi+1, . . . , gp)(g)

+(−1)pκ(g1, . . . , gp−1)(g)

= g1 · κ(g2, . . . , gp)(g
−1
1 g) +

p−1∑
i=1

(−1)iκ(g1, . . . , gigi+1, . . . , gp)(g)

+(−1)pκ(g1, . . . , gp−1)(g)

= (−1)pg1 ·
∫
G
ψ(g2, . . . , gp, g

−1
p · · · g−1

2 (g−1
1 gh))η(h)dµG(h)

+

p−1∑
i=1

(−1)p+i
∫
G
ψ(g1, . . . , gigi+1, . . . , gp, g

−1
p · · · g−1

1 gh)η(h)dµG(h)

+(−1)2p

∫
G
ψ(g1, . . . , gp−1, g

−1
p−1 · · · g−1

1 gh)η(h)dµG(h)

=

∫
G

[
(−1)pdψ(g1, . . . , gp, g

−1
p · · · g−1

1 gh) + ψ(g1, . . . , gp)
]
η(h)dµG(h)

=

∫
G
ψ(g1, . . . , gp)η(h)dµG(h)

= ψ(g1, . . . , gp)

Remark 2.5.3. The integral in equation 2.8 in the above proof is the Bochner
integral. Because ψ is locally totally bounded and η is compactly supported
it takes its values in a compact set. It follows that the integral is absolutely
summable, see e.g. [Tho75, Theorem 3], and therefore that the integral ex-
ists.

Remark 2.5.4. If G is compact then one can integrate over the whole group
so in the proof above we do not need the function η. Hence κ : Gp−1 → A
and ψ = dκ is a coboundary. Therefore Hp

m(G;A) = 0.

In the inhomogeneous resolution, the cocycles in degree 1 are crossed ho-
momorphisms. That is, measurable maps f : G → A that satisfy f(gg′) =
g · f(g′) + f(g) for almost every pair (g, g′) ∈ G×G. Such a crossed homo-
morphism is equal to a continuous crossed homomorphism a.e.:

Proposition 2.5.5. Let f ∈ C(G;A) be a cocycle.Then f has a continuous
representative.

Proof. For the proof we refer to [Moo76a, Theorem 3]. Here Moore proves
that a cocycle f ∈ C(G;A) is equal a.e. to a (unique) crossed homomorphism
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f̃ : G → A which is defined everywhere and such a crossed homomorphism
turns out to be continuous. For a discussion of the proof of the continuity
of crossed homomorphisms also see [Min14].

We will use this fact for the proof of Proposition 4.2.2 in Section 4.4.



Chapter 3

Spectral sequence associated
to a double complex

In this chapter we will discuss the construction of a spectral sequence of
a double complex. This is a special case of the spectral sequence of a filtered
complex.

A graded filtered chain complex is a chain complex (K,D) of modules with
grading K =

⊕
k∈ZC

k, differential D : Ck → Ck+1 and a filtration

K = K0 ⊃ K1 ⊃ K2 ⊃ . . .

consisting of subcomplexes, i.e. submodules Ki such that DKi ⊂ Ki. The
filtration determines an associated graded complex

GK =
∞⊕
p=0

Kp/Kp+1.

Usually the filtration is extended to negative indices by defining Kp = K
for p < 0.

Let

K =
⊕
p,q∈Z

Kp,q

be a double complex with horizontal differential operator δ and vertical
differential operator d that commute with each other, i.e. the following
diagram commutes

Kp,q+1 Kp+1,q+1

Kp,q Kp+1,q

δ

δ

d d

This is a graded chain complex with grading

Km =
⊕

p+q=m

Kp,q,

33
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and differential D : Km → Km+1 given by D = δ+ (−1)pd. Note that from
d2 = δ2 = 0 and dδ = δd it immediately follows that D2 = 0.

p

q

Kp+q+1Kp+q

δ

d

Kp,q

We define the vertical filtration on K by:

IKp =
⊕
i≥p

⊕
q≥0

Ki,q.

So K = IK0 ⊃ IK1 ⊃ IK2 ⊃ . . . :

p

IK0

q

IK1
IK2

IK3

p = 0 p = 1 p = 2 p = 3

To distinguish the filtration degree from the grading degree, the latter will
be called the dimension. The filtration {IKp} on K induces a filtration in
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each dimension, i.e. IK
m
p = IKp ∩Km gives a filtration on Km:

IKp

p

IK
m
p

By symmetry, we can just as well define the horizontal filtration

IIKq =
⊕
i≥q

⊕
p≥0

Kp,i,

and we obtain K = IIK0 ⊃ IIK1 ⊃ IIK2 ⊃ . . . :

p

q

q = 0

q = 1

q = 2

q = 3

IIK0

IIK1

IIK2

IIK3

which also gives a filtration IIK
m
p = IIKp ∩Km on Km.

Definition 3.0.1. A spectral sequence (of cohomological type) consists of

1. A module Ep,qr defined for each p, q ∈ Z and each integer r ≥ r0,
where r0 is some nonnegative integer.
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2. Differentials dr : Ep,qr → Ep+r,q−r+1
r such that d2

r = 0 and Er+1 is the
cohomology of (Er, dr), i.e.

Ep,qr+1 = Hp,q(E∗,∗r , dr) =
ker(dr : Ep,qr → Ep+r,q−r+1

r )

im(dr : Ep−r,q+r−1
r → Ep,qr )

.

The rth stage of the spectral sequence is its Er-term or its rth page.

A spectral sequence converges if for every p, q there is a r = r(p, q) such
that for r ≥ r(p, q) the differential dr is zero on Ep,qr and Ep+r,q−r+1

r . Then
Ep,qr = Ep,qr+k for all k > 0. We denote this common module by Ep,q∞ and
write

Ep,qr =⇒ Ep,q∞ .

The simplest situation in which we can determine convergence is when ds = 0
for all s ≥ r, where r does not depend on p and q. In this case we say that
the spectral sequence degenerates at the Er term.

A spectral sequence {Er, dr} converges to a graded module H∗ if H∗ has
a filtration H∗ = F0 ⊃ F1 ⊃ F2 ⊃ . . . such that E∞ is isomorphic to⊕
Fp/Fp+1 as graded modules, i.e.

Em∞ =
⊕

p+q=m

Ep,q∞ ∼= Fmp /F
m
p+1,

where Fmp = Hm ∩ Fp.

In this chapter we will prove

Theorem 3.0.2. Let (K, d, δ) be a double complex. Then there exist two
spectral sequences {IEr, Idr} and {IIEr, IIdr} whose first two pages are given
by

IE
p,q
1 = Hq

d(Kp,∗),
IE

p,q
2 = Hp

δH
q
d(K∗,∗),

IIE
p,q
1 = Hp

δ (K∗,q),
IIE

p,q
2 = Hq

dH
p
δ (K∗,∗),

and that both converge to H∗D(K).

As suggested by the notation these two spectral sequences correspond to
the vertical and the horizontal filtration. Following [BottTu82], §14 we will
construct them through exact couples. This construction is due to Massey.
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3.1 Exact couples

Definition 3.1.1. An exact couple C = {A,B, i, j, k} consists of two mod-
ules A,B and homomorphisms i : A → A, j : A → B and k : B → A such
that the diagram

A
i // A

j��
B

k

__

is exact.

Let C = {A,B, i, j, k} be such an exact couple and define d : B → B by
d = j ◦ k. Then d2 = j ◦ (k ◦ j) ◦ k = 0 since im(j) = ker(k). Thus the

cohomology group Hd(B) = ker(d)
im(d) is well defined. Furthermore, from the

exact couple C a new exact couple can be formed, the derived couple C′:
Definition 3.1.2. Let C = {A,B, i, j, k} be an exact couple. Then the
derived couple is C′ = {A′, B′, i′, j′, k′}:

A′ i′ // A′

j′~~
B′,

k′

``

where A′ = i(A), B′ = Hd(B) and the homomorphisms i′, j′ and k′ are
defined as follows:

1. i′ is induced from i, i.e. for a′ = i(a) ∈ A′:
i′(a′) = i(i(a)).

2. For a′ = i(a) ∈ A′:
j′(a′) = [j(a)] ∈ Hd(B) = B′.

3. k′ is induced from k, i.e. for [b] ∈ Hd(B):

k′([b]) = k(b).

It is straightforward to check that this gives again an exact couple. For
completeness, we will prove this in detail by the following two lemma’s.

Lemma 3.1.3. The derived couple C′ is well defined.

Proof. A′, B′ and i′ are clearly well defined. Furthermore, note that k(b) ∈
A′ = i(A) since d(b) = j(k(b)) = 0 implies that k(b) ∈ ker(j) = im(i).
Furthermore, if [b1] = [b2] ∈ B′ then b1 = b2 + d(b3) for some b3 ∈ B. It
follows that k(b1) = k(b2) + k ◦ d(b3) = k(b2) + k ◦ j ◦ k(b3) = k(b2) and thus
k′ does not depend on the choice of b. Hence k′ is also well defined. The
only thing left to check is that j′ is well defined. This follows from:
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1. j(a) is a cycle: d(j(a)) = j ◦ (k ◦ j(a)) = 0.

2. j′ does not depend on the choice of a ∈ A:
Suppose that a′ = i(a1) = i(a2) with a1, a2 ∈ A. Then a1 − a2 ∈
ker(i) = im(k). So there is a b ∈ B such that a1 − a2 = k(b) and it
follows that

j(a1)− j(a2) = j ◦ k(b) = d(b).

So indeed [j(a1)] = [j(a2)].

It follows that the derived couple C′ = {A′, B′, i′, j′, k′} is indeed well defined.

Lemma 3.1.4. The derived couple C′ is again an exact couple.

Proof. 1. im(j′) = ker(k′):

(a) im(j′) ⊂ ker(k′): Let a′ = i(a) ∈ A′ with a ∈ A. Then

k′ ◦ j′(a′) = k′ ◦ j′(i(a)) = k′([j(a)]) = k ◦ j(a) = 0.

(b) ker(k′) ⊂ im(j′): Suppose [b] ∈ ker(k′), i.e. k′([b]) = k(b) = 0.
Then from ker(k) = im(j) it follows that b = j(a) for some a ∈ A
and thus

[b] = [j(a)] = j′(i(a)) ∈ im(j′).

2. im(k′) = ker(i′):

(a) im(k′) ⊂ ker(i′): Let [b] ∈ H(B). Then

i′(k′([b])) = i′(k(b)) = i(k(b)) = 0.

(b) ker(i′) ⊂ im(k′): Suppose that a′ = i(a) ∈ ker(i′) with a ∈ A, i.e.
i′(i(a)) = i(i(a)) = 0. Then i(a) ∈ ker(i) = im(k). Hence

a′ = i(a) = k(b) = k′([b])

for some b ∈ ker(d).

3. im(i′) = ker(j′):

(a) im(i′) ⊂ ker(j′): Let a′ = i(a) ∈ A′ with a ∈ A. Then

j′(i′(a′)) = j′(i(i(a))) = [j(i(a))] = 0.

(b) ker(j′) ⊂ im(i′): Let a′ = i(a) ∈ ker(j′). Then

j′(i(a)) = [j(a)] = 0,

and therefore it follows that there is a b ∈ B such that j(a) = d(b).
Hence a ∈ j−1(d(b)) = j−1(j ◦ k(b)) and thus a = k(b) + a1 with
a1 ∈ ker(j) = im(i). It follows that

a′ = i(a) = i(k(b)) + i(a1) = i(a1) ∈ i(im(i)) = im(i′).

These three equalities imply that C′ is again an exact couple.
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3.2 The spectral sequence of a filtered complex

Let (K,D) be a graded filtered chain complex such that for each di-
mension n the filtration {Kn

p } has finite length. To any such complex we

will associate a sequence of exact couples C(r) = {Ar, Er, ir, jr, kr}, with
C(r) = (C(r−1))′ the derived couple of C(r−1), such that {Er, dr = jr ◦ kr}
is a spectral sequence converging to H∗(K,D). In particular, for a double
complex with the vertical respectively horizontal filtration this construction
will give the spectral sequences of Theorem 3.0.2.

Let
A =

⊕
p∈Z

Kp.

This is again a differential complex with operator D, since D : Km
p → Km+1

p .
Define i : A→ A to be given by the inclusions i : Kp+1 ↪→ Kp which restrict
to

i : Am ∩Kp+1 → Am ∩Kp,

and let B be the quotient

0 // A
i // A

j // B // 0,

i.e. B = ⊕Kp/Kp+1. Then B is also a differential complex with differential
operator induced by D. The derived long exact sequence

. . . // Hk(A)
i1 // Hk(A)

j1 // Hk(B)
k1 // Hk+1(A) // . . . (3.1)

gives an exact couple

H(A)
i1 // H(A)

j1zz
H(B).

k1

dd

which we will write as

C(1) = A1
i // A1

j1}}
E1.

k1

aa

We obtain a sequence of exact couples

C(r) = Ar
i // Ar

jr}}
Er,

kr

aa
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where C(r) = (C(r−1))′.

Remark 3.2.1. We define a bigrading by setting Ap,q = Ap+q ∩ Kp and
Bp,q = Bp+q ∩Kp/Kp+1. Note that for a bicomplex

⊕
Kp,q with the vertical

filtration IKp =
⊕

i≥p
⊕

j≥0K
i,j this gives

Bp,q = IK
p+q
p /IK

p+q
p+1 =

⊕
i≥pK

i,p+q−i⊕
i≥p+1K

i,p+q−i
∼= Kp,q,

while with the horizontal filtration IIKp =
⊕

i≥p
⊕

j≥0K
j,i we obtain

Bp,q = IIK
p+q
p /IIK

p+q
p+1 =

⊕
i≥p
⊕

j≥0K
p+q−i,i⊕

i≥p+1

⊕
j≥0K

p+q−i,i
∼= Kq,p.

Furthermore, i : Ak ∩Kp+1 → Ak ∩Kp has bidegree (−1, 1), j : Ak ∩Kp →
Bk∩Kp/Kp+1 has bidegree (0, 0) and k : Bk∩Kp/Kp+1 → Ak+1∩Kp+1 has
bidegree (1, 0). From the definitions it follows that jr has bidegree equal to
bidegree(j)−(r−1)×bidegree(i) = (r−1,−r+1), while the bidegree of kr stays
the same as for k. Thus dr = jr ◦ kr has bidegree (r,−r + 1). Furthermore,
by definition Er = H(Er−1, dr−1) and hence {Er, dr} is a spectral sequence.

Proposition 3.2.2. Let K =
⊕

n∈ZK
n be a graded filtered complex such

that in each dimension n the filtration {Kn
p } has finite length. Then the

spectral sequence {Er, dr} defined above converges to H∗D(K).

Proof. Recall that A1 = HD(A) = HD(
⊕
Kp). Since D preserves the fil-

tration, i.e. D : Km
p → Km+1

p , in fact A1 =
⊕
H(Kp). Let l(m) be the

length of the filtration {Km
p }. Then Am1 is the direct sum of the terms in

the following (non-exact) sequence

. . . Hm(K)
∼=oo Hm(K1)

ioo Hm(K2)
ioo . . .

ioo Hm(Kl(m)).
ioo

Thus

Amr = ir−1(Am1 ) =

l(m)⊕
p=−∞

ir(Hm(Kp)),

In particular, Am2 = i(Am1 ) =
⊕
i(Hm(Kp)) is the direct sum of the terms

in the sequence

. . . Hm(K)
∼=oo i(Hm(K1))

ioo i(Hm(K2))
ioo . . .

ioo i(Hm(Kl(m))).
ioo

Note that since i(Hm(K1)) ⊂ Hm(K) the map i : i(Hm(K1)) → Hm(K)
is an inclusion. Continuing like this, if r > l(m) + 1 then ir(Hm(Kp)) is
included in Hm(K) for all p and Amr is the direct sum of

. . . Hm(K) ⊃ i(Hm(K1)) ⊃ i2(Hm(K2)) · · · ⊃ il(m)Hm(Kl(m)).
∼=oo
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Denote by Fmp this image by ip of Hm(Kp) in Hm(K). This gives a filtration
of Hm(K):

Hm(K) = Fm0 ⊃ Fm1 ⊃ Fm2 ⊃ · · · ⊃ Fml(m),

(called the induced filtration) and we will see that the spectral sequence
converges to the graded complex associated to this filtration. Note that by
the above Amr becomes stationary with limit term

Am∞ =

l(m)⊕
p=−∞

Fmp .

Likewise, for r > l(m+ 1) + 1 the map i : Am+1
r → Am+1

r is an inclusion and
it follows that kr : Emr → Am+1

r is the zero map. Note that i : Am∞ → Am∞
sends Fmp+1 ↪→ Fmp . Hence Emr also becomes stationary and

Em∞ =
⊕
p∈Z

Fmp /F
m
p+1.

This is the associated graded complex of H∗(K) so the spectral sequence
{Er, dr} indeed converges to H∗(K).

Example 3.2.3. If Ep,qr = 0 for p < 0 and q < 0 then Ep,qr is a so-called first
quadrant spectral sequence. Then for r large enough dr : Ep,qr → Ep+r,q−r+1

r

has codomain 0 and dr : Ep−r,q+r−1
r → Ep,qr has domain 0. Thus in this case

the spectral sequence always converges.

3.3 Proof of convergence

In this section we give the proof of Theorem 3.0.2. Since

IK
m
p = Km ∩ IKp =

⊕
i≥p

Ki,m−i

the vertical filtration {IKm
p } has length m, i.e. IK

m
p = 0 for p > m:

· · · = IK
m
−1 = IK

m
0 ⊃ IK

m
1 ⊃ IK

m
2 ⊃ · · · ⊃ IK

m
m−1 ⊃ IK

m
m ⊃ 0,

where Km
0 = Km. Clearly, the horizontal filtration {IIKm

q } has length m
as well. It thus follows from Proposition 3.2.2 that these two filtrations
correspond to spectral sequences IEr and IIEr that converge to H∗D(K). It
remains to show that their first two pages are as claimed. We prove this for
IEr. By symmetry, it then also follows for IIEr.
Recall that

Bm =
⊕
p∈Z

IK
m
p /

IK
m
p+1
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and δ : Kp,q → Kp+1,q. Thus δ : IK
m
p → IK

m+1
p+1 vanishes on Bm and

therefore D is equal to (−1)pd on B. It follows that

IE1 = HD(B) = Hd(K).

Furthermore, IE2 = H(IE1,
Id1) with Id1 = j1 ◦ k1, where the map k1 :

Hk(B)→ Hk+1(A) is the coboundary map in the long exact sequence (3.1).

0 Ak+1 ∩ IKp+1 Ak+1 ∩ IKp Bk+1 ∩ IKp/
IKp+1 0

0 Ak ∩ IKp+1 Ak ∩ IKp Bk ∩ IKp/
IKp+1 0

i j

i

D

j

D D

Let b ∈ Ak ∩ IKp
represent a cocycle [b] ∈ Bk ∩ IKp/

IKp+1. Then, since b is
a cocycle, db = 0. Hence Db = δb and as the map i is just an inclusion map
it follows that the inverse image of δb under i is δb. Hence

k1([b]) = [δb],

and
d1([b]) = j1 ◦ k1([b]) = j1([δb]) = [δb]

It follows that
IE2 = H(IE1,

Id1) = HδHd(K),

and thus the first two pages are indeed as in Theorem 3.0.2.

Remark 3.3.1. Even though both the spectral sequences IEr and IIEr con-
verge to H∗D(K) one should note that they do not converge to the same
associated graded complex.



Chapter 4

The boundary model for
H∗c (Isom+(Hn);R)

4.1 Spectral sequence for Isom+(Hn)

Let H be a locally compact second countable group. If H acts on a
measure space X we define H∗m(H y X;R) to be the cohomology of the
cocomplex (C∗(X;R)H , δ), with δ the standard homogeneous coboundary
operator. Fix a basepoint x ∈ X. Given a cocycle α ∈ Cp(X;R)H we
obtain a cocycle αx ∈ C(Hp+1;R)H by

αx(h0, . . . , hp) := α(h0 · x, . . . , hp · x).

The class of αx does not depend on the chosen basepoint x. Indeed, given
another y ∈ X define

β(h0, . . . , hp−1) :=

p−1∑
i=0

(−1)iα(h0 · x, . . . , hi · x, hi · y, . . . , hp−1 · y).

Then a straightforward calculation gives

(αy − αx − δβ)(h0, . . . , hp) =

p∑
j=0

(−1)jδα(h0 · x, . . . , hi · x, hi · y, . . . , hp · y)

= 0.

Thus the cochain map α 7→ αx defines a map

ιX : H∗m(H y X;R)→ H∗m(H;R).

We say that the measurable cohomology of H (with trivial R-coefficients) is
measurably realized on X if this map is an isomorphism. Since measurable
and continuous cohomology coincide for trivial R-coefficients we will then
also say that the continuous cohomology of H is measurably realized on
X. Let Isom+(Hn) be the group of orientation preserving isometries of real
hyperbolic n-space Hn. In this chapter we prove that

Theorem 4.1.1. Let n ≥ 2. The continuous cohomology of Isom+(Hn) is
measurably realized on the boundary ∂Hn of real hyperbolic space (with the
natural action). Furthermore, all cocycles have essentially bounded repre-
sentatives in this boundary resolution.

43
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Let G := Isom+(Hn) and let

Cp := C((∂Hn)p+1;R)

be the Polish Abelian G-module endowed with the standard diagonal G-
action. To prove Theorem 4.1.1 we will apply the spectral sequence con-
structed in the previous chapter to the double complex

Kp,q := (C(Gq+1;Cp)G, d, δ),

where by definition C(Gq+1;Cp) = 0 if p < 0 or q < 0. The vertical
differential operator

d : C(Gq+1;Cp)G → C(Gq+2;Cp)G

is given by the standard homogeneous coboundary operator, i.e. for f ∈
C(Gq+1;Cp)G and g0, . . . , gq+1 ∈ G

df(g0, . . . , gq+1) =

q+1∑
i=0

(−1)if(g0, . . . , ĝi, . . . , gq+1),

and the horizontal differential operator

δ : C(Gq+1;Cp)G → C(Gq+1;Cp+1)G

is induced by the standard homogeneous coboundary operator

δ : C((∂Hn)p+1;R)→ C((∂Hn)p+2;R),

given by

δα(x0, . . . , xp+1) =

p+1∑
j=0

(−1)jα(x0, . . . , x̂j , . . . , xp+1),

for α ∈ C((∂Hn)p+1;R) and x0, . . . , xp+1 ∈ Hn. These two differential oper-
ators commute so as before we have a commutative diagram

C(Gq+2, Cp)G C(Gq+2, Cp+1)G

C(Gq+1, Cp)G C(Gq+1, Cp+1)G.

δ

δ

d d

In [Blo00, Section 7.4] Bloch considers the same spectral sequence but only
for the case n = 3. For p > 2 we have IE

p,q
1 = H∗m(SO(n − 2);Cp−3), with

SO(n − 2) the stabilizer of 3 points in the boundary of hyperbolic space.
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In the case of n = 3 this group is trivial and thus IE
p,q
1 automatically van-

ishes for q > 0. Because of this, in Bloch’s proof the fact that the spectral
sequence degenerates at the second page already follows from looking at
the first page. One would expect that H∗m(K;A) vanishes if K is compact
no matter what the coefficients A are. However, if the coefficients A are
not locally convex there is no way to integrate over them so it is not pos-
sible to construct a coboundary in the usual way. Since C((∂Hn)p−2;R) is
a (non-locally convex) F-space (see Remark 2.2.14) it is not clear (how to
prove) that H∗m(SO(n − 2);Cp−3) vanishes for n > 3. Here we will instead
prove that if a cocycle [α] ∈ IE

p,q
1 survives to the second page of the spectral

sequence, i.e. if δα = dλ, then it is cohomologous in IE
p,q
2 to a cobound-

ary in IE
p,q
1 . As in the proof in [AusMoo13] of the isomorphism between

measurable and continuous cohomology in the case of Fréchet coefficients (
see [AusMoo13, Theorem A] or Theorem 2.5 in this text), we would like to
show by dimension-shifting induction that each cocycle has a representative
that is locally totally bounded. In fact, by a double induction argument, we
will show that this is the case for a cocycle in IE

p,q
2 . The first step of this

dimension-shifting induction argument is Proposition 4.2.4 that implies in
particular that all cocycles in (Cp)G have essentially bounded representa-
tives, which is the second part of Theorem 4.1.1.

4.2 Proof of Theorem 4.1.1

By Theorem 3.0.2 we have IIE1 = H(K, δ). If α ∈ C((∂Hn)p+1;R)G is a
cocycle then

δα(y, x0, . . . , xp) = 0,

for almost all (y, x0, . . . , xp). By the Fubini theorem, there exists a y ∈ ∂Hn

such that δα(y, x0, . . . , xp) = 0 for almost all (x0, . . . , xp). Now define

β(x0, . . . , xp−1) := α(y, x0, . . . , xp−1).

Then
α(x0, . . . , xp) =

∑
j

(−1)jα(y, x0, . . . , x̂j , . . . , xp),

for almost all (x0, . . . , xp). Thus (C∗, δ) is an acyclic cocomplex and therefore

IIE
p,q
1 =

{
C(Gq+1;R)G, if p = 0;

0, otherwise,

which implies that the second page of IIE
p,q
r is

IIE
p,q
2 =

{
Hq
m(G;R), if p = 0;

0, otherwise.
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Hence the spectral sequence degenerates at the second page and we obtain
that IIE

p,q
r converges to H∗m(G;R) which is isomorphic to the continuous

cohomology H∗c (G;R) of G. On the other hand, we establish

Proposition 4.2.1. The spectral sequence IE
p,q
r converges to the cohomology

group Hp
m(Gy ∂Hn;R)

Proof. By Theorem 3.0.2, the first page of IE
p,q
r is

IE
p,q
1 = Hq(C(G∗, Cp), d)

= Hq
m(G;Cp).

In the next section we will calculate that this first page is as in Figure 4.1
below.

q . . . . . . . . . . . . . . .

0 // 0 // 0 // H2
m(G,C3) // H2

m(G,C4) // . . .

R d1 // R // 0 // H1
m(G,C3) // H1

m(G,C4) // · · ·

R // R // R // (C3)G // (C4)G // . . . p

Figure 4.1 – First page of IE
p,q
r

We finish the proof of Proposition 4.2.1 using the two following propositions
which we will prove in the next two sections.

Proposition 4.2.2. The map d1 : IE
0,1
1 → IE

1,1
1 is an isomorphism.

Proposition 4.2.3. IE
p,q
2 = 0 for p > 2 and q > 0.

It then follows that the spectral sequence degenerates at the second page,
that is

IE
p,q
2 =

{
Hp
m(Gy ∂Hn;R), if q = 0;

0, otherwise,

which proves Proposition 4.2.1.
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Hence Hp
c (G;R) is isomorphic to Hp

m(Gy ∂Hn;R) and thus measurably
realized on the boundary. This proves the first part of Theorem 4.1.1. For
the second part, note that a locally totally bounded cocycle (∂Hn)p+1 → R is
essentially bounded. Indeed, since (∂Hn)p+1 is itself compact, a cocycle that
sends compact subsets of (∂Hn)p+1 to precompact subsets of R is bounded
a.e. Thus Proposition 4.2.4 below finishes the proof of Theorem 4.1.1.

Proposition 4.2.4. Let A be a Polish Abelian G-module. Any a.e. G-
invariant cocycle α : (∂Hn)p+1 → A has a locally totally bounded represen-
tative. That is, there exists a G-invariant cochain σ : (∂Hn)p → A such that
κ = α+ δσ is a locally totally bounded cocycle.

Proof. This follows by a dimension-shifting argument. For p = 0 cocycles
correspond to constants in A and are thus bounded. Therefore the propo-
sition holds in degree p = 0 for all Polish Abelian G-modules A. Suppose
now that p > 0 and define Q : C((∂Hn)p+1;A)G → C((∂Hn)p;C(G;A))G by

Qα(x0, . . . , xp−1)(g) = (−1)pα(x0, . . . , xp−1, gG∞).

Then

δ(Qα)(x0, . . . , xp)(g) =

p∑
i=0

(−1)iQα(x0, . . . , x̂i, . . . , xp)(g)

=

p∑
i=0

(−1)i(−1)pα(x0, . . . , x̂i, . . . , xp, gG∞)

= (−1)pδα(x0, . . . , xp, gG∞)

−(−1)p+1(−1)pα(x0, . . . , xp)

= α(x0, . . . , xp),

and thus δ(Qα)(x0, . . . , xp) is independent of g. Let ι(A) be the image
of the natural embedding of A into C(G;A) as the closed submodule of
constant maps which we identify with A. The image Qα of Qα in the module
C((∂Hn)p;C(G;A)/ι(A))G defines a cocycle. By the induction hypothesis
it has a representative that is locally totally bounded, i.e.

Qα = β + δγ,

with β : (∂Hn)p → C(G;A)/ι(A) a G-invariant locally totally bounded co-
cycle and γ : (∂Hn)p−1 → C(G;A)/ι(A) a G-invariant cochain. By Lemma
2.3.2 there exist G-invariant measurable lifts β, γ of β, γ such that β is still
locally totally bounded (but no longer a cocycle). Hence

Qα = β + δγ + σ,

with σ : (∂Hn)p → A a G-invariant measurable cochain. We have δQα = α
and thus

α = δβ + δσ.



48 Chapter 4. The boundary model for H∗c (Isom+(Hn);R)

It follows that δβ is a cocycle that takes its values in ι(A) ⊂ C(G;A) and
therefore can be seen as a cocycle δβ : (∂Hn)p+1 → A. Hence κ := δβ is a
representative of α. Furthermore, for any compact L ⊂ ∂Hn:

κ(Lp+1) ⊂ κ(Lp)− κ(Lp) + · · ·+ (−1)pκ(Lp),

and thus κ(Lp+1) is precompact as a subset of A ⊂ C(G;A) and κ is a
locally totally bounded representative of α.

4.3 Computation of IE
p,q
1

Let G∞ = (R>0 × SO(n − 1)) n Rn−1, G∞,0 = R>0 × SO(n − 1) and
G∞,0,1 = SO(n − 2) be the stabilizers of respectively {∞}, {∞, 0} and
{∞, 0, 1}, where these are viewed as points in the upper half space model of
Hn. Then

Lemma 4.3.1. The first page of the spectral sequence IE
p,q

is as follows:

IE
0,q
1
∼= Hq

m(G∞;R),

IE
1,q
1
∼= Hq

m(G∞,0;R),

IE
2,q
1
∼= Hq

m(G∞,0,1;R), and
IE

p,q
1
∼= Hq

m(G∞,0,1, Cp−3), for p > 2.

Proof. We will prove below that

C0 = IndGG∞(R), (4.1)

C1 = IndGG∞,0
(R), (4.2)

C2 = IndGG∞,0,1
(R), and (4.3)

Cp = IndGG∞,0,1
(Cp−3) for p > 2. (4.4)

Combining this with the Eckmann-Shapiro Lemma the Lemma immediately
follows. For the proof of 4.1 note that there is an isomorphism G/G∞ ∼= ∂Hn

given by

gG∞ 7→ g · ∞.
Indeed this map is

1. well-defined: If g1, g2 ∈ G are such that g1G∞ = g2G∞, then g1 = g2g
with g ∈ G∞. Thus g1 · ∞ = g2g · ∞ = g2 · ∞;

2. injective: If g1, g2 ∈ G are such that g1 ·∞ = g2 ·∞ then g−1
1 g2 ·∞ =

∞. Hence g−1
1 g2 ∈ G∞ and thus g1G∞ = g1(g−1

1 g2)G∞ = g2G∞;

3. surjective: Since G acts transitively on ∂Hn the map is clearly sur-
jective.
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Hence C0 = C(∂Hn;R) ∼= C(G/G∞;R) ∼= IndGG∞(R), where the last iso-
morphism follows from Proposition 2.4.4. Similarly, G/G∞,0 embeds in
∂Hn × ∂Hn via the map defined by

gG∞,0 ↪→ (g · 0, g · ∞)

whose image is the conull set {(x, y) ∈ ∂Hn × ∂Hn | x 6= y} in ∂Hn ×
∂Hn. This embedding therefore induces an isomorphism C(∂Hn×∂Hn;R) ∼=
C(G/G∞,0;R) and combined with Proposition 2.4.4 this implies 4.2.
Also, since G acts 3-transitively on ∂Hn, G/G∞,0,1 embeds into (∂Hn)3 as a
conull set {(x1, x2, x3) ∈ (∂Hn)3 | xi 6= xj for i6= j}. Hence C((∂Hn)3;R) ∼=
C(G/G∞,0,1;R) ∼= IndGG∞,0,1

(R).
For 4.4, applying Proposition 2.2.12, i.e. the Fubini theorem, gives

Cp = C((∂Hn)p+1;R) ∼= C((∂Hn)3, C((∂Hn)p−2;R))

= C((∂Hn)3, Cp−3) = IndGStab(∞,0,1)(C
p−3).

4.3.1 Computation of IE
0,q
1

We will prove

IE
0,q
1 = Hq

m(G∞;R) =

{
R, if q = 0, 1;

0, otherwise.

Since for R-coefficients measurable and continuous cohomology coincide it
follows from Lemma 4.3.1 that IE

0,q
1
∼= Hq

c (G∞;R). By the van Est isomor-
phism [BorWal00, Chapter IX, Corollary 5.6], for any connected Lie group
G we have that H∗c (G;R) ∼= H∗(Ω∗(G/K)G), where K is the maximal com-
pact subgroup of G and where Ωq(G/K)G denotes the set of G-invariant real
differential q-forms on G/K. Furthermore, Ωq(G/K)G ∼= Altq(T0(G/K))K .
Note that the van Est isomorphism used here is more general than the one
that is stated in Section 1.2 since G is no longer assumed to be a semisimple
Lie group and therefore there are no geodesic simplices.
The maximal compact subgroup of G∞ = (R>0 × SO(n − 1)) n Rn−1 is
SO(n− 1). Thus Hq

c (G∞;R) can be computed using the complex of multi-
linear alternating SO(n−1)-invariant maps (R×Rn−1)q → R, where SO(n−
1) acts on the Rn−1 factor. Let T : R × Rn−1 → R be the projection onto
the first factor and let det : (R×Rn−1)n−1 → R be the determinant defined
on the second factor. We will prove below that up to scalar multiplication,
the only nonzero alternating forms are constant maps in degree 0, the form
T in degree 1, the determinant det in degree n − 1 and T ∧ det in degree
n. A straightforward calculation then gives d(det) = (1− n) · T ∧ det from
which the result follows.
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Lemma 4.3.2.

Altq(R× Rn−1)SO(n−1) ∼=
{
R, if q = 0, 1, n− 1, n

0, otherwise.

Proof. Since the maximal compact subgroup K = SO(n − 1) only acts on
Rn−1 a form in Altq(R×Rn−1)K is a wedge product of a ω1 ∈ Altq1(R) and
a ω2 ∈ Altq2(Rn−1)K such that q1 + q2 = q. By Lemma 4.3.4 it follows that

Altq(R× Rn−1)K ∼=
{
R, if q = 0, 1, n− 1, n

0, otherwise.

Hence, up to scalar multiple, there is one nonzero ω ∈ Altq(R×Rn−1)K

for q = 0, 1, n− 1, n which is given by:

• For q = 0: Alt0(R×Rn−1)K is generated by a constant map {∗} → R.
• For q = 1: A generator of Alt1(R×Rn−1)K is given by T : R×Rn−1 →
R which is defined by

T : (t, v) 7→ t

• For q = n − 1: A nonzero form in Altn(Rn−1)K is given by the
determinant on the second factor, we denote the corresponding form
in Altn−1(R× Rn−1)K again by det, i.e.

det : ((t1, v1), (t2, v2), . . . , (tn−1, vn−1)) 7→ det(v1, v2, . . . , vn−1)

• For q = n: Altn(R× Rn−1)K is generated by T ∧ det which is given
by

T ∧ det ((t1, v1), . . . , (tn, vn))

=
1

(n− 1)!

∑
σ∈Sn

sgn(σ)tσ(1) · det(vσ(2), . . . , vσ(n))

Lemma 4.3.3. Let det ∈ Ωn−1(G∞/K)G∞ be the form defined above. Then
d(det) = (1− n)T ∧ det .

Proof. For ω ∈ Ωn−1(G∞/K) and X0, . . . , Xn−1 ∈ T (G∞/K) there is the
following formula for dω (see for example [Bre93] V.2)

dω(X0, . . . , Xn−1) =
n−1∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xn−1))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn−1),
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We identify G∞/K with R>0 × Rn−1 by the map

(λ, v) 7→ (λ, v)K = {(λk, kv) | k ∈ K}

So in particular K is identified with (1, 0) ∈ R>0×Rn−1. Let X0, . . . , Xn−1 ∈
T (G∞/K) be the constant vector fields defined by (X0)p = (1, 0) and
(Xi)p = (0, ei) for all p ∈ G∞/K and i = 1, . . . , n− 1. Then

d(det)K((X0)K , (X1)K , . . . , (Xn−1)K)

d(det)(1,0) ((1, 0), (0, e1), . . . , (0, en−1))

=
d

dt

∣∣∣∣
t=0

det(1,0)+t(1,0) ((0, e1), . . . , (en−1, 0))

+

n−1∑
i=1

d

dt

∣∣∣∣
t=0

det(1,0)+t(0,ei)

(
(1, 0), (0, e1) . . . , (0̂, ei), . . . , (0, en−1)

)
=

d

dt

∣∣∣∣
t=0

det(1+t,0) ((0, e1), . . . , (0, en−1)) ,

where the last equality follows from det ((1, 0), ·, . . . , ·) = 0
Since det is G∞-invariant, i.e. invariant under taking the pullback by the
action of G∞ on G∞/K, we have

det(1+t,0)

(
(0, e1), . . . , (0, en−1)) = detg·(1+t,0)(g · (0, e1), . . . , g · (0, en−1)

)
,

for all g ∈ G∞. Let g = ( 1
1+tIn−1, 0) ∈ G∞. Then

g · (1 + t, 0) = (
1

1 + t
In−1 · (1 + t), 0) = (1, 0),

and

g · (0, ei) = (0,
1

1 + t
In−1 · ei) = (0,

1

1 + t
ei).

Hence

det(1+t,0) ((0, e1), . . . , (0, en−1)) =detg·(1+t,0) (g · (0, e1), . . . , g · (0, en−1))

=det(1,0)

(
(0,

1

1 + t
e1), . . . , (0,

1

1 + t
en−1)

)
= det

(
1

1 + t
e1, . . . ,

1

1 + t
en−1

)
=

1

(1 + t)n−1
det(e1, . . . , en−1)

=
1

(1 + t)n−1
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It follows that

d

dt

∣∣∣∣
t=0

det0+t(1,0) ((0, e1), . . . , (0, en−1)) =
d

dt

∣∣∣∣
t=0

1

(1 + t)n−1
= 1− n

Since furthermore T ∧det ((1, 0), (0, e1), . . . , (0, en−1)) = 1 the result follows.

Lemma 4.3.4.

Altq(Rn−1)SO(n−1) =

{
R, if q = 0, n− 1;

0, otherwise.

Proof. As before let K = SO(n − 1). The alternating 0-forms are the con-
stant maps and in top dimension q = n−1 there is (up to a constant) also a
unique alternating K-invariant form. This form is given by the determinant
and we will denote it by det∈ Altn−1(Rn−1). Furthermore, for 0 < q < n−1
an alternating form ω ∈ Altq(Rn−1)K has to satisfy

ω(kv1, . . . , kvq) = ω(v1, . . . , vq)

for all k ∈ K and all vi ∈ Rn−1. If ω 6= 0 then there exists a set {w1, . . . , wq}
of orthonormal vectors such that ω(w1, . . . , wq) 6= 0. Since q < n − 1 there
is a k ∈ K such that kw1 = −w1 and kwj = wj for j = 2, . . . , q. Then

ω(w1, . . . , wq) = ω(kw1, . . . , kwq)

= ω(−w1, . . . , wq)

= −ω(w1, . . . , wq),

where the first equality follows from the K-invariance of ω and the last
equality follows from its multi-linearity. So ω(w1, . . . , wq) = 0 therefore
ω = 0. It follows that Altq(Rn−1)SO(n−1) = 0.

4.3.2 Computation of IE
1,q
1 and IE

2,q
1 .

The maximal compact subgroup of R>0 × SO(n − 1) is SO(n − 1) and
thus

IE
1,q
1
∼= Hq(R>0 × SO(n− 1);R)

∼= Hq
(

Ω(R>0)SO(n−1)
)
∼=
{
R, if q = 0, 1;

0, otherwise.

Furthermore, since SO(n− 2) is compact

E2,q
1
∼= Hq(SO(n− 2);R)

∼=
{
R, if q=0;

0, otherwise.
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4.4 d1 :
IE1

0,1 → IE1
1,1

is an isomorphism

Recall that G∞ = (R>0×SO(n−1))nRn−1 and G∞,0 = R>0×SO(n−1).
Let

j∗ : H1
m(G;C(G/G∞;R))→ H1

m(G;C(G/G∞,0;R)) (4.5)

be the map induced by the natural surjection G/G0,∞ � G/G∞. By
abuse of notation we will denote the map from H1

m(G;C(G/G∞;R)) to
H1
m(G;C(G/G∞,0;R)) that is induced by the differential d1 : H1

m(G;C0)→
H1
m(G;C1) also by d1. We will prove

Proposition 4.4.1. The map

d1 : H1
m(G;C(G/G∞;R))→ H1

m(G;C(G/G∞,0;R))

is equal to 2j∗.

This proves Proposition 4.2.2 since it implies in particular that d1 is an
isomorphism. Indeed, in degree 1

H1
m(G∞;R) ∼= Hom(G∞;R) ∼= R

and a generator is given by the homomorphism f1 : G∞ → R defined by

f1(kA+ v) = ln(k),

where kA+ v ∈ G∞ = (R>0 × SO(n− 1)) nRn−1. Furthermore,

H1
m(G∞,0;R) ∼= Hom(G∞,0;R) ∼= R,

and a generator is given by the homomorphism f2 : G∞,0 → R defined by

f2(kA) = ln(k), (4.6)

for kA ∈ G∞,0 = R>0 × SO(n − 1). Under the Eckmann-Shapiro Lemma
the map j∗ from equation 4.5 corresponds to the map i∗ : H1

m(G∞;R) →
H1
m(G∞,0;R) induced by the natural inclusion i : G∞,0 ↪→ G∞. This is an

isomorphism as it sends f1 to f2. Let J ∈ Isom+(Hn) be a rotation by π
centered on a point on the geodesic between 0 and ∞ so that J(0) = ∞,
J(∞) = 0 and J−1 = J . For an explicit formula of such a rotation see
below. Let

J∗ : H1
m(G;C(G/G∞,0;R))→ H1

m(G;C(G/G∞,0;R)) (4.7)

be the isomorphism defined on cochains by

J∗(α)(g0, g1)(gG∞,0) = α(g0, g1)(gJG∞,0),
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for α ∈ C(G2;C(G/G∞,0;R))G and g0, g1, g ∈ G. Let

ψ∞ : C(G2;C(G/G∞;R))G → C(G2;C(∂Hn;R))G

be the isomorphism defined by

ψ∞(β)(g0, g1)(x) = β(g0, g1)(gG∞),

for β ∈ C(G2;C(G/G∞;R))G, g0, g1 ∈ G and x ∈ ∂Hn and with g ∈ G such
that g · ∞ = x. Furthermore, let

ψ∞,0 : C(G2;C(∂Hn × ∂Hn;R))G → C(G2;C(G/G∞,0;R))G

be the isomorphism defined by

ψ∞,0(α)(g0, g1)(gG∞,0) = α(g0, g1)(g · 0, g · ∞),

for α ∈ C(G2;C(∂Hn × ∂Hn;R))G and g0, g1, g ∈ G. We have the commu-
tative diagram

C(G2;C(G/G∞;R))G C(G2;C(G/G∞,0;R))G

C(G2;C0)G C(G2;C1)G,

d1

ψ∞

δ

ψ∞,0

and furthermore, with j∗ and J∗ the maps defined in equation 4.5 and equa-
tion 4.7 respectively, we obtain

Lemma 4.4.2. d1 = j∗ − J∗ ◦ j∗.
Proof. By definition the differential operator d1 : H1

m(G;C0)→ H1
m(G;C1)

is induced by δ : C0 → C1, i.e. for [σ] ∈ H1
m(G;C0), g ∈ G and x0, x1 ∈ ∂Hn

d1[σ] = [δ ◦ σ],

where
(δ ◦ σ)(g0, g1)(x0, x1) = σ(g0, g1)(x1)− σ(g0, g1)(x0).

For σ ∈ C(G2;C(G/G∞;R>0)) and g0, g1, g ∈ G we have

ψ∞,0 ◦ δ ◦ ψ∞(σ)(g0, g1)(gG∞,0) = δ ◦ ψ∞(σ)(g0, g1)(g · 0, g · ∞)

= ψ∞(σ)(g0, g1)(g · ∞)

−ψ∞(g0, g1)(g · 0)

= σ(g0, g1)(gG∞)− σ(g0, g1)(g · JG∞)

= j∗(σ)(g0, g1)(gG∞,0)

−J∗ ◦ j∗(σ)(g0, g1)(gG∞,0),

and it thus follows that d1 = j∗ − J∗ ◦ j∗.
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Since continuous cohomology and measurable cohomology coincide for R-
coefficients we can and will from now on work with continuous cochains. For
such cochains an isomorphism ϕ : Cc(G

2
∞,0;R)G∞,0 → Cc(G∞,0;R) between

the homogeneous and inhomogeneous resolution is given by

ϕ(β)(g) = β(e, g), with inverse

ϕ−1(σ)(g0, g1) = σ(g−1
0 g1).

Lemma 4.4.3. J∗ acts as −1 on H1
m(G∞,0;R).

Proof. Let s : G/G∞,0 → G be a Borel section such that s(G∞,0) = e. Let
α ∈ Hom(G∞,0;R) be a cocycle, h1 ∈ G∞,0, and g ∈ G. Let φ and ψ be the
maps defined in Example 2.4.5. Then

ϕ ◦ φ ◦ J∗ ◦ ψ ◦ ϕ−1(α)(h1)

= φ ◦ J∗ ◦ ψ ◦ ϕ−1(α)(e, h1)

= J∗ ◦ ψ ◦ ϕ−1(α)(s(gG∞,0), s(gG∞,0)h1)(gG∞,0)

= ψ ◦ ϕ−1(α)(s(gG∞,0), s(gG∞,0)h1)(gJG∞,0)

= ϕ−1(λ(s(gG∞,0), gJG∞,0), λ(s(gG∞,0)h1, gJG∞,0))

= α(λ(s(gG∞,0), gJG∞,0)−1 · λ(s(gG∞,0)h1, gJG∞,0))

= α(s[s(gG∞,0)−1gJG∞,0]−1 · h1 · s[(s(gG∞,0)h1)−1gJG∞,0])

= α(s(JG∞,0)−1 · h1 · s(JG∞,0))

= α(h−1
2 J−1h1Jh2)

= α(Jh1J),

where h2 = Js(JG∞,0) ∈ G∞,0 and we use that s(hJG∞,0) = s(JG∞,0) for
all h ∈ G∞,0. Thus J∗ acts by conjugation on H1

m(G∞,0;R>0). In the upper
half space model a possible formula for J is

J : (x1, . . . , xn) 7→ 1

|x|2 (x1, . . . , xn−2,−xn−1, xn) =
1

|x|2 r(x),

for x = (x1, . . . , xn) ∈ Hn \ {∞} and where r is the reflection in the hyper-
plane orthogonal to the (n−1)th coordinate axis. Let g ∈ G∞,0, say g = kA
with k > 0 and A ∈ SO(n− 1) and let x ∈ Hn \ {∞}. Then

JgJ(x) = J · k

|x|2A · r(x)

=
1∣∣∣ k

|x|2 · |A · r(x)|
∣∣∣2 ·

k

|x|2 rAr(x)

=
1∣∣∣ k

|x|2 · |x|
∣∣∣2 ·

k

|x|2 rAr(x)

=
1

k
rAr(x),
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Hence for the generator f2 defined above in equation 4.6 we obtain that
f2(JgJ) = −f2(g).

Together Lemma 4.4.2 and Lemma 4.4.3 imply Proposition 4.4.1.

4.5 Vanishing of IE
p,q
2 for p > 2 and q > 0

In this section we give the proof of Proposition 4.2.3. For a Polish
Abelian G-module A let Kp,q(A) = C(Gq+1, C((∂Hn)p+1;A))G.

Proposition 4.5.1. Let [[α]d]δ ∈ HδHd(K
p,q(A)) with A an Abelian G-

module. Then there exists a locally totally bounded representative κ of [[α]d]δ.
That is, there exist σ : Gq+1 × (∂Hn)p → A and λ : Gq × (∂Hn)p+1 → A
such that

κ = α+ δσ + dλ : Gq+1 × (∂Hn)p+1 → A

is locally totally bounded.

Proof. We will prove Proposition 4.5.1 by induction on q while allowing the
module A to vary, thereby proving it for all Abelian G-modules A. Suppose
q = 0. Then dα = 0 implies that the cocycle α : G → C((∂Hn)p+1;R) is a
constant function into C((∂Hn)p+1;A)G. We identify α with this element of
C((∂Hn)p+1;A)G and it thus follows from Proposition 4.2.4 that Proposition
4.5.1 holds in degree q = 0 for all Polish Abelian G-modules A.
Suppose now that q > 0 and that for q′ < q the proposition is true for all
Polish Abelian G-modules A. Let α ∈ C(Gq+1;C((∂Hn)p+1;A))G be such
that dα = 0 and δα = dγ, where γ : Gq × (∂Hn)p+1 → A. Define the
function Qα in C(Gq;C((∂Hn)p+1;C(G;A)))G by

Qα(g0, . . . , gq−1)(x0, . . . , xp)(g) := (−1)q+1α(g0, . . . , gq−1, g)(x0, . . . , xp).

Then

d(Qα)(g0, . . . , gq)(x0, . . . ,xp)(g)

=

q∑
i=0

(−1)iQα(g0, . . . , ĝi, . . . , gq)(x0, . . . , xp)(g)

=

q∑
i=0

(−1)i+q+1α(g0, . . . , ĝi, . . . , gq, g)(x0, . . . , xp)

=(−1)q+1dα(g0, . . . , gq, g)(x0, . . . , xp)

− (−1)2q+1α(g0, . . . , gq)(x0, . . . , xp)

=α(g0, . . . , gq)(x0, . . . , xp),
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and we see that d(Qα) takes its values in ι(A) and therefore the image Qα
of Qα in C(Gq;C((∂Hn)p+1;C(G;A)/ι(A)))G is a cocycle with respect to
the coboundary operator d. Furthermore,

δ(Qα)(g0, . . . , gq−1)(x0, . . . ,xp+1)(g)

=(−1)q+1δα(g0, . . . , gq−1, g)(x0, . . . , xp+1)

=(−1)qdγ(g0, . . . , gq−1, g)(x0, . . . , xp+1)

=(−1)qγ(g0, . . . , gq−1)(x0, . . . , xp+1)

(−1)qdQγ(g0, . . . , gq−1)(x0, . . . , xp+1)(g).

Hence Qα ∈ C(Gq;C((∂Hn)p+1;C(G;A)/ι(A)))G represents a cohomology
class in HδHd(K

p,q−1(C(G;A)/ι(A))) and so by the induction hypothesis

Qα = β̄ + δµ̄+ dν̄,

where β̄ is a locally totally bounded cocycle. Then, by Lemma 2.3.2, there
exist G-invariant measurable lifts β, µ and ν of these maps such that

Qα = β + δµ+ dν + η,

with η : Gq × (∂Hn)p+1 → ι(A) and such that β is still locally totally
bounded. We obtain

α = dβ + dδµ+ dη.

Note that since the left-hand side takes values in ι(A) the right-hand side
does as well. Hence, since dβ and dη both take values in ι(A), dδµ can
be identified with a coboundary in C(Gq+1;C((∂Hn)p+1;A))G. It follows
that κ := dβ is a locally totally bounded representative of the class of α in
HδHd(K

p,q(A)).

Let Kp,q
c (A) be the G-module Cc(G

q+1;C((∂Hn)p+1;A))G where A is
from now on a Fréchet G-module and let Kp,q

c = Kp,q
c (R). Then

Proposition 4.5.2. HδHd(K
p,q
c (A)) ∼= HδHd(K

p,q(A)).

Proof. By Proposition 4.5.1 any cohomology class [[α]d]δ ∈ HδHd(K
p,q(A))

has a locally totally bounded representative κ. Then, as in the proof of
Theorem 2.5, such a cocycle is effaced by the inclusion A ↪→ Cc(G;A) and
the result follows by Buchsbaum’s criterion. More precisely, there exists
an η : Gp × (∂Hn)q+1 → Cc(G;A) s.t. dη = κ where κ is viewed as a
map Gp+1 × (∂Hn)q+1 → Cc(G;A) taking values in ι(A) ⊂ Cc(G;A). For
example, we can define η by

η(g0, . . . , gp−1)(x0, . . . , xq)(g) :=

(−1)p
∫
G
κ(g0, . . . , gp−1, gh)(x0, . . . , xq)ξ(h)dµG(h),
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where g0, . . . , gp−1, g ∈ G, x0, . . . , xq ∈ ∂Hn and ξ : G→ R>0 is a compactly-
supported continuous function with

∫
G ξdµG = 1. Since furthermore

HδHd(K
p,0(A)) = HδHd(K

p,0
c (A)) = Hδ((C((∂Hn)p+1;A))G)

and there exist long exact sequences in the case of Fréchet modules for both,
Buchsbaum’s criterion applies.

Let K = SO(n − 2) and let s : G/K → G be a locally totally bounded
Borel section such that s(K) = e. By the Eckmann-Shapiro Lemma we have
the isomorphismHq

m(G;C(G/K;Cp−3)) ∼= Hq
m(K;Cp−3). From Proposition

4.5.2 it follows that if we restrict to cocycles in HδHd(K
p,q) we can assume

them to be continuous in Gq+1. As discussed in Remark 2.4.5 we then get
an explicit map φ : Cc(G

q+1;C(G/K;Cp−3))G → Cc(K
q+1;Cp−3)K that

induces the isomorphism

HδHd(C(Gq+1;C(G/K;Cp−3))G) ∼= HδHd(C(Kq+1;Cp−3)K).

Proof of Proposition 4.2.3. Let [[α]d]δ ∈ HδHd(K
p,q
c ) = Ep,q2 . We will show

that in this case α is cohomologous in HδHd(K
p,q
c ) to a coboundary in

Hd(K
p,q). By Proposition 4.5.1, α has a locally totally bounded repre-

sentative
β : Gq+1 × (∂Hn)p+1 → R.

Then φ(β) : Kq+1 × (∂Hn)p−2 → R is also a locally totally bounded cocyle
and furthermore we have φ(β) = dη, where η : Kq×(∂Hn)p−2 → R is defined
by

η(k0, . . . , kq−1)(x0, . . . , xp−3) :=

(−1)q
∫
K
φ(β)(k0, . . . , kq−1, k)(x0, . . . , xp−3)dµK(k).

It follows that IE
p,q
2 = 0 for p > 2 and q > 0.



Chapter 5

Injectivity and stability
results

5.1 Injectivity of the comparison map

An immediate consequence of Theorem 4.1.1 is

Corollary 5.1.1. The comparison map from continuous bounded cohomol-
ogy to continuous cohomology for real hyperbolic space Hn is injective in
degree 3, i.e.

c : H3
c,b(Isom+(Hn);R) ↪→ H3

c (Isom+(Hn);R).

Proof. Let G := Isom+(Hn). By Theorem 4.1.1 we have

H3
c (G;R) =

ker(δ : C((∂Hn)4;R)G → C((∂Hn)5;R)G)

im(δ : C((∂Hn)3;R)G → C((∂Hn)4;R)G)
.

Furthermore, the continuous bounded cohomology of G can also be calcu-
lated with maps that are defined on the boundary of hyperbolic space. That
is,

H3
c,b(Isom+(Hn);R) =

ker(δ : L∞((∂Hn)4;R)G → L∞((∂Hn)5;R)G)

im(δ : L∞((∂Hn)3;R)G → L∞((∂Hn)4;R)G)
,

where L∞((∂Hn)p;A) ⊂ C((∂Hn)p;A) consists of essentially bounded mea-
surable function classes. By 3-transitivity of the action of G on the boundary
of hyperbolic space it then follows that there are no coboundaries in degree
3. Hence H3

c (G;R) and H3
c,b(G;R) are equal to the corresponding spaces of

cocycles and it follows that the comparison map is injective.

Injectivity in degree 3 for Isom+(Hn) also follows from a simpler argu-
ment which only uses some basic properties of hyperbolic space and the
injectivity in degree 3 for n = 3. Denote by Rε the Isom(Hn)-module R with
Isom(Hn)-action given by the homomorphism

ε : Isom(Hn)→ Isom(Hn)/Isom+(Hn) ∼= {1,−1}.

Furthermore, let

p : Cc(,b)((Hn)k+1;R)Isom+(Hn) → Cc(,b)((Hn)k+1;R)Isom(Hn)

59
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and

p̄ : Cc(,b)((Hn)k+1;R)Isom+(Hn) → Cc(,b)((Hn)k+1;Rε)Isom(Hn)

be the maps defined for x0, . . . , xk ∈ Hn and β ∈ Cc(,b)((Hn)k+1;R)Isom+(Hn)

by

p(β)(x0, . . . , xk) =
1

2
[β(x0, . . . , xk) + β(τx0, . . . , τxk)],

p̄(β)(x0, . . . , xk) =
1

2
[β(x0, . . . , xk)− β(τx0, . . . , τxk)],

where τ ∈ Isom(Hn) \ Isom+(Hn) is any orientation reversing symmetry.
Then the cochain map (p, p̄) induces an isometric isomorphism

H∗c(,b)(Isom+(Hn);R) ∼= H∗c(,b)(Isom(Hn);R)⊕H∗c(,b)(Isom(Hn);Rε).

Also, by Bloch’s result, H3
c(,b)(Isom+(H3);R) is generated by the volume

cocycle which is equivariant, i.e. in H3
c(,b)(Isom(H3),Rε), and therefore

H3
c(,b)(Isom(H3);R) = 0. On the other hand, for n > 3 we have that

H3
c(,b)(Isom(Hn),Rε) = 0 (see [BucBurIoz13]). Thus it follows that

H3
c(,b)(Isom+(Hn);R) = H3

c(,b)(Isom(Hn);R).

Lemma 5.1.2. Let n > 3. Then H3
c,b(Isom(Hn);R) = 0.

Proof. Let [β] ∈ H3
c,b(Isom(Hn);R), so β : (Hn)4 → R is an Isom(Hn)-

invariant cocycle. Let i : H3 ↪→ Hn be the natural embedding. We will
identify the image i(H3) ⊂ Hn with H3. Now β|H3 ∈ Cc,b(H3;R)Isom(H3) is
a cocycle (an isometry of H3 can be extended to an isometry of Hn.) It
follows by assumption that there is an α ∈ Cc,b((H3)3;R)Isom(H3) such that
δα = β|H3 .
Let x0, x1, x2 ∈ Hn. These points lie in a 2-dimensional hyperplane which
we denote by H(x0, x1, x2). Since Isom(Hn) acts transitively on such hyper-
planes there always exists a g ∈ Isom(Hn) such that g(H(x0, x1, x2)) ⊂ H3.
Define ᾱ : (Hn)3 → R by

ᾱ(x0, x1, x2) = α(gx0, gx1, gx2),

where g ∈ Isom(Hn) such that g(H(x0, x1, x2)) ⊂ H3. This is well defined,
ᾱ ∈ Cc,b((Hn)3;R)Isom(Hn) and δᾱ = β:

• ᾱ is well defined: Suppose that G; g′ ∈ Isom(Hn) are both such that
g(H(x0, x1, x2)) ⊂ H3 and g′(H(x0, x1, x2)) ⊂ H3. Then g′g−1|H3 ∈
Isom(H3) and hence

α(gx0, gx1, gx2) = α(g′g−1gx0, g1g−1gx1, g
′g−1gx2)

= α(g′x0, g
′x1, g

′x2)
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• ᾱ ∈ Cc,b((Hn)3;R)Isom(Hn): The only thing that needs to be checked
is that ᾱ is Isom(Hn)-invariant.
Let x0, x1, x2 ∈ Hn and g ∈ Isom(Hn) such that gH(x0, x1, x2) ⊂ H3

so that ᾱ(x0, x1, x2) = α(gx0, gx1, gx2). Let g′ be another element of
Isom(Hn). Then gg′−1(H(g′x0, g

′x1, g
′x2)) ⊂ H3 and thus

ᾱ(g′x0, g
′x1, g

′x2) = α(gg′−1g′x0, gg
′−1x1, gg

′−1g′x2)

= α(gx0, gx1, gx2)

= ᾱ(x0, x1, x2)

• δᾱ = β: Let x0, x1, x2, x3 ∈ Hn and g ∈ Isom(Hn) such that

g(H(x0, x1, x2, x3)) ⊂ H3.

Then

β(x0, x1, x2, x3) = β(gx0, gx1, gx2, gx3)

= β|i(H3)(gx0, gx1, gx2, gx3)

= δα(gx0, gx1, gx2, gx3)

= δᾱ(x0, x1, x2, x3)

It follows that H3
c,b(Isom(Hn);R) = 0.

5.2 Stability results

The proof of Lemma 5.1.2 only uses the following two facts:

1. An isometry of Hn can be extended to an isometry of Hn+1.

2. If x0, . . . , xk ∈ Hn+1 where k + 1 ≤ n then there exists a g ∈
Isom(Hn+1) such that gH(x0, . . . , xk) ⊂ Hn where H(x0, . . . , xk) de-
notes the linear subspace spanned by the points x0, . . . , xk.

These also hold in complex hyperbolic space Hn
C. Hence we immediately

obtain the following lemma.

Lemma 5.2.1. Let k ≤ n and suppose that Hk
c,b(Isom(Hn

(C));R) = 0. Then

Hk
c,b(Isom(Hn+1

(C) );R) = 0.

By a similar proof we furthermore obtain

Theorem 5.2.2. If k + 1 ≤ n then there exists an injection

Hk
c,b(Isom(Hn

(C));R) ↪→ Hk
c,b(Isom(Hn+1

(C) );R).
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Proof. On cochains define

j : C((Hn
(C))

k+1;R)
Isom(Hn

(C)) → C((Hn+1
(C) )k+1;R)

Isom(Hn+1
(C) )

by
j(β)(x0, . . . , xk) := β(gx0, . . . , gxk),

where g ∈ Isom(Hn
(C)) is such that g(H(x0, . . . , xk)) ⊂ i(Hn

(C)). Then

δ(j(β))(x0, . . . , xk+1) = δβ(g′x0, . . . , g
′xk+1),

with g′ ∈ Isom(Hn+1
(C) ) such that g′(H(x0, . . . , xk+1)) ⊂ Hn

(C). Note that such

a g′ exists since k + 1 ≤ n. It follows that if β is a cocycle then j(β) is as
well. Let furthermore

r : C((Hn+1
(C) )k+1;R)

Isom(Hn+1
(C) ) → C((Hn

(C))
k+1;R)

Isom(Hn
(C))

be the map defined by restricting a k-cochain to (Hn
(C))

k+1. Then for a
cocycle β in degree k

r ◦ j(β)(x0, . . . , xk) = j(β)(x0, . . . , xk)

= β(x0, . . . , xk),

for all x0, . . . , xk ∈ Hn
(C). It follows that j induces an injective map on

cohomology.



Part II





Chapter 6

Complex hyperbolic
geometry

In this chapter we give a brief introduction to complex hyperbolic geom-
etry, mostly restricting to the complex hyperbolic plane. For more details
on this subject we refer to [Gol99] and [Par10]. Denote by Cn,1 the complex
vector space Cn+1 equipped with a Hermitian form of signature (n, 1). A
standard choice for the Hermitian matrix defining the Hermitian form 〈·, ·〉
is

J1 :=


1 · · · 0 0

. . .
...

1 0
0 · · · 0 −1

 .
Since 〈z, z〉 is real for all z ∈ Cn,1 we can define the following subsets of
Cn,1:

V− :=
{
z ∈ Cn,1

∣∣〈z, z〉 < 0
}
,

V0 :=
{
z ∈ Cn,1 \ {0}

∣∣〈z, z〉 = 0
}
,

V+ :=
{
z ∈ Cn,1

∣∣〈z, z〉 > 0
}
.

Denote by P the canonical projection of Cn,1 \{0} onto CPn. The projective
model of complex hyperbolic n-space Hn

C is then defined to be P(V−) and
the boundary, ∂Hn

C, is defined to be P(V0). Thus

Hn
C =

{
z ∈ P(Cn,1 \ {0})

∣∣∣∣∣
n∑
i=1

|zi|2 − |zn+1|2 < 0

}
,

and

∂Hn
C =

{
z ∈ P(Cn,1 \ {0})

∣∣∣∣∣
n∑
i=1

|zi|2 − |zn+1|2 = 0

}
,

where z ∈ Cn,1 can be any lift of z ∈ P(Cn,1 \ {0}) since the sign of 〈z, z〉
does not depend on the chosen lift. In general we take for z the standard
lift 

z1
...

zn
1

 .
65
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This zn+1 = 1 section of V− gives the Ball model of complex hyperbolic
space. Concretely, denote by 〈〈 , 〉〉 the standard positive definite Hermitian
inner product of Cn, i.e. 〈〈z, w〉〉 = z1w1+· · ·+znwn. Complex hyperbolic n-
space Hn

C can then be identified with the unit ball Bn = {z ∈ Cn | 〈〈z, z〉〉 <
1} as follows: Let A : Cn → P(Cn,1) be defined by

A : z 7→
[
z
1

]
.

A identifies Bn with Hn
C and ∂Bn = S2n−1 ⊂ Cn with ∂Hn

C.

Yet another model is the Siegel domain model. Consider

J2 =


0 · · · · · · 0 1
0 1 0
...

. . .
...

0 1 0
1 0 · · · · · · 0

 .
This is again a Hermitian matrix and the Siegel domain hn is the section
defined by zn+1 = 1 for the corresponding Hermitian form 〈·, ·〉2. Hence

hn =

{
z ∈ Cn | 2<(z1) +

n∑
i=2

|zi|2 < 0

}
.

and its boundary is

H =

{
z ∈ Cn | 2<(z1) +

n∑
i=2

|zi|2 = 0

}
.

H is not the complete boundary of Hn
C, to compactify it we need to add a

point at infinity, hence ∂Hn
C = H ∪ {∞}. Note that in this model for n = 1

we obtain the left half-plane, contrary to the in real hyperbolic geometry
customary upper half-plane. We can pass from the ball model to the Siegel
domain via a Cayley transformation which is given by the matrix

C =
1√
2


1 0 · · · 0 1

0
√

2 0
...

. . .
...

0
√

2 0
1 0 · · · 0 −1

 ,
which interchanges the first with the second Hermitian form, i.e. J2 = CJ1C.

The metric on Hn
C is defined by

cosh2

(
1

2
d(z, w)

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉 ,
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with d(·, ·) the distance function. Here 〈·, ·〉 denotes either of the Hermitian
forms defined above, depending on the model. For the ball model and the
Siegel domain z and w can be the standard lifts of z, w but any other lifts
will give the same result. On Bn this metric is the Bergman metric. With
this scaling Hn

C has holomorphic sectional curvature −1, with real sectional
curvature pinched between −1 and −1/4.

From the metric it is clear that PU(n, 1) acts isometrically on Hn
C and thus

PU(n, 1) is a subgroup of Isom(Hn
C). Also, coordinate-wise complex conju-

gation z 7→ z clearly leaves the metric invariant. In fact, the isometry group
of Hn

C is generated by PU(n, 1) and complex conjugation. The holomorphic
isometry group of Hn

C is PU(n, 1) while every anti-holomorphic isometry is
given by complex conjugation followed by an element of PU(n, 1) (for a proof
see Theorem 3.5 in [Par10]).

6.1 Totally geodesic subspaces

There are two types of totally geodesic subspaces of real dimension 2 in
H2

C [Gol99, Section 3.1.11]:

1. Complex lines, i.e. intersections of complex lines in CP 2 with H2
C.

The boundary of a complex line in H2
C is called a C-circle in ∂H2

C.

2. Totally real Lagrangian planes, i.e. subspaces R of real dimension 2
such that 〈v,w〉 ∈ R for all v, w ∈ R. The boundary of a Lagrangian
plane in H2

C is a R-circle.

Together with (real) geodesics these are the only totally geodesic proper
subspaces of H2

C.

6.1.1 Complex lines

Let L be a complex line in H2
C. For v ∈ C2,1 denote by v⊥ its orthogonal

complement, i.e.

v⊥ := {z ∈ C2,1 | 〈v, z〉 = 0}.

There exists a unique c ∈ P(V+) such that L = P(c⊥)∩H2
C. The vector c is

called a polar vector of L.

Definition 6.1.1. Let η be a unit complex number. The complex reflection
in L with reflection factor η is the map ρηL : C2,1 → C2,1 defined by

z 7→ z + (η − 1)
〈z, c〉
〈c, c〉c,

for z ∈ C2,1. If η = −1 we simply call this map the complex reflection in L.
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Example 6.1.2. An example of a complex line is

L = P


0

1
0

⊥
 ∩H2

C = {(z1, 0) | |z1|2 < 1} ⊂ B2.

The complex reflection ρηL is given byz1

z2

1

 7→
 z1

ηz2

1

 ,
and hence a matrix representative in U(2, 1) is1 0 0

0 η 0
0 0 1

 .
Remark 6.1.3. On complex lines in B2 the Bergman metric restricts to the
Poincaré metric of constant curvature −1 [Gol99, Theorem 3.1.9].

6.1.2 Totally real Lagrangian planes

Example 6.1.4. The subspace consisting of all those points in H2
C with real

coordinates is a totally real Lagrangian plane. It is an embedded copy of
the real hyperbolic space H2

R = {(p1, p2) | p1, p2 ∈ R} ⊂ B2 on which the
Bergman metric restricts to the Klein-Beltrami metric of curvature −1/4
[Gol99, Section 3.1.9].

6.2 Heisenberg model of the boundary

The standard lift to C2,1 of a point in the boundary of the Siegel domain
is −|z|2+it

2
z
1

 ,
with z ∈ C and t ∈ R. Hence we can identify ∂H2

C with (C× R) ∪ {∞}. A
standard lift for the point at infinity is

∞̂ =

1
0
0

 .
We will write 0 for the point (0, 0) and 0̂ for its standard lift.

In this model the boundary is naturally endowed with the structure of a
Heisenberg group on C× R.
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Definition 6.2.1. The Heisenberg group N is C × R with multiplication
defined by

(z, t) ∗ (w, s) = (z + w, t+ s+ 2=(zw)).

We denote by Tz,t the Heisenberg translation which is the left translation
by (z, t) ∈ N, i.e.

Tz,t : (w, s) 7→ (w + z, s+ t+ 2=(zw)),

and we identify N with this group of Heisenberg translations of H. A matrix
in U(2, 1) that represents Tz,t is1 −z 1

2(−|z|2 + it)
0 1 z
0 0 1

 .
Complex numbers A ∈ U(1) of norm 1 act by so-called Heisenberg rota-

tions about the vertical axis on H

A : (w, s) 7→ (Aw, s).

Furthermore, nonzero complex numbers λ ∈ C∗ act by Heisenberg (complex)
dilations about the origin:

λ : (w, s) 7→ (λw, |λ|2s).

The group of isometries fixing the point∞ is the Heisenberg similarity group
Sim(H) = (R+ × U(1)) oN. Furthermore, the group of isometries that fix
both ∞ and 0 is given by Sim0(H) = R+ ×U(1).

Remark 6.2.2. The Heisenberg group is 2-step nilpotent. Indeed,

(z, t) ∗ (w, s) ∗ (−z,−t) ∗ (−w,−s) = (0, 4=(zw)).

This implies in particular that N is amenable, and hence Sim(H) is as well.

Lemma 6.2.3. PU(2, 1) acts 2-transitively on the boundary ∂H2
C.

Proof. Let p, q ∈ ∂H2
C. We will show that there is a M ∈ PU(2, 1) such that

M · p = ∞̂ and M · q = 0̂. Suppose that we do not already have p =∞ so
that we can write p = (z, t) ∈ C× R. Let furthermore ι denote an element
of PU(2, 1) that exchanges ∞̂ and 0̂. For example we can take

ι =

 0 0 −1
0 1 0
−1 0 0


Then ι ◦ T−z,−t sends p to ∞̂. Another Heisenberg translation will send the
image of q under ι ◦ T−z,−t to 0̂ while fixing ∞̂.
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6.3 Cartan angular invariant

Let p = (p1, p2, p3) ∈ (Hn
C ∪ ∂Hn

C)(3) be a triple of distinct points with
lifts p1,p2,p3 ∈ Cn,1.
The Hermitian triple product is defined to be

〈p1,p2,p3〉 = 〈p1,p2〉〈p2,p3〉〈p3,p1〉 ∈ C,

and it has the following properties:

1. Replacing the pi by ξipi with ξi ∈ C∗ multiplies this complex number
with the positive real number |ξ1ξ2ξ3|2.

2. It has negative real part: Re〈p1,p2,p3〉 ≤ 0 for all triples of distinct
points in the boundary.

The Cartan Angular invariant A : (Hn
C ∪ ∂Hn

C)(3) → R is by definition

A(p) := arg(−〈p1,p2,p3〉).

It follows from the above properties of the Hermitian triple product that A
is well defined, i.e. it is independent of the chosen lifts, and

−π
2
≤ A(p) ≤ π

2
∀p ∈ (∂Hn

C ∪Hn
C)(3).

We will extend it to all of (Hn
C ∪ ∂Hn

C)3 by setting A ≡ 0 for triples in which
not all three points are distinct. The Cartan angular invariant A classifies
triples in the boundary of complex hyperbolic space:

Proposition 6.3.1. [Gol99, Theorem 7.1.1] Let (p1, p2, p3) and (q1, q2, q3)
be triples of distinct points in the boundary of complex hyperbolic space. If
A(p1, p2, p3) = A(q1, q2, q3) then there exists a holomorphic automorphism
g ∈ PU(n, 1) such that gpi = qi for i = 1, 2, 3. This automorphism is unique
unless (p1, p2, p3) are contained in a C-circle.

Example 6.3.2. In the Heisenberg model three points that are not contained
in a same C-circle can be represented by

p1 =∞, p2 = (0, 0), p3 = (1, t),

with Cartan angular invariant A(p1, p2, p3) = arctan(t).

Example 6.3.3. In the projective model three points that are not in the
same C-circle can be represented by

p1 =

ieiA0
1

 , p2 =

−ie−iA0
1

 , p3 =

0
1
1

 ,
with Cartan angular invariant A(p1, p2, p3) = A.
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In the following Lemma we list some useful and elementary properties
of A. Proofs can be found in Section 7.1 of [Gol99].

Lemma 6.3.4. The Cartan angular invariant A has the following properties

1. A is alternating: If σ ∈ Sym(3) then

A(pσ(1), pσ(2), pσ(3)) = sign(σ)A(p1, p2, p3).

2. If g ∈ PU(n, 1) is a holomorphic automorphism then

A(gp1, gp2, gp3) = A(p1, p2, p3),

and if g is an anti-holomorphic automorphism then

A(gp1, gp2, gp3) = −A(p1, p2, p3).

3. p1, p2 and p3 are in the same C-circle ⇐⇒ A(p1, p2, p3) = ±π
2 .

4. p1, p2 and p3 are in the same R-circle ⇐⇒ A(p1, p2, p3) = 0.

Now let Φ be the Kähler form on Hn
C and let (p1, p2, p3) ∈ (Hn

C ∪ ∂Hn
C)3.

Define

cΦ(p1, p2, p3) =

∫
∆(p1,p2,p3)

Φ.

For a triple of points in Hn
C when we fix a base point x ∈ Hn

C this is equal to
the image of Φ under the van Est isomorphism as defined before evaluated
at the point (g1, g2, g3) with gi such that x = g−1

i pi. For a triple of points
in the boundary one can take the limit x→ ξ with ξ ∈ ∂Hn

C and the cocycle
cΦ will still represent the same class. From now on we will consider cΦ as a
map (∂Hn

C)3 → R. We clearly have

Lemma 6.3.5. cΦ is a cocycle, i.e.

cΦ(p1, p2, p3)− cΦ(p1, p2, p4) + cΦ(p1, p3, p4)− cΦ(p2, p3, p4) = 0,

for all (p1, p2, p3, p4) ∈ (∂Hn
C)4.

We will now show that cΦ is proportional to the Cartan angular invariant.

Theorem 6.3.6. cΦ(p) = 2A(p) for all p ∈ (∂Hn
C)3.

Proof. (Based on the proof of [Gol99, Theorem 7.1.11]). Let p = (p1, p2, p3)
be in (∂Hn

C)(3) and let p4 = Π12(p3), where Π12 : Hn
C ∪ ∂Hn

C � L12 is the
projection onto the complex line L12 spanned by p1 and p2. By Lemma 6.3.5
we have:

cΦ(p1, p2, p3)− cΦ(p1, p2, p4) = cΦ(p1, p3, p4)− cΦ(p2, p3, p4). (6.1)

Claim: cΦ(p1, p3, p4) = cΦ(p2, p3, p4) = 0.
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Proof of claim. We will work in the two-dimensional subspace spanned by
p1, p2 and p3 so that we can assume n = 2. If p3 ∈ L12 then p4 = p3 and
thus clearly cΦ(p1, p3, p4) = cΦ(p2, p3, p4) = 0. Now suppose that p3 /∈ L12.
Then, up to the action of PU(2, 1), we have

p1 =

λ1

0
1

 , p2 =

λ2

0
1

 , p3 =

 0
λ3

1

 , and p4 =

0
0
1

 .
Let i = 1, 2. Then 〈pi, p3〉 = 〈pi, p4〉 = 〈p3, p4〉 = −1. It follows that pi, p3

and p4 span a totally real subspace. Since Φ vanishes on such a subspace
this implies cΦ(pi, p3, p4) = 0.

By equation 6.1 and the claim above

cΦ(p1, p2, p3) = cΦ(p1, p2, p4).

Because Φ|L12 is the volume form on L12 (see Remark 6.1.3) and p1, p2, p4

are all on this complex line, we conclude that cΦ(p) is equal to the area of
the triangle with vertices p1, p2 and Π12(p3). Up to the action of PU(n, 1)
we can assume that p1, p2, p3 are represented by

∞̂ =

1
0′

1

 , 0̂ =

−1
0′

1

 , and p =

znz′
1

 ,
in P(Cn,1), with 0′, z′ ∈ Cn−1. The projection Π12 onto the complex line L12

that contains p1 and p2 sends znz′
1

 7→
zn0′

1

 .
Let wn = zn+1

zn−1 . Under the Cayley transform C, the points ∞̂, 0̂ and Π12(p)

get send to ∞̂, 0̂ and

wn0′

1

 and thus to ∞, 0 and wn in the left half-plane

h. It follows that

cΦ(p) := Area(∆(p1, p2,Π12(p3))) = Area(∆(∞, 0, wn))

= π − (−π + 2arg(wn))

= 2(π − arg(wn)).

Furthermore,

wn =
zn + 1

zn − 1

−1− zn
−1− zn

=
−|zn + 1|2

w

=
c

w
,
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wn

A

−π + 2θ

Figure 6.1 – Projection of the triangle ∆(p1, p2, p3) onto L12.

with w := (1 + zn)(1 − zn) and c ∈ R<0. Hence arg(wn) = π − arg(w) and
we obtain

c(p) = 2(π − arg(wn))

= 2arg(w).

On the other hand, < ∞̂, 0̂,p >= 2(zn + 1)(zn − 1) = −2w and hence

A(p) = arg(−〈∞̂, 0̂,p〉)
= arg(w).

It follows that indeed c(p) = 2A(p).
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Chapter 7

Complex hyperbolic surfaces

7.1 Simplicial volume

Let M be a closed manifold that is locally isometric to the complex
hyperbolic plane H2

C. Recall that the simplicial volume ‖M‖ of M is defined
by

‖M‖ = inf
{∑

|aσ|
∣∣∣∑ aσσ represents the real fundamental class [M ]

}
.

By Proposition 1.4.2

‖M‖ =
Vol(M)

‖ω‖∞
,

where ω ∈ H4
c (PU(2, 1);R) is the image under the van Est isomorphism of

the volume form.

Lemma 7.1.1. Let ω ∈ H4
c (PU(2, 1);R) be the image of the volume form

in Ω4(H2
C)PU(2,1) under the van Est isomorphism. Then ω = 1

2 · cΦ ∪ cΦ.

Proof. The volume form on H2
C with holomorphic sectional curvature −1

is equal to 1
2Φ ∧ Φ (see for example [Gol99, Chapter 3]). Since the van

Est isomorphism is natural with respect to products it sends 1
2Φ ∧ Φ to

1
2cΦ ∪ cΦ.

In the next section we prove

Theorem 7.1.2.
2

9
π2 ≤ ‖[cΦ ∪ cΦ]‖∞ ≤ π2

By Proposition 1.4.2 this implies

Corollary 7.1.3. Let M be a closed oriented manifold which is locally iso-
metric to H2

C. Then

2

π2
Vol(M) ≤ ‖M‖ ≤ 9

π2
Vol(M).

We can also express this in terms of χ(M). Using Hirzeburch’s propor-
tionality principle, i.e. Proposition 1.4.3, we get

75
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Lemma 7.1.4.

Vol(M) =
8

3
π2 · χ(M).

Proof. The compact dual of H2
C is the complex projective plane CP 2. There-

fore, by Proposition 1.4.3,

Vol(M)

χ(M)
=

Vol(CP 2)

χ(CP 2)
.

As CP 2 has zero homology groups in odd dimensions and one-dimensional
homology groups in even dimensions χ(CP 2) = 3. Furthermore, the complex
projective plane CP 2 is a symplectic quotient S5(r)/S1(r), with Sn(r) the
real n-sphere of radius r. Hence the volume of CP 2 is

Vol(CP 2) = Vol(S5(r))/Vol(S1(r)) = π3r5/2πr =
1

2
π2r4,

To have holomorphic sectional curvature equal to 1 and therefore sectional
curvature between 1/4 and 1 we have to set r = 2 and we thus obtain
Vol(CP 2) = 8π2. For a more elaborate description of the Fubini-Study
metric on the complex projective space and its sectional curvature see e.g.
the first pages of Chapter 6 in [Sak97].

We get the following lower and upper bound for the simplicial volume of
M in terms of its Euler characteristic:

Corollary 7.1.5. Let M be a closed oriented manifold which is locally iso-
metric to H2

C. Then

16

3
χ(M) ≤ ‖M‖ ≤ 24χ(M).

Let ξ be any GL+(4,R)-bundle over M that admits a flat structure. Its
Euler number χ(ξ) is by definition the pairing of the Euler class ε4(ξ) ∈
H4(M ;R) with the fundamental class [M ] ∈ H4(M ;R):

χ(ξ) :=< ε4(ξ), [M ] > .

By Proposition 1.4.1
|χ(ξ)| ≤ ‖ε4(ξ)‖∞ · ‖M‖,

and thus combining Lemma 1.4.7 with Corollary 7.1.5 we obtain the Milnor-
Wood inequality

Corollary 7.1.6. Let ξ be a flat GL+(4,R)-bundle over a closed complex
hyperbolic surface M . Then

|χ(ξ)| ≤ 3

2
χ(M).
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7.2 Proof of Theorem 7.1.2

Proof. (Theorem 7.1.2) For all triples (x0, x1, x2) ∈ (∂H2
C)3 we have

|cΦ(x0, x1, x2)| ≤ π,

and we therefore obtain the trivial upper bound π2 for ‖[cΦ ∪ cΦ]‖∞. In
Proposition 7.2.6 below we obtain the lower bound 2

9π
2.

Let X be a topological space. The alternation of a p-cochain f : Xp+1 →
R is given by

Alt(f)(x0, . . . , xp) =
1

(p+ 1)!

∑
σ∈Sym(p+1)

sign(σ)f(xσ(0), . . . , xσ(p)).

Recall that for a p-cochain f : Xp+1 → R and a q-cochain g : Xq+1 → R the
standard cup product f ∪ g is the p+ q-cochain defined by

f ∪ g(x0, . . . , xp+q) = f(x0, . . . , xp)g(xp, . . . , xp+q).

Slightly abusing notation, we will still denote by cΦ ∪ cΦ the alternation of
the standard cup product of cΦ with itself. Thus cΦ∪ cΦ(x0, . . . , x4) is equal
to

1

120

∑
σ∈Sym(5)

sign(σ)cΦ(xσ(0), xσ(1), xσ(2)) · cΦ(xσ(2), xσ(3), xσ(4)).

Any σ ∈ Sym(5) can be uniquely written as τk ◦α, where α ∈ Sym(5) maps
2 to 0, τ = (0 1 2 3 4) and k is an integer from 0 to 4. Then, exploiting the
fact that cΦ itself is already alternating, we get

cΦ ∪ cΦ(x0, . . . , x4)

=
1

15

∑
τ=(0 1...4)k

k∈{0,1,...,4}

cΦ(xτ(0), xτ(1), xτ(2)) · cΦ(xτ(0), xτ(3), xτ(4))

− cΦ(xτ(0), xτ(1), xτ(3)) · cΦ(xτ(0), xτ(2), xτ(4))

+ cΦ(xτ(0), xτ(1), xτ(4)) · cΦ(xτ(0), xτ(2), xτ(3)).

We use the cocycle relation

0 = δcΦ(x0, xi, xj , xk)

= cΦ(xi, xj , xk)− cΦ(x0, xj , xk)

+ cΦ(x0, xi, xk)− cΦ(x0, xi, xj),
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to rewrite the above sum such that cΦ is always evaluated at x0 and two
other points. It then turns out that the five terms in the above sum are all
the same and we therefore obtain that cΦ ∪ cΦ(x0, . . . , x4) is equal to

1

3

[
cΦ(x0, x1, x2) · cΦ(x0, x3, x4)− cΦ(x0, x1, x3) · cΦ(x0, x2, x4)

+ cΦ(x0, x1, x4) · cΦ(x0, x2, x3)
]
. (7.1)

Remark 7.2.1. The natural map Alt∗ : Hp
c (X;R)→ Hp

c (X;R) which sends
a cocycle to its alternation is an isomorphism with inverse induced by the
identity map. Since both maps do not increase norms at the cochain level,
we have ‖[Alt(f)]‖∞ = ‖[f ]‖∞ for any [f ] ∈ Hp

c (X;R).

7.2.1 Lower bound

Our strategy for finding a lower bound of ‖[cΦ∪cΦ]‖∞ is to find a set of 5-
tuples pi ∈ (∂H2

C)5 such that for all PU(2, 1)-invariant alternating cochains
b : (∂H2

C)4 → R we have ∑
δb(pi) = 0.

If b ∈ L∞((∂H2
C)4;R) then b is only defined a.e. and thus a pointwise equality

as above would have no meaning. However, from Lemma 7.2.2 and Lemma
7.2.3 it will follow that we can instead consider cΦ ∪ cΦ : (∂H2

C)5 → R as
a cocycle in H4

b (PU(2, 1)δ;R), with PU(2, 1)δ the underlying discrete group
of the topological group PU(2, 1). We will denote this everywhere defined
cocycle by cδΦ ∪ cδΦ.

Lemma 7.2.2. The bounded cohomology group H∗b (PU(2, 1)δ;R) is measur-
ably realized on the boundary, i.e. by the resolution

0→ `∞(∂H2
C;R)G → `∞((∂H2

C)2;R)G → `∞((∂H2
C)3;R)G → . . .

Proof. The minimal parabolic subgroup of PU(2, 1) is the Heisenberg sim-
ilarity group Sim(H) = (R+ × U(1)) o N. This group is amenable as an
abstract group and thus Hb(PU(2, 1)δ;R) is given by the cohomology of the
complex (`∞((PU(2, 1)/Sim(H))∗+1;R)PU(2,1), δ).

Lemma 7.2.3. Let Γ = PU(2, 1;Z[i]). Then ‖[cΦ ∪ cΦ]‖∞ is equal to

inf{‖cδΦ ∪ cδΦ + δb‖`∞ | b : (∂H2
C)4 → R bounded and Γ−invariant}

Proof. We follow Section 6 of [BucMon12]. Note that for the proof presented
there amenability of the minimal parabolic as an abstract group is not nec-
essary. Let G = PU(2, 1) and let P be its minimal parabolic subgroup.
Denote by L∞((G/P )p+1;R) the Banach G-module of bounded measurable
functions (G/P )p+1 → R so that we have the natural quotient map

q : L∞((G/P )p+1;R) � L∞((G/P )p+1;R),
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and the natural inclusion map

i : L∞((G/P )p+1;R) ↪→ `∞((G/P )p+1;R).

Then q(cΦ∪cΦ) is the function class of cΦ∪cΦ in L∞((G/P )5;R)G (which by
slight abuse of notation we also denote by cΦ∪cΦ in the rest of this text). On
the other hand, i(cΦ ∪ cΦ) = cδΦ ∪ cδΦ ∈ `∞((G/P )p+1;R)G. The restriction
maps res(c),b : H4

(c,)b(G;R)→ H4
b (Γ;R) send [q(cΦ ∪ cΦ)] and [i(cΦ ∪ cΦ)] to

the same cohomology class in H4
b (Γ;R). It follows that

‖[resc,b(q(cΦ ∪ cΦ))]‖`∞ = ‖[resb(i(cΦ ∪ cΦ))]‖`∞ .

Since restricting to a cocompact lattice preserves the seminorm in continuous
bounded comology [Mon01, Proposition 8.6.2] we can conclude

‖[q(cΦ ∪ cΦ)]‖∞ = ‖[resb(i(cΦ ∪ cΦ))]‖`∞ .

Furthermore, note that the restriction map resb is realized by the inclusion
`∞((G/P )p+1;R)G ↪→ `∞((G/P )p+1;R)Γ. This finishes the proof.

Let

x+ =

1
0
1

 , xi =

i0
1

 , y+ =

0
1
1

 , yi =

0
i
1

 , y−i =

 0
−i
1

 , v =

1
2(1 + i)
1
2(1 + i)

1

 ,
be points in the boundary of the complex hyperbolic plane in the projective
model. We have

A(x+, xi, y+) = A(x+, xi, yi) = A(x+, xi, y−i) = A(x+, y+, yi) =
π

4
,

A(x+, y+, y−i) = A(x+, xi, v) = −π
4
,

A(x+, yi, y−i) = A(x+, y+, v) = 0,

A(x+, yi, v) = −π
2
.

Recall that equation 7.1 gives a convenient way for calculating the alter-
nating cup product cΦ ∪ cΦ and furthermore that cΦ = 2A. Therefore

cδΦ ∪ cδΦ(x+, xi, y+, yi, y−i)

=
1

3

[
cδΦ(x+, xi, y+)cδΦ(x+, yi, y−i)− cδΦ(x+, xi, yi)c

δ
Φ(x+, y+, y−i)

+cδΦ(x+, xi, y−i)cδΦ(x+, y+, yi)
]

=
1

3
·
[π

2
· 0− π

2
·
(
−π

2

)
+
π

2
· π

2

]
=

1

6
π2,
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and

cδΦ ∪ cδΦ(x+, xi, y+, yi, v)

=
1

3

[
cδΦ(x+, xi, y+)cδΦ(x+, yi, v)− cδΦ(x+, xi, yi)c

δ
Φ(x+, y+, v)

+cδΦ(x+, xi, v) · cδΦ(x+, y+, yi)
]

=
1

3
·
[π

2
· (−π)− π

2
· 0 +

(
−π

2

)
· π

2

]
= −1

4
π2.

Lemma 7.2.4. Let b : (∂H2
C)4 → R be an alternating Γ-invariant cochain.

Then δb(x+, xi, y+, yi, y−i) = 2b(x+, xi, y+, yi).

Proof. By definition

δb(x+, xi, y+, yi, y−i) = b(xi, y+, yi, y−i)− b(x+, y+, yi, y−i)

+ b(x+, xi, yi, y−i)− b(x+, xi, y+, y−i)

+ b(x+, xi, y+, yi).

Denote by Lx the complex line that contains x+ and xi and by Ly the
complex line that contains y+, yi and y−i. The reflection in Lx, represented
by the matrix 1 0 0

0 −1 0
0 0 1

 ,
exchanges yi and y−i while fixing x+ and xi. Thus, as b is alternating,

b(x+, xi, yi, y−i) = 0. (7.2)

The reflection in Ly with reflection factor −i, represented by the matrix−i 0 0
0 1 0
0 0 1

 ,
sends xi to x+ while fixing y+, yi and y−i. It follows that

b(xi, y+, yi, y−i) = b(x+, y+, yi, y−i). (7.3)

Lastly, the reflection in Lx with reflection factor i, represented by the matrix1 0 0
0 i 0
0 0 1

 ,
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maps y+ 7→ yi and y−i 7→ y+ while fixing x+ and xi. It follows that
b(x+, xi, y+, y−i) = b(x+, xi, yi, y+) and hence, since b is alternating,

b(x+, xi, y+, y−i) = −b(x+, xi, y+, yi). (7.4)

Combining equations 7.2,7.3 and 7.4 gives

δb(x+, xi, y+, yi, y−i) = 2b(x+, xi, y+, yi).

Lemma 7.2.5. Let b : (∂H2
C)4 → R be an alternating Γ-invariant cochain.

Then δb(x+, xi, y+, yi, v) = b(x+, xi, y+, yi).

Proof. The isomorphism represented by the matrix0 1 0
1 0 0
0 0 1


exchanges x+ with y+, and xi with yi while fixing v. Combined with the
fact that b is alternating this gives

b(xi, y+, yi, v) = b(x+, xi, yi, v), and b(x+, y+, yi, v) = b(x+, xi, y+, v).

Thus

δb(x+, xi, y+, yi, v) = 2b(x+, xi, yi, v)− 2b(x+, xi, y+, v) + b(x+, xi, y+, yi).

Furthermore, the isomorphism represented by the matrix−1 + i 0 1
0 −i 0
i 0 1− i


sends the 4-tuple (x+, xi, yi, v) to (xi, x+, v, y+) and thus

b(x+, xi, yi, v) = b(x+, xi, y+, v).

It follows that δb(x+, xi, y+, yi, v) = b(x+, xi, y+, yi)

Proposition 7.2.6. ‖[cΦ ∪ cΦ]‖∞ ≥ 2
9π

2.

Proof. Note that since cδΦ ∪ cδΦ is alternating we can restrict to alternating
cochains to compute inf‖cδΦ∪cδΦ +δb‖`∞ . By Lemma 7.2.4 and Lemma 7.2.5

δb(x+, xi, y+, yi, y−i)− 2δb(x+, xi, y+, yi, v) = 0,
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for all alternating cochains b ∈ `∞((∂H2
C)4;R)Γ. Let p1 = (x+, xi, y+, yi, y−i)

and p2 = (x+, xi, y+, yi, v). Then

‖cδΦ ∪ cδΦ + δb‖`∞ ≥
1

3

(
(cδΦ ∪ cδΦ + δb)(p1)− 2(cδΦ ∪ cδΦ + δb)(p2)

)
=

1

3

(
cδΦ ∪ cδΦ(p1)− 2cδΦ ∪ cδΦ(p2)

)
=

2

9
π2,

for all alternating cochains b ∈ `∞((∂H2
C)4;R)Γ and it therefore follows from

Lemma 7.2.3 that

‖[cΦ ∪ cΦ]‖∞ ≥
2

9
π2.

Remark 7.2.7. Note that

A(x+, xi, y+) = A(x+, xi, yi) = A(x+, y+, yi) = A(xi, y+, yi) =
π

4
,

and thus the 4-tuple (x+, xi, y+, yi) is a regular special symmetric tetrahe-
dron as defined in [Fal08]. Coordinates in the Heisenberg model for such a
tetrahedron (with A = π/4) are for example ∞, 0, (1, 1) and (i, 1).

Remark 7.2.8. The 8 vectors±1
0
1

 ,
±i0

1

 ,
 0
±1
1

 ,
 0
±i
1

 ,
correspond to the eight vertices of a regular octahedron in R4 with edge length√

2. The 5-tuple (x+, xi, y+, yi, y−i) corresponds to one of the simplices in
the minimal triangulation of this octahedron. In fact, cδΦ ∪ cδΦ takes the
value ±π2/6 on all the simplices of this triangulation. Furthermore the
eight vertices of the form 1

2(±1± i)
1
2(±1± i)

1

 ,
with an even number of plus signs also correspond to a regular octahedron in
R4 with edge length

√
2. Together the 16 vertices correspond to a regular cube

in R4 with edge length 1. The 5-tuple (x+, xi, y+, yi, v) is one of the simplices
in the minimal triangulation of this cube found in [Ma76]. It corresponds to
one of the eight corners that are “sliced off” in this construction and in fact
cδΦ∪ cδΦ is equal to ±π2/4 on all these eight simplices while on the remaining
eight simplices in the triangulation it is again equal to ±π2/6.
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y+

yi

x+xi

y+

yi

x+xi

y−i

y+

yi

x+xi
v

Figure 7.1 – The regular special symmetric tetrahedron (x+, xi, y+, yi) and
the two types of simplices in the minimal triangulation of a regular cube.

Remark 7.2.9. Let Λ = PU(2, 1;Z[ω]) be the Eisenstein-Picard modular
group which is by definition the subgroup of PU(2, 1) with entries in the ring
Z[ω] where ω is a cube root of unity. Let Λ∞ be the stabilizer of ∞ in Λ and
let ΛT < Λ∞ be its torsion-free subgroup. A 5-tuple that realizes the lower
bound 2π2/9 is given by the following points in the Heisenberg space:

(0,−
√

3), (−ω, 0), (1, 0), (0,
√

3), (0, 2
√

3).

These are the vertices p0, p1, p2, p3 and p8 of the fundamental domain of ΛT
described in [Gen10].
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Samenvatting

Een van de bekendste stellingen in de wiskunde is de stelling die zegt
dat de som van de hoeken van een driehoek 180 graden is. Dit is alleen waar
in het platte vlak. Als we drie punten op een bol nemen en een driehoek
vormen met als zijdes de kortste verbindingen tussen deze punten dan is
de som van de hoeken van deze driehoek groter dan 180 graden. Een bol
is een voorbeeld van een oppervlak met een positieve kromming. Op zo’n
oppervlak is de som van de hoeken van een driehoek altijd groter dan 180
graden. Is er sprake van negatieve kromming dan is deze som kleiner dan
180 graden.

Negatieve kromming Geen kromming Positieve kromming

Een andere manier om de kromming van een oppervlak te beschrijven
is als volgt. Een oppervlak met een positieve kromming buigt in ieder punt
in twee richtingen dezelfde kant op terwijl een oppervlak met een negatieve
kromming in ieder punt in twee richtingen verschillende kanten opbuigt.
Een oppervlak zonder kromming is in minstens één richting plat. In het
algemeen geldt voor de som van de hoeken van een driehoek:∑

hoeken ∆ = 180 graden + totale ingesloten kromming.

Een generalisatie van deze som is de Euler karakteristiek. Als we een op-
pervlak opdelen in driehoeken dan is de Euler karakteristiek gelijk aan het
aantal hoekpunten min het aantal zijdes plus het aantal driehoeken van deze
zogenaamde triangulatie. Voor de triangulatie van de bol als in Figuur 1
zien we dat Euler karakteristiek 2 is. Het blijkt dat de Euler karakteristiek
niet van de gekozen triangulatie afhangt, voor een bol is deze dus altijd ge-
lijk aan 2.

De stelling van Gauss-Bonnet uit de 19e eeuw zegt dat voor een geslo-
ten compact oppervlak S (zoals bijvoorbeeld de bol) de integraal over de
krommingsfunctie K gelijk is aan 2π keer de Euler karakteristiek van dit
oppervlak: ∫

S
KdA = 2π · χ(S)
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Figuur 1 – Euler karakteristiek van een bol

De Euler karakteristiek is een topologische invariant, dat wil zeggen dat deze
niet verandert als we het oppervlak vervormen of uitrekken. De kromming
verandert wel bij zo’n vervorming. De stelling van Gauss-Bonnet zegt dus
dat alhoewel vervorming de meetkunde en de kromming lokaal verandert
de integraal over deze kromming een globale of topologische invariant is die
gelijk blijft.

Een oppervlak is een twee-dimensionaal object dat we bekijken in de drie-
dimensionale ruimte. Als wiskundigen beperken we ons natuurlijk niet tot
de drie-dimensionale ruimte, maar willen we graag alles generaliseren naar
willekeurig hoge dimensies. Zo’n hoger dimensionaal “oppervlak” noemen
we een variëteit. Een recentere topologische invariant van een variëteit is
het simpliciaal volume dat is gëıntroduceerd door de wiskundige Gromov
in de jaren 80. Voor variëteiten met een negatieve kromming is deze inva-
riant ook proportioneel aan de Euler karakteristiek, het is alleen over het
algemeen niet bekend met welke constante. In het tweede deel van mijn
proefschrift geef ik schattingen van het simpliciaal volume van complexe
hyperbolische oppervlakken. Dit zijn 4-dimensionale variëteiten met een
(niet-constante) negatieve kromming. Deze nieuwe onder- en bovengrenzen
hebben nog verdere consequenties voor de meetkunde van deze variëteiten.
Ik gebruik hiervoor technieken uit de theorie van continue begrensde coho-
mologie, een vrij recente topologische theorie die onder andere gebruikt kan
worden om topologische invarianten uit te rekenen. Over deze theorie is zelf
ook nog veel onbekend, in het eerste deel van dit proefschrift bewijs ik iets
nieuws over deze theorie en de meer klassieke continue cohomologie.

Hieronder beschrijf ik wat ik precies in dit proefschrift doe. Dit is een bijna
letterlijke vertaling van de Franse samenvatting.
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Wat bewijs ik in dit proefschrift?

In het eerste deel laat ik zien dat de continue cohomologie van de iso-
metriegroep van de reële hyperbolische ruimte uitgerekend kan worden door
middel van functies die gedefinieerd zijn op de rand van de hyperbolische
ruimte. Bloch heeft dit eerder al bewezen voor de 3-dimensionale hyper-
bolische ruimte. De generalisatie is niet automatisch. Terwijl in dimensie
3 de stabilisateur van 3 punten triviaal is, is voor dimensie groter dan 3
de stabilisateur niet langer triviaal maar een compacte group. Het is niet
duidelijk dat de cohomologie van zo’n groep met coëfficienten in Fréchet
ruimtes die niet lokaal convex zijn triviaal is. Dit resultaat kan een eerste
stap zijn naar een bewijs van het vermoeden van Dupont en Monod dat de
natuurlijke vergelijkingsafbeelding tussen de continue begrensde cohomolo-
gie en de continue cohomologie een isomorfisme is voor alle samenhangende
halfenkelvoudige Lie-groepen met een eindig-dimensionaal centrum. De sur-
jectiviteit van deze afbeelding is al bewezen voor veel van deze groepen. De
injectiviteit is echter alleen maar bewezen voor een aantal speciale gevallen
in lage dimensie. Een direct gevolg van mijn resultaat is de injectiviteit van
de vergelijkingsafbeelding in graad 3 voor reële hyperbolische groepen.

In het tweede deel vind ik nieuwe onder- en bovengrenzen voor de Gro-
mov norm van de cohomologieklasse in top dimensie van de isometriegroep
van het complexe hyperbolische vlak H2

C. Een direct gevolg zijn de volgende
onder- en bovengrenzen voor het simpliciaal volume ‖M‖ van een gesloten
complex hyperbolisch oppervlak M :

2

π2
Vol(M) ≤ ‖M‖ ≤ 9

π2
Vol(M).
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