
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2008                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Topographic ERP analyses: a step-by-step tutorial review

Murray, Micah; Brunet, Denis; Michel, Christoph

How to cite

MURRAY, Micah, BRUNET, Denis, MICHEL, Christoph. Topographic ERP analyses: a step-by-step 

tutorial review. In: Brain topography, 2008, vol. 20, n° 4, p. 249–264. doi: 10.1007/s10548-008-0054-5

This publication URL: https://archive-ouverte.unige.ch/unige:928

Publication DOI: 10.1007/s10548-008-0054-5

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:928
https://doi.org/10.1007/s10548-008-0054-5


REVIEW

Topographic ERP Analyses: A Step-by-Step Tutorial Review

Micah M. Murray Æ Denis Brunet Æ Christoph M. Michel

Accepted: 13 February 2008 / Published online: 18 March 2008

� Springer Science+Business Media, LLC 2008

Abstract In this tutorial review, we detail both the

rationale for as well as the implementation of a set of

analyses of surface-recorded event-related potentials

(ERPs) that uses the reference-free spatial (i.e. topo-

graphic) information available from high-density electrode

montages to render statistical information concerning

modulations in response strength, latency, and topography

both between and within experimental conditions. In these

and other ways these topographic analysis methods allow

the experimenter to glean additional information and neu-

rophysiologic interpretability beyond what is available

from canonical waveform analyses. In this tutorial we

present the example of somatosensory evoked potentials

(SEPs) in response to stimulation of each hand to illustrate

these points. For each step of these analyses, we provide

the reader with both a conceptual and mathematical

description of how the analysis is carried out, what it

yields, and how to interpret its statistical outcome. We

show that these topographic analysis methods are intuitive

and easy-to-use approaches that can remove much of the

guesswork often confronting ERP researchers and also

assist in identifying the information contained within high-

density ERP datasets.

Keywords Electroencephalography (EEG) �
Event-related potentials (ERPs) � Topography � Spatial �
Reference electrode � Global field power �
Global dissimilarity � Microstate segmentation

Introduction

This tutorial review has been predicated by a growing

interest in the use of EEG and ERPs as a neuroimaging

technique capable of providing the experimenter not only

with information regarding when experimental conditions

differ, but also how conditions differ in terms of likely

underlying neurophysiologic mechanisms. There is an

increasing appreciation of the fact that EEG and ERPs

comport information beyond simply the time course of

brain responses or ‘‘components’’ that correlate with a

psychological/psychophysical parameter. They can identify

and differentiate modulations in the strength of responses,

modulations in the latency of responses, modulations in the

underlying sources of responses (vis à vis topographic

modulations), as well as combinations of these effects.

Moreover, this information is attainable with sub-milli-

second temporal resolution. Our focus here is on providing

a tutorial for how to extract such information with minimal

experimenter bias and to test such information statistically.

M. M. Murray (&) � D. Brunet � C. M. Michel

Electroencephalography Brain Mapping Core, Center for

Biomedical Imaging of Lausanne and Geneva, Radiologie

CHUV BH08.078, Bugnon 46, Lausanne, Switzerland

e-mail: micah.murray@chuv.ch

M. M. Murray

The Functional Electrical Neuroimaging Laboratory,

Neuropsychology and Neurorehabilitation Service, Vaudois

University Hospital Center and University of Lausanne,

46 rue du Bugnon, 1011 Lausanne, Switzerland

M. M. Murray

The Functional Electrical Neuroimaging Laboratory, Radiology

Service, Vaudois University Hospital Center and University of

Lausanne, 46 rue du Bugnon, 1011 Lausanne, Switzerland

D. Brunet � C. M. Michel

Functional Brain Mapping Laboratory, Department of

Fundamental and Clinical Neuroscience, University Hospital and

University Medical School, 24 Rue Micheli du Crest,

1211 Geneva, Switzerland

123

Brain Topogr (2008) 20:249–264

DOI 10.1007/s10548-008-0054-5



Researchers using EEG/ERPs might find themselves

daunted by the shear quantity of data that is now routinely

acquired (e.g. 64–256 channels and amplifiers that digitize

data simultaneously from all channels at rates from 500 Hz

upwards) and perhaps also by the myriad names of ERP

components appearing in the literature (e.g. [33] for a

recent overview). In the case of a 64-channel ERP inves-

tigation with epochs spanning 100 ms pre-stimulus to

900 ms post-stimulus at 500 Hz digitalization, there would

be a data matrix containing 32,000 values (which could be

further expanded if examined in terms of its spectral

decomposition). If one were to assume complete indepen-

dence of the measurements as a function of time and space/

electrode (which is not the case and thus makes this issue

all the more problematic because simple Bonferroni cor-

rection is inadequate; e.g. [20] for discussion), then by

stochastic processes alone 160 of these 32,000 values

would meet the 0.05 criterion of statistical significance if

the experimenter were to compare all of these data from

the two experimental conditions. Bearing this in mind, how

then should the experimenter choose which of the data to

analyze, given the necessity for data reduction in EEG/ERP

research, while also avoiding the possibility that the data

they analyze are among the 160 values that significantly

differ by chance? It should be mentioned that this is not a

problem unique to EEG/ERPs. Researchers working with

fMRI datasets must also confront this and related issues,

which have been most notably addressed by the authors of

Statistical Parametric Mapping (SPM; [13]; http://www.

fil.ion.ucl.ac.uk/spm). A prevailing and even recommended

approach in EEG/ERP research has been for the experi-

menter to a priori select time periods or components of

interest (often based on hypotheses generated from prior

studies) as recorded at a chosen subset of electrodes (e.g.

[22, 33]). For example, in a set of published guidelines for

conducting ERP research [53, p. 141] proposed that ‘‘the

simplest approach is to consider the ERP waveform as a set

of waves, to pick the peaks (and troughs) of these weaves,

and to measure the amplitude and latency at these deflec-

tions.’’ Aside from the experimenter bias inherent to this

approach, there are several additional weaknesses of ana-

lyzing ERP voltage waveforms that render the results

arbitrary and of severely limited (neurophysiologic) inter-

pretability. For example, an a priori focus on one or a few

components of interest leads to the possibility that other

(earlier) time periods and effects are overlooked, such as

during periods of low-amplitude in a given waveform (e.g.

[54, 55]). The spatio-temporal analysis methods that we

summarize here can render a far more complete and

informative interpretability without any a priori bias on

certain time periods or scalp locations. Such is not to

suggest that these methods cannot be incorporated with

purely hypothesis-driven research. In the case of emotion

processing, for example, the experimenter may be testing

the hypothesis that negative emotional stimuli are pro-

cessed more quickly and via a more efficient neural circuit

(i.e. different generators) than positive or neutral stimuli.

As will be shown below, canonical analyses of voltage

waveforms present serious pitfalls and limitations when

addressing such questions/hypotheses.

We would be remiss to not immediately acknowledge

several prior works that have either introduced or over-

viewed many of the methods/issues we shall describe here.

Most important among these is the seminal works of Dietrich

Lehmann and his scholars (e.g. [3, 27, 31, 32, 37, 38, 60, 61),

though several others are also noteworthy [11, 12, 15].

We have organized this tutorial in the following way.

First, we discuss the limitations and pitfalls of canonical

waveform analyses, providing some concrete examples.

Afterwards we detail the procedures for each step of elec-

trical neuroimaging. In each section, we have attempted to

introduce the theoretical basis of and to explain in simple

terms and with mathematically simple examples how topo-

graphic analyses can be conducted, what information they

yield, and how this information can be statistically analyzed

and interpreted. While this tutorial discusses the case of

somatosensory evoked potentials in order to give the reader

an intuitive example based on known underlying neuro-

physiology, the methods presented here can be readily

applied to issues in emotion research and cognitive neuro-

science in general (see [55] for an example as well as studies

cited throughout this tutorial for applications to specific

questions in sensory-cognitive processing). Topographic

mapping of the EEG end ERP is often a precursor to source

localization. It is therefore of crucial importance that the

topography of the scalp electric field is properly analyzed

and interpreted before attempting to localize the underlying

brain sources. This review focuses on the analysis of the

topography of the scalp electric field. Readers interested in a

more in-depth coverage of the issue of source localization are

referred to [2, 23, 40]. All analyses presented in this tutorial

have been conducted using CarTool software (http://

brainmapping.unige.ch/cartool.htm).

Data for this Tutorial

The data we use here to illustrate the electrical neuro-

imaging analyses are a subset from a previously

published study demonstrating partially segregated func-

tional pathways within the somatosensory system [6], and

full details concerning the paradigm and data acquisition

can be found therein. We provide only the essential

details here.

Continuous EEG was acquired from six healthy partic-

ipants at 512 Hz though a 128-channel Biosemi ActiveTwo
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AD-box (http://www.biosemi.com) referenced to the

common mode sense (CMS; active electrode) and groun-

ded to a passive electrode. Peri-stimulus epochs of EEG

(-96 ms pre-stimulus to 488 ms post-stimulus onset) were

averaged separately for stimulation of the left and right

hand and for each participant. For the present tutorial only

non-target, distracter trials from the ‘‘what’’ condition were

included (c.f. Table 1 of [6]). In addition to a ±100lV

artifact rejection criterion, EEG epochs containing eye

blinks or other noise transients were excluded. Prior to

group-averaging, data at artifact electrodes from each

subject were interpolated using a spherical spline interpo-

lation [52]. Likewise, data were baseline corrected, using

the pre-stimulus period, and band-pass filtered (0.68–

40.0 Hz).

Tactile stimuli were square wave pulses (300 ms dura-

tion; 44,100 Hz sampling) presented through Oticon bone

conduction vibrators (Oticon Inc., Somerset, NJ) with

1.6 cm 9 2.4 cm surfaces. Two spatial positions (one in

the left hemispace and one in the right hemispace) and two

vibration frequencies (22.5 and 110 Hz) were used. Stim-

ulus delivery and behavioral response recording was

controlled by E-prime (Psychology Software Tools, Inc.,

Pittsburgh, PA; http://www.pstnet.com/eprime).

As will become clear below, the specific data we used

are not particularly crucial for the points and methods we

wish to illustrate here. The utility of comparing SEPs to left

and right hand stimulation is that this is an intuitive

example with clear neurophysiologic underpinnings in

terms of known somatotopic cortical organization.

Waveform Analyses: Limitations and Pitfalls

The core limitation (and pitfall) of analyzing voltage ERP

waveforms is that they are reference-dependent. Although

there is a long history of viewpoints concerning the ‘best’

or ‘appropriate’ reference (e.g. [8, 9, 48], see also [40] for a

more recent discussion that includes the role of the refer-

ence in source estimations), it will always remain a choice

and therefore a source of bias introduced by the experi-

menter. More important is the fact that this choice will

critically impact the (statistical) outcome the experimenter

observes when analyzing waveform measurements and by

extension the interpretation of the data. This section

therefore illustrates precisely these points.

Figure 1 displays group-averaged ERPs (s.e.m. indi-

cated) to vibrotactile stimulation of the left and right hand

Table 1 Some dependent measures obtainable from the ‘fitting’ procedure and their interpretability

Dependent measure What’s actually being quantified Interpretation of a map

9 condition interaction

Considerations & caveats

Number of data points

labeled with a given

template map (a.k.a.

frequency of map

presence or map duration)

For each subject, the number of data

points, over a specified time

period, when a template map

yields the highest spatial

correlation value over other

template maps

Different template maps best

represent the experimental

conditions. When appropriate,

post-hoc contrasts should be

conducted

A higher spatial correlation does

forcibly not translate into a

significantly higher spatial

correlation (see below). For

example, although 96% is higher

than 95%, it does not mean that

these values significantly differ.

Results of the TANOVA analysis

can help address this issue

GEV of a given template

map

For each subject, the GEV over a

specific time period of a given

template map for a given

condition (see Appendix I for

formula)

Different template maps better

‘‘explain’’ each condition

When this analysis is conducted

under competitive fitting

conditions (i.e. different maps are

vying for labeling of the same

time point), a given map might not

always label the data from each

subject and condition. In this case,

missing values should be

appropriately handled in the

statistical analysis

First onset/last offset of a

given template map

The time point in each subject’s data

from a given condition when a

given template map yields the

highest spatial correlation

(relative to other template maps

being fit) for the first/last time

over a specified time period

A latency shift and/or duration

difference between conditions in

their components or functional

microstates, as identified by

different template maps

There is no a priori restriction on

whether or not the template map

onsets and remains the

preferentially fit map. That is,

only the first onset and last offset

are quantified, rather than whether

or not there were multiple onsets

and offsets over a given time

period
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(blue and red traces, respectively) as recorded from elec-

trodes at scalp locations C5 and C6, using standard

electrode position nomenclature [46]. More specifically,

panels a–c of this figure display the ERPs when different

reference channels are selected (average reference, T7

reference (to emulate the left mastoid/earlobe), and T8

reference (to emulate the right mastoid/earlobe), respec-

tively). The reader should note several points from this

figure. First, the shape of the ERP waveforms changes with

different reference electrodes. A given peak/trough might

appear or disappear. Second, the variance around the ERP

(and by extension the s.e.m.) changes with different ref-

erence electrodes. Third, the latency and electrode(s) at

which significant differences are obtained between condi-

tions changes with different reference electrodes.

In Fig. 1a, differences between ERPs to left-hand and

right-hand stimuli are observed at both electrodes C5 and

C6 beginning at *40 ms. One might interpret this as a

bilateral and approximately equi-opposite effect with larger

responses to left-hand stimuli at electrode C6 and to right-

hand stimuli at electrode C5. From such, one might further

conclude that each hemisphere responds in opposite ways

Fig. 1 The effect of the

reference electrode. Group-

averaged ERP waveforms are

displayed in response to left-

hand and right-hand

somatosensory stimulation (blue

and red traces, respectively).

Cyan and pink traces indicate

the s.e.m. for these group-

average ERPs. Panels a–c depict

the ERPs as measured from

electrodes C5 and C6 when

different reference locations are

used. The reader should note the

change in waveform shape, in

the magnitude of the measured

s.e.m., and in the presence/

absence of differences between

conditions. The right-hand side

of the figure depicts the voltage

topography of these data at

55 ms post-stimulus onset. The

reader should note that although

the color value ascribed to a

given location changes with the

choice of the reference

(indicated by the projected axis

and equator), the form of the

topography is reference-

independent

252 Brain Topogr (2008) 20:249–264
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to stimulation of each hand. In Fig. 1b, with T7 as refer-

ence, such differences are observed only at electrode C6.

One might interpret this as a right-lateralized effect with no

evidence for response differences at electrodes over the left

hemiscalp. From such, one might conclude that only the

right hemisphere responses to tactile stimuli of the hands.

Finally, in Fig. 1c, with T8 as reference, differences are

observed only at electrode C5. One might interpret this as a

left-lateralized effect with no evidence for response dif-

ferences at electrodes over the right hemiscalp. From such,

one might conclude that only the left hemisphere responses

to tactile stimuli of the hands.

Which of the patterns of results shown in Fig. 1 and

their subsequent interpretations is ‘correct’? While all are

equally ‘correct’ from a statistical perspective, where and

when responses to left-hand and right-hand stimulation are

differentially processed cannot be unequivocally addres-

sed by the above analyses of ERP waveforms, as the very

presence of a given component in an ERP waveform as

well as its modulation across experimental conditions is

entirely reference-dependent. While the above example

shows the data for the average reference and emulations

of lateralized references to clearly illustrate our point, the

caveats we describe apply to any reference location

(vertex, nose, etc.). Even if it is ‘‘customary’’ for a given

ERP community or lab to use one reference over another,

the abovementioned analytical and interpretational pit-

falls will remain present. That is, the obtained waveform

shape and statistical result only apply for that chosen

reference.

A related issue with canonical analyses of voltage wave-

forms concerns the interpretation of condition 9 electrode

interactions observed in an analysis of variance (ANOVA).

This issue has been extensively treated by McCarthy and

Wood [36] who rightly pointed out how this analysis cannot

differentiate modulations in topography from modulations in

amplitude when data are not first scaled. In particular, they

presented three distinct scaling methods. One involves iden-

tifying the instantaneous maximum and minimum for each

condition and subtracting the minimum value as well as the

difference between the maximum and minimum from each

electrode. A second involves scaling by a pre-defined value

(see [24]); the shortcomings of which are detailed in [36]. The

third, which they (and we) favor, involves dividing the value at

each electrode by the instantaneous global field power (GFP;

see below); a procedure that they refer to as vector scaling. The

methods proposed by McCarthy and Wood [36] are routinely

referred to and often applied/recommended [53]. As such, it is

worthwhile to mention some important caveats with how this

method has been applied (see also [10]). The first is that

McCarthy and Wood’s [36] approach is only valid when the

data from the entire electrode montage is included in the

ANOVA; a practice nowadays rarely performed. A second,

intertwined and inescapable caveat is that ANOVAs based on

data from voltage waveforms will always be reference-

dependent even when scaled. We return to the issue of sta-

tistically identifying topographic modulations in a reference-

independent manner, below.

From this example the reader should gain a sense of the

severe limitations and pitfalls of analyzing ERP voltage

waveforms. We have provided the example of somato-

sensory processing, but this could readily be extrapolated

to more cognitive functions such as attention, language,

and emotion, as well as the components typically ascribed

to them. For some, this ‘‘reference-dependent’’ attribute

has been viewed as the principal shortcoming of EEG

versus magnetoencephalography (MEG; [50, 69, 70]).

However, as will be shown throughout this tutorial and

elsewhere in this special issue [55], alternative and easy-to-

use analyses can be performed on EEG/ERP data (as well

as MEG/MEF data) that do allow researchers to address

fundamental neurophysiologic questions.

The first step for making EEG/ERP analyses more

informative is to identify a reference-independent measure.

We would direct the reader to the right-sided portion of

Fig. 1 where the voltage topography at 55 ms post-stimu-

lus onset is shown in response to stimulation of the left

hand and right hand (blue and red frames, respectively).

The projected axis and equator indicate the 0 lV plane (i.e.

the reference). As before, the reader should note several

points by comparing topographies when different reference

channels are used. First, changing the reference shifts

vertically the position of the 0 lV plane. Second and of far

greater importance, the shape of the topography remains

constant even though the color ascribed to a given position

changes (see also Fig. 3 in [40]). That is, the configuration

of the electric field at the scalp (i.e. the topographic map) is

reference-independent [14, 31]. To provide the reader with

a more everyday example, the shape of a mountain range

remains constant even if the altitude of sea level (i.e. the

reference elevation) were to change [31]. A third point that

should be taken from this figure is that the topographies of

responses to left-hand and right-hand stimuli sharply differ

and differ in a reference-independent manner. As will be

shown below, the extent of topographic similarity or dis-

similarity can be quantified and statistically tested. Of more

importance is the fact that topographic differences have

direct neurophysiologic interpretability. Changes in the

topography of the electric field at the scalp can only be

caused by changes in the configuration of the underlying

intracranial sources (given the exclusion of artifacts such as

eye movements, muscle activity, etc.), though the converse

need not be the case [12, 31, 67].

We would be remiss not to mention that in an effort to

obtain reference-free waveforms some have advocated the

analysis of so-called current source density (CSD) or
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Laplacian waveforms1 over their voltage counterparts (e.g.

[41, 45, 59, 68). This procedure is undoubtedly beneficial in

that it indeed eliminates the reference-dependent problem

inherent to voltage waveforms (as well as contributions of

volume conduction within the plane of the scalp) and is a

suitable alternative for those researchers more accustomed to

handling waveform data. However, CSD waveforms con-

sidered in isolation do not in and of themselves provide

information concerning the underlying neurophysiologic

mechanism(s) giving rise to a modulation between experi-

mental conditions. In addition, the CSD is not readily

calculated at the border of the electrode montage, and the

CSD is generally more sensitive to the level of noise in the

data. Finally, the experimenter would still be faced with

the choice of which CSD waveforms and time periods to

analyze.

Why We Use the Average Reference

In the above we have highlighted the caveats of reference-

dependent measurements. However, EEG/ERP requires the

use of a reference. So, which one should be used? We

advocate the use of a common average reference [32] for

the following reason. Inverse solution methods (i.e. meth-

ods to reconstruct the intracranial sources of surface-

recorded data) recalculate the data to a common average

reference. This is because of the biophysical assumption of

quasi-stationarity—i.e. that the net source activity at each

instant in time within the brain sums to zero. Because the

reference electrode adds a constant potential value to the

value recorded at each electrode and instant in time, a

‘‘re-centering’’ of the data (i.e. a removal of this constant

value) is necessary before applying an inverse solution so

as to avoid violating the above quasi-stationarity assump-

tion. Mathematically, this is equivalent to calculating the

average reference of the surface-recorded EEG/ERP [48].

When using the average reference, it is therefore

important to have adequate sampling of the electric field at

the scalp. Discussions of how many electrodes and

appropriate inter-electrode distances are outside the scope

of this tutorial review (see e.g. [30, 65] for treatments of

this issue). However, the relatively low cost of EEG

equipment makes high-density montages accessible to

most laboratories. Another important issue when using the

average reference, performing the analyses detailed here,

and estimating intracranial sources, is how to cope with

artifact-contaminated channels. This applies to both the

single-subject and group-averaged data. Values at such

channels are typically interpolated (see [40] for discussion

for different methods). Likewise, group-averaged data

require normalization to the same electrode configuration/

positions before averaging [53].

It is also worthwhile to mention a common misunder-

standing in how the average reference should be computed.

Under typical experimental conditions, the recording ref-

erence is often discarded. However, the data at this location

(provided it is near the brain and not elsewhere on the body

surface or even off the body) is nevertheless a valid sam-

pled value of the brain’s electric field at that location and as

such should be included in the electrode montage and data

analyses, being ascribed a value of 0 lV as a function of

time in all the formulae, including in the calculation of the

average reference (see Appendix I).2 Once the data have

been recalculated to the average-reference, the reference

electrode is just another electrode within the montage with

a measurement of potential varying as a function of time

(see topographic representations in Fig. 1).

Global Field Power: A Single, Reference-Independent

Measure of Response Strength

We now return to the kinds of neurophysiologic informa-

tion we wish to extract from the EEG/ERP data, beginning

with response strength. In the above, we detailed the pit-

falls and limitations of analyzing ERP voltage waveforms

due to their being dependent on the choice of the refer-

ence electrode(s). Global Field Power (GFP), by contrast,

constitutes a single, reference-independent measure of

response strength. GFP was first introduced by Lehmann

and Skrandies [32] and has since become a commonplace

measure among MEG users. Mathematically, GFP equals

the root mean square (RMS) across the average-referenced

electrode values at a given instant in time. More simply,

1 For readers less familiar with CSD derivations, it is perhaps

worthwhile to briefly describe what is being calculated that makes

them reference-independent. The CSD or Laplacian derivation

involves calculating the 2nd spatial derivative across the electrode

montage (i.e. the degree of change of the degree of change in the

voltage measured at electrode X relative to its neighbors). In this way,

CSD derivations are intrinsically based on spatial gradients in the

electric field at the scalp.

2 Including the reference in the average reference calculation is very

much desired, but becomes problematic if the reference has been

placed far away from the brain. In some montages, a nose reference is

already somewhat problematic because its inclusion in the average

reference calculation will add an extreme point without any

surrounding electrodes. In such cases, the experimenter might prefer

to take it out of the montage and calculate the average reference from

the remaining electrodes, particularly when a small number of

electrodes are used. The reason is that the influence of the one

‘‘unknown’’ value (i.e. the reference) on the other known values is

1/(# of electrodes). Of more critical importance is that the reference

itself is not artifact-contaminated (e.g. eye movements, cardiac

activity, etc.).
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GFP is the standard deviation of all electrodes at a given

time (see Appendix I). In the case of ERPs, the resultant

GFP waveform is a measure of potential (lV) as a function

of time. GFP can be assessed statistically using approaches

common to ERP research (e.g. time point by time point;

area measures, peak measures, etc.). It is important to

recall, however, that because GFP is a non-linear trans-

formation, the GFP of the group-average ERP is not

equivalent to the mean GFP of the single-subject ERPs.

Thus, experimenters should exercise caution when visually

inspecting and/or displaying GFP waveforms for group-

averaged data.

What GFP tells the researcher is on average across the

electrode montage how strong a potential is being recorded.

What GFP does not tell the researcher is any information

about how this potential is distributed across the electrode

montage—i.e. where large and small potentials were

measured. These points are illustrated in Fig. 2, which

displays four hypothetical data matrices (i.e. the potential

values recorded from 12 electrodes at a given latency). The

four conditions differ in the follow ways. Condition 2 is

precisely twice that of Condition 1 at each electrode,

resulting in an identical spatial distribution of values that

are simply stronger in Condition 2. Condition 3 is the

mathematical inverse of Condition 1 (i.e. the value at each

electrode was multiplied by -1), thereby resulting in a

different spatial distribution (i.e. topography) of the same

values (i.e. the frequency of each value/color is identical).

Note that Condition 3 is included to illustrate an extreme

case that is unlikely under typical experimental conditions.

Condition 4, by contrast, represents a more typical obser-

vation in that it varies in both strength and topography from

Condition 1. Figure 2b displays the squared value of these

potentials at each electrode, the sum of these values across

electrodes, and the resultant GFP. Note that while Condi-

tions 1/3 have the same GFP and Conditions 2/4 have the

same GFP, Conditions 1/3 have a GFP half that of Con-

ditions 2/4. As such, it is important to note that the

observation of a GFP modulation does not exclude the

possibility of a contemporaneous change in the electric

field topography. Nor does it rule out the possibility of

topographic modulations that nonetheless yield statistically

indistinguishable GFP values. For example, in the case of

the somatosensory ERPs presented above, there is no evi-

dence of a reliable GFP difference between responses to

left-hand and right-hand stimulation (Fig. 3a). However,

we should add that the observation of a GFP modulation in

the absence of a topographic modulation would most par-

simoniously be interpreted as a modulation of the number

of synchronously activated but statistically indistinguish-

able generators across experimental conditions [62]. Next,

we present methods for identifying and quantifying topo-

graphic modulations.

Global Dissimilarity: A Single, Strength-Independent

Measure of Response Topography

Global dissimilarity (DISS) is an index of configuration

differences between two electric fields, independent of their

strength. Like GFP, DISS was first introduced by Lehmann

and Skrandies [32]. This parameter equals the square root of

the mean of the squared differences between the potentials

measured at each electrode (versus the average reference),

each of which is first scaled to unitary strength by dividing

by the instantaneous GFP (see Appendix I). To provide a

clearer sense of the calculation of DISS, consider again the

data in Fig. 2. As already mentioned in the above section,

Conditions 1 and 2 have the same topography but different

strengths, whereas Conditions 1 and 3 have the same

strength but different (inverted) topographies. Finally Con-

ditions 1 and 4 differ in both their strength and topography.

Figure 2a shows the original data, whereas the data in

Fig. 2c have been GFP-normalized. Having thus re-scaled

all four conditions to have the same GFP, the topographic

similarities and differences between conditions becomes

readily apparent. As shown in Fig. 2d, DISS can range from

0 to 2, where 0 indicates topographic homogeneity and 2

indicates topographic inversion.

Unlike GFP, however, the statistical analysis of DISS is

not as straightforward, in part because DISS is a single

measure of the distance between two vectors (each of which

represents one electric field topography), rather than a

separate measure for each condition about which a mean

and variance can be calculated. Consequently, a non-para-

metric statistical test has to be conducted, wherein the

dependent measure is the DISS between two maps at a

given point in time, t. We and others have colloquially

referred to this analysis as topographic ANOVA or

TANOVA (e.g. [6, 7, 42, 44, 54, 63, 71], see also [29]),

though we would immediately remind the reader that no

analysis of variance is being conducted. Instead, TANOVA

entails a non-parametric randomization test [34].3 To do

this for a within-subjects design, an empirical distribution

of possible DISS values is determined by (1) re-assigning

single-subject maps to different experimental conditions at

a within-subject level (i.e. permutations of the data), (2)

recalculating the group-average ERPs, and (3) recalculating

the resulting DISS value for these ‘new’ group-average

ERPs. The number of permutations that can be made with a

group-average ERP based on n participants is 2n, though

3 Other methods for determining whether two electric fields differ

have been proposed [25, 36, 64, 65]), criticized [21], and defended

[58]. Some of these methods use average referenced and/or normal-

ized values (like the Tsum2), but not all, which disqualifies them as

true topographic analyses. Also, note the impossibility of using the

Hotelling T2 multivariate statistic, as it requires more samples than

electrodes and it precludes the use of the average reference.
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Fig. 2 Measurement of GFP and DISS. The basis for the reference-

independent measurement of response strength and topography is

shown. Color values throughout this figure denote polarity, with

warmer colors indicating positive values and cooler colors negative

values. (a) Hypothetical data from four different conditions from an

array of 12 electrodes. The reader should note that Condition 2 is

precisely twice the value of Condition 1 at each electrode and that

Condition 3 is the inverse of the values of Condition 1 (i.e. the value

at each electrode has been multiplied by -1). Finally, Condition 4 is a

spatial re-arrangement of the values of Condition 2, making it differ

in both strength and topography from Condition 1. (b) The squared

value at each electrode and the summed value across electrodes as

well as the resulting GFP. The reader should note that Conditions 1

and 3 have the same GFP, even though their topographies are

inverted, and that Conditions 2/4 have twice the GFP of Conditions

1/3. (c) The GFP-normalized values of the original data displayed in

panel a. The reader should note that once strength differences are

normalized, Conditions 1 and 2 have the same topography, whereas

the topography of Condition 3 is the inversion of Conditions 1 and 2

(i.e. the extreme case) and the topography of condition 4 is slightly

different from that of the other conditions. (d) The squared difference

of the values in panel c at each electrode as well as the resulting DISS.

The reader should note that DISS ranges from 0 to 2, with the former

indicating identical topographies and the latter inverted topographies
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Manly [34] suggests that 1,000–5,000 permutations is suf-

ficient. The DISS value from the actual group-average ERPs

is then compared with the values from the empirical dis-

tribution to determine the likelihood that the empirical

distribution has a value higher than the DISS from the actual

group-average ERPs. This procedure can then be repeated

for each time point. The results of this analysis for the

somatosensory ERPs presented above is shown in Fig. 3b,

which displays the occurrence of significant topographic

differences between responses to left-hand and right-hand

stimuli initially over the *40–70 ms post-stimulus period

(as well as at subsequent time periods). For a between-

subjects design, the analysis is generally identical, except

that the permutations are performed by first putting all

participants’ data into one pool irrespective of experimental

condition/group. Then new conditions/groups are randomly

drawn and group-average ERPs are calculated for deter-

mining the empirical distribution.

At a neurophysiologic level, because electric field chan-

ges are indicative of changes in the underlying generator

configuration (e.g. [12, 31, 67]) this test provides a statistical

means of determining if and when the brain networks acti-

vated by the two conditions differ. In this way, the reader

should note how response strength (GFP) and response

topography (DISS) can be measured and analyzed orthogo-

nally and in a completely reference-independent manner

without the necessity of a priori selecting time periods or

electrodes for analyses. Moreover, these two attributes can

(and in our view should always) be analyzed as a function of

time without the necessity of the experimenter a priori

choosing time periods or components of interest. Still, some

considerations when interpreting results of analyses with

DISS are worth mentioning. Primary among these is that

although a significant effect is unequivocal evidence that the

topographies (and by extension configuration of intracranial

generators) differ, this analysis does not in and of itself dif-

ferentiate between several alternative underlying causes. For

example, a significant difference may stem from one con-

dition having one single and stable ERP topography during a

given time period and the other condition another single and

stable ERP topography over the same time period. That is,

representing the electric field topography at a given time

point by a letter, one condition might read ‘‘AAAAAA’’ and

the other ‘‘BBBBBB’’. Alternatively, each condition may be

described by either single or multiple stable ERP topogra-

phies over the same time period (i.e. ‘‘AAABBB’’ versus

‘‘CCCDDD’’ or ‘‘AAAAAA’’ versus ‘‘BBCCDD’’. Topo-

graphic differences might likewise stem from a latency shift

between conditions (‘‘ABCDEF’’ versus ‘‘BCDEFG’’).

Because all of these alternatives could result in highly similar

(if not identical) patterns of statistical outcomes, additional

analyses have been devised to determine the pattern of

topographies both within and between conditions.

Topographic Pattern Analysis & Single-Subject

‘‘Fitting’’

An important issue, parallel to those already outlined above,

in the analysis of EEG/ERPs is how to define the temporal

intervals of a component, the temporal intervals for statisti-

cal analyses, and the temporal intervals to subject to source

estimation. This becomes increasingly challenging when

Fig. 3 Results of applying the methods of this tutorial to somato-

sensory ERPs. (a) The results of the analysis of GFP across time,

which was based on the variance across subjects. This analysis failed

to reveal any differences between responses to stimulation of each

hand. (b) The results of the TANOVA analysis. ERPs to stimulation

of each hand first topographically differed over the *40–70 ms post-

stimulus period. (c) The results of the fitting after having conducted a

topographic pattern analysis based on AAHC (see text for details).

Template maps are displayed for the 40–70 ms period. The bar graph

shows that one template map better represents responses to left-hand

stimulation and another template map better represents responses to

right-hand stimulation

Brain Topogr (2008) 20:249–264 257

123



high-density electrode montages are used. Also, the

approach of averaging the measured potentials over a fixed

and/or experimenter-defined time interval assumes that the

electric field configuration is stable; an assumption that is

seldom empirically verified. Our approach derives from the

principle of functional microstates, which was first intro-

duced by Dietrich Lehmann (e.g. [31]; reviewed in [38–40]).

This principle is based on the empirical observation in both

continuous EEG and ERPs that the electric field configura-

tion at the scalp does not vary randomly as a function of time,

but rather exhibits stability for tens to hundreds of milli-

seconds with brief intervening intervals of topographic

instability. Similar findings have been observed in intracra-

nial microelectrode recordings in non-human primates (e.g.

[57]).

Here, we overview analysis procedures for identifying the

periods of topographic stability within and between exper-

imental conditions (Other approaches based on principal

component analysis or independent component analysis are

also frequently used; see e.g. [55, 56]). To return to the

example in the preceding section, these analyses serve to

identify the sequence of ‘‘letters’’. The overarching proce-

dure is the following. A clustering algorithm is applied to the

collective group-averaged data across all experimental

conditions/groups. This clustering does not account for the

latencies of maps, but only for their topographies. This is

done as a hypothesis generation step wherein the sequence

of template maps that best accounts for the data is identified.

The hypotheses generated at the group-average level are

then statistically tested by means of a fitting procedure based

on the spatial correlation between template maps obtained

from the group-average ERPs and the single-subject ERP

data [4, 51]. Several different dependent measures can be

obtained from this fitting procedure; the advantages and

disadvantages of which are presented in Table 1.

Two clustering algorithms will be presented whose

implementation in the dedicated software, CarTool (http://

brainmapping.unige.ch/cartool.htm), simultaneously treats

both the spatial and temporal features of the data. One is based

on k-means clustering [49], and the other on hierarchical

clustering [66] that has been renamed ‘‘AAHC’’ for Atomize

and Agglomerate Hierarchical Clustering. An intuitive way

of understanding the main difference between these approa-

ches is that the k-means approach operates independently for

each number of clusters, whereas the hierarchical clustering

approach operates in a bottom-up manner wherein the num-

ber of clusters is initially large and progressively diminishes.

Both approaches yield generally comparable results, though

some important differences are noteworthy. First, as will be

made clearer below, because the k-means approach is based

on the random selection of data points from within the dataset

as seed clusters, its results can in principle vary from one run

to the next, even though the same dataset is being analyzed.

This can be reasonably overcome by ensuring a high number

of randomizations in the procedure (see below).4 By contrast

and because the AAHC approach is completely driven by the

quantification of GEV (see below), its results will not vary

from one run to another with the same dataset. Second,

whereas the k-means approach is blind to the instantaneous

GFP of the data being clustered, the AAHC approach takes

such into consideration when calculating which clusters to

retain. Because higher GFP is observed when signal quality is

higher, the AAHC preferentially considers as robust clusters

time periods with higher signal quality. The downside,

however, is that the AAHC would be less effective if one were

to perform the clustering analysis on normalized maps (i.e.

where the GFP were constant across time). Additional

material, including a tutorial film on the topographic pattern

analysis based on k-means clustering, can be viewed and/or

downloaded from the following URL (http://brainmapping.

unige.ch/docs/Murray-Supplementary.pps).

K-means Clustering

First, a concatenated dataset is defined using the group-

averaged ERPs across all conditions/groups of the experi-

ment. In the case of the example in this tutorial, there are two

experimental conditions (left-hand and right-hand vibro-

tactile stimulation) that each contains 300 time points of data

(i.e. all 600 time points of data). Second, n data points (where

the term ‘‘data point’’ refers to the ERP from all scalp elec-

trodes at a given instant in time) from this concatenated

dataset (hereafter, template maps) are randomly selected

from the concatenated dataset. The number of data points can

range from 1 to the number of total data points. Third, the

spatial correlation (Appendix I) between each of the n tem-

plate maps and each time point of the concatenated dataset is

calculated. This gives a spatial correlation value for each

template map as a function of time, and for any given time

point one of the n template maps yields highest spatial cor-

relation value. As alluded to above, what is empirically

observed in ERP data is that a given template map will yield

the highest spatial correlation for a sustained period of time

after which another and different template map will yield the

highest spatial correlation, and so on. In addition, the

experimenter can optionally constrain the minimal duration

over which a given template map must yield the highest

spatial correlation, thereby automatically rejecting short

periods of comparatively unstable topography. From these

spatial correlation values, the Global Explained Variance

(GEV) of these template maps is calculated (Appendix I).

GEV gives a metric of how well these n template maps

4 A tangential side-effect of this need for randomizations during the

implementation of the k-means clustering approach is that it is

computationally longer than the AAHC method.
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describe the whole dataset. Each of the n template maps is

then redefined by averaging the maps from all time points

when the ith template map yielded the highest spatial cor-

relation versus all other template maps. Spatial correlation

for each of these redefined template maps and the resultant

GEV are recalculated as above. This procedure of averaging

across time points to redefine each template map, recalcu-

lating the spatial correlation for each template map, and

recalculating the GEV is repeated until the GEV becomes

stable. In other words, a point is reached when a given set of n

template maps cannot yield a higher GEV for the concate-

nated dataset. Because the selection of the n template maps is

random, it is possible that neighboring time points were

originally selected, which would result in a low GEV. To

help ensure that this procedure obtains the highest GEV

possible for a given number of n template maps, a new set of

n template maps is randomly selected and the entire above

procedure is repeated. It is important to note that the number

of these random selections is user-dependent and will simply

increase computational time as the number of random

selections increases.5 The set of n template maps that yields

the highest GEV is retained. Finally, the above steps are now

conducted for n + 1 template maps and can iterate until n

equals the number of data points comprising the concate-

nated dataset. The above steps provide information on how

well n, n + 1, n + 2 … etc. template maps describe the

concatenated dataset. An important issue for this analysis is

the determination of the optimal number of template maps

for a given dataset. We return to this below after first pro-

viding an overview of hierarchical clustering of EEG/ERPs.

Hierarchical Clustering

The version of hierarchical clustering that has been devised

by our group is a modified agglomerative hierarchical

clustering termed ‘‘AAHC’’ for Atomize and Agglomerate

Hierarchical Clustering. It has been specifically designed

for the analysis of EEG/ERPs so as to counterbalance a

side-effect of classical hierarchical clustering. Ordinarily,

two clusters (i.e. groups of data points, or in the case of

EEG/ERPs groups of maps) are merged together to proceed

from a total of n clusters to n - 1 clusters. This leads to the

inflation of each cluster’s size, because they progressively

aggregate with each other like snow balls. While this is

typically a desired outcome, it the case of EEG/ERPs it is

potentially a major drawback when short-duration periods

of stable topography exist (e.g. in the case of brainstem

potentials). Following classical hierarchical agglomerative

clustering, such short-duration periods would eventually be

(blindly) disintegrated and the data would be designated to

other clusters, even if these short-duration periods con-

tribute a high GEV. In the modified version that is

described here, clusters are given priority, in terms of their

inclusion as one progresses from n to n - 1 clusters,

according to their GEV contribution. In this way, short-

duration periods can be (conditionally) maintained.

Given this modification the AAHC procedure is then the

following. As in the case of the k-means clustering, a

concatenated dataset is defined as the group-averaged

ERPs across all conditions/groups of the experiment. Ini-

tially, each data point (i.e. map) is designated as a unique

cluster. Upon subsequent iterations, clusters denote groups

of data points (maps), whose centroid (i.e. the mathemat-

ical average) defines the template map for that cluster. This

is akin to the averaging across labeled data points in the

k-means clustering described above. Then, the ‘‘worst’’

cluster is identified as the one whose disappearance will

‘‘cost’’ the least to the global quality of the clustering.

Here, such is done by identifying the cluster with the

lowest GEV (see Appendix I). This ‘‘worst’’ cluster is then

atomized, meaning that its constituent maps are then

‘‘freed’’ and no longer belong to any cluster. One at a time,

these ‘‘free’’ maps are independently re-assigned to the

surviving clusters by calculating the spatial correlation

between each free map and the centroid of each surviving

cluster. The ‘‘free’’ map is then assigned to that cluster with

which it has the highest spatial correlation (see Appendix

I). The method then proceeds recursively by removing one

cluster at a time, and stops when only 1 single final cluster

is obtained (even though the latter is useless). Finally, for

each level, i.e. for each set of n clusters, it is then possible

to back-project the centroid/template maps onto the origi-

nal data. This gives an output whose visualization is much

like what is obtained via k-means clustering. As is the case

for k-means clustering, an important next step will be to

determine the optimal number of template maps (clusters).

Identifying the Optimal Number of Template Maps

To this point, both clustering approaches will identify a set

of template maps to describe the group-averaged ERPs.

The issue now is how many clusters of template maps are

optimal. Unfortunately, there is no definitive solution.

This is because there is always a trade-off between the facts

5 Clearly, the more variable the dataset is, the more random

selections should be made to ensure the ‘best’ n template maps are

identified. However, this variability is often not known a priori. As

the only ‘cost’ for more random selections is the experimenter’s time,

in theory one could/should conduct (d!)/(n!(d - n)!) random selec-

tions, where d is the number of data points in the concatenated dataset

and n is the number of template maps being randomly selected. In our

experience, however, the results converge when *100 random

selections are performed. The reason that computational time

increases is that for each selection of n template maps from the

original group-averaged data, all of the processing steps need be

completed.
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that the more clusters one identifies the higher the quality

of the clustering (vis a vis GEV) but the lower the data

reduction, and the converse. On one extreme, if the number

of cluster is low then the explained variance will remain

low, and the dataset itself will be highly compressed

because it will now be represented by a small number of

template maps. On the other extreme, if the number of

clusters is high then the explained variance will also be

high, but the dataset itself will not be compressed. The goal

is to determine a middle-ground between such extremes.

Here we present two methods: one based on Cross Vali-

dation (CV) and the other on the Krzanowski-Lai (KL)

criterion.

Cross Validation criterion (CV) was first introduced by

Pascual-Marqui et al. [49] as a modified version of the pre-

dictive residual variance (see Appendix I). Its absolute

minimum gives the optimal number of segments. However

and because CV is a ratio between GEV and the degrees of

freedom for a given set of template maps, this criterion is

highly sensitive to the number of electrodes in the montage.

In our experience, the results actually become less reliable

(i.e. there is less often an absolute minimum) when montages

of more than 64 channels are used. That is, a unique CV

minimum is more often obtained if the same 128-channel

dataset is later down-sampled to a 32-channel dataset.

Clearly, CV does not benefit from the added information of

high-density electrode montages. Moreover, CV is also

undefined in case there are more segments than electrodes.

Given these considerations with CV, another criterion

has been developed that is based on the Krzanowski-Lai

criterion [66]. It works by first computing a quality mea-

sure of the segmentation, termed Dispersion (W). W trends

toward 0 as the quality of the clustering results increases, in

much the same manner that the GEV itself trends towards 1

as the quality of the clustering improves. The shape of the

resulting W curve is then analyzed by looking for its

L-corner; i.e. the point of highest deceleration where add-

ing one more segment will not increase much the quality of

the results. The KL measure has been slightly adapted to be

a relative measure of curvature of the W curve (see

Appendix I). As a consequence, its highest value should

in principle indicate the optimal clustering. In practice,

however, the KL will nearly all the time peak for three

segments due to the very nature of the data we analyze.

That is, there is systematically a steep deceleration of the

W curve when progressing from 1 and 2 clusters (which are

unsurprisingly ‘‘very bad’’ in terms of their overall quality

in accounting for the concatenated dataset) to 3 clusters

(which therefore always appears to then be ‘‘far better’’).

Though this peak at three segments can theoretically be of

some interest, we advise considering the subsequent high-

est peak as the one indicating the optimal number of

template maps, though additional peaks may also

ultimately be of interest if they lead to statistically signif-

icant results.

Spatial Correlation-based Fitting & Its Dependent

Measures

Irrespective of which clustering approach is used (and

despite the abovementioned differences between these

approaches), the experimenter is now confronted with the

question of how to statistically assess the validity of the

hypothesis that emerges from the clustering algorithm

performed on the group-average dataset. The method we

present here, like the above clustering algorithms, is based

on calculating the spatial correlation between maps. In the

case of the clustering algorithms this was performed on

group-average ERPs and template maps. Here, the calcu-

lation is between single-subject ERPs and template maps

that were identified by the clustering algorithm applied to

the group-averaged ERPs (see also [4]). We colloquially

refer to this calculation as ‘‘fitting’’. Several different

dependent measures from this fitting procedure can be

obtained and statistically analyzed. We list a subset of

these and their interpretability in Table 1. In addition, these

dependent measures can in turn be correlated with behav-

ioral measures (e.g. [1, 43, 63]), behavioral/mental states

(e.g. [26, 28]), and/or parametric variations in stimulus

conditions (e.g. [47, 51]). In Fig. 3c we present the out-

come of the AAHC clustering and fitting procedure when

applied to the somatosensory ERPs presented throughout

this tutorial. In particular, we show the two template maps

identified over the 40–70 ms period in the group-average

ERPs and the incidence with which each of these maps

yielded a higher spatial correlation with individual sub-

jects’ data from each condition. The output shown in the

bar graph is a mean value in time frames (milliseconds)

that can then be statistically analyzed to reveal whether one

map is more representative of one condition and another

map is more representative of another condition (vis a vis a

significant interaction between experimental condition and

map). In the present example, one map is more represen-

tative of responses to stimulation of the left hand and

another map is more representative of responses to stimu-

lation of the right hand.

Conclusions, Future Directions & Outlook

This tutorial review provides the details of both the rationale

for as well as the implementation of a set of topographic

analyses of multi-channel surface-recorded event-related

potentials. A key advantage of these methods is their inde-

pendence of both the reference and also a priori selection of

certain electrodes or time points. These measures render
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statistical information concerning modulations in response

strength, latency, and topography both between and within

experimental conditions. In these and other ways topo-

graphic analysis techniques allow the experimenter to glean

additional information and neurophysiologic interpretability

beyond what is available from canonical waveform analysis.

In addition to the progress in analysis tools and data

interpretability, multi-channel EEG systems have become

readily affordable for nearly all clinical and research labo-

ratories. However, a potential risk of this ease-of-access to

the equipment is that it may not be paralleled by researchers

fully understanding or appropriately applying these analysis

tools. As a result, EEG/ERPs as a research field risks

becoming divided between those who apply only a minimal

level of analysis and those who seek to more fully capitalize

on the interpretational power of the technique. One goal of

this tutorial was to show even to newcomers to the field that

information-rich analyses can also be easy-to-use.

A final step that we have not addressed in this review is the

application of source estimation techniques. This topic has

been treated in several comprehensive reviews [2, 23, 40].

The relevance of the analyses presented in this tutorial to

source estimations is the following. Analyses of the electric

field at the scalp must be conducted that serve as the basis for

estimating the sources underlying these fields. That is,

analysis of the surface-recorded data helps inform the

researcher of specific time periods of interest for source

estimations. Without such and if the experimenter were to

arbitrarily select time periods, the resulting source estima-

tion would have little (or more likely no) neurophysiologic

meaning (c.f. [53] for discussion).

We would end by mentioning some additional approa-

ches under development that are promising for providing a

closer translational link across brain imaging methods and

across studies conducted in different species. Among these

are the application of clustering algorithms to single-sub-

ject and single-trial data [5, 17] and the direct analysis of

single-subject and single-trial source estimations [16, 19],

including within the time-frequency domain [18, 35].
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Appendix I: Formulae

n is the number of electrodes in the montage,including the reference
Ui is the measured potential of the ith electrode, for a given condition U, at a
given time point t (also including the reference)

Vi is the measured potential of the ith electrode, either from another condition V,
or from the same condition U but at a different time point t0

Average reference

u ¼ 1
n �
Pn

i¼1 Ui �u is the mean value of all Ui ’s (for a given condition, at a given time point t)

ui is the average-referenced potential of the ith electrode (for a given condition,
at a given time point t)

ui ¼ Ui � u

Global field power(GFP)

GFPu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n �
Pn

i¼1 u2
i

q
The GFP for a given condition, at a given time point

GFP is equivalent to the standard deviation of the electrode values (at a given time point t)
GFPu = ru

Global dissimilarity (DISS)

DISSu;v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n �
Pn

i¼1
ui

GFPu
� vi

GFPv

� �2
r

Between two conditions at the same time point, or between two different time points
of the same condition

(See below for the definition of C)DISSu;v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ð1� Cu;vÞ

p

Spatial correlation (C)

Cu;v ¼
Pn

i¼1
ui � vi

uk k� vk k
Spatial correlation between two conditions at the same time point, or between two

different time points of the same condition

(C is equivalent to the Pearson cross-correlation coefficient)

(See above the definition of DISS)

uk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 u2
i

p
; vk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 v2

i

p

Cu;v ¼ 1� DISS2
u;v

2
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Appendix I: continued
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Segmentation results
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Tk

�Tk ¼ 0; Tkk k ¼ 1

Global explained variance (GEV)

GEV ¼
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GFPuðtÞ � Cu;Ttð Þ2Ptmax

t¼1
GFP2

uðtÞ

(This can be computed only after a segmentation) t is a given time point within the data

GFPu (t) is the GFP of the data for condition U at time point t. Tt is the template
map assigned by the segmentation for condition U at time point t

Cu,Tt is the spatial correlation between data of condition U at time point t, and the template
map Tt assigned to that time point by the segmentation

The GEV can also be broken down into its partial contributions GEVk for each of its segment k

q is the number of segments/template maps

cu,k,t is set to 1 only for time points where data have been labelled as belonging
to the kth segment, and 0 otherwise

Tt ¼ TLu;t

GEV ¼
Pq

k¼1 GEVk

GEVk ¼
Ptmax

t¼1
GFPuðtÞ � Cu;Ttð Þ2 � cu;k;tPtmax

t¼1
GFP2

uðtÞ

cu;k;t ¼
1 if k ¼ Lu;t

0 if k 6¼ Lu;t

Cross validation criterion (CV)

CV ¼ r̂2
l � n� 1

n� 1� q

� �2 q is the number of segments/template maps

n is the number of electrodes

(Tt � u(t) denotes the scalar product between the template maps Tt

and the data u(t) at time point t)
r̂2

l ¼
Ptmax

t¼1
uðtÞk k2�ðTt � uðtÞÞ2ð Þ

tmax �ðn�1Þ

Krzanowski-Lai criterion

Wq ¼
Pq

r¼1
1

2 � nr
� Dr W is the measure of dispersion for q clusters

nr is the number of maps for cluster r

Dr is the sum of pair-wise distance between all maps of a given cluster r. KLq

is the Krzanowski-Lai criterion for q clusters (formula adapted to compute
the normalized curvature of W)

Moreover, KLq is set to 0 if dq-1 \ 0 or dq-1 \ dq (only concave shapes
of the W curve are considered)

Dr ¼
P

u;v2 clusterr u� vk k2

KLq ¼ dq�1�dq

Mq�1

dq ¼ Mq � Mqþ1

Mq = Wq � q2/n
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