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A B S T R A C T   

Objective: To develop prognostic models for survival (alive or deceased status) prediction of COVID-19 patients 
using clinical data (demographics and history, laboratory tests, visual scoring by radiologists) and lung/lesion 
radiomic features extracted from chest CT images. 
Methods: Overall, 152 patients were enrolled in this study protocol. These were divided into 106 training/ 
validation and 46 test datasets (untouched during training), respectively. Radiomic features were extracted from 
the segmented lungs and infectious lesions separately from chest CT images. Clinical data, including patients’ 
history and demographics, laboratory tests and radiological scores were also collected. Univariate analysis was 
first performed (q-value reported after false discovery rate (FDR) correction) to determine the most predictive 
features among all imaging and clinical data. Prognostic modeling of survival was performed using radiomic 
features and clinical data, separately or in combination. Maximum relevance minimum redundancy (MRMR) and 
XGBoost were used for feature selection and classification. The receiver operating characteristic (ROC) curve and 
the area under the ROC curve (AUC), sensitivity, specificity, and accuracy were used to assess the prognostic 
performance of the models on the test datasets. 
Results: For clinical data, cancer comorbidity (q-value < 0.01), consciousness level (q-value < 0.05) and 
radiological score involved zone (q-value < 0.02) were found to have high correlated features with outcome. 
Oxygen saturation (AUC = 0.73, q-value < 0.01) and Blood Urea Nitrogen (AUC = 0.72, q-value = 0.72) were 
identified as high clinical features. For lung radiomic features, SAHGLE (AUC = 0.70) and HGLZE (AUC = 0.67) 
from GLSZM were identified as most prognostic features. Amongst lesion radiomic features, RLNU from GLRLM 
(AUC = 0.73), HGLZE from GLSZM (AUC = 0.73) had the highest performance. In multivariate analysis, 
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combining lung, lesion and clinical features was determined to provide the most accurate prognostic model 
(AUC = 0.95 ± 0.029 (95%CI: 0.95–0.96), accuracy = 0.88 ± 0.046 (95% CI: 0.88–0.89), sensitivity = 0.88 ±
0.066 (95% CI = 0.87–0.9) and specificity = 0.89 ± 0.07 (95% CI = 0.87–0.9)). 
Conclusion: Combination of radiomic features and clinical data can effectively predict outcome in COVID-19 
patients. The developed model has significant potential for improved management of COVID-19 patients.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
disease (COVID-19) has significantly impacted global health and con
tinues to be a major global concern as the number of infected patients 
and mortality are still rapidly growing [1,2]. The first line approach to 
diagnose COVID-19 involves the usage of a molecular diagnostic 
method, referred to as real-time quantitative reverse 
transcription-polymerase chain reaction (qPCR) assay [3]. In addition, 
X-ray computed tomography (CT) has garnered much clinical and 
research interest for the management of COVID-19 patients [4]. Several 
studies have compared the two diagnostic methods and documented 
their benefits and limitations. For instance, some of these studies re
ported that qPCR has variable sensitivity for different biological sam
ples, while CT was unable to detect small infected lung regions [3–5]. 
Furthermore, the importance of predicting patients’ prognosis based on 
early findings in the course of the disease has been an area of active 
research [6,7]. 

The emerging field of radiomics provides a reliable, non-invasive and 
cost-effective approach to improve diagnosis, prognosis and therapy 
response prediction in a number of diseases [8–15]. Radiomics is an 
image data mining framework enabling to extract extensive information 
from medical images using a wide range of features, based on which a 
correlation is established with clinical and biological findings [8,9, 
16–22]. Furthermore, radiomic studies can be used to provide differ
ential diagnosis [23]. CT image radiomics are increasingly utilized for 
this purpose. Yanling et al. [24] developed a radiomics nomogram 
incorporating CT radiomic signatures and laboratory data for differen
tiating bacterial pneumonia from acute paraquat lung injury. In another 
study, Wang et al. [25] applied CT radiomics for differential diagnosis of 
progressive pulmonary tuberculosis from community-acquired pneu
monia. Their radiomics model outperformed senior radiologists’ clinical 
judgment [25]. 

A number of studies applied deep or machine learning algorithms for 
COVID-19 outbreak prediction, detection/segmentation of infected 
pneumonia regions from radiologic images, as well as new drug devel
opment and disease screening [26–35]. In diagnostic studies, artificial 
intelligence approaches have been applied to various medical imaging 
modalities, including radiography, ultrasound, and CT to build more 
accurate detection/diagnostic models [36,37]. For the specific case of 
CT, a number of radiomic studies have been conducted for detection, 
including screening patients from other lung infections, and prediction 
of hospital stay. In these studies, CT radiomic features and machine 
learning algorithms were used to develop and implement such models. 
Qi et al. [4] studied 52 COVID-19 patients for predicting hospital stay. 
CT radiomic features and machine learning algorithms, including lo
gistic regression and Random Forest were employed, wherein the model 
exhibited area under the receiver operating characteristic (ROC) curve 
(AUC) values of 0.97 and 0.92 for logistic regression and Random Forest 
algorithms, respectively. The detection radiomic models developed by 
Guiot et al. [38] depicted a sensitivity and specificity of 78.9% and 
91.1%, respectively, whereas the radiomics signature to detect 
COVID-19 from CT images developed by Fang et al. [39] achieved AUC 
of 0.82 for the test sets. 

When utilizing radiomics and machine learning or deep learning 
approaches, studies have indicated that these approaches alone or in 
combination with clinical information have the potential to serve as 
substitutes for diagnosis, prognosis and therapy response performance 

evaluation [9,11]. In the present study, we aimed to develop prognostic 
models to predict survival (alive or deceased status) in COVID-19 pa
tients. Specifically, we aimed to develop various prognostic models 
using CT radiomic features, clinical data (demographics and history, and 
laboratory tests) and radiological scores obtained from radiologist’s 
reports. 

2. Materials and methods 

Fig. 1 summarizes the various steps involved in the study design. 

Fig. 1. Flowchart of the adopted study protocol.  
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Transparent Reporting of a multivariable prediction model for Individ
ual Prognosis Or Diagnosis (TRIPOD) [40] check list was reported in 
supplemental Table 1. 

2.1. Patient population 

This retrospective study was conducted with institutional review 
board approval. Formal written consent was waived owing to the nature 
of the study. All patients admitted to our tertiary center between 
February 11, 2020 and Jun 20, 2020 were enrolled in our study protocol. 
First, we collected a COVID-19 dataset by applying a set of inclusion and 
exclusion criteria. Our inclusion criteria were as follows: 1) patients 
undergoing high quality CT scans, 2) confirmation of COVID-19 by 
qPCR, 3) visible infected regions in the lungs, and 4) availability of 
clinical and radiological data and reports. The inclusion and exclusion 
criteria of patients are presented in Fig. 2. All patients had a median of 6 
days interval between symptoms start date and admission to the hos
pital. All patients received one of the two standard treatment regimens 
administered in the hospital: Hydroxychloroquine, Lopinavir/Ritonavir. 
All clinical, laboratory and imaging features were extracted at the first 
day of admission. 

Fig. 2. Inclusion and exclusion criteria followed in the study protocol.  

Table 1 
Detailed description of the extracted radiomic features used in this study 
protocol.  

Shape Features Gray Level Size Zone 
Matrix (GLSZM) 

Gray Level Dependence 
Matrix (GLDM) 

Voxel Volume 
(VVolume) 
Mesh Volume 
(MVolume) 
Surface Area 
Surface Area to 
Volume ratio (SVR) 
Sphericity 
Maximum 3D 
diameter (M3DD) 
Maximum 2D 
diameter (Slice) 
(M2DDS) 
Maximum 2D 
diameter (Column) 
(M2DDC) 
Maximum 2D 
diameter (Row) 
(M2DDR) 
Major Axis 
Minor Axis 
Least Axis 
Elongation 
Flatness 

Small Area Emphasis 
(SAE) 
Large Area Emphasis 
(LAE) 
Gray Level Non- 
Uniformity (GLN) 
Gray Level Non- 
Uniformity Normalized 
(GLNN) 
Size-Zone Non- 
Uniformity (SZN) 
Size-Zone Non- 
Uniformity Normalized 
(SZNN) 
Zone Percentage (ZP) 
Gray Level Variance 
(GLV) 
Zone Variance (ZV) 
Zone Entropy (ZE) 
Low Gray Level Zone 
Emphasis (LGLZE) 
High Gray Level Zone 
Emphasis (HGLZE) 
Small Area Low Gray 
Level Emphasis (SALGLE) 
Small Area High Gray 
Level Emphasis (SAHGLE) 
Large Area Low Gray 
Level Emphasis (LALGLE) 
Large Area High Gray 
Level Emphasis (LAHGLE) 

Small Dependence 
Emphasis (SDE) 
Large Dependence 
Emphasis (LDE) 
Gray Level Non- 
Uniformity (GLN) 
Dependence Non- 
Uniformity (DN) 
Dependence Non- 
Uniformity Normalized 
(DNN) 
Gray Level Variance (GLV) 
Dependence Variance 
(DV) 
Dependence Entropy (DE) 
Low Gray Level Emphasis 
(LGLE) 
High Gray Level Emphasis 
(HGLE) 
Small Dependence Low 
Gray Level Emphasis 
(SDLGLE) 
Small Dependence High 
Gray Level Emphasis 
(SDHGLE) 
Large Dependence Low 
Gray Level Emphasis 
(LDLGLE) 
Large Dependence High 
Gray Level Emphasis 
(LDHGLE) 
Gray Level Run Length 
Matrix (GLRLM) 
Short Run Emphasis (SRE) 
Long Run Emphasis (LRE) 
Gray Level Non- 
Uniformity (GLN) 
Gray Level Non- 
Uniformity Normalized 
(GLNN) 
Run Length Non- 
Uniformity (RLN) 
Run Length Non- 
Uniformity Normalized 
(RLNN) 
Run Percentage (RP) 
Gray Level Variance (GLV) 
Run Variance (RV) 
Run Entropy (RE) 
Low Gray Level Run 
Emphasis (LGLRE) 
High Gray Level Run 
Emphasis (HGLRE) 
Short Run Low Gray Level 
Emphasis (SRLGLE) 
Short Run High Gray Level 
Emphasis (SRHGLE) 
Long Run Low Gray Level 
Emphasis (LRLGLE) 
Long Run High Gray Level 
Emphasis (LRHGLE) 

First Order Statistics 
(FO) 

Gray Level Co- 
occurrence Matrix 
(GLCM) 

Energy 
Total Energy (TE) 
Entropy 
Minimum 
10th percentile 
90th percentile 
Maximum 
Mean 
Median 
Interquartile Range 
(IQR) 
Range 
Mean Absolute 
Deviation (MAD) 
Robust Mean Absolute 
Deviation (RMAD) 
Root Mean Squared 
(RMS) 
Skewness 
Kurtosis 
Variance 
Uniformity 

Autocorrelation (AC) 
Joint Average (JA) 
Cluster Prominence (CP) 
Cluster Shade (CS) 
Cluster Tendency (CT) 
Contrast 
Correlation 
Difference Average (DA) 
Difference Entropy (DE) 
Difference Variance (DV) 
Joint Energy (JEnergy) 
Joint Entropy (JEntropy) 
Informal Measure of 
Correlation (IMC) 1 
Informal Measure of 
Correlation (IMC) 2 
Inverse Difference 
Moment (IDM) 
Inverse Difference 
Moment Normalized 
(IDMN) 
Inverse Difference (ID) 
Inverse Difference 
Normalized (IDN) 
Inverse Variance (IV) 
Maximum Probability 
(MP) 
Maximum Correlation 
Coefficient (MCC) 
Sum Average (SA) 
Sum Entropy (SE) 
Sum of Squares (SS) 

Neighboring Gray Tone 
Difference Matrix 
(NGTDM) 
Coarseness 
Contrast 
Busyness 
Complexity 
Strength  
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2.2. Clinical data 

2.2.1. Demographics, history and clinical data 
Gender, age, weight, height, BMI, past medical history of comor

bidities (i.e. diabetes, hypertension, ischemic heart disease, and cancer), 
history of smoking, initial vital signs, including respiratory rate (RR), O2 
saturation (O2Sat), pulse rate (PR), systolic blood pressure (SBP), dia
stolic blood pressure (DBP), temperature in degrees Celsius (T) and the 
level of consciousness were obtained and recorded [6,41–43]. 

2.2.2. Laboratory data 
Upon admission, the results of laboratory tests were extracted from 

patient medical records. These included aspartate aminotransferase in 
U/L (AST), alanine aminotransferase (ALT) in U/L, alkaline phosphatase 
(ALP) in U/L, total and direct bilirubin (T.Bill and D.Bill, respectively) in 
mg/dL, hemoglobin (HB) in g/dL, white blood cells (WBC) in/mm3, 
venous blood gas analysis of acidity (PH), carbon dioxide concentration 
(PCO2), and bicarbonate concentration (HCO3), C-reactive protein in 
mg/L (CRP), platelet count in/mm3 (Plt), blood creatinine level in mg/ 
dL (Cr), blood urea nitrogen (BUN) in mg/dL, prothrombin time (PT) in 
seconds, partial thromboplastin time (PTT) in seconds, prothrombin 
time normalized with the international normalized ratio (INR), pro
calcitonin levels (PCT) in ng/dL, and sodium and potassium (Na and K, 
respectively) in mEq/L. We also used the differential counts of neutro
phils, lymphocytes, monocytes, and eosinophils in percentages (Neutr. 
Diff, Lymph.Diff, Mono.Diff, and Eosin.Diff, respectively) [6,41–43]. 

2.2.3. Radiological scores 
To obtain radiological data, we designed a questionnaire layout 

(presented in Supplemental material) based on which the following in
formation was gathered: (a) type of parenchymal abnormality, such as 

(i) ground-glass opacities (GGO) (ii) consolidation, (iii) reticular 
pattern, and (iv) mixed pattern; (b) axial and craniocaudal distribution; 
(c) pleural effusion; (d) pericardial effusion; and (e) emphysema [6, 
41–43]. In addition, we adapted the 6-zone segmentation, which in
cludes upper, middle and lower zone of each lung [6,41–43]. Both left 
and right lung were divided into three zones including carina upper 
level, between the carina and inferior pulmonary vein, and below the 
inferior pulmonary vein level [6,41–43]. Then, we separately evaluated 
each zone involvement and scored between 0 and 4 (0: no involvement, 
1: 1%–25% involved, 2: 26%–50% involved, 3: 51%–75% involved, and 
4: 76%–100% involved) [6,41–46]. The total involvement score (Inv. 
Score) was calculated by summing up different zones scores. All radio
logical scores were assigned by consensus of two experienced radiolo
gists to report CT scan findings and a third senior radiologist settled any 
discordance/dispute between the two [6,41–43]. 

2.3. CT imaging 

CT scanning with breath holding was performed on a 16 detector- 
row Brilliance 16CT scanner (Philips Medical Systems, Best, the 
Netherlands) using the following scanning parameters: A tube voltage of 
100 KVp was used for patients with BMI ≤ 30 (111 patients) whereas 
120 KVp was used for patients with BMI > 30 (41 patients); 45 mA tube 
current; 16 × 1.5 mm collimation; 0.5 s rotation time; pitch of 1.0; and 
35 cm field-of-view [6,41–43]. Low quality CT images owing to patient 
bulk motion, severe respiratory motion, or when the axial coverage was 
less than the total lungs were excluded. 

2.4. Image segmentation 

Two anatomical segmentations were performed, namely 1) whole 

Fig. 3. Flowchart of the training and test steps implemented in the current study.  

I. Shiri et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 132 (2021) 104304

5

lung (Lung) and 2) COVID-19 lesions (Lesion). All segmentations were 
performed by a radiologist (12 years experience) using the 3D slicer 
software v4.8.1 [47]. 

2.5. Image preprocessing and feature extraction 

All CT images were interpolated to isotropic voxel and re-sampled to 
1 × 1 × 1 mm3 [48]. Subsequently, bin discretization to 64gray levels 
were performed for radiomics analysis [48]. For feature extraction, 
first-order statistics (19 FOS features), shape-based (16 shape features), 
gray-level co-occurrence matrix (GLCM 23 features), gray-level run 
length matrix (16 GLRLM features), gray-level size zone matrix (16 
GLSZM features), neighboring gray tone difference matrix (5 NGTDM 
features), and gray level dependence matrix (14 GLDM features) fea
tures were extracted [48,49]. Feature extraction was performed using 
PyRadiomics [49] v2.1.2 python-based software package, which was 
standardized through the Image Biomarker Standardization Initiative 
(IBSI) [48]. Full details about the feature categories are provided in 
Table 1. We also constructed 15 new shape features through division of 
lesion shape features by whole lung shape features to extract relative 
shape features. 

2.6. Univariate analysis 

We performed univariate analysis after normalization of each feature 
to Z-scores to determine the prognostic importance of each feature 
(clinical, radiological and radiomics). For continuous features, we per
formed Student’s t-test and area under the ROC curve (AUC) analysis. 
The performance of categorical features was evaluated using the Chi- 
square test. We also applied false discovery rate (FDR) correction to 
the q-value (FDR adjusted p-value) to assess the significance of the 
features. 

2.7. Multivariate machine learning analysis 

The maximum relevance minimum redundancy (MRMR) algorithm 
[50] was used for feature selection. To this end, the maximum-relevance 
selection approach was employed to select features with maximal cor
relation to patients’ outcome (alive or deceased status) and 
minimum-redundancy selection, thus ensuring minimal redundancy 

Table 2 
Descriptive statistics (mean ± STD) of continues clinical features collected for 
the training/validation and test sets.  

Continues Features Training/ 
Validation 

Test Set p- 
value 

Lesion Volume 280 ± 260 260 ± 230 0.51 
Lung Volume 1300 ± 300 1300 ± 300 0.92 
Lesion Lung Ratio 0.22 ± 0.22 0.21 ± 0.18 0.70 
Age 62 ± 17 60 ± 15 0.53 
Weight 77 ± 15 78 ± 16 0.18 
Height 170 ± 9.7 170 ± 9.5 0.54 
BMI 28 ± 4.7 28 ± 5.8 0.32 
O2 Saturation (O2Sat) 90 ± 7.8 87 ± 10 0.66 
Systolic Blood Pressure (SBP) 130 ± 23 120 ± 24 0.76 
Diastolic Blood Pressure (DBP) 78 ± 14 76 ± 12 0.60 
Respiratory Rate (RR) 20 ± 4.7 22 ± 7.3 0.39 
Pulse Rate (PR) 94 ± 20 93 ± 13 0.08 
Temperature in Celsius Degree 

(T) 
37 ± 1 37 ± 0.93 0.61 

HB 13 ± 2.9 12 ± 2.8 0.90 
White Blood Cells (WBCs) 9000 ± 17000 9900 ± 8000 0.18 
Platelet Count in/mm3 (Plt) 180000 ± 96000 210000 ±

110000 
0.65 

Lymphocyte Diff 19 ± 13 20 ± 13 0.62 
Neutrophile Diff 73 ± 16 71 ± 16 0.67 
Monocyte Diff 5.9 ± 3.4 6.7 ± 2.9 0.82 
Eosinophile Diff 1.7 ± 2.6 1.6 ± 1.1 0.19 
C-reactive Protein in mg/L 

(CRP) 
64 ± 46 66 ± 40 0.45 

Blood Creatinine Level in mg/ 
dL (Cr) 

1.3 ± 1 1.7 ± 1.7 0.18 

BUN 24 ± 23 28 ± 26 0.84 
AST 82 ± 220 54 ± 43 0.45 
ALT 53 ± 160 38 ± 47 0.75 
ALP 250 ± 250 180 ± 110 0.52 
Sodium in mEq/L (Na) 140 ± 18 140 ± 3.6 0.39 
Potassium in mEq/L (K) 4.6 ± 0.75 4.7 ± 0.72 0.96 
PT 18 ± 10 16 ± 4.9 0.87 
PTT 28 ± 11 27 ± 7.6 0.27 
INR 1.6 ± 1 1.3 ± 0.43 0.58 
T.Bill 2.1 ± 5 1.6 ± 2.6 0.50 
D.Bill 0.91 ± 2.7 0.42 ± 0.26 0.75 
PH 7.4 ± 0.08 7.4 ± 0.1 0.89 
PCO2 40 ± 8.8 41 ± 13 0.07 
HCO3 24 ± 5.7 24 ± 5.7 0.16 
Total Invasive Score (Total. 

Inv.Score) 
6.4 ± 4 7.2 ± 4.9 0.88  

Table 3 
Descriptive statistics (frequency and percent) of discrete (categorical) clinical 
features in the training/validation and test sets.  

Categorical Features  Training/ 
Validation 
(frequency in %) 

Test 
(frequency in 
%) 

p- 
value 

Gender F 37 (34.6%) 28 (62.2%) 0.15 
M 70 (65.4%) 17 (37.8%) 

ground-glass opacities 
(GGO) 

0 4 (3.74%) 0 1.00 
1 49 (45.8%) 21 (46.7%) 
2 54 (50.5%) 24 (53.3%) 

Consolidation 0 7 (6.54%) 7 (15.6%) 1.00 
1 53 (49.5%) 13 (28.9%) 
2 47 (43.9%) 25 (55.6%) 

Reticular 0 36 (33.6%) 12 (26.7%) 0.58 
1 51 (47.7%) 25 (55.6%) 
2 20 (18.7%) 8 (17.8%) 

Axial Distribution)Ax. 
Dist( 

1 61 (57%) 23 (51.1%) 0.74 
2 2 (1.87%) 1 (2.22%) 
3 44 (41.1%) 21 (46.7%) 

Coronal Distribution (CC. 
Dist) 

1 4 (3.74%) 2 (4.44%) 0.37 
2 36 (33.6%) 16 (35.6%) 
3 67 (62.6%) 27 (60%) 

Number of Involved 
Zones (Num.Zones. 
Involved) 

1 3 (2.8%) 1 (2.22%) 0.79 
2 9 (8.41%) 3 (6.67%) 
3 6 (5.61%) 4 (8.89%) 
4 9 (8.41%) 5 (11.1%) 
5 20 (18.7%) 5 (11.1%) 
6 60 (56.1%) 27 (60%) 

Pleural Effusion (Pleural. 
Eff) 

0 78 (72.9%) 36 (80%) 0.46 
1 29 (27.1%) 9 (20%) 

Pericardial Effusion 
(Pericardial.Eff) 

0 88 (82.2%) 37 (82.2%) 1.00 
1 19 (17.8%) 8 (17.8%) 

Emphysema 0 79 (73.8%) 34 (75.6%) 0.61 
1 28 (26.2%) 11 (24.4%) 

Cardiomegaly 0 49 (45.8%) 22 (48.9%) 1.00 
1 58 (54.2%) 23 (51.1%) 

Diabetes 0 76 (71%) 35 (77.8%) 0.50 
1 31 (29%) 10 (22.2%) 

Hypertension) HTN ( 0 71 (66.4%) 28 (62.2%) 1.00 
1 36 (33.6%) 17 (37.8%) 

Ischemic Heart Disease) 
IHD ( 

0 82 (76.6%) 37 (82.2%) 1.00 
1 25 (23.4%) 8 (17.8%) 

Cancerous 0 95 (88.8%) 42 (93.3%) 0.75 
1 12 (11.2%) 3 (6.67%) 

Smoking 1 94 (87.85%) 39 (86.67%) 0.55 
2 9 (8.41%) 4 (8.89%) 
3 4 (3.74%) 2 (4.44%) 

Consciousness 0 2 (1.87%) 0 0.46 
1 1 (0.935%) 1 (2.22%) 
2 9 (8.41%) 4 (8.89%) 
3 95 (88.8%) 40 (88.89%) 

Mixed 0 50 (46.7%) 30 (66.7%) 0.57 
1 57 (53.3%) 15 (33.3%)  
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among features [50]. The eXtreme Gradient Boosting (XGBoost) ma
chine learning algorithm [51] which is an ensemble learning algorithms 
based on different decision trees was adopted for classification. Feature 
selection and classification were performed using praznik and caret R 
packages,2 respectively. 

2.8. Data modeling and univariate analysis 

We developed various prognostic models using the collected data 

and the adopted classification method. Our models were: 1) Clinical 
(pre-clinical, lab and radiological data), 2) Lung radiomics (radiomic 
features extracted from the whole lung), 3) Lesion radiomics (radiomic 
features extracted from lesions), 4) Lung + Lesion (combined radiomic 
features extracted from whole lung and lesions), 5) Lung + Clinical 
(combined radiomic features extracted from whole lung, clinical and 
radiological data), 6) Lesion + Clinical (combined radiomic features 
extracted from lesions, clinical and radiological data) and 7) Lung +
Lesion + Clinical (combined radiomic features extracted from whole 
lung, lesions, clinical and radiological data). For model validation, 106 
patients were used as the training/validation dataset whereas the 
remaining 46 patients were used as the test (unseen and untouched 
during training) dataset. The ROC, AUC, accuracy (ACC), sensitivity 
(SEN) and specificity (SPE) were used to assess the prognostic perfor
mance of the models. The different steps followed are summarized in 
Fig. 3:  

1. The model was trained using 106 patients’ data. Yet, to find the 
optimal hyperparameters of models, we used bootstrap resampling 
with 1000 repetitions. Bootstrap techniques were used for XGBoost 
hyperparameters tunning (using the random search method) imple
mented with 1000 repetitions.  

2. After tuning and optimizing the models based on AUC, we selected 
the optimal model. 

3. The optimal model was tested on the test set (test datasets un
touched/unseen during bootstrapping). We calculated Accuracy, 
AUC, Sensitivity, and Specificity for the optimal model on the test 
datasets.  

4. Steps 1–3 were repeated 100 times to ensure the repeatability of the 
results.  

5. The Mean, SD and CI95% were calculated from step 4 for Accuracy, 
AUC, Sensitivity, Specificity metrics.  

6. Clinical, radiomics and combined models were statistically evaluated 
using the results of step 5. 

We repeatedly trained a bootstrapped model with 1000 repetition 
(on 106 patients dataset) and tested on an independent dataset for 100 
times to make sure that the results are repeatable for different models. 
All results were reported on 46 test sets (unseen during model training 
by bootstrap) by 100 times repetitions. The mean, standard deviation 
and 95% confidence interval (CI) were reported for each model for 100 
times repetitions of the whole process. After data normality test using 
Kolmogorov-Smirnov normality test, we used Wilcoxon signed-rank test 
to determine significant differences between the models. A p-value <
0.05 was used as a criterion for statistically significant differences. All 
statistical analysis was performed using R 3.6.3 software. 

3. Results 

3.1. Patient population 

Following application of inclusion and exclusion criteria, 152 pa
tients including 87 males and 65 females were retained from an initial 
triage of 545 patients. Forty patients with a mean age of 65.7 years had 
critical conditions and eventually died, whereas 112 cases with a mean 
age of 59.5 years fully recovered from COVID-19. The flowchart in Fig. 2 
shows the number of excluded, included, recovered and deceased pa
tients. The details of the descriptive statistics of continuous and cate
gorical features of patients are presented in Tables 2 and 3 for the 
training/validation and test sets (unseen and untouched during 
training). 

3.2. Univariate analysis 

Our univariate analysis of clinical features is shown in Supplemental 
Figures 1 and 2 as categorical and continuous features in terms of AUC, 

Fig. 4. Heat map of area under the curve (AUC), accuracy (ACC), sensitivity 
(SEN) and specificity (SPE) for different combinations of models. 

Table 4 
Mean and STD of area under the curve (AUC), accuracy (ACC), sensitivity (SNE) 
and specificity (SPE) in the test set for the different models studied.  

Mean ± Sd AUC ACC SEN SPE 

Clinical 0.87 ±
0.04 

0.79 ±
0.05 

0.76 ±
0.07 

0.82 ±
0.08 

Lung 0.92 ±
0.03 

0.85 ±
0.04 

0.85 ±
0.07 

0.85 ±
0.06 

Lesion 0.92 ±
0.03 

0.85 ±
0.05 

0.87 ±
0.06 

0.83 ±
0.08 

Lung + Lesion 0.91 ±
0.04 

0.83 ±
0.05 

0.85 ±
0.08 

0.80 ±
0.09 

Lung + Clinical 0.92 ±
0.03 

0.85 ±
0.04 

0.83 ±
0.06 

0.87 ±
0.05 

Lesion + Clinical 0.94 ±
0.03 

0.87 ±
0.04 

0.87 ±
0.07 

0.87 ±
0.06 

Lung + Lesion +
Clinical 

0.95 ±
0.03 

0.88 ±
0.04 

0.88 ±
0.06 

0.89 ±
0.07  

Table 5 
Confidence interval (CI) of area under the curve (AUC), accuracy (ACC), sensi
tivity (SNE) and specificity (SPE) in the test set for the different models.  

CI (lower-upper) AUC ACC SEN SPE 

Clinical 0.86–0.87 0.78–0.80 0.74–0.77 0.81–0.84 
Lung 0.91–0.92 0.84–0.86 0.84–0.86 0.84–0.87 
Lesion 0.91–0.93 0.84–0.86 0.85–0.88 0.81–0.84 
Lung + Lesion 0.90–0.91 0.82–0.84 0.84–0.87 0.79–0.82 
Lung + Clinical 0.92–0.93 0.84–0.86 0.82–0.84 0.86–0.88 
Lesion + Clinical 0.93–0.95 0.86–0.88 0.86–0.89 0.85–0.88 
Lung + Lesion + Clinical 0.95–0.96 0.88–0.89 0.87–0.90 0.87–0.90  

2 https://www.r-project.org. 
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p- and q-values. In this regard, clinical features, including BUN (AUC =
0.73) and oxygen saturation (AUC = 0 0.71), monocyte (AUC = 0.70) 
and a number of involved zones (AUC = 0.70) were identified as most 
prognostic features. Amongst continuous clinical features, systolic blood 
pressure, diastolic blood pressure, hemoglobin, platelet, lymphocyte, 
neutrophil, monocyte, had a q-value < 0.05. Amongst discrete (cate
gorical) clinical features, smoking, cancerous, consciousness and total 
involvement score proved to be statistically significant features (p-value 
< 0.05) between two alive and deceased group. 

For univariate radiomics analysis, the results are displayed in Sup
plemental Figures 3 and 4. Amongst lung radiomic features, SAHGLE 
(AUC = 0.70) and HGLZE (AUC = 0.67) from GLSZM, JA and SA from 
GLCM, Busyness from NGTDM and Median from FO (AUC = 0.67) were 
found as most prognostic features. Amongst lesion radiomic features, 
RLNU from GLRLM, HGLZE from GLSZM, DNU from GLDM, Range from 
FO and Volume from Shape (AUC = 0.73) had the highest performance 
with significant q-value after FDR correction. 

3.3. Models 

Importance features selected by the MRMR algorithm were reported 
for each model in Supplemental Table 2. Fig. 4 depicts the heat map of 
AUC, ACC, SEN and SPE for different combinations of models. The mean 
(STD) and confidence interval (CI) for AUC, ACC, SEN and SPE for the 
developed models (test set) are summarized in Tables 4 and 5, respec
tively. Our results indicated that the combined model (Lung + Lesion +
Clinical) had the highest prognostic capability with AUC = 0.95 ± 0.02, 
ACC = 0.88 ± 0.04, SEN = 0.88 ± 0.06 and SPE = 0.89 ± 0.07. The 95% 
CI for these parameters were 0.95–0.96, 0.88–0.89, 0.87–0.90 and 
0.87–0.90, respectively. 

The ROC curve and boxplot of these models for the test set are shown 
in Figs. 5 and 6, respectively. In the boxplots, significant differences 
among the models can be observed. To compare the models in terms of 
significant changes in AUC, ACC, SEN and SPE, p-value plots are shown 
in Fig. 7. It can be seen that the combined Lung + Lesion + Clinical 
model has significant AUC differences (p < 0.05) relative to other 

models. The model was also significantly different in terms of ACC with 
respect to all models. With respect to SPE, all models had significant 
differences, except Lung + Clinical model, whereas for SEN, all models 
were significantly different, except the Lesion + Clinical model. In terms 
of AUC, except Lung and Lesion, Lung + Clinical and Lung, Lung +
Lesion and Lung models as well as Lung + Clinical and Lesion models 
were significantly different (p < 0.05). 

4. Discussion 

A novel approach for prognostication of COVID-19 patients using 
different image-derived features, including semantic, radiomics and 
clinical data (demographics and history, laboratory tests and visual 
scoring of CT by radiologists) was presented in this work. We demon
strated that clinical and quantitative radiomic features, alone or in 
combination, can be used as potential biomarkers for the prediction of 
survival in COVID-19 patients. Although some radiomic studies have 
been conducted in the framework of COVID-19, this is to the best of our 
knowledge, the first study reporting on the use of advanced combined 
models for prognosis survival analysis. 

We extracted two categories of radiomic features from whole lung 
and lung lesions. The aim was to assess how the extracted radiomic 
features might be used as different prognostic parameters. Decoding 
heterogeneity is among the aims of radiomics analysis. Hence, since the 
delineated lesions and whole lungs have different characteristics, they 
could serve as different markers. Conversely, combining these features 
along with other clinical parameters provides more variables for 
developing more predictive models. In previous lung radiomic studies, 
adding clinical data to radiomic signatures improved model perfor
mance. A study by Chen et al. [52] demonstrated that adding clinical 
data, such as smoking history, enabled to slightly improve performance 
for differentiating peripherally-located small cell lung cancer from 
non-small cell lung cancer using CT radiomic features. 

Univariate analysis showed that some clinical parameters might be 
predictive. Although for single clinical parameters, the highest AUCs 
were achieved for BUN, oxygen saturation, monocyte count and a 

Fig. 5. ROC curve of the different models in the test sets.  
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number of involved zones. These findings were congruent with previous 
studies. Several studies have suggested that increased BUN can be 
attributed to acute kidney injury during the course of the disease, which 
can be a cause of adverse effects [53–55]. Colombi et al. [56] reported 
lung involvement area and hypoxia as reliable predictors of ICU 
admission and mortality among COVID-19 patients. Conversely, we 
believe that the fact that the results on monocyte count can be an 
outcome predictor is the consequence of our sample size as Zeng et al. 
[57] did not report significant differences between severe and 
non-severe patients in a population of 3090 patients from 15 different 
studies. With respect to single imaging measures, we observed that 
several radiomic features were predictive in both lesion and whole lung 

delineations. When comparing these two feature categories, it appeared 
that whole lung features have higher AUCs. A recent study by Tan et al. 
[58] demonstrated the predictive value of non-focus area of CT images 
to distinguish different clinical types of COVID-19 pneumonia. In our 
study, whole lung features provided more relevant characteristics of the 
disease in COVID-19 patients. Extracting radiomic features from infec
ted and non-infected regions provided a more accurate prognostic 
model. 

On the modeling of prognosis prediction, we observed that the 
combined model including all measures had the highest performance 
and had significant differences with other models. In addition, we 
showed that other models have similar behavior, although there were 

Fig. 6. Box plot of the area under the curve (AUC), accuracy (ACC), sensitivity (SEN) and specificity (SPE) for different combinations of models. P-values comparing 
differences in values with respect to the Lung + Lesion + Clinical model are shown. Not significant (ns): p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001 and ****: 
p ≤ 0.0001. 
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significant differences among them. For both radiomic models, the AUC 
had a range varying from 0.91 to 0.93. However, when they were 
combined with clinical features, the AUC improved from 0.91 to 0.93 to 
0.95–0.96. These results indicated that the combined models provided 
more accurate information. In addition, compared to univariate radio
mics analysis, multivariate modeling results in more reliable results. It 
should be emphasized that in predictive modeling, the variables are the 
heart of the model, although the classifiers have a critical role [59,60]. 
In this work, we used a classifier with a wide range of features. 

A wide range of image analysis algorithms combined with machine 
learning techniques were recently designed for COVID-19 detection, 
diagnosis and prognosis. Li et al. [61] applied artificial intelligence al
gorithms to distinguish COVID-19 from community acquired pneumonia 
on chest CT. They developed a deep learning model, COVID-19 detection 
neural network (COVNet), to extract visual features from volumetric 

chest CT examinations for the detection of COVID-19 and compared 
them to community acquired pneumonia and other non-pneumonia 
images. Their model achieved a sensitivity and specificity of 90% and 
96%, respectively, with an AUC of 0.96. Although deep learning models 
have achieved a high predictive/prognostic performance, their mecha
nisms of action are not fully understood [62]. Yet, radiomic features may 
provide more reliable results because they capture tissue characteristics. 
Hence, studies have indicated that these markers could decode the 
biological properties of the tissues [63,64]. In this regard, we believe 
that our results could be exploited reliably in clinical practice. 

Although the presented results are important, this study inherently 
bears a number of limitations. First, the sample size is low and there is a 
lack of external validation set from different centers. Further clinical 
studies are needed to verify our results with larger clinical databases. 
Second, therapeutic strategies for patients were not considered in this 

Fig. 7. P-values for the comparison between the different models with respect to the area under the curve (AUC), accuracy (ACC), sensitivity (SEN) and speci
ficity (SPE). 
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study. Including treatment parameters in the models will provide more 
reliable results. Third, although our imaging and radiomics settings 
were similar for all patients, we suggest to assess radiomic features 
reproducibility before clinical adoption. Image segmentation was per
formed by an experienced radiologist only once, and as such, it was not 
possible to estimate the intra-observer variability and repeatability of 
the segmentations. Forth, we only tested one feature selection and 
classifier algorithms. As there is no one-fits-all machine learning algo
rithm, different combinations of feature selectors and classifiers result in 
different performance. Future studies should focus on evaluating 
different algorithms and comparing their performance [65,66]. Various 
inclusion and exclusion criteria were applied retrospectively to the 
datasets, which decreased the number of cases. Patients with severe 
motion artifacts, which is inevitable in some non-cooperative or unsta
ble patients, were excluded. This might impact the generalizability of 
the obtained results. Future studies should use a more heterogeneous 
dataset in terms of CT image quality to ensure the generalizability of the 
model. 

5. Conclusion 

We demonstrated that the combination of radiomic features, clinical 
and radiological data could be used to effectively predict survival in 
COVID-19 patients. To the best of our knowledge, this is the first study 
applying such methodology for COVID-19 prognosis survival modeling. 
We also demonstrated that there are a number of individual predictive 
clinical or imaging features having the potential to be used in routine 
clinical practice for more accurate management of COVID-19 patients. 
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