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quantitative radiomic features from chest CT images in COVID-19 patients
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ARTICLE INFO ABSTRACT
Keywords: Objective: To develop prognostic models for survival (alive or deceased status) prediction of COVID-19 patients
COVID-19 using clinical data (demographics and history, laboratory tests, visual scoring by radiologists) and lung/lesion

Computed tomography (CT) radiomic features extracted from chest CT images.

E::IEI;T: Methods: Overall, 152 patients were enrolled in this study protocol. These were divided into 106 training/
Mogeling validation and 46 test datasets (untouched during training), respectively. Radiomic features were extracted from

the segmented lungs and infectious lesions separately from chest CT images. Clinical data, including patients’
history and demographics, laboratory tests and radiological scores were also collected. Univariate analysis was
first performed (g-value reported after false discovery rate (FDR) correction) to determine the most predictive
features among all imaging and clinical data. Prognostic modeling of survival was performed using radiomic
features and clinical data, separately or in combination. Maximum relevance minimum redundancy (MRMR) and
XGBoost were used for feature selection and classification. The receiver operating characteristic (ROC) curve and
the area under the ROC curve (AUCQ), sensitivity, specificity, and accuracy were used to assess the prognostic
performance of the models on the test datasets.

Results: For clinical data, cancer comorbidity (q-value < 0.01), consciousness level (q-value < 0.05) and
radiological score involved zone (g-value < 0.02) were found to have high correlated features with outcome.
Oxygen saturation (AUC = 0.73, g-value < 0.01) and Blood Urea Nitrogen (AUC = 0.72, g-value = 0.72) were
identified as high clinical features. For lung radiomic features, SAHGLE (AUC = 0.70) and HGLZE (AUC = 0.67)
from GLSZM were identified as most prognostic features. Amongst lesion radiomic features, RLNU from GLRLM
(AUC = 0.73), HGLZE from GLSZM (AUC = 0.73) had the highest performance. In multivariate analysis,
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
disease (COVID-19) has significantly impacted global health and con-
tinues to be a major global concern as the number of infected patients
and mortality are still rapidly growing [1,2]. The first line approach to
diagnose COVID-19 involves the usage of a molecular diagnostic
method, referred to as real-time quantitative reverse
transcription-polymerase chain reaction (qPCR) assay [3]. In addition,
X-ray computed tomography (CT) has garnered much clinical and
research interest for the management of COVID-19 patients [4]. Several
studies have compared the two diagnostic methods and documented
their benefits and limitations. For instance, some of these studies re-
ported that qPCR has variable sensitivity for different biological sam-
ples, while CT was unable to detect small infected lung regions [3-5].
Furthermore, the importance of predicting patients’ prognosis based on
early findings in the course of the disease has been an area of active
research [6,7].

The emerging field of radiomics provides a reliable, non-invasive and
cost-effective approach to improve diagnosis, prognosis and therapy
response prediction in a number of diseases [8-15]. Radiomics is an
image data mining framework enabling to extract extensive information
from medical images using a wide range of features, based on which a
correlation is established with clinical and biological findings [8,9,
16-22]. Furthermore, radiomic studies can be used to provide differ-
ential diagnosis [23]. CT image radiomics are increasingly utilized for
this purpose. Yanling et al. [24] developed a radiomics nomogram
incorporating CT radiomic signatures and laboratory data for differen-
tiating bacterial pneumonia from acute paraquat lung injury. In another
study, Wang et al. [25] applied CT radiomics for differential diagnosis of
progressive pulmonary tuberculosis from community-acquired pneu-
monia. Their radiomics model outperformed senior radiologists’ clinical
judgment [25].

A number of studies applied deep or machine learning algorithms for
COVID-19 outbreak prediction, detection/segmentation of infected
pneumonia regions from radiologic images, as well as new drug devel-
opment and disease screening [26-35]. In diagnostic studies, artificial
intelligence approaches have been applied to various medical imaging
modalities, including radiography, ultrasound, and CT to build more
accurate detection/diagnostic models [36,37]. For the specific case of
CT, a number of radiomic studies have been conducted for detection,
including screening patients from other lung infections, and prediction
of hospital stay. In these studies, CT radiomic features and machine
learning algorithms were used to develop and implement such models.
Qi et al. [4] studied 52 COVID-19 patients for predicting hospital stay.
CT radiomic features and machine learning algorithms, including lo-
gistic regression and Random Forest were employed, wherein the model
exhibited area under the receiver operating characteristic (ROC) curve
(AUC) values of 0.97 and 0.92 for logistic regression and Random Forest
algorithms, respectively. The detection radiomic models developed by
Guiot et al. [38] depicted a sensitivity and specificity of 78.9% and
91.1%, respectively, whereas the radiomics signature to detect
COVID-19 from CT images developed by Fang et al. [39] achieved AUC
of 0.82 for the test sets.

When utilizing radiomics and machine learning or deep learning
approaches, studies have indicated that these approaches alone or in
combination with clinical information have the potential to serve as
substitutes for diagnosis, prognosis and therapy response performance

Radiologist data

)
(AR
T -
Segmentation l

Lung Lesion
| s e, I e

¢

[ S [ S

A 4

Feature Extraction

Clinical Features

R ) | LEmgn -t e

E;.un‘g Fea.xtures Lesion Features

Model Evaluation
Univariate:
AUC, p-value, g-value
Multivariate:

MRMR Feature Selection R y
XGBoost Classifier
AUC, ACC, SEP, SPE A 4

Analysis

Fig. 1. Flowchart of the adopted study protocol.

evaluation [9,11]. In the present study, we aimed to develop prognostic
models to predict survival (alive or deceased status) in COVID-19 pa-
tients. Specifically, we aimed to develop various prognostic models
using CT radiomic features, clinical data (demographics and history, and
laboratory tests) and radiological scores obtained from radiologist’s
reports.

2. Materials and methods

Fig. 1 summarizes the various steps involved in the study design.
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Fig. 2. Inclusion and exclusion criteria followed in the study protocol.

Transparent Reporting of a multivariable prediction model for Individ-
ual Prognosis Or Diagnosis (TRIPOD) [40] check list was reported in
supplemental Table 1.

2.1. Patient population

This retrospective study was conducted with institutional review
board approval. Formal written consent was waived owing to the nature
of the study. All patients admitted to our tertiary center between
February 11, 2020 and Jun 20, 2020 were enrolled in our study protocol.
First, we collected a COVID-19 dataset by applying a set of inclusion and
exclusion criteria. Our inclusion criteria were as follows: 1) patients
undergoing high quality CT scans, 2) confirmation of COVID-19 by
qPCR, 3) visible infected regions in the lungs, and 4) availability of
clinical and radiological data and reports. The inclusion and exclusion
criteria of patients are presented in Fig. 2. All patients had a median of 6
days interval between symptoms start date and admission to the hos-
pital. All patients received one of the two standard treatment regimens
administered in the hospital: Hydroxychloroquine, Lopinavir/Ritonavir.
All clinical, laboratory and imaging features were extracted at the first
day of admission.

Table 1
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Detailed description of the extracted radiomic features used in this study

protocol.

Shape Features

Gray Level Size Zone
Matrix (GLSZM)

Gray Level Dependence
Matrix (GLDM)

Voxel Volume
(VVolume)
Mesh Volume
(MVolume)
Surface Area
Surface Area to
Volume ratio (SVR)
Sphericity
Maximum 3D
diameter (M3DD)
Maximum 2D
diameter (Slice)
(M2DDS)
Maximum 2D
diameter (Column)
(M2DDC)
Maximum 2D
diameter (Row)
(M2DDR)
Major Axis
Minor Axis
Least Axis
Elongation
Flatness

First Order Statistics
(FO)

Energy
Total Energy (TE)
Entropy
Minimum
10th percentile
90th percentile
Maximum
Mean
Median
Interquartile Range
(IQR)
Range
Mean Absolute
Deviation (MAD)
Robust Mean Absolute
Deviation (RMAD)
Root Mean Squared
(RMS)
Skewness
Kurtosis
Variance
Uniformity

Small Area Emphasis
(SAE)

Large Area Emphasis
(LAE)

Gray Level Non-
Uniformity (GLN)

Gray Level Non-
Uniformity Normalized
(GLNN)

Size-Zone Non-
Uniformity (SZN)
Size-Zone Non-
Uniformity Normalized
(SZNN)

Zone Percentage (ZP)
Gray Level Variance
(GLV)

Zone Variance (ZV)

Zone Entropy (ZE)

Low Gray Level Zone
Emphasis (LGLZE)

High Gray Level Zone
Emphasis (HGLZE)

Small Area Low Gray
Level Emphasis (SALGLE)
Small Area High Gray
Level Emphasis (SAHGLE)
Large Area Low Gray
Level Emphasis (LALGLE)
Large Area High Gray
Level Emphasis (LAHGLE)

Gray Level Co-
occurrence Matrix
(GLCM)
Autocorrelation (AC)
Joint Average (JA)
Cluster Prominence (CP)
Cluster Shade (CS)
Cluster Tendency (CT)
Contrast

Correlation

Difference Average (DA)
Difference Entropy (DE)
Difference Variance (DV)
Joint Energy (JEnergy)
Joint Entropy (JEntropy)
Informal Measure of
Correlation (IMC) 1
Informal Measure of
Correlation (IMC) 2
Inverse Difference
Moment (IDM)

Inverse Difference
Moment Normalized
(IDMN)

Inverse Difference (ID)
Inverse Difference
Normalized (IDN)
Inverse Variance (IV)
Maximum Probability
(MP)

Maximum Correlation
Coefficient (MCC)

Sum Average (SA)

Sum Entropy (SE)

Sum of Squares (SS)

Small Dependence
Emphasis (SDE)

Large Dependence
Emphasis (LDE)

Gray Level Non-
Uniformity (GLN)
Dependence Non-
Uniformity (DN)
Dependence Non-
Uniformity Normalized
(DNN)

Gray Level Variance (GLV)
Dependence Variance
(DV)

Dependence Entropy (DE)
Low Gray Level Emphasis
(LGLE)

High Gray Level Emphasis
(HGLE)

Small Dependence Low
Gray Level Emphasis
(SDLGLE)

Small Dependence High
Gray Level Emphasis
(SDHGLE)

Large Dependence Low
Gray Level Emphasis
(LDLGLE)

Large Dependence High
Gray Level Emphasis
(LDHGLE)

Gray Level Run Length
Matrix (GLRLM)

Short Run Emphasis (SRE)
Long Run Emphasis (LRE)
Gray Level Non-
Uniformity (GLN)

Gray Level Non-
Uniformity Normalized
(GLNN)

Run Length Non-
Uniformity (RLN)

Run Length Non-
Uniformity Normalized
(RLNN)

Run Percentage (RP)
Gray Level Variance (GLV)
Run Variance (RV)

Run Entropy (RE)

Low Gray Level Run
Emphasis (LGLRE)

High Gray Level Run
Emphasis (HGLRE)

Short Run Low Gray Level
Emphasis (SRLGLE)

Short Run High Gray Level
Emphasis (SRHGLE)

Long Run Low Gray Level
Emphasis (LRLGLE)

Long Run High Gray Level
Emphasis (LRHGLE)
Neighboring Gray Tone
Difference Matrix
(NGTDM)

Coarseness

Contrast

Busyness

Complexity

Strength
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Fig. 3. Flowchart of the training and test steps implemented in the current study.

2.2. Clinical data

2.2.1. Demographics, history and clinical data

Gender, age, weight, height, BMI, past medical history of comor-
bidities (i.e. diabetes, hypertension, ischemic heart disease, and cancer),
history of smoking, initial vital signs, including respiratory rate (RR), Oz
saturation (O2Sat), pulse rate (PR), systolic blood pressure (SBP), dia-
stolic blood pressure (DBP), temperature in degrees Celsius (T) and the
level of consciousness were obtained and recorded [6,41-43].

2.2.2. Laboratory data

Upon admission, the results of laboratory tests were extracted from
patient medical records. These included aspartate aminotransferase in
U/L (AST), alanine aminotransferase (ALT) in U/L, alkaline phosphatase
(ALP) in U/L, total and direct bilirubin (T.Bill and D.Bill, respectively) in
mg/dL, hemoglobin (HB) in g/dL, white blood cells (WBC) in/mms,
venous blood gas analysis of acidity (PH), carbon dioxide concentration
(PCO2), and bicarbonate concentration (HCO3), C-reactive protein in
mg/L (CRP), platelet count in/mm°® (PIt), blood creatinine level in mg/
dL (Cr), blood urea nitrogen (BUN) in mg/dL, prothrombin time (PT) in
seconds, partial thromboplastin time (PTT) in seconds, prothrombin
time normalized with the international normalized ratio (INR), pro-
calcitonin levels (PCT) in ng/dL, and sodium and potassium (Na and K,
respectively) in mEq/L. We also used the differential counts of neutro-
phils, lymphocytes, monocytes, and eosinophils in percentages (Neutr.
Diff, Lymph.Diff, Mono.Diff, and Eosin.Diff, respectively) [6,41-43].

2.2.3. Radiological scores

To obtain radiological data, we designed a questionnaire layout
(presented in Supplemental material) based on which the following in-
formation was gathered: (a) type of parenchymal abnormality, such as

(i) ground-glass opacities (GGO) (ii) consolidation, (iii) reticular
pattern, and (iv) mixed pattern; (b) axial and craniocaudal distribution;
(c) pleural effusion; (d) pericardial effusion; and (e) emphysema [6,
41-43]. In addition, we adapted the 6-zone segmentation, which in-
cludes upper, middle and lower zone of each lung [6,41-43]. Both left
and right lung were divided into three zones including carina upper
level, between the carina and inferior pulmonary vein, and below the
inferior pulmonary vein level [6,41-43]. Then, we separately evaluated
each zone involvement and scored between 0 and 4 (0: no involvement,
1: 1%-25% involved, 2: 26%-50% involved, 3: 51%-75% involved, and
4: 76%-100% involved) [6,41-46]. The total involvement score (Inv.
Score) was calculated by summing up different zones scores. All radio-
logical scores were assigned by consensus of two experienced radiolo-
gists to report CT scan findings and a third senior radiologist settled any
discordance/dispute between the two [6,41-43].

2.3. CT imaging

CT scanning with breath holding was performed on a 16 detector-
row Brilliance 16CT scanner (Philips Medical Systems, Best, the
Netherlands) using the following scanning parameters: A tube voltage of
100 KVp was used for patients with BMI < 30 (111 patients) whereas
120 KVp was used for patients with BMI > 30 (41 patients); 45 mA tube
current; 16 x 1.5 mm collimation; 0.5 s rotation time; pitch of 1.0; and
35 cm field-of-view [6,41-43]. Low quality CT images owing to patient
bulk motion, severe respiratory motion, or when the axial coverage was
less than the total lungs were excluded.

2.4. Image segmentation

Two anatomical segmentations were performed, namely 1) whole
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Table 2

Descriptive statistics (mean + STD) of continues clinical features collected for

the training/validation and test sets.

Table 3

Descriptive statistics (frequency and percent) of discrete (categorical) clinical

features in the training/validation and test sets.
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Continues Features Training/ Test Set p-
Validation value
Lesion Volume 280 + 260 260 + 230 0.51
Lung Volume 1300 + 300 1300 + 300 0.92
Lesion Lung Ratio 0.22 + 0.22 0.21 +0.18 0.70
Age 62 +17 60 + 15 0.53
Weight 77 £15 78 £ 16 0.18
Height 170 £ 9.7 170 +£ 9.5 0.54
BMI 28 +£4.7 28 +£5.8 0.32
02 Saturation (02Sat) 90 £7.8 87 £ 10 0.66
Systolic Blood Pressure (SBP) 130 + 23 120 + 24 0.76
Diastolic Blood Pressure (DBP) 78 + 14 76 £ 12 0.60
Respiratory Rate (RR) 20 + 4.7 22+73 0.39
Pulse Rate (PR) 94 + 20 93 +13 0.08
Temperature in Celsius Degree 37 +1 37 £0.93 0.61
(T)
HB 13 +2.9 12 +2.8 0.90
White Blood Cells (WBCs) 9000 + 17000 9900 + 8000 0.18
Platelet Count in/mm3 (PIt) 180000 + 96000 210000 + 0.65
110000
Lymphocyte Diff 19+13 20 +£13 0.62
Neutrophile Diff 73+ 16 71+ 16 0.67
Monocyte Diff 5.9 + 3.4 6.7 2.9 0.82
Eosinophile Diff 1.7+ 2.6 16+1.1 0.19
C-reactive Protein in mg/L 64 + 46 66 + 40 0.45
(CRP)
Blood Creatinine Level in mg/ 1.3+1 1.7 £1.7 0.18
dL (Cr)
BUN 24 +23 28 + 26 0.84
AST 82 + 220 54 + 43 0.45
ALT 53 + 160 38 +47 0.75
ALP 250 + 250 180 £+ 110 0.52
Sodium in mEq/L (Na) 140 + 18 140 £ 3.6 0.39
Potassium in mEq/L (K) 4.6 £ 0.75 4.7 £0.72 0.96
PT 18 +£10 16 + 4.9 0.87
PTT 28 +£11 27 +7.6 0.27
INR 16+1 1.3+ 0.43 0.58
T.Bill 21+5 1.6 £ 2.6 0.50
D.Bill 0.91 + 2.7 0.42 + 0.26 0.75
PH 7.4 +0.08 7.4+0.1 0.89
PCO2 40 +8.8 41 +£13 0.07
HCO3 24 £5.7 24 +£5.7 0.16
Total Invasive Score (Total. 6.4+ 4 7.2+ 4.9 0.88
Inv.Score)

lung (Lung) and 2) COVID-19 lesions (Lesion). All segmentations were
performed by a radiologist (12 years experience) using the 3D slicer
software v4.8.1 [47].

2.5. Image preprocessing and feature extraction

All CT images were interpolated to isotropic voxel and re-sampled to
1 x 1 x 1 mm® [48]. Subsequently, bin discretization to 64gray levels
were performed for radiomics analysis [48]. For feature extraction,
first-order statistics (19 FOS features), shape-based (16 shape features),
gray-level co-occurrence matrix (GLCM 23 features), gray-level run
length matrix (16 GLRLM features), gray-level size zone matrix (16
GLSZM features), neighboring gray tone difference matrix (5 NGTDM
features), and gray level dependence matrix (14 GLDM features) fea-
tures were extracted [48,49]. Feature extraction was performed using
PyRadiomics [49] v2.1.2 python-based software package, which was
standardized through the Image Biomarker Standardization Initiative
(IBSI) [48]. Full details about the feature categories are provided in
Table 1. We also constructed 15 new shape features through division of
lesion shape features by whole lung shape features to extract relative
shape features.

Categorical Features Training/ Test p-
Validation (frequency in value
(frequency in %) %)
Gender F 37 (34.6%) 28 (62.2%) 0.15
M 70 (65.4%) 17 (37.8%)
ground-glass opacities 0 4 (3.74%) 0 1.00
(GGO) 1 49 (45.8%) 21 (46.7%)
2 54 (50.5%) 24 (53.3%)
Consolidation 0 7 (6.54%) 7 (15.6%) 1.00
1 53 (49.5%) 13 (28.9%)
2 47 (43.9%) 25 (55.6%)
Reticular 0 36 (33.6%) 12 (26.7%) 0.58
1 51 (47.7%) 25 (55.6%)
2 20 (18.7%) 8 (17.8%)
Axial Distribution)Ax. 1 61 (57%) 23 (51.1%) 0.74
Dist( 2 2 (1.87%) 1 (2.22%)
3 44 (41.1%) 21 (46.7%)
Coronal Distribution (CC. 1 4 (3.74%) 2 (4.44%) 0.37
Dist) 2 36 (33.6%) 16 (35.6%)
3 67 (62.6%) 27 (60%)
Number of Involved 1 3 (2.8%) 1 (2.22%) 0.79
Zones (Num.Zones. 2 9 (8.41%) 3 (6.67%)
Involved) 3 6 (5.61%) 4 (8.89%)
4 9 (8.41%) 5 (11.1%)
5 20 (18.7%) 5(11.1%)
6 60 (56.1%) 27 (60%)
Pleural Effusion (Pleural. 0 78 (72.9%) 36 (80%) 0.46
Eff) 1 29 (27.1%) 9 (20%)
Pericardial Effusion 0 88 (82.2%) 37 (82.2%) 1.00
(Pericardial.Eff) 1 19 (17.8%) 8 (17.8%)
Emphysema 0 79 (73.8%) 34 (75.6%) 0.61
1 28 (26.2%) 11 (24.4%)
Cardiomegaly 0 49 (45.8%) 22 (48.9%) 1.00
1 58 (54.2%) 23 (51.1%)
Diabetes 0 76 (71%) 35 (77.8%) 0.50
1 31 (29%) 10 (22.2%)
Hypertension) HTN ( 0 71 (66.4%) 28 (62.2%) 1.00
1 36 (33.6%) 17 (37.8%)
Ischemic Heart Disease) 0 82 (76.6%) 37 (82.2%) 1.00
IHD ( 1 25 (23.4%) 8 (17.8%)
Cancerous 0 95 (88.8%) 42 (93.3%) 0.75
1 12 (11.2%) 3 (6.67%)
Smoking 1 94 (87.85%) 39 (86.67%) 0.55
2 9 (8.41%) 4 (8.89%)
3 4 (3.74%) 2 (4.44%)
Consciousness 0 2 (1.87%) 0 0.46
1 1 (0.935%) 1 (2.22%)
2 9 (8.41%) 4 (8.89%)
3 95 (88.8%) 40 (88.89%)
Mixed 0 50 (46.7%) 30 (66.7%) 0.57
1 57 (53.3%) 15 (33.3%)

2.6. Univariate analysis

We performed univariate analysis after normalization of each feature
to Z-scores to determine the prognostic importance of each feature
(clinical, radiological and radiomics). For continuous features, we per-
formed Student’s t-test and area under the ROC curve (AUC) analysis.
The performance of categorical features was evaluated using the Chi-
square test. We also applied false discovery rate (FDR) correction to
the g-value (FDR adjusted p-value) to assess the significance of the
features.

2.7. Multivariate machine learning analysis

The maximum relevance minimum redundancy (MRMR) algorithm
[50] was used for feature selection. To this end, the maximum-relevance
selection approach was employed to select features with maximal cor-
relation to patients’ outcome (alive or deceased status) and
minimum-redundancy selection, thus ensuring minimal redundancy
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Fig. 4. Heat map of area under the curve (AUC), accuracy (ACC), sensitivity
(SEN) and specificity (SPE) for different combinations of models.

Table 4
Mean and STD of area under the curve (AUC), accuracy (ACC), sensitivity (SNE)
and specificity (SPE) in the test set for the different models studied.

Mean + Sd AUC ACC SEN SPE

Clinical 0.87 + 0.79 + 0.76 + 0.82 +
0.04 0.05 0.07 0.08

Lung 0.92 + 0.85 + 0.85 + 0.85 +
0.03 0.04 0.07 0.06

Lesion 0.92 + 0.85 + 0.87 + 0.83 +
0.03 0.05 0.06 0.08

Lung + Lesion 0.91 + 0.83 + 0.85 + 0.80 +
0.04 0.05 0.08 0.09

Lung + Clinical 0.92 + 0.85 + 0.83 + 0.87 +
0.03 0.04 0.06 0.05

Lesion + Clinical 0.94 + 0.87 + 0.87 + 0.87 +
0.03 0.04 0.07 0.06

Lung + Lesion + 0.95 + 0.88 + 0.88 + 0.89 +
Clinical 0.03 0.04 0.06 0.07

Table 5
Confidence interval (CI) of area under the curve (AUC), accuracy (ACC), sensi-
tivity (SNE) and specificity (SPE) in the test set for the different models.

CI (lower-upper) AUC ACC SEN SPE

Clinical 0.86-0.87 0.78-0.80 0.74-0.77 0.81-0.84
Lung 0.91-0.92 0.84-0.86 0.84-0.86 0.84-0.87
Lesion 0.91-0.93 0.84-0.86 0.85-0.88 0.81-0.84
Lung -+ Lesion 0.90-0.91 0.82-0.84 0.84-0.87 0.79-0.82
Lung + Clinical 0.92-0.93 0.84-0.86 0.82-0.84 0.86-0.88
Lesion + Clinical 0.93-0.95 0.86-0.88 0.86-0.89 0.85-0.88
Lung + Lesion + Clinical 0.95-0.96 0.88-0.89 0.87-0.90 0.87-0.90

among features [50]. The eXtreme Gradient Boosting (XGBoost) ma-
chine learning algorithm [51] which is an ensemble learning algorithms
based on different decision trees was adopted for classification. Feature
selection and classification were performed using praznik and caret R
packages,” respectively.

2.8. Data modeling and univariate analysis

We developed various prognostic models using the collected data

2 https://www.r-project.org.
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and the adopted classification method. Our models were: 1) Clinical
(pre-clinical, lab and radiological data), 2) Lung radiomics (radiomic
features extracted from the whole lung), 3) Lesion radiomics (radiomic
features extracted from lesions), 4) Lung + Lesion (combined radiomic
features extracted from whole lung and lesions), 5) Lung + Clinical
(combined radiomic features extracted from whole lung, clinical and
radiological data), 6) Lesion + Clinical (combined radiomic features
extracted from lesions, clinical and radiological data) and 7) Lung +
Lesion + Clinical (combined radiomic features extracted from whole
lung, lesions, clinical and radiological data). For model validation, 106
patients were used as the training/validation dataset whereas the
remaining 46 patients were used as the test (unseen and untouched
during training) dataset. The ROC, AUC, accuracy (ACC), sensitivity
(SEN) and specificity (SPE) were used to assess the prognostic perfor-
mance of the models. The different steps followed are summarized in
Fig. 3:

1. The model was trained using 106 patients’ data. Yet, to find the
optimal hyperparameters of models, we used bootstrap resampling
with 1000 repetitions. Bootstrap techniques were used for XGBoost
hyperparameters tunning (using the random search method) imple-
mented with 1000 repetitions.

2. After tuning and optimizing the models based on AUC, we selected
the optimal model.

3. The optimal model was tested on the test set (test datasets un-
touched/unseen during bootstrapping). We calculated Accuracy,
AUCG, Sensitivity, and Specificity for the optimal model on the test
datasets.

4. Steps 1-3 were repeated 100 times to ensure the repeatability of the
results.

5. The Mean, SD and CI95% were calculated from step 4 for Accuracy,
AUC, Sensitivity, Specificity metrics.

6. Clinical, radiomics and combined models were statistically evaluated
using the results of step 5.

We repeatedly trained a bootstrapped model with 1000 repetition
(on 106 patients dataset) and tested on an independent dataset for 100
times to make sure that the results are repeatable for different models.
All results were reported on 46 test sets (unseen during model training
by bootstrap) by 100 times repetitions. The mean, standard deviation
and 95% confidence interval (CI) were reported for each model for 100
times repetitions of the whole process. After data normality test using
Kolmogorov-Smirnov normality test, we used Wilcoxon signed-rank test
to determine significant differences between the models. A p-value <
0.05 was used as a criterion for statistically significant differences. All
statistical analysis was performed using R 3.6.3 software.

3. Results
3.1. Patient population

Following application of inclusion and exclusion criteria, 152 pa-
tients including 87 males and 65 females were retained from an initial
triage of 545 patients. Forty patients with a mean age of 65.7 years had
critical conditions and eventually died, whereas 112 cases with a mean
age of 59.5 years fully recovered from COVID-19. The flowchart in Fig. 2
shows the number of excluded, included, recovered and deceased pa-
tients. The details of the descriptive statistics of continuous and cate-
gorical features of patients are presented in Tables 2 and 3 for the
training/validation and test sets (unseen and untouched during
training).

3.2. Univariate analysis

Our univariate analysis of clinical features is shown in Supplemental
Figures 1 and 2 as categorical and continuous features in terms of AUC,
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Fig. 5. ROC curve of the different models in the test sets.

p- and g-values. In this regard, clinical features, including BUN (AUC =
0.73) and oxygen saturation (AUC = 0 0.71), monocyte (AUC = 0.70)
and a number of involved zones (AUC = 0.70) were identified as most
prognostic features. Amongst continuous clinical features, systolic blood
pressure, diastolic blood pressure, hemoglobin, platelet, lymphocyte,
neutrophil, monocyte, had a g-value < 0.05. Amongst discrete (cate-
gorical) clinical features, smoking, cancerous, consciousness and total
involvement score proved to be statistically significant features (p-value
< 0.05) between two alive and deceased group.

For univariate radiomics analysis, the results are displayed in Sup-
plemental Figures 3 and 4. Amongst lung radiomic features, SAHGLE
(AUC = 0.70) and HGLZE (AUC = 0.67) from GLSZM, JA and SA from
GLCM, Busyness from NGTDM and Median from FO (AUC = 0.67) were
found as most prognostic features. Amongst lesion radiomic features,
RLNU from GLRLM, HGLZE from GLSZM, DNU from GLDM, Range from
FO and Volume from Shape (AUC = 0.73) had the highest performance
with significant q-value after FDR correction.

3.3. Models

Importance features selected by the MRMR algorithm were reported
for each model in Supplemental Table 2. Fig. 4 depicts the heat map of
AUC, ACC, SEN and SPE for different combinations of models. The mean
(STD) and confidence interval (CI) for AUC, ACC, SEN and SPE for the
developed models (test set) are summarized in Tables 4 and 5, respec-
tively. Our results indicated that the combined model (Lung + Lesion +
Clinical) had the highest prognostic capability with AUC = 0.95 + 0.02,
ACC =0.88 + 0.04, SEN = 0.88 + 0.06 and SPE = 0.89 + 0.07. The 95%
CI for these parameters were 0.95-0.96, 0.88-0.89, 0.87-0.90 and
0.87-0.90, respectively.

The ROC curve and boxplot of these models for the test set are shown
in Figs. 5 and 6, respectively. In the boxplots, significant differences
among the models can be observed. To compare the models in terms of
significant changes in AUC, ACC, SEN and SPE, p-value plots are shown
in Fig. 7. It can be seen that the combined Lung + Lesion + Clinical
model has significant AUC differences (p < 0.05) relative to other

models. The model was also significantly different in terms of ACC with
respect to all models. With respect to SPE, all models had significant
differences, except Lung + Clinical model, whereas for SEN, all models
were significantly different, except the Lesion + Clinical model. In terms
of AUC, except Lung and Lesion, Lung + Clinical and Lung, Lung +
Lesion and Lung models as well as Lung + Clinical and Lesion models
were significantly different (p < 0.05).

4. Discussion

A novel approach for prognostication of COVID-19 patients using
different image-derived features, including semantic, radiomics and
clinical data (demographics and history, laboratory tests and visual
scoring of CT by radiologists) was presented in this work. We demon-
strated that clinical and quantitative radiomic features, alone or in
combination, can be used as potential biomarkers for the prediction of
survival in COVID-19 patients. Although some radiomic studies have
been conducted in the framework of COVID-19, this is to the best of our
knowledge, the first study reporting on the use of advanced combined
models for prognosis survival analysis.

We extracted two categories of radiomic features from whole lung
and lung lesions. The aim was to assess how the extracted radiomic
features might be used as different prognostic parameters. Decoding
heterogeneity is among the aims of radiomics analysis. Hence, since the
delineated lesions and whole lungs have different characteristics, they
could serve as different markers. Conversely, combining these features
along with other clinical parameters provides more variables for
developing more predictive models. In previous lung radiomic studies,
adding clinical data to radiomic signatures improved model perfor-
mance. A study by Chen et al. [52] demonstrated that adding clinical
data, such as smoking history, enabled to slightly improve performance
for differentiating peripherally-located small cell lung cancer from
non-small cell lung cancer using CT radiomic features.

Univariate analysis showed that some clinical parameters might be
predictive. Although for single clinical parameters, the highest AUCs
were achieved for BUN, oxygen saturation, monocyte count and a
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Fig. 6. Box plot of the area under the curve (AUC), accuracy (ACC), sensitivity (SEN) and specificity (SPE) for different combinations of models. P-values comparing
differences in values with respect to the Lung + Lesion + Clinical model are shown. Not significant (ns): p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001 and ****:

p < 0.0001.

number of involved zones. These findings were congruent with previous
studies. Several studies have suggested that increased BUN can be
attributed to acute kidney injury during the course of the disease, which
can be a cause of adverse effects [53-55]. Colombi et al. [56] reported
lung involvement area and hypoxia as reliable predictors of ICU
admission and mortality among COVID-19 patients. Conversely, we
believe that the fact that the results on monocyte count can be an
outcome predictor is the consequence of our sample size as Zeng et al.
[57] did not report significant differences between severe and
non-severe patients in a population of 3090 patients from 15 different
studies. With respect to single imaging measures, we observed that
several radiomic features were predictive in both lesion and whole lung

delineations. When comparing these two feature categories, it appeared
that whole lung features have higher AUCs. A recent study by Tan et al.
[58] demonstrated the predictive value of non-focus area of CT images
to distinguish different clinical types of COVID-19 pneumonia. In our
study, whole lung features provided more relevant characteristics of the
disease in COVID-19 patients. Extracting radiomic features from infec-
ted and non-infected regions provided a more accurate prognostic
model.

On the modeling of prognosis prediction, we observed that the
combined model including all measures had the highest performance
and had significant differences with other models. In addition, we
showed that other models have similar behavior, although there were
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Fig. 7. P-values for the comparison between the different models with respect to the area under the curve (AUC), accuracy (ACC), sensitivity (SEN) and speci-

ficity (SPE).

significant differences among them. For both radiomic models, the AUC
had a range varying from 0.91 to 0.93. However, when they were
combined with clinical features, the AUC improved from 0.91 to 0.93 to
0.95-0.96. These results indicated that the combined models provided
more accurate information. In addition, compared to univariate radio-
mics analysis, multivariate modeling results in more reliable results. It
should be emphasized that in predictive modeling, the variables are the
heart of the model, although the classifiers have a critical role [59,60].
In this work, we used a classifier with a wide range of features.

A wide range of image analysis algorithms combined with machine
learning techniques were recently designed for COVID-19 detection,
diagnosis and prognosis. Li et al. [61] applied artificial intelligence al-
gorithms to distinguish COVID-19 from community acquired pneumonia
on chest CT. They developed a deep learning model, COVID-19 detection
neural network (COVNet), to extract visual features from volumetric

chest CT examinations for the detection of COVID-19 and compared
them to community acquired pneumonia and other non-pneumonia
images. Their model achieved a sensitivity and specificity of 90% and
96%, respectively, with an AUC of 0.96. Although deep learning models
have achieved a high predictive/prognostic performance, their mecha-
nisms of action are not fully understood [62]. Yet, radiomic features may
provide more reliable results because they capture tissue characteristics.
Hence, studies have indicated that these markers could decode the
biological properties of the tissues [63,64]. In this regard, we believe
that our results could be exploited reliably in clinical practice.
Although the presented results are important, this study inherently
bears a number of limitations. First, the sample size is low and there is a
lack of external validation set from different centers. Further clinical
studies are needed to verify our results with larger clinical databases.
Second, therapeutic strategies for patients were not considered in this
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study. Including treatment parameters in the models will provide more
reliable results. Third, although our imaging and radiomics settings
were similar for all patients, we suggest to assess radiomic features
reproducibility before clinical adoption. Image segmentation was per-
formed by an experienced radiologist only once, and as such, it was not
possible to estimate the intra-observer variability and repeatability of
the segmentations. Forth, we only tested one feature selection and
classifier algorithms. As there is no one-fits-all machine learning algo-
rithm, different combinations of feature selectors and classifiers result in
different performance. Future studies should focus on evaluating
different algorithms and comparing their performance [65,66]. Various
inclusion and exclusion criteria were applied retrospectively to the
datasets, which decreased the number of cases. Patients with severe
motion artifacts, which is inevitable in some non-cooperative or unsta-
ble patients, were excluded. This might impact the generalizability of
the obtained results. Future studies should use a more heterogeneous
dataset in terms of CT image quality to ensure the generalizability of the
model.

5. Conclusion

We demonstrated that the combination of radiomic features, clinical
and radiological data could be used to effectively predict survival in
COVID-19 patients. To the best of our knowledge, this is the first study
applying such methodology for COVID-19 prognosis survival modeling.
We also demonstrated that there are a number of individual predictive
clinical or imaging features having the potential to be used in routine
clinical practice for more accurate management of COVID-19 patients.
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