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MOTIVATION

The present work discusses a problem in constructive geometry which was
initially presented by architects. This problem, which concerns the allocation of
living spaces in a building, was the theme of a research project ‘Formalisation
et sens du projet architectural’ 1 ). The problem (in one of its forms) can be
stated as follows :

Given a list of rooms and an allocation matrix (which defines the relative
weights of the desired proximities among the rooms), all spaces must be
enclosed within the shape of a cross made up of five rectangles. The constraints
for allocation are that each arm of the cross must have at least one terrace
and each room should be in contact with the outside world directly or through
a terrace.

This problem has rarely been attacked by mathematical methods but we found
it very interesting, challenging and deep because initially it was not at all
clear :

1. how to define it mathematically (for example, first we tried to define it
using linear programming methods),

2. which branch of mathematics should be studied and applied to solve
the problem (at the beginning we tried to solve it by using some concepts
given by Stiny [38], by applying the additive approach proposed by Tabor
[27] Chapter 13 (see also Section 7.1), or by mimicking some calculations
involved in the functioning of TEX, etc.,

3. in what form the solutions are required (geometrical or numerical).
In the end we defined it as a problem of geometry and optimization which

we have solved by using some concepts of graph theory and by introducing
computing algorithms and some optimization techniques.

1 ) Formalization and meaning of the architectural project. This project, supervised by
Professors P. Pellegrino, D. Coray and G. Falquet, was funded by the Swiss National Science
Foundation (subsidy no. K-12K1-120593). The objective was to develop a formalization of the
architectural conception and to offer a computer-aided system of inference appropriate to the
architectural process of composition. This research relates to the articulation between the sciences
of architecture, semiotics of space, mathematics, and computing.
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ABSTRACT

In this work, we focus on Tiling by rectangles, Connectivity of the
corresponding tilings and Covariants associated with the corresponding tilings.

Tiling by rectangles is the geometric problem of arranging a given family
of rectangles in a larger specific frame. A primitive version is rectangle
tiling, i.e., tiling rectangles inside a rectangular frame. Then the notion of
rectangle tiling is extended to tiling rectangles inside some other shapes. This
generalization is achieved through another object of a mathematical nature,
namely the allocation matrix. This problem also involves the study of another
mathematical concept the extra spaces which are introduced in the geometric
distribution process. For this we shall use different algebraic and topological
covariants.

When tiling by rectangles, we measure the degree of connectivity of the
final tiling; an effort has been made to obtain a tiling which is best from the
point of view of connectivity. Connectivity is defined in terms of adjacency
for both the given rectangles and the extra spaces.

In addition, some methods have been defined to reduce the area of the
obtained tilings in such a way that connectivity remains preserved. We have
studied and developed several covariants related to tilings and their graph which
are used to refine the number of solutions originating from the algorithm.

As far as the applications are concerned, the concept of tiling by rectangles
has been applied to different fields, with special emphasis on architectural
designing, where the aim is to obtain floor plans of some assigned shapes.
Our mathematical theory leads to some interesting solutions, which have been
tested in the framework of an interdisciplinary research project supported by
the Swiss National Science Foundation (see motivation and related footnote for
details about the project). The software TOR (tiling of rectangles), which we
have produced on this occasion, generates the tiling by rectangles for various
shapes, and computes the corresponding graph and a number of associated
covariants, for a given set of data.

The presented research work opens a new field for applied mathematicians,
in that it combines various aspects of geometry, topology and optimization



4 RECTANGLE TILINGS, CONNECTIVITY AND ASSOCIATED COVARIANTS

theory, towards the solution of a problem which is well known to architects,
but which has rarely been attacked by mathematical methods. The covariants
associated with graphs provide an innovative approach to understand and
analyse the problem.



RÉSUMÉ

Dans ce travail, nous nous intéressons aux Pavages par des Rectangles,
en nous concentrant sur la Connectivité et Covariants Associés.

Le pavage par des rectangles est le problème géométrique qui consiste
à organiser une famille de rectangles dans un cadre spécifié. Une version
primitive est le pavage d’un rectangle, qui revient à disposer des rectangles
à l’intérieur d’un cadre rectangulaire. Ensuite cette notion est étendue au
pavage par des rectangles de certaines autres formes géométriques. Cette
généralisation est obtenue par un autre objet de nature mathématique, à
savoir la matrice d’allocation. Ce problème implique aussi l’étude d’un autre
concept mathématique : les espaces supplémentaires qui sont introduits dans
le processus de distribution géométrique. Pour cela nous utiliserons différents
covariants algébriques et topologiques.

Lors d’un pavage par des rectangles, on mesure le degré de connectivité
du pavage obtenu à la fin; un effort a été fait pour obtenir un pavage qui
soit optimal du point de vue de la connectivité. La connectivité est définie
en termes de proximité à la fois pour les rectangles et pour les espaces
supplémentaires. En outre, certaines méthodes ont été définies pour réduire
l’aire des pavages de façon que la connectivité reste préservée.

Nous avons étudié et développé plusieurs covariants qui peuvent être
associés aux pavages et à leur graphe et qui sont utilisés pour préciser le
nombre de solutions obtenues à partir de l’algorithme.

En ce qui concerne les applications, le concept de pavage par des rectangles
a été appliqué à différents domaines, et tout particulièrement à la conception
architecturale, où le but est d’obtenir les plans d’étage de formes géométriques
imposées. Notre théorie mathématique conduit à des solutions intéressantes,
qui ont été testées dans le cadre d’un projet de recherche interdisciplinaire
soutenu par le Fonds national suisse de la recherche (voir la motivation où la
note en bas de page fournit les détails sur le projet). Le logiciel TOR, que
nous avons composé à cette occasion, génère le pavage par des rectangles
pour différentes formes géométriques, et calcule le graphe correspondant et un
certain nombre de covariants associés, pour un ensemble de données fournies.
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Ce travail de recherche ouvre un nouveau domaine pour les mathématiciens
appliqués, en ce qu’il combine divers aspects de géométrie, de topologie et
de théorie de l’optimisation, pour trouver la solution d’un problème qui est
bien connu des architectes, mais qui a rarement été attaqué par des méthodes
mathématiques. Les covariants associés aux graphes fournissent une approche
innovante pour comprendre et analyser ce problème.



ACKNOWLEDGEMENT

This work was conducted under the guidance of Professor Daniel Coray,
University of Geneva, Switzerland. The research work was funded by the
Faculty of Science of the University of Geneva and by the SNF (Swiss
National Foundation) Project formalization et sens du projet architectural.

Professor Coray as a mentor offered his immense knowledge at every stage
of the research. In addition, he always gave moral support and showed trust
in my work and me. I am sure that without his assistance, it would have been
impossible to even dream of this Dissertation.

Professor Pierre Pellegrino as a project leader helped a lot in arranging the
funds for the research, which was very vital. His regular monitoring (in the
form of scheduling, discussing, and giving short term goals) at every stage
helped me to achieve the results in time.

I would also like to thank Professor Gilles Falquet (co-leader of the project),
Dr. Mathieu Vonlanthen (project-colleague) who helped in the development of
the software and in the formulation of the research tasks and Dr. Emmanuelle P.
Jeanneret (project-colleague) who helped a lot in understanding the underlying
architectural concepts and in making the research work fully interdisciplinary.

I would like to show my sincere gratitude toward Madam Lorenza Coray
for her kind moral support and to my parents Mr. O. P. Shekhawat and Mrs.
Sharda Shekhawat for generously providing everything for my education and
for their dedicated support even from far away. I also appreciate my wife
Komal Rathore, for reading the Thesis again and again and for providing
encouragement at every small stage. At the end, I would like to thank my
friends, especially in Geneva, for their support.



8 RECTANGLE TILINGS, CONNECTIVITY AND ASSOCIATED COVARIANTS



INTRODUCTION

“No clever arrangement of bad eggs ever made a good omelet” said
C. S. Lewis, a British scholar and novelist. Agreed, a clever arrangement can
never make taste good what is bad, but surely it can make the omelet look
pleasant.

Arrangements of objects of a set into patterns is a very routine and useful
activity but surprisingly it remains unnoticed. Knowingly or unknowingly
there are always some rules which need to be specified for arranging different
objects. For example, a child arranges his colours, or a woman organizes the
utensils in a kitchen, Fibonacci series is an arrangement of numbers in a
sequence, etc. From a wider perspective, the problem of arranging rooms in
a floor plan requires special skills in two-dimensional geometry.

An arrangement of objects which can be viewed as a branch of constructive
combinatorics 2 ) is fueled by problems and applications from many fields of
study and that’s why the problem of arrangement needs to be handled and
solved properly. We deal with some of the problems that are faced in the
arrangement of different items or objects.

An arrangement has two basic elements ; first, its geometry (position) ; the
position of the objects is always kept in mind while organizing them. Examples
of geometric arrangements are furniture organized in the most functional way,
the famous Rubik Cube, or the arrangement of squares in the golden rectangle.
The second essential element is topology (similarity) of the objects. Elements
having similar shape, reaction, function, orientation or direction are often
grouped together. For example, in graph theory, graphs are grouped together
when they have some mathematical properties in common (planar graphs,
bipartite graphs etc.) ; in the periodic table noble gases are arranged together
on the basis of the chemical properties they share; in a house, the dining
room and kitchen are placed together by architects.

2 ) Combinatorics is the study of arrangements : pairings and groupings, rankings and orderings,
selections and allocations. Constructive combinatorics is the design and study of algorithms for
creating arrangements with special properties [19].
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In this work, we develop a mathematical model to solve the problem of
arranging given rectangles (or rectangular tiles) having different sizes within
a given shape. To solve this problem, we first group together the given tiles
on the basis of some similarity (e.g., their functions or sizes) and then we
define some methods to position them inside the required shape.

       (A)                                                        (B)

FIGURE 0

Given shape and its division into rectangles

To place n rectangular tiles inside a given shape (like the one in Figure
0(A)), we consider the following procedure :

1. First we perform a geometric subdivision of the given shape into, say,
k rectangles. For example, the shape in Figure 0(A) is subdivided into k = 5
rectangles as shown in Figure 0(B).

2. We distribute the n given tiles into k logical groups according to
some predefined rules (architectural or otherwise). The tiles which belong to
a particular group are called components (or members) of that group.

3. Then we construct a rectangle tiling for each group by arranging its
components in a way which will be discussed later, for instance along a spiral.

4. At the end, we arrange the k rectangle tilings thus obtained in such
a way that the complete tiling has some good connectivity properties and is
mathematically satisfactory.

We refer the reader to Figure 4.9, which illustrates such a computer
generated U-shape tiling.

This grouping of tiles is done on the basis of the relative importance which
is attached to proximity among each pair of given tiles. This in turn may
depend on the functionality of these tiles. For example in architecture, if each
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tile represents a room then the relative importance of proximity of kitchen
and dining room would be greater than that of kitchen and bedroom.

For the positioning of the given tiles into a rectangular composition, we
consider mainly two criteria, namely area and connectivity, where connectivity
is defined in terms of adjacency among the given tiles. Arrangements that are
constructed in the present work are among the best arrangements for the given
tiles in a rectangular frame from the point of view of connectivity.

A tile is certainly a geometrical shape but it can also represent a function
of real numbers (for example time, cost etc.) to solve different problems using
the concept of arrangement of tiles. Suppose there are different departments
in an industry and each department has a certain number of employees.
If the position of a tile represents the position of an employee where the
corresponding employee works and the area of each tile represents the time
for an employee to finish a certain task, we can say that two tiles share an
edge if the corresponding employees need to finish some work collectively.
Sometimes there is also a need to provide buffer time to some employees
to complete the task. This buffer time gives an idea of those employees
who should work together and for how long. This results in augmentation of
efficiency while keeping an eye over cost. With the knowledge of an entire
framework, the problem is to reduce cost and to augment efficiency. In terms
of arrangement of tiles, the problem is to arrange tiles in such a way that the
connectivity should be maximized while the area should be minimized.

In the above paragraph, the buffer time is mentioned, similarly in an
arrangement we generate some extra spaces which can be referred as buffers ;
for example, in a house there are some extra spaces which are used as corridors,
balconies, staircases or store rooms. Even in mathematics, when one integrates
a function, one obtains a primitive of the function plus a constant. Here the
problem is about the integration of different tiles where the extra space is
generated like an constant. Therefore, in the arrangement of tiles the concept
of extra spaces and effective methods to reduce the size of extra spaces are
introduced.

To compare two arrangements or to characterize them, some numbers are
needed. These numbers are said to be covariants. In this work, we develop
and study various covariants associated with the obtained arrangements and
their graph. These covariants have the following functions :

1. They help to study and understand the problem.
2. They characterize and measure the difference between different solutions.
3. They are used to obtain the best solution among numerous solutions

and help in reducing their number.
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In architectural terms, the concept of arrangement of tiles occurs in the
form of space allocation or floor plan generation. As an application, we
define some methods for obtaining floor plans. Also, it is exciting to visualize
what has been done and to play around with the results by changing inputs.
Therefore, we have developed a piece of software to understand, feel and
envision the work done.

SUMMARY

Chapter 1 is a general introduction to tiling by rectangles and to the con-
nectivity of tilings. Also, we discuss the Fibonacci tiling and the arrangement
of squares in a Fibonacci rectangle.

In Chapter 2, we define and obtain rectangle tiling for a given family of
tiles and develop some associated invariants and covariants. In addition, we
study the extra spaces and derive some techniques to reduce the size of the
obtained rectangular composition in such a way that the connectivity remains
preserved.

In Chapter 3, we define adjacency among rectangles of tilings and obtain
the graph of a tiling. We also prove that the proposed algorithm gives one of
the best rectangle tilings from the point of view of connectivity.

Chapter 4 is about generalizing rectangle tiling using an allocation matrix
to obtain some other shape tilings. It also elaborates on the possibilities for
different numbers of solutions for a given shape.

In Chapter 5 we define adjacency among rectangles in different shape
tilings and we obtain the graph of the corresponding tilings. Afterwards, we
derive various results and covariants related to the degree of connectivity of
graphs.

In Chapter 6 we elaborate on graph invariants and covariants and obtain
best solutions among many solutions on the basis of some of these covariants.
At the end, we provide some methods to reduce the number of solutions.

Chapter 7 is concerned with the applications of rectangle tiling to different
fields, particularly to architecture.

Chapter 8 discusses the construction of the software which is developed
to visualize the tiling by rectangles.

We conclude with a discussion about future developments.
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NOTATIONS AND TERMINOLOGY

Notations and terms frequently used in the text are given as follows :

a � c : overlapping of walls a and c (see page 25)
Ainitial and Afinal : see page 52
AO and AI : see page 51
AT : allocation matrix (see page 71)
E2

S : the number of edges among two different groups (see page 90)
EP

S (n) : the number of edges in GP
S (n) (see page 91)

ER(n) and ER
S (n) : the number of edges in GR(n) and GR

S (n) respectively
(see page 60)

ER(n)+ SR(n) = 3n+ 1 : Theorem 3.18 (see page 62)
ER

S (n) = 3n� 7 : Theorem 3.13 (see page 60)
GR and GR

S : adjacency graph of TR and TR
S respectively (see page 59)fk1; k2; k3; k4g : adjacent numbers (see page 62)

(L1;H1); (L2;H2); (L3;H3); (L4;H4); (L5;H5) : width and height of central,
left, upper, right and lower TR

S respectively (see page 76)
Li and Hi : width and height of a TR

S after drawing ith tile (see page 36)
li and hi : width and height of ith tile (see page 36)
RA and RB : see page 78
Ri : tile of width li and height hi (see page 38)
SR : adjacent sum (see page 62)
TP(n) : plus-shape tiling of order n (see page 72)
TP

S : spiral-based TP (see page 76)
TR : rectangle tiling (see page 35)
TR(n) : TR of order n (see page 35)
TR

S : spiral-based TR (see page 37)

adjacency graph and degree of connectivity of a shape tiling : see page 28
adjacency matrix : see page 95
adjacent side of a TR : see page 61
ascending order of allocation : see page 46
central, left, upper, right, lower TR : see page 72
circulation and terrace : see page 112
direct adjacency among rectangles : see page 25
direct adjacency and adjacency via virtual parts : see page 56
extra space : see page 24
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Fibonacci rectangle : see page 32
first order moment : see page 102
floor plan : see page 112
golden rectangle : see page 31
initial adjacency pairs : see page 73
inner and outer extra spaces : see page 87
invariants and covariants : see page 42
moment of inertia : see page 101
Processing language : see page 117
shape tiling : see page 24
sharing a wall : see page 24
source for the code : see page 127
space allocation : see page 111
spiral1, spiral2, spiral3, spiral4, spiral5, spiral6, spiral7, spiral8 : see

page 44
virtual part and real part of a tile : see page 55
wall and sub-wall : see page 24
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CHAPTER 1

TILING BY RECTANGLES

This chapter begins with the general definition of a tiling and related
literature. Then we define rectangular tilings for given shapes and introduce
the corresponding terminology. At the end, the arrangement of squares in a
Fibonacci tiling is discussed. This notion will play a major role in most of
this work.

1.1 INTRODUCTION AND RELATED WORK

In ancient human culture and in the natural world, traces of tesselations have
been found. As a mathematical and scientific study, the history of tesselations is
not very long. But since the beginning of the twentieth century, mathematicians
have been interested in the concept of tiling plane figures. Some examples of
tilings include Penrose tilings and real-life tilings such as ceilings and floors
(see Papenfus [33]). The tilings by squares, triangles and hexagons are the
simplest and are frequently seen in everyday life, for example, in chessboards
and honeycombs.

DEFINITION 1.1. A plane tiling T is a countable family of closed sets
T = fT1;T2; : : : g which covers the plane without any gaps or overlappings.
Explicitly, the union of the sets T1;T2; : : : (which are called the tiles of T )
is to be the whole plane, and the interiors of the sets Ti are to be pairwise
disjoint.

DEFINITION 1.2. A monohedral tiling is a tiling in which every tile is
congruent (directly or reflectively) to one fixed set. In simple terms, all the
tiles have the same size and shape.

Some remarkable monohedral tilings are those which are of spiral form.
Figure 1.1 describes one such tiling (see Grünbaum and Shephard [17], Chapter
one).
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FIGURE 1.1

A monohedral tiling in spiral form (Grünbaum and Shephard).
Here all the tiles are identical in shape and are polygons with 9 sides.

DEFINITION 1.3. A rectangle which has been tiled into squares all of
which have different sizes (areas) is called perfect.

DEFINITION 1.4. The number of squares or rectangles in the tiling of a
rectangle is the order of the tiling.

The problem of tiling rectangles originated long ago. According to
Singmaster, the history of tiling rectangles with squares began in 1902 with
a puzzle titled Lady Isabel’s Casket, written by Henry Ernest Dudeney (see
Papenfus [33]). The problem is described as follows.

LADY ISABEL’S CASKET PUZZLE (see [11], page 67). Find the dimensions
of the top of a box on which there is a rectangular strip of gold, 10 inches by
1/4 inch; the rest of the surface is exactly inlaid with pieces of wood, each
piece being a perfect square, and no two pieces of the same size.

The solution of this puzzle was published by Dudeney ([11], page 191),
and is shown in Figure 1.2. The rectangular strip can be regarded as an
extra space, an important notion we shall elaborate on in Definition 1.7.
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FIGURE 1.2

Solution for Lady Isabel’s casket puzzle

Let R(x; y) denotes a rectangle with width x and height y . In 1903,
Dehn [9] proved his famous result that R(x; y) can be tiled by (finitely many)
squares if and only if y=x is a rational number. Hence it is noteworthy that
Dehn’s result applies only to finite tilings, e.g. the golden rectangle (Definition
1.16) is a union of countably many squares.

In 1925, Z. Moroń [30] gave the first example of the dissection of a
32� 33 rectangle into 9 unequal squares, as shown in Figure 1.3.

Then in 1940, Brooks et al. [5] obtained a perfect squared rectangle till
order 13 by associating with the tiling an electrical network consisting of
currents, voltages, and resistance and using the well-known properties of such
networks.

In a electrical circuit, two laws describe how the current must behave if
the circuit is to be complete (Kirchhoff’s laws). 3 )

3 ) Kirchhoff’s first law – The algebraic sum of the currents flowing to any of the terminals
must be zero.

Kirchhoff’s second law – The algebraic sum of the currents for the entire circuit must be
zero.
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FIGURE 1.3

Dissection of a 32� 33 rectangle into 9 unequal squares

FIGURE 1.4

Electric circuit corresponding to a perfect squared rectangle

As an example, refer to Figure 1.4. In this figure each of the horizontal
line segments of the squared rectangles is represented by a vertex (dot). Each
vertex represents a terminal in the electrical circuit. An edge between two
vertices represents the square that has two corresponding horizontal lines as
boundaries.



TILING BY RECTANGLES 23

It was C.J. Bouwkamp who first became interested in the problem of
perfect squared rectangles during the early 1940’s. He used computers and
developed a code for finding all the possible solutions to a perfect squared
rectangle of given dimensions.

FIGURE 1.5

A perfect squared square of order 21

Besides Bouwkamp, Duijvestijn [4] also discovered the very first simple
perfect squared square making use of computers in March 1978. It has the
lowest possible order, n = 21, and it is the only one of that order (Figure
1.5).
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1.2 TILING BY RECTANGLES AND CONNECTIVITY

Here we discuss how to describe rectangular tilings for some more general
shapes than rectangles.

DEFINITION 1.5. By shape tiling we refer to the arrangement of a collection
of rectangles in the frame of a given shape, while satisfying a certain set of
topological conditions which are stated and explained in Section 1.2.1. Each
of the elementary rectangles is called a tile. The area of each tile is called the
size of the tile, and the total number of tiles is called the order of the tiling.

We do not require that all the tiles should be of the same size. Neither
are they supposed to form a covering of the given shape (see the definition of
extra spaces below). Furthermore, shape tiling can be restricted to the frame
of a given bounded shape or it can be used for a covering of the whole
plane. Before discussing the topological conditions needed for shape tiling,
we introduce some definitions which will be used throughout the present study.

DEFINITION 1.6. A wall is one of the four sides of a rectangle.
If W is a wall of side length j , a sub-wall of W is a proper connected

part of W . Hence it is a closed interval of length k strictly included in W ,
i.e. 0 < k < j .

For example in Figure 1.6(a), one of the walls of rectangle A is a sub-wall
of rectangle B.

DEFINITION 1.7. In shape tiling, an extra space is a rectangle generated
because of the difference in either the width or the height of the tiles.

The extra spaces are not among the set of tiles, but they are generated
automatically, in particular by Condition 5, which has to be satisfied for tiling
the given shape (Section 1.2.1).

Consider a rectangle with horizontal sides a , a0 and vertical sides b , b0 ,
and represent it as Ra;b;a0;b0 .

DEFINITION 1.8. Two rectangles Ra;b;a0;b0 and Rc;d;c0;d0 share a wall if
any one of the following holds :

1. a0 \ c = a0 or a0 \ c = c ,
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2. a \ c0 = a or a \ c0 = c0 ,
3. b0 \ d = b0 or b0 \ d = d ,
4. b \ d0 = b or b \ d0 = d0 .
Ra;b;a0;b0 shares a wall with Rc;d;c0;d0 if any one of the following holds :
a0 \ c = a0 ; a \ c0 = a ; b0 \ d = b0 ; b \ d0 = b .

Let us say that walls a and c overlap, in symbols a � c , if ja \ cj > 1,
i.e., if they intersect in more than one point.

Ra;b;a0;b0 and Rc;d;c0;d0 share a sub-wall if any one of the following holds :
1. a0 � c & a0 6= c ,
2. a � c0 & a 6= c0 ,
3. b0 � d & b0 6= d ,
4. b � d0 & b 6= d0 .
Ra;b;a0;b0 shares a sub-wall with Rc;d;c0;d0 if any one of the following

holds :
1. a0 � c & a0 6� c ,
2. a � c0 & a 6� c0 ,
3. b0 � d & b0 6� d ,
4. b � d0 & b 6� d0 .
In particular, Ra;b;a0;b0 and Rc;d;c0;d0 share a full wall if any one of the

following holds :
a0 = c ; a = c0 ; b0 = d ; b = d0 .
DEFINITION 1.9. Two rectangles are directly adjacent if they share a wall

or a sub-wall.

Figure 1.6 illustrates the concept of direct adjacency with the two rectangles
A and B.

a) A and B share a wall . Or A shares a wall with B but B shares a
sub-wall with A.

b) A and B share a sub-wall.
c) A and B share a full wall.
d) A and B share neither a wall nor a sub-wall.

In Figure 1.6, A is directly adjacent to B in the first three cases (a, b, c) but
not in case (d).
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FIGURE 1.6

Four cases for defining the direct adjacency among rectangles

1.2.1 CONDITIONS FOR SHAPE TILING

The conditions are followed in the sequence as mentioned below :

1. All the rectangles are normalized, i.e. they must have only horizontal
and vertical sides

For example, Figure 1.7(e) is not allowed.

2. The intersection of any two distinct rectangles in the configuration
should be an empty set i.e. Ra;b;a0;b0 \ Rc;d;c0;d0 = ?

We consider rectangles as open subsets of the plane, therefore overlapping
of boundaries (edges) of the rectangles is admitted but overlapping of the
regions (areas) is not permitted. This means that in particular we do not
consider the case of a rectangle inside another one. For example, Figures
1.7(a) and 1.7(b) are not allowed.

a                    b                        c                      d                  e   

FIGURE 1.7

3. An ordered procedure is used for arranging the given tiles
At this stage we are not considering a specific order; the arrangement of

the tiles depends on the order in which they come i.e. the tiles are arranged
on first come, first serve basis.
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4. Each new tile must be adjacent to at least one of the previously drawn
rectangles

For example, in Figures 1.7(c) and 1.7(d), the two tiles are not adjacent
therefore these figures are not allowed. But a new tile can be arranged at any
position i.e. a new tile can be drawn above, below,left or right to any other
tile.

5. The composition of the tiles should always be rectangular

To get a rectangular composition, after drawing a tile, at most two
rectangular extra spaces can be drawn.

If the composition of the tiles is already rectangular then no extra space
is required. For example, in Figure 1.8(a), an extra space is not required.

To draw an extra space, the width (or height) of the last drawn tile
is compared with the width (or height) of the last obtained rectangular
composition and thereafter at most two extra spaces are drawn to obtain
a rectangular composition.

For example in Figure 1.8(b), after drawing the second tile, the composition
of the two tiles is not rectangular. Therefore, two extra spaces are drawn as
shown in Figure 1.8(c). In Figure 1.8(d) the heights of the two tiles are
compared and two extra spaces are drawn as depicted in Figure 1.8(e).

a                      b                     c                          d                            e

1

2

1

1 1

2

2 2

FIGURE 1.8

Drawing extra spaces

6. An extra space can not be considered as a new tile

An extra space can be merged into an existing tile (cf. Definition 3.1 where
virtual and real parts are defined) but it can not be considered as a new tile.
It means the number of tiles in a tiling always remains preserved.
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1.2.2 CONNECTIVITY AND HOW TO MEASURE IT

A graph G = (V, E) is a mathematical structure consisting of two finite
sets V and E . The elements of V are called vertices and the elements of E
are called edges. Each edge has a set of one or two vertices associated with
it, which are called its endpoints.

A simple graph has neither self-loops nor multi-edges.
Two vertices u and v are called adjacent if an edge exists between them.
In an undirected graph G , two vertices u and v are connected if G

contains a path (or walk) from u to v . A graph is connected if for every pair
of vertices u and v , there is a walk from u to v .

For all these definitions, we refer to Jonathan and Yellen [16], Chapter 1.

DEFINITION 1.10. The adjacency graph of a shape tiling is a simple
undirected graph obtained by representing each tile as a vertex and then
drawing an edge between any two vertices if the corresponding tiles are
adjacent.

The degree of connectivity of a shape tiling is defined by the adjacency
among the different tiles and it is given in terms of the connectivity of the
corresponding adjacency graph. Therefore, the comparison of the connectivity
of different tilings is done by comparing the connectivity of the corresponding
adjacency graphs.

Various measures are available to compare the connectivity of two adja-
cency graphs having the same number of vertices. For example, a comparison
can be made on the basis of the number of edges, the diameter, average
distance, number of cycles etc. In the present work, the number of edges
in the adjacency graph is regarded as a measure of connectivity. For further
details about these measures, see Rodrigue et al. ([36], Chapter 2, measures
and indices of graph theory).

DEFINITION 1.11. If two connected adjacency graphs have the same
number of vertices then the adjacency graph having more edges is considered
to be more connected.

To be noted that the connectivity of adjacency graphs is independent of
the order in which corresponding tiles are arranged.
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1.3 FIBONACCI TILINGS

In this section, we describe the arrangement of squares which is associated
with Fibonacci rectangles and with the golden rectangle. We also recall some
well-known definitions.

1.3.1 THE GOLDEN RATIO

DEFINITION 1.14. The golden number is, in a sense, the most natural real
number, since it can be written as :' = [1] ;
without reference to any numbering system. This is standard abbreviation for
the continued fraction expansion

' = 1+ 1

1+ 1

1+ 1

1+ : : :
:

From this we see that '� 1 = 1' , so that ' is also equal to 1+p5
2 .

An obvious geometric interpretation of this number is that one can remove
a square with side length one from a rectangle of sides 1� ' and obtain a
new rectangle, with sides 1' � 1, which is similar to the original one. Hence,
the construction can be repeated. See Walser [42], Chapter 3.

The golden number is also the limit of the sequence of convergents�
pn=qn

�1
n=0

= �1
1
; 2

1
; 3

2
; 5

3
; 8

5
; 13

8
; 21

13
; : : : � ;

which involves the successive Fibonacci numbers. This is not just one more
occurrence of the Fibonacci numbers ; in fact, a classical result (see Hardy &
Wright [18], Chapter 10) is that the sequence of convergents is a sequence
of best approximations to ' by rational numbers, in a very specific sense.
So, instead of saying that ' = 1:61803 : : : , which is meaningful only in the
decimal system, it is better to consider ' as a sequence of convergents

Φ = �1
1
; 2

1
; 3

2
; 5

3
; 8

5
; 13

8
; 21

13
; 34

21
; 55

34
; 89

55
; : : : � :

At any rate, this is how it appears when one attempts to interpret the work
of many architects.
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In fact, partly because of the necessity to work with standard units of
measure and partly for conceptual reasons (the taxis), architects have often
drawn their sketches on a regular orthogonal grid. In this way, the main
building could fit in a rectangle of (say) 55 by 89 units, in which the various
rooms could be represented by rectangles of sizes 8� 13, 5� 8, etc.

REMARK. If a positive real number � is of the form

� = a0 + 1

a1 + 1

a2 + 1

a3 + : : :
;

where the ai are positive integers (the ai are called partial quotients of the
continued fraction), one often writes� = [a0; a1; a2; a3; : : : ] :

This representation is periodic if and only if � is a quadratic irrationality.
(The period is denoted by a bar above the sequence of partial quotients that
are repeated.) In computations it is not possible to include infinitely many
terms. Therefore, an actual calculation would end after some finite number of
terms, n , and the continued fraction yields a rational approximation :� �= [a0; a1; a2; : : : ; an] :
See Hardy & Wright [18], Chapter 10.

Thus, the interpretation in terms of the continued fraction expansions can
also be given for any ratio occurring in the literature. Such classical ratios
have been used by artists and architects since the middle ages like

� = [b0; b1]

where a0 = b0 and each ai = b1 , for i > 0. For example,� = p
2 = [1; 2] ;

which is the limit of the sequence of convergents
�

1
1 ; 3

2 ; 7
5 ; 17

12 ; 41
29 ; : : : � . Or� = p

5 = [2; 4] ;
which is the limit of

�
2
1 ; 9

4 ; 38
17 ; 161

72 ; : : : � . Or, in fact, any positive real number.
This removes some of the esoteric myths that have been associated with the
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golden number, since architects could have used any system of proportions
on a grid. They did not need to write irrational numbers like

p
5, because

such numbers revealed themselves from the sequence of proportions used on
the grid.

The ancient Greeks believed that a rectangle constructed in the proportions
of the golden number was the most aesthetically pleasing of all rectangles ;
hence they incorporated this shape into many of their architectural designs.

However, the golden ratio has some other properties which have made
it a favourite of some (though not all) architects : Brunelleschi, Palladio, Le
Corbusier, Wright and others. This is where spirals have a role to play.

1.3.2 THE LOGARITHMIC SPIRAL

DEFINITION 1.15. The logarithmic spiral is centred at the point O which
is the intersection of the two diagonals BD and CE1 (see Figure 1.9). Its
radius r is reduced by a factor ' each time the angle � is decreased by �=2.
So, its equation is of the form

r = r0 ' 2� � ;
where we can start with � = 0 for r = r0 = jAOj = p2 'p

1+'2
.

A basic property of the logarithmic spiral is that, at every point, its tangent
vector makes a constant angle  with the radius. This angle is specified by
the formula

tan = r�
dr
d�� = �

2 log' :
This also shows that the spiral is not tangent to the side AD at the point A ,

since the angle between OA and AD is equal to �
4 + arctan 1' = 1:33897 : : : ,

while  = 1:2735 : : : . The difference is of less than 4Æ and we have drawn
for comparison the quarter circle with centre E1 inscribed in the first square.

1.3.3 THE ARRANGEMENT OF SQUARES IN A FIBONACCI RECTANGLE

DEFINITION 1.16. A rectangle whose ratio of width over height is equal to '
is called a golden rectangle.
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FIGURE 1.9

A golden rectangle and logarithmic spiral

DEFINITION 1.17. A Fibonacci rectangle is a rectangle whose side lengths
are in proportion Fn+1=Fn , where the Fn are the successive Fibonacci
numbers : F0 = F1 = 1, F2 = 2, …, Fn+1 = Fn + Fn�1 .

The next lemma shows that a Fibonacci rectangle is naturally tiled by
squares and therefore we can also speak of a Fibonacci tiling.

LEMMA 1.18. The process of cutting off a square can be done by starting
from any Fibonacci rectangle. The ratios of width over height for the successive
residual rectangles run through all quotients of the form Fn=Fn�1 , Fn�1=Fn�2 ,
etc., until we reach the last square, which is of size 1 . Then the residual
rectangle is a square of side length F1 = F0 = 1 .

Proof. Removing a square of side length Fn from a rectangle with sides
Fn+1�Fn yields a rectangle with sides Fn�Fn�1 ,since Fn+1�Fn = Fn�1 . And
we can repeat the process until we get a rectangle with sides F2�F1 = 2�1.
The next square to be cut off has side length F1 = 1 and the residual rectangle
is a square of side length 1.
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For further details, refer to Figure 1.10 from (G) to (A) and see Walser
[42], page 39.

THEOREM 1.19. One can construct a sequence of Fibonacci rectangles
(and obtain a golden rectangle in the limit, as n ! 1 ) by reversing the
process described in Lemma 1.18. Starting from two unit squares one above
another, one first adjoins a square of side length 2 to their right, so as to
obtain a Fibonacci rectangle with sides F3 � F2 . Then one adjoins a square
of side length F3 below, so as to obtain a Fibonacci rectangle with sides
F5 � F3 , etc. following a clockwise movement.

Proof. The possibility of this construction of a sequence of Fibonacci
rectangles follows from the relation Fn+1 = Fn + Fn�1:

We know that

lim
n!1 Fn+1

Fn
= ';

therefore, in the limit, as n !1 , the sequence of Fibonacci rectangles tends
to a golden rectangle. For details refer to Figure 1.10 from (A) to (G), where
the beginning of the sequence of Fibonacci rectangles is displayed.

A   B     C        D              E                        F                                  G

FIGURE 1.10

Sequence of Fibonacci rectangles and a Fibonacci spiral

DEFINITION 1.20. The logarithmic spiral can be replaced by its natural
approximation by quarter circles in the successive squares appearing in this
construction. We will call it the Fibonacci spiral.

EXAMPLE 1.21. The Fibonacci spiral is shown in Figure 1.10 (G).
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REMARK. Theorem 1.19 provides a method for tiling squares in the frame
of a rectangle, by arranging all the squares along a spiral.

As discussed earlier, many artists and architects have included in their
works some rectangular components which have aspect ratios close to the
golden ratio however there is rarely any evidence which would explain why
the artists or architects used the golden ratio (see [26], Chapter Proportion).

In Chapter 3, the reason for using the golden rectangle so often is given
in terms of connectivity. In the next chapter, we shall define rectangle tilings;
then we shall use the method of arranging squares in a Fibonacci rectangle
to obtain some particular rectangle tilings.



CHAPTER 2

SPIRAL-BASED RECTANGLE TILINGS

This chapter deals with shape tiling when the given shape is a rectangle.
In most applications, like urbanism or architecture, disposing the tiles at
random would certainly not be considered a good way. We suggest an explicit
algorithm for disposing the tiles along a spiral, which often gives surprisingly
good results. In addition, we study the extra spaces that this method introduces
and we investigate some associated invariants and covariants.

2.1. AN ALGORITHM FOR RECTANGLE TILING

DEFINITION 2.1. We refer to rectangle tiling for shape tiling in the sense
of Definition 1.5 when the given shape is a rectangle. Thus the tiles are also
rectangular and the conditions prescribed in Section 1.2.1 have to be met.
Such a tiling will be denoted by TR .

If TR is of order n , i.e. if it consists of n tiles, we shall also denote it
by TR(n) .

We aim to obtain a TR which is best from the point of view of connectivity.

2.1.1 SPIRAL-BASED SEQUENCE

As defined in Chapter 1, a Fibonacci rectangle follows the Fibonacci
sequence for tiling a rectangle with squares. In this section we proceed in a
similar way with a more general sequence. We begin with a purely number-
theoretic definition :
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DEFINITION 2.2. Suppose we are given two sets of positive real numbers :`i and hi ( i = 1; : : : ; n ). Then we set L0 = 0 and H0 = 0 and define
recursively two new sequences of numbers :

For i = 1; 3; 5; : : :
Li = Li�1 + `i; Hi = max(Hi�1; hi) :

For i = 2; 4; 6; : : :
Li = max(Li�1; `i); Hi = Hi�1 + hi :

The newly obtained sequence of pairs (Li;Hi) is called a spiral-based
sequence.

Geometrically, we have a spiral-based sequence when we consider rectan-
gular tiles. If TR is a rectangle tiling then

a. `i and hi are the width and height of the ith tile

b. Li and Hi are the width and height of the partial tiling TR(i) which is
obtained after the ith step.

EXAMPLE 2.3. To comprehend the concept of spiral-based sequence,
consider Figure 2.1, where the shaded rectangles are extra spaces and the
white rectangles are tiles.

In Figure 2.1(a), i = 2, therefore we compute L2 and H2 (the width
and height of TR(2)). Here L2 = max(L1; `2) = max(`1; `2) = `2 and
H2 = H1 + h2 = h1 + h2 .

In Figure 2.1(b), a new tile is added to obtained TR(2) , hence i = 3,
L3 = L2 + `3 = `2 + `3 and H3 = max(H2; h3) = max(h1 + h2; h3) = h1 + h2 .

Similarly, in Figure 2.1(c), i = 4, L4 = max(L3; `4) = max(`2+`3; `4) = `4

and H4 = H3 + h4 = h1 + h2 + h4 .

COROLLARY 2.4. For n even we have :

Ln = max
�`n; �`n�1 +max

�`n�2; �`n�3 + � � �+max(`2; `1)
����

Hn = hn +max
�
hn�1; �hn�2 + � � �+max (h3; h2 + h1)

�� :
For n odd :

Ln = `n +max
�`n�1; �`n�2 + � � �+max (`4; `3 +max(`2; `1))

��
Hn = max

�
hn; �hn�1 +max

�
hn�2; �hn�3 + � � �+max (h3; h2 + h1)

���� :
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FIGURE 2.1

Proof. From the spiral-based sequence, for n even we have Ln =
max(Ln�1; `n) . Now for Ln�1 , n � 1 is odd therefore from the spiral-based
sequence we have :

Ln = max
�`n;Ln�1

�= max
�`n; `n�1 + Ln�2

�= max
�`n; `n�1 +max

�`n�2;Ln�3
��

...= max
�`n; �`n�1 +max

�`n�2; �`n�3 + � � �+max(`2;L1)
����

and L1 = `1 . The other assertions can be proved in the same fashion, by
using the spiral-based sequence.

2.1.2 SPIRAL-BASED ALGORITHM

In this section, we give an algorithm for the TR using a spiral-based
sequence. This algorithm will be used in the upcoming chapters for developing
the tilings of other given shapes because it provides one of the best TR from
the point of view of connectivity (refer to Corollary 3.25).

DEFINITION 2.5. The algorithm (given below) to construct a TR will be
termed spiral-based algorithm.

A spiral-based rectangle tiling (TR
S ) is a TR obtained using the spiral-based

algorithm.

In the spiral-based algorithm there are three kinds of rectangles. Each type
is given by its position, which is the upper left vertex, and its size, which
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consists of the width and the height.
At each stage i of the construction process there is a new tile Ri ; we

denote its position by (xi; yi) , and its size is the given pair (`i; hi) . (xi; yi) is
a point in a Cartesian frame as depicted in Figure 2.2.
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FIGURE 2.2

Cartesian plane for the position of rectangles

There is also an extra space Ei , which may be empty; we denote its
position by (ti; ui) and its size by the pair (�i; �i) .

Finally there is a new tiled rectangle TR
S (i) . Its position also depends on i ;

we denote it by (Xi;Yi) , and the size of TR
S (i) is the pair (Li;Hi) , which we

already know how to compute (see Definition 2.2 and Example 2.3).
The process starts with i = 0, with all numbers set to 0. Then the first

tile is placed to the left of (0; 0).

i � 1 (mod 4) :
(xi; yi) = (Xi�1 � `i;Yi�1) , (Xi;Yi) = (xi; yi)

i � 2 (mod 4) :
(xi; yi) = (Xi�1;Yi�1 � hi) , (Xi;Yi) = (xi; yi)

i � 3 (mod 4) :
(xi; yi) = (Xi�1 + Li�1;Yi�1) , (Xi;Yi) = (Xi�1;Yi�1)

i � 0 (mod 4) :
(xi; yi) = (Xi�1;Yi�1 + Hi�1) , (Xi;Yi) = (Xi�1;Yi�1)
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If i is odd then
(ti; ui) = (xi; yi + hi) and (�i; �i) = (`i;Hi�1 � hi) if hi < Hi�1 ,
(ti; ui) = (Xi�1;Yi�1+Hi�1) and (�i; �i) = (Li�1; hi�Hi�1) if hi > Hi�1 .

If i is even then
(ti; ui) = (xi + `i; yi) and (�i; �i) = (Li�1 � `i; hi) if `i < Li�1 ,
(ti; ui) = (Xi�1+Li�1;Yi�1) and (�i; �i) = (`i�Li�1;Hi�1) if `i > Li�1 .

REMARK. Let Ri be drawn either above or below TR
S (i� 1). In this case

Ei is drawn either to the right side of Ri or to the right of TR
S (i� 1).

Suppose Ri is drawn either to the left or right of TR
S (i � 1). Here Ei is

drawn either below TR
S (i� 1) or below Ri .

EXAMPLE 2.6. In this example we explain the spiral-based algorithm for
five given tiles.

1. We draw the first tile of width `1 and height h1 at position (x1; y1) ,
as shown in Figure 2.3.

h1

l1

(x1, y1)

FIGURE 2.3

TR
S (1)

2. The second tile is drawn above the first tile at position (X1;Y1 � h2) in
such a way that its lower left vertex is the upper left vertex of TR

S (1) (Figure
2.4 (A)). On the basis of the difference in width of the first and the second
tile, three cases are possible. An extra space is drawn if either `2 > L1 or`2 < L1 , since in both cases the composition of tiles is not rectangular. To
obtain a TR

S (2) an extra space t is drawn as shown in Figure 2:4(B).
The position of t in these two cases is (x2 + `2; y2) and (X1 + L1;Y1)

respectively.
3. The third tile is drawn to the right of TR

S (2) in such a way that its
upper left vertex is the upper right vertex of TR

S (2) . The third tile with an
extra space t is shown in Figure 2:5.

As it is not feasible to illustrate all the possible cases, in Figure 2.5 it
is assumed that `2 = `1 . For all these cases, the position of the third tile is
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TR
S (3)

(X2 + L2;Y2) . Also, in the first two shapes of this figure, the position of t is
(X2;Y2 + H2) and (x3; y3 + h3) respectively.

4. The fourth tile is drawn below TR
S (3) such that its upper left vertex is

the lower left vertex of TR
S (3) . The fourth tile with an extra space t is shown

in Figure 2:6. In this figure, it is assumed that `2 = `1 and H2 = h3 ; however,
other possible scenarios also exist. For all these scenarios, the position of the
fourth tile is (X3;Y3 +H3) . In the first two shapes of this figure, the position
of t is (X3 + L3;Y3) and (x4 + `4; y4) respectively.

5. The fifth tile is drawn to the left of TR
S (4) with its upper right vertex as

the upper left vertex of TR
S (4) . The fifth tile with an extra space t is shown

in Figure 2:7. In Figure 2:7, for demonstration it is considered that `2 = `1 ,
H2 = h3 and L3 = `4 but there are other possible cases also. For all these
cases, the position of the fifth tile is (X4 � `5;Y4) . In the first two shapes of
this figure, the position of t is (X4;Y4 + H4) and (x5; y5 + h5) respectively.

It is clear from the steps of the above example that the tiles are arranged
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TR
S (5)

along a spiral and that is why we refer to the algorithm as the “spiral-based
algorithm”.

2.1.3 INVARIANTS AND COVARIANTS

The concept of an invariant appeared naturally in geometry in response to
the need for the classification of figures. In concrete terms, what distinguishes
the following three sub-figures ?

In Figure 2.8, the first sub-figure is a straight line, the second sub-figure a
rectangle and the third one a spiral. A general line in the same plane intersects
these figures in at most 1 and 2 points respectively for the first two figures,
while it meets the spiral in infinitely many points. Although the numbers 1, 2
and 1 do not fully describe these figures, yet they characterize and distinguish
them from other geometrical shapes. Interestingly, these numbers remain
unchanged if we apply certain geometric transformations, like isometries or
scale changes. Thus the number of intersection points is an invariant with
respect to a restricted set of transformations, which can be specified.
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 Line                  Rectangle                 Spiral

FIGURE 2.8

DEFINITION 2.7. If a number or a mathematical object associated with
a geometric configuration remains unchanged with respect to a certain group
of transformations then this number or mathematical object is said to be an
invariant (with respect to the specified group of transformations).

For the shapes in Figure 2.8, the angles of intersection are certainly not
invariant under rotation, but we can say how they behave. Therefore, the
angles of intersection are relative invariants or covariants, with respect to
rotation.

DEFINITION 2.8. If we know precisely how a number or a mathematical
object associated with some geometric figure behaves with respect to a specified
set of transformations, we call it a covariant.

Invariants and covariants can be used to understand the nature of a problem
and to characterize its solutions.

COROLLARY 2.9. A TR
S (n) has at most n� 1 extra spaces.

Proof. From the spiral-based algorithm, after drawing each tile except the
first one, only one extra space may need to be drawn, therefore there can be
at most n� 1 extra spaces in the obtained TR

S (n) .

REMARK. From the spiral-based algorithm and Corollary 2.9, with respect
to changes in the widths and heights of the tiles, n is an invariant associated
with the TR

S (n) . However, depending on the difference in the width (or height)
of the tiles, the number of extra spaces can be either n�1 or less than n�1.
Therefore, the number of extra spaces varies in a known way as a function
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of the sequence of tile sizes : it is a covariant with respect to modifications
of the tile sizes.

2.1.4 EIGHT DIFFERENT SPIRALS

In this section, we provide a method for obtaining seven more TR
S ,

which utilizes the direction (along which squares are arranged in a Fibonacci
rectangle) of seven different Fibonacci spirals.

THEOREM 2.10. Seven more sequences of Fibonacci rectangles and the
golden rectangle (in the limit, as n ! 1 ) can be obtained by making the
following changes in Theorem 1.19 :

By considering the anticlockwise movement as a replacement for clockwise
movement; by interchanging position of the first and second squares and then
following either the clockwise movement or the anticlockwise movement.

By considering the first and second squares side by side and then following
either the clockwise or the anticlockwise movement; by interchanging position
of the first and second squares and then following either the clockwise or the
anticlockwise movement.

Proof. Proof of this theorem follows from the proof of Theorem 1.19 and
Figure 2.9.

In Figure 2.9, first consider the Fibonacci rectangle spiral1 which has the
clockwise movement. The next Fibonacci rectangle is obtained by following
the anticlockwise movement (spiral7). The next two Fibonacci rectangles are
attained by interchanging position of the first and second square and then
following the clockwise and the anticlockwise movement respectively (spiral3
and spiral5). The next Fibonacci rectangle is given by spiral2 where the first
and second rectangle are arranged side by side. Similarly, from spiral2, the
other 3 Fibonacci rectangles can be obtained (spiral4, spiral6 and spiral8).

COROLLARY 2.11. One can obtain seven more TR
S by using the same

concept as used in theorem 2.10.

Proof. By making all the changes (as given in theorem 2.10) in the
spiral-based algorithm, we can obtain seven other TR

S .

Furthermore, the eight spirals will be mentioned with the names as given
in Figure 2.9.
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Eight sequences of the Fibonacci rectangles

REMARK. Associated with the TR
S , with respect to the change of spirals,

position of the tiles, position and area of these extra spaces are covariants.
For example, consider spiral4 and spiral6 in Figure 2.9. For both spirals,

the position of the first and second tiles is the same but the position of the
third tile is different. As we see, the position of the tiles is itself a covariant
which depends on the choice of a spiral.

EXAMPLE 2.12. In this example, for a given data, 8 different TR
S are

obtained and their graph is shown.

Given :
1. Five tiles with their areas 6; 24; 48; 48; 72.
2. The ratio between their widths and heights, i.e., height of ith tile =

1:618� (width of ith tile).

The widths and heights of given tiles are :
R1(1.93, 3.11), R2(3.86, 6.23), R3(5.45, 8.8), R4(5.45, 8.8), R5(6.67, 10.79).

Using the concept (or direction) of 8 spirals, eight computer generated TR
S

are demonstrated in Figure 2.10.
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Graph of above eight spiral-based rectangle tilings 

FIGURE 2.10

Eight different TR
S with their graph and respective areas

2.2. REDUCING AREAS OF THE EXTRA SPACES

In the preceding section, the obtained TR
S has some extra spaces also. For

the connectivity and other purposes, an extra space seems to be helpful ; for
example, in a house, a corridor is needed as an extra space. But to acquire a
compact shape, we may wish to reduce the sizes of these extra spaces.

In a TR
S , the areas of the tiles always stay unchanged. The extra spaces

are generated automatically, but their areas can be adjusted, i.e., it is possible
to reduce or to enhance the total area of the TR

S . To reduce the areas of these
extra spaces in a TR

S , the following two methods will be used :
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1. Choosing a different order of allocation,

2. Swapping the width and height of some tiles.

REMARK. Only those methods are used for reducing the areas of the extra
spaces by which the connectivity will remain preserved (refer to Corollary
3.14).

For example, it is possible to cross out all the extra spaces (refer to Section
2.2.3), however, as far as the applications are concerned, the extra spaces are
valuable. Hence, the method explained in Section 2.2.3 won’t be added to the
spiral-based algorithm.

2.2.1 ORDER OF ALLOCATION

DEFINITION 2.13. In the spiral-based algorithm, the order in which the tiles
are allocated is called the order of allocation.

In the spiral-based algorithm, n! TR
S are obtained by changing the order

of allocation of the tiles. Here each TR
S may have a different area because of

the differences in areas of the extra spaces. Therefore, it is possible to pick
one having least area among the n! TR

S .

REMARK. The total area of the extra spaces is a covariant of the TR
S (n) ,

with respect to changes in the order of allocation.

2.2.1.1 ARRANGING THE TILES IN ASCENDING ORDER AFTER THEIR AREAS

We are not ready to give a least area order of allocation for any TR but we
are going to prove that the ascending order of allocation always gives “lesser
area TR

S ” as compared to the descending order of allocation. Before moving
to this result, it is important to describe the ascending order of allocation.

DEFINITION 2.14. The order of allocation in which all the tiles are arranged
in the order of increasing areas is called the ascending order of allocation.

Before applying the spiral-based algorithm to the given tiles, the tiles are
arranged in the ascending order.

EXAMPLE 2.15. Given three tiles (R1 ,R2 ,R3 ) with their respective ar-
eas(width and height) 9(3 � 3), 24(6 � 4) and 15(5 � 3). For constructing
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TR
S (3) , one way is to use the same order as given initially (Condition A); an-

other way is to arrange them in ascending order, i.e., 9, 15 and 24 (Condition
B). The two TR

S (3) obtained with these conditions are shown in Figure 2:11.
We see that Area(condition A) > Area(condition B).

t

  Area = 11    7 = 77    Area = 11    6 = 66

Condition A Condition B

t
t

t

4

+

3

  6       +      5

  5       +      6

3

+

3

×  ×  

R1 R1

R2

R2
R3

R3

FIGURE 2.11

Explaining the ascending order of allocation

LEMMA 2.16. If, for every even i � n, we have `i � Li�1 = `i�1 + Li�2

(in particular if the sequence f`ig is non-increasing) then we have, for n
even :

Ln = `n�1 + `n�3 + � � �+ `1 ;
and for n odd :

Ln = `n + Ln�1 = `n + `n�2 + `n�4 + � � �+ `1 :
If, for every odd i � n (i 6= 1 ), we have hi � Hi�1 = hi�1 + Hi�2 (in

particular if the sequence fhig is non-increasing) then we have, for n odd :

Hn = hn�1 + hn�3 + � � �+ h2 + h1 ;
and for n even :

Hn = hn + Hn�1 = hn + hn�2 + hn�4 + � � �+ h2 + h1 :
Proof. We prove the result by mathematical induction.
Initially for n = 1, L1 = `1 and H1 = h1 .
For n = 2, from the spiral-based sequence L2 = max(L1; `2) =

max(`1; `2) = `1 and H2 = H1 + h2 = h1 + h2 .
For n = 3, L3 = L2 + `3 = `1 + `3 and H3 = max(H2; h3) =

max(h1 + h2; h3) = h1 + h2 .
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Hence the result is true for n = 2 and n = 3.
Let the result be true for all n0 < n . Now we prove the result for n . If n

is odd, for even n� 1 we have
Ln�1 = `n�2 + `n�4 + � � �+ `1 and
Hn�1 = hn�1 + hn�3 + hn�5 + � � �+ h2 + h1 :
From the spiral-based sequence for odd n , we have
Ln = Ln�1 + `n = `n + `n�2 + `n�4 + � � �+ `1 and
Hn = max(Hn�1; hn)= max(hn�1 + hn�3 + hn�5 + � � �+ h2 + h1; hn)= hn�1 + hn�3 + hn�5 + � � � + h2 + h1 (because fhig is a non-increasing

sequence).

If n is even, for odd n� 1 we have
Ln�1 = `n�1 + `n�3 + `n�5 + � � �+ `1 and
Hn�1 = hn�2 + hn�4 + � � �+ h2 + h1 .
From the spiral-based sequence for even n , we have
Ln = max(Ln�1; `n)= max(`n�1 + `n�3 + `n�5 + � � �+ `1; `n)= `n�1+`n�3+`n�5+ � � �+`1 (because f`ig is a non-increasing sequence)

and
Hn = Hn�1 + hn = hn + hn�2 + hn�4 + � � �+ h2 + h1 .
Hence by mathematical induction, the result is true for n .

THEOREM 2.17. Suppose we have n tiles, given by their areas and the
assumption that the ratio between their widths and heights is fixed, i.e. the
same for all the tiles. Then the area of TR

S (n) for the ascending order of
allocation is at most equal to the area of TR

S (n) for the descending order of
allocation.

Proof. Let Ri be the ith tile for i = 1; 2; : : : ; n , the area of Ri is Si and
the ratio of hi over `i is a fixed number k , i.e., hi = k � `i for every i . Also
consider S1 � S2 � � � � � Sn , which implies that `1 � `2 � � � � � `n and
h1 � h2 � � � � � hn . The proof is structured according to the parity of n .

1. Calculating the area in the ascending order for n even and n odd

We have An = Hn � Ln , where Hn and Ln are given by Corollary 2.4.

2. Calculating the area in the descending order for n even and n odd

For this order we have A0n = H0n �L0n , according to the following description.
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Let h0i = hn�i+1 and `0i = `n�i+1 . Now the sequences f`0ig and fh0ig are
non-increasing, therefore using Lemma 2.16 we obtain the following results :

2.1 For even n , we have

H0n = h0n + h0n�2 + h0n�4 + � � �+ h02 + h01 = hn + hn�1 + hn�3 + � � �+ h1

and
L0n = `0n�1 + `0n�3 + � � �+ `01 = `n + `n�2 + `n�4 + � � �+ `2 :

2.2 For odd n , we have

H0n = h0n�1 + h0n�3 + � � �+ h02 + h01 = hn + hn�1 + hn�3 + � � �+ h2

and

L0n = `0n + `0n�2 + `0n�4 + � � �+ `01 = `n + `n�2 + `n�4 + � � �+ `1 :
Now we are going to prove that An � A0n . For n even, we will do it by

proving that Hn � H0n and Ln � L0n . But for n odd, this argument would
not work since Ln � L0n ; in this case we will prove the result by proving
1=k � Hn � L0n and Ln � 1=k � H0n .

3. n is even

3.1 To show that Hn � H0n when n is even;
From Corollary 2.4, we have

Hn = hn+max
�
hn�1; �hn�2 +max

�
hn�3; �hn�4 + � � �+max(h3; h2 + h1)

���� ;
which implies that Hn can have any one of the following values :

hn + hn�1

hn + hn�2 + hn�3

hn + hn�2 + hn�4 + hn�5
...
hn + hn�2 + hn�4 + � � �+ h1

From 2.1, H0n = hn + hn�1 + hn�3 + � � �+ h1 :
The maximum number of terms in Hn and H0n is 1

2 n + 1. It is easy to
see that, for each i , the ith term of Hn is less than or equal to the ith term
of H0n , which implies that Hn � H0n .

3.2 To show that Ln � L0n when n is even;
From Corollary 2.4, we have
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Ln = max
�`n; �`n�1 +max

�`n�2; `n�3 + : : :max(`4; `3 + `2)
���

and from 2.1, L0n = `n + `n�2 + `n�4 + � � �+ `2 :
The maximum number of terms in Ln and L0n is 1

2 n . It is easy to see
that, for each i , the ith term of Ln is less than or equal to the ith term of
L0n , which implies that Ln � L0n .

4. n is odd
We know that each hi = k � li . From Corollary 2.4, we have

1=k �Hn = max
�`n; �`n�1 +max

�`n�2; �`n�3 + � � �+max (`3; `2 + `1)
����

and Ln = `n +max
�`n�1; �`n�2 + � � �+max (`4; `3 + `2)

��
.

From 2.2, we have
1=k � H0n = `n + `n�1 + `n�3 + � � �+ `2

and L0n = `n + `n�2 + `n�4 + � � �+ `1 .

4.1 To show that 1=k � Hn � L0n when n is odd;
The maximum number of terms in 1=k �Hn and L0n is 1

2 (n� 1)+ 1. It is
easy to see that, for each i , the ith term of 1=k �Hn is less than or equal to
the ith term of L0n , which implies 1=k � Hn � L0n .

4.2 To show that Ln � 1=k � H0n when n is odd;
The maximum number of terms in Ln and 1=k �H0n is 1

2 (n� 1)+ 1. It is
easy to see that, for each i , the ith term of Ln is less than or equal to the
ith term of 1=k � H0n , which implies Ln � 1=k � H0n .

When n is either even or odd, it is proved that An � A0n which proves the
theorem.

REMARK. For each TR
S (n) , there are n! orders of allocation. To attain one

with the least area, we compute the area of each TR
S and then compare all

the areas to select a TR
S (out of n! TR

S ) having the least area. However, this
comparison is feasible only for small values of n . To reduce the complexity
and to obtain a superior solution (not the best), we apply the ascending order
of allocation to the given tiles before applying the spiral-based algorithm.

EXAMPLE 2.18. Consider 3 tiles R1;R2;R3 . First we allocate the given
tiles in ascending order, i.e., fR1;R2;R3g and then allocate the same tiles in
a different order, i.e., fR1;R3;R2g .

Let the width and height of the tiles be : `1 = 3, h1 = 1, `2 = 2, h2 = 4,`3 = 3, h3 = 4.
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For the ascending order, the area of TR
S (3) is 30 while for the other order

the area is 25 (cf. Figure 2.12). Clearly, Area(1st order)> Area(2nd order)
which shows :

1. The ascending order of allocation is not the least area order of allocation
for all TR

S ,
2. The area of a TR

S is a covariant with respect to change in an order of
allocation.

R1

R2 R3t

t t

Area = 30                                         Area = 25

R1

R3
R2

FIGURE 2.12

Comparing the areas for two different orders of allocation

As the extra spaces have areas which depend largely on those of the tiles, it
is difficult to imagine an order of allocation which would give a least area TR

S

for any values of areas of the tiles i.e. a least area order of allocation defined
universally for any TR

S . This leads to an open problem which is described as
follows :

Open problem 1 : Does there exist a least area order of allocation valid
universally for any TR

S ? If yes, how can one describe it ?

2.2.2 SWAPPING THE WIDTH AND HEIGHT OF A TILE

After applying ascending order of allocation to the given tiles, the areas
of the extra spaces can be reduced by interchanging the width and height of
some tiles.

DEFINITION 2.19. AO is the area of the extra space drawn after drawing
ith tile (i > 1) with width `i and height hi (i.e., as given initially).

AI is the area of the extra space drawn after drawing ith tile (i > 1) with
width hi and height `i (i.e., the width and height are swapped).
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In the spiral-based algorithm, for interchanging the width and height of
a tile, consider each tile one by one. Suppose ith tile has to be drawn with
width `i and height hi . Calculate AO and AI for the ith tile. If AO > AI then
interchange the width and height of the ith tile, otherwise not.

The dimension of the extra spaces in the spiral-based algorithm can
be reduced by swapping the width and height of the tiles. But if all the
combinations of different tiles except first one (whose width and height would
be swapped) are taken into account, there are 2n�1 combinations.

Picking a combination having the least area among all the possible
combinations is feasible for the smaller values of n but as the value of n
increases it become complex exponentially. Therefore, to reduce the complexity,
we first compute the value of AO and AI corresponding to each tile and if
AO > AI , we swap its width and height (see Example 2.21).

DEFINITION 2.20. For constructing a TR
S , if the widths and heights of all

the tiles are considered as given initially, then the area of the TR
S will be

denoted by Ainitial .
And if the widths and heights of the tiles are interchanged (under condition

“if required” defined below), then the area of the TR
S will be denoted by Afinal .

If required condition means that the width and height of a tile are
interchanged only when AO > AI for that tile.

EXAMPLE 2.21. Consider 3 tiles R1;R2;R3 . Let the areas of given tiles
in the ascending order be 9(3�3), 15(5�3) and 24(6�4). We construct the
first TR

S (3) without swapping the width and height of any tile. To construct
other TR

S (3) , we compare AO and AI for each tile. For the 2nd and 3rd tile,
AO > AI , therefore, we swap the width and height of the 2nd and 3rd tile,
i.e., the width and height will be 3� 3, 3� 5 and 4� 6 (cf. Figure 2.13).

The above case demonstrate that Ainitial is not always greater than Afinal .

In many examples Ainitial > Afinal , therefore, the width and the height of
the tiles will be interchanged, if required.

REMARK. We modify the spiral-based algorithm by adding the following
two steps :

1. Before drawing the tiles, arrange them in the ascending order according
to their areas.

2. Before drawing each tile, interchange its width and height, if required.
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R1

R2 R3

 Ainitial = 11    6 = 66                  Afinal = 7    8 = 56

3

+

3

   5       +      6

5

+

3

     3    +      4

×   ×   

R1

R2 R3

FIGURE 2.13

Comparing Ainitial and Afinal

2.2.3 NO EXTRA SPACE

If extra spaces are not at all essential, they can be removed by adjusting
the ratio between the width and height of each tile.

EXAMPLE 2.22. Consider 3 tiles with widths and heights 2�3, 3�3 and
3� 5. For these tiles, a TR

S (3) is shown in Figure 2.14 (A) having area 36.
By altering the ratio between the width and height of the tiles, the modified
widths and heights are 2� 3, 2� 4:5 and 2� 7:5. For the newly obtained
widths and heights, a TR

S (3) is given in Figure 2.14 (B) having area 30.
Clearly, Figure 2.14 (B) does not have any extra space.

1

2
3

1

2

3

A                         B

FIGURE 2.14

No extra space

REMARK. The size of extra spaces can also be reduced by picking a TR
S

(out of eight TR
S ) having minimum area.
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2.3. RELATED WORK

DEFINITION 2.23. Given n rectangles, the rectangle packing problem consists
of finding a rectangle of minimum area that contains all the given rectangles
without any overlapping.

If only the arrangement is considered, then the rectangle packing problem
has some similarity with the TR .

The rectangle packing problem seeks to acquire an enclosing rectangle of
minimum area. After obtaining a best enclosing TR (from the point of view of
connectivity), some techniques which are used in rectangle packing problem
can be utilized to reduce the size of some extra spaces such that the number
of extra spaces and connectivity remains preserved.

Korf [24] introduced a method for reducing the sizes of extra spaces by
slicing them.

If merely rectangles are considered, then the TR has some similarity to
Shape grammar also.

DEFINITION 2.24. Shape grammar is a procedure for generating different
geometric shapes.

Shape grammars have been studied in different areas particularly in
computer-aided architectural design, as a method for providing a formalism
to create new designs. A shape grammar consists of the shape rules and a
generation engine that selects and processes the rules. A shape rule defines
how an existing (part of a) shape can be transformed from one to another
(See Stiny [38]).

From shape grammars, some ideas can be used to obtain different
rectangular and other shaped tilings which should be best from the point
of view of connectivity.

In this chapter, eight different TR
S have been obtained. In addition some

methods have been introduced to reduce the size of extra spaces. This concept
of obtaining the TR

S can be further extended to attain different shaped tilings
but in the next chapter, our main focus will be on proving that the TR

S is best
from the point of view of connectivity.



CHAPTER 3

CONNECTIVITY OF A RECTANGLE TILING

This chapter focuses on proving that a TR
S is one of the best TR from the

point of view of connectivity.

3.1 VIRTUAL PARTS AND ADJACENCY

The notion of adjacency among rectangles has already been defined in
Chapter 1. In this section we discuss a more general concept of adjacency
among tiles via extra spaces.

DEFINITION 3.1. A virtual part of a tiling (or a tile) is an extra space
which shares a full wall with that tiling (or tile).

If a virtual part of a tile is considered to be merged into that tile then we
will say that the virtual part has been made a real part of the tile.

EXAMPLE 3.2. For the first shape of Figure 3.1, t1 , t2 and t3 are extra
spaces and each extra space shares a full wall with the second, third and fourth
tiles respectively. Hence, t1 , t2 and t3 are the virtual parts of the second,
third and fourth tiles respectively.

REMARK. A virtual part can be made real by adjusting the ratios `i=hi

(cf. Section 2.2.3). In other words, the extra spaces can be either shrunk or
expanded by inserting some springs (cf. Kalay [23], Chapter 14, Physically
based space allocation).

Consider a tile having width a and height b and its virtual part having
width c and height d , which we denote by Ra;b and Vc;d respectively. The
transformation of a virtual part of a tile into a real part is done by one of
the following operations :
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Ra;b + Vc;b = Ra+c;b
Ra;b + Va;c = Ra;b+c :

EXAMPLE 3.3. In the second shape of Figure 3.1, t1 and t3 have been
transformed into real parts of the second and fourth tiles respectively, while
keeping t2 as a virtual part of the third tile.

1

2 t1

t2

t3
3

4 1

2
3

4

t2

   First shape                             Second shape

FIGURE 3.1

Making virtual parts real

DEFINITION 3.4. A tile (say K ) is said to be directly adjacent to a tile
(say R ) if K shares a wall or a sub-wall with R .

A tile K is said to be adjacent to a tile R via virtual parts if any of the
following holds :

1. Either the virtual part of K is directly adjacent to R or the virtual part
of R is directly adjacent to K

2. The virtual part of K is directly adjacent to the virtual part of R .
Adjacency between two virtual parts or adjacency between a virtual part and
a tile is same as direct adjacency between two rectangles (for the definition
of direct adjacency refer to Definition 1.9).

For example, in the first shape of Figure 3.1, t1 is adjacent to the third
tile, consequently, we also consider the second tile to be adjacent to the third
tile.

In Chapter 1, the notion of adjacency among two rectangles has already
been defined. Since in a TR an extra space is always a rectangle, the adjacency
between an extra space and a tile is the same as the adjacency between two tiles.
But whenever an extra space is present between two tiles, further discussion
is required.
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Consider there are n tiles, Rai;bi is the ith tile and Eci;di is the required
extra space. The following 4 cases define the adjacency among these tiles via
extra spaces :
1: When Eci;di is a virtual part of Rai;bi

EXAMPLE 3.5. In Figure 3.2, t is a virtual part of the third tile ; t is
adjacent to the first tile which implies that the third tile is adjacent to the first
one.

     

1

2 3

t 1

2

3

FIGURE 3.2

When Eci;di is a virtual part of Rai;bi

2: When Eci;di is not a virtual part of Rai;bi but is a virtual part of Raj;bj

EXAMPLE 3.6. In Figure 3.3, t is drawn after drawing second tile but it
is a virtual part of the first tile. And t is adjacent to the third tile, this implies
that the first tile is adjacent to the third tile.

1

2

t

3

1

2

3

FIGURE 3.3

When Eci;di is not a virtual part of Rai;bi but of Raj;bj

3: When Eci;di is a virtual part of more than one tile
Here there exist k > 1 tiles such that either ci = a1 + a2 + � � � + ak or

di = b1 + b2 + � � � + bk: For this condition, we divide the extra space Eci;di

between k parts such that Eci;di will be a virtual part of the k tiles.
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EXAMPLE 3.7. In the first shape of Figure 3.4, t is not sharing a full wall
with any of the tiles. Whereas in the second shape, where t is divided into 2
parts ( t1 and t2 ), it shares a full wall with the first and second tiles. Hence
t1 and t2 are the virtual parts of the second tile and first tile respectively.

1 2

3

1

2

                    First shape                  Graph                    Second shape          

3

1

2

3

t

1

2

3

t2

t1

FIGURE 3.4

When Eci;di is a virtual part of more than one tile

DEFINITION 3.8. If Eci;di shares a full wall with Ecj;dj and Ecj;dj is a
virtual part of Rak;bk then we say Eci;di is a virtual part of Rak;bk .

4: When an extra space Ec;d shares a full wall with r � 0 tiles and s > 0
extra spaces

In this case, either c = (a1 + a2 + � � � + ar) + (c1 + c2 + � � � + cs) or
d = (b1 + b2 + � � � + br) + (d1 + d2 + � � � + ds) . Also, a tile can have more
than one virtual parts.

For this condition, we divide the extra space Ec;d between r + s parts
such that Ec;d will be a virtual part of the r + s tiles.

EXAMPLE 3.9. In the first shape of Figure 3.5, t00 is not sharing a full
wall with any of the tiles or extra spaces. Whereas in the second shape, where
t00 is divided in 3 parts ( t001 , t002 and t003 ), it shares a full wall with t , t0 and the
first tile. Hence t001 , t002 and t003 are the virtual parts of the third tile, first tile
and second tile respectively. Clearly, second and third tiles have two virtual
parts.

REMARK. In the first shape of Figure 3.4 and 3.5, t and t00 are virtual
parts of the TR(2) and the TR(3) respectively.

Also, for a TR
S , Eci;di is a virtual part of either Rai;bi or TR

S (i� 1).
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1
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t'

t''
1
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3
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t

t'

t''2

t''1

t''3

FIGURE 3.5

When Eci;di shares a full wall with tiles and extra spaces

COROLLARY 3.10. The adjacency among the tiles remains unaffected even
when virtual parts are transformed into real parts.

Proof. As defined above, if a virtual part of a tile K would be adjacent
to a tile R or virtual part of R , then K would become adjacent to R . Here,
K is adjacent to R by means of a virtual part. If a virtual part of K is made
a real part of K then K would be directly adjacent to R . It means that in
both cases, K would be adjacent to R .

For example, in the first shape of Figure 3.1, the second tile is adjacent
to the third tile via t1 however in the second shape of Figure 3.1, the second
tile is directly adjacent to the third tile.

We denote the adjacency graph of TR and TR
S by GR and GR

S respectively.

COROLLARY 3.11. There always exist a path between any two vertices of
GR ; hence GR is connected.

Proof. From condition 4 of Section 1.2.1, each new tile must be adjacent
to at least one of the previously drawn rectangle. Now each new tile would
be adjacent to at least one of the previously drawn tile either directly or
via an extra space. Therefore by induction, each time a new tile is added to
say TR(i � 1), at least one edge gets added to a connected adjacency graph
GR(i� 1). Hence the new adjacency graph GR(i) is connected.

COROLLARY 3.12. For a TR
S (n) when n > 4 , the new nth tile Rn is

adjacent to Rn�1 , Rn�3 and Rn�4 .

Consider virtual parts as real parts of the corresponding tiles.

If Rn is drawn either to the left or to the right of TR
S (n� 1) then
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hn = hn�1 + hn�3 + hn�4

If Rn is drawn either above or below TR
S (n� 1) then

ln = ln�1 + ln�3 + ln�4 :
Proof. For a TR

S (n) when n > 4, Rn is adjacent to Rn�1 , Rn�3 and Rn�4

either directly or by considering its virtual part real. For example, in all TR
S (5)

of Figure 2.10, R5 is adjacent to R1 , R2 and R4 . Clearly, every new tile is
adjacent to three previously drawn tiles.

If an extra space is required after drawing Rn (either to the left or to
the right of TR

S (n � 1)), then it will be drawn either below Rn or below
TR

S (n� 1). In both cases, if the virtual parts are transformed into real parts of
the corresponding tiles, then Rn will share a full wall (for the definition of
sharing a full wall refer to Definition 1.8) only with Rn�1 , Rn�3 and Rn�4

because Rn is only adjacent to Rn�1 , Rn�3 and Rn�4 when n > 4. This
implies

hn = hn�1 + hn�3 + hn�4

Similarly, if Rn is drawn either above or below TR
S (n� 1), then

ln = ln�1 + ln�3 + ln�4:
Let ER(n) and ER

S (n) be the number of edges for the adjacency graphs
GR(n) and GR

S (n) respectively.

THEOREM 3.13. If n > 3 then ER
S (n) = 3n� 7 and the number DR

S (n) of
triangles in GR

S (n) is equal to DR
S (n) = 2n� 6 .

Proof. From the point of view of adjacency, it does not matter whether
the extra spaces are virtual or real parts (cf. Corollary 3.10).

In every shape of Figure 2:10, ER
S (n) = 3n � 7. If n is increased by

one, then from Corollary 3.12, a new tile would be adjacent to 3 existing
tiles, and hence ER

S (n+ 1) = 3(n+ 1)� 7. By induction, for n > 3 we have
ER

S (n) = 3n� 7.
Also, for all the shapes of Figure 2:10, the number of triangles 5 ) in the

corresponding GR
S (n) is 2n�6. If we add a new tile to TR

S (n�1), then GR
S (n)

5 ) A triangle is a cycle of length 3.
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will be GR
S (n� 1) with 3 more edges, because the new tile will be adjacent

to 3 existing tiles. These 3 edges always form 2 new triangles and therefore
by induction for n > 3, the number of triangles is 2n� 6.

It is noteworthy that for n = 3, ER
S (n) = 3n�6 and the number of triangles

is 2n� 5.

REMARK. The adjacency among the tiles remains unchanged even by
transforming the virtual parts into real parts, therefore with respect to
modification of the tile sizes, GR is an invariant.

COROLLARY 3.14. GR
S (n) remains preserved even after applying any one

of the 2 methods given in Section 2.2 and the method given in Section 2.2.3.

Proof. By applying any one of the two methods as given in Section 2.2,
the sizes of the virtual parts get either increased or decreased. But if the virtual
parts are turned into real parts, then from the point of view of adjacency,
it does not matter whether the sizes of the virtual parts are changed or not.
Therefore, after applying these two methods, the GR

S (n) remains preserved.

By applying the third method, there would not be any extra space in a
TR

S ; obviously the GR
S (n) remains preserved.

3.2. ADJACENT SIDES, ADJACENT NUMBERS AND ADJACENT SUM

The results given in this section will be further used to prove an important
result in the next section (see Theorem 3.24 and Corollary 3.25).

A TR consists of rectangles and TR is also a rectangle having four sides.

DEFINITION 3.15. Every side of a TR is called an adjacent side.

Suppose a and b are the width and height of a TR while `i and hi denote
as usual the width and the height of a tile Ri . If the virtual parts are made
into real parts of the corresponding tiles then we can write

a = a1 + a2 + � � �+ ak = a01 + � � �+ a0k0 and b = b1 + b2 + � � �+ bl =
b01 + � � �+ b0l0 , where the ai and the a0i are subsets of the `i , and the bi and
the b0i are subsets of the hi . In each case the two decompositions correspond
to opposite sides of the rectangle TR .
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The values of k and k0 , or l and l0 can be either the same or different.
These numbers k , k0 and l , l0 are called the adjacent numbers associated
with each adjacent side.

To fix the notation, let k1 , k2 , k3 and k4 be the adjacent numbers of a TR

corresponding to the left, upper, right and lower adjacent sides respectively.

EXAMPLE 3.16. Refer to Figure 3.6 where the adjacent numbers of all
the adjacent sides of TR(4) are calculated.

k1 = 2

k2 = 3

k3 = 1

k4 = 2

FIGURE 3.6

Adjacent numbers for a TR(4)

DEFINITION 3.17. The total number of sides of the tiles of a TR facing the
outer world are collectively called the adjacent sum, i.e., SR = k1+k2+k3+k4 .

THEOREM 3.18. For a TR(n) , the following equality holds :

ER(n)+ SR(n) = 3n+ 1 :
Proof. This result is proved by induction. First, we check that it holds

for n = 1, then we shall assume that it is true for n and deduce it for n+ 1.

For n = 1, the result is obvious as ER(1) = 0 and SR(1) = 4 = 3n + 1.
Now suppose ER(k)+ SR(k) = 3k + 1.

If Rk+1 is added to any adjacent side of TR(k) (say left), then Rk+1 will
be adjacent to all the tiles on the left side. Therefore, by adding Rk+1 , the
following changes occur (refer to Figure 3:7 where virtual part of Rk+1 if
exist, is considered real) :
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1. k1 becomes one
Due to this change, ER(k) gets increased by k1 , i.e., ER(k+1) = ER(k)+k1 .
2. k2 and k4 are increased by one
Because of this change, SR(k) gets increased by 2 and reduced by (k1�1),

i.e., SR(k + 1) = SR(k)+ 2� (k1 � 1).
3. k3 remains unchanged.

k3k1

k2

k4

1

1

1

1

+

k2+ 1 

k3 

k4+ 1 

1TR(k)Rk+1
TR(k+1)

FIGURE 3.7

Changes in the adjacent numbers when a tile is added to the left of TR(k)

Thus, ER(k + 1) + SR(k + 1) = ER(k) + k1 + SR(k) + 2 � (k1 � 1) =
ER(k)+ SR(k)+ 3 = 3k + 1+ 3 = 3(k + 1)+ 1, as required.

LEMMA 3.19. For a TR
S (n) when n > 3 , SR(n) = 8 and fk1; k2; k3; k4g

is a cyclic permutation of f3; 2; 2; 1g .

Proof. From Theorem 3.13 we have ER
S (n) = 3n� 7 when n > 3. From

Theorem 3.18 we have ER(n) + SR(n) = 3n + 1. It follows that for a TR
S (n)

we have SR(n) = (3n+ 1)� ER
S (n) = (3n+ 1)� (3n� 7) = 8 when n > 3.

In each TR
S of Figure 2.10, the adjacent numbers for the adjacent sides are

given by the set f3; 2; 2; 1g . Also, from Corollary 3.12, a new tile is adjacent to
3 existing tiles. Therefore, if a new tile is added, the following transformations
occur in the set f3; 2; 2; 1g :

a. 3 becomes 1 because a new tile has been added to this side
b. 2 becomes 3 because this side is adjacent to the side to which the new

tile has been added
c. The next 2 remains unchanged because this side is opposite to the side

to which the new tile has been added
d. 1 becomes 2 because this side is adjacent to the side to which the new

tile has been added.
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These four points are explained using Figure 3.7.

Hence, after adding a new tile the same set is established, i.e., f3; 2; 2; 1g .

REMARK. Associated with a TR
S , from Lemma 3.19, SR and the setf3; 2; 2; 1g are invariants with respect to the addition of a new tile, however

the adjacent number for each adjacent side changes when a new tile is added
(cf. Figure 3.7), therefore each adjacent number is a covariant.

3.3. BEST TR ON THE BASIS OF CONNECTIVITY

In this section, we proceed with some properties of planar graphs which
will be used to prove further results.

3.3.1 PLANAR GRAPHS

The theory of planar graphs is an extensive field to explore and has many
interesting applications in various other fields.

DEFINITION 3.20. A planar graph is a graph that can be embedded in
the plane in such a way that no two edges cross each other. If a graph G is
embedded in this way, then the points of the plane not on G are partitioned
into open sets called faces.

Euler discovered the basic relationship between the numbers of vertices,
edges and faces.

THEOREM 3.21 (Euler’s Formula). Let G be a connected planar graph
with n vertices, m edges, and l faces. Then

n� m+ l = 2

.

Proof. For a proof refer to Diestel [10], Theorem 4.2.9.

From Euler’s formula, we have the following lemma.
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LEMMA 3.22. If G is a (connected) simple, finite planar graph with n
vertices (n � 3) , then G has at most 3n�6 edges. Furthermore, if G contains
no triangles, then G has at most 2n� 4 edges.

Proof. For a proof refer to Diestel [10], Corollary 4.2.10.

DEFINITION 3.23. Let e be an edge with endpoints fu; vg in a graph G .
Subdividing the edge e means that a new vertex w is added to VG , and that
edge e is replaced in EG by an edge e0 with endpoints fu; wg and an edge
e00 with endpoints fw; vg .

Two graphs G and H are homeomorphic if there is an isomorphism from a
subdivision of G to a subdivision of H (Jonathan and Yellen [16], Chapter 7).

From Lemma 3.22, it follows that the two graphs K5 and K3;3 are non-
planar. Kuratowski proved that these two graphs are the only barriers to
planarity.

THEOREM (Kuratowski’s Theorem [1930]). A graph is planar if and only
if it contains no sub-graph homeomorphic to K5 or to K3;3 .

Proof. For a proof of this theorem and details about planar graphs we
refer to Jonathan and Yellen [16], Chapter 7 and Theorem 7.4.1.

3.3.2 BEST RECTANGLE TILING

By using some of the results of Sections 3.1, 3.2 and 3.3.1, we prove that
the spiral-based algorithm provides one of the best TR from the point of view
of connectivity.

THEOREM 3.24. For any TR(n) , we have ER(n) < 3n � 6 provided that
n > 3 .

Proof. GR is always planar because overlapping among the tiles is not
admitted. It is simple (because of symmetry, i.e., if A is adjacent to B then
B is adjacent to A ) and also connected (cf. Corollary 3:11).

From here on, if a planar graph is mentioned, it means a simple, connected,
planar graph and if an edge is mentioned it means an edge in the corresponding
GR .

Since GR(n) is planar, it follows from Lemma 3.22 that ER(n) � 3n � 6.
Therefore, it is enough to prove that ER(n) 6= 3n� 6.
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We proceed by induction starting from the case where n = 4. In this case
the only graph having 3n� 6 = 6 edges is the complete graph K4 illustrated
in Figure 3.8.

3

1

4

2

FIGURE 3.8

Graph having 6 edges

Thus we are led to prove that GR(4) is not isomorphic to K4 . If it were,
then each tile would be adjacent to 3 other tiles (as shown in Figure 3.8).
Now, if the first tile is adjacent to the remaining three tiles, there are three
possibilities :

1. Three walls of the first tile are shared
Clearly, two of the other tiles must be situated on opposite sides of the

first tile. Hence these tiles cannot touch each other and they are not adjacent
(see Figure 3.9).

4

3

1 2

FIGURE 3.9

Two tiles on opposite sides of the first tile

Note : For our purpose in all the figures the extra spaces are considered
as real parts of the corresponding tiles.

2. Only two walls of the first tile are shared
As in the preceding case, we can assume that these walls are not opposite.

Then we can assume, without loss of generality, that two of the tiles are
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situated on the right of the first tile R1 , one above the other (say R3 on top
of R4 ), and that the remaining tile R2 lies below R1 or to the left of R1 (as
in Figure 3.10). Then R2 is at a certain distance from R3 .

2 1

4

3 1

2

3

4 2

1

3

4

FIGURE 3.10

TR(4) where only two walls of the first tile are being shared

3. Only one wall of the first tile is shared
In this case, there is only one possibility, as shown in Figure 3:11. Clearly,

two of the tiles are too distant from each other to be adjacent.

1

2 3 4

FIGURE 3.11

TR(4) where only one wall of the first tile is being shared

Thus we have shown that ER(4) 6= 6 for any rectangle tiling of order 4.
We now make the induction hypothesis that ER(k) 6= 3k�6 i.e. ER(k) � 3k�7
for any rectangle tiling of order k (where k � 4). We need to prove that
ER(k + 1) 6= 3(k + 1)� 6.

Suppose ER(k) = 3k� 7. Then to have ER(k+ 1) = 3(k+ 1)� 6, four edges
need to be added to GR(k) .
From Theorem 3.18 we have ER(k) + SR(k) = 3k + 1 implies SR(k) =
(3k + 1)� (3k � 7) = 8 i.e. k1 + k2 + k3 + k4 = 8.
If we add 4 edges to GR(k) , the adjacent number for at least one adjacent
side should be 4. Let’s say k1 = 4 (cf. Conditions 5 and 6, Section 1.2.1).

Now, SR(k) = 8 and k1 = 4 implies k2 + k3 + k4 = 4, i.e., fk2; k3; k4g =f2; 1; 1g . This set is possible only when k = 2, but in our induction hypothesis
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we are assuming that k � 4. Hence it is not possible to add 4 edges to GR(k)
to obtain GR(k + 1), when GR(k) has 3k � 7 edges.
If ER(k) is even smaller, say ER(k) = 3k � 7 � j , then k1 get increased by
j while the set f2; 1; 1g remains unchanged, i.e., fk2; k3; k4g = f2; 1; 1g as
before. This means that it is not possible to add 4 or more edges to GR(k)
to acquire GR(k + 1). Hence, ER(k + 1) 6= 3(k + 1)� 6, as asserted.

REMARK. From Theorem 3.24 we have ER(n) � 3n�7 when n > 3, and
in this case there does exist a tiling for which ER(n) = 3n� 7 (cf. Theorem
3.13).

For n = 3, there exists a tiling for which ER(3) = 3n � 6 = 3 (refer to
Figure 3:12). For n = 1 and n = 2, there is only one possibility, namely
ER(1) = 0 and ER(2) = 1.

3

1 2

1 2

3

FIGURE 3.12

TR(3) having 3 edges

COROLLARY 3.25. A TR
S is one of the best TR from the point of view of

connectivity.

Proof. From Theorem 3.13, for a TR
S (n) we have ER

S (n) = 3n� 7 when
n > 3 and from Theorem 3.24 we have ER

S (n) � 3n � 7 implies that the
spiral-based algorithm gives one of the best TR(n) for n > 3 from the point
of view of connectivity.

The cases where n � 3 are obvious (see above Remark).

COROLLARY 3.26. The tiling by squares in the golden rectangle is one of
the best tilings of a rectangle by squares from the point of view of connectivity.

Proof. In a TR
S , the arrangement of rectangles is same as the arrangement

of squares in the golden rectangle. Also if n > 3, then the golden rectangle
has 3n� 7 edges. Therefore, from Corollary 3.25, the tiling by squares in the
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golden rectangle is one of the best tilings by squares from the point of view
of connectivity.

REMARK. In the spiral-based algorithm, sometimes there are extra spaces
which help to maximize the connectivity; however in the golden rectangle
there is no extra space and it is one of the best tilings from the point of view
of connectivity. This may be one of the reasons for using the golden ratio so
often.

Open problem 2 : Does there exist a family of TR(n) which is best from
the point of view of connectivity i.e. having 3n� 7 edges ?

In this chapter, many covariants associated with a TR and TR
S have been

provided but the focus was on proving that a TR
S is one of the best TR from

the point of view of connectivity. In the next chapter the idea behind the
spiral-based algorithm will be extended to obtain other shaped tilings.
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CHAPTER 4

GENERALIZING TR
S USING AN ALLOCATION MATRIX

In this chapter, we introduce allocation matrices, a mathematical object
which behaves as a set of constraints. The purpose of an allocation matrix is
to control the quality and number of possible tilings, according to the wishes
of architects, etc. Allocation matrices are also used to obtain some tilings
other than TR . As an illustration, a plus-shape tiling has been developed by
putting together five different TR

S (because TR
S is one of the best TR from

the point of view of connectivity, cf. Corollary 3.25).

4.1. FIRST DEFINITIONS

4.1.1 ALLOCATION MATRIX

The relative weights of the desired proximities among the tiles are
determined by considering the relationships between the activities they house.
For example the number of trips between each pair of tiles is a relation
between the activities they house. On this basis, in a hospital, the room of
a nurse is closer to the room of a patient in comparison to the room of a
surgeon. The trips can be further weighed on the basis of the size of the tiles.
The obtained results are then recorded in the form of a matrix, which lists
the weight of the connection between each pair of tiles. This matrix is called
an allocation matrix (Kalay [23], Chapter 13 and Figure 13.7).

An allocation matrix of order n� n is represented by AT (n) . In AT , the
numbers vary from 0 to 10 and the matrix is always symmetric. For example,
one of the AT (16) is given in Figure 4.2. In a sense, the numbers in AT

represent the probability of two tiles being adjacent. For example, the number
10 corresponds to the maximum probability for the tiles to be adjacent whereas
the number 0 stands for the lowest probability for the tiles to be adjacent.

Occasionally it may be necessary to overlook a higher number and consider
a lower number in order to obtain a tiling. Therefore, AT is not a constraint
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which needs to be entirely satisfied but it represents a set of constraints. This
nature of AT leads to an open problem as follows :

Open problem 3 : How to interpret AT and which interpretation leads to
the best result for the grouping of the tiles ?

In the next section, a precise method to evaluate AT is specified, which comes
handy for obtaining the initial adjacency pairs.

4.1.2 PLUS-SHAPE TILING

DEFINITION 4.1. We refer to plus-shape tiling for shape tiling in the sense
of Definition 1.5 when the given shape is a cross (Figure 4.1(A)). We denote
it by TP .

A TP of order n is denoted by TP(n) . To obtain a TP , the plus shape is
first divided into 5 rectangles (we shall denote them by central, left, upper,
right and lower TR ) as shown in Figure 4.1(B) and all these TR can have
either the same or different areas. Then all the tiles are grouped into 5 subsets
and for every group, a TR

S is constructed. At last, the 5 obtained TR
S are

adjoined and extra spaces (if required) are drawn to encompass a TP .

Left Central

Upper

Right

Lower

          (A)                                                   (B)

FIGURE 4.1

A plus shape and its parts
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4.2. INITIAL ADJACENCY PAIRS

For categorizing the tiles into 5 groups, we need to define what we call
initial adjacency pairs.

DEFINITION 4.2. An adjacency pair consists of 2 tiles which are adjacent.
The initial adjacency pairs are obtained from AT as follows :

Let Ip be a set of tiles forming the initial adjacency pairs and initially
Ip = ? . Let Ri be a tile corresponding to the ith row of allocation matrix
AT (n) and AT (n) is represented by [aij]n�n . M = maxfaijg gives the highest
number of all rows and we have i = 1; :::n ; j = 1; :::; n .

We start by considering all the pairs of tiles corresponding to M as initial
adjacency pairs ; for example, for AT (16) in Figure 4.2 where M = 10,
(R5;R8) , (R6;R7) , (R10;R11) , (R12;R14) , (R13;R14) are the initial adjacency
pairs corresponding to the number 10.

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 

R1 0 8 6 6 8 6 9 6 4 5 3 2 2 2 8 6 

R2 8 0 6 6 8 6 9 6 4 5 3 2 2 2 8 6 

R3 6 6 0 8 6 8 6 9 4 4 3 6 6 4 4 6 

R4 6 6 8 0 6 8 6 9 4 4 3 4 4 4 4 6 

R5 8 8 6 6 0 6 9 10 2 2 2 2 2 2 4 2 

R6 6 6 8 8 6 0 10 9 6 2 2 2 2 2 4 2 

R7 9 9 6 6 9 10 0 6 2 2 2 2 2 2 4 2 

R8 6 6 9 9 10 9 6 0 6 6 4 4 4 4 4 6 

R9 4 4 4 4 2 6 2 6 0 8 6 6 6 6 6 9 

R10 5 5 4 4 2 2 2 6 8 0 10 4 4 4 6 4 

R11 3 3 3 3 2 2 2 4 6 10 0 2 2 2 4 4 

R12 2 2 6 4 2 2 2 4 6 4 2 0 8 10 2 9 

R13 2 2 6 4 2 2 2 4 6 4 2 8 0 10 2 9 

R14 2 2 4 4 2 2 2 4 6 4 2 10 10 0 2 4 

R15 8 8 4 4 4 4 4 4 6 6 4 2 2 2 0 6 

R16 6 6 6 6 2 2 2 6 9 4 4 9 9 4 6 0 

FIGURE 4.2

An AT (16)

Now we reduce M by 1 and consider every row of AT one by one.
If Ri 2 Ip we skip the ith row, otherwise we select all the pairs of tiles
corresponding to M from AT and place them in Ip . For AT (16) we skip rows
5, 6, ... and 14 except row 9. All the adjacency pairs corresponding to the
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number 9 in the other rows of AT are (R1;R7) , (R2;R7) , (R3;R8) , (R4;R8) ,
(R9;R16):

The process is repeated until
Sn

i=1 Ri = Ip i.e., until all tiles have been
exhausted. For AT (16) only one tile is not covered, namely R15: All the
adjacency pairs for number 8 in the row corresponding to R15 are (R15;R1) ,
(R15;R2):

For further details, refer to the initial adjacency pair algorithm (Section
A.3).

4.3. GROUPING OF THE TILES

Here we describe a procedure for extracting the groups from the initial
adjacency pairs.

We start by considering R1 as the first member of the first group.
The formation of a group Gi starts by looking for a tile Rj which is not

yet covered in any of the created groups. Each adjacency pair has two tiles,
this implies that Rj is adjacent to at least one other tile.

After attaining two members of Gi , we search for other members of Gi .
For convenience we denote the tiles of an adjacency pair by fRa;Rbg . If Ra

is common between members of Gi and any other adjacency pair, then we
consider Rb as a member of Gi . By following this procedure for all initial
adjacency pairs, we obtain the groups for the given tiles.

For further details refer to the first four steps of the algorithm given in
Section A.4 and coming example.

EXAMPLE 4.3. For example consider the initial adjacency pairs obtained
in Section 4.2 for AT (16) in Figure 4.2. For these pairs, we obtain groups as
follows :

1. Obtaining the members of the first group
From the initial adjacency pairs, R1 is adjacent to R7 and R15 , R15 is

adjacent to R2 , and R7 is adjacent to R2 and R6 . Therefore, the members of
the first group are R1;R2;R6;R7; and R15 .

2. Obtaining the members of the second group
R3 is not a member of the first group. Let R3 be the first member of

the second group. By referring to the initial adjacency pairs (R3;R8) , (R4;R8)
and (R5;R8) , the members of the second group are R3;R4;R5; and R8 .
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3. Obtaining the members of the third group
R9 is not a member of either the first or the second group, thus consider

R9 as first member of the third group. From the initial adjacency pairs, the
members of the third group are R9 and R16 .

3.4 Obtaining the members of the fourth group
Here, R10 is not among the members of the first, second and third groups.

By referring to the initial adjacency pairs, the members of the fourth group
are R10 and R11 .

3.5 Obtaining the members of the fifth group
Now, R12 is not a member of any obtained groups. From the initial

adjacency pairs, the members of the fifth group are R12;R13 and R14 .

LEMMA 4.4. The number of groups can be increased by one; by splitting
the largest group (say G) into 2 groups (say G1 and G2 ). The members of
G1 and G2 are obtained by redistributing the members of G between G1 and
G2 on the basis of comparison of proximity (as given in AT ) of each member
of G with every other member.

Proof. To increase the number of groups, the largest group G (which
has the maximum number of members) is obtained. Then using AT , the pair
(Ri;Rj) having the minimum weight in G is selected (the one with minimum
weight is selected because lesser is the weight, less important it becomes to
put Ri;Rj together in the same group). Consider Ri and Rj to be the first
members of G1 and G2 respectively and Rk be another member of G . Now
if the weight of the pair (Ri;Rk) (as given in AT ) is greater than the weight
of the pair (Rj;Rk) then Rk will become a member of G1 otherwise consider
it as a member of G2 .

At the end of this process, the number of groups will be increased by one.
For further details refer to step 6 of the algorithm given in Section A.4.

LEMMA 4.5. The number of groups can be reduced by one by coalescing
the two smallest groups.

Proof. The proof follows by obtaining the two groups having the least
number of members and then forming a new group with all the members of
these 2 groups. For further details, refer to step 7 of the algorithm given in
Section A.4.
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4.4. A SPIRAL-BASED PLUS-SHAPE TILING

From the given AT , we attain the initial adjacency pairs using the algorithm
given in Section 4.2. Subsequently, we obtain the groups of tiles using the
algorithm in Section 4.3. And if the acquired number of groups is less than (or
greater than) five then we can apply Lemma 4.4 (or Lemma 4.5 respectively).
After this, we construct a TR

S for every group to obtain a TP .

LEMMA 4.6. A TP is generated from five TR , by positioning a TR in the
centre and then positioning the remaining TR around the one in the centre.
After allocating each TR (other than the central one), an extra space is drawn,
if required.

Proof. The steps of the spiral-based plus-shape algorithm given below
discusses all the possibilities for constructing a TP which concludes the
proof.

4.4.1 A SPIRAL-BASED PLUS-SHAPE ALGORITHM

In this section, a TP is developed from 5 groups using a spiral-based plus-
shape algorithm. A TP obtained from this algorithm is called spiral-based
TP and we shall denote it by TP

S . The other shape tilings can be generated
by making a slight change in the same algorithm.

Step 1 : Obtaining initial adjacency pairs from AT for the given tiles
Step 2 : Grouping the tiles using initial adjacency pairs
Step 3 : Fixing the position of the groups

In a TP , there are 5 positions as shown earlier in Figure 4.1(B). The
allocation of any group at any position is done in such a way that no two
groups can have the same position.

Step 4 : Selecting a spiral for every group
The construction of each group is accomplished with the help of one of

the eight spirals as specified in Section 2:1:4.

Step 5 : Constructing each TR
S

After fixing position and spiral for each group, a TR
S is generated. To

fix the notation, we define the width and height of the central, left, upper,
right and lower TR

S as (L1;H1) , (L2;H2) , (L3;H3) , (L4;H4) and (L5;H5)
respectively.



GENERALIZING TR
S USING AN ALLOCATION MATRIX 77

Step 6 : Positioning the central TR
S

The central TR
S is positioned at say (x; y) . Assigning a TR at position

(x; y) means (x; y) is the upper left corner of this TR .

Step 7 : Positioning the left TR
S and drawing an extra space

7.1 The left TR
S is positioned at (x � L2; y) in such a way that its upper

right corner coincides with the upper left corner of the central TR
S .

7.2 Drawing an extra space
For achieving a TP , in the upcoming steps, either the width or the height

of the various TR
S is compared and an extra space is drawn, if required.

To draw an extra space, the following two possible cases are listed :
i . If H2 > H1 , we draw an extra space below the central TR

S at position
(x; y+ H1) having width L1 and height H2 � H1 .

ii . If H2 < H1 , we draw an extra space below the left TR
S at position

(x� L2; y+ H2) having width L2 and height H1 � H2 .

Step 8 : Positioning the upper TR
S and drawing an extra space

The upper TR
S is positioned at (x; y � H3) . If L1 > L3 we draw an extra

space at position (x + L3; y � H3) having width L1 � L3 and height H3 . If
L3 > L1 we draw an extra space at position (x+ L1; y) having width L3 � L1

and height max(H1;H2) .
To fix the notation, let G1;G2;G3;G4;G5 be the central, left, upper, right

and lower TR
S respectively. For better understanding of upcoming step, refer

to Figure 4.3 where coloured rectangles are extra spaces.

G1 G1 G1 G1 G1

G3 G3 G3G3 G3

G5 G5 G5 G5G5

L1 > L 3, L1 > L5   L3 > L1 > L5  L3> L5 > L1 L5 > L3 > L1  L5 > L1 > L3   

FIGURE 4.3

Comparing L1; L3; L5

Step 9 : Positioning the right TR
S and drawing an extra space

The right TR
S is positioned at (x +max(L1;L3;L5); y) (see Figure 4.3). If

H4 > max(H1;H2) we draw an extra space at position (x�L2; y+max(H1;H2))
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having width L2 + max(L1;L3;L5) and height H4 � max(H1;H2) . If H4 <
max(H1;H2) we draw an extra space at position (x+max(L1;L3;L5); y+H4)
with width L4 and height max(H1;H2)� H4 .

Step 10 : Positioning the lower TR
S and drawing an extra space

The lower TR
S is positioned at (x; y+max(H1;H2;H4)) . If L5 < max(L1;L3)

we draw an extra space at position (x+ L5; y+max(H1;H2;H4)) with width
max(L1;L3) � L5 and height H5 . If L5 > max(L1;L3) we draw an extra
space at position (x + L1; y � H3) with width L5 � max(L1;L3) and height
max(H1;H2)+ H3 .

4.4.2 THE AREA OF A SPIRAL-BASED PLUS-SHAPE TILING

Consider a TP
S is made up of two rectangles say RA and RB . RA is made

up of the central, lower and upper TR and RB is made up of the central, left
and right TR , refer to Figure 4.1(B). If the areas of RA and RB are added
then the area of the central TR is counted twice. Therefore the total area of
a TP

S is obtained by adding the areas of RA and RB and subtracting the area
of the central TR .

LA = width of RA = max(L1;L3;L5)

HA = height of RA = H3 + H5 +max(H1;H2;H4)

LB = width of RB = L2 + L4 +max(L1;L3;L5)

HB = height of RB = max(H1;H2;H4)

Total area of TP
S = LA�HA+LB�HB�max(L1;L3;L5)�max(H1;H2;H4) .

REMARK. The area of TP
S is a covariant with respect to changes of the

spirals and the group positions.

4.5. AN EXAMPLE FOR A SPIRAL-BASED PLUS-SHAPE TILING

This example is of great benefit for understanding the concept of tilings
in the preceding and upcoming sections and chapters.
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EXAMPLE 4.7. Step 1 : Obtaining the initial adjacency pairs from AT (16)
We have given 16 tiles Ri ( i = 1; : : : ; 16) having areas 48, 48, 48, 48,

24, 24, 6, 6, 144, 72, 48, 48, 48, 72, 72, 12 respectively; the ratio between
width and height of each tile (1.618).

To proceed further, we consider the same AT (16) given in Figure 4.2. The
initial adjacency pairs corresponding to AT (16) were obtained in Section 4.2.

Step 2 : Extracting five groups from the initial adjacency pairs
For the five groups, refer to Example 4.3.

Step 3 : Suppose the position for each group is :
1. Central group : R1;R2;R7;R6;R15

2. Left group : R3;R4;R8;R5

3. Upper group : R9;R16

4. Right group : R10;R11

5. Lower group : R12;R13;R14

Step 4 : Consider spiral8, spiral6, spiral4, spiral2 and spiral1 are the spirals
for the central, left, upper, right and lower groups respectively.
Step 5 : The five computer generated TR

S are shown in Figure 4.4.

Group1              Group2                  Group3                   Group4              Group5

FIGURE 4.4

Five TR
S for obtaining TP

S

Step 6 : The central TR
S is positioned at (x; y) .

Step 7 : Allocate the left TR
S . Since H2 < H1 , we draw an outer extra space

below the left TR
S (just to categorize the extra spaces (see Section 5.1.1), an

outer extra space is mentioned).
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Step 8 : Allocate the upper TR
S and since L3 > L1 we draw an outer extra

space to the right of the central TR
S .

Step 9 : Position the right TR
S and since H4 < max(H1;H2) , we draw an outer

extra space below the right TR
S .

Step 10 : Allocate the lower TR
S and here also we draw an outer extra space

to the right of the lower TR
S because L5 < max(L1;L3) .

For further details, refer to Figure 4.5 where a computer generated TP
S is

shown.

FIGURE 4.5

Obtained TP
S
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Step 11 : Obtaining the area of obtained TP
S

In Figure 4.5, the widths and heights of the central, left, upper, right
and lower TR

S are (14:8; 15:9); (9:3; 14:3); (17:9; 9:5); (10:7; 12:1); (12:1; 17:6)
respectively.

Using Section 4.4.2, the area of RA = max(14:8; 18; 12:1)�f9:5+ 17:6+
max(16; 14:3; 12:1)g = 18� 43 = 775:8.

The area of RB = f9:3+10:7+max(14:8; 18; 17:6)g�max(16; 14:3; 12:1) =
37:9� 16 = 606:4.

The area of central TR = max(14:8; 18; 12:1) � max(16; 14:3; 12:1) =
18� 16 = 288.

The area of TP
S = 775:8+ 606:4� 288 = 1094:2.

4.6. THE TOTAL NUMBER OF SOLUTIONS PROVIDED

In this section, we compute the total number of TP
S that can be generated

by using the spiral-based plus-shape algorithm.

1. The number of solutions obtained by changing spiral for each group

As discussed earlier, five groups are used to generate a TP
S but each group

is drawn using one of the eight spirals. Therefore for a given set of data the
number of different TP

S that can be obtained by changing the spiral for each
group is 85 = 32; 768 � 25 � 103 .

2. The number of solutions obtained by changing the position of each group

In a TP
S , a group can be assigned any of the five positions shown in Figure

4.1(B) such that no two groups have the same position. Therefore for a given
set of data by changing position for each group, 5! = 120 different TP

S can
be obtained.

So for the given set of data, in total there are 85 � 120 = 3; 932; 160 �
4 million different TP

S can be obtained.
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4.7. OTHER SHAPE TILINGS

In this section we present two other shape tilings developed in analogy
with the spiral-based plus-shape algorithm. This is done to demonstrate that
numerous shape tilings can be developed using simple modifications of the
same algorithm.

In Section 4.4, a TP
S was constructed from five groups. Just by reducing

the number of groups by either 1 or 2, some other interesting shape tilings can
easily be obtained; for example, we will obtain tilings for vertically flipped T
(see Figure 4.6(A)) and horizontally flipped L (see Figure 4.6(B)) shapes.
These 2 shape tilings are achieved by considering the number of groups as 4
and 3 respectively.

(A) (B)

FIGURE 4.6

The vertically flipped T and horizontally flipped L shapes

EXAMPLE 4.8. Consider the same list of tiles and AT (16) as given in
Example 4.7.

Using Section 4.2, we obtain the initial adjacency pairs from the given AT

and then using Section 4.3, we extract four groups.
Suppose position and spiral for the obtained 4 groups are as follows :
1. Central group : R3;R4;R8;R5 with spiral7 .
2. Left group : R1;R2;R7;R6;R15 with spiral5 .
3. Upper group : R12;R13;R14 with spiral4 .
4. Right group : R9;R16;R10;R11 with spiral8 .

For these four groups, a computer generated spiral-based vertically flipped
T-shape tiling is shown in Figure 4.7.

To obtain a horizontally flipped L-shape tiling, only 3 groups are required.
Their position and spiral are as follows :
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FIGURE 4.7

A spiral-based vertically flipped T-shape tiling

FIGURE 4.8

A spiral-based horizontally flipped L-shape tiling
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FIGURE 4.9

A spiral-based U-shape tiling

1. Central group : R3;R4;R8;R5;R12;R13;R14 with spiral7 .
2. Left group : R1;R2;R7;R6;R15 with spiral8 .
3. Upper group : R9;R16;R10;R11 with spiral2 .

From these three groups, a computer generated spiral-based horizontally flipped
L-shape tiling is shown in Figure 4.8.

For another example, refer to Figure 0(B). For this figure, we consider
the same list of tiles, AT (16) and groups as given in Example 4.7. Suppose
position and spiral for each group are :

1. Central group : R1;R2;R7;R6;R15 with spiral8 .
2. Left group : R3;R4;R8;R5 with spiral6 .
3. Upper left group : R9;R16 with spiral6 .
4. Right group : R10;R11 with spiral5 .
5. Upper right group : R12;R13;R14 with spiral1 .

For these groups, we have constructed a computer generated spiral-based
U-shape tiling which is shown in Figure 4.9.

This chapter describes the construction of a TP
S and how by using this

concept, many different shape tilings can be generated. For example, three
different shape tilings are obtained in Section 4.7. Interestingly, about 4 million
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TP
S can be produced for a given set of data. In general, for a particular shape,

one can have many choices but it is quite impossible to go for each solution
one by one. Therefore some covariants and invariants need to be defined and
derived which would help to reduce the number of solutions. In the next
chapter, adjacency among the tiles of TP

S will be defined, which will be used
to obtain some new covariants and invariants.
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CHAPTER 5

ADJACENCY GRAPH FOR SHAPE TILINGS

In this chapter, we focus on generating the adjacency graph of a TP
S and

we compute degree of connectivity of the adjacency graphs (for degree of
connectivity refer to Definition 1.10).

5.1. ADJACENCY VIA EXTRA SPACES

The concept of adjacency among the components of a group has already
been discussed in Chapter 3. Now we proceed by defining adjacency among the
members of two different groups. Before expanding the concept of adjacency;
we go through the different types of extra spaces.

5.1.1 INNER AND OUTER EXTRA SPACES

DEFINITION 5.1. An extra space positioned inside a group, i.e. belonging
to a group is called an inner extra space. Each inner extra space is a virtual
part of some group members(tiles) and is generated due to the difference in
width (or height) of the components of a group.

An extra space which is situated outside a group is called an outer extra
space. Such an extra space is a virtual part of a group (tiling) and is generated
due to the difference in width (or height) of the groups.

EXAMPLE 5.2. The inner and outer extra spaces are mentioned in Figure
4.5.

5.1.2 ADJACENCY AMONG TILES OF DIFFERENT GROUPS

To further define the adjacency among the tiles of different groups, we
consider the following cases :
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1. When there is no extra space between two tiles belonging to two different
groups

If both tiles share a wall or a sub-wall, then they are directly adjacent
otherwise not (cf. Definitions 1.8 and 1.9, where direct adjacency among tiles
and related terms are defined).

EXAMPLE 5.3. In Figure 4.5, R14 is directly adjacent to R15 because
they share a sub-wall. Also, R1 is directly adjacent to R9 because it shares a
wall with R9.

2. When there are either one or two inner extra spaces between two tiles
belonging to two different groups

If the two tiles are separated by one inner extra space, all the possible
cases have already been discussed in Section 3.1. For more than one inner
extra space, adjacency is discussed as follows :

Suppose the inner extra spaces I1 and I2 are virtual parts of the tiles R1

and R2 respectively. If I1 is adjacent to I2 then R1 is adjacent to R2 .

EXAMPLE 5.4. Refer to Figure 4.5 where R3 is adjacent to R15 because
the inner extra space between them is a virtual part of R3 and this inner extra
space is adjacent to R15. Also, R2 is adjacent to R3 because the inner extra
spaces which are virtual parts of R2 and R3 are adjacent to one another.

3. When there are either one or two outer extra spaces between two tiles
belonging to two different groups

If by removing the outer extra spaces two tiles are adjacent, then we
consider these tiles to be adjacent.

EXAMPLE 5.5. In Figure 4.5, with an outer extra space between R6 and
R10, R6 is adjacent to R10.

4. When there are at most two inner and at most two outer extra spaces
between two tiles belonging to two different groups

The adjacency in this case is defined by combining the definitions of
adjacency in the two cases given above such that we first apply case 3 and
then case 2.
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EXAMPLE 5.6. In Figure 4.5, with both an outer extra space and an inner
extra space between R1 and R11, R1 is adjacent to R11, where the inner extra
space is a virtual part of R1.

We denote the adjacency graph of TP and of TP
S by GP and GP

S

respectively.

EXAMPLE 5.7. For the example in Figure 4.5, we get the following
adjacency graph.

R4

R3

R5

R8 R2

R15

R12

R10

R6

R11

R16R9

R1

R7

R13 R14

FIGURE 5.1

GP
S for the TP

S in Figure 4.5

5.2. THE NUMBER OF EDGES

Once we know the adjacency graph we can easily count its degree of
connectivity. In this section, all the possibilities for the number of edges in a
GP

S is discussed which will be used further to reduce the number of solutions
(cf. Section 6.4).

The core result of this section is given by Corollary 5.12 which states that
a GP

S (m) can have at most 3m� 19 edges. To prove this result, some lemmas
are required, which are also interesting for their own sake and provide some
new covariants.
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REMARK. In a TP
S , the members of left, upper, right and lower TR

S can
only be adjacent to members of central TR

S and vice-versa.

LEMMA 5.8. In a TP
S , at most 3 members of a TR

S (other than the central
TR

S ) can be adjacent each to at most 3 members of the central TR
S .

Proof. A TP
S is made up of five TR

S and the components of the left, upper,
right or lower groups can be adjacent only to the components of the central
group. From Lemma 3.19, for a TR

S we have fk1; k2; k3; k4g = f3; 2; 2; 1g , i.e.
the maximum value of an adjacent number is 3. This implies that at most 3
members of a TR

S can be adjacent to at most 3 members of any other TR
S .

Consider that the virtual parts of tiles are made real. We denote by a1; a2; a3

the width (resp. the height) of adjacent sides of the components of the upper
and lower TR

S (resp. the left and right TR
S ). We shall also denote by b1; b2; b3

the width (resp. the height) of adjacent sides of the components of the central
TR

S , as depicted in Figure 5.2. The sizes of a1 , a2 , a3 , b1 , b2 and b3 are
usually different.

a1

a2

a3

b1

b2

b3

Left   Central

b1 b2 b3

a1 a2 a3

Central

Upper

a1

a2

a3

b1

b2

b3

Central Right

a1 a2 a3

Central

b1 b2 b3

Lower

FIGURE 5.2

The width or height of adjacent sides of the components of TR
S

Let E2
S be the number of edges connecting the members of the central

group to those of another group of a TP
S .

Note : For the upcoming lemma, ai adjacent to bj means that the
corresponding group members are adjacent; for computation the inner extra
spaces are made real.

LEMMA 5.9. E2
S � (2+ j) when at most 0 < j < 4 members of the central

TR
S are adjacent to at most three members of a TR

S .
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Proof. When at most 3 members of the central TR
S are adjacent to at

most 3 members of a TR
S , we have two cases :

If b1 is adjacent to a1; a2; a3 then b2; b3 can only be adjacent to a3 (cf.
Figure 5.3(A)).

If b1 is adjacent to a1; a2 then b2 can be adjacent to a2; a3 and b3 can
be adjacent to a3 (cf. Figure 5.3(B)).

Hence, we have E2
S � (i+ j� 1) = 5.

b1

b2

b3

a1

a2

a3

b1

b2

a1

a2

 (A)                (B)              (C)                (D)                (E)

b1

b2

b3

a1

a2

a3

b1

b2

a1

a2

a3 a3

b1

a1

a2

a3

FIGURE 5.3

Computing E2
S

When at most 2 members of the central TR
S are adjacent to at most 3

members of a TR
S we have following two cases :

If b1 is adjacent to a1; a2; a3 then b2 can only be adjacent to a3 (cf.
Figure 5.3(C)).

If b1 is adjacent to a1; a2 then b2 can only be adjacent to a2; a3 (cf.
Figure 5.3(D)).

Hence, we have E2
S � (i+ j� 1) = 4.

By same argument, when one member of the central TR
S is adjacent to at

most 3 members of a TR
S we have E2

S � (i+j�1) = 3 (cf. Figure 5.3(E)).

We denote the number of edges in a GP
S (m) by EP

S (m) . Let p1(m) be the
number of edges in a TP

S (m) if adjacency is restricted to the members of
each group and p2(m) is for the edges which come uniquely from adjacency
among the members of different groups of a TP

S (m) .

LEMMA 5.10. p1(m) = 3m � 35 provided that each group has at least
four members.
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Proof. A TP
S (m) is obtained by combining five TR

S . From Theorem 3.13,
for each ni > 3 we have ER

S (ni) = 3ni � 7, where i = 1; : : : ; 5. Therefore, if
adjacency is restricted to the members of each group, p1(m) =P5

i=1(3ni�7) =
3m� 35.

LEMMA 5.11. p2(m) � 16 .

Proof. From Lemma 5.8, at most 3 members of a TR
S (other than the

central TR
S ) can be adjacent to at most 3 members of the central TR

S .
From Lemma 3.19, for a TR

S we have fk1; k2; k3; k4g = f3; 2; 2; 1g implies
3 members of a TR

S can be adjacent to 3 (or 2 or 2 or 1) members of
central TR

S respectively. From Lemma 5.9 we have E2
S � 5( or 4 or 4 or 3)

respectively. Hence we have p2(m) � 5+ 8+ 3 = 16.

COROLLARY 5.12. EP
S (m) = p1(m)+ p2(m) � 3m� 19 if each TR

S has at
least 4 members.

Proof. The proof follows from Lemmas 5.10 and 5.11.

REMARK. With respect to changes in the position of groups and change
of the spiral for each group, EP

S (m) is a covariant.

In context of Corollary 5:12, some more results are given below.

LEMMA 5.13. In a TP
S (m) ,

1. If a TR
S (other than central TR

S ) has 2 or 3 members, then p2(m) in
Corollary 5:12 gets reduced by 1

2. If a TR
S (other than central TR

S ) has only one member, then p2(m) gets
reduced by 2

3. If central TR
S has 3 or 2 or 1 members, then p2(m) gets reduced by

1 or 2 or 4 respectively
4. Let p1(n) = (3n � 35) . In p1(n) if any ni = 3 or ni = 2 or ni = 1 ,

then the value (3ni� 7) in p1(n) becomes (3ni� 6) or (3ni � 5) or (3ni � 3)
respectively where ni is the number of members of ith group.

Proof. 1. If a TR
S has 2 or 3 members, then the set f3; 2; 2; 1g for adjacent

numbers will become f2; 2; 1; 1g . Hence, at most 2 members of a TR
S can be

adjacent to at most 3 members of the central TR
S . Therefore, when adjacency

is considered among the members of different groups, p2(m) = 16 will get
reduced by one.
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2. If a TR
S has only 1 member, then the set f3; 2; 2; 1g for adjacent numbers

will become f1; 1; 1; 1g . Hence, only one member of a TR
S can be adjacent to

at most 3 members of the central TR
S . Therefore, p2(m) = 16 will get reduced

by 2.

3. This result is proved using the same reasoning as given in the proof for
the first two points.

4. The proof follows from the fact that for ni = 3, ni = 2 and ni = 1,
ER

S (3) = 3(3ni�6), ER
S (2) = 1(3ni�5) and ER

S (1) = 0(3ni�3) respectively.

REMARK. Interestingly, changing the spiral for a group, leaves the number
of edges invariant for GR

S (cf. Theorem 3.13) but it is a covariant for GP
S

(cf. Corollary 5.12).

5.3. RACING CARS

The result given by Lemma 5.9 is generalized using the concepts of game
theory. For better understanding refer to the game explained below.

Consider that a stretch of road is subdivided into N parts, b1; : : : ; bN ,
separated by N�1 traffic lights and there are m potential players (a1; : : : ; am ),
who wish to drive a Ferrari over some distance each, one after another.

Each player has to pay 1 dollar for the privilege of getting into the car.
In addition, a driver has to pay a one dollar fine for each traffic light he/she
passes without stopping (but no fine if he/she stops at the traffic light and
surrenders the car to the next player).

Now we calculate the amount of money (say E2
S ) the organisers will cash

at the end of the game. This problem is seen as “what is the maximum value
of E2

S when at most N members of the central TR
S are adjacent to at most

m members of a TR
S ”.

As discussed above, there will be at most 1 dollar for each potential player,
and at most N � 1 dollars in fines; hence the organisers will cash at most
m+N�1 dollars. For better understanding, suppose N � 3 and m � 3. Then
we have E2

S � 5 (cf. Lemma 5.9).

In Chapter 3, the maximum number of edges for a GR and a GR
S was obtained.

In this chapter, the maximum number of edges for a GP
S has been calculated.
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But, at this stage it is not known that TP
S is best from the point of view of

connectivity or not, which leads to an open problem as follows :

Open problem 4 : What is the maximum number of edges for a GP ?

In the next chapter, we derive new covariants and discuss some methods
for reducing the number of solutions.



CHAPTER 6

INVARIANTS AND COVARIANTS

This chapter focuses on obtaining the best solution and reducing the number
of solutions by means of invariants and covariants (cf. Section 2.1.3). For
TR

S and TP
S a lot of associated invariants and covariants have already been

derived in the previous chapters.

6.1. INVARIANTS AND COVARIANTS ASSOCIATED WITH A GP
S

In this section we study some graph invariants and covariants which are
related to GP

S .
For the definitions related to graphs in the upcoming subsections, refer to

Jonathan and Yellen [16].

6.1.1 ADJACENCY MATRIX AND DEGREE OF VERTICES

The power of linear algebra is applied to graph theory through represen-
tation of graphs by matrices. An adjacency matrix is the first graph invariant
to be elaborated. Adjacency among the different vertices of GP

S has already
been discussed. The adjacency matrix is obtained straightforwardly from the
adjacency pairs.

DEFINITION 6.1. The adjacency matrix of a simple graph G, denoted by
AG , is the symmetric matrix whose rows and columns are indexed by VG (in
the same order) and is such that

AG[u; v] = � 1; if u and v are adjacent

0; otherwise:
For a simple graph with no self-loops, the adjacency matrix must have 0’s

on the diagonal.
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DEFINITION 6.2. The degree (valency) of a vertex v in a graph G , denoted
by deg(v) , is the number of vertices adjacent to v .

We obtain the degree of each vertex by adding the number of 1’s in the
corresponding row (or column) of the adjacency matrix.

EXAMPLE 6.3. For the GP
S in Figure 5.1, the degrees of all the vertices,

which correspond to all the tiles Ri ( i = 1; : : : ; 16), are (5, 7, 4, 3, 3, 4, 4,
4, 3, 3, 2, 2, 3, 3, 7, 1).

To study the distribution of degrees, one uses methods similar to those
commonly used in probability and statistics, namely mean, standard deviation,
measures of dispersion, minimum and maximum.

For real numbers fx1; x2; : : : ; xng , we denote the arithmetic mean by
x = 1

n

Pn
i=1 xi:

The standard deviation � = q
1
n

Pn
i=1(xi � x)2 gives the variation (or

dispersion) that exists from the corresponding mean. A low value of the
standard deviation shows that the data points tend to be very close to the
mean, whereas a high value of the standard deviation can sometimes indicate
that the data points are spread out over a large range of values.

DEFINITION 6.4. The measure of statistical dispersion is a non-negative
real number that is zero if all the data have the same value and increases if the
data become more diverse. In percentage terms, it is given as � = (�=x)�100.

In this subsection, we calculate the measure of dispersion of the degree
around its mean.

EXAMPLE 6.5. For all the degrees obtained in Example 6.3, x = 3:62,� = 1:58, � = 43:48%, maximum=7, minimum = 1.

If the degrees of all the graph vertices are given, then the corresponding
graph is obtained using the algorithm given in Section A.1.
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6.1.2 DISTANCE AND SHORTEST PATH

The classic example of a real life graph is a network of roads connecting
cities. One of the important algorithmic problems on such road networks is
finding the shortest path between any two given vertices.

DEFINITION 6.6. For a graph G , the distance d(x; y) between two vertices
x and y is the length of the shortest path from x to y , considering all possible
paths in G from x to y .

The distance between any node and itself is 0 and if there is no path from
x to y , then d(x; y) is infinity.

It is to be noted that for the distance and shortest path, we consider only
non-weighted graphs.

DEFINITION 6.7. The distance matrix is a matrix (two-dimensional array)
containing the distances, taken pairwise, of the set of vertices. This matrix
has order n� n , where n is the number of vertices.

Once we know the adjacency matrix, we can obtain a shortest path (and
its length) between any two vertices of GP

S and the distance matrix by using
Floyd’s Algorithm (see Section A.2 and Pemmaraju and Skiena [34], Chapter
8).

EXAMPLE 6.8. For the GP
S in Figure 5.1, we have the following results :

The distance between R1 and R4 is 3 and the distance between R5 and
R12 is 4.

A shortest path between R1 and R4 is given by :

R1 ! R2 ! R3 ! R4 .

Also a shortest path between R5 and R12 is :

R5 ! R2 ! R15 ! R13 ! R12 .

6.1.3 ECCENTRICITY, RADIUS, DIAMETER AND CENTRE

In this section we discuss several graph invariants related to the all-pairs
shortest-path matrix.
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DEFINITION 6.9. The eccentricity of a graph vertex v in a graph G ,
denoted ecc(v) is the distance from v to a vertex farthest from v . That is,

ecc(v) = max
x2VG

fd(v; x)g
DEFINITION 6.10. The maximum eccentricity is the graph diameter,

denoted by diam(G) . That is,

diam(G) = max
x2VG

fecc(x)g = max
x;y2VG

fd(x; y)g
DEFINITION 6.11. The minimum graph eccentricity is called the graph

radius, denoted by rad(G) . That is,

rad(G) = min
x2VG

fecc(x)g
DEFINITION 6.12. A central vertex of a graph G is a vertex with minimum

eccentricity. Thus ecc(v) = rad(G) .
The centre of the graph is the set of all vertices with minimum eccentricity.

EXAMPLE 6.13. For the GP
S in Figure 5.1, the eccentricities of all the

vertices corresponding to all the tiles are (4, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 4,
4, 3, 5) with radius = 3, diameter = 5 and centre = fR2;R3;R6;R7;R15g .

6.1.4 CUT VERTEX AND CUT PAIR

DEFINITION 6.14. A cut vertex of a connected graph G is a vertex whose
removal renders G disconnected. Any graph with no cut vertices is said to
be biconnected.

Biconnectivity is an important property due to many reasons. For example,
Menger’s Theorem implies that any graph with at least 3 vertices is biconnected
if and only if there are at least 2 vertex disjoint paths between any pair
of vertices. If looked from the perspective of communication networks,
biconnected networks are more fault-tolerant since blowing away any single
node does not cut off communication for any other node.
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DEFINITION 6.15. A cut pair in a connected graph G is a pair of vertices
whose removal renders G disconnected.

To obtain cut vertices, we remove each vertex vi one by one and obtain
the distance matrix for the remaining vertices. If any entry in the distance
matrix is 1 then vi is a cut vertex. Similarly, by considering each pair of
vertices, we obtain cut pairs of vertices.

EXAMPLE 6.16. For the GP
S in Figure 5.1, the cut vertices are fR15;R9g .

Since R9 and R15 are the cut vertices, every tile paired with R9 and R15 forms
a cut pair. The other cut pairs are f(R1;R2); (R1;R10); (R2;R3); (R13;R14)g:
6.1.5 CHARACTERISTIC POLYNOMIAL AND EIGENVALUES

The next graph invariant is the characteristic polynomial of the adjacency
matrix and from this polynomial, we derive eigenvalues.

The characteristic polynomial of a matrix An�n is the polynomial pA(x) =
det(xI � A) , where det is the determinant and I is the n� n identity matrix.

The eigenvalues of A are the roots of its characteristic polynomial.

EXAMPLE 6.17. For the adjacency matrix corresponding to the GP
S in

Figure 5.1, the characteristic polynomial and the eigenvalues are :
p(x) = x16 � 29x14 � 26x13+ 278x12+ 422x11 � 955x10 � 2196x9+ 763x8+

4044x7 + 1407x6 � 2316x5 � 1538x4 + 242x3 + 315x2 + 28x� 4.
Eigenvalues : �2:52, �2:37, �2:12, �1:47, �1:12, �1, �0:85, �0:75,�0:22, 0:08, 0.51, 0.85, 1.46, 2.35, 2.79, 4.40.

There are a lot of interesting results for the characteristic polynomial and the
eigenvalues which can be associated with various geometrical interpretations.
Some of the results are as follows.

PROPOSITION 6.18. Suppose pA(x) is written as

pA(x) = xn + c1xn�1 + � � �+ cn:
Then

1. c1 = 0 .
2. �c2 is the number of edges in the graph G.
3. �c3 is twice the number of triangles in G.

Proof. For a proof, see Biggs [3], Proposition 2.3.
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From above Proposition, we can say that the characteristic polynomial of
the adjacency graph GR

S (n) is of the form zn�ER
S (n)zn�2�2DR

S (n)zn�3+ � � � ,
where ER

S (n) and DR
S (n) are the number of edges and number of triangles in

the GR
S (n) respectively (cf. Theorem 3.13).

6.1.6 BIPARTITE GRAPHS

DEFINITION 6.19. A graph G = (V;E) is called bipartite if V admits
a partition into two classes such that every edge has one end in each class :
vertices in the same partition class must not be adjacent.

PROPOSITION 6.20. A graph is bipartite if and only if its spectrum is
symmetric about zero.

Proof. For a proof, refer to Beineke and Wilson [2], Theorem 5.2.

EXAMPLE 6.21. By using Proposition 6.21 for the obtained eigenvalues
(Example 6.17), we conclude that the GP

S (Figure 5.1) is not bipartite.

6.1.7 CHROMATIC NUMBER

DEFINITION 6.22. A vertex colouring is an assignment of labels or colours
to each vertex of a graph such that no edge connects two identically coloured
vertices.

The chromatic number of a graph G is the smallest number of colours
needed to colour the vertices of G so that no two adjacent vertices share the
same colour.

EXAMPLE 6.23. The GP
S illustrated in Figure 5.1 has chromatic number 3.

The one-colourable graphs are totally disconnected, and two-colourability
is a synonym for bipartiteness.

REMARK. For further details about many such graph invariants, we refer
to [6], chapter 15 and Nanchen [31].

6.1.8 MOMENT OF INERTIA

Now we assume that the graph G is weighted, i.e., each vertex vi has a
weight si which is a real number. In the case of tiling by rectangles, the weight
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can for example be equal to the area of the corresponding tile ; therefore it is
always strictly positive.

For each vertex v , the moment of inertia of G relative to this vertex was
introduced by Coray in [6] and [7]. In analogy with classical mechanics, it is
given by

Iv = 1
s

nX
i=1

sid(v; vi)
2 ;

where n is the number of vertices, s = P si the total weight, and d(v; vi)
the distance of vertex v to vertex vi . It is assumed that s > 0.

In classical mechanics, the moment of inertia is a measure of a rigid
body’s resistance to rotational acceleration about an axis. But of course, it is
out of question to rotate a graph around a vertex. However, in architectural
terms, the moment of inertia is a good indication of the relative heaviness of
a building. A large room in the centre contributes very little to the moment
of inertia while the same room far from the centre leads to big numbers.

I0 is defined as half the weighted average of the individual moments of
inertia :

I0 = 1
2s

nX
i=1

siIvi = 1
2s2

nX
i=1

nX
j=1

sisjd(vi; vj)
2 :

I0 can be regarded as a global covariant which expresses the quality of
the construction, its compactness, relative ease of going from one room to
another, etc.

For a distribution of mass in space, the centre of gravity is the unique
point with the property that the weighted position vectors relative to this point
sum to zero. In the case of a rigid body, it is well known that its motion
through space can be described completely in terms the motion of the total
mass concentrated at the centre of gravity and rotation of the object about its
centre of gravity.

Interestingly, the centre of gravity is also the point u where the moment
of inertia is minimal. In fact, one shows that Iv = Iu + d(u; v)2 for any other
point (see Coray and Pellegrino [6]). Then it is easy to see that the moment
of inertia at the centre of gravity is equal to I0 . However, in the case of
graphs, we can talk about vertices where the moment of inertia is minimal,
but there is no other equivalent of a centre of gravity (see [6] or [7] for a
detailed discussion).
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One more invariant related to the moment of inertia is the first-order
moment, which is defined by

I1v = 1
s

nX
i=1

sid(v; vi) :
Simply d(v; vi)2 is replaced by d(v; vi) .

If we know the distance between any two vertices and the area of all
the tiles, the moments of inertia and the first-order moments of a GP

S (with
respect to each vertex) can easily be calculated.

EXAMPLE 6.24. For the GP
S in Figure 5.1, the moments of inertia with

respect to all the vertices are given by (4:54, 2:70, 3:77, 7:83, 6:02, 4,
3:92, 5:86, 5:71, 11:49, 6:66, 8:16, 5:55, 4:05, 2:73, 10:70).

The first-order moments with respect to all the vertices are (1:87, 1:48,
1:79, 2:59, 2:29, 1:86, 1:88, 2:25, 1:92, 2:01, 2:24, 2:85, 2:07, 2:04,
1:41, 2:89).

Also, I0 = 2:61. Clearly the tiles in the centre contributed less to the
moments (e.g. R15 , R2 ) in comparison to the tiles in the periphery (e.g. R10 ,
R16 ).

For further details about these moments, refer to Coray and Pellegrino [6],
Appendix and Coray [7].

REMARK. If we change the position or spiral used for each group, the
invariants defined in this section behave as covariants for GP

S (or TP
S ).

6.2. COVARIANTS WITH RESPECT TO CHANGE OF POSITION AND SPIRAL

In Section 4.6, it is exposed that about 4 million TP
S can be constructed

by changing the position of each group and the spiral to be used in each.
But it is very difficult to single out one solution out of so many possibilities.
Actually, it is not even feasible to select a really good one without some
efficient criteria. Following is a list of some covariants which have already
been defined with respect to changes in position and in the spiral for each
group.
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1. Area
Each solution may have a different total area. Therefore we may consider

only those solutions having minimum or maximum area.
2. The number of extra spaces

For each solution, there are a certain number of extra spaces. Thus, solutions
with either minimum or maximum number of extra spaces are sought out.

Similarly, we can consider solutions having :
3. Maximum degree of connectivity
4. Maximum of mean of all vertex degrees
5. Minimum of mean of all distances
6. Minimum radius or minimum diameter
7. The moment of inertia and first-order moment

For each solution, we calculate minimum of all moments of inertia and
obtain solutions having minimum(minimum(moments of inertia)). To exam-
ine the range of minimum moments of inertia, we also compute maxi-
mum(minimum(moments of inertia)). Similarly, we obtain solutions having
min(min(first-order moments)) and max(min(first-order moments)).

In the forthcoming section we proceed with one of our standard examples by
obtaining the best solution on the basis of some of the covariants (e.g. area
and moment of inertia).

6.3. BEST SOLUTION FOR THE CHANGE OF A SPIRAL

In this section, we consider covariants related to the change of a spiral,
after each group has been positioned. As we saw in Section 4.6, 85 different
TP

S can be generated by changing the spiral for each group. Here we pick the
best solution among 85 solutions on the basis of area and moment of inertia.

6.3.1 THE MINIMUM AND MAXIMUM AREA SOLUTIONS

In this section, from 85 possible TP
S only two TP

S will be taken into
account, one with minimum area and one with maximum area. To obtain
these two solutions, we first compute the area of all TP

S when we change
spiral for every group. After obtaining the minimum and maximum values,
the spiral used for each group is noted. After establishing the position and
the spiral for each group, we construct the two required TP

S .
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EXAMPLE 6.25. Consider the same set of data we used in Example 4.7.
We also fix the following position for each group :

1. Central group : R9;R16 .
2. Left group : R1;R2;R7;R6;R15 .
3. Upper group : R3;R4;R8andR5 .
4. Right group : R10;R11 .
5. Lower group : R12;R13;R14 .

Using the developed software (see Chapter 8), we found that for these specific
groups and their fixed positions, there are 1024 solutions with minimum area,
namely, 986. Since it is not feasible to display all the solutions, we select one
and display it as an example. For this solution, the spirals for the central, left,
upper, right and lower groups are spiral6, spiral8, spiral6, spiral6, spiral8
respectively. The computer-generated TP

S with minimum area is shown in
Figure 6.1.

For the same groups and the same positions, there are 1024 solutions
having maximum area, namely, 1501:2. Again, only one solution is chosen
and put forth as an example. From this solution, the spirals for the central, left,
upper, right and lower groups are spiral8, spiral8, spiral6, spiral8, spiral6
respectively. The computer-generated TP

S with maximum area is shown in
Figure 6.2.

6.3.2 THE MINIMUM AND MAXIMUM OF MINIMUM(MOMENTS OF INERTIA)

For the moments of inertia of GP
S relative to each of the n tiles (vertices)

we determine their minimum and obtain min(min(moments of inertia)) and
max(min(moments of inertia)) for all 85 GP

S . After having the position and
spiral for each group corresponding to min(min(moments of inertia)) and
max(min(moments of inertia)) GP

S respectively, we construct the required TP
S .

EXAMPLE 6.26. Consider the same data and the same positions for each
group as given in Example 6.25.

Using the developed software, we found that there are 64 GP
S with

min(min(moments of inertia)), namely 1:79. The spirals for the central,
left, upper, right and lower groups are respectively spiral7, spiral3, spiral3,
spiral1, spiral1. And the area for corresponding TP

S is 1252:32. The computer-
generated TP

S corresponding to min(min(moments of inertia)) GP
S is shown in

Figure 6.3.
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FIGURE 6.1

Minimum area TP
S

Similarly, we found that there are 8 GP
S with max(min(moments of inertia)),

namely 3:89. The spirals for the central, left, upper, right and lower groups
are respectively spiral1, spiral6, spiral5, spiral8, spiral8. And the area for
corresponding TP

S is 1165:68.

For the computer-generated TP
S corresponding to max(min(moments of

inertia)) GP
S , refer to Figure 6.4.
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FIGURE 6.2

Maximum area TP
S

REMARK. For the TP
S in Figure 6.1 and Figure 6.2, the minimum(moment

of inertia) of corresponding GP
S is 2.77 and 2.31 respectively, as opposed to

TP
S in Figure 6.3.

The four solutions mentioned above were compared on the basis of their
area and moment of inertia. Since our prime focus is on the connectiv-
ity, we found that the TP

S corresponding to maximum(minimum(moment
of inertia)) GP

S is least connected while the TP
S corresponding to mini-

mum(minimum(moment of inertia)) GP
S and maximum area TP

S are most
connected.



INVARIANTS AND COVARIANTS 107

FIGURE 6.3

TP
S corresponding to min(min(moments of inertia)) GP

S

6.4. REDUCING THE NUMBER OF SOLUTIONS

In Section 4.6 it is shown that a total number of 5!� 85 different TP
S can

be generated. As discussed earlier, it is not possible to examine every TP
S .

That is why in Section 6.3 the best solution is obtained on the basis of a
particular covariant. In this section, our concern is not about extracting the best
solution but about providing a method to reduce this large number(5!�85 ) to
a smaller one, on the basis of some covariants (here degree of connectivity).

Let Di be the degree of connectivity of a GP
S . There exist at most 5!� 85

values of degree of connectivity for 5!� 85 GP
S .

LEMMA 6.27. There exist at most 13 Dj such that for i 6= j , we have
Dj 6= Di where i = 1; 2; : : : ; 5!� 85 when adjacency is considered among the
members of different groups.
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FIGURE 6.4

TP
S corresponding to max(min(moments of inertia)) GP

S

Proof. From Corollary 5.12, a GP
S (n) can have at most (3n � 35) + 16

edges if each TS
R has at least four members. In this corollary, the number

16 is because of adjacency among the members of the different groups. It
implies that in this case the number of edges can be at most 16. To construct
a TP

S , each group should have at least one tile. If all the groups have only
one tile then the corresponding GP

S will have only 4 edges. It means that
for a GP

S , the minimum and maximum degree of connectivity are 4 and 16
when adjacency is considered among the members of different groups. Now
to prove the result, we compute the other possible values for the degree of
connectivity.

Suppose the number of tiles for the central, left, upper, right and lower
TR

S is written as 5-tuple (k1; k2; k3; k4; k5) . To discuss other possibilities for
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the number of the edges, we provide a particular case for each possibility.
Consider the following cases :

1. If the number of tiles is (1; 1; 1; 1; 1) , then EP
S = 4

In this case, a member of the left, upper, right and lower TR
S is adjacent

to a member of the central TR
S . Therefore, EP

S = 4.

2. If the number of tiles is (1; 2; 1; 1; 1) , then EP
S � 5

Here, only 1 member of the upper, right and lower TR
S is adjacent to a

member of the central TR
S but 1 or 2 members of the left TR

S can be adjacent
to a member of the central TR

S . Therefore, the EP
S can be 4 or 5.

3. If the number of tiles is (1; 2; 2; 1; 1) , then EP
S � 6

Now, only 1 member of the right and lower TR
S is adjacent to a member of

the central TR
S but 1 or 2 members of the left and upper TR

S can be adjacent
to a member of the central TR

S . Therefore, the EP
S can be 4 or 5 or 6.

4. If the number of tiles is (1; 2; 2; 2; 1) , then EP
S � 7

In this case, only one member of the lower TR
S is adjacent to a member

of the central TR
S but 1 or 2 members of the left, upper and right TR

S can be
adjacent to a member of the central TR

S . Therefore, the EP
S can be 4 or 5 or

6 or 7.

5. If the number of tiles is (1; 2; 2; 2; 2) , then EP
S � 8

In this case, 1 or 2 members of the left, upper, right and lower TR
S can be

adjacent to a member of the central TR
S . Therefore, the EP

S can be at most 8.

Note : In all the following cases, if the number of tiles is k , it means that
the number of tiles is greater than 3.

6. If the number of tiles is (1; k; 2; 2; 2) , then EP
S � 9

Here, at most 3 members of the left TR
S can be adjacent to a member of

the central TR
S . And 1 or 2 members of the upper, right and lower TR

S can be
adjacent to a member of the central TR

S . Therefore, the EP
S can be at most 9.

7. If the number of tiles is (1; k; k; 2; 2) , then EP
S � 10

Here, at most 3 members of the left and upper TR
S can be adjacent to a

member of the central TR
S . And 1 or 2 members of the right and lower TR

S

can be adjacent to a member of the central TR
S . Therefore, the EP

S can be at
most 10.
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8. If the number of tiles is (1; k; k; k; 2) , then EP
S � 11

Now, at most 3 members of the left, upper and right TR
S can be adjacent

to a member of the central TR
S . And 1 or 2 members of the lower TR

S can be
adjacent to a member of the central TR

S . Therefore, the EP
S can be at most

11.

9. If the number of tiles is (k; 2; 2; 2; 2) , then EP
S � 12

From the first point of Lemma 5.13, in this case p2 get reduced by 4,
hence the EP

S can be at most 16� 4 = 12.

10. If the number of tiles is (k; k; 2; 2; 2) , then EP
S � 13

Again from the first point of Lemma 5.13, in this case p2 get reduced by
3, hence the EP

S can be at most 16� 3 = 13.

11. If the number of tiles is (k; k; k; 2; 2) , then EP
S � 14

Again from the first point of Lemma 5.13, in this case p2 get reduced by
2, hence the EP

S can be at most 16� 2 = 14.

12. If the number of tiles is (k; k; k; k; 2) , then EP
S � 15

Again from the first point of Lemma 5.13, in this case p2 get reduced by
1, hence the EP

S can be at most 16� 1 = 15.

13. If the number of tiles is (k; k; k; k; k) , then EP
S � 16

From Lemma 5.13, in this case the EP
S can be at most 16.

All the 13 cases concludes the proof.

REMARK. In Section 6.4, the number 5!� 85 has been reduced to 13 on
the basis of covariant adjacency among the members of different groups.

In this chapter, several graph invariants are studied and then the best
solution has been obtained on the basis of some of them. Also, the number
of solutions is reduced to some extent using a covariant. At this stage of
our work, there is a lot of room for further development but right now we
look forward for the application part of the work done. Therefore, in the next
chapter we discuss the application of tiling by rectangles to the architectural
field.



CHAPTER 7

APPLICATIONS TO ARCHITECTURE – SPACE ALLOCATION

As mentioned earlier in the introduction, tiling by rectangles can be applied
for answering different problems related to various fields. As an illustration,
in this chapter, we solve a problem which is common in architecture and for
which no sufficient mathematical solution had been proposed.

DEFINITION 7.1. Space allocation is the computational arrangement of
rooms (spaces) in a floor plan.

Space allocation is one of the most interesting and difficult areas of
computer-aided architectural design. One of the most cherished tasks of
architects is a layout of spaces in a building; they want it according to
some rational principles (mostly style and minimization of distances between
the spaces). For details refer to Kalay [23], Chapter 13.

In this chapter, we arrange the given spaces in a plus-shape floor plan by
using the spiral-based plus-shape algorithm.

REMARK. In space allocation the spaces represent different elements of
a building, e.g., rooms, offices, kitchens, bathrooms, WC etc. For simplicity
only rectangular spaces are considered here.

7.1. RELATED WORK

Space allocation was one of the first design problems to be subjected to
computational synthesis and several solutions have been proposed by many
researchers. Tabor, 1970, ([27], Chapter 13) took initiative in this direction by
categorising the space allocation problem into two approaches, the additive
approach and the permutation approach. The additive approach starts with an
empty floor plan and builds up a low cost layout with one activity at a time
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while the other approach goes through every possible layout and searches for
one having the least cost.

Galle, 1981 [14] published an algorithm which generates rectangular plans
on modular grids, to provide all possible solutions. But we followed an
approach which provides particular solutions only. In the past also, many
researchers used particular approaches from various fields to obtain certain
solutions. For example, in 1988, Lai et al. [25] used graph theory for floor
plan design, in a study based on the reduction of the rectangular dualization
problem to a matching problem on bipartite graphs. In 1988, Jo et al. [22]
got their idea from natural genetics. They described a method based on
constructing a evolutionary design model. On the other hand, Arvin et al. [1]
in 2002 used the concept of physics of motion. They provided an approach
where the designer creates a space plan by specifying and modifying graphic
design objectives. Recently in 2010, Marson and Musse [28] introduced a room
subdivision method based on squarified treemaps. The treemaps recursively
subdivide an area into smaller areas, depending on some specific criteria.

7.2. A PLUS-SHAPE FLOOR PLAN INSIDE A RESIDENTIAL PLOT

DEFINITION 7.2. A floor plan is the most fundamental architectural
diagram, an aerial view showing the arrangement of spaces in a building
in the same way as a map, but focussing on the arrangement at a particular
level (floor) of a building. In our context, the floor plan is simply a view from
above showing the arrangement of spaces and extra spaces in a building.

DEFINITION 7.3. A circulation refers to the way people move through
and interact within a building. Structures such as corridors, elevators, stairs
are often referred to as the circulation elements.

A terrace is an outdoor living space.

In the spiral-based algorithm, the extra spaces are generated automatically.
We consider that an extra space adjacent to the outside world is a terrace.
Otherwise it is a circulation.

DEFINITION 7.4. A residential plot is a piece of land on which a building
is erected. Other than the building itself, the plot can have some external
elements like a garden, a parking etc.
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Suppose given a rectangular residential plot. Here the aim is to obtain a
plus-shape floor plan from the given rooms and allocation matrix, and then
to introduce this floor plan into the plot. Afterwards, the remaining space
is subdivided into eight rectangular parts so that they can be used for other
purposes, like a parking, a garden, a swimming pool etc.

The plus-shape floor plan can be situated at any position with respect to
the plot but for reasons of symmetry, we place the floor plan in the centre
of the plot. Also, from an architectural point of view a house in the centre
always has a 360-degree view.

In Section 4.4.2, it is shown that a plus-shape frame is made up of two
big rectangles, RA and RB . We have LB = L2 + L4+max(L1;L3;L5) and
HA = H3+H5+max(H1;H2;H4) . Let Lp and Hp be the width and height of
the plot.

Assuming that Lp � LB and Hp � HA , we draw the given plot around the
plus-shape floor plan and divide the remaining space into eight parts.

P1

P2

P3

P4 P5

P6 P8

P7

HpH

Lp

L

FIGURE 7.1

A plus-shape frame in a plot

For a better understanding refer to Figure 7.1, where a plus-shape frame within
a plot and the eight different parts of the remaining space are shown. Clearly
to draw a plot and its parts, the width, height and position of the plot and
its parts are required which are obtained by using the calculations given in
Section A.5.
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7.3. AN EXAMPLE INTRODUCING A PLUS-SHAPE FLOOR PLAN IN A PLOT

EXAMPLE 7.5. In this example, we construct a plus-shape floor plan and
its graph and place the floor plan in the centre of a residential plot.

We proceed by considering the same data as in Example 4.7. Just to have
an architectural environment we introduce the following changes :

R1, R2, R3, R4 are rooms.
R5 and R6 are bathrooms, denoted by BA1 and BA2.
R7 and R8 are WC, denoted by WC1 and WC2.
R9 is a living room, denoted by LR.
R10 and R11 are a dining room and a kitchen, denoted by DR and KIT.
R12, R13 are studies and R14 is a library; they are denoted by OF1, OF2

and LIB.
R15 is a playroom, denoted by PR.
R16 is an entrance-hall, denoted by ENT.

The position, spiral and members of each group are :
1. Central group : R3, R4, WC2 and BA1 with spiral2 .
2. Left group : OF1, OF2 and LIB with spiral5 .
3. Upper group : DR and KIT with spiral8 .
4. Right group : R1, R2, WC1, BA2, PR with spiral4 .
5. Lower group : LR and ENT with spiral6 .

Consider a square plot with area 2550m2 . Here the width and height of the
plot would be 50:5m . For the obtained groups, LB = 42:3m and HA = 46:4m .
Clearly LB < Lp and HA < Hp . Hence, we can place the obtained plus-shape
floor plan in the given plot. For the computer generated plus-shape floor plan
and plot, see Figure 7.3. The graph of this floor plan is shown in Figure 7.2.

R3

R4

KIT DR

WC2

BA1

LR

ENT

LIB

OF1

OF2

R1

BA2 WC1

R2

PT

Diameter = 4, Radius = 3

FIGURE 7.2

Graph of a spiral-based plus-shape floor plan in a plot
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FIGURE 7.3

A spiral-based plus-shape floor plan in a plot

REMARK. The rectangle floor plan obtained from the spiral-based algo-
rithm starts from the smallest space, i.e., the smallest space is always at the
centre of the floor plan. Generally in a house also, the toilets are among the
smallest spaces and one wants them to be in the centre and connected to a
maximum number of spaces (inside a group). This shows that spiral-based
rectangle tiling provides a solution for space allocation. Also, the position of
extra spaces provides a hint for the position of some doors.



116 RECTANGLE TILINGS, CONNECTIVITY AND ASSOCIATED COVARIANTS

From here on, there is great scope for development. At this point, we aim
to visualize the work done so far in this work. To this purpose, a piece of
computer software has been developed which takes input from the user and
outputs a TP

S , its graph and all the associated covariants. In the next chapter,
we discuss the steps involved in the development of this software.



CHAPTER 8

SOFTWARE FOR TILING BY RECTANGLES

In the preceding chapters we analysed TR
S , TP

S , their connectivity and
some covariants associated with them. Along with this work, we worked on a
piece of software which provides a TP

S , its graph and associated covariants
as output for a given set of data.

8.1. PROCESSING LANGUAGE AND INTRODUCTION

DEFINITION 8.1. Processing is an open source programming language
and environment for people who want to create images, animations, and
interactions (cf. http://www.pro
essing.org).

It was developed by Casey Reas and Benjamin Fry, both formerly of the
Aesthetics and Computation Group at the MIT Media Lab. Software written
using Processing is in the form of so-called sketches. These sketches are
written in a specific text editor, which can have lots of tabs to manage different
files.

After trying various other systems, we have written our code for the
software in Processing. This code is subdivided into several components to
make it more comprehensive and each component is written in a separate file
(tab). The software has two external files and 16 tabs in total ; one external
file for input and another one for output. In this chapter, we explain the
functioning of each tab.
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8.2. INPUT FOR THE SOFTWARE

The input for the code is extracted from an external file input.txt. While
writing the code, input.txt is kept external so that it can be more user-friendly.
This file has also been transformed into a GUI (Graphic user interface). The
file has the following eight different elements :

1. An allocation matrix (AT (n))

REMARK. The number of tiles(n ) and a list of all the tiles are specified
within the code in a tab gettinginput instead of Input.txt file.

2. The area of each tile

3. The area of the plot

4. The ratio of width over height for each tile

5. Change of a tile

The formation of groups is done by using an algorithm but it can sometimes
happen that one is not pleased with the formed groups. Therefore, we kept
an option which enables one to move a tile from one group to another.

To move a tile from one group to another, three numbers are required. The
first one is the group number from which its member is moved, the second one
is another group number to which a new tile is added and the third number
is the member number, i.e., the tile number as given in the list of tiles. For
example if numbers 2; 4; 14 are mentioned, this means 15th tile is moved
from 3rd group to 5th group. We write �1 as the tile number if we don’t
change the position of any tile. Also, at the present stage of development of
our software at most two members can be moved.

6. The position of groups

As discussed in Chapter 4, there are only five positions for groups therefore
the position of the groups is given in terms of five numbers. For example,
the following sequence of five numbers 2; 0; 1; 3; 4 indicates that 3rd , 1st , 4th

and 5th groups are the central, left, upper, right and lower groups respectively.

REMARK. In Processing an array always starts from zero, therefore in
programming all numbering begins with zero.
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7. Assigning a spiral for each group

As mentioned in Chapter 2, a group is constructed with any of the eight
spirals therefore any five numbers between 0 and 7 stand for the spirals in
each corresponding group. For example, the sequence 2; 1; 4; 5; 1 indicates that
the central, left, upper, right and lower groups are constructed with spiral3,
spiral2, spiral5, spiral6 and spiral2 respectively. For details about the eight
spirals, see Section 2.1.4.

8.3. SOFTWARE CONSTRUCTION

In this section all tabs of the code are explained one by one in the order
in which they occur.

8.3.1 GETTING INPUT

In the tab gettinginput, we import the input from the external file input.txt
by calling a function gettinginput().

Also using the areas of all the tiles and the ratio between their width and
height, the width and height of each tile are computed.

8.3.2 INITIAL ADJACENCY PAIRS

In the tab initialadjacency by calling function initialadjacency() all the
initial adjacency pairs are obtained. For details, refer to Sections 4.2 and A.3.

8.3.3 GROUPS

Once we have the initial adjacency pairs, by using the tab groups, the
required groups and their members are obtained. For details, refer to Sections
4.3 and A.4.

8.3.4 CHANGE OF A TILE

The function of the tab changingtile is to move a tile from one group
to another and simultaneously it revises the position of the tile in the
corresponding array.
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8.3.5 ARRANGING THE MEMBERS OF EACH GROUP IN ASCENDING ORDER

The tab arrangingsizes considers each group and its members one by one
and then arranges them in the increasing order according to their areas (see
Section 2.2.2.1).

8.3.6 OBTAINING A SPIRAL-BASED PLUS-SHAPE TILING

In the tab plusshapedframe, by calling function plusshapedframe() the
required TP

S is constructed and displayed on the screen. This function has two
parts, the first one does the necessary calculations while the second one deals
with the construction of a TP

S inside the plot.

First part : Interchanging the width and height of tiles and calculating the
area of TP

S

This part has many steps, some of which may call some other functions.
The details of these newly-defined functions are provided later.

1. Set i = 0
2. Consider the (i+ 1)th group

REMARK. For all the upcoming steps, the 1st , 2nd , 3rd , 4th and 5th groups
represent the central, left, upper, right and lower groups respectively.

3. Interchanging width and height of the 1st member of each group
This step is performed to reduce the area of TP

S . It works well in most
cases but sometimes it might work adversely.

For i = 0, 1 or 3, namely, for 1st , 2nd or 4th group if l1 < h1 , we swap
l1 and h1 . This is to reduce HB .

For i = 2 or 4, namely, for 3rd or 5th groups, if l1 > h1 , we swap l1
and h1 . This is to reduce LA . For LA and HB , see Section 4.4.2.

4. Interchanging width and height of the members of (i+ 1)th group
If spiral1, spiral2, spiral5 or spiral6 is used for the (i+ 1)th group then

we call function shape1() . If spiral3, spiral4, spiral7 or spiral8 is used for
the (i+ 1)th group then we call function shape2() .

The functions shape1() and shape2() swap the width and height of all
the members of each group, if required (for condition if required refer to



SOFTWARE FOR TILING BY RECTANGLES 121

Definition 2.20). For details about swapping of the width and height, refer to
Section 2.2.2.

5. Calculating the width and height of the (i+ 1)th group
All the functions defined in this step compute the width and height of

corresponding groups. If spiral1, spiral2, spiral5 or spiral6 is used for the
(i+ 1)th group and if

5.1. i = 0, we call function L and H1 1() otherwise for remaining spirals
we call function L and H2 1() .

5.2. i = 1, we call function L and H1 2() otherwise for remaining spirals
we call function L and H2 2() .

5.3. i = 2, we call function L and H1 3() otherwise for remaining spirals
we call function L and H2 3() .

5.4. i = 3, we call function L and H1 4() otherwise for remaining spirals
we call function L and H2 4() .

5.5. i = 4, we call function L and H1 5() otherwise for remaining spirals
we call function L and H2 5() .

6. If i = 4 , we go to the next step otherwise we increase i by one and go to
step 2.

7. Computing the area of TP
S (cf. Section 4.4.2).

Going through the details of all the functions used in the first part is lengthy
and tedious; therefore to understand the concept of all these functions, we
shall elaborate on the steps of only two functions, namely, shape1() and
L and H1 1() . These two functions are given in Sections A.6 and A.7.

Second part : Drawing TP
S and plot

1. Let i = 0.
2. Consider the (i+ 1)th group.
3. Calculating the width and height of the inner extra spaces

If Rj is drawn to the left or right of TR
S ( j � 1) and lj is greater than

the width of TR
S ( j � 1), we draw an inner extra space to the right side of

TR
S ( j � 1). This extra space is a virtual part of TR

S ( j � 1) and it virtually
increases the width of TR

S ( j � 1). To obtain the starting point of (i + 1)th

group (e.g. second group), the width of the inner extra space is subtracted
from x .
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If spiral1, spiral2, spiral5 or spiral6 is used for the (i+ 1)th group, we
call function shape1 1() .

If spiral3, spiral4, spiral7 or spiral8 is used for the (i + 1)th , we call
function shape2 1() .

Here the functions shape1 1() and shape2 1() calculate the width and
height of some of the inner extra spaces of the (i+ 1)th group.

4. Obtaining starting point of each group and drawing the outer extra spaces
In this step first we compute the starting point of the (i+ 1)th group and

then we draw an outer extra space if required.
For i = 0, 1, 2, 3, 4, we call functions extra1 1(p1; p2) , extra1 2(p1; p2; p3; p4) ,
extra1 3(p1; p2; p3) , extra1 4(p1; p2) or extra1 5(p1; p2) respectively. Here
p1; p2; p3 and p4 are variables which are passed to the corresponding function
and the value of p1; p2; p3 and p4 may be different for each spiral.

5. Drawing the (i+ 1)th group
Corresponding to the spiral1, spiral2, spiral3, spiral4, spiral5, spiral6,

spiral7 and spiral8, we call functions shape1 2() , shape2 2() , shape3 2() ,
shape4 2() , shape5 2() , shape6 2() , shape7 2() and shape8 2() respectively.

Each of these functions draws the corresponding group following the
corresponding spiral at the starting point obtained in step 4.

6. If i = 4 we move to the next step otherwise we go back to the second
step.

7. Drawing the plot and its parts (cf. Section A.5).

Again explaining all the functions is an extensive and verbose process
so for clarification of the functions, shape1 1() , extra1 2(p1; p2; p3; p4) and
shape1 2() are discussed. These functions are given in Sections A.8, A.9 and
A.10 respectively.

REMARK. For the upcoming computations, it is not feasible to draw tiles
again and again, therefore we allocate the tiles for the required computations.
Allocating does not mean drawing, it means drawing virtually. Allocating the
tiles instead of drawing them reduces the complexity of the code and the code
consumes less time for displaying the final output.
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8.3.7 OBTAINING THE FINAL ADJACENCY PAIRS

The tab adjacencypairs computes the adjacency pairs among the compo-
nents of each group and among members of different groups on the basis of
the definitions given in Sections 3.1 and 5.1 respectively.

Function : adjacencypairs()

1. Set i = 0 and j = 0 where i and j are variables.

2. Obtaining adjacency pairs of the first group

To obtain adjacency pairs of two different groups, after allocating each
member we calculate the width and height of corresponding TR

S .
If j = 0,
If spiral1, spiral2, spiral5 or spiral6 is used, the first and second tile is

drawn one above the other. By calling function adjacencycal1() we compute
the width and height of TR

S after allocating each member.
If spiral3, spiral4, spiral7 or spiral8 is used, the first and second tile

is drawn side by side. By calling function adjacencycal2() we compute the
width and height of TR

S after allocating each member.
If i = 0, to calculate adjacency pairs of the first group we call function

adjacency1().

3. Obtaining adjacent pairs of ( j+ 1)th group

If i = j+ 1,
For ( j + 1)th group, after allocating each member we compute the width

and height of corresponding TR
S by calling any of the required functions

adjacencycal1() or adjacencycal2().
We compute adjacency pairs of ( j + 1)th group by calling function

adjacency1().

4. Obtaining adjacency pairs among the first and second group

If i = 0,
4.1 If j = 0, we obtain those members (and their heights) of the first

group which can be adjacent to some members of the second group by calling
function adjacencyHeight(p3; p4) .
The values of p3 and p4 are different for each spiral. Since the second group
is drawn to the left of the first group, adjacency among the members of these
two groups is obtained by comparing their heights.
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4.2 Obtaining the members (and their heights) of the second group which
can be adjacent to the members of first group and then computing the adjacency
pairs among these two groups

If j = 1, we first check which spiral is used and then call function
adjacencyHeight(p3; p4) (the values of p3 and p4 are different for each spiral).

Afterwards we call function findingadjacencies(p1; p2) . This function com-
putes the adjacency pairs among the members of two different groups. Here
it computes the adjacency pairs among the members of the first and second
group. The value of p1 and p2 can be same or different for different spirals.

5. Obtaining adjacent members of the first and third group

In this case we check if i = 1, j = 0 for the first group and j = 2
for the third group. To obtain steps 5.1 and 5.2, we replace function
adjacencyHeight(p3; p4) by function adjacencyLength(p3; p4) in the steps 4.1
and 4.2.

Since the third group is drawn above the first group, we compare the
widths of the members of these two groups and that is why we replaced
adjacencyHeight(p3; p4) by adjacencyLength(p3; p4) .

6. Obtaining adjacent members of the first and fourth group

In this case we check if i = 2, j = 0 for the first group and j = 3 for
the fourth group. Steps 6.1 and 6.2 are same as the steps 4.1 and 4.2.

7. Obtaining adjacent members of the first and fifth group

In this case we check if i = 3, j = 0 for the first group and j = 4 for
the fifth group. Steps 7.1 and 7.2 are same as the steps 5.1 and 5.2.

8. If j < 4 , we increase j by one and go to step 2. If j = 4 , we increase
i by one. If i < 4 , we consider j = 0 and go to step 2 otherwise stop the
process.

Explaining all the functions is an extensive and verbose process so for clarifi-
cation of the functions adjacencycal1(), adjacency1(), adjacencyHeight(p3; p4 )
and findingadjacency(p1; p2 ) are discussed. All these functions are given in
Sections A.11, A.12, A.13 and A.16 respectively.



SOFTWARE FOR TILING BY RECTANGLES 125

8.3.8 OBTAINING COVARIANTS ASSOCIATED WITH THE GRAPHS

The next five tabs are adjacencymatrix, distance, cutvertex, eccentricity and
momentofinertia. These functions furnish the following results in accordance
with the definitions and methods of Section 6.1.

1. Function adjacencymatrix()
1.1 This function computes the adjacency matrix from obtained adjacency

pairs.
1.2 From the adjacency pairs it calculates degree of connectivity of the

graph.
1.3 From the adjacency matrix, it obtains the degree of each vertex of GP

S

and then the mean, standard deviation, maximum and minimum of all degrees.

2. Function distance()

This function calculates the distance between any two vertices of GP
S and

then the mean, standard deviation, maximum and minimum of all distances.

3. Function cutvertex()
This function computes all the cut vertices and cut pairs of GP

S .

4. Function eccentricity()

This function first provides the eccentricity of each vertex of GP
S and then

calculates the diameter, radius and centre of GP
S . At the end, it computes the

mean and standard deviation of all eccentricities.

5. Function momentofinertia()
We compute moments of GP

S relative to each vertex by the following two
ways :

1. by considering the weight of each tile equal to its area,
2. by considering the weight of each tile as one unit.

As noticed by Coray [6] the moments of inertia generally provide a more
accurate measure of the centre of GP

S than eccentricity, even when the graph
is equipped only with the trivial weighting.

After having the first-order moments and the moments of inertia of GP
S

relative to each vertex, we compute the mean, standard deviation, maximum
and minimum of all moments.
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8.3.9 OBTAINING EIGENVALUES

From the tab eigenvalue, we obtain the eigenvalues of the adjacency matrix
and its characteristic polynomial, by using inbuilt library Jama. Afterwards the
maximum and minimum of all eigenvalues are computed. For details about
the eigenvalues, refer to Section 6.1.5.

8.3.10 DRAWING THE GRAPH

Using the tab drawinggraph, we draw the GP
S on the same screen on

which TP
S is displayed.

8.3.11 PRINT

Using the tab print, all the results are displayed in an external file output.txt.
A list of these results is given in Section 8.4. In this tab the following
calculations are made :

1. Using the inbuilt library jgrapht, we obtain the chromatic number of
GP

S .
2. By means of the paths for calculating distances, we compute a shortest

path between each pair of vertices of GP
S .

3. With the eigenvalues and Proposition 6.21, we compute whether GP
S is

bipartite or not.

8.3.12 CALLING ALL FUNCTIONS

In the tab spiralbasedallocation the function setup() calls all the main
functions defined in Sections 8.3.1 to 8.3.11.

8.4. OUTPUT FOR THE SOFTWARE

When we run the obtained software, a TP
S and its graph are displayed

on the screen. In addition, some important covariants, like the area of TP
S ,

spirals used for the central, left, upper, right and lower TR
S , the minimum

and maximum moments of inertia, the radius and diameter of GP
S are also

displayed. At the same time, a new file output.txt is obtained, which contains
the following results :

1. The width and height of each tile
2. All the five groups and their members
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3. The number of inner and outer extra spaces
4. The area of TP

S

5. The total area of all the extra spaces
6. The adjacency matrix
7. The number of edges
8. The degrees of all tiles, their mean, standard deviation, dispersion,

maximum and minimum.
9. The eigenvalues of adjacency matrix and the corresponding polynomial.

Also, the minimum and maximum of all eigenvalues.
10. Whether the GP

S is bipartite or not
11. The distance matrix and the mean, standard deviation, dispersion,

maximum and minimum of all distances
12. A shortest path between each pair of tiles
13. All the cut vertices and cut pairs
14. The eccentricities of all tiles, their mean, standard deviation, and

dispersion. The radius, diameter and centre of GP
S

15. The moments and their mean, standard deviation, dispersion, maximum
and minimum.

16. The chromatic number

8.5. SOURCE FOR THE CODE

As mentioned before our code for this software is written in the program-
ming language Processing therefore the first requirement is to download the
most recent version of Processing. This can be done from the following
address :http://www.pro
essing.org/download/
The software TOR has six different forms, all of them can be downloaded
from my web page :http://krishnendrashekhawat.weebly.
om/downloadable.html

Now we elaborate on these six different forms.

1. General Solution
For a given position and spiral for each group, a TP

S is displayed along with
its graph by running this code. All the associated covariants are calculated
and displayed in the file output.txt. This code is available under the name
spiralbasedtiling.zip.
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2. Minimum Area Solution

As discussed previously when the position of the groups is fixed and the
spiral for each group is changed, 32; 768 different solutions can be obtained.
For these solutions, the following code gives the minimum area solution. There
can be more than one solution having minimum area, therefore in the file
output.txt, the number of minimum area solutions is mentioned.

For details about minimum area solution refer to Section 6.3.1, where an
example is also given.

By default this code gives the last solution having minimum area. But by
replacing this specific line// if(No Soln == 1) f g0 = 8; g1 = 8; g2 = 8; g3 = 8; g4 = 8;break; g

by the lineif(No Soln == 1) f g0 = 8; g1 = 8; g2 = 8; g3 = 8; g4 = 8; break;g
in the tab plusshapedframe, the first solution having a minimum area is

obtained. Similarly, other solutions can be explored by replacing No Soln == 1
by some other value j such that 1 < j < (number of minimum area solutions).

This code is available under the name minareatiling.zip.

REMARK. While obtaining a minimum area solution, all the 32; 768
solutions are not displayed, only the area for all solutions is calculated. Then
minimum area solution is selected and displayed. The same procedure is used
for the next 3 forms of the code.

To display all the solutions, one way is to display and erase each solution
one by one; other way is to display all the solutions in multiple windows. If
we calculate the area of all the solutions and display only one solution having
minimum area then this reduces the complexity of the code and it consumes
less time for displaying the final output.

3. Maximum Area Solution

This code provides a maximum area solution, its graph and associated
covariants (for details, see Section 6.3.1). The different solutions having
maximum area are obtained by making the same changes as above. This
code is available under the name maxareatiling.zip.



SOFTWARE FOR TILING BY RECTANGLES 129

4. Min(min(moments of inertia)) Solution
This code provides min(min(moments of inertia)) solution, its graph and

the associated covariants (for details, refer to Section 6.3.2). This code is
available under the name minmoitiling.zip.

5. Max(min(moments of inertia)) Solution
This code bears the name maxmoitiling.zip.

6. General GUI Solution
This code is exactly the same as the code for the general solution. The

only difference is that after running this code a user interface window named
GUI will be created, where the position of groups and spiral used for each
group can be chosen. While using this window, the instructions on the window
should be read and followed strictly. This code is available under the name
tilinggui.zip.

7. Libraries
For all these codes, three libraries are required as follows :
7.1 jgrapht
This library is used to calculate the chromatic number.
7.2 Jama
This library is used to compute the eigenvalues.
7.3 controlP5
This library is used to obtain a graphic user interface.
All these libraries are available through libraries.zip, which can be

downloaded from the sitehttp://www.pro
essing.org
All these codes and libraries should be downloaded in a new folder only,
for example Processing at My Documents. For syntax and other details about
Processing refer to Terzidis [40].

Our software will be updated with any future advancement in the theory
developed here.
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CONCLUSION AND FUTURE WORK

An arrangement of objects is an elementary problem in daily life and also in
the context of a larger framework. Therefore, there is a necessity to handle this
problem and that’s why in the present work a particular aspect of this problem,
namely tiling by rectangles has been defined and handled mathematically. The
process of solving this problem was commenced by arranging several tiles of
different sizes in a rectangular frame, i.e., by constructing a TR

S . Since the
obtained TR

S was recognised as one of the best solutions from the point of
view of connectivity, we used TR

S as a base for obtaining other shape tilings.
To demonstrate the relevance of this approach, a TP

S was constructed from
five TR

S (cf. Chapter 4).
After constructing TR

S and TP
S , as an advancement in this direction, we

will try to pursue the following five steps :
1. We will obtain tiling for given tiles (rectangular) and for a given shape

which can easily be divided into rectangles, for example, a plus-shape was
partitioned into five rectangles (see Figure 4.1).

2. In the next step, we will obtain tiling for a given shape and area which
can easily be partitioned into rectangles.

3. After that, we will obtain tiling for a given shape which is made up
of straight lines but it can not be partitioned into rectangles. For example, a
triangle can’t be partitioned into rectangles.

4. Then we will obtain tiling for a given shape which is not made up of
straight lines; for example, a circle.

5. At last, we will try to obtain tiling by polygons.

For the arrangement of tiles in a tiling, we have taken into account adjacency
among the tiles and tried to obtain tilings having best degree of connectivity.
In this direction, we have obtained TR

S which is one of the best rectangle
tilings from the point of view of connectivity (cf. Section 3.3.2).

We know that in the spiral-based algorithm an extra space is generated
automatically and we have defined some methods to reduce the size of extra
spaces such that connectivity remains preserved (cf. Section 2.2). Because of
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this, when we apply the concept of tiling by rectangles to a new field for
example to architecture (to obtain a floor plan), we do not need to worry about
position of extra spaces. In future, we would develop some more methods to
reduce the size of extra spaces such that connectivity remains preserved.

For generalization of TR
S to obtain other shape tilings, we have considered

the allocation matrix (see Section 4.1.1) which behaves as a set of constraints
and worked very well for solving the problem and for refining solutions. In
future, we will try to develop more constraints, for example, constraints can
be on the number of extra spaces in the tiling or on the number of cut vertices
in the corresponding graph of the tiling.

Using allocation matrices and combining different TR
S , we have obtained

different shape tilings and for a particular shape (e.g. plus-shape), we have
proposed several solutions (cf. Section 4.6). But as said before it is hard
to come across every solution thus to refine solutions, we have developed
many covariants associated with the tiling and we have studied a lot of graph
covariants. On the basis of some covariants, we have proposed some techniques
to reduce the number of solutions (cf. Section 6.4) and obtained one of the
best solutions for a particular covariant (cf. Section 6.3).

Each covariant has its own function and can be used independently and
there are lots of covariants therefore using some concepts of statistics, we will
derive some techniques to obtain a solution that would be best on the basis
of all covariants.

As an example of an application, the concept of tiling by rectangles has
been applied to architecture for obtaining floor plans. In future we will try to
construct multi-floor plans by adding stairs etc.

To envision the work done a piece of software was also developed. The best
part of this software is that it requires no prior knowledge of mathematics, so
that it can easily be used by everyone. In future we will put continuous effort
to update and improve the software so as to make it even more user-friendly.

We have raised many questions throughout the text and we hope to get
some interesting suggestions or solutions in future.
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APPENDIX

A.1 DEGREE SEQUENCE

From the degree of all vertices, there follows one more graph invariant :
the degree sequence.

DEFINITION A.1. The degree sequence of a graph is the sequence formed
by arranging the vertex degrees in non-increasing order.

DEFINITION A.2. A sequence hd1; d2; : : : ; dni is said to be graphic if
there is a permutation of it which is the degree sequence of some simple
graph. Such a simple graph is said to realize the sequence.

Given the degree of all the vertices, we can construct a graph using the
following two results.

THEOREM A.3. Let hd1; d2; : : : ; dni be a graphic sequence, with d1 �
d2 � � � � � dn . Then there is a simple graph with vertex-set fv1; v2; : : : ; vng
satisfying deg(vi) = di for i = 1; 2; : : : ; n, such that v1 is adjacent to verticesv2; : : : ; vd1+1 .

Proof. For a proof, refer to Jonathan and Yellen [16], Theorem 1.1.6.

COROLLARY A.4 [Havel(1995) and Hakimi(1961)]. A sequencehd1; d2; : : : ; dni of nonnegative integers such that d1 � d2 � � � � � dn is
graphic if and only if the sequence hd2 � 1; : : : ; dd1+1 � 1; dd1+2; : : : ; dni is
graphic.

Proof. For a proof, refer to Jonathan and Yellen [16], Corollary 1.1.7.

To illustrate these results, we consider an example where the graph is
constructed for the given degrees of all vertices. For details about the algorithm
used in Example A.5, refer to Jonathan and Yellen [16], Algorithm 1.1.1 and
Example 1.1.12.
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EXAMPLE A.5. Let’s consider a graph having five vertices such that
deg(v1) = 2, deg(v2) = 3, deg(v3) = 2, deg(v4) = 4, deg(v5) = 3.
By arranging the above degrees in non-increasing sequence, the following

sequence is derived : h4; 3; 3; 2; 2i . Now using Corollary A.4, for this degree
sequence we construct a graph.

1. Initially the degree sequence is h4; 3; 3; 2; 2i . Here d2 = 3 =) d2�1 =
2; d1 = 4 =) dd1+1 = d5 = 2. Using Corollary A.4, we obtain the following
sequence :

2. hd2 � 1; d3 � 1; d4 � 1; d5 � 1i = h2; 2; 1; 1i
Using Corollary A.4 once more, we obtain the following sequence :
3.h1; 0; 1i
On permuting this sequence, we get :h1; 1; 0i
Using Corollary A.4 once more, we obtain the following sequence :
4. h0; 0i which is graphic.

Now to construct the required graph,we follow the above four steps in reverse
order.

4. h0; 0i
This step implies that there are two isolated vertices as in Figure A.1(A).
3. h1; 1; 0i

. .

(A)                             (B)                       (C)                                (D)

.

FIGURE A.1

Graphs obtained from the given degree sequence

This step implies that there are three vertices, two of which have degree 1
while one vertex has degree 0. The graph for this sequence has an edge
between the two vertices from the previous step and one isolated vertex; see
Figure A.1(B).
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2. h2; 2; 1; 1i
The graph of this sequence is constructed from the graph of the previous

step by adding an edge between v1 and v3 , and v2 and v4 , as shown in
Figure A.1(C).

1. h4; 3; 3; 2; 2i
The graph of this sequence is obtained from Figure A.1(C) by adding an

edge between v5 and the remaining vertices, as shown in Figure A.1(D).

The graph in Figure A.1(D) realizes the given sequence.

A.2 FLOYD’S ALGORITHM

This algorithm (cf. Pemmaraju and Skiena [34], Chapter 8) is used to
obtain the distance and a shortest path between any two vertices.

The algorithm works by updating two matrices, Dk and Qk , n times for
an n -vertex graph. The matrix Dk , in any iteration k , gives the value of
the shortest distance among all pairs of vertices (i; j) as obtained till the kth

iteration. The matrix Qk has qk
ij as its elements. The value of qk

ij gives the
immediate predecessor vertex from vertex i to vertex j on the shortest path
as determined by the kth iteration. The starting matrix D0 , with entries d0

ij ,
is defined as follows :

d0
ij = 1 if i 6= j and vertex i is adjacent to vertex j

d0
ij =1 if i 6= j and vertex i is not adjacent to vertex j

d0
ij = 0 if i = j

The entries q0
ij of the predecessor matrix Q0 are defined as follows : q0

ij = i , for
i 6= j , i.e., for every pair of distinct vertices (i; j) , the immediate predecessor
of vertex j on a shortest path leading from vertex i to vertex j is (temporarily)
assumed to be vertex i . After defining D0 and Q0 the following steps are
used repeatedly to determine Dn and Qn .

Step 1 : Set k = 1
Step 2 : The entries dk

ij of the shortest path matrix Dk are defined by :

dk
ij = min(dk�1

ij ; dik
k�1 + dkj

k�1)

.
Step 3 : The entries qk

ij of the predecessor matrix Qk are defined as follows :

If dk
ij 6= dk�1

ij then qk
ij = qkj

k�1 else qk
ij = qk�1

ij :
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Step 4 : If k = n , the algorithm is terminated. If k < n , increase k by 1,
and return to step 2.

Now we take a look at the algorithm in a little more detail. In step 2, each time
one goes through the algorithm, it is checked whether a shorter path exists
between vertex i and vertex j . In step 3, if it is established that dk

ij 6= dk�1
ij ,

i.e., the length of the shortest path dk
ij between vertices i and j is less than

the length of the shortest path dk�1
ij , it is required to change the immediate

predecessor vertex to vertex j . Since the length of the new shortest path is :

dk
ij = dik

k�1 + dkj
k�1

it is clear that here node k is the new immediate predecessor vertex to k ,
and therefore :

qk
ij = qkj

k�1

After passing through the algorithm n times, the entries dn
ij of the final

matrix Dn will constitute a shortest path going from vertex i to vertex j .

Matrix Q gives the immediate predecessor vertex to vertex j on the shortest
path. To have all vertices of the shortest path between vertex i and j , starting
from vertex j obtain the immediate predecessor one by one till vertex i .

The obtained shortest path is of course not unique in general.

A.3 INITIAL ADJACENCY PAIR ALGORITHM

This algorithm calculates the initial adjacency pairs from a given allocation
matrix (cf. Section 4.2 where initial adjacency pairs are defined and derived
from the given allocation matrix).

1. Let AT = [aij]n�n , M = maxfaijg where i = 1; :::; n ; j = 1; :::; n and
n be the number of tiles. Initially M = 10, j = 1.

2. Consider the jth row.
3. If it corresponds to any tile which is covered in any of the obtained

initial adjacency pairs we skip this row otherwise we obtain all the pairs of
tiles corresponding to number M in the allocation matrix and consider them
as adjacency pairs.

4. If all the tiles are covered in the obtained adjacency pairs, terminate
the algorithm; otherwise go to the next step.
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5. Increase j by one.
6. If j < n+ 1, go to step 2.
7. If j = n+ 1, reduce i by one, consider j = 1 and go to step 2.

A.4 ALGORITHM FOR THE GROUPING OF TILES

This algorithm obtains groups from the initial adjacency pairs. Here in
particular, the algorithm is given for obtaining five groups which will be used
to obtain a TP

S . If the number of groups is greater or less than five, the initial
adjacency pairs will require updating. Therefore this algorithm does not only
obtain five groups, but also revises the initial adjacency pairs. Here are the
steps of the algorithm :

1. Let the number of groups be i and initially i = 1.

2. Obtaining the 1st member of the ith group
a. Consider each tile one by one from the given list of tiles.
b. Select the tile which does not exist in any of the groups obtained so

far.
c. Now regard this tile as the 1st member of the ith group.
Note : To start the process of forming groups, we consider the 1st tile as

the 1st member of the 1st group.

3. Forming the ith group
a. Among the adjacency pairs, we find those tiles which are adjacent to

the 1st member of the group.
b. Then we include these tiles as members of the group.
c. If newly included members are adjacent to other tiles from the initial

adjacency pairs, we add those tiles to the group.
d. We repeat Step 3.c until the remaining tiles from the initial adjacency

pairs are adjacent to any other member of the group.
e. When all members along with their adjacent tiles are included in the

group we stop the process.

4. Review all the remaining tiles. If the number of tiles in the given list is
equal to the number of all tiles included in the groups (i.e., if all the tiles are
included in the groups)
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a. Then proceed to step 5
b. Otherwise increase i by one and go to step 2 to form another group.

5. To obtain a plus-shape tiling five groups are required, therefore
a. If i = 5, we stop.
b. If i < 5, we go to step 6 to increase the number of groups.
c. If i > 5, we go to step 7 to reduce the number of groups.

6. When the number of groups is less than 5 ( i < 5)
a. We search for the group having the maximum number of tiles as

members.
b. If there is more than one group we consider the one which comes first.
c. Let this group be named G .
d. We look in the allocation matrix for a pair of elements of G with

minimum weight. If there is more than one pair we consider the one which
comes first.

e. Let the tiles from this pair be (Ri;Rj) .
f. Now we update the initial adjacency pairs by deleting all those pairs

which have any member in common with G .
g. Split G into two parts, so that i gets increased by one. Splitting has

the effect of forming two new groups :
(i) . G1 which contains Ri

(ii) . G2 which contains Rj .
h. To find the members of G1 and G2 , we look at the weight of each

member of G corresponding to Ri and Rj .
i. If the obtained weight of any member corresponding to Ri is greater than

the weight corresponding to Rj then this tile forms an adjacency pair with Ri

and we consider it as a member of G1 otherwise it forms an adjacency pair
with Rj and we consider it as a member of G2 .

j. Repeat step 6.i until G1 [ G2 = G .
k. Now G is replaced by G1 and G2 . Also, i got increased by one.
l. Go to step 5.

7. When the number of groups is greater than 5 (i > 5)
a. From among the i groups, we choose two having a minimum number

of members.
b. Let these groups be named G1 and G2 .
c. Combine G1 and G2 to form a new group.
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d. We look in the allocation matrix for a pair of elements of G1 and G2

with maximum weight. If there is more than one pair we consider the one
which comes first.

e. Consider this pair to be an adjacency pair.
f. Now G1 , G2 together form a new group. Also, i got reduced by one.
g. Go to step 5.

Note : The steps 6.h, 7.d, 7.e, 7.f are meant to update the initial adjacency
pairs. They have nothing to do with the formation of groups.

A.5 THE WIDTH, HEIGHT AND POSITION OF THE PLOT AND ITS PARTS

1. Drawing Plot : Let (x; y) be the upper left corner of the central TR .
Draw a plot with width Lp and height Hp at position (x�L2�(Lp�LB)=2; y�
H3 � (Hp �HA)=2). Because of choosing this position, the floor plan will be
placed in the centre of the plot, i.e., the size of P1=P3, P2=P7, P4=P5 and
P6=P8 (cf. Figure 7.1).

2. Drawing P1 : Position : (x� L2 � (Lp � LB)=2; y� H3 � (Hp � HA)=2),
width : L2 + (Lp � LB)=2, height : H3 + (Hp � HA)=2.

3. Drawing P2 : Position : (x; y�H3�(Hp�HA)=2), width : max(L1;L3;L5) ,
height : (Hp � HA)=2.

4. Drawing P3 : Position : (x+max(L1;L3;L5); y � H3 � (Hp � HA)=2),
width : L4 + (Lp � LB)=2, height : H3 + (Hp � HA)=2.

5. Drawing P4 : Position : (x+L4+max(L1;L3;L5); y) , width : (Lp�LB)=2,
height : max(H1;H2;H4) .

6. Drawing P5 : Position : (x� L2 � (Lp � LB)=2; y) , width : (Lp � LB)=2,
height : max(H1;H2;H4) .

7. Drawing P6 : Position : (x � L2 � (Lp � LB)=2; y+max(H1;H2;H4)) ,
width : L2 + (Lp � LB)=2, height : H5 + (Hp � HA)=2.

8. Drawing P7 : Position : (x; y+H5+max(H1;H2;H4)) , width : max(L1;L3;
L5) , height : (Hp � HA)=2.

9. Drawing P8 : Position : (x+max(L1;L3;L5); y+H3+H5+max(H1;H2;H4)
) , width : L2 + (Lp � LB)=2), height : H5 + (Hp � HA)=2).

Note : For the upcoming sections, let Li and Hi are the width and height of
TR

S (i) , li and hi are width and height of its member Ri where i = 1; : : : ; n .
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A.6 FUNCTION SHAPE1()

This function swaps the width and height of members of a group when
spiral1, spiral2, spiral5 or spiral6 is used for the corresponding group.

1. When R2 is going to be allocated above R1

1.1 Calculating the area of extra spaces
If `1 > `2 , then AO = (`1 � `2)� h2 otherwise AO = (`2 � `1)� h1

If `1 > h2 , then AI = (`1 � h2)� `2 otherwise AI = (h2 � `1)� h1 .

1.2 Interchanging the width and height (if required)
If AO > AI , then swap `2 and h2 , i.e.,
temp = `2 , `2 = h2 , h2 = temp.

1.3 Calculating L2 and H2

Initially L1 = l1 , H1 = h1 . Now L2 = max(`2; `1) , H2 = H1 + h2 .

2. When Ri is going to be allocated to the left or right of Ri�1

We are calculating the heights of TR
S only because either Hi � hi or

Hi < hi but Li is simply Li�1+ li . Also, for further calculations, when Ri is
allocated to the left or right of Ri�1 , only Hi will be used.

2.1 Calculating Hi

Hi = Hi�2 + hi�1 .

2.2 Calculating the area of extra spaces
If Hi > hi , AO = (Hi � hi)� `i otherwise AO = (hi � Hi)� Li�1

If Hi > `i , AI = (Hi � `i)� hi otherwise AI = (`i � Hi)� Li�1 .

2.3 Interchanging the width and height (if required)
If AO > AI , then swap `i and hi .

2.4 Updating Hi

If hi > Hi , then Hi = hi .

3. When Ri is going to be allocated above or below Ri�1

3.1 Calculating Li

Li = Li�2 + `i�1 .

3.2 Calculating the area of extra spaces
If Li > `i , AO = (Li � `i)� hi otherwise AO = (`i � Li)� Hi�1

If Li > hi , AI = (Li � hi)� `i otherwise AI = (hi � Li)� Hi�1
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3.3 Interchanging the width and height (if required)
If AO > AI , then swap `i and hi .

3.4 Updating Li

If `i > Li , then Li = `i .

4. Keep repeating steps 2 and 3 until all members of the corresponding group
are allocated.

A.7 FUNCTION L AND H1 1()

This function calculates the width and height of the first group when
spiral1, spiral2, spiral5 or spiral6 is used for the corresponding group.

1. If the number of tiles in the 1st group is greater than one

1.1 If the number of tiles in this group is an even number then
L1 = Ln�1 and H1 = Hn�1 + hn

In this case if spiral1, spiral2, spiral5 or spiral6 is used, then Rn will be
allocated above or below TR

S (n� 1). Therefore after allocating Rn , the width
of the group will be Ln�1 but for the height, Hn�1 will be augmented by hn .

1.2 If the number of tiles in this group is an odd number then
L1 = Ln�1 + ln and H1 = Hn�1

In this case if spiral1, spiral2, spiral5 or spiral6 is used, then Rn will
be allocated to the left or right side of TR

S (n� 1). Therefore after allocating
Rn , the height of the group will be Hn�1 but for the width, Ln�1 will be
augmented by ln .

2. If the number of tiles in the 1st group is equal to one then L1 and H1 are`1 and h1 respectively.
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A.8 FUNCTION SHAPE1 1()

This function computes the width or height of the inner extra space
corresponding to each member of every group.

1. Calculating L2 and H2

Initially L1 = l1 , H1 = h1 . Now L2 = max(`2; `1) , H2 = H1 + h2 .

2. Calculating the width of inner extra space after allocating R2

Width(inner extra space) = j`2 � `1j
This value will be used while drawing the corresponding extra space.

3. When Ri is going to be allocated to the left or right of Ri�1

3.1 Hi = Hi�2 + hi�1 .
3.2 If hi > Hi then height(inner extra space)= hi � Hi otherwise we

consider it as 0 (the explanation for considering the height of inner extra
space only when hi > Hi is given in upcoming function).

4. When Ri is going to be allocated above or below Ri�1

4.1 Li = Li�2 + `i�1 .
4.2 If `i > Li , then width(inner extra space)= `i�Li otherwise we consider

it as 0.

5. Keep repeating steps 3 and 4 until all members of the corresponding group
are covered.

A.9 FUNCTION EXTRA1 2(p1; p2; p3; p4)

This function calculates the starting point of the second group and draw
an outer extra space below the first or the second group.

1. Obtaining the starting point of the second group

Let (x; y) is the upper left corner of the first group and initially the starting
point of the second group.

When a member Ri of the second group is drawn to the right side of
TR

S (i� 1), it overlaps with some members of the first group (e.g. if spiral2 is
used for the second group, its second member is drawn at position (x+ l1; y) ;
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clearly this member overlaps with some members of the first group). Therefore
we deduct the widths of all Ri , drawn to the right side of corresponding
TR

S (i� 1), from x to obtain the starting point of the second group.
In function extra1 2(p1; p2; p3; p4) , p2 represents the first value of i for

which Ri is drawn to the right side of TR
S (i� 1) and after Rp2 every fourth

member (if exist) is drawn to the right side of a TR
S . Using p2 , we compute

the widths of all Ri drawn to the right side of corresponding TR
S (i � 1) and

subtract them from x .
Also R1 of the second group overlaps with some members of the first

group. Therefore corresponding l1 is subtracted from x . For some spirals, R2

is drawn to the left or to the right of R1 (e.g. spiral2, cf. Figure 2.9). In
this case, p1 = 0 and l1 is subtracted from x . For some spirals, R2 is drawn
above or below R1 (e.g. spiral1, cf. Figure 2.9). In this case p1 = 1 and L2

is deducted from x .
For the second group, we require (x; y) should be its upper right corner.

When a member Ri of the second group is drawn above TR
S (i � 1), (x; y)

would not remain upper right corner of the second group. To obtain this
position, the heights of all those Ri which are drawn above corresponding
TR

S (i� 1), are added to y .
Here p3 represents the first value of i for which Ri is drawn above

TR
S (i� 1) and after Rp3 every fourth member (if exist) is drawn above some

TR
S .

If a member Rj of the second group is drawn to the left or right of TR
S (j�1)

and lj is greater than the width of TR
S (j � 1), we draw an inner extra space

to the right side of TR
S (j� 1). This extra space is a virtual part of TR

S (j� 1)
and it virtually increases the width of TR

S (j� 1). To obtain the starting point
of the second group, the width of the inner extra space is subtracted from
x . The width of inner extra spaces has already been obtained in the previous
function.

Here p1 also represents the first value of i for which Ri is drawn above or
below TR

S (i� 1) where li is greater than the width of TR
S (i� 1). For this case

we have considered the upper and lower sides only, therefore every second
member after Rp1 is drawn either above or below some TR

S . Therefore using
p1 the width of all the inner extras are obtained and subtracted from x .

After all these calculations, obtained value of x and y gives the starting
point of the second group.

REMARK. We have not considered the members Ri whose height is greater
than the height of TR

S (i� 1) because inner extra space is always drawn below
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a TR
S . And to obtain the starting point, the heights of only those rectangles

which are drawn above some TR
S are subtracted from y .

In case of the third group, we have not considered the cases when the
width of members Ri is greater than the width of TR

S (i� 1) because in these
cases, inner extra space is always drawn to the right of TR

S (i� 1). And to get
the starting point, the widths of only those Ri which are drawn to the left of
TR

S (i� 1) are added to x .
Similarly for the first, fourth and fifth groups, any of the cases when the

width or the height of Ri is greater than the width (or the height) of TR
S (i�1),

have not considered.

2. Drawing an outer extra space
If H1 > H2 , we draw an outer extra space below the second group such

that its lower left vertex is the upper left vertex of the extra space. The width
and height of this extra space is L2 and H1�H2 respectively having position
(x� L2; y+ H2) .

If H1 < H2 , we draw an outer extra space below the first group such that
its lower left vertex is the upper left vertex of the extra space. The width and
height of this extra space is L1 and H2 � H1 respectively having position
(x; y+ H1) .

REMARK. A particular colour is used for all the outer extra spaces to
distinguish them from others spaces. Also after drawing an outer extra space,
the number of outer extra spaces is increased by one so that in the end the
total number of outer extra spaces is achieved.

A.10 FUNCTION SHAPE1 2()

This function is used to draw all the members of any group when spiral1
is used for the group. Suppose ith group is going to be drawn and its starting
point is (x; y) .

1. Drawing R1

R1 is drawn with the width and height `1 and h1 respectively at position
(x; y) .

If the number of members of ith group is greater than one, then move to
the next step otherwise stop here.
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REMARK. After drawing each member, its name is printed at its centre
and a particular colour is used for all the members of each group to distinguish
them from the extra spaces.

2. Drawing R2 and the inner extra space
R2 is drawn with the width and height `2 and h2 respectively at position

(x; y� h2) .
If `2 < `1 , then an inner extra space is drawn to the right side of R2

with the width and height obtained in the function shape1 1() at position
(x+ `2; y� h2) .

If `2 > `1 , then an inner extra space is drawn to the right side R1 , with the
width and height obtained in the function shape1 1() at position (x+ `1; y) .

REMARK. A particular colour is used in all the inner extra spaces to
distinguish them from other spaces. Also after drawing an inner extra space
the number of inner extra spaces is increased by 1 so that in the last the total
number of inner extra spaces will be achieved.

3. Calculating L2 and H2

Initially L1 = l1 , H1 = h1 . Now L2 = max(`2; `1) , H2 = H1 + h2 .

4. Obtaining a position for R3

Since upper left vertex of R3 should be upper right vertex of TR
S (2) , we

subtract h2 from y , namely y = y� h2 , to obtain position of R3 .

5. Drawing Ri to the right side of TR
S (i� 1)

Add Li to x to obtain position of Ri . We draw Ri with width `i and
height hi at position (x; y) .

If hi < Hi , we draw an inner extra space at position (x; y+hi) with width`i and height Hi � hi . If hi > Hi , we draw an inner extra space at position
(x� Li; y+ Hi) with width Li and height hi � Hi .

In this case we update Hi by Hi = hi .

6. Drawing Ri below TR
S (i� 1)

Subtract Li from x and add Hi to y to obtain position of Ri . We draw
Ri with width `i and height hi at position (x; y) .

If `i < Li , we draw an inner extra space at position (x+ `i; y) with width
Li � `i and height hi .
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If `i > Li , we draw an inner extra space at position (x+ Li; y�Hi) with
width `i � Li and height Hi .

In this case we update Li by Li = `i .

7. Drawing Ri to the left side of TR
S (i� 1)

Subtract `i from x and subtract Hi from y to obtain position of Ri . We
draw Ri with width `i and height hi at position (x; y) .

If hi < Hi , we draw an inner extra space at position (x; y+hi) with width`i and height Hi � hi . If hi > Hi , we draw an inner extra space at position
(x+ `i; y+ Hi) with width Li and height hi � Hi .

In this case we update Hi by Hi = hi .

8. Drawing Ri above TR
S (i� 1)

Subtract hi from y to obtain position of Ri . We draw Ri with width `i

and height hi at position (x; y) .
If `i < Li , we draw an inner extra space at position (x+ `i; y) with width

Li � `i and height hi . If `i > Li , we draw an inner extra space at position
(x+ Li; y+ hi) with width `i � Li and height Hi .

In this case we update Li by Li = `i .

9. Keep repeating the steps 5, 6, 7 and 8 until all the members are drawn.

A.11 FUNCTION ADJACENCYCAL1()

This function calculates the width (or the height) of TR
S after allocating

each tile for each group when spiral1, spiral2, spiral5 or spiral6 is used
for the corresponding group.

1. Initially L1 = l1 , H1 = h1 . Now L2 = max(`2; `1) , H2 = H1 + h2 .

2. When Ri is going to be allocated to the left or right of Ri�1

Hi = Hi�2 + hi�1 . If hi > Hi we have Hi = hi .

3. When Ri is going to be allocated above or below Ri�1 member
Li = Li�2 + `i�1 . If `i > Li we have Li = `i .

4. Keep repeating steps 2 and 3 until all the members of corresponding group
are covered.
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A.12 FUNCTION ADJACENCY1()

This function calculates the adjacency pairs among each group.

1. Obtaining adjacency of the first member with other members of the same
group

1.1. If n = 2 then R1 will be adjacent to R2 .
1.2. If n = 3 then R1 will be adjacent to R2 and R3 .
1.3. If n > 3 then R1 will be adjacent to R2 , R3 , R4 and R5 .

2. Obtaining adjacency with every next member
Starting from R2 , each Ri will be adjacent to every Ri+1 till i < n .

3. Obtaining adjacency with every third next member
Starting from R2 , each Ri will be adjacent to every Ri+3 till i < (n� 2).

4. Obtaining adjacency with every fourth next member
Starting from R2 , each Ri will be adjacent to every Ri+4 till i < (n� 3).

A.13 FUNCTION ADJACENCYHEIGHT(p3; p4)

This function calculates the members and their heights of the first and
second group (resp. fourth group) which can be adjacent to each other.

There are four cases for the number of members of a group, namely n = 1,
n = 2, n = 3 or n > 3. For n > 3, there are four sub-cases namely n � 1
(mod 4), n � 2 (mod 4), n � 3 (mod 4) and n � 0 (mod 4). We represent
all these cases using p3 .

We know that at most three members of the first group can be adjacent
to at most three members of the second or the fourth group (cf. Lemma 5.8).
We represent these members by r1 , r2 and r3 and their heights by s1 , s2

and s3 .

Here p4 = 1 stands for the members (and their heights) of the first group
which can be adjacent to the members of the second group (resp. fourth group)
when spiral1, spiral2, spiral3 or spiral4 (resp. spiral5, spiral6, spiral7 or
spiral8) is used for the first group.

p4 = 2 represents the members (and their heights) of the first group which
can be adjacent to the members of the second group (resp. fourth group)
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when spiral5, spiral6, spiral7 or spiral8 (resp. spiral1, spiral2, spiral3 or
spiral4) is used for the first group.

p4 = 3 corresponds to the members (and their heights) of the second group
(resp. fourth group) which can be adjacent to the members of the first group
when spiral5, spiral6, spiral7 or spiral8 (resp. spiral1, spiral2, spiral3 or
spiral4) is used for the second group (resp. fourth group).

p4 = 4 symbolizes the members (and their heights) of the second group
(resp. fourth group) which can be adjacent to the members of the first group
when spiral1, spiral2, spiral3 or spiral4 (resp. spiral5, spiral6, spiral7 or
spiral8) is used for the second group (resp. fourth group).

Let e1 , e2 and e3 are the members of the first group and g1 , g2 and g3

represent their heights respectively. If three members of a group (which can
be adjacent to other members of any other group) are drawn one above the
other such that e3 at top, e2 in middle and e1 at bottom. Let f1 , f2 and
f3 represents members of the second or the fourth group and h1 , h2 and h3

represents their height respectively. Similarly if f1 , f2 and f3 are drawn one
above the other then we have f3 at top, f2 in middle and f1 at bottom. For
example, in Figure 4.5 for the left TR

S , R5 , R8 , R3 are f3 , f2 , f1 respectively.

1. Set p1 = p3 � 1.
2. If p1 = 1 (here n = 1)

In this case, only one member of the first group can be adjacent to one
member of the second or the fourth group.

Here r1 is R1 and s1 = h1 . If p4 = 1 or 2, we have e1 = r1 , g1 = s1 .
If p4 = 3 or 4, we have f1 = r1 , h1 = s1 .

3. If p1 = 2
3.1 If n = 1, this step is same as Step 2.
3.2 If n = 2 we have r2 is R1 with s2 = h1 , r1 is R2 with s2 = h1 .
If p4 = 1 we have e1 = r1 , e2 = r2 , g1 = s1 , g2 = s2 .
If p4 = 2 we have e1 = r2 , e2 = r1 , g1 = s2 , g2 = s1 .
If p4 = 3 we have f1 = r1 , f2 = r2 , h1 = s1 , h2 = s2 .
If p4 = 4 we have f1 = r2 , f2 = r1 , h1 = s2 , h2 = s1 .

4. If p1 = 3
4.1 If n = 1, this step is same as Step 2.
4.2 If n = 2 we have r1 as the first member, s1 = H1 . The cases for

p4 = i , i = 1; : : : ; 4 are same as in Step 2.
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4.3 If n = 3 we have r2 as the first member, s2 = H1 , r1 as the third
member, s2 = h3 . The cases for p4 = i , i = 1; : : : ; 4 are same as in Step 3.2.

5. If n > p1

5.1 If n � p3 (mod 4) ((n congruent to p3 modulo 4)) then r1 is Rn ,
s1 = Hn . The cases for p4 = i , i = 1; : : : ; 4 are same as in Step 2.

5.2 If n � p3+1 (mod 4) then r2 is Rn , s2 = hn , r1 is Rn�1 , s1 = Hn�1 .
The cases for p4 = i , i = 1; : : : ; 4 are same as in Step 3.2.

5.3 If n � p3 + 2 (mod 4) then r2 is Rn�1 , s2 = hn�1 , r1 is Rn�2 ,
s1 = Hn�2 . The cases for p4 = i , i = 1; : : : ; 4 are same as given in Step 3.2.

5.4 If n � p3 + 3 (mod 4) then r3 is Rn�2 , s3 = hn�2 , r2 is Rn�3 ,
s2 = Hn�3 and r1 is Rn , s1 = hn .

If p4 = 1 we have e1 = r1; e2 = r2; e3 = r3; g1 = s1; g2 = s2; g3 = s3 .

If p4 = 2 we have e1 = r3; e2 = r2; e3 = r1; g1 = s3; g2 = s2; g3 = s1 .

If p4 = 3 we have f1 = r1; f2 = r2; f3 = r3; h1 = s1; h2 = s2; h3 = s3 .

If p4 = 4 we have f1 = r3; f2 = r2; f3 = r1; h1 = s3; h2 = s2; h3 = s1 .

6. If p4 = 1 or p4 = 2 we have e4 = n . If p4 = 3 or p4 = 4 we have
f4 = n . The values of e4 and f4 will be used in the upcoming functions.

EXAMPLE A.6. Refer to Figure 4.5 where the members of the first group
can be adjacent to the members of the second group, we have p4 = 2 and
p3 = 4. From Step 5.2, we have r1 = R2 , r2 = R15 , hence e1 = R15 , e2 = R2 .

Before moving to the function findingadjacencies(p1; p2 ), we talk about
function adjacency(p1; p2; p3; p4; p5; p6; p7; p8; p9 ) which is going to be used
in the function findingadjacencies(p1; p2 ).

At most three members of the first group can be adjacent to at
most three members of another group, therefore there are nine possibil-
ities to be considered for computing adjacency among the members of
different groups. All these nine possibilities are given in the function
adjacency(p1; p2; p3; p4; p5; p6; p7; p8; p9 ).
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A.14 FUNCTION ADJACENCY(p1; p2; p3; p4; p5; p6; p7; p8; p9 )

If p1 = 1, p2 = 1, p3 = 1, we consider e1 is adjacent to f1 , f2 , f3
respectively.

If p4 = 1, p5 = 1, p6 = 1, we consider e2 is adjacent to f1 , f2 , f3
respectively.

If p7 = 1, p8 = 1, p9 = 1, we consider e3 is adjacent to f1 , f2 , f3
respectively.

As said before 1, 2 or 3 members of the first group can be adjacent to 1, 2 or
3 members of any other group. These possibilities are expressed by following
functions :

adjacentrects11() , adjacentrects21() , adjacentrects31() , adjacentrects12() ,
adjacentrects22() , adjacentrects32() , adjacentrects13() , adjacentrects23() ,
adjacentrects33() .

For example function adjacentrects31() represents that only one member of
the first group can be adjacent to at most three members of any other group.
For these functions, adjacency pairs are obtained by comparing the width or
height of the members of corresponding groups.

Here it is not possible to go through all these nine functions, therefore
we consider only one of them. For an illustration, we discuss the steps of
function adjacentrects22().

A.15 FUNCTION ADJACENTRECTS22()

1. If (h2 + h1) � g2 then f1 , f2 is adjacent to e2 and we call function
adjacency(0, 0, 0, 1, 1, 0, 0, 0, 0) to obtain adjacency pairs (f1; e2) and (f2; e2) .

2. If h2 < g2 & h1 > (g2 � h2) then f2 is adjacent to e2 and f1 is
adjacent to e1 , e2 . Here we call function adjacency(1, 0, 0, 1, 1, 0, 0, 0, 0)
to obtain corresponding adjacency pairs.

3. If h2 > g2 & h2 < (g2 + g1) then f2 is adjacent to e1 , e2 and f1 is
adjacent to e1 . Therefore, we call function adjacency(1, 1, 0, 0, 1, 0, 0, 0, 0).

4. If h2 � (g2 + g1) then f2 is adjacent to e1 , e2 and we call function
adjacency(0, 1, 0, 0, 1, 0, 0, 0, 0).

5. If h2 = g2 then f2 is adjacent to e2 and f1 is adjacent to e1 . Here we
call function adjacency(1, 0, 0, 0, 1, 0, 0, 0, 0).

Now we discuss function findingadjacency(p1; p2 ).
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From functions adjacencyLength(p3; p4 ) or adjacencyHeight(p3; p4 ), there
are four cases for the values of f4 and e4 , namely f4 > i and e4 > j where
i = 0; : : : ; 3, j = 0; : : : ; 3. For obtaining adjacency pairs, it is required to
consider e4 and f4 together. Therefore, in total there are sixteen possibilities.

In function findingadjacency(p1; p2 ), p1 = 2 and p2 = 1 represents the
case f4 > 2, e4 > 1. These sixteen possibilities are divided into following
four parts.

In the first part we consider f4 � p1 and e4 � p2 where the number of
sub-cases is p1 � p2 . For example for f4 � 2 and e4 � 1, we consider the
sub-cases f4 = 1 & e4 = 1, f4 = 2 & e4 = 1.

In the second part we consider f4 > p1 and e4 � p2 where the number
of sub-cases is 4� p2 . For example for f4 > 2 and e4 � 1, we consider the
sub-cases f4 � 1 (mod 4) & e4 = 1, f4 � 2 (mod 4) & e4 = 1, f4 � 3
(mod 4) & e4 = 1, f4 � 0 (mod 4) & e4 = 1. In general, for this part we
call function adjacentrects1(p3; p1) . For example for f4 > 2 and e4 � 1, we
have p3 = 1, p1 = 2.

In the third part we consider f4 � p1 and e4 > p2 where the number of sub-
cases is p1�4. In general, for this part we call function adjacentrects2(p3; p1) .
For example for f4 � 2 and e4 > 1, we have p3 = 2, p1 = 1.

In the fourth part, we consider f4 > p1 and e4 > p2 where the number of
sub-cases is 4� 4 = 16.

It is not possible to go through all the sixteen cases, therefore for
demonstration we discuss only one case.

Suppose the first and second group is drawn using spiral1. This is the
case f2 > 2 and e4 > 0 which implies that p1 = 2 and p2 = 0.

A.16 FUNCTION FINDINGADJACENCY(2, 0)

For p1 = 2 & p2 = 0, we first consider the case f4 � 2 & e4 > 0 and
then consider the case f4 > 2 & e4 > 0.
1. f4 � 2 & e4 > 0

If p1 = 2 & p2 = 0 we call function adjacentrects2(2, 0). For this
particular example, the function adjacentrects2(2, 0) has the following steps :
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1.1 If f4 = 1 & e4 � 1 (mod 4) we call function adjacentrects11(). As
an example, function adjacentrects22() has already been discussed (cf. Section
A.15).

1.2 If f4 = 1 & (e4 � 2 (mod 4) or e4 � 3 (mod 4)) we call function
adjacentrects21().

1.3 If f4 = 1 & e4 � 0 (mod 4) we call function adjacentrects31().
1.4 If f4 = 2 & e4 � 1 (mod 4) we call function adjacentrects12().
1.5 If f4 = 2 & (e4 � 2 (mod 4) or e4 � 3 (mod 4)) we call function

adjacentrects22().
1.6 If f4 = 2 & e4 � 0 (mod 4) we call function adjacentrects32().

2. f4 > 2 & e4 > 0
2.1 If (f4 � 0 (mod 4) or f4 � 1 (mod 4)) & e4 � 1 (mod 4) we call

function adjacentrects12().
2.2 If (f4 � 0 (mod 4) or f4 � 1 (mod 4)) & (e4 � 2 (mod 4) or e4 � 3

(mod 4), we call function adjacentrects22().
2.3 If (f4 � 0 (mod 4) or f4 � 1 (mod 4)) & e4 � 0 (mod 4) we call

function adjacentrects32().
2.4 If f4 � 2 (mod 4) & e4 � 1 (mod 4) we call function adjacen-

trects13().
2.5 If f4 � 2 (mod 4) & (e4 � 2 (mod 4) or e4 � 3 (mod 4)) we call

function adjacentrects23().
2.6 If f4 � 2 (mod 4) & e4 � 0 (mod 4) we call function adjacen-

trects33().
2.7 If f4 � 3 (mod 4) & e4 � 1 (mod 4) we call function adjacen-

trects11().
2.8 If f4 � 3 (mod 4) & (e4 � 2 (mod 4) or e4 � 3 (mod 4)) we call

function adjacentrects21().
2.9 If f4 � 3 (mod 4) & e4 � 0 (mod 4) we call function adjacen-

trects31().


