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Purpose: We compare the performance of three commonly used MRI- guided attenu-
ation correction approaches in torso PET/MRI, namely segmentation- , atlas- , and 
deep learning- based algorithms.
Methods: Twenty- five co- registered torso 18F- FDG PET/CT and PET/MR images 
were enrolled. PET attenuation maps were generated from in- phase Dixon MRI using 
a three- tissue class segmentation- based approach (soft- tissue, lung, and background 
air), voxel- wise weighting atlas- based approach, and a residual convolutional neural 
network. The bias in standardized uptake value (SUV) was calculated for each ap-
proach considering CT- based attenuation corrected PET images as reference. In ad-
dition to the overall performance assessment of these approaches, the primary focus 
of this work was on recognizing the origins of potential outliers, notably body trun-
cation, metal- artifacts, abnormal anatomy, and small malignant lesions in the lungs.
Results: The deep learning approach outperformed both atlas-  and segmentation- 
based methods resulting in less than 4% SUV bias across 25 patients compared to 
the segmentation- based method with up to 20% SUV bias in bony structures and the 
atlas- based method with 9% bias in the lung. The deep learning- based method ex-
hibited superior performance. Yet, in case of sever truncation and metallic- artifacts 
in the input MRI, this approach was outperformed by the atlas- based method, ex-
hibiting suboptimal performance in the affected regions. Conversely, for abnormal 
anatomies, such as a patient presenting with one lung or small malignant lesion in 
the lung, the deep learning algorithm exhibited promising performance compared to 
other methods.
Conclusion: The deep learning- based method provides promising outcome for syn-
thetic CT generation from MRI. However, metal- artifact and body truncation should 
be specifically addressed.
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1 |  INTRODUCTION

Hybrid imaging in the form of PET/CT or PET/MRI is one 
of the modern and promising tools witnessed to empower a 
deeper understanding of the hallmarks of cancer.1 Since the 
emergence of hybrid PET/MR imaging, a countless num-
ber of approaches have been introduced to tackle the chal-
lenges of MRI- guided attenuation correction (AC) to achieve 
the full quantitative potential of PET imaging.2 Earlier ap-
proaches in this regard relied on bulk tissue segmentation,3,4 
maximum likelihood reconstruction of attenuation and ac-
tivity (MLAA),5,6 and atlas- based synthetic CT (sCT) gen-
eration.7- 10 More recently, with the revolution induced by the 
introduction of deep learning approaches,11 MRI- based sCT 
generation using one of the state- of- the- art architectures of 
convolutional neural networks became the dominant trend or 
mainstream in this field.12- 17 Moreover, the exceptional capa-
bility of deep learning algorithms in providing satisfactory 
solutions to inverse problems has spurred novel frameworks 
for PET AC that were not feasible (or at least not providing 
a comparable performance) with other approaches. These 
frameworks include AC in the image domain,18- 20 AC map 
estimation from uncorrected PET (PET- nonAC) images,21 
estimation of AC factors from time- of- flight (TOF) PET 
data,22 and combination of MLAA reconstruction with deep 
learning- based approaches.23

Synthetic CT generation from MRI is of special interest, 
not only for AC in PET/MRI but also in MRI- guided radia-
tion planning.12,24 Online adaptation of radiation treatment 
plans based on MRI requires reliable estimation of electron 
density from MRI.25 A large body of literature reported on 
state- of- the- art deep learning- based algorithms for sCT gen-
eration from MRI.13,16 Qualitative and quantitative assess-
ments have demonstrated the reliable performance of deep 
learning- based algorithms for sCT generation, wherein clin-
ically acceptable average errors of 5% in PET AC15,26 and 
2% in RT planning27 were achieved. The bulk of research 
in MRI- guided sCT generation focused on the development 
of novel algorithms to enhance the performance of existing 
approaches14 or the comparison of different methods using 
large cohort of patients.15 These studies commonly report the 
overall performance of these evaluated techniques through 
the mean error measured over a clinical or simulated dataset. 
As such, investigation of outliers or potential sources of algo-
rithms failure has not been sufficiently addressed.

In this work, instead of developing “yet another” deep 
learning- based sCT generation algorithm or conducting a 
comparative assessment of the performance of various ap-
proaches, we set out to examine cases where the input subjects 

bear some sort of abnormalities and explore if they induce 
outliers or failures. Hence, the focus is on the torso sCT gen-
eration from MRI, wherein a deep learning- based algorithm 
is evaluated for abnormal cases, which may not be present in 
the training dataset. For comparison, other commonly used 
sCT generation methods, including atlas-  and segmentation- 
based approaches were also implemented to provide a base-
line to assess the performance of the deep learning- based 
method. These sCT generation approaches were examined 
for abnormal input subjects, which might occur in routine 
clinical practice. Four different specific cases, including MR 
body truncation, MR susceptibility to metallic artifacts, odd 
anatomy, and small malignant lesions in the lung were stud-
ied. The performance of the deep learning method and the 
other two sCT generation approaches was specifically inves-
tigated for these cases wherein an MR image bearing one of 
the aforementioned abnormalities was considered as input to 
the sCT generation methods.

2 |  METHODS

2.1 | Data acquisition

The patient cohort used in this study consisted of 25 torso 
18F- FDG PET/MRI and PET/CT scans performed for staging 
or as follow- up examination of head and neck malignancies. 
Patients underwent PET/MRI examinations followed by PET/
CT scanning using a single radiotracer injection. The institu-
tion’s ethics committee approved the study protocol. PET/MR 
imaging was performed on the Ingenuity TF PET/MRI sys-
tem (Philips Healthcare, Cleveland, OH),28 wherein torso MR 
Dixon (3D volumetric interpolated T1- weighted sequence) 
images were acquired as part of the routine clinical protocol. 
The MR Dixon acquisition was performed using a flip angle 
of 10°, TE of 11.1 ms, field of view (FOV) of 450 × 354 mm2, 
and 0.85 × 0.85 × 3 mm3 voxel size. MR Dixon imaging re-
sults in water- only, fat- only, out- phase, and in- phase (IP) MR 
images. The IP Dixon images were used for evaluation of the 
MR- guided approaches for sCT generation.

18F- FDG PET/CT scans were performed shorty after 
PET/MRI examination on a Biograph 64 True Point scanner 
(Siemens Healthcare, Erlangen, Germany). PET acquisitions 
(for the PET/CT scan) were performed in five or six bed posi-
tions (3 min per bed) (covering the skull base to the lower abdo-
men) 126 ± 10 min post- injection of 369 ± 22 MBq18F- FDG. 
Unenhanced CT images acquired at 120 kVp, 180 mAs with 
a pitch of 1.2 were used for PET AC. The PET raw data from 
the PET/CT scans were used to reconstruct PET images using 
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the different synthetic CT images as AC maps. This was per-
formed using 3D ordinary Poisson- ordered subset expectation 
maximization (OP- OSEM) algorithm with four iterations and 
eight subsets implemented within the offline e7 tool (Siemens 
Healthcare, Knoxville, TN).

Due to the time gap between MR Dixon and CT image 
acquisition, the images were co- registered to put the MR 
images into PET/CT spatial coordinates (both PET/CT and 
PET/MR images were acquired with arms down). Image 
alignment was carried out using a combination of affine and 
non- rigid image registration using the normalized mutual in-
formation as loss function and adaptive stochastic gradient 
descent for the optimization process with B- spline interpola-
tor. For cases with significant misalignment errors, the regis-
tration procedure was repeated a couple of times with manual 
adjustment of the elasticity parameters to achieve the desired 
results.29 Dixon IP images were deformably registered to the 
corresponding CT images using the Elastix package (based 
on the ITK library), where patients presenting with large 
misalignments through visual inspection were semi- manually 
adjusted to achieve satisfactory results.

Prior to image alignment, all MR images underwent N4 
bias correction and histogram matching to reduce intra- subject 
non- uniformity of the low- frequency intensities and inter- 
subject intensity variation, respectively. As a result of image 
registration, all MR images were transformed to the reference 
CT spatial coordinates at a voxel size of 1.36 × 1.36 × 2.5 
mm3. After the image registration process, all CT and MR 
images were normalized to an intensity range of 0 to 1. The 
training, implementation, and evaluation of the synthetic CT 
generation approaches were performed using the same matrix 
and voxel sizes for both MR and CT images. MR images with 
severe body truncation, metal- induced artifacts as well as pa-
tients with odd anatomy or small malignant lung nodules were 
selected for the assessment of potential outliers in connexion 
with sCT generation methods (Supporting Information Table 
S1, which is available online).

2.2 | Deep learning- based approach

A residual deep convolutional neural network was used to 
learn end- to- end MRI to CT conversion to generate torso 
sCT from Dixon MRI sequences. The residual deep learning 
model, referred to as HighResNet,30 implemented in Python 
library of the Niftynet platform,31 was configured in a 2D 
manner to convert transaxial slices of the IP Dixon images 
into corresponding sCT slices. A number of deep learning 
models were implemented/compared for synthetic CT esti-
mation from MR images, wherein the HighResNet model 
exhibited superior performance, hence motivating its selec-
tion for this study (Supporting Information Table S2).32,33 
HighResNet consists of 20 convolutional layers wherein the 

first seven layers are equipped with 3 × 3 × 3 voxel convolu-
tion kernels. The first seven layers were designed to depict 
the low- level image features from the input images. The next 
seven layers are responsible for extraction of the medium- 
level features via dilation of the convolution kernel by a fac-
tor of two. The last six layers, which use a dilation factor 
of four, capture the high- level image features. Every two 
convolutional layers are connected via a residual connection. 
In the residual blocks, the convolutional layers are coupled 
with batch normalization and element- wise rectified linear 
unit (ReLU). The HighResNet network benefits from several 
residual blocks to conduct an effective training without add-
ing to the complexity of the network or increasing the num-
ber of trainable parameters. To this end, residual or shortcut 
connections are established to deactivate/skip certain layers 
in the architecture to create a fluid/consistent propagation of 
the information/features across the different layers to avoid 
gradient vanishing. The residual connections are intended to 
transmit signals (and/or the extracted features from the input 
data or measured errors from the reference/target) forward and 
backward within the layers/blocks. The HighResNet model, 
in comparison with other similar architectures, has the merit 
of high resolution (using dilated convolution kernels instead 
of max- pooling layers) image processing and feature extrac-
tion within the different layers of the network, which ren-
der this architecture a powerful model for image translation/
regression and segmentation/classification tasks.30 Although 
the HighResNet model was previously used for synthetic CT 
generation in head and pelvis imaging or PET AC,32,34- 36 this 
work used this model for the first time for synthetic CT gen-
eration from torso MR images.

The training of the network was carried out using a five- 
fold cross- validation scheme. At each validation step, 20 
subjects were used for the training of the model whereas 5 
unseen subjects were used for model validation/testing. As 
a result, five different deep learning models were built and 
evaluated on the unseen validation dataset. The results were 
reported for the validation dataset unseen by the models. The 
L2- norm loss function along with Adam optimization were 
used to train the model. The learning rate varied from 0.04 to 
0.01 according to the recommendations in Ref. [37]. Prior to 
training, MR images were resampled to the resolution of CT 
images (0.98 × 0.98 × 1.5 mm3), and a batch size of 32 slices 
was used within the training of the model.

2.3 | Atlas- based approach

A state- of- the- art atlas- based method relying on a local 
weighting scheme was implemented for comparison with the 
deep learning- based sCT generation approach.38,39 To this 
end, the IP images and the corresponding co- registered CT 
images were arranged in atlas and target datasets following 
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a leave- one- out- cross- validation (LOOCV) scheme. The IP 
images in the atlas dataset were deformed to the target IP 
image via a combination of affine and non- rigid image reg-
istration using normalized mutual information as cost func-
tion and B- spline function as interpolator. The open source 
Elastix software was used for image registration following 
the procedure described in Ref. [40]. Given the transforma-
tion matrices obtained from atlas to target MR registration, 
the corresponding CT images were mapped to the target IP 
images.

To generate atlas- based sCT images, in the first step, bone 
segmentation was optimized on the target IP image via a 
voxel- wise atlas voting scheme. The output of this step is a 
binary bone map, which will be considered as the most prob-
able bone map of the target IP image.

In the next step, the obtained bone map for the target IP 
image is used to generate the weighting factors for each sub-
ject in the atlas dataset through a voxel- wise comparison of 
the signed distance maps. The final continuous valued sCT 
image was generated through a voxel- wise weighting scheme 
based on the phase congruency map (PCM)43 morphology 
likelihood between the IP images in the atlas dataset and the 
target IP image. Further details about the atlas- based method 
is provided in Ref. [38].

2.4 | Segmentation- based approach

The segmentation- based method implemented on the 
Ingenuity TF PET/MRI system (Philips Healthcare, 
Cleveland, OH) was used in this work for comparison with 
the two above referenced methods.28,41 This segmentation- 
based approach (bulk tissue classification) carries out a body 
contour delineation on the MR image to discriminate back-
ground air from the body volume. Then, the lung tissue is 
segmented from the soft- tissue (rest of the body). This seg-
mentation approach leads to a three- class attenuation map 
where attenuation coefficients of 0.096 cm−1 (0 HU), 0 cm−1 
(−1000 HU), and 0.022 cm−1 (−770 HU) are assigned to 
soft- tissue, background air, and lung, respectively.

2.5 | Evaluation strategy

For quantitative assessment of the MRI- guided sCT gener-
ation approaches, PET data of the 25 patients were recon-
structed four times using: (i) CT- based AC map serving as 
standard of reference (PET/CT), (ii) the three- class AC map 
obtained from the segmentation- based method (PET- Seg), 
(iii) atlas- based sCT (PET- Atlas), and (iv) deep learning- 
based sCT AC map (PET- DL). Considering PET/CT images 
as reference,42 quantitative analysis of radiotracer uptake in 
PET- Seg, PET- Atlas and PET- DL was performed for the 

different tissues, namely lung, bone, and soft- tissue using 
Equation (1).

The intensity values in all PET images were converted 
to standardized uptake value (SUV) for quantitative as-
sessment. Bones and soft- tissues within the body were 
segmented from reference CT images using the following 
intensity- based thresholds for soft- tissue (between −400 
HU and 160 HU) and bone (> 160 HU) while the lung re-
gions were manually defined on CT images. To avoid ar-
tificially increased bias, voxels with extremely low SUVs 
were ignored in the voxel- wise calculation of quantification 
bias using an empirical threshold of 0.05 SUV. Organ- wise 
assessment of SUV bias was performed for the different ap-
proaches within the right and left lungs, cerebellum, aorta 
cross, liver, spleen, and cervical bone 5&6. Moreover, 35 
volumes of interest (VOIs) were manually drawn on the 
malignant lesions for quantitative analysis of the different 
MRI- guided PET AC techniques. The VOIs were drawn 
manually by a nuclear medicine physician on regions of 
abnormally increased tracer uptake identified as malignant 
lesions. Supporting Information Figure S1 depicts repre-
sentative VOIs drawn on abnormally increased radiotracer 
uptake in the head and neck area. No more than 2 VOIs 
were defined on a single patient. The majority of the malig-
nant lesions resided in the head and neck area (23 lesions), 
7 lesions in the liver, and 5 lesions in the lung. The size 
of lesions (or the VOIs drawn on lesions) ranged from 0.5 
to 1.9 mL. Moreover, the root mean square error (RMSE) 
was calculated between PET- DL, PET- Atlas, and PET- Seg 
and reference PET- CTAC images for each subject using 
Equation (2) where v and i are the total number of voxel 
and voxel index, respectively.

The differences between the quantitative metrics calcu-
lated over the PET- Seg, PET- Atlas, and PET- DL images were 
investigated using the paired t- test method where P- values 
smaller than 0.05 were considered as statistical significance.

Apart from overall performance assessment of the seg-
mentation- , atlas- , and deep learning- based approaches, the 
main aim of this study was to investigate how these methods 
behave when the input images bear some sort of abnormal-
ities and as such, are different from the normal population. 
To this end, MR images with severe body truncation, metal- 
artifact, abnormal anatomy, and small malignant lesions in 

(1)

Bias (%) =
PET_sCT (SUV) − PET_CT (SUV)

PET_CT (SUV)
× 100% .

(2)RMSE =

�

∑V

i=1
(PET_CT (i) −PET_sCT (i))2

V
.
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the lung were carefully assessed. Each of these cases will be 
separately addressed in the Results and Discussion sections.

3 |  RESULTS

Table 1 summarizes the overall quantitative performance of 
the segmentation- , atlas- , and deep learning- based methods 
for the three main tissues within the body. The deep learning 
method resulted in less 5% SUV bias, demonstrating its supe-
rior accuracy compared to the other methods. The P- values 
calculated between the results associated with the PET- Seg 
and the other two images (PET- Atlas and PET- DL) were all 
statistically significant with p- values < 0.01. The p- values 
reported in Tables 1 and 2 were calculated between PET- 
Atlas and PET- DL images. Likewise, the SUV bias estimated 
over the 35 VOIs drawn on the malignant lesions confirmed 
the overall better performance of the deep learning method, 
wherein a mean absolute error of less than 4% was achieved by 
the PET- DL approach compared to 5.6% and 10.1% by PET- 
Atlas and PET- Seg techniques reported in Table 3, respec-
tively. Quantitative accuracy of the estimated CT values for 
major tissue classes by the different synthetic CT generation 
methods are presented in Supporting Information Table S3.

The atlas- based method required 8 h to generate a sin-
gle synthetic CT image on an Intel® Core ™ i9 11900F 
system (considering 24 atlas alignments). Conversely, the 
deep learning method required 15 sec to infer a synthetic CT 
image after training, with the training of each model (each 
validation fold) taking approximately 18 h on an NVIDIA 
GEFORCE RTX 2080 Ti platform.

Figure 1 depicts representative coronal views of MR, ref-
erence CT and sCT images generated by the segmentation- , 
atlas- , and deep learning- based approaches. The correspond-
ing PET images along with the difference bias maps (PET- 
sCT –  PET- CT) are also presented. The visual inspection 
revealed sharper anatomical details extracted by the deep 

learning- based method in comparison with the atlas- based 
approach. Although the deep learning algorithm exhibited 
overall superior performance to the other methods, this study 
focused on how these approaches behave when the input sub-
jects bear some abnormalities, thus deviating from the nor-
mal population. The absolute bias (%) calculated between 
PET- DL, PET- Atlas, and PET- Seg and reference PET- CTAC 
images are depicted in Figure 2 for each subject. Moreover, 
the scatter plots of SUVmax calculated within the 35 VOIs 
drawn on the malignant lesions of PET- Seg, PET- Atlas, and 
PET- DL images are illustrated in Figure 3.

For the first case, a subject with severe metal artifacts 
(shoulder joint prostheses) was studied. Figure 4 depicts an ex-
ample of an MR image (IP) severely affected by the presence 
of a metallic object leading to a large void area. This metal- 
induced void in the MR image led to mis- segmentation of 
the tissue classes in the segmentation- based sCT (Figure 4E) 
and consequently large quantitative bias in the corresponding 
PET- Seg image (Figure 4I). The void area in the input MR 
image also gave rise to sub- optimal performance of the deep 
learning approach resulting in an incomplete sCT and con-
sequently noticeable SUV bias in the corresponding PET- DL 
images (Figure 4G,J). In this regard, the atlas- based method 
outperformed the other methods, achieving visually more re-
alistic sCT images (not affected by the metal- artifact in the 
MR image) and better quantitative accuracy. The mean SUV 
bias in the affected area (the entire area with severe metallic 
artifacts) calculated on PET- DL, PET- Atlas, and PET- Seg im-
ages was −38.9%, −11.1%, and −55.6%, respectively. Due to 
the presence of metallic artifacts in CT images, the reference 
PET- CTAC image (prior to metal artifact reduction [MAR]) is 
also affected.43 Considering PET images corrected for attenu-
ation using CT images corrected for metal artifacts using the 
normalized MAR (NMAR) technique44 as reference, the SUV 
bias for the different approaches turned out to be PET- DL: 
−28.3%, PET-  Atlas: −6.2%, and PET- Seg: −41.4%. In ad-
dition to the metal artifact case depicted in Figure 4 (most 

Lung Soft- tissue Bone

Mean ± SD Mean ± SD Mean ± SD

(absolute mean ± SD) (absolute mean ± SD) (absolute mean ± SD)

PET- Seg 13.8 ± 8.3 −6.7 ± 5.2 −20.2 ± 11.3

(15.6 ± 6.8) (11.9 ± 6.5) (21.4 ± 9.8)

PET- Atlas 7.2 ± 5.6 −4.0 ± 4.9 −7.5 ± 4.9

(9.6 ± 4.4) (6.3 ± 3.6) (8.1 ± 3.2)

PET- DL −3.7 ± 5.5 2.0 ± 3.9 1.1 ± 3.1

(4.1 ± 4.2) (3.1 ± 3.0) (3.2 ± 2.9)

P- value 0.01 0.03 0.01

Note: PET/CT images were considered as reference. The P- values were calculated between the results 
associated with PET- Atlas and PET- DL images.

T A B L E  1  Relative mean ± SD 
(absolute mean ± SD) of SUV bias 
calculated in the lung, soft- tissue, and bone 
in PET images corrected for attenuation 
using the different sCT images
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severe case), four other cases with significant metal- induced 
artifacts were observed in the dataset. Since these cases were 
caused by dental implants, less MR volumes were affected 
due to the presence of metal implants and consequently, less 
quantitative bias was observed in the corresponding PET im-
ages. Nevertheless, the different synthetic CT generation ap-
proaches exhibited similar performance (Figure 4).

Figure 5 depicts an example of severe body truncation, 
wherein a noticeable part of the arms are missing in the orig-
inal MR image. This truncation is directly reflected on the 
segmentation- based sCT AC map (Figure 5E), hence resulting 
in a large SUV bias in the PET- Seg image, particularly in the 
arm regions (Figure 5I,L). The MRI truncation also affected 
the deep learning- based method leading to incomplete AC 
map (Figure 4C) and considerable bias in the corresponding 
PET image (Figure 5G,J). In this regard, the atlas- based ap-
proach exhibited superior performance since the resulting AC 
map (Figure 5D) does not reflect body truncation in the input 
MR image and thus, no noticeable SUV bias was observed 
in the corresponding PET- Atlas image (Figure 5H,K). The 
mean SUV bias calculated within the truncated area (Figure 
5) in PET- DL, PET- Atlas, and PET- Seg images was −41.7%, 
−8.3%, and −50.0%, respectively. The dataset involved three 
other cases presenting with body truncation, but less severe 
cases with less affected/missing volume (Figure 5 depicts 
the most serious case). The different CT synthetic generation 
approaches exhibited similar performance to the other cases 
(Figure 5). It should be noted that due to the less missing/

affected volumes in MR images, PET images were less quan-
titatively affected owing to imperfect AC maps.

Severe metal artifact and body truncation are commonly 
observed in routine MR imaging, whereas patients presenting 
with abnormal anatomical variability are less likely to occur. 
In Figure 6, a patient with removed left lung is presented 
along with the sCTs generated using the different methods. 
The segmentation- based method detected appropriately the 
lung area and resulted in a reasonable AC map (Figure 6E). 
The atlas- based method was not able to adapt to the abnormal 
anatomy in the target MR images, thus resulting in erroneous 
sCT images (Figure 6D). In this regard, the deep learning- 
based method exhibited promising performance through gen-
erating a sCT image appropriately reflecting the abnormal 
anatomy in the target MR image, and consequently minimal 
SUV bias. The mean SUV bias calculated within the left 
lung including the heart (Figure 6) in PET- DL, PET- Atlas, 
and PET- Seg images was −5.4%, −29.7%, and −35.1%, 
respectively. The segmentation- based approach assigns a 
predefined attenuation coefficient to the whole lung tissue 
across all patients, which led to overall overestimation of 
PET tracer uptake. However, for the particular patient illus-
trated in Figure 6, the lung tissue was underestimated by the 
fixed attenuation coefficient, which resulted in considerable 
negative PET quantification bias in the vicinity of the lung.

Figure 7 illustrates a patient with small malignant lung 
tumor visible on the PET/CT image. The lesion is reflected 
in the CT images as a patch of soft- tissue in the lung, which 

Region PET- Seg PET- Atlas PET- DL P- Value

Right lung 13.3 ± 10.3 6.9 ± 5.8 −2.9 ± 3.6 <0.01

Left lung 15.1 ± 8.4 7.8 ± 7.1 −4.1 ± 3.8 <0.01

Cerebellum −13.3 ± 6.5 −5.9 ± 5.3 2.1 ± 3.7 <0.02

Aorta cross −15.9 ± 7.9 −5.5 ± 6.7 1.8 ± 4.0 <0.05

Liver −9.9 ± 6.4 −8.1 ± 4.6 1.9 ± 3.9 <0.02

Spleen −10.2 ± 9.7 −5.9 ± 8.1 2.0 ± 4.0 <0.05

Bone (cervical 5&6) −20.0 ± 9.1 8.3 ± 9.7 3.3 ± 4.3 <0.05

Note: PET/CT images were considered as reference. The P- values were calculated between the results 
associated with PET- Atlas and PET- DL images.

T A B L E  2  Relative mean ± SD 
(absolute mean ± SD) of SUV bias 
calculated within the different organs in 
PET images corrected for attenuation using 
the different sCT images

PET- Seg PET- Atlas PET- DL

Mean ± SD Mean ± SD Mean ± SD

(absolute mean ± SD) (absolute mean ± SD) (absolute mean ± SD)

Lesions −9.4 ± 6.1 −3.1 ± 4.3 1.1 ± 2.9

(10.1 ± 5.2) (5.6 ± 3.5) (3.4 ± 2.2)

P- value PET- Seg vs PET- Atlas PET- Atlas vs PET- DL PET- DL vs PET- Seg

0.01 0.03 <0.01

Note: PET/CT images were considered as reference.

T A B L E  3  Relative mean ± SD 
(absolute mean ± SD) of SUV bias 
calculated in malignant lesions (35 VOIs) in 
PET images corrected for attenuation using 
the different sCT images
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F I G U R E  1  Representative clinical study showing sCT images generated by the different methods and the corresponding PET images. Target 
MRI (A), reference CT image (B), sCT images generated by the deep learning (C), atlas- based (D), and segmentation- based (E) methods. PET- CT 
(F), PET- DL (G), PET- Atlas (H), and PET- Seg (I), and their corresponding difference maps PET- DL –  PET- CT (J), PET- Atlas –  PET- CT (K), and 
PET- Seg –  PET- CT (L)
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is also discernible on MRI. Due to the small size of this 
structure, atlas- , and segmentation- based methods missed 
this lesion. Hence, the resulting sCTs images lack the cor-
responding patchy soft- tissue structure in the lung leading 
to noticeable SUV bias in the lesion. Conversely, the deep 
learning approach was able to detect this structure from the 
MR image and correctly translate it into the resulting sCT 
image. As such, the PET- DL image bears minimal bias in 
this region (plot over the lesion in Figure 7) compared to the 
reference PET/CT images. The mean SUV bias calculated 
within the VOI drawn on the lung lesion in Figure 7 was 
−3.1%, −18.7%, and −28.1% for the PET- DL, PET- Atlas, 
and PET- Seg images, respectively. The other cases with 
small lung lesions and particularly lung edema are observed 
less frequently in torso PET/MRI. Hence, the cases reported 
in Figures 6 and 7 are the only ones of this kind observed in 
our torso PET/MR/CT dataset.

4 |  DISCUSSION

The overall assessment of quantification bias of radiotracer 
uptake when using PET images corrected for attenuation 
using the different sCT images (averaged over 25 subjects) 
demonstrated the superior performance of the deep learning 
approach. The residual convolutional network was able to de-
tect and translate the most important structures from the MR 
images resulting in promising sCT images. This network was 
validated in a number of previous studies.19,20,22,30 The deep 
learning method enabled the generation of patient- specific 
sCT images wherein the full anatomical details in the MR im-
ages were translated into the sCT images. The performance of 
the deep learning model developed in this work is comparable 

with similar studies conducted on whole- body/torso images. 
Klaser et al introduced imitating learning for MRI- guided 
PET AC, wherein MRI to CT synthesis model also accounts 
for PET reconstruction errors.34 They reported an overall 
PET reconstruction error of 4.74% ± 1.52% compared to an 
atlas- based method with an average error of 6.68% ± 2.06%. 
Armanious et al set out to generate synthetic CT images from 
PET nonAC images using a GAN model.45 Quantitative anal-
ysis revealed an SUV bias of −0.8% ± 8.6% across all organs 
(ranging from −30.7% to 27.1%) and 0.9% ± 9.2 (ranging 
from 19.6% to 29.2%) for malignant lesions.

Atlas- based methods are capable of generating reasonable 
sCT images not only in brain imaging16,39 but also in whole- 
body/torso imaging wherein higher anatomical variability across 
the patients would challenge this approach.9,10,46,47 However, 
since the atlas- based method relies on the performance of image 
registration algorithms, this method could only translate the 
main anatomical structures from MR into sCT images but not 
the fine structures. This is partly due to the fact that these algo-
rithms are not able to perfectly align all anatomical structures 
and the prior knowledge from the atlas dataset, which may not 
contain the same anatomical variations. Local anatomical vari-
ations are commonly overlooked in this approach, particularly 
when the input subject bears some sort of abnormalities.

The segmentation- based method is inherently restricted 
by the bulk tissue classification wherein apart from tissue 
segmentation errors, the assignment of predefined linear at-
tenuation coefficients to tissue classes does not allow this 
approach to offer patient- specific solutions.3,48 Apart from 
the sub- optimal performance of segmentation-  and atlas- 
based methods in the definition of the anatomical details in 
the sCT images (compared to the deep learning method), 
they are not able to provide subject- specific attenuation 

F I G U R E  2  Absolute bias (Abs. Bias (%)) between PET- DL, PET- Atlas, and PET- Seg and reference PET- CTAC images for each subject



   | 9ARABI And ZAIdI

coefficients for the different tissues since the segmentation- 
based method relies on predefined values whereas the 
atlas- based method relies on the average of a population. In 
this regard, the deep learning method exhibited promising 

performance to generate not only sCT images with appro-
priate anatomical details but also with relatively accurate 
attenuation coefficients leading to minimal SUV bias in the 
corresponding PET images.

F I G U R E  3  Scatter plots of SUVmax calculated in the 35 VOIs drawn on malignant lesions for the different AC techniques
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Overall, the deep learning algorithm exhibited promising 
results. However, this finding was already expected before 
conducting this study. Therefore, we focused on special cases, 

such as metal and body truncation artifacts, which are less con-
sidered when using deep learning solutions. When the input 
MR image suffers from body truncation or metal artifacts, a 

F I G U R E  4  A clinical study presenting with severe metal artifacts. Target MRI (A), reference CT image (B), sCT images generated by the 
deep learning (C), atlas- based (D), and segmentation- based (E) approaches. PET- CT (F), PET- DL (G), PET- Atlas (H), and PET- Seg (I), and their 
corresponding difference maps PET- DL –  PET- CT (J), PET- Atlas –  PET- CT (K), and PET- Seg –  PET- CT (L)
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significant portion of the image is missing or skewed, which 
challenges the deep learning method with respect to extracting 
meaningful features and estimating the underlying anatomical 

structures. This issue would be more serious/severe when the 
training of the network is carried out with a dataset consisting 
of normal cases in majority (such as in this study). Conversely, 

F I G U R E  5  A clinical study presenting with severe body truncation. A, Target MRI. B, reference CT image. sCT images generated by the 
deep learning (C), atlas- based (D), and segmentation- based (E) methods. PET- CT (F), PET- DL (G), PET- Atlas (H), and PET- Seg (I), and their 
corresponding difference maps PET- DL –  PET- CT (J), PET- Atlas –  PET- CT (K), and PET- Seg –  PET- CT (L)
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atlas- based methods are able to take into account the missing 
part of the input MR image through relying on the prior knowl-
edge in the form of atlas dataset. In the case of metal artifacts, 

it is unlikely that the atlas- based method could detect metal 
objects in sCT images. Nevertheless, since most of the images 
in the atlas dataset contain bony structures in the site of metal 

F I G U R E  6  A clinical study presenting with removed left lung. Target MRI (A), reference CT image (B), sCT images generated by the 
deep learning (C), atlas- based (D), and segmentation- based (E) methods. PET- CT (F), PET- DL (G), PET- Atlas (H), and PET- Seg (I), and their 
corresponding difference maps PET- DL –  PET- CT (J), PET- Atlas –  PET- CT (K), and PET- Seg –  PET- CT (L)
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implants, a reasonably accurate sCT would be generated where 
the metal implant is replaced with bone tissue (Figure 4D). 
The advantage of the atlas- based method over the deep learn-
ing approach was only in cases of severe metal artifact and 
body truncation, wherein a substantial region of the body was 
missing in the input MR images. The atlas- based approach was 
capable of estimating/filling efficiently the missing regions 
and generating decent synthetic CT images owing to exploita-
tion of prior knowledge in the form of atlas images. Apart from 
these cases, the atlas- based method was substantially outper-
formed by the deep learning approach.

Although the deep learning approach exhibited sub- optimal 
performance in cases of severe metal and body truncation 
artifacts, promising performance in terms of generating sCT 
images for abnormal anatomies (Figure 6) and small critical 
anatomical details (Figure 7). The training of the deep learning 
approach was performed with normal anatomy patients, and 
the patient in Figure 6 was completely unseen by the model. 
Nevertheless, since the input image contained distinguishable 
anatomical details and strong signals at the boundaries of or-
gans (contrary to the metal and body truncation artifacts), 
the deep learning method was able to offer optimal (patient- 
specific) solution relying on the available information in the 
input MR images. On the other hand, since there were no sim-
ilar cases like the patients shown in Figures 6 and 7 in the atlas 

dataset, the atlas- based method only offered a solution based 
on the average of the population in the atlas dataset, which is 
far from the optimal solution.

The deep learning approach exhibited overall superior per-
formance, and in particular, for the anatomical abnormalities/
nuances. However, in the case of severe metallic artifacts and 
body truncations, the atlas- based method offered better solu-
tions compared to those of the deep learning method. To ac-
count for these shortcomings/drawbacks of the deep learning 
method, three different strategies/solutions could be adopted/
proposed. First, prior knowledge from an atlas- based solution 
or shape models could be incorporated into deep learning to 
aid the estimation of the missing/corrupted regions. Second, 
prior to synthetic CT generation, a specialized network could 
be exploited to detect and correct metal artifacts and body 
truncations in MR images to avoid their detrimental effects 
on the resulting synthetic CT (such as the object completion 
framework proposed in Ref. [49]). Third, dedicated deep 
learning- based synthetic CT generation architectures could 
be developed that model these corruptions within synthetic 
CT estimation process (either in input, feature layers, or re-
construction layers) to offer realistic solutions.

The deep learning approach offers promising solution for 
the generation of sCT from MR images in the context of PET/
MRI AC or MRI- only radiation treatment planning. However, 

F I G U R E  7  A clinical study presenting with small malignant lung nodule. Target MRI (A), reference CT image (B), sCT images generated 
using the deep learning (C), atlas- based (D), and segmentation- based (E) methods. PET- CT (F), PET- DL (G), PET- Atlas (H), and PET- Seg (I). The 
lower panel depicts vertical profiles drawn on the lung lesion in the different PET images
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the susceptibility of this approach to void area in MR images 
due to metal- implants or body truncation should be particu-
larly addressed. A possible solution to this challenge might 
be through training of the model with large similar samples 
containing metal and body truncation artifacts for the model 
to learn how to estimate the missing part of the input sub-
ject. Other solutions could be through application of a pre- 
processing function on the input MR images, such as object 
completion algorithms49 to fill- in the missing parts before 
feeding into the sCT generation model. This object comple-
tion step could also be applied on the resulting sCT images to 
correct the defects of the sCT generation model. PET images 
before AC (PET- nonAC) also provide valuable information 
about the anatomical structures of patients, although in a lower 
resolution. Training the model with an additional channel for 
PET- nonAC could address this issue as the correct body con-
tour could be detected from PET- nonAC images. However, 
this solution is only applicable in the context of PET/MR im-
aging and not in MRI- only radiation treatment planning.

The three- tissue class segmentation approach investigated in 
this work28 exhibited poor performance in the presence of body 
truncation and metal artifacts. However, the latest (advanced) 
versions of the segmentation- based synthetic CT generation 
methods tend to accounted for void signals in MR images (due 
to metal artifacts or body truncation) through exploiting prior 
knowledge in the form body atlas and/or template.26 In this re-
gard, Lindemann et al50 proposed B0 homogenization using 
gradient enhancement to provide an extension of the transaxial 
FOV in MR imaging. This approach would minimize the im-
pact of body truncation on PET quantification. Using such a 
segmentation approach would reduce the sensitivity to the pres-
ence of metal and body truncation artifacts. Yet, the limitation of 
segmentation- based approaches owing to their inability in pro-
viding patient- specific attenuation distribution map still remains.

A major limitation of this study is the relatively small 
sample size (25 subjects). Although this number may be 
sufficient for the overall evaluation of the synthetic CT 
generation approaches, a comprehensive/conclusive as-
sessment of the occurrence of outliers requires a far larger 
dataset. Moreover, the number of outliers was limited to few 
cases, which prevented drawing a generalized conclusion. 
Nevertheless, a key point in the training and/or performance 
assessment of deep learning approaches is the ratio/propor-
tion of normal subjects to outliers. Increasing the number of 
training subjects may result in better performance of deep 
learning algorithms in terms of handling abnormalities/outli-
ers provided the training dataset include a sufficient number 
of similar cases.

5 |  CONCLUSIONS

This study set out to compare the performance of the three 
commonly used MRI- guided synthetic CT generation ap-
proaches, namely segmentation- , atlas- , and deep learning- 
based approaches in the context of whole- body/torso PET/MR 
imaging. Overall, the deep learning approach outperformed 
atlas-  and segmentation- based methods resulting in less than 
4% tracer quantification bias across 25 patients. However, the 
primary focus of this work was on the study of the outliers. 
In case of sever truncation and metal- artifacts in the input 
MR images, the deep learning approach was outperformed by 
the atlas- based approach exhibiting suboptimal performance 
in the region affected by these artifacts. Conversely, for ab-
normal anatomies, such as the patient with only one lung or 
small malignant lesions in the lung, the deep learning method 
exhibited promising performance providing superior results 
compared to the other methods. It can be concluded that the 
deep learning- based method provides promising solutions for 
synthetic CT generation from MRI. However, metal and body 
truncation artifacts should be specifically addressed.
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