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We prove the existence, for the Chern-Simons theory in curved space-time, of a renormaliz­
able local supersymmetry and we use it to derive perturbative finiteness at all orders. 

1. Introduction 

The Chem-Simons theory [1-3] (for a review see ref. [4]) in IR 3 space-time 
formulated in the Landau gauge is known [5,6] to be invariant under a set of 
supersymmetry transformations whose generators form a Lorentz three-vector. 
Together with the generator of BRS transformations the supersymmetry genera­
tors span a Wess-Zumino type algebra which closes on space-time translations. 
This supersymmetric structure was essential in the proof of the finiteness of the 
theory as given in ref. [7]. 

We consider here - in perturbation theory - the Chem-Simons theory defined 
on an arbitrary space-time three-manifold. One result presented in this paper is 
the derivation of a local version of the supersymmetry mentioned above *. Further­
more, we investigate the quantized theory. We prove that this local supersymmetry 
is free of anomalies and show UV finiteness at all orders. 

Obtaining a local version of the supersymmetry is not as straightforward as one 
could imagine by considering the topological nature of the Chem-Simons theory 

* Supported in part by the Swiss National Science Foundation. 
* See [8] for an earlier presentation of the classical results and ref. [9] for a brief account. 

Steps in this direction have been reported in ref. [10]. An interesting connection between supersym­
metry, differential geometric structure and power-counting finiteness may be found in ref. [11]. 

0550-3213/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 
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Indeed, in the perturbative lagrangian approach we use, one has to fix the gauge 
by adding to the action a gauge-fixing term. In the Landau gauge - our gauge 
choice - the gauge fixing term depends explicitly on the metric tensor. And 
choosing the Landau gauge is essential: already in IR 3 space-time, the existence of 
the supersymmetric structure mentioned above is intimately dependent on this 
specific gauge choice *. 

The paper is organized as follows. We start by recalling known facts about the 
Chern-Simons theory in IR 3 space-time and its off-shell supersymmetry algebra 
(sect. 2). 

In sect. 3, we formulate the local theory by following the requirement of 
invariance under the diffeomorphisms. Our next task then is to control the metric 
dependence introduced by the gauge fixing. We see that the "physical" content of 
the theory is metric independent [2,13-17]. This is done by noticing that the metric 
plays the role of a gauge parameter. Its nonphysical character is made manifest 
through the recourse to the technique of extended BRS symmetry [18], which 
amounts to letting the metric transform under the BRS transformations into a 
Grassmann parameter. The extended BRS symmetry allows one to prove that the 
metric-dependent part of the action is non-physical, the latter being given by a 
BRS variation [18]. This is obvious at the classical level. For the quantum theory, 
the technique applies as well since - as we prove in sect. 7 - the extended BRS 
symmetry is renormalizable. 

In sect. 4 we deal with the local version of the supersymmetry algebra. 
Superdiffeomorphisms turn out to yield the local version of the Lorentz three-vec­
tor generator. The gauge-fixed action is in general not invariant under these 
superdiffeomorphisms, i.e. the corresponding Ward identity is broken by a "hard" 
term. We are, however, able to control this breaking by coupling it to a set of 
external fields which transform nontrivially. The broken Ward identity can then be 
reformulated as an unbroken one, the breaking now being contained in the 
structure of the Ward operator. Doing so, we manage to establish a local super­
symmetric structure for the Chern-Simons theory. Furthermore, this local super­
symmetry is formulated in terms of unbroken Ward identities, a formalism that is 
very convenient for performing the perturbative quantization (sect. 7). 

The diffeomorphisms and the superdiffeomorphisms, together with the (rigid) 
BRS transformations, are shown to form a closed algebra. 

We prove in sect. 5 that the classical action we consider is the most general one 
obeying the constraints of BRS and diffeomorphism invariance, together with that 
of (broken) invariance under superdiffeomorphisms. There is at this stage only one 
free parameter. But the theory obeys an antighost equation of the same type as the 
one given in ref. [12] for gauge theories in the Landau gauge. It follows that the 

* The fact that our results rely on the use of the Landau gauge is not surprising in view of the 
remarkable finiteness properties peculiar to this gauge choice [12]. 
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parameter is fixed. This means that the classical theory is absolutely stable: no 
deformations are allowed. 

In sect. 6 we give the conditions which the superdiffeomorphisms must obey in 
order to yield an exact symmetry: the vector fields along which they act must be 
covariantly constant *. These rigid supersymmetries reduce to the known ones [5,6] 
in the limit where the space-time is IR 3

. 

The quantum theory (sect. 7) is shown to be completely UV finite: no counter­
terms are allowed. Since the classical theory is stable under deformations, it is 
sufficient for proving perturbative finiteness to show that the constraints defining 
the classical theory can be maintained to all orders. In particular the local 
supersymmetry of the Chern-Simons theory is shown to be free of anomalies. 

One remark must be added. Our strategy relies on two steps. The first step 
consists in considering the construction of a general ultraviolet-subtracted pertur­
bation expansion. In the second step we apply the constraints defining the theory 
in order to characterize the possible free counterterms - and to show eventually 
their absence. We have thus to rely on a well-defined renormalization scheme. Our 
model is defined on an arbitrary space-time manifold, in which case such a scheme 
does not exist in general, for the time being. A consistent renormalization scheme 
can be defined in the restricted case of a manifold that is topologically equivalent 
to a flat manifold and which admits an asymptotically flat metric. Therefore, our 
results regarding the quantum theory hold rigorously only in this restricted case. 
Of course, all the classical results (sects. 2-6) are free of such a restriction. 

2. Chern-Simons theory in IR 3 space-time 

In IR 3 space-time and in the Landau gauge the classical action of Chern-Simons 
theory writes: 

(2.1) 

where Dµc = aµc + A[Aµ, c] is the covariant derivative and the coupling constant A. 

is related to the parameter k in the notation of ref. [2] by A.2 = 2rr /k. The gauge 
group is assumed to be simple. All fields <f> belong to its adjoint representation and 

* This is quite analogous to the case of global supersymmetries in curved 4-dimensional space-time -
e.g., anti-de Sitter - generated by Killing spinor fields [19-21]. 
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we use the matrix notation <P =<Pa A.a. yµ, and T are external fields coupled to the 
nonlinear variations of the fields Aµ, and c under the BRS transformation s: 

sc=B, 

SC= A.c 2
' sB=O. (2.2) 

The BRS invariance of the theory is implemented at the functional level by the 
Slavnov identity: 

( 
o! o! o! o! o! ) 

9(!)=Trjd3x --+--+B- =0. 
oyµ, oAµ, oT oc oc 

(2.3) 

The associated linearized Slavnov operator is 

.?.,=Tr d3x ----+----+--+--+B-. ( 
o! o o! o o! o o! o o ) 

- f oyµ, oAµ, oAµ, oyµ, oT oc oc oT oc (2.4) 

Note that it acts on the fields Aµ,, c, c and B like the operator s in (2.2); on the 
external fields yµ, and T its action, which we shall also denote by s, is given by 

o! o! 
S"'µ, = y "'µ, = --

1 .:£I oA , µ, 
sT=.99.,T=-. 

- oc 
(2.5) 

The Chern-Simons model in IR 3 space-time has been shown to be invariant 
under three further (linear) supersymmetry transformations whose generators form 
a Lorentz three-vector [5]. The corresponding Ward identities are 

The r.h.s. is a classical breaking which, being linear in the quantum fields, can be 
controlled in higher orders. The Ward operator '?;,_ in (2.6) has the form 

(2.7) 

it acts on the fields as 

'?;,_ c = 0, 

(2.8) 
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For any functional of the fields r = I'(Aµ,, B, c, c, yJ.L, T) the Slavnov operator 
.Y, its linearized version Yr and the three Ward operators ~ form a nonlinear 
algebra: 

Y"r.Y( I') = 0, 

{~, ~}I'=O, 

This algebra closes on the Ward operator of translations 9'µ,: 

(2.9) 

(2.10) 

In terms of the linear Ward operators .9'2: and ~ only, one has - if ! is a 
functional satisfying eqs. (2.3) and (2.6) - the following algebra: 

.Y] = 0, {~,~}=0, (2.11) 

which has the form of an off-shell N = 1 supersymmetry algebra. Note that the 
number of bosonic (Faddeev-Popov even) degrees of freedom Aµ,, B, T equals the 
number of fermionic (FP odd) ones c, c, yJ.L. 

3. Local theory and metric dependence 

In order to define the theory on a three-manifold .L, let us impose the 
invariance of the classical action under diffeomorphisms, i.e. local translation 
symmetry. Under diffeomorphisms, the gauge field Aµ, is a covariant vector, the 
Lagrange multiplier B as well as the ghosts and antighosts c and c behave like 
scalars, yJ.L is a contravariant vector density and T a scalar density. The correspond­
ing weights are given in table 1 of sect. 5. 

The action of the local theory on L consists of three pieces: 

(3.1) 

In terms of the I-form A =Aµ, dxJ.L, the pure Chern-Simons action .!c.s. writes *: 

!c.s.(A) =-~Tr f (A dA + tAA3
). 

,£ 
(3.2) 

* The wedge product symbol shall be omitted. 
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We further introduce a dual 2-form y and a dual 3-form i associated to the 
external fields yµ. and T: 

- _ _1_ Pd J.ld v y - zEµ.vpY X X ' (3.3) 

where Eµ.vp is the antisymmetric tensor density defined by E 012 = 1. The contribu­
tion .!ext from the external fields yµ. and T to the action (3.1) hence reads 

(3.4) 

d denotes the exterior derivative and De= de+ A{A, c} is the covariant one *; the 
former is nilpotent and anticommutes with s, 

d 2 =0, {s,d}=O. (3.5) 

Note that the pure Chem-Simons and external field contributions to the action 
(3.1) are both of topological nature. The remaining piece of the action .!gf is the 
gauge-fixing for the (covariant) Landau gauge; it is the only nontopological 
contribution to .!: 

(3.6) 

i.e. it depends explicitly on the metric **, considered here as an external field. In 
the limit of IR 3 space-time, gµ.v is just the minkowskian or the euclidean metric and 
one recovers from (3.1) the action (2.1). 

In the general case, the metric plays the role of a gauge parameter and will be 
treated as such. Accordingly, we extend the BRS transformation [18] to transform 
gµ.v in order to make explicit the nonphysical character of the metric. The BRS 
transformation (2.2), which writes in terms of differential forms: 

sA =De, sc=B, (3.7) 

SC= ;\c 2 , sB=O. (3.8) 

* Our convention for the exterior derivative d on any form w is: dw = d xl'al' w. The grading is defined 
as the sum of the ghost number and the form degree; hence the anticommutator in De. 

** In our convention gl'" is the inverse of the metric tensor and g = det(gl'), the latter beeing a scalar 
density of weight 2. Moreover, the Levi-Civita density El'"P (defined by E 012 = I) has weight 1 and 
the scalar volume element density d3x has weight -1. The relation between El'"P and the tensor 
density El'"P defined above (see (3.3)) is given by El'"P = gl'"gv/3gPYg- 1E"f3Y, the weight of El'"P is 
-1. Hence, the three pieces of the action (3.1) are invariant under diffeomorphisms, provided the 
weights of the fields are those in table 1 of sect. 5. 
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hence acts now also on g µ,v as 

sgµ,v = g,,,v, (3.9) 

As a consequence, the gauge-fixing action (3.6) contains a §,,,v-dependent term: 

(3.10) 

Since the metric now transforms under BRS, the Slavnov identity has to be 
extended [18] accordingly * 

(
a! o! o! o! o! ) J o! 

gp·)=Trj --+--+B- + d3xg --=0. 
~ .,z oy oA oi oc oc µ,v og,,,v (3.11) 

This last identity allows one to control the dependence of the classical theory on 
the metric g,,,v· For this being feasible also at the quantum level, one has to show 
that the extended Slavnov identity (3.11) can be renormalized, i.e., it is not plagued 
by anomalies - a result we prove in sect. 7. 

Let us come back to the classical action !; it is moreover characterized by the 
gauge condition 

(3.12) 

and by the ghost equation of motion 

which follows from the Slavnov identity and the gauge condition. 
The action ! can be split into a B-independent part X (solution of the 

homogeneous gauge condition) and a rest 

-Trj d3x (jggµ,va,,,BAv+s(/ggµ,v)a,,,cAv)· 

(3.14) 

Moreover, X obeys the homogeneous ghost equation; it therefore depends on y,,, 

* The functional derivatives with respect to differential forms are to be understood in the following 
sense: oS /of= X, if S = f/! fX, where f is a generic differential form. 
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and c only through the combination [}M = yM + {i gM<TJ<Tc, which reads as a 
2-form: 

(3.15) 

A linearized Slavnov operator 3"2 can be defined similarily to eq. (2.4), but now 
with an additional metric-varying term: 

Y =Tr --+--+--+--+B- + d3xg --. 
, ( o! o o! o o! o o! o o ) o 

:r l oy oA oA oy oi oc oc oi oc j µ,v ogµ,v 

(3.16) 

The action of Y;r (which we keep denoting by s) on the individual fields and on 
the metric is given by (3.7)-(3.9) and 

- - o! 
sr=Y""r= -, 

~ oc (3.17) 

4. Local supersymmetry 

What is the local version of the superalgebra {3"2 , ~, 9') * in eq. (2.11) - the 
supersymmetry algebra in IR 3 space-time - for the case where the Chern-Simons 
theory is defined on an arbitrary space-time manifold JI? 

Local translations are just diffeomorphisms (see sect. 3). At the functional level 
the invariance of the classical action (3.1) under these is expressed by the Ward 
identity 

( 4.1) 

where the summation runs over f =A, B, c, c, y, i. The infinitesimal transforma­
tion is given by the Lie derivative .st;,= i. d +di. along the vector field E; i. is the 
inner product, i. dxµ, = Eµ,. 

The local version of the supersymmetry generators ~ in (2.11) turns out to be 
given by superdiffeomorphisms. These lead, together with the BRS transforma-

* In this minimal localization scheme, the BRS transformation s remains rigid. 
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tions and the diffeomorphisms, to a closed algebra (see below). The superdiffeo­
morphisms act infinitesimally as *: 

s;,S Ii s;,S - • -
U(g)J£ = U(l;)'Y = - [ (T, 

( 4.2) 

where g is an odd ** vector field. The Ward operator associated to the superdif­
feomorphisms writes: 

( 4.3) 

The summation runs over all fields (forms), the metric, etc; traces are understood. 
The application of this operator (4.3) to the action (3.1) yields: 

c,;yS ~ Ac! + f d3 C:P ;::::µ 
/F (£').....,, = "-l(g) X g µp <:, S- , ( 4.4) 

where: 

with ( 4.6) 

The invariance under superdiffeomorphisms is seen to be broken. Whereas the 
first term in the right hand side of (4.4) is nothing else than a generalization of the 
"classical" breaking of the supersymmetry Ward identity (2.6), the second term is a 
genuine, "hard" (nonlinear in the quantum fields) breaking. One checks that it 
disappears in particular in the limit of constant metric and constant g since 511- as 
given by (4.6) is a total derivative. 

* With the change of variable (3.15) it is apparent that the field representation of superdiffeomor­
phisms reduces to three irreducible representations {c, A, fl, r}, {B, c} and {gµv• gµ)- In 
component language, the transformations involving i, read: 8<s'lc = - gµAµ, 8?0 Aµ = Eµvpg"[lP, s s ~ ~ . 
8mf2µ = 8myµ = - gµT. 

** g being odd, the inner derivative ii; is a derivation, instead of an antiderivation as i,. The Lie 
derivative .?., = ic d-dic is an antid.erivation. 
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In order to keep this "hard" breaking under control [22], we couple the field 
polynomials EM and sEI-' to two external covariant vector fields * LI-' and Ml-', i.e. 
we add a term 

( 4.7) 

to the action. Invariance under the diffeomorphisms is guaranteed if L =LI-' dxl-' 
and M =Ml-' dxl-' transform as 1-forms. In order to preserve BRS invariance and 
nilpotency, and in order to write the broken superdiffeomorphisms Ward identity 
(4.4) in the way of an unbroken one - up to the classical breaking (4.5) - we 
impose the transformation rules: 

sM=L, <OS M- a l:Pdxl-' 
U(fl - oj.LpS ' ( 4.8) 

sL =0, ofi;JL =2tM. 
- -

( 4.9) 

The summations over all fields in the previously defined Ward and Slavnov 
operators include from now on the new fields M and L. 

The Slavnov identity (3.11) and the Ward identity of diffeomorphisms (4.1) are 
otherwise unchanged, whereas the gauge condition (3.12) and the ghost equation 
(3.13) are modified into: 

( 4.10) 

As a consequence of enforcing the transformations (4.8) (4.9) and of extending 
the summation in (4.3) to run also on <f> = M, L, the Ward identity of superdiffeo­
morphisms takes the simpler, functional form: 

( 4.12) 

This result can be interpreted as establishing a supersymmetric structure at the 
local level. The "hard" classical breaking is now contained in the structure of the 
Ward operator. Putting things in this way - at the price of introducing the external 
fields M and L - will reveal very convenient for the renormalization of the local 
supersymmetry, performed in sect. 7. 

* The weights, dimensions and ghost numbers of Lµ. and Mµ. are shown in table 1 of sect. 5. 



C. Lucchesi, 0. Piguet / Supersymmet1y of Chern - Simons 291 

The algebra of the BRS transformations, of the diffeomorphisms and of the 
superdiffeomorphisms is given by: 

Yr..97( I') = 0, 

Yr~~r - ~~Y( I') = O, 

[ ~~)' ~L] r = o, c 4.13) 

where [E, E']IL =:i:.E'/L = EABAE'IL - E'ABAEIL is the Lie bracket of the vector fields E 

and E'. Eqs. (4.13) are valid for any functional I'= I'(A, B, c, c, y, 7, g!Lv' g!LV' M, 
L). If the functional .! is a solution of the extended Slavnov identity, of the Ward 
identity of diffeomorphisms and of the Ward identity of superdiffeomorphisms, 
then the linear algebra is given by: 

..97~= 0 
~ ' 

(4.14) 

As expected from the case of IR 3 space-time, the superdiffeomorphisms commuted 
with the BRS transformations yield diffeomorphisms. But unlike the fact that the 
translations commute with supersymmetry in this same !R 3 situation, the diffeomor­
phisms and the superdiffeomorphisms do not commute in general. 

5. Stability 

In the two preceding sections we have constructed an action (see eqs. (3.1) and 
(4.7)) which we denote here by .!: 

( 5.1) 

and which is the solution of 
(i) the gauge condition and of the ghost equation of motion (4.10) and (4.11), 

(ii) the extended Slavnov identity 

[ ( 
o.! o.! o.! o.! o.! ) o.! J J o.! Y(>)=j Tr --+--+B- +L- + d3xg --=0 

- J/ oy oA oi oc oc oM /LV og/LV ' 

(5.2) 
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(iii) the Ward identity of diffeomorphisms (4.1) with the summation running now 
also on L, M, 

(iv) the Ward identity of superdiffeomorphisms (4.12). 
(v) Moreover this action obeys the antighost equation * [12] 

(5.3) 

Note that the r.h.s. - in analogy to the r.h.s. of the Ward identity of superdiffeo­
morphisms (4.12) - consists of terms linear in the quantum fields A and c. 

We want now to study the stability of the theory, i.e. we look for the most 
general allowed deformation of the classical solution .! of the constraints. This 
amounts to consider a perturbed action 

.!' =.! +Ll, ( 5 .4) 

where L1 is an integrated local field polynomial of dimension zero ** and ghost 
number zero, and to require it to obey all the constraints listed above. The 
perturbation L1 is hence constrained by 

oLl 
-=0 
oB ' 

(5 .5) 

( :c +aµ( Jg gµv 
0
:v ) ) L1 = 0, (5.6) 

3".rL1 = 0, (5.7) 

~~Ll = 0, (5.8) 

~~)Ll = 0, (5.9) 

J d3x ( :~ +A[ c, :~]) = 0. (5.10) 

The first two equations imply that L1 = Ll(A, c, D, 7, gµv' gµv' M, L): L1 is 
independent of Band depends on candy only through the combination D (3.15). 
The last equation is then reduced to 

(5.11) 

* The derivation of the antighost equation follows the lines of the proof presented in ref. [12) and will 
not be repeated here. 

** The integration measure has dimension - 3. 
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TABLE 1 
Weights, dimensions and ghost numbers 

Field Aµ B c c yµ nµ T Mµ Lµ Eµ gµ 

Weight W 0 0 0 0 1 0 0 0 0 
Dimension 1 1 0 1 2 2 3 -1 -1 -1 -1 

Ghost number 0 0 -1 -1 -1 -2 2 2 

The remammg equations (5.7)-(5.9) are conveniently condensed into a single 
cohomology problem: 

o.1 = o, (5.12) 

where 

(5.13) 

The operator o is made a coboundary operator 

(5.14) 

by changing the stat1st1cs of the vector fields E and g, which now become, 
respectively, odd and even, and by defining the action of o on the latter to be 

(5.15) 

where [ , ] is the graded Lie bracket. The ghost numbers attributed to E and g are 
shown in table 1. Note that with these new conventions, both the Ward operators 
'.W(?i and '.W(~) carry ghost number one, just as the linearized Slavnov operator Ys. 

Noticing that a-invariance (5.12) of the perturbation .1 involves its invariance 
under the diffeomorphisms (condition (5.8)), we restrict the search of solutions to 
the space of diffeomorphism invariant integrated local functionals. 

In order to solve the cohomology problem (5.12), it is useful to split the operator 
o [23, p. 202] as 

(5.16) 

where 80 is the part of o which does not increase the homogeneity degree * in the 
fields, whereas 81 increases the degree by one. Both o0 and 81 are nilpotent: 

( 5 .17) 

The reason for performing this split is that the cohomology of o, i.e. classes of 
solutions .1 of (5.12) which are equivalent modulo coboundaries oJ, is isomorphic 

* Degree 1 is attributed to all the fields of the theory, gµv• !iµv• E and g included. 
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to a subspace of the cohomology of 80 (see ref. [23,24]). Hence, let us begin by 
solving the latter: 

(5.18) 

The action of the coboundary operator 80 on the fields comes from summing the 
homogeneity degree preserving parts of the BRS transformations, of the diffeo­
morphisms and of the superdiffeomorphisms. It reads 

80 A =de, 

o0u=u, o0u=O, (5.19) 

where (u, u) stands generically for the doublets (gµ.v' gµ.), (M, L) and (E, -g). 
We first remark that, according to a general result [23,25], the 80 cohomology 

classes are represented by local field functionals of homogeneity degree zero in the 
doublet fields u and u. In the present situation this implies independence from the 
fields M, L, E, t, gµ.v and fjµ.v· Note that although the dependence on the metric is 
in general not polynomial, there is no possible gµ.v- or gµ.v-dependent contribution 
to L1 which is both invariant under the diffeomorphisms and homogeneous of 
degree zero * in gµ.v and fiµ.v· 

We are thus left with solving (5.18) for an integrated polynomial Ll(A, c, D, r) 
of dimension zero and zero ghost number. Let us first write 

(5.20) 

where !% is a local field polynomial of form degree p and ghost number q. The 
cohomology condition (5.18) is equivalent to 

( 5 .21) 

Due to the nilpotency of 80 , to its anticommutativity with d and to the triviality of 
the d-cohomology in the space of local field polynomials [25], this leads to a chain 
of so-called "descent equations" connecting f ii to a local polynomial f g of ghost 
number 3 and form degree 0: 

aofi = dfi2, 

oaf?= dfg, 

oofJ = 0. 

* The factor {i in the metric-dependent invariant integrals carries an homogeneity degree ~. 

(5.22) 
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The most general form for Jg= Jg(A, c, i, D) is given by Jg= x Tr c3
, where x is 

some coefficient. By going upwards through the descent equations (5.21)-(5.22), 
one gets the corresponding local solution in the sector of ghost number 0: 

(5.23) 

the two last terms are trivial ones. The solution of the integrated 80 cohomology 
hence reads 

(5.24) 

~ -1 where L1 = J,11!3 and Llc is just proportional to the trilinear part of the classical 
action: 

Llc = -Tr J ( -tA 3 + D{A, c} + ic 2
) 

At 
(5.25) 

It turns out that Llc is also invariant under the complete coboundary operator o 
(5.13). Hence, the general solution of the cohomology problem (5.12) looks like 
(5.24), but with 80 replaced by o. The two possible independent contributions to J 
(invariant under diffeomorphisms, of ghost number - 1 and dimension O) and their 
a-variations are 

J2 =Tr f DA, 0Ll2= Tr f (-dA A - i,;iA + n de +Di,;n). 
At JI 

(5.26) 

Both o.11 and o.12 depend on the vector field g and there exists no linear 
combination of these objects which would be g-independent. We must thus reject 
them, as we are looking for deformations of the action which of course cannot 
depend on the vector fields, the latter being nothing else than infinitesimal 
parameters of field transformations. Finally, the most general deformation of the 
classical action preserving the conditions (5.5)-(5.9) is given by L1 = xLlc. If accept­
able, this would correspond to a possible continuous renormalization of the 
coupling constant A - the free parameter multiplying the trilinear part of the 
action. However, the deformation Llc is forbidden by the antighost equation 
(constraint (5.10) or (5.11)) and must consequently be rejected as well. 

In conclusion the action (5.1) is completely fixed by the requirements listed in 
the beginning of the present section: no deformations are allowed. 
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6. Rigid supersymmetry 

We have seen in sect. 4 that the supersymmetry is in general broken by a hard 
term and we have given a method for controlling this breaking. As a by-product of 
our main result, we now investigate the class of manifolds on which an exact 
supersymmetry holds, i.e., one without hard breakings. In order to do this, let us 
rewrite the broken Ward identity of superdiffeomorphisms (4.12) in the following 
way: 

We have set the external fields M and L to zero, since we now deal with the 
explicitly broken theory. We define the Ward operator 'P(Jl in such a way that 
when acting on .!, it yields a r.h.s. which contains all the manifold-dependent 
information. Enforcing exact supersymmetry means requiring the two last terms in 
this r.h.s. (6.1) to vanish; that these must vanish separately can be seen by setting 
g µ,v to zero. The resulting constraints are given by 

(6.2) 

The first condition comes from integrating by parts one of the derivatives con­
tained in sSµ (4.6); the second one is equivalent to writing Vµ,tv + Vvtµ, = 0, where 
Vµ, denotes the covariant derivative with respect to the metric connection and 
£'µ, = gµ,pgP. Note that the second of conditions (6.2) is the Killing equation; as a 
consequence, the space-time must be symmetric. The number of independent 
Killing vectors, which is bounded by six - this bound is reached in the case of 
maximally symmetric spaces - is further reduced to a maximum of three by the 
first condition (6.2). This maximum number of three rigid supersymmetries is 
realized e.g., in ~ 3 , T 3• 

The two conditions (6.2) together mean that the vector field t is covariantly 
constant, 

(6.3) 

This represents a natural generalization of the situation in ~ 3 space-time: on 
manifolds where the condition (6.3) is solvable, its solutions (covariantly constant 
vector fields £') generate rigid supersymmetries. On such manifolds one has -
assuming that .! satisfies the Slavnov identity - the following rigid linear algebra: 

!7£ = 0, [ 'P(~)' 'P(h] = 0, ( 6.4) 
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This is the generalization of (2.11) we were looking for. We complete it by giving 
the commutation relations with translations: 

(6.5) 

Here 9"«l is the Ward operator for translations, i.e., the Ward operator of eq. (4.1) 
restricted to diffeomorphisms generated by covariantly constant vector fields E. 

Note that the last equality follows from the vanishing of the Lie bracket of two 
covariantly constant vector fields. 

7. Quantization and finiteness 

Let us imagine a theory - defined by some set of constraints - that is stable 
under classical deformations, i.e. the number of parameters of the classical action 
is fixed. Showing further that these classical constraints also hold at the quantum 
level means that the theory is renormalizable: the parameters of the classical 
action may receive finite corrections from counterterms at all orders of perturba­
tion theory, but the number of such parameters if fixed. 

In the case we consider of the Chern-Simons theory on a three-dimensional 
manifold L, the classical result is stronger: we showed in sect. 5 that the 
parameters of the classical theory are completely fixed by the classical constraints: 
no deformations are allowed. Showing that these constraints hold at all order then 
means that the quantum theory is not only renormalizable but completely finite: no 
counterterms are allowed and the parameters of the theory are the ones defined at 
the classical level. 

Our proof of finiteness makes use of a cohomological argument that is valid for 
an arbitrary manifold L. Nevertheless, one should keep in mind that the quantum 
theory has to be consistently defined and this shall restrict the class of three-mani­
folds on which our results rigorously holds. Indeed, the problem consists in 
defining a consistent renormalization scheme and this can be done, in the present 
state of the art, only on manifolds which are topologically equivalent to a flat 
manifold and which admit an asymptotically flat metric. The present treatment of 
the quantized theory hence applies only to the Chern-Simons theory defined on 
such manifolds. However, we stress that all the classical results derived above 
(sects. 2-6) are not affected by this restriction and hold for the general case of an 
arbitrary space-time three-manifold. 

Let us now show that the classical constraints which ensured the stability of the 
classical action can be renormalized. These constraints are listed at the beginning 
of sect. 5. Our goal is to prove that they hold as well with the classical action 2: 
replaced by the quantum generating functional of vertex functions I'= 2: + O(h). 
The following comments are in order. 
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(i) The gauge condition and the ghost equation of motion can easily be shown to 
hold at all orders, by using standard arguments [26]. 

(ii) The renormalizability of the antighost equation has been proved for the case 
of !R 3 space-time in ref. [12]. Generalizing the proof to make it hold in the 
context of the present approach is straightforward. 

(iii) Renormalizing the extended Slavnov identity, the Ward identity of diffeomor­
phisms and the Ward identity of superdiffeomorphisms amounts to show that 
these are not plagued with anomalies. 

(iv) The validity to all orders of the Ward identity of diffeomorphisms will be 
assumed in the following. Indeed, the absence of diffeomorphisms anomalies 
has been proved in ref. [27] for the class of manifolds we consider here. 
Therefore we shall be working in the space of diffeomorphism-invariant 
functionals. 

The proof of absence of anomalies for the extended BRS symmetry and for the 
superdiffeomorphisms is conveniently carried out by using the coboundary opera­
tor 8 = .5".r + '.W(~ + '.W(~) defined in (5.13). 

In the cohomological approach, proving the absence of anomalies to all orders 
amounts to show that the cohomology is trivial in the space of classical integrated 
local field functionals of ghost number one and dimension zero. In other words, 
the general solution of the consistency condition 

8L1=0 (7.1) 

for the anomaly L1 must be the 8-variation of some integrated local field func­
tional. This is the cohomology defined by eqs. (5.12) to (5.15), but with L1 carrying 
ghost number one. 

The space of functionals in which we shall solve the cohomology is restricted by 
the gauge condition, the ghost equation and the antighost equation, i.e., the 
anomaly L1 has to obey the same conditions (5.5), (5.6) and (5.10) as the classical 
deformation discussed in sect. 5. Moreover, as previously stated, we need consider 
only diffeomorphism-invariant functionals. 

By using the same arguments as in sect. 5, we reduce the cohomology problem 
(7.1) to the simpler one of solving the local cohomology of the degree-preserving 
operator 80 defined by (5.16). Writing L1 = L/t f], we get the following descent 
equations: 

(7.2) 
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These now descend up to a ghost number four zero-form local field polynomial fd· 
The most general possible form for it is 

! 4 _ t a b c d 
0 - [abcdf C C C ' (7.3) 

which vanishes since there exists no totally antisymmetric invariant tensor of rank 4 
in the adjoint representation. Hence, the sector with maximal ghost number being 
empty, one finds, after going upwards through the descent equations, the following 
local solution in the anomaly sector: 

(7.4) 

where tz are local field polynomials of ghost number q and form degree p. This 
shows the triviality of the /5 0 cohomology, hence that of the /5-cohomology (which is 
included in the former [23,24]). 

The triviality of the /5-cohomology concludes our proof of the absence of 
anomalies. This, in turn, implies UV finiteness at all orders of perturbation theory, 
according to the discussion above. 

8. Conclusions 

A local realization is obtained for the supersymmetry of the Chern-Simons 
theory defined on an arbitrary three-dimensional manifold. In order to achieve 
this, we add to the "matter supermultiplets" {c, AJ.L, {),IL, T} and {B, c} - out of 
which the gauge fixed classical action is constructed - the "metric supermultiplet" 
of external fields {gJ.Lv' gµ,v' MJ.L, L). The latter supermultiplet is constructed out 
of two requirements. The first is the ability to control the metric (in)dependence; it 
is made possible by introducing g µ,v together with the corresponding new terms in 
the classical action. The second is the requirement of invariance of the action 
under the local supersymmetry. The latter breaks down at the classical level on a 
general space-time manifold. This local invariance can be restored by coupling the 
breaking to a set of external fields M, L. The total classical action exhibiting local 
supersymmetry is then the one constructed out of both the matter and the metric 
supermultiplets. 

The set of constraints the theory is submitted to (Ward identities, equations of 
motion, etc) completely fixes the total classical action, forbidding any deformations 
of it. 

The classical constraints can be renormalized to all orders of perturbation 
theory; in particular, the local supersymmetry is free of anomalies. This, together 
with the stability of the classical theory, ensures all order UV finiteness of the 
Chern-Simons theory, wherever a renormalized perturbation series can be de­
fined. 
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