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a b s t r a c t

We have investigated shot noise at microwave frequencies in wide-aspect-ratio graphene sheets in the
temperature range of 4.2–30 K. We find that for our short (L < 300 nm) graphene samples with width
over length ratioW/L > 3, the Fano factor F reaches a maximum F ∼ 1/3 at the Dirac point and that it
decreases substantially with increasing charge density. Our results agree with the theoretical prediction
that electrical transport at the Dirac point is governed by evanescent electronic states.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Single layer graphite, graphene, is a unique semiconductor
material [1]. It is gapless, as its cone-like conduction and valence
bands touch at two inequivalent Dirac points, K and K′, where
the density of states vanishes. The conductivity at the Dirac point,
however, remains finite. It has been theoretically shown that in
perfect graphene at the Dirac point, the conduction occurs only via
evanescent waves, i.e. via tunneling between the leads [2,3]. This
has interesting consequences on the conductivity and on the shot
noise, both ofwhich display universal behavior in the limit ofwide-
aspect-ratio sheets.
In this article, we discuss experimental results on shot noise

in short and wide graphene strips [4]. Using a cryogenic, low-
noise amplification set-up, we measure shot noise as a function
of the gate voltage in two-terminal field-effect graphene devices.
The results are successfully compared with the theoretical values
derived by solving the Dirac equation [2,3]. Even though the shot
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noise at the Dirac point is equivalent to that of a regular diffusive
conductor, clear distinction in the noise behavior can be found in
the gate dependence. Therefore, our results on short, less than 300
nm long samples with large width-over-length ratio W/L > 3
provide support for the theoretical ‘‘pseudodiffusive’’ transport
picture of ballistic graphene. We also show and discuss how
disorder affects the conductivity and the shot noise in our longer
samples.

2. Theoretical background

The conductance of a single transmission channel can be
written as G = g e

2

h τ , where g is the degeneracy (spin and valley)
of the system and τ the electron transmission probability. When
the system is biased, shot noise appears due to discreteness of
charge [5] and these current fluctuations for a single channel are
given by 〈(δI)2〉 = 2e〈I〉(1 − τ). The total noise power spectrum
for amultichannel conductor is then obtained by summing over all
N transmission eigenchannels:

SI =
2e3|V |
h

N−1∑
n=0

τn(1− τn). (1)

In the limit of low transparency τn � 1,

SI ∼= SPoisson =
2e3|V |
h

N−1∑
n=0

τn = 2e〈I〉, (2)
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defining a Poissonian noise induced by independent and random
electrons like in tunnel junctions [5]. The regular way to quantify
shot noise is to use the Fano factor Fwhich is the ratio between the
measured shot noise and the Poissonian noise:

F =
SI

SPoisson
=

SI
2e〈I〉

=

N−1∑
n=0

τn(1− τn)

N−1∑
n=0

τn

. (3)

Then, for a Poissonian process F = 1 at small transparency (τn →
0), while F = 0 in the ballistic regime (i.e. when τn → 1) and
F = 1/3 in the case of a diffusive system.
In graphene, it has been theoretically concluded that transport

at the Dirac point occurs via electronic evanescent waves [2,3].
Tworzydło et al. used heavily-doped graphene leads and the wave
function matching method to directly solve the Dirac equation in
perfect graphene with length L and widthW [3]. They found that
for armchair edges, the quantization condition of the transverse
wave vector is defined by ky,n = (n+α)

W π where α = 0 or 13 for
metallic and semiconducting armchair edges, respectively. At the
Dirac point, the transmission coefficients are given by:

τDiracn =
1

cosh2(π(n+ α) LW )
. (4)

Consequently, graphene has a similar bimodal distribution of
transmission eigenvalues at the Dirac point as there is in diffusive
systems [6,7]. In the limit of W/L → ∞, the mode spacing
becoming small and one can replace the sum over the channels by
an integral over the transversewave vector component ky to obtain
the conductivity and the Fano factor for a sheet with metallic
armchair edge:

σDirac = GDirac
L
W
=
4e2

h
L
W

∫
∞

0

dky
cosh2(kyL)

=
4e2

πh
, (5)

FDirac =

N−1∑
n=0

τDiracn (1− τDiracn )

N−1∑
n=0

τDiracn

=
1
3
. (6)

At the Dirac point, the conductivity is at minimum (σDirac = 4e2
πh )

and the Fano factor is at maximum (FDirac = 1
3 ) [3]. Equivalent

results have been obtained with more realistic contact conditions
as well [8]. However, both conductivity and Fano factor are
no longer at minimum and maximum, respectively, when the
transport becomes incoherent [9]. Moreover, in large samples the
minimum conductivity has been measured to be around σDirac =
4e2
h [1,10,11], which points towards the presence of disorder [12].
By tuning the carrier density, the Fermi level is moved away from
the Dirac point where the density of states is no longer zero. At
large density the number of conducting channels increases, the
evanescent states are then accompanied by propagating states, and
the conductivity rises while the Fano factor decreases [3].
Let us note that the result F = 1/3 seems to be a rather robust

result in graphene, and it resurfaces in several different contexts.
The Fano factor for a bilayer system has been predicted to be 13 as
well [13] or 1− 2

π
[14], i.e. very close to 13 . Moreover, even if there

are pn-junctions present in the graphene sample, the Fano factor is
expected to be very close to 13 [15], though it will vary depending
on the Landau level filling factors in a magnetic field [16].

Fig. 1. (Color online) Experimental set-up for detecting shot noise at T = 4.2–30 K.

Fig. 2. Schematic of the equivalent circuit of ourmeasurement: RS and Z0 represent
the resistance of the sample and the cold preamplifier respectively, i2n represents the
full noise generated by the circuit.

3. Experimental set-up and shot noisemeasurement technique

We employ microwave frequencies to implement a sensitive
noise measurement scheme based on lock-in detection of mod-
ulated current fluctuations (see Refs. [17,18,4] for details). The
bias current IDC is modulated using a sine-wave modulation, I =
IDC + δI sin(ωt)where IDC � δI , for the lock-in detection of noise.
Alternatively, shot noise can also bedetectedwithout currentmod-
ulation using a DC scheme. We employ the shot noise generated
by a tunnel junction with Poissonian noise (F = 1) to calibrate the
measurement sensitivity. A detailed discussion on our measure-
ment setup (Fig. 1), as well as sample preparation, can be found in
Ref. [19].
By using the equivalent electrical model shown in Fig. 2, we can

calculate the coupled noise power of the current fluctuations to
the first-stage cold amplifier. The noise generator in2 is a sum of
the generators of the amplifier with resistance RL = 50 � and the
sample with resistance RS

in2 =
4kBTN
RL
+ SI

=
4kBTN
RL
+
4kBT
RS

[
1− F+ F ·

eIRS
2kBT

coth
(
eV
2kBT

)]
(7)

which is dependent on the current I and voltage V across the
sample, and where TN denotes the noise temperature of the
amplifier, T is the bath temperature of the reservoir, and F
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Fig. 3. (Color online) Typical tunnel junction noise measurement data: (a) as used
for noise power calibration, and (b) for F(Vbias) investigations (b). The red curves are
fits based on the Khlus formula at T = 4.4 K: Eq. (7) in (a) and Eq. (10) in (b).

indicates the (bias-dependent) Fano factor. The first term on the
right hand side describes the noise from the amplifier, while the
second term SI is the sum of thermal and shot noise coming
from the sample that we want to measure, which was originally
introduced by Khlus [20] to describe the cross-over from thermal
to shot noise; its value starts from 4kBT

RS
at zero bias and approaches

F · 2eI at eV � kBT . The spectral power coupled to the amplifier
becomes SP = in2 · (

RS
RS+RL

)2RL according to the circuit model, and
the measured noise power

P = SP · gA · BW = in2 ·
(

RS
RS + RL

)2
RL · gA · BW , (8)

where gA and BW denote the gain and bandwidth of the amplifier
chain, respectively.
In practical measurements, gA and BW can be calibrated

straightforwardly by a tunnel junction with F = 1, but TN is not
an easily-measurable parameter. Therefore, we define an average
Fano factor using the excess noise

F = (SI(I)− SI(0))/(2eI) (9)

which can be directly deduced from the measured noise power vs.
current. Notice that F → F at eV � kBT , while F → 0 at small bias
due to thermal noise averaging. For nonlinear samples in which RS
is dependent on the bias voltage, we need to make nonlinearity
corrections to convertmeasured SP into SI [18,19], but for graphene
samples with nearly constant RS(V ), we can directly deduce the
relation between F and F from Eq. (7), which yields

F = F ·

[(
eV
2kBT

coth
eV
2kBT

− 1
)/

eV
2kBT

]
. (10)

By expanding Eq. (10) to 2nd order in V at low bias, we can relate
the Fano factor F to the linear slope of F(Vbias). This method re-
quires accurate knowledge of the temperature and, unfortunately,
it becomes unreliable in the presence of reservoir heating.
Fig. 3 illustrates the high resolution of our experimental

calibration on a typical tunnel junction sample with resistance
RT = 8 k�. In Fig. 3(a) the measured noise power is fitted with
Eqs. (7) and (8) using F = 1; this yields a calibration that is based
mostly on the high bias slope of the data. Fig. 3(b), on the
other hand, displays the calculated average Fano factor F vs. Vbias,
together with the expectation from Eq. (10); the intercomparison
of the two is sensitive to deviations from constant T (or constant
F) at low bias. The perfect agreement in Fig. 3(a) and (b) indicates
that our calibration is trustworthy and that there is no substantial
reservoir heating affecting our calibration.

4. Results on shot noise

Here, we discuss results of four samples which are listed in
Table 1: the set represents our submicron long samples with the
largest aspect ratio W/L. According to the theory, results in such

Table 1
Characteristics of our four samples.W/L is the width over length ratio. VD defines
the position of the Dirac point in gate voltage. These points were extrapolated from
the minimum conductivity at 4e

2

πh for samples II and III. See text for more details.

Sample I Sample II Sample III Sample IV

W
L = 24

W
L = 10

W
L = 3

W
L = 4.2

L = 200 nm L = 200 nm L = 300 nm L = 950 nm
VD = 19.5 V VD = 145 V VD = 100 V VD = 28 V

Fig. 4. (Color online) DC transport and shot noise measurements on sample A:
(a) Resistance R (left axis) and conductivity σ (right axis) as a function of Vgate .
(b) Differential resistance dV/dI versus bias voltage Vbias at the Dirac point (red
curve) and at high density (blue curve). (c) Current noise per unit bandwidth SI as
a function of bias at the Dirac point, at T = 8.5 K, fitted (red curve) using Khlus
formula (F = 0.318). (d) Mapping of the average Fano factor F as a function of gate
voltage Vgate and bias voltage Vbias at T = 8.5 K.

samples should be universal, which allows for the most pertinent
comparison between experiment and theory.
Sample I has an aspect ratio of W/L = 24. Fig. 4(a) displays

the resistance and conductivity of sample I as functions of the
gate voltage (i.e. charge carrier density). All of our graphene
samples show a maximum resistance in positive gate voltage
Vgate values. This means that our samples are non-intentionally
p-doped, probably due to oxygen gas adsorption [21].We observe a
maximum resistance and aminimum conductivity of around 4e

2

πh at
the Dirac point. For sample I, we obtain a minimum conductivity
which is the one expected for large aspect ratio graphene strips [3]
and observed experimentally in recent experiments [22]. In these
samples the resistance was nearly independent of the bias voltage
Vbias, regardless of whether the measurement was taken at, or far
away from, the Dirac point (see Figs. 4(b) and 7(b)).
Fig. 4(c) displays the current noise per unit bandwidth as a

function of Vbiasmeasured at the Dirac point at T = 8.5 K in sample
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Fig. 5. Average Fano factor F versus source drain biasVbias at charge neutrality point
(Dirac point) measured at three different temperatures: (a) T = 8.5 K, (b) T = 19.6
K and (c) T = 32 K. The red solid curve in each frame displays F(Vbias) calculated
from Eq. (10) with F = 0.33, 0.32, and 0.32 at the respective temperatures. Notice
that in frame (a) the value of F measured at low bias is a bit smaller than the
theoretical prediction.

I. By using the Khlus formula, Eq. (7), we obtain for the Fano factor
F = 0.318 [20]. We have also used excess noise (cf. Eq. (9)) to
extract the average Fano factor F [17,18,4], which yields F = 0.338
at the Dirac point (at Vbias = 40 mV).
Our measurements seem to confirm that transport at the Dirac

point occurs via evanescent waves [2,3]. The two extracted Fano
factors F and F as well as the minimum conductivity are very close
to the expected theoretical values of 13 and

4e2
πh , respectively, at the

Dirac point for a perfect graphene strip with large W/L [3]. Note
that this measured Fano factor at the Dirac coincides also with
the expected result for a regular, diffusive mesoscopic system. In
Ref. [3], the authors demonstrate that, in graphene, the Fano factor
should decrease as the charge carrier density increases whereas
no decrease with Vgate should take place for a common diffusive
system.
Fig. 4(d) presents a scan of the average Fano factor F on the

plane spanned by the bias voltage Vbias and by the gate voltage Vgate.
A clear dependence of F on Vgate (i.e. the charge carrier density) is
observed, with a clear drop (about a factor of 2) of the Fano fac-
tor at large carrier density. This gate dependence, in addition to
the observation of the minimum conductivity at 4e

2

πh and a max-
imum Fano factor of 13 at the Dirac point, all coincide with the
expectations of the evanescent state theory [3]. We cannot, how-
ever, obtain a quantitative agreement of F(Vgate) and σ(Vgate)with
the evanescent mode theory, because doping by the leads causes
a modification of the gate coupling capacitance. Consequently, the
gate voltage dependence becomes weaker than the calculated one
in Ref. [3]. Comparing our data with a square lattice contact model
in perfect graphene strips with largeW/L [23], we find that the ca-
pacitance Cgate in our sample is smaller by a factor of∼9 compared
with the estimate from a simple parallel plate capacitor model
(i.e. Cgate ∼ 12 aF/µm2 instead of 115 aF/µm2).
In order to illustrate the temperature dependence of our data at

the Dirac point, we present F(Vbias) of sample I at three different
temperatures in Fig. 5. We notice that F remains near 1/3 and is
barely affected by temperature up to T = 30 K; the Vbias dependence
of F , on the other hand, becomes much slower with voltage as
given by Eq. (10). Since our shot noise results do not depend
on temperature (F = const. between 4 and 30 K) and with
our contacts being highly transparent, the presence of inelastic
scattering mechanism in the graphene sample, or at its contacts,
can be ruled out. Note that if the contacts were bad, the Fano
factor would grow toward the limit of two symmetrical tunneling
barriers in series (i.e. RT1 = RT2):

F =
R2T1 + R

2
T2

(RT1 + RT2)2
→
1
2
. (11)

This is not the case for our samples in which the measured Fano
factor has never exceeded 13 .
Although the Khlus formula with constant F applies to our

measured SI(Vbias) data (see Figs. 4(c)) and 7(c)), the fitting error

Fig. 6. (Color online) Average Fano factor F extracted at Vbias = 40 mV for samples
I-III, all havingW/L ≥ 3, as a function of δV = Vgate−VDirac , where VDirac is the gate
voltage value to reach the Dirac point.

increases at low biaswhen eV ∼ kBT as the thermal noise becomes
more and more dominant. To study the low bias noise behavior
of our samples, it is more accurate to investigate the average
Fano factor and to compare the theoretical expectation from
Eq. (10) with the measured data using a constant F ∼ 1/3; this
comparison is done in Fig. 5(a–c) for temperatures T = 8.5, 19.6,
and 32 K, respectively. The data on F(Vbias) fit well with Eq. (10)
at T = 19.6 and 32 K, indicating that the Fano factor F is
independent of bias voltage. However, there is a small deviation
from the theoretical curve at the lowest temperature (T = 8.5 K)
in Fig. 5(a), which indicates that F at lowbiasmight be smaller than
at high bias. Similar behavior has been observed in a few of other
graphene samples and, evenmore strongly, inmulti-walled carbon
nanotubes. We ascribe this phenomenon to Joule heating of the
reservoirs, most likely the graphene below themetallic electrodes.
Since the electron–phonon coupling strength is weak, the section
of graphene sample underneath the contacts will be heated up to a
higher temperature than the metallic lead, which is expected to be
at the bath temperature T . Consequently, the calculated value of F
will be smaller as we have to use higher reservoir temperature Teff
in Eq. (10). If we adopt a constant F = 0.33 along the whole bias
range, one can fit an effective temperature of Teff = 10 K in Fig. 5(a)
at low bias.4 This heating effectwill become less important at large
bias because the shot noisewill eventually take over fully and, thus,
the value of F saturates. Other mechanisms that can change the
measured Fano factor include electron–electron interactions [24,
5], incoherent scattering [9], and thermal gradients in the metallic
lead due to heat diffusion [25]. However, the first two processes
should lead to F = 1/3 as Vbias → 0 and higher F in the high bias
regime (i.e. increased slope of F(Vbias) at intermediate Vbias). The
third mechanism is possible, but we cannot distinguish it from the
heating of the graphene reservoir.
In addition to sample I, we havemeasured three other samples

II-IV all havingW/L ≥ 3. The average Fano factor F as a function of
δV = Vgate − VDirac is plotted in Fig. 6 for samples I, II and III.
All samples were p-doped, the Dirac points being at positive gate
voltages, but only for one of these three samples could we reach
the Dirac point (sample I). The gate voltages corresponding to the
Dirac point for the two other samples were estimated from their
conductivity curves. Despite the high doping level of the samples,
the Fano factor seems to behave universally and tends to zero at
very high density. This indicates that graphene can behave as a
ballistic conductor, contradicting some of the recent arguments
[26]. Despite the probable presence of somedisorder in our system,
the transport regime can be considered to be ballistic on the length
scale of our shortest samples.

4.1. Effect of disorder

Disorder can strongly influence electronic transport in meso-
scopic conductors. Fano factor of 13 has been predicted [6,7] and

4 Assuming that the heat conductivity from the graphene reservoir to themetallic
lead is governed by Wiedemann-Franz law and limited by the interfacial contact
resistance RC , we get an upper limit estimate for RC = 20�.
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Fig. 7. (Color online) DC transport and shot noise measurements on sample IV: (a)
Resistance R (left axis) and conductivity σ (right axis) as a function of gate voltage
Vgate . (b) Differential resistance dV/dI versus bias voltageVbias at theDirac point (red
curve) and at high density (blue curve). (c) Noise spectral density SI as a function
of bias voltage Vbias at the Dirac point, at T = 12 K, fitted (red curve) using Khlus
formula (F = 0.256). (d) Mapping of the average Fano factor F as a function of gate
voltage Vgate and bias voltage Vbias at T = 12 K.

experimentally verified in the case of diffusive systems [25]. Dis-
ordered multiwalled carbon nanotubes, on the other hand, have
shown a broad spectrum of values [27]. Recent measurements in
disordered graphene [28] have shown a gate-independent Fano
factor and a value slightly above 13 , which could be due to bad
graphene-contact interfaces or strong potential disorder [29]. Re-
cent theories imply that disorder should enhance conductivity
in graphene via impurity-induced resonant tunneling [30]. Such
counterintuitive behavior can be understood as a consequence of
the absence of intervalley scattering [31] and the chirality con-
servation [32]. It has also been shown that weak disorder may
induce anomalously large conductance fluctuations at high car-
rier density [33]. By modeling smooth potential disorder, San Jose
et al. have shown that near the Dirac point at length scales �
L,W , disorder increases theminimum conductivity and lowers the
Fano factor, down to 0.243 for one-dimensional disorder and to
0.295 for the two-dimensional case [34]. A regular, diffusive sys-
tem should not display any gate dependence. Absence of gate de-
pendence was demonstrated for long-range disorder in Ref. [29]. A
gate-dependent Fano factor appears once the disorder strength is
reduced.
Disorder effects start to play a role for our sample IVwhich has

W/L = 4.2 and a large separation between the leads, approaching
1 µm. In Fig. 7(a), the resistance R and the conductivity σ are
plotted against gate voltage Vgate. The resistance curve is not as
peaked as it was in the short samples I–III, and in fact, the
Dirac point seems to be truncated, probably due to the influence

of disorder. Note that the graphene sheet is, again, p-doped. We
also see that the minimum conductivity is no longer 4e

2

πh but much
larger,which is also in agreementwith the fact that disorder should
increase the conductivity in graphene [30]. No bias dependence is
observed in the differential resistance, as illustrated by Fig. 7(b).
In our noise measurements on sample IV, we observe a strong

decrease of the Fano factor at the Dirac point compared with 1
3

expected by the evanescent wave theory. Fig. 7(c) shows the noise
spectral density measured at T = 12 K. Using Khlus formula, we
extract a Fano factor at the Dirac point F = 0.256. The fit is
not perfect at high bias probably due to electron–phonon coupling.
We also note that the curve is slightly asymmetrical. The F(Vbias)
analysis gives a smaller value of about 0.23 (see Fig. 7(d)).
These values are in good agreement with the model which takes
into account one dimensional smooth potential disorder [34]. In
Fig. 7(d), we observe that the Fano factor is reduced by tuning
the gate voltage Vgate, indicating that the disorder present in our
sample appears to be smoother than in the samples of Ref. [28].

5. Conclusions

We studied transport and noise in submicron graphene strips
with large W/L. At the Dirac point, we observed that for short
samples (L = 200–300 nm) with W/L > 3 both minimum
conductivity and Fano factor reach universal values of 4e

2

πh and
1
3

respectively. At very large carrier density, the Fano factor tends
to zero which is the value expected for a ballistic system. These
findings are in accordance with the evanescent wave theory
describing transport at the Dirac point in perfect graphene. When
L is large enough, we see a significant reduction of the Fano
factor at the Dirac point, reaching a value of 0.23, which is in
good agreement with recent models taking into account smooth
potential disorder like charge puddles [34].
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