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Abstract

In this paper, we propose an approach for affective
representation of movie scenes based on the emotions
that are actually felt by spectators. Such a
representation can be used for characterizing the
emotional content of video clips for e.g. affective video
indexing and retrieval, neuromarketing studies, etc. A
dataset of 64 different scenes from eight movies was
shown to eight participants. While watching these
clips, their physiological responses were recorded. The
participants were also asked to self-assess their felt
emotional arousal and valence for each scene. In
addition, content-based audio- and video-based
features were extracted from the movie scenes in order
to characterize each one. Degrees of arousal and
valence were estimated by a linear combination of
features from physiological signals, as well as by a
linear combination of content-based features. We
showed that a significant correlation exists between
arousal/valence provided by the spectator's self-
assessments, and  affective  grades  obtained
automatically from either physiological responses or
from audio-video features. This demonstrates the
ability of using multimedia features and physiological
responses to predict the expected affect of the user in
response to the emotional video content.

Keywords: Multimedia indexing and retrieval,
affective personalization and characterization, emotion
recognition and assessment, affective computing,
physiological signals analysis.

1. Introduction

The amount of available digital multimedia content
has greatly increased during the last decade. Powerful
and novel multimedia indexing and retrieval methods
have thus become essential to sift through such
abundance. In this paper we propose to use the
emotion that is actually felt by a given spectator as an
indexing feature, in addition to more classical features
like those based on video analysis of the media

content. In order to demonstrate that for movie scenes
affect can be represented by grades we compared self-
assessment of the emotional content of scenes, with

affective grades automatically estimated from
physiological responses and multimedia content
analysis.

The affective and emotional preferences of a user
play an important role in multimedia content selection.
Imagine you feel bored and you are looking for an
entertaining movie. How can a system understand your
affective preferences? What are your real affective
preferences? These questions are hard to answer,
because user emotional preferences depend on many
aspects such as context, culture, sex, age, etc. A
“personal content delivery” [1] system which considers
one's emotional preferences should answer these
needs. This paper introduces an affective
representation method that can operate at the core of
such a system.

To estimate affect, physiological responses are
valued for not interrupting users for self reporting
phases. In addition, affective self-reports might be held
in doubt because the participant cannot remember all
the different emotions he/she had during the
experiment, and/or might misrepresent his/her feelings
due to self presentation (i.e. the participant wants to
show he/she is courageous whereas in reality he/she
was scared) or for pleasing the experimenter [2]. Self-
assessment is however necessary as ground truth, to
show that the physiological measurements are valid
and also to train the affect representation system.
Finally, while self reports are unable to represent
dynamic changes, physiological measurements give the
ability of measuring the user responses dynamically
[3].

Affect based video content characterization requires
the understanding of the intensity and type of affect
which is expected to be evoked in the user (audience)
while watching a movie/video. There are only a limited
number of studies on content-based affective
representation/understanding of movies, and these



mostly rely on self-assessments or population averages
to obtain the emotional content of a movie [1;4].

Wang and Cheong [4] used content-based audio and
video features to classify basic emotions elicited by
movie scenes. They classified audio, into music,
speech and environment signals and processed them
separately to shape an audio affective vector. They
combined this vector with video-based features such as
key lighting, and visual excitement to generate a scene
affective vector, which was classified and labeled with
emotions. Hanjalic et al. [1] introduced “personalized
content delivery” as a valuable tool in affective
indexing and retrieval systems. They first selected
video- and audio- content based features based on their
relation to the arousal and valence space that was
defined as an affect model for affect ([5]; see also
Section 2 of this paper). Combining these features,
they then estimated arising emotions in this space.
While the arousal and valence grades could be used
separately for indexing, they combined those grades by
following their temporal pattern in this arousal/valence
space. This allowed determining an affect curve shown
to be useful for extracting video highlights in a movie
or sport video.

Affective  systems  require  methods  for
automatically assessing user's emotional state.
Computerized emotion assessment gained interest over
the last years. Most of current methods focus on facial
expressions and speech analysis. However, these
methods cannot always be relied upon since users are
not always speaking or turning their head towards the
camera lens. With the advancement of wearable
systems for recording peripheral physiological signals,
it is becoming more practically feasible to employ
these signals in an easy-to-use human computer
interface [6;7]. We therefore concentrated on the use
of peripheral physiological signals for assessing
emotion, namely: galvanic skin resistance (GSR),
blood pressure which provided heart rate, respiration
pattern, and skin temperature. In order to record facial
muscles activity we also used electromyograms (EMG)
from the Zygomaticus major and Frontalis muscles. At
this stage of the study, we opted for not using
electroencephalograms  (EEG) due to  the
cumbersomeness of the apparatus and acquisition
protocols, although EEG's have been shown to be very
useful for assessing emotions [6;8-11].

This paper demonstrates a first step towards
benefiting from actual physiological responses for
creating affect-based tools. Personalized emotional
profiles can be determined and subsequently used for
affect based video indexing. Peripheral physiological
signals were first recorded for monitoring the
arousal/valence grades of participants’ emotion while

they were watching a movie scene. In order to
understand the user’s emotional behavior, sets of
features extracted from the physiological signals were
linearly combined to obtain an estimate for the arousal
and valence grades. These grades, assessed while
watching movie scenes, can be used as a new
dimension of information in a user’s personal affective
profile. Multimedia content-based features were also
extracted from the scenes by audio and video
processing. The correlation between the self-assessed
arousal/valence values and those computed from
physiological features was determined, as well as the
correlation between these self-assessed arousal/valence
values and those obtained from multimedia features.
The correlation between the physiological signals and
the multimedia features was also investigated to
determine which multimedia features give rise to
which type of emotion. All correlations are shown to
be significant: physiological responses of participants
can characterize video scenes, and audio-visual
features can fairly reliably be used to predict the
spectator's felt emotion. The variation between
participants of those content-based features that were
the most correlated with self-assessment demonstrates
the need for considering personal preferences in
affective indexing of multimedia contents. Finally it
can be noted that we did not focus on temporal
changes in arousal and valence space, rather we
investigated the average affect related to each movie
segments of interest (scenes).

The remainder of this paper is organized as follows.
Section 2 presents some background on representation
of affect and on the arousal/valence model to represent
emotions. Section 3 elaborates on data acquisition,
feature extraction and selection, and how features are
combined for representation. The experimental results
are given in Section 4 and finally conclusions are
presented in Section 5.

2. Affective representation

Emotions are not discrete phenomena but rather
continuous ones. Psychologists therefore represent
emotions or feelings in an n-dimensional space
(generally 2- or 3-dimensional). The most famous such
space, which is used in the present study and originates
from cognitive theory, is the 2D valence/arousal space.
Valence represents the way one judges a situation,
from unpleasant to pleasant; arousal expresses the
degree of felt excitement, from calm to exciting. Cowie
used the valence/activation space (similar to the
valence/arousal space) to model and assess emotions
from speech [7;12]. Although such spaces do not
provide any verbal description, a point in such space
can be mapped to a categorical feeling label.



In order to record their felt emotions, participants
were asked to grade each movie scene by arousal and
valence grades using self-assessment Manikins (SAM)
[13]. The arousal grade represented the level of arousal
or excitement felt when watching the scene while the
valence grade represents the felt pleasantness.

3. Material and methods
3.1. Overview

A video dataset of 64 movie scenes was created
(see Section 3.3) from which content-based low-level
features were extracted. Experiments were conducted
during which physiological signals were recorded from
spectators. After each scene, the spectator self-assessed
his/her arousal and valence levels. To reduce the
mental load of the participants, the protocol divided
the show into 2 sessions of 32 movie scenes each.
Each of these sessions lasted approximately two hours,
including setup. Eight healthy participants (three
female and five male, from 22 to 40 years old)
participated in the experiment. Thus, after finishing the
experiment three types of affective information about
each movie clip were available:

. multimedia content-based information extracted
from audio and video signals;
. physiological responses from spectators’ bodily

reactions (due to the autonomous nervous system) and
from facial expressions;

. self-assessed arousal and valence, used as
‘ground truth’ for the true feelings of the spectator.
Since video scenes were showed in random order, the
occurrence of high and low arousal and valence values
in the self-assessed vectors (64 elements each) does
not depend on the order in which scenes were
presented.

Next, we aim at demonstrating how those true
feelings about the movie scenes can be obtained by
using the information that is either extracted from
audio and video signals or contained within the
recorded physiological signals. To this end, features
that are likely to be influenced by affect have been
extracted from the audio and video content as well as
from the physiological signals. Thus a (single) feature
vector composed of 64 elements highlights a single
characteristic (for instance, average sound energy) of
the 64 movie scenes. In a similar way feature vectors
were extracted from the physiological signals. As one
may expect, a single feature, e.g. average sound
energy, may not be equally relevant to the affective
feelings of different participants. In order to
personalize the set of all extracted features, an
additional operation called relevant-feature selection
has been implemented. During the relevant-feature
selection for arousal, the correlation between the

single-feature vectors and the self-assessed arousal
vector is determined. Only the features with high
absolute correlation coefficient (| p | above 0.25 and p-
value below 0.05) were subsequently used for
estimating arousal. A similar procedure was performed
for valence. It will be shown that accurate estimates of
the self-assessed arousal and valence can be obtained
based on the relevant feature vectors for physiological
signals as well as from the relevant feature vectors for
audio and video information.
3.2. Experiments

The participants were first informed about the
experiment, the meaning of arousal and valance, the
self-assessment procedure, and the video content. In
emotional-affective experiments the bias of the
emotional state (participants' mood) needs to be
removed. To allow leveling of feature values over time
a baseline is recorded at each trial start by showing one
short 30s. neutral clip randomly selected from clips
provided by the Stanford psychophysiology laboratory
[14].
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Figure 1. Experimental protocol.

Figure 1 presents the experimental protocol and its
timing. Each trial started with the user pressing the “I
am ready” key which started the neutral clip playing.
After watching the neutral clip, one of the movie
scenes was played. Movie scenes were selected from
the dataset in random order. After watching the movie
scene, the participant filled in the self-assessment form
which popped up automatically. In total, the time
interval between the starts of consecutive trials was
approximately three to four minutes. This interval
included playing the neutral clip, playing the selected
scene, performing the self-assessment, and the
participant-controlled rest time.

In the self-assessment step for evaluating arousal
and valence, the SAM Manikin pictures with a slider to
facilitate self-assessment of arousal and valence were
used (see Figure 2). The sliders correspond to a
numerical range of [0, 1] while the numerical scale
was not shown to the participants.
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Figure 2. Arousal and valence self-

assessment: SAM manikins and sliders.
3.3. Data
3.3.1. Movie scenes dataset

To create the video dataset, we extracted video
scenes from eight movies selected either according to
similar studies (e.g. [1;4;6;14]), or from recent famous
movies. The movies included four major genres:
drama, horror, action, and comedy. Video clips used
for this study are from the following: Saving Private
Ryan (action), Kill Bill, Vol. 1 (action), Hotel Rwanda
(drama), The Pianist (drama), Mr. Bean’s Holiday
(comedy), Love Actually (comedy), The Ring,
Japanese version (horror) and 28 Days Later (horror).
The extracted scenes, eight for each movie, had
durations of approximately one to two minutes each
and contained an emotional event (judged by the
authors).
3.3.2. Physiological signals

Peripheral signals and facial expression EMG
signals were recorded for emotion assessment. EMG
signals from the right Zygomaticus major muscle
(smile, laughter) and right Frontalis muscle (attention,
surprise) were used as indicators of facial expressions.
Galvanic skin resistance (GSR), skin temperature,
breathing pattern (using a respiration belt) and blood
pressure (using a plethysmograph) were also recorded.
All physiological data was acquired via a Biosemi
Active-two system with active electrodes, from
Biosemi Systems (http://www.biosemi.com). The data
were recorded with a sampling frequency of 1024 Hz
in a sound-isolated Faraday cage. Examples of
recorded physiological signals in a surprising scene are
given in Figure 3. The GSR and respiration signals
were respectively smoothed by a 512 and a 256 points
averaging filters to reduce the high frequency noise.
EMG signals were filtered by a Butterworth band pass
filter with a lower cutoff frequency of 4 Hz and a
higher cutoff frequency of 40 Hz.
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Figure 3. Physiological response (participant
2) to a surprising action scene. The following
raw physiological signals are shown:
respiration pattern (a), GSR (b), blood
pressure (c), and Frontalis EMG (d). The
surprise moment is indicated by an arrow.

3.4. Feature extraction
3.4.1. Audio and video content-based features

Sound has an important impact on user’s affect. For
example according to the findings of Picard [15],
loudness of speech (energy) is related to evoked
arousal, while rhythm and average pitch are related to
valence. The audio channels of the movie scenes were
extracted and encoded into monophonic information
(MPEG layer 3 format) at a sampling rate of 48 kHz,
and their amplitude range was normalized in [-1, 1].
All of the resulting audio signals were normalized to
the same amplitude range before further processing. A
total of 79 low-level audio features were determined
for each of the audio signals. These features, listed in
Table 1, are commonly used in audio and speech
processing and audio classification [16;17].

Wang et al [4] demonstrated the relationship
between audio type’s proportions and affect, where
these proportions refer to the respective duration of
music, speech, environment, and silence in the audio
signal of a video clip. To determine the three important
audio types (music, speech, and environment), silence
was first identified by comparing the audio signal
energy of each sound sample with a pre-defined
threshold empirically set at 5x107. After removing
silence, the remaining audio signals were classified by
the three classes support vector machine (SVM). We
implemented a three class audio type classifier using
support vector machines (SVM with polynomial
kernel) operating on audio low-level features in a time
window of one second. Despite some classes
overlapping (e.g. presence of a musical background
during a dialogue), the classifier was usually able to
recognize the dominant audio type. The SVM was
trained utilizing more than 3 hours of audio, extracted
from movies and labeled manually. The classification



results were used to form 4 bins (3 audio types and
silence) normalized histogram; these histogram values
were used as affective features for the affective
representation. MFCC (Mel frequency cepstral
coefficients), LPCC (Linear prediction cepstral
coefficients) and the pitch of audio signals were
extracted using the PRAAT software package [18].

Movie scenes have been segmented at the shot level
using the OMT shot segmentation software [19]. Video
clips were encoded into MPEG-1 format to extract
motion vectors and [ frames for further feature
extraction. We used the OVAL library (Object-based
Video Access Library) [20] to capture video frames
and extract motion vectors.

From a movie director's point of view, lighting key
[4;22] and color variance [22] are important
parameters to evoke emotions. We therefore extracted
lighting key from frames in the HSV space by
multiplying the average value (V in HSV) by the
standard deviation of the values (V in HSV). Color
variance was obtained in the CIE LUV color space by
computing the determinant of the covariance matrix of
L, U, and V.

The average shot change rate, and shot length
variance were extracted to characterize video rhythm.
Hanjalic et al. [1] showed the relationship between
video rhythm and affect. Fast object movements in
successive frames are also an effective factor to evoke
excitement. To measure this factor, the motion
component was defined as the amount of motion in
consecutive frames computed by accumulating
magnitudes of motion vectors for all B and P frames.

Colors and their proportions have an effect to elicit
emotions. In order to use colors in the list of video
features, a 20 bin color histogram of hue and lightness
values in the HSV space was computed for each I
frame and subsequently averaged over all frames. The
resulting averages in the 20 bins were used as video
content-based features. The median of L value in HSL
space was computed to obtain the median lightness of
a frame. Shadow proportion or the proportion of dark
area in a video frame is another feature which relates
to affect [4]. Shadow proportion is determined by
comparing the lightness values in HSL color space
with an empirical threshold. Pixels with lightness level
below this threshold (0.18 [4]) are assumed to be dark
and in shadow in the frame.

Table 1. Low-level features from audio signals.

LPCC (16 features), derivative of LPCC

LpCe (16 features), [16]
. Spectrum flux, spectral centroid, delta spectrum
Time - . . )
magnitude, band energy ratio, dominant pitch
frequency

frequency[16;17]

ZCR Zero crossing rate [16]

Silence ratio Proportion of silence in a time window [21]

3.4.2. Physiological features

GSR provides a measure of the resistance of the
skin by positioning two electrodes on the tops of two
fingers and passing a negligible current through the
body. This resistance decreases due to an increase of
sudation, which usually occurs when one is
experimenting emotions such as stress or surprise.
Moreover, Lang et al. discovered that the mean value
of the GSR is related to the level of arousal [23]. (See
Table 2 which summarizes the list of features extracted
from physiological signals.)

A plethysmograph measures blood pressure in the
participant’s thumb. This measurement can also be
used to compute heart rate by identification of local
maxima (i.e. heart beats) and inter-beat periods. Blood
pressure and heart rate variability correlate with
emotions, since stress can increase blood pressure [7].
Pleasantness of stimuli can increase peak heart rate
response [23], and heart rate variability decreases with
fear, sadness, and happiness [24].

Table 2. Features from peripheral signals.

Peripheral signal Extracted features

Average skin resistance, average of
derivative, mean of derivative for negative
GSR values only(average decrease rate during
decay time), proportion of negative samples
in the derivative vs. all samples

Average blood pressure, heat rate, heart rate

(PISL(;Z?nggr‘th) derivative, he‘art‘ rate Yariability, standard
deviation of heart rate
Band energy ratio (energy ratio between the
lower (0.05-0.25Hz) and the higher (0.25-
5Hz) bands), average respiration signal,
Respiration mean of derivative (variation of the
respiration signal), standard deviation,
dynamic range or greatest breath, breathing
rhythm (spectral centroid)
EMG Zygomaticus Energy
EMG Frontalis Energy

Rate of eye blinking per second, extracted

Eye blinking rate from the Frontalis EMG

Range, average, minimum, maximum,

Skin Temperature o
peratu standard deviation

Feature set Extracted features

MECC MFCC coefficients, derivative and autocorrelation
of MFCC, each 13 features [16]

Energy Average energy of the audio signal [16]

Skin temperature was also recorded since it changes
in different emotional states [23]. The respiration
pattern was measured by tying a respiration belt
around the chest of the participant. Slow respiration is
linked to relaxation while irregular rhythm, quick
variations, and cessation of respiration correspond to
more aroused emotions like anger or fear [24;25].



Regarding the EMG signals, the Frontalis muscles
activity is a sign of attention or stress in facial
expressions. The activity of the Zygomaticus major
was also monitored, since this muscle is active when
the user is laughing or smiling [26]. Most of the power
in the spectrum of an EMG during muscle contraction
is in the frequency range between 4 to 40 Hz. Thus, the
muscle activity features were obtained from the energy
of EMG signals in this frequency range for the
different muscles.

The rate of eye blinking is another feature, which is
correlated with anxiety [27]. Eye-blinking affects the
EMG signal that is recorded over the Frontalis muscle
and results in easily detectable peaks in that signal.
3.5. Feature selection and regression

The relevance of features for affect was determined
using linear correlation between each extracted feature
and the users’ self-assessment, as motivated in Section
3.1 In this study, a significant correlation between two
vectors was supposed to exist when the absolute
correlation exceeded 0.25 (| p | > 0.25) with p-value
below 0.05. The p-value represents the probability that
a randomly selected vector would lead to a p value that
is at least as large as the one observed.

We now demonstrate how user-felt arousal and
valence can be estimated, based on the physiological or
content-based features which were found to have a
significant correlation with the self-assessed valence
and arousal. For each participant, a training set of 42
scenes was formed by randomly selecting 42 of the 64
movie scenes and the corresponding feature values.
The remaining 22 scenes served as a test set.

In order to obtain an estimate, based on the
significantly correlated features, of the user’s arousal
and valence, all significantly correlated features are
weighted and summed as is indicated in Eq. (1), where
y(j) is the estimate of arousal/valence grade, j is the
indexing number of a specific movie scene {1,2,..,64},
x,(j) is the feature vector corresponding to the i-th
significantly correlated feature, N is the total number
of significant features for this participant, and w; is the
weight that corresponds to the i-th feature.

P =Y wx (1) +w, (1)

In order to determine the optimum p, the weights in
Eq. (1) were computed by means of a linear relevance
vector machine (RVM) from the Tipping RVM
toolbox [28]. This procedure was applied on the user
self assessed arousal/valence, y(j), and on the feature-
estimated arousal/valence, p(j), over all 42 movie
scenes in the test set as can be seen in (2).

This procedure is performed four times for
optimizing the weights corresponding to:

* physiological features when estimating valence,

» physiological features when estimating arousal,

+ multimedia features when estimating valence,

* multimedia features when estimating arousal.

In a first step weights are computed from the
training set. In the second step, the obtained weights
were applied to the test set, and the mean squared error
between the resulting estimated arousal/valence grades
and self assessed arousal/valence was examined. These
two steps were repeated 1000 times. Each time the 42
movie scenes of the training set were randomly
selected from the total of 64 scenes while the 22
remaining scenes served as the test set. The results
from this cross-validation will be presented in next
Section.

4. Experimental results

The correlations between multimedia features,
physiological features and self assessments were
determined. Table 3 shows, for each participant, the
features which had the highest absolute correlations
with that participant’s self-assessments of arousal and
valence. Table 3.a shows results for physiological
features whereas Table 3.b shows results for
multimedia features

Table 3. Physiological and multimedia

features with the highest absolute
correlation with self assessments for

participants 1 to 8.
(a) Physiological features

Arousal p Valence p
1 EMG Frontalis 0.39 EMG Zygomaticus 0.66
2 EMG Frontalis 0.57 EMG Frontalis -0.63
3 Respiration t.)and 0.42 EMG Zygomaticus 0.58
energy ratio
4 Blood pressure -0.29  EMG Zygomaticus. 0.43
5 EMG Zygomaticus 0.46 EMG Frontalis -0.47
6 Eye blinking rate -0.32 Average o.fGSR -0.45
derivative.
7 GSR gtal?dard 0.55 EMG Zygomaticus 0.69
deviation
Blood pressure -0.33 EMG Zygomaticus 0.56
(b)Multimedia Features
1 13"LPC coefficient 033 Last MFCC coeff, 00
) Last MFCC -0.54 14" bin of hue 0.43
coefticient histogram (bluish)
L -0.4 Last MFCC 0.5
3 Audio signal energy coefficient
4 First autocorrelation  0.40 3™ autocorrelation 0.35
MEFECC coefficient MFCC Coefficient
Motion component ~ 0.32 Motion component ~ -0.47
6 11" autocorrelation ~ -0.43 5" bin of lightness ~ -0.39
MFCC coefficient histogram
12" autocorrelation  0.45 S 0.41
7 MEFCC coefficient Key lighting
0.38 15" bin of hue -0.48

8  Motion component histogram (purplish)




For physiological signals, the variation of correlated
features over different subjects illustrates the
difference between participants’ responses. While
blood pressure was more informative regarding the
arousal level of participants 4 and 8, EMG signals and
thus facial expressions were more important to
estimate arousal in participants 1, 2, and 5. The large
variation between participants regarding which
multimedia features have the highest absolute
correlation value with their self assessment, indicates
the variance in individual preferences to different
audio or video features. For instance more motion
component leads to more arousal and excitement and
less valence and pleasantness for participant 5, which
means that the participant had a negative feeling for
exciting scenes with large amount of movement in
objects or background.

Table 4 shows, for all participants, the correlation
coefficients between four different pairs of
physiological features and multimedia features. These
eight features have been chosen from the features
which have significant correlation with self
assessments and thus more importance for affect
characterization. ~The correlations show that
physiological responses are significantly correlated to
changes in multimedia content. As an example, the
negative correlation between EMG Zygomaticus
energy and the 15™ bin of the hue histogram
(corresponding to purple) shows that increasing this
color in the video content results in less Zygomaticus
activity, thus less pleasantness or valence.

Table 4. The linear correlation p values btw.
multimedia features, and physiological
features which are significantly correlated
with self assessments (participants 1 to 8).

Skin temp.

EMG standard Skin temp. 7 E(])\ggﬁc
Zygomatic. deviation /5" range/ Shot eri/egr /hué
energy/Key MFCC length his tog}; am’s

lighting autocorrelation variation 1 51% bin
coefficient

1 0.24 - - -0.41
2 0.62 0.44 0.42 -0.41
3 0.46 0.40 0.56 -0.34
4 0.40 0.32 0.43 -0.30
5 0.36 0.39 0.58 -

6 0.44 0.31 0.51 -0.32
7 0.47 0.34 0.27 -0.43
8 0.54 0.34 0.42 -0.45

Table 5. Average mean squared error (Eysg),
between estimated arousal/valence grades
and self assessments (participants 1 to 8).

Arousal with Am.u sal Valence with Val?nce
hysiological with hysiological with
phy & Multimedia P, & multimedia
features . features
features features

1 0.044 0.047 0.020 0.031
2 0.030 0.038 0.020 0.032
3 0.034 0.034 0.026 0.043
4 0.037 0.036 0.023 0.023
5 0.028 0.031 0.060 0.047
6 0.043 0.040 0.052 0.037
7 0.025 0.032 0.018 0.026
8 0.031 0.027 0.014 0.017

The accuracy of the estimated arousal/valence is
evaluated by computing the mean squared error
between the estimates and the self assessments of
arousal/valence (Table 5). The mean squared error
(MSE) was calculated 1000 times when varying the 22
samples in the test set, using the cross validation
technique discussed in section 3.5.

1000 N, =22

— Y ,-y) @

1000x Nu, purgiie

The MSE was computed by Eq. 2 where Ny is the
number of test samples (here 22) and y; is the
estimated arousal/valence in i-th iteration for j-th
sample in test set. The computation used the obtained
grades from both physiological features and
multimedia content features of each subject. Since it
was easier to self assess valence on the video dataset,
better results have been obtained for valence
estimation. All MSE values are considerably smaller
than a random level estimation MSE (around 0.17).

MSE =

5. Conclusion

In this paper, an affective characterization method
for movie scenes is proposed based on emotions that
are felt by spectators. Physiological responses of
participants were recorded while watching movie
scenes and key features were extracted from these
responses. By computing correlations between these
key physiological features and the wusers’ self-
assessment of arousal and valence, it was identified
which physiological features are essential for accurate
estimation of arousal/valence. Such accurate estimates
provide us with a continuous assessment of affect
which can serve as a ground truth for affect estimation.
For example Zygomaticus EMG signals which
represent smile and laughter have high correlation with
valence (Table 3).

Furthermore, content based multimedia features
were extracted from the movies scenes. Their
correlations with both physiological features and users'
self-assessment of arousal/valence were shown to be
significant. A procedure was proposed to actually
estimate user's affect in response to movie scenes
based on selected multimedia content features.
Predicting user's affect opens the door to many novel
applications. One is personalized content delivery
systems with configurable emotional-based



preferences. Users will watch a training set of short
movie clips; after configuration, the system will be
able to predict the users' response to new movie
scenes. A similar strategy is applicable to
neuromarketing where consumers' reactions to
marketing stimuli could be predicted.

The movie scenes did not necessarily correspond to
very strong emotions; some of them contained just
mild and tranquil scenes. These were intentionally
selected because the final application was not only to
characterize affect, but also to show the ability to
estimate different amplitudes of emotions. The final
application will have to index all types of different
movie scenes from highly intense ones to calm and
fairly neutral.

Felt emotions from the movie scenes where
determined without any a priori assumptions on
arousal/valence values. It would however be possible
to use the genre of movies (e.g., drama, comedy, etc.)
as prior knowledge for better affect estimation.

Participants exhibit markedly different emotional
reactions to movie scenes. These differences can be
explained by different factors, e.g., personalities,
general mood during experiments, or varying personal
standards for self-assessment of true feelings. This
shows the need for affect profiling to be, at least in
part, user-dependent. The exact physiology behind
emotional processes is still under debate. We do not
intend in this work to explain affective mechanisms in
the brain, but rather to employ the widely accepted
measures of valence and arousal as features for
multimodal human-computer interaction and for
affective video characterization. In the future we aim at
more precisely assessing which are the most important
content-based multimedia features able to elicit
specific emotions. Studies involving more participants
are also needed to determine which emotional
responses are individual and which are common to all
users.
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