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Characteristics of an ideal nebulized 
antibiotic for the treatment of pneumonia  
in the intubated patient
Matteo Bassetti1*, Charles‑Edouard Luyt2,3, David P. Nicolau4 and Jérôme Pugin5

Abstract 

Gram‑negative pneumonia in patients who are intubated and mechanically ventilated is associated with increased 
morbidity and mortality as well as higher healthcare costs compared with those who do not have the disease. Intra‑
venous antibiotics are currently the standard of care for pneumonia; however, increasing rates of multidrug resistance 
and limited penetration of some classes of antimicrobials into the lungs reduce the effectiveness of this treatment 
option, and current clinical cure rates are variable, while recurrence rates remain high. Inhaled antibiotics may have 
the potential to improve outcomes in this patient population, but their use is currently restricted by a lack of specifi‑
cally formulated solutions for inhalation and a limited number of devices designed for the nebulization of antibiotics. 
In this article, we review the challenges clinicians face in the treatment of pneumonia and discuss the characteristics 
that would constitute an ideal inhaled drug/device combination. We also review inhaled antibiotic options currently 
in development for the treatment of pneumonia in patients who are intubated and mechanically ventilated.
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Background
Management of pneumonia in the intensive care unit (ICU) 
remains challenging
Hospital-acquired pneumonia (HAP) and ventilator-
associated pneumonia (VAP) remain important causes 
of morbidity and mortality despite advances in antimi-
crobial therapy [1]. Patients with severe pneumonia or 
critical illness often require intubation and mechanical 
ventilation to manage acute respiratory failure; further-
more, 9–27 % of intubated patients will develop VAP [1, 
2]. In mechanically ventilated patients with VAP, attribut-
able mortality estimates vary considerably and have been 
reported to range from 0 to 50  % [3, 4]; however, there 
are large differences between subgroups of patients, and 
VAP-attributable mortality may be as high as 69 % in sur-
gical patients for example [3]. Failure to provide timely 

and effective therapy in the first 48  h is also linked to 
particularly high mortality (Fig. 1) [5]. Clearly, early ini-
tiation of appropriate antibiotics is essential for effective 
management.

Current treatments are typically given through the 
intravenous (IV) route; however, despite widespread 
implementation of current antibiotic guidelines for the 
treatment of pneumonia, clinical cure rates rarely exceed 
60 %, and recurrence rates remain high [6–10]. The high 
prevalence of multidrug-resistant (MDR) pathogens such 
as the ‘ESKAPE’ species (in particular Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter spp.) add to 
the increasing difficulty of treating VAP. Unsurprisingly, 
MDR pathogens are associated with significant attribut-
able mortality [11], and their increasing prevalence has 
been a concern due to the limited number of new anti-
biotics currently in development [12, 13]; clearly, there is 
an urgent clinical need to optimize therapy for critically 
ill patients with pneumonia [14].
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What makes antibiotics effective at the site 
of infection?
Effective treatment of bacterial pneumonia requires the 
concentration of the antibiotic in the lung to exceed the 
minimum inhibitory concentration (MIC) of the infect-
ing pathogen. However, while some antimicrobial drugs 
such as fluoroquinolones penetrate well into lung tis-
sue when administered intravenously [15], others (e.g., 
β-lactams, colistin, aminoglycosides and glycopeptides 
such as vancomycin) have poor lung penetration and tis-
sue distribution [16–18]. Poor lung penetration of drugs 
can be overcome by dose increases, but this manage-
ment approach is often limited by the associated risk 
of systemic adverse events; for example, high systemic 
concentrations of aminoglycosides are associated with 
nephrotoxicity and ototoxicity [19, 20]. The effectiveness 
of IV antibiotic therapy may be further diminished by 
pharmacokinetic changes in critically ill patients, includ-
ing changes in absorption, distribution and elimination 
[21]. Such patient-specific variation makes adequate dos-
ing of antibiotics challenging and may result in the deliv-
ery of drug concentrations that are either too low (and 
therefore sub-therapeutic) or too high (and therefore 
toxic) [22, 23].

In mechanically ventilated and intubated patients 
with pneumonia, targeting antibiotics to the lungs via 
aerosolization could offer a way to achieve high expo-
sures of antibiotics directly at the site of infection, while 

minimizing systemic side effects [24, 25]. Initial treat-
ment with aerosolized antibiotics combined with IV ther-
apy is therefore a promising treatment strategy that could 
improve clinical outcomes.

Potential benefits of nebulized antibiotics
Previous approaches to nebulized antibiotic therapy have 
had several clinical and technical limitations, including 
sub-optimal delivery and lack of drugs specifically for-
mulated for aerosolization [26, 27]. While issues such as 
these have hampered aerosolized delivery techniques, 
several recent developments suggest that these short-
comings could soon be eliminated.

Nebulized antibiotics can achieve high drug 
concentrations in the lung
Perhaps the key advantage of administering antibiotics 
by inhalation rather than via IV infusion is the poten-
tial to deliver high concentrations of antibiotic directly 
to the site of lung infection [28, 29]. Animal studies in 
ventilated piglets have demonstrated that nebulized 
antibiotics achieved high deposition in infected lung 
parenchyma with concentrations far above the MICs for 
most Gram-negative strains [30], and indeed, the effi-
ciency of bacterial killing in piglets inoculated with E. 
coli was greater after nebulization compared with intra-
venous administration [31]. Furthermore, clinical stud-
ies have shown that inhaled tobramycin, for example, 
can achieve high bronchial concentrations, and inhaled 
amikacin can reach epithelial lining fluid (ELF) concen-
trations far in excess of the MICs for Gram-negative 
strains usually responsible for pneumonia [32, 33]. These 
concentrations may also exceed the MICs for MDR 
pathogens.

Nebulized antibiotics are associated with low systemic 
exposure
The high lung concentrations achieved with inhaled 
antibiotics are paired with low systemic absorption [34]; 
indeed, administering antibiotics such as aminoglyco-
sides by aerosolization generates significantly lower peak 
serum concentrations compared with intravenous admin-
istration [27, 35]. One potential benefit of lower systemic 
concentrations is a reduced incidence of adverse events, 
such as nephrotoxicity [27]. In addition, low systemic 
concentrations may also have the benefit of falling out-
side the mutant selection window, thus reducing the risk 
of systemic resistance development [36, 37]. Studies in 
patients with cystic fibrosis treated with aerosolized anti-
biotics have not reported an increase in the emergence of 
resistance with inhaled therapy compared with standard 
therapy or placebo [38, 39]. This is supported by a recent 
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double-blind placebo-controlled study of patients in the 
ICU, which demonstrated that in comparison with pla-
cebo, aerosolized antibiotics were not associated with the 
development of new antibiotic resistance [40].

Inhaled administration may reduce the need for systemic 
antibiotics
Aerosolized antibiotic therapy also provides the potential 
for a reduction in the overall use of systemic antibiotics 
[24, 41], with clear benefits for antibiotic stewardship and 
management of emergent resistance. Increased resist-
ance due to frequent or excessive use of systemic antimi-
crobials has been documented for several drug classes. 
For example, between 2007 and 2011 the increased use 
of amoxicillin/clavulanic acid, ceftazidime and cefepime, 
carbapenems, and fluoroquinolones has correlated with 
an increase in the incidence of resistance in isolates of 
K. pneumoniae, P. aeruginosa and AmpC-producing 
Enterobacteriaceae, among others [42, 43]; decreasing the 
general use of antibiotics is therefore a key aim of antimi-
crobial stewardship programs. Importantly, this goal may 
be aided by the wider use of aerosolized therapies, and 
results from a Phase II study demonstrated that inhaled 
antibiotics could significantly reduce the use of IV antibi-
otics [44].

Characteristics of an ‘ideal’ inhaled antibiotic: what 
needs to be optimized?
Improving outcomes for critically ill patients with pneu-
monia requires the optimization of clinical factors such 
as ventilator settings, device usability and patient safety. 
An ideal inhaled antibiotic therapy should have a suit-
able formulation for aerosolization and consistently 
deliver high antibiotic concentrations to the site of infec-
tion via an efficient device; the drug should also have 
limited systemic penetration to prevent unwanted side 
effects.

Formulation of the ideal antibiotic for aerosolization
Currently available IV drug formulations are not opti-
mized for aerosolization and often have properties that 
may impede drug delivery [26]. In addition, IV formu-
lations usually contain preservatives such as phenols 
and many have sub-optimal osmolarity (<150  mOsm/L, 
>1200  mOsm/L), which can increase bronchospasm 
and coughing [26, 27]. To be suitable for aerosolization, 
the formulation should be sterile, preservative-free and 
non-pyrogenic. It should also be adjusted for the lung 
environment with a suitable pH (4.0–8.0), osmolarity 
(150–1200  mOsm/L) and tonicity [26, 27, 29] (Fig.  2). 
A solution that is specifically formulated for inhalation 
could minimize adverse effects, such as airway irrita-
tion, and increase delivery efficiency. Currently, the only 

antimicrobials that have a specific formulation devel-
oped for inhalation are colistin [45], aztreonam [46] and 
tobramycin [47], all of which are approved exclusively for 
use in cystic fibrosis [48].

Optimizing the dose
The choice of dose in early studies assessing aerosol 
delivery of antibiotics was sometimes based on the pack-
aging of parenteral IV antibiotics, rather than on an a 
priori definition of the amount of drug that was needed 
in the lower airway [49]. Since then, studies have gener-
ally selected doses designed to achieve lung concentra-
tions that far exceed the MIC of relevant pathogens in 
the lung [41, 49]. One recent study, for example, assessed 
two different dosing regimens of an inhaled aminogly-
coside against a stringent pharmacokinetic target of 
achieving 25 times the highest MICs reported for P. aer-
uginosa and Acinetobacter spp. in North American ICUs 
[41].

Characteristics of the ideal delivery device
For optimal therapeutic effect, an appropriately for-
mulated antibiotic should be used in combination with 
an efficient delivery device. A recent meta-analysis of 
inhaled treatments showed that while nebulized antibiot-
ics (with or without IV antibiotic) may improve clinical 
cure rates compared with IV antibiotics alone, nebu-
lizers themselves vary considerably in efficiency [50]. 
Indeed, jet nebulizers are known to have considerably 
lower efficiency (i.e., drug delivery rates) than vibrat-
ing mesh nebulizers (<15 vs 40–60 %, respectively) [51]. 
However, even within the vibrating mesh nebulizer 
device category, there is significant variation in delivery 
efficiency (Table 1). One of the primary determinants of 
delivery efficiency and drug deposition is particle size; a 
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consistent and optimal particle size promotes distribu-
tion throughout the lungs and avoids condensation (‘rain 
out’) within the ventilator circuit [27, 52]. Particle size is 
usually measured as mass median aerodynamic diameter 
(MMAD) or volumetric median diameter (VMD), and a 
particle size in the range of 1–5 µm is considered to be 
suitable for deposition in the lung [36]; within this range, 
an MMAD or VMD of 3–5  µm is considered optimal 
for deposition in the bronchial conducting airways and 
throughout the alveoli (Fig. 3). However, currently avail-
able jet nebulizers cannot produce such small particles 
[52].

New drug–device combinations may hold promise in 
this area. The pulmonary drug delivery system (PDDS) 
device currently in development (NKTR-061) is an adap-
tive vibrating mesh nebulizer which has been combined 
with a specially formulated Amikacin Inhalation Solu-
tion (BAY41-6551). With this combination, approxi-
mately 60 % of the inhaled dose is delivered to the lung 
[53, 54]. These data indicate that specifically designed 
drug–device combinations have the potential to con-
sistently generate and deliver optimally sized drug par-
ticles homogeneously throughout the lung, including to 
the peripheral airways. Any new drug–device combina-
tion that can deliver particles within the optimal 3–5 µm 
range could facilitate high drug concentrations at the site 
of pneumonia infection [36, 55].

Ease of use: ventilator setting adjustments
A key practical consideration for an ideal nebulizer is 
its ease of use in the hospital setting. For intubated and 
mechanically ventilated patients, the nebulizer should 
integrate directly into the ventilator circuit, with only 
minimal need to adjust ventilator settings or remove 
humidification [27, 52]. However, current-generation 
nebulizers, regardless of the drug formulation used, 
require careful attention to be paid to ventilator set-
tings (e.g., choice of ventilator mode—pressure versus 

volume-controlled, inspiratory time, inspiratory flow, 
tidal volume, duty cycle and respiratory rate) to ensure 
optimal performance [53] and may also necessitate 
increased sedation of the patient as these settings are 
altered. Such adjustments can be complex due to the 
wide variety of modes and settings available, and guide-
lines advise avoiding heavy sedation if possible [1]. These 
complexities currently make the use of nebulization 
technically demanding; in order to optimize this route of 
administration, standardized aerosolization procedures 
are required [35]. The increased sedation of patients to 
enable better synchronization to ventilator settings may 
also be associated with longer durations of mechanical 
ventilation; one study reported no statistically signifi-
cant difference in the duration of mechanical ventilation 
between patients treated with aerosolized antimicrobials 
compared with those treated with intravenous antimi-
crobials [35]. If a nebulizer device could be added to the 
circuit without the need for ventilator setting adjustment, 
this could minimize delays in treatment and reduce 
undesirable increases in sedation.

Synchronizing aerosol generation with the inspira-
tory flow of the ventilator could also enhance drug deliv-
ery [56]. An in vivo study found that levels of antibiotic 
delivered with breath-synchronized nebulization were 
four to seven times higher than with continuous nebu-
lization, depending on the extent of ventilator humidi-
fication [57]. While humidification improves patient 
outcomes and prevents adverse events such as hypother-
mia, bronchospasm and cilia damage, studies (primarily 
conducted with jet nebulizers or metered-dose inhalers) 
have demonstrated that humidification greatly reduces 
drug delivery efficiency with conventional inhaled treat-
ment approaches [53, 58]. Therefore, clinicians currently 
have to choose between the removal of humidification 
(thus improving delivery efficiency but potentially expos-
ing the patient to adverse side effects) or the retention of 
humidification (protecting the patient but compromising 

Table 1 Technical considerations and performance characteristics of vibrating mesh nebulizers

Technical  
consideration

Performance characteristics vibrating mesh nebulizers

Bayer
Amikacin Inhale

Aerogen
Aeroneb Solo

PARI
eFlow

Mode of action Breath synchronized (hand‑held =  
continuous nebulization)

Continuous nebulization Breath enhanced

Delivered dose On‑vent: 35–58 %; hand‑held: 35–64 % [54] 13–17 % [71, 72] 31–44 % [73]

Delivery time Timing depends on patient and flow rate  
but has been reported to be 36 ± 16  
(on‑vent) and 15 ± 5 (hand‑held) [54]

Dependent on medication but suggested to be 
around 7–10 min with 3 mL albuterol [71, 72]

Dependent  
on medication [63]

Humidification Humidification does not affect delivered  
dose of amikacin

Recommended to remove HME device

Recommended to turn humidification  
off during delivery

Remove HME as per manufacturer’s instructions

Humidification can be left 
on during delivery [66]
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delivery efficiency). An ideal inhaled antibiotic should 
therefore achieve consistent lung delivery irrespective of 
humidification.

Overview of current understanding of inhaled 
treatments in intubated patients
The use of nebulized antibiotics has been increasing 
steadily since the 1970s, and inhaled antibiotic therapy 
is being revisited as a potential treatment option due to 
the surge in pneumonia caused by MDR bacteria [36]. 
Aerosolized therapy offers a way to administer high doses 
of antibiotics that exert their efficacy against pathogens 
directly at the site of infection while reducing systemic 
toxicity.

Evidence from clinical trials
Inhaled colistin has shown clinical utility in pneumonia, 
generating high lung concentrations and achieving effi-
cient bacterial killing with a clinical cure rate of approxi-
mately 67  % [25, 51, 59]. Other studies have further 
demonstrated that nebulized antibiotics, such as spe-
cially formulated Amikacin Inhale, produce low systemic 
concentrations with limited toxic side effects [33], and a 
recent meta-analysis supports that nebulized antibiot-
ics may improve clinical cure rates in patients with VAP, 
although additional clinical studies are still needed [50].

Indeed, despite some promising data, the overall 
number of well-designed trials examining the efficacy 
and tolerability of nebulized antibiotics remains low. 
Many studies have only involved a single center and are 

confounded by inadequate patient enrollment, poor 
methodology or failures in standardizing or report-
ing delivery methods and particle sizes [52]. Currently, 
there is no standardized technique for administration 
of a given aerosolized drug, and different studies have 
used different doses or formulations as well as differing 
patient cohorts. These factors make the comparison of 
efficiency and tolerability data difficult and pose chal-
lenges when trying to standardize this method of treat-
ment and decide best practice. There is a clear unmet 
need for further multicenter studies, with standardized 
methodologies, consistent dosing and larger cohorts to 
improve the data available on the efficacy and safety of 
inhaled therapy.

Treatment guidelines
Aerosolized adjunctive therapy with IV antimicrobi-
als is suggested by the ATS/IDSA guidelines (2005) as 
appropriate for patients with pneumonia caused by MDR 
Gram-negative organisms who are not responding to sys-
temic therapy alone; however, these guidelines are now a 
decade old and may no longer be an accurate reflection of 
the bacterial landscape currently confronting clinicians 
in the ICU. Other more recent guidelines, such as the 
Canadian HAP/VAP guideline (2008), recommend the 
use of aerosolized vancomycin in patients infected with 
MRSA; other guidelines currently make no recommenda-
tions for the use of inhaled antibiotics [60, 61].

Healthcare worker perceptions and understanding
While there is now a more positive attitude toward nebu-
lized antibiotics, clinician knowledge pertaining to the 
delivery of aerosolized therapy remains poor. Techniques 
to improve nebulizer output, such as reducing the inspir-
atory flow, are not regularly employed, and potentially 
dangerous practices (such as connecting the nebulizer to 
an external gas source or never changing the expiratory 
limb filter) were reported in a recent survey into physi-
cians’ practice, knowledge and beliefs regarding aerosol 
therapy [62].

Inhaled therapies currently in development
Aerosolized antibiotics have been used off-label for the 
treatment of pneumonia in mechanically ventilated, criti-
cally ill patients for around 40 years, but there is still no 
consensus, guideline or FDA-approved product avail-
able for such treatment [24]. There are, however, three 
aerosol-based therapies currently in development for the 
treatment of pneumonia in this vulnerable patient group.

The PARI eFlow rapid nebuliser system® [63] is a 
multiple-use, single-patient device that is placed on 
the inspiratory limb of the ventilator circuit [52] to 
deliver a combination of amikacin and fosfomycin; the 
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two drugs are added sequentially to the nebulizer. In 
two Phase I studies, the PARI system generated small 
amikacin–fosfomycin droplets and achieved high tra-
cheal aspirate concentrations with low systemic expo-
sure [64–66]. When delivered using a drug ratio of 
5:2 (amikacin–fosfomycin), the combination reduced 
resistance development, and the authors attributed 
this effect to synergy between the two antibiotics [64–
66]. A Phase II trial with the PARI system is ongoing 
(NCT01969799).

Inhaled tobramycin (TOBI®) is approved by the FDA 
for use in patients with cystic fibrosis and is currently 
under investigation for use in patients with pneumonia. 
Early studies have suggested that TOBI® is well toler-
ated and effective for the treatment of VAP caused by P. 
aeruginosa or Acinetobacter spp., with reduced systemic 
side effects compared with IV tobramycin [67]. While 
these results are promising, the study was performed 
using a very small cohort, with only five patients in each 
group.

Amikacin Inhale, a drug–device combination being 
developed to treat patients who are intubated and 
mechanically ventilated who develop Gram-negative 
pneumonia, consists of a specifically formulated Amika-
cin Inhalation Solution and the pulmonary drug delivery 
system (PDDS) (NKTR-061, BAY41-6551). The PDDS 
synchronizes aerosolization of the antibiotic with the first 
75  % of the inspiratory flow, with the aim of enhancing 
deposition in the lung and reducing wastage. The system 
can also be used in on-vent and hand-held configurations 
in a number of orientations to allow therapy to continue 
after extubation, with no need for ventilator setting or 
dose adjustment [54, 68]. In an in  vitro study, the on-
vent configuration of the PDDS (and Amikacin Inhala-
tion Solution) achieved an estimated lung dose (ELD) of 
35–58 % of the nominal dose, while the hand-held config-
uration achieved an ELD of 35–64 % of the nominal dose 
[54]. Phase II studies have demonstrated that the con-
centration of amikacin delivered to the lung substantially 
exceeded MIC values for the Gram-negative organisms 
primarily responsible for pneumonia (NCT01004445 and 
NCT01021436) [33, 41]. In the first study, the median 
ELF amikacin concentration, as determined by bron-
choalveolar lavage, was 976.1 µg/mL [33]. In the second 
study, the primary endpoint of achieving both a tracheal 
aspirate amikacin concentration ≥6,400 µg/mL (25 times 
the reference MIC of 256 µg/mL) and a ratio of amikacin 
aspirate AUC0–24h to MIC ≥ 100 at day 1 was achieved in 
50 % of patients receiving Amikacin Inhale 400 mg every 
12 h [41]. Amikacin Inhale can achieve consistently high 
drug delivery independent of humidity or humidifica-
tion method [69]. Maximum concentrations of amikacin 

in serum remained below the recommended maximal 
trough concentration for systemic amikacin administra-
tion, and Amikacin Inhale was generally well tolerated 
[41]. Two Phase III studies are ongoing (NCT01799993 
and NCT00805168).

Conclusions
Nebulizer technology continues to evolve. Improvements 
in nebulizer capabilities may offer new treatment options 
that maximize the potential benefits of inhaled antibiotic 
therapy. Recent advances are promising to deliver nebu-
lized therapy options with optimal particle sizes and to 
achieve improved drug delivery throughout the lung, 
while maintaining low systemic exposures. The combina-
tion of specifically designed drug formulations and mod-
ern, high efficiency delivery devices has the potential to 
overcome current challenges in the aerosolized treatment 
of pneumonia [29].

Increasing resistance and limited efficacy of currently 
available IV antibiotics for the treatment of pneumonia 
in intubated and mechanically ventilated patients are a 
growing cause for concern, and the choice of effective 
treatments is limited. New therapy options are urgently 
needed; continued improvements in antibiotic formula-
tions and nebulizer system designs provide an increas-
ingly positive outlook for the future of inhaled antibiotics.
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