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a b s t r a c t 

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to 

gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants 

as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of 

participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, 

do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. 

As neurofeedback success varies between studies and participants, it is important to identify factors that might 

influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to 

investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest- 

specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and 

improvement in 608 participants from 28 independent experiments. 

With a classification accuracy of 60% (considerably different from chance level), we identified two factors that 

significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run be- 

fore neurofeedback training and neurofeedback training of patients as compared to healthy participants were 

associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neu- 

rofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the 

mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy 

participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional 

brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of 

our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing 

more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To 

facilitate the development of data-driven recommendations for specific design details and subpopulations the 

field would benefit from stronger engagement in open science research practices and data sharing. 

1. Introduction 

Real-time functional magnetic resonance (fMRI) neurofeedback is a 

non-invasive technique that enables healthy individuals and patients 

to voluntarily regulate neural signals. In the last decades, this method 

has gained growing popularity in the neuroimaging community and, to 

date, a wide range of real-time fMRI neurofeedback studies have collec- 

tively demonstrated the feasibility of volitional regulation through real- 

time fMRI neurofeedback (see Thibault et al. (2018) ). Further, many 

of these studies have also shown behavioral changes in healthy indi- 

viduals, as well as clinical improvements in patient populations after 

neurofeedback training. In healthy participants, real-time fMRI neuro- 

feedback training has been specifically linked to improvements in atten- 

tion (e.g. DeBettencourt et al., 2015 ; Pamplona et al., 2020 ), emotion 

regulation ( Koush et al., 2015 ; Paret and Hendler, 2020 ; Zich et al., 

2020 ), memory (e.g. Scharnowski et al., 2015 ; Sherwood et al., 2016 ; 

Zhang et al., 2013 ), motivation (e.g. Zhi et al., 2018 ), motor perfor- 

mance (e.g. Bray et al., 2007 ; Scharnowski et al., 2015 ; Sitaram et al., 

2012 ; Zhao et al., 2013 ), speech performance ( Rota et al., 2009 ), and 

visual perception (e.g. Scharnowski et al., 2012 ; Shibata et al., 2011 ). 

In clinical populations, real-time fMRI neurofeedback training has been 

shown to both improve clinical measures and normalize pathological 

neural characteristics in patients suffering from a wide range of disor- 

ders, such as alcohol and nicotine addiction ( Canterberry et al., 2013 ; 

Hanlon et al., 2013 ; Hartwell et al., 2016 ; Karch et al., 2015 ; Kim et al., 

2015 ; X. Li et al., 2013 ), anxiety ( Morgenroth et al., 2020 ), border- 

line personality disorder ( Paret et al., 2016 ), depression ( Linden et al., 

2012 ; Mehler et al., 2018 ; Quevedo et al., 2020 ; Young et al., 

2017 , 2014 ), obsessive compulsive disorder ( Buyukturkoglu et al., 

2015 ), phobia ( Zilverstand et al., 2015 ), post-traumatic stress dis- 

order ( Gerin et al., 2016 ; Nicholson et al., 2017 ), schizophrenia 

( Bauer et al., 2020 ), Tourette syndrome ( Sukhodolsky et al., 2020 ), 

chronic pain ( deCharms et al., 2005 ; Guan et al., 2014 ), Hunting- 

ton’s disease ( Papoutsi et al., 2018 ), obesity ( Frank et al., 2012 ; 

Kohl et al., 2019 ), Parkinson’s disease ( Buyukturkoglu et al., 2013 ; 

Subramanian et al., 2011 ), stroke rehabilitation ( Mehler et al., 2020 ), 

tinnitus ( Emmert et al., 2017 ; Haller et al., 2010 ), and visuo-spatial ne- 

glect (Fabien Robineau et al., 2019 ). 

Critically however, not all participants undergoing real-time fMRI 

neurofeedback training optimally benefit from the aforementioned im- 

provements on behavioral and clinical measures, due to variations in 

their success on acquiring neural control. Previous real-time fMRI neuro- 

feedback studies have reported relatively high rates of non-responders, 

i.e., participants who fail to regulate their brain signals in the desired 

direction ( Bray et al., 2007 ; Chiew et al., 2012 ; deCharms et al., 2005 ; 

Johnson et al., 2012 ; Ramot et al., 2016 ; F. Robineau et al., 2014 ; 

Scharnowski et al., 2012 ; Yoo et al., 2008 ). Averaging across these stud- 

ies, the non-responder rate of real-time fMRI neurofeedback studies is es- 

timated to lie around 38% ( Haugg et al., 2020 ). Here, it should be noted 

that, to date, no standard thresholds for identifying non-responders are 

available and definitions of non-responders often vary between stud- 

ies. Generally, even real-time fMRI neurofeedback participants who 

were eventually able to gain control over their own brain signals still 

showed large variability in their neurofeedback regulation performance 

( Haugg et al., 2020 ). Similar estimations and observations have also 

been reported in the electroencephalogram (EEG) neurofeedback liter- 

ature, where the so-called “neurofeedback inefficacy problem ” refers to 

the variability in neurofeedback success and comprises a well-known 

issue ( Alkoby et al., 2017 ). Therefore, the fields of both EEG- and fMRI- 

based neurofeedback would greatly benefit from methodologically ad- 

vanced investigations that can reveal the factors responsible for the un- 

explained variability of neurofeedback success. 
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Interestingly, previous studies have demonstrated that the propor- 

tion of responders varies between different neurofeedback studies. Of 

importance, this suggests that some neurofeedback study-specific pa- 

rameters might be more beneficial for neurofeedback success than oth- 

ers. Previously, few empirical studies have investigated the influence 

of neurofeedback design parameters on neurofeedback success. Specif- 

ically, two independent studies found that using an intermittent feed- 

back display was superior over using a continuous feedback display 

( Hellrung et al., 2018 ; Johnson et al., 2012 ), while conversely, a third 

study reported this effect only for a single session of neurofeedback, 

but not for multiple neurofeedback sessions ( Emmert et al., 2017 ). 

In another study, Papoutsi and colleagues investigated the influence 

of activity- versus connectivity-based neurofeedback on neurofeedback 

success, but did not find a significant difference between activity- and 

connectivity-based neurofeedback ( Papoutsi et al., 2020 ). Interestingly, 

Kim et al. reported increased neurofeedback efficacy when combin- 

ing connectivity-based information with activity-based neurofeedback 

( Kim et al., 2015 ). Focusing on subject-specific psychological factors 

in a systematic review, Cohen Kadosh and colleagues observed that 

attention and motivation might be important factors for determining 

neurofeedback success ( Cohen and Staunton, 2019 ). However, an em- 

pirical validation of these suggestions is still needed. Other empirical 

studies observed a relationship between subject-specific questionnaires 

and neurofeedback success, yet these questionnaires were highly spe- 

cific for the trained target region and participant population, and there- 

fore do not generalize to other neurofeedback studies ( Emmert et al., 

2017 ; Koush et al., 2015 ). 

Taken together, these empirical studies contribute invaluable infor- 

mation regarding the optimal design of neurofeedback studies. How- 

ever, many critical factors that might influence neurofeedback success 

have not been investigated yet. For instance, it is not known whether 

a large number of neurofeedback training runs is beneficial for neuro- 

feedback success, an essential question in the field of fMRI-based neuro- 

feedback due to the high cost of scanning hours. This also includes the 

question of whether neurofeedback training should be performed across 

several training days to facilitate neurofeedback learning through sleep 

consolidation. Other important factors are the inclusion of reinforcers 

such as monetary rewards ( Sepulveda et al., 2016 ) and social rewards 

( Mathiak et al., 2010 ), or the highly debated question of whether partic- 

ipants should receive precise or more open instructions regarding regu- 

lation strategies ( Sitaram et al., 2016 ). Ultimately, the number of pos- 

sible factors that might influence neurofeedback performance and the 

number of conceivable interactions between these factors are immense 

and it would not be feasible to untangle them and optimize design em- 

pirically. Further, statistical power and generalizability across different 

study designs are limited in original empirical studies. 

On balance, ‘big data’ approaches encompassing a wide range of neu- 

rofeedback participants and studies constitute an unprecedented oppor- 

tunity that can be used to investigate a large number of factors that 

might influence neurofeedback success. In addition, big data methods 

allow correcting for possible interactions and usually result in relatively 

generalizable findings. To date, however, big data investigations en- 

compassing a large number of participants are still rare in the field of 

real-time fMRI neurofeedback. Several reviews have descriptively sum- 

marized the field ( Heunis et al., 2020; Thibault et al., 2018 ) or studies 

focusing on a specific application ( Dudek and Dodell-Feder, 2021; Tram- 

baiolli et al., 2021; Tursic et al., 2020; Wang et al., 2018 ). Other big data 

investigations investigated the influence of pre-training brain activation 

levels on neurofeedback success ( Haugg et al., 2020 ) and the relation- 

ship between brain structures and neurofeedback success ( Zhao et al., 

2021 ). 

Here, for the first time, we employ exploratory machine learning 

methods to compute the influence of a wide range of different subject- 

and study-specific factors on real-time fMRI neurofeedback success. In 

particular, we investigated the influence of 20 different factors on neuro- 

feedback success in 608 participants undergoing neurofeedback training 

across 28 independent studies. The investigated factors included three 

subject-specific factors, six region of interest (ROI)-based factors, and 

eleven paradigm-specific factors. 

Identifying factors that influence neurofeedback success can help 

to design more effective neurofeedback studies in the future. This can 

improve neurofeedback studies investigating healthy participants and, 

more importantly, it can, further, improve clinical neurofeedback inter- 

ventions. Future designs with increased effectiveness will allow partic- 

ipants to train their target brain regions more efficiently, thus reduc- 

ing cognitive exhaustion and overall costs. Critically, increasing the ef- 

fectiveness of neurofeedback designs is an important step towards the 

alleviation of clinical symptoms, by enabling the development of ad- 

vanced, personalized treatments for psychiatric and neurological disor- 

ders. Taken together, our research aim is to utilize big data approaches 

in an effort to guide future empirical investigations that utilize real-time 

fMRI neurofeedback. 

2. Material and methods 

2.1. Included studies 

Data for this mega-analysis could not be gathered from publica- 

tions alone as single subject data were needed. Therefore, we contacted 

corresponding authors from real-time fMRI neurofeedback studies via 

i) the mailing list of the real-time functional neuroimaging commu- 

nity ( https://utlists.utexas.edu/sympa/subscribe/rtfin ), ii) neuroimag- 

ing conferences, and iii) direct email communication, in order to ask 

for data contributions. To ensure generalizability and to generate a 

dataset sufficiently large for machine learning analyses, we included 

fMRI-based neurofeedback studies of any training type (activity- as well 

as connectivity-based neurofeedback), any target brain region(s), and 

any participant populations. We received data contributions from au- 

thors of 28 independent studies ( Auer et al., 2015 ; Emmert et al., 2017 ; 

Hellrung et al., 2018 ; Kim et al., 2015 ; Kirschner et al., 2018 ; Kohl et al., 

2019 ; MacInnes et al., 2016 ; Marins et al., 2015 ; Marxen et al., 2016 ; 

McDonald et al., 2017 ; Megumi et al., 2015 ; Nicholson et al., 2017 ; 

Pamplona et al., 2020 ; Papoutsi et al., 2020 , 2018 ; Scharnowski et al., 

2012 , 2015 ; Sorger et al., 2018 ; Spetter et al., 2017 ; Yao et al., 2016 ; 

Young et al., 2017 ; Zich et al., 2020 ), covering a wide range of trained 

brain regions, different study designs, and participant populations. 

Table 1 provides an overview of all studies that contributed data to this 

mega-analysis. In total, we collected data from 608 participants, includ- 

ing 229 patients and 379 healthy participants. All studies included were 

approved by the respective local ethics committees. 

2.2. Data availability 

Due to ethical restrictions, the majority of the included data cannot 

be made publicly available, but will be shared upon request. Data from 

the study by McDonald et al. is publicly available as part of the Nathan 

Kline Institute-Rockland Sample 

( http://fcon_1000.projects.nitrc.org/indi/enhanced/ ). Data from 

the study by Kohl et al. has been made publicly available on the Open 

Science Framework ( https://osf.io/3agvn/ ). 

2.3. Neurofeedback success measures 

To assess neurofeedback success, we asked authors to provide the av- 

erage feedback value for each neurofeedback training run. Feedback val- 

ues were defined as the measures that determined the feedback given to 

the participants during neurofeedback training. Consequently, the type 

of feedback values varied between different neurofeedback studies (e.g. 

percent signal change values, beta values, Bayes factors, correlations 

values etc.). Based on these feedback values, we then defined two gen- 

eral measures for neurofeedback success that would allow for compar- 
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Table 1 

Overview of studies included in the mega-analysis . We received data from 28 independent neurofeedback studies, including 608 participants (229 patients 

and 379 healthy participants). 24 studies used activity-based neurofeedback, 6 studies used connectivity-based neurofeedback. Abbreviations: ACC – Anterior 

Cingulate Cortex, dlPFC – dorsolateral Prefrontal Cortex, mPFC – medial Prefrontal Cortex, M1 – Primary Motor Cortex, OFC – Orbitofrontal Cortex, PCC –

Posterior Cingulate Cortex, PMC – Pre-Motor Cortex, PHC – Parahippocampal Cortex, SMA – Supplementary Motor Cortex, SMC – Somatomotor Cortex, SPL 

– Superior Parietal Lobe, VTA – Ventral Tegmental Area. 

Author (year) ROI(s) participants neurofeedback type 

Auer et al. (2015) SMC healthy ( N = 16) activity 

Emmert et al. (2017) auditory cortex tinnitus ( N = 11) activity 

Hellrung et al. (2018) amygdala healthy ( N = 34) activity 

Hellrung et al. (in prep) amygdala healthy ( N = 16) activity 

Hellrung et al. (in prep) insula healthy ( N = 11) activity 

Keynan et al. (in prep) amygdala healthy ( N = 33) activity 

Kim et al. (2015) ACC, mPFC, OFC, PCC, precuneus tobacco use disorder ( N = 14) connectivity, activity 

Kirschner et al. (2018) VTA healthy ( N = 27), cocaine use disorder ( N = 24) activity 

Kirschner et al. (in prep) VTA schizophrenia ( N = 14) activity 

Kohl et al. (2019) dlPFC overweight ( N = 16) activity 

Kohl (pilot data) dlPFC overweight ( N = 9) activity 

Liew et al. (in prep) left PMC, left SMA healthy ( N = 10) connectivity 

MacInnes et al. (2016) VTA healthy ( N = 19) activity 

Marins et al. (2015) left PMC healthy ( N = 14) activity 

Marxen et al. (2016) amygdala healthy ( N = 32) activity 

McDonald et al. (2017) default mode network healthy ( N = 68), psychiatric disorders ( N = 72) activity 

Megumi et al. (2015) left lateral parietal, left M1 healthy ( N = 12) connectivity 

Nicholson et al. (2017) amygdala PTSD ( N = 14) activity 

Pamplona et al. (2020) default mode network, sustained attention network healthy ( N = 15) activity 

Papoutsi et al. (2018) SMA Huntington’s disease ( N = 10) activity 

Papoutsi et al. (2020) SMA, left striatum Huntington’s disease ( N = 16) connectivity, activity 

Scharnowski et al. (2015) SMA, PHC healthy ( N = 7) activity 

Scharnowski et al. (2012) visual cortex healthy ( N = 10) activity 

( Sorger et al., 2018 ) individually different healthy ( N = 10) activity 

Spetter et al. (2017) dlPFC, vmPFC obesity ( N = 8) connectivity 

Yao et al. (2016) anterior insula healthy ( N = 18) activity 

Young et al. (2017) amygdala depression ( N = 18) activity 

Zich et al. (2020) amygdala, dlPFC adolescents ( N = 27) connectivity 

isons between participants of different studies and, more importantly, 

for pooling all participants together: 

• Neurofeedback performance : General neurofeedback performance for 

each participant was calculated based on the ratio of successful neu- 

rofeedback training runs as compared to unsuccessful neurofeedback 

training runs. Successful neurofeedback training runs were defined 

as runs showing feedback values with positive signs for up-regulation 

and negative signs for down-regulation. For the classification anal- 

yses, participants who showed more than 50% of successful neu- 

rofeedback training runs were labelled as successful, the others as 

unsuccessful. 
• Neurofeedback improvement : Neurofeedback improvement of each 

participant was calculated based on the slope of the neurofeedback 

learning curve, i.e. the slope of the regression line over the feedback 

values of all neurofeedback training runs. For classification analy- 

ses, successful participants were then defined as participants with 

a slope greater than 0, non-successful participants showed a slope 

smaller or equal 0. 

2.4. Investigated factors influencing neurofeedback performance and 

neurofeedback improvement 

We investigated the influence of 20 different factors on neurofeed- 

back success. All factors needed to be applicable to every study (i.e. we 

did not include measures which were only assessed in part of the in- 

cluded studies) and needed to demonstrate different values in at least 

10% of the data. As a consequence, ROIs were clustered together in cat- 

egories to ensure enough data diversity for each ROI-related factor. The 

continuous and categorical factors included: 

• Three subject-specific factors: (1) age of the participant in years, (2) 

sex of the participant, (3) health status of the participant (healthy 

participant or patient); 

• Six region of interest (ROI)-based factors: (1) ROI(s) is/are cortical or 

subcortical, (2) ROI(s) is/are a sensory brain region, (3) ROI(s) is/are 

part of the default mode network (DMN), (4) ROI(s) is/are part of 

the salience network, (5) ROI(s) is/are part of the motor network, 

(6) ROI(s) consist(s) of one brain region or more brain regions; 
• Eleven experimental design-specific factors: (1) use of connectivity- 

vs activity-based measure for feedback computation, (2) use of con- 

tinuous vs intermittent feedback presentation, (3) use vs no use of 

functional localizer for defining the trained ROI(s), (4) up- vs down- 

regulation, (5) use of precise strategy suggestions vs no or open strat- 

egy suggestions, (6) use of external (monetary) reward vs no exter- 

nal reward given, (7) use of pre-training no-feedback run (functional 

runs prior to NFB training, where participants are already asked to 

modulate their brain signals, however, no feedback over regulation 

performance is provided) vs no pre-training no-feedback run, (8) 

length of a single neurofeedback training run in seconds, (9) length 

of a single neurofeedback regulation block in seconds), (10) num- 

ber of performed neurofeedback training runs, (11) neurofeedback 

training on one day vs across several days 

2.5. Multivariable predictions of neurofeedback performance and 

neurofeedback improvement 

Individual machine learning analyses were performed in Python 

(v3.8.3) to identify factors that predict participant-specific neuro- 

feedback performance as well as neurofeedback improvement, using 

multivariable classification models. For the machine learning mod- 

els, an Extra Trees (ExtraTreesClassifier, scikit-learn library v0.23.1; 

Pedregosa et al., 2011 ) approach was used, which is a computation- 

ally efficient non-linear classification method. Extra Trees implements 

an ensemble of Extremely randomized trees ( Geurts et al., 2006 ). Ensem- 

ble methods improve the performance of base predictors, e.g. decision 

trees, by accumulating the predictions of the base predictors via, e.g., 
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Table 2 

Extra Trees prediction accuracy for the neurofeedback performance and the neurofeedback improvement target. 

Average of weighted accuracy ± 
standard deviation 

Average of weighted 

accuracy at chance level 

p value of smaller or equal 

chance level 

1. Predicting neurofeedback performance 60.3% ± 12.3 51.0% p < 0.001 

2. Predicting neurofeedback improvement 48.1% ± 9.0 48.4% p = 0.614 

majority voting. To obtain diverse predictions from the same base pre- 

dictors processes that introduce randomness are applied when building 

the base predictors. 

The model performance – the prediction accuracy – was esti- 

mated using a nested cross-validation (CV) procedure ( Cawley and Tal- 

bot, 2010 ). In the main CV loop, a shuffle-split data partitioning with 

10% of the studies in the testing-set and 90% of the studies in the 

training-set was repeated 100 times, resulting in 100 Extra Trees mod- 

els (300 trees per model). Splitting data along studies allows for assess- 

ing robust model performance that generalizes between studies. Feature 

scaling (z-scoring) and hyper-parameter tuning was carried out within 

the main CV loop, using the training-set data of the current CV loop 

only. Hyper-parameter tuning was implemented in an inner (nested) CV 

procedure, so a separate CV was carried out for each repetition of the 

outer CV loop. The inner CV loops used, again, a shuffle-split partition- 

ing scheme with 10% of the studies in the inner testing set and 50 repeti- 

tions. To control model complexity, we restricted the maximum number 

of possible interactions of a decision tree in the Extra Trees ensembles by 

controlling the number of maximum leaf nodes per tree. The candidate 

maximum number of leave nodes was randomly drawn between 2 and 

32 (50 random draws, RandomizedSearchCV, scikit-learn, v0.23.1). The 

maximum number of leave nodes that led to the lowest squared error 

was subsequently used in the outer CV loop. 

After hyper-parameter tuning, an Extra Trees model was trained in 

the main (outer) CV loop using the obtained hyper-parameter and 300 

trees with no maximum features. Further, minimum samples split was 

set to 2, minimum samples leaf to 1, and minimum weight fraction leaf 

to 0.0. No maximum depth and no maximum samples were chosen, min- 

imum impurity decrease was 0.0, ccp alpha was 0.0, and the class weight 

was computed from training data. 

The obtained model was then tested on the respective hold-out set 

of the main CV loop. The hold-out set (10% of the studies) was explic- 

itly not used in the inner CV loop. In each repetition of the main CV 

loop, model prediction accuracy was computed. To counter unbalanced 

classes (more samples in one class than in the other) weighted accuracy 

was used ( Hastie et al., 2001 ). For that purpose an additional model was 

trained and tested on a shuffled version of the data in each CV loop. 

After obtaining the results of the 100 repetitions of the outer CV 

loop, we assessed whether the models performed statistically signifi- 

cantly better than chance level by applying a bootstrap test (100,000 

bootstrap samples; Efron, 1979 ). For this test, the null-hypothesis was 

that the difference between accuracy and chance level is on average 

smaller or equal to zero ( Table 2 ). 

Further, we analyzed the importance of each factor for the overall 

model performance. In specific, the factor importance was estimated 

by summing up contributions per factor, over the decision tree splits. 

The total importance of a feature was then computed as the normal- 

ized importance of that feature averaged over the trees in the ensem- 

ble ( Hastie et al., 2001 ). Correlation of features leads to a split of this 

importance measure among these features (see Figure S1 in Supple- 

mentary Material for correlation map). To determine whether a fea- 

ture’s contribution was statistically significant, we tested that feature’s 

importance against the feature importance obtained by a model that 

was trained with the same parameters, but shuffled data. The null- 

hypothesis tested per feature was that the median difference in fea- 

ture importance is smaller or equal to zero. The null-hypothesis was 

tested with a bootstrap test (100,000 bootstrap samples per feature; 

Efron, 1979 ). Obtained p-values were Bonferroni-corrected for multiple 

comparisons. 

The entire analysis (computing the models and the contributions of 

factors) was carried out two times. First, to predict neurofeedback per- 

formance and a second time to predict neurofeedback improvement. 

3. Results 

3.1. Neurofeedback success 

When investigating neurofeedback performance, we observed that 

69.41% of all participants were labelled as successful, meaning that for 

them, more than 50% of all neurofeedback training runs were successful. 

Only 9.70% of participants were characterized by 25% or less successful 

runs. On average, participants presented 72.36% successful neurofeed- 

back runs. For neurofeedback improvement over runs, we observed an 

average slope of 0.09 across all participants. Here, 59.70% of the par- 

ticipants showed a positive slope and, therefore, were able to improve 

their neurofeedback performance over time (see Fig. 1 ). 

3.2. Prediction accuracy of neurofeedback performance and neurofeedback 

improvement 

The Extra Trees machine learning model was able to predict neu- 

rofeedback performance from the investigated factors with an average 

accuracy of 60.3%, which is significantly better than the average accu- 

racy at chance level with 51% ( p < 0.001). However, no prediction better 

than chance was revealed for neurofeedback improvement ( Table 2 ). 

As only the neurofeedback performance measure could be predicted 

with a better than chance accuracy, only the influence of factors on 

neurofeedback performance, but not neurofeedback improvement, are 

valid to be interpreted. Consequently, normalized model-based feature 

importance was only calculated for the neurofeedback performance tar- 

get, but not for the neurofeedback improvement target (see Fig. 2 ). Two 

factors contributed significantly to the prediction result: whether a study 

included a pre-training no-feedback run (median relative importance 

59.3%; Fig. 2 ) and whether a participant was a patient or a healthy par- 

ticipant (median relative importance 31.1%; Fig. 2 ). More specifically, 

including a pre-training no-feedback run, as well as performing a study 

with patients increases the chance for a successful neurofeedback run. 

Patients did not show a higher ratio of pre-training no-feedback runs 

(17.47%) than healthy individuals (23.22%). 

4. Discussion 

In this exploratory study, we investigated the influence of 20 dif- 

ferent factors on neurofeedback performance and improvement, in- 

cluding three subject-specific factors, six ROI-based factors, and eleven 

paradigm-specific factors. When targeting neurofeedback performance, 

our classification model achieved an accuracy of 60.3%, which was sig- 

nificantly better than chance level. In contrast, classification for the neu- 

rofeedback improvement target did not reach an accuracy level above 

chance level. This difference in classification accuracy between neuro- 

feedback performance and improvement is driven by the different types 

of success which are captured by the two success measures: Neurofeed- 

back performance describes if an individual is able to regulate their 

brain signals to a level above (or below if downregulation is performed) 

baseline. In contrast, neurofeedback improvement describes whether an 
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Fig. 1. Distribution of neurofeedback success. Left: More than half (51.48%) of all participants undergoing neurofeedback training performed 75% or more of 

successful runs. Only 9.70% of the participants performed 25% successful runs or fewer. Right: 59.70% of all participants undergoing neurofeedback training show 

positive slopes of their learning curves, indicating an improvement over time. 

Fig. 2. Distribution of feature importance for predicting neurofeedback performance. A 20 different features were investigated with respect to their importance 

for the prediction result. Significance was determined using a bootstrapping approach comparing each feature’s importance for the model against the feature’s 

importance for the same model with shuffled data. Significant normalized model-based feature importance was observed for the feature pre-training no-feedback 

run and for the feature patient versus healthy participant. B Participants who performed a pre-training no-feedback run were more successful during neurofeedback 

than participants without a pre-training no-feedback run. C Patients were more successful than healthy participants. 
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individual is able to increase (or decrease in downregulation is per- 

formed) their neurofeedback signal over time. Consequently, some in- 

dividuals might show high levels of performance, but low levels of im- 

provement, or vice versa. 

Overall, we observed considerably high neurofeedback success rates 

across all 28 studies, with around 60% of all participants showing posi- 

tive slopes and around 70% of all participants showing more than 50% 

successful neurofeedback runs. Our results revealed two factors that 

showed high model importance for the neurofeedback performance clas- 

sification, suggesting that they may significantly influence neurofeed- 

back performance. 

4.1. Factors that influence neurofeedback performance 

The first significant factor influencing neurofeedback performance 

is the presence or absence of a pre-training no-feedback run. Here, sig- 

nificantly higher ratios of successful neurofeedback runs were found 

for studies that included a pre-training no-feedback run in their study 

design. Pre-training no-feedback runs are functional runs prior to neu- 

rofeedback training, where participants are already asked to modulate 

their brain signals, however, no feedback regarding regulation perfor- 

mance is provided (e.g. see Kim et al., 2015 ; Kirschner et al., 2018 ; 

MacInnes et al., 2016 ; Young et al., 2017 ). These no-feedback runs 

can serve several purposes, for instance, helping participants familiar- 

ize themselves with the neurofeedback paradigm and scanning envi- 

ronment where the following runs will take place. Importantly, they 

serve as a baseline run for comparisons with subsequent neurofeedback 

training runs and transfer no-feedback runs after neurofeedback training 

( Auer et al., 2015 ; MacInnes et al., 2016 ). One reason for our finding 

that pre-training no-feedback runs can benefit neurofeedback perfor- 

mance might be that prior familiarization with the neurofeedback setup 

and an additional run to practice one’s brain regulation strategies will 

make it easier for the participants to perform well. 

The second factor that demonstrated significant model importance 

for neurofeedback performance classification was whether a healthy 

participant or a clinical patient was undergoing neurofeedback train- 

ing. Specifically, we found that patients showed higher ratios of suc- 

cessful neurofeedback runs than healthy participants. Similar results 

have already been reported in an empirical neurofeedback study where 

the authors observed significantly higher default mode network (DMN) 

upregulation performance in a heterogeneous group of patients, com- 

pared to healthy controls ( Skouras and Scharnowski, 2019 ). The au- 

thors argued that this finding might be linked to higher observed scores 

in DMN eigenvector centrality in the patient group than in the control 

group, i.e. in the patient group the DMN was more strongly connected 

to the rest of the brain. This is in line with a recent suggestion by Bas- 

sett and Khambhati who argue that areas which are strongly function- 

ally connected within the brain (such as it is the case for the DMN) 

might be easier to be trained with neurofeedback ( Bassett and Khamb- 

hati, 2017 ). Further, it is also possible that patients show better per- 

formance in neurofeedback regulation due to more dysfunctional brain 

patterns as compared to healthy subjects, leaving more room for regula- 

tion and making ceiling effects less likely. Here, it should be noted that 

neurofeedback performance might still differ significantly between dif- 

ferent patient populations, due to differences in cognitive deficits which 

might attenuate attention in general and neurofeedback regulation per- 

formance in specific ( Heeren et al., 2014 ; Li et al., 2010 ; Lussier and 

Stip, 2001 ). Further, the observed differences in neurofeedback perfor- 

mance between patients and healthy participants might also be driven 

by differences in the experimental design. Neurofeedback paradigms 

in clinical populations have oftentimes been piloted more thoroughly, 

and sometimes even follow a series of several neurofeedback studies 

in healthy populations which serve as pilots or templates for imple- 

menting the optimized final neurofeedback patient studies. For instance, 

Kirschner et al., (2018) trained participants with cocaine use disorder to 

regulate their dopaminergic midbrain using a paradigm that had been 

previously successfully applied to healthy participants ( Sulzer et al., 

2013 ). Consequently, high risk studies that are more likely to show a 

high percentage of unsuccessful neurofeedback runs, e.g. studies using 

a novel analysis method or an ultra-high-field MRI scanner, might be 

less often performed with patient populations. Finally, also a difference 

in the participants’ motivation might influence the better performance 

of patients as compared to healthy participants. Many patients undergo 

neurofeedback training in the hope to improve their clinical symptoms 

while healthy participants mainly participate out of generic interest or 

in order to receive a monetary compensation. Therefore, it is likely that 

patients put more effort into the neurofeedback regulation task than 

healthy participants. 

Taken together, our results indicate that it would be beneficial to in- 

clude a pre-training no-feedback run in order to improve neurofeedback 

performance. Furthermore, our results demonstrate better neurofeed- 

back performance of patients as compared to healthy participants. While 

the participant sample is primarily defined by the biological/clinical 

question under investigation and, thus, does not constitute an open 

parameter regarding design optimization, this finding nevertheless has 

strong implications for the design of future neurofeedback studies. Fur- 

ther, our findings emphasize the clinical potential of neurofeedback in- 

terventions: Even in cases where only small or moderate effects have 

been observed in neurofeedback studies on healthy participants, effects 

in patients might be nonetheless considerably stronger and clinically 

relevant, based on the same neurofeedback paradigm. 

4.2. Features that do not predict neurofeedback performance 

Most of the features included in the machine learning analysis did 

not play an important role with regards to the classification of partic- 

ipants, neither for neurofeedback performance nor neurofeedback im- 

provement analyses. One reason for this might be that the majority of 

our included features were based on parameters specific for each study’s 

design, such as information on the paradigm or chosen ROI(s), rather 

than subject-specific features. These design-specific features were de- 

liberately chosen for our analysis to identify parameters that could be 

easily modified when designing future neurofeedback studies. However, 

neurofeedback success also varied considerably within single neurofeed- 

back studies ( Bray et al., 2007 ; Chiew et al., 2012 ; deCharms et al., 

2005 ; Haugg et al., 2020 ; Johnson et al., 2012 ; Ramot et al., 2016 ; F. 

Robineau et al., 2014 ; Scharnowski et al., 2012 ; Yoo et al., 2008 ), de- 

spite all design-specific parameters being identical for the participants 

of a study. This indicates that subject-specific factors such as biological 

measures (e.g. heart rate, pulse, stress level), personality traits and cog- 

nitive measures, intelligence, the ability to perform mental imagery, or 

the subject’s attention and motivation (see ( Cohen and Staunton, 2019 ) 

for a systematic review) might be important factors for successful neuro- 

feedback training. Further, also individual brain-based measures, such 

as functional connectivity ( Scheinost et al., 2014 ), eigenvector central- 

ity ( Skouras and Scharnowski, 2019 ), gray matter volume ( Zhao et al., 

2021 ), or the connectivity of the trained brain region to other higher- 

order cognitive areas ( Bassett and Khambhati, 2017 ) have been previ- 

ously discussed as possible factors that might influence neurofeedback 

success. Due to such information not being available for our data, we 

were not able to assess the effect that these parameters might have on 

neurofeedback success. In the future, more harmonization efforts in as- 

sessing subject-specific data across different neurofeedback studies will 

therefore be necessary. 

A complementary reason why many features included in our analysis 

were not predictive of neurofeedback success was the heterogeneity of 

the dataset. As we aimed at finding generalizable factors that influence 

neurofeedback success across a wide range of different neurofeedback 

studies, we purposely included diverse studies training different ROIs, 

different participant populations, and using a variety of experimental 

designs and methods, thus making predictions very difficult. It is pos- 

sible that by investigating more homogeneous subsets of the data, cer- 
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tain additional factors might become predictive even though they were 

not predictive when pooling all studies together. However, establish- 

ing more homogeneous subsets for solid machine learning analyses will 

require more data than is currently available. For future investigations 

on this topic, we therefore want to further encourage data sharing and 

open science practices and, in particular, emphasize the importance of 

common practices for data sharing and the description of datasets. This 

includes use of standardized data structures such as the Brain Imaging 

Data Structure (BIDS) ( Gorgolewski et al., 2016 ) in general and the re- 

porting of standardized neurofeedback design aspects, such as described 

in CRED-NF ( Ros et al., 2020 ), in specific. 

Finally, it should be noted that the selection of papers who contribute 

data to mega-analyses and meta-analyses could be biased in a sense that 

successful results might be more likely to be shared by authors than un- 

successful results. In the future, the use of study registrations and prereg- 

istered reports will be an important step to reducing bias in secondary 

analyses ( Allen and Mehler, 2019 ), not only in the field of neurofeed- 

back, but across all scientific disciplines. 

4.3. Neurofeedback success target measures 

Our results were most likely not only driven by the included fea- 

tures, but also by the chosen target measures for neurofeedback suc- 

cess. To date, no commonly accepted measure for neurofeedback suc- 

cess has been established and measures vary between different studies 

( Haugg et al., 2020; Paret et al., 2019; Thibault et al., 2018 ). For in- 

stance, neurofeedback feedback values during a single neurofeedback 

regulation block or run can be assessed with a wide variety of different 

methods, such as percent signal change, beta values, or connectivity val- 

ues. The heterogeneity of feedback values complicates machine learn- 

ing approaches that require a common target feature. Even if we had 

access to the raw imaging data, post-hoc re-analyses with an identical 

analysis pipeline for all studies would not solve this problem, because 

such a measure would not reflect the feedback that was provided to the 

participants during training. Choosing neurofeedback performance and 

neurofeedback improvement as targets for this mega-analysis allowed 

for pooling this large set of heterogeneous studies, thus, increasing sta- 

tistical power and generalizability. In addition, by using a dichotomous 

classification approach (e.g. positive vs. negative slope), we could, fur- 

ther, account for some of the heterogeneity of our data. For instance, 

when the slope of a neurofeedback learning curve is computed based 

on only two runs, the resulting values are more likely to be actual out- 

liers, as compared to when the slope of a neurofeedback learning curve 

based on 20 runs is calculated ( Kwak and Kim, 2017 ). We avoided this 

problem by using a classification-based instead of a regression-based 

machine learning approach. 

However, the chosen success measures still show limitations. For in- 

stance, the neurofeedback performance measure does not control for 

the fact that the performance of a cognitive task alone can already lead 

to activation of a specific target region. Currently, only few studies in- 

clude control groups which perform the exactly same cognitive tasks 

and undergo MRI scanning, so more data will be necessary to perform 

machine learning analyses which are explicitly corrected for cognitive 

task activation. However, while we cannot exclude that neurofeedback 

learning in studies without suitable control conditions might in fact be 

due to cognitive task activations, previous studies indicate that neuro- 

feedback learning goes beyond cognitive task activation alone. For in- 

stance, Haugg and colleagues observed that brain activity levels dur- 

ing pre-training no-feedback runs did not correlate with neurofeedback 

success, not even with neurofeedback success within the first neuro- 

feedback run right after the no-feedback run ( Haugg et al., 2020 ). This 

implies that the provided feedback might have a stronger effect on neu- 

rofeedback training success than the actual task which is performed in 

the MR scanner. 

Furthermore improvement regarding the heterogeneity of the neu- 

rofeedback success measures might be expected from developing and 

establishing a commonly accepted model of neurofeedback learning. To 

date, the underlying mechanisms of neurofeedback have not been fully 

determined ( Cohen and Staunton, 2019 ; Sitaram et al., 2016 ), mak- 

ing it difficult to identify the most important attributes of neurofeed- 

back learning, towards creating a comprehensive neurofeedback suc- 

cess measure. With more neurofeedback data becoming publicly avail- 

able thanks to the open science movement, another solution might be 

to only consider studies that used exactly the same feedback success 

measure while still finding enough data to carry out similar analyses. 

A larger amount of neurofeedback data will also allow future studies to 

investigate target measures with particular clinical relevance, such as 

clinical improvement after neurofeedback training, behavioral and/or 

cognitive changes, or specific neurophysiological responses. 

5. Conclusion 

With 59.70% of all participants showing positive slopes and 69.41% 

of all participants having more than 50% of successful neurofeedback 

runs, our data indicate that neurofeedback training is overall success- 

ful, although with large room for improvement. Using machine learn- 

ing on the largest neurofeedback data set to date, we were able to iden- 

tify two measures that might influence neurofeedback success and, thus, 

could lead to improvements in the efficacy of neurofeedback interven- 

tions: Participants who performed a pre-training no-feedback run prior 

to neurofeedback training and participants who were patients gener- 

ally performed better. Nevertheless, the medium overall predictability 

of our analyses indicates that further studies based on larger datasets 

and including more features are needed. In the future, our mega-analysis 

machine learning approach combined with increased data availability 

from homogeneous studies might allow for identifying more crucial fac- 

tors, designing more efficient neurofeedback studies, improving clini- 

cal neurofeedback-based interventions, and understanding better how 

learning with neurofeedback is accomplished. 
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