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Abstract

The charged-particle multiplicity distribution is measured for all hadronic events as well as for light-quark and b-quark events
produced in e+e− collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated. TheHq

moments of the multiplicity distributions are studied, and their quasi-oscillations as a function of the rank of the moment are
investigated.
 2003 Published by Elsevier B.V.

1. Introduction

Since quarks and gluons are not observed di-
rectly, the understanding of the hadronization process
whereby a quark–gluon system evolves to hadrons is
of importance and provides a tool for studying the
quark–gluon system itself. One of the most basic char-
acteristics of the resulting hadronic system is the dis-
tribution of the number of hadrons produced.

Assuming local parton–hadron duality (LPHD) [1],
characteristics of the charged-particle multiplicity dis-
tribution are directly related to the characteristics of
the corresponding parton distributions. The parton dis-
tributions are calculable using perturbative quantum
chromo-dynamics (pQCD). In particular, the depen-
dence on the center-of-mass energy,

√
s, of the mean,

〈n〉, of the charged-particle multiplicity is an impor-
tant test of pQCD. Since these calculations are only
valid for light quarks, a separate measurement for light
quarks is of interest.

In this Letter, the charged-particle multiplicity dis-
tributions of hadronic decays of the Z boson are mea-
sured for b- and for light-quark (u, d, s and c) events
as well as for all events. From these distributions mo-
ments are calculated, which characterize the shape of
the distributions.

1 Supported by the German Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
Nos. T019181, F023259 and T024011.

3 Also supported by the Hungarian OTKA fund under contract
No. T026178.

4 Supported also by the Comisión Interministerial de Ciencia y
Tecnología.

5 Also supported by CONICET and Universidad Nacional de La
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation of
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The shape of the charged-particle multiplicity dis-
tribution is a fundamental tool in the study of parti-
cle production. Independent emission of single par-
ticles leads to a Poissonian multiplicity distribution.
Deviations from this shape, therefore, reveal correla-
tions [2]. To study the shape, we use the normalized
factorial moments. In terms of the multiplicity distrib-
ution,P(n), the normalized factorial moment of rank
q is defined by

(1)Fq =
∑∞

n=q n(n − 1) · · · (n − q + 1)P (n)
(∑∞

n=1 nP(n)
)q .

It reflects correlations in the production of up toq
particles. If the particle distribution is Poissonian, all
Fq are equal to unity. If the particles are correlated,
the distribution is broader and theFq are greater
than unity. If the particles are anti-correlated, the
distribution is narrower and theFq are less than unity.

Normalized factorial cumulants,Kq , obtained from
the normalized factorial moments by

(2)Kq = Fq −
q−1∑

m=1

(q − 1)!
m!(q − m − 1)!Kq−mFm,

measure the genuine correlations betweenq particles,
i.e., q-particle correlations which are not a conse-
quence of correlations among fewer thanq particles.

Since|Kq | andFq both increase rapidly withq , it
is useful to define theHq moments,

(3)Hq = Kq

Fq
,

which have the same order of magnitude over a large
range ofq .

The shape of the charged-particle multiplicity dis-
tribution analyzed in terms of theHq was found to re-
veal quasi-oscillations [3–6], when plotted versus the
rank q , in e+e−, as well as hadron–hadron, hadron–
ion and ion–ion interactions. In e+e− annihilation,
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Fig. 1. Qualitative behavior ofHq as a function ofq for various
approximations of perturbative QCD [3,8].

this result was interpreted [5,7] in terms of pQCD,
from which the Hq of the parton multiplicity dis-
tribution were calculated [3,8]. The expected behav-
ior of Hq vs. q is quite sensitive to the approxima-
tion used, as is illustrated qualitatively in Fig. 1 for
the double logarithm approximation (DLA), the mod-
ified leading logarithm approximation (MLLA), the
next-to-leading logarithm approximation (NLLA), and
the next-to-next-to-leading logarithm approximation
(NNLLA). In the NNLLA a negative first minimum is
expected nearq = 5 and quasi-oscillations about zero
are expected for larger values ofq .

According to the LPHD hypothesis, hadronization
does not distort the shape of the multiplicity distribu-
tion. If this is valid, the same shape may be expected
for the charged-particle multiplicity distribution as for
the parton multiplicity distribution.

2. Experimental procedures

2.1. Event selection

This analysis is based on 1.5 million hadronic
events collected by the L3 detector [9] at LEP in the
years 1994 and 1995 at the Z pole.

Events are selected in a two-step procedure [10].
First, at least 15 calorimetric clusters of at least
100 MeV are required in order to reduce background
from the e+e− → τ+τ− process. Hadronic events
from the process e+e− → qq̄ are then selected by
requiring small energy imbalance both along and
transverse to the beam direction.

The second step is the selection of charged tracks
measured in the central tracker and the silicon micro-
vertex detector. A number of quality cuts are used to
select well-measured tracks. Further, the thrust direc-
tion calculated from the charged tracks is required to
lie within the full acceptance of the central tracker.
No selection specifically rejects or selects tracks from
long-lived neutral particles. The track selection effi-
ciency, determined from Monte Carlo, is about 75%.
The resulting data sample corresponds to approxi-
mately one million selected hadronic events, and has
a purity of about 99.8%.

To correct for detector acceptances and inefficien-
cies, we make use of the JETSET 7.4 [11] parton
shower Monte Carlo program, tuned using L3 data.
Events are generated, passed through the L3 detec-
tor simulation program [12], and further subjected to
time-dependent detector effects. Then they are recon-
structed and the events and tracks are selected in the
same way as the data. For systematic studies we also
use events generated by ARIADNE 4.2 [13]. For com-
parisons with the data we use HERWIG 5.9 [14] as
well as JETSET.

To select b- and udsc-quark enhanced samples, we
use the full three-dimensional information on tracks
from the central tracker to calculate for each track the
probability that it originated at the primary vertex [15].
We select b- and udsc-quark samples with purities of
about 96% and 93% and efficiencies of about 38% and
96%, respectively.

2.2. Unfolding

The resulting multiplicity distributions are fully
corrected for detector resolution using an iterative
Bayesian unfolding method [16]. The detector and
generator level Monte Carlo events are used to con-
struct a matrixR(ndet, n) which represents the proba-
bility that ndet tracks would be detected ifn charged
particles were produced. A distribution,P0(n), is as-
sumed forn. For this P0, the distribution expected
in the detector isP det

0 (ndet) = ∑
n R(ndet, n)P0(n).

This is compared to the actual distribution of the raw
data, and, making use of Bayes’ theorem, an improved
multiplicity distribution is calculated, which replaces
P0(n) in the above expression. This process is repeated
iteratively until satisfactory agreement between the ex-
pected and actual raw data distribution is found. In
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practice, this occurs after the second iteration if the
JETSET multiplicity distribution is chosen asP0(n).

In addition, corrections are made for efficiency
and acceptance of the event selection, initial state
radiation, and K0S and � decays. Furthermore, the
distributions for the b- and udsc-enhanced samples are
corrected for the purity of the flavor selection.

The unfolding method gives [16] an estimate of
the covariance matrix of the unfolded distribution.
This matrix, combined with the uncertainties on the
corrections mentioned above, is used to determine
the uncertainties on the moments of the multiplicity
distribution for the all- and udsc-flavor cases. When
the statistics is too small, as in the b-flavor case, the
uncertainty on the estimate of the covariance matrix is
large. In this case we use a Monte Carlo method. Many
Monte Carlo variations of the raw data multiplicity
distribution are made, choosing the number of events
at each multiplicity from a Poisson distribution having
as mean the observed number of events. These Monte
Carlo distributions are then analysed in the same
way as the data distribution. The uncertainty on a
moment is determined from the spread in values of
the moments of the Monte Carlo distributions. For the
high-statistics cases, both methods agree.

2.3. Systematic uncertainties

The following sources of systematic uncertainty are
investigated:

Selection The value of each cut used in the event se-
lection is varied independently over a rea-
sonable range around the default value and
the resulting fully corrected distributions, to-
gether with their covariance matrices, deter-
mined, and from them the moments of the
multiplicity distribution. For each multiplic-
ity, as well as for each multiplicity moment,
we assign a systematic uncertainty of half
of the maximum difference between the new
values. The same procedure is followed for
the track selection and flavor tagging. For fla-
vor tagging there is an additional contribution
due to an uncertainty of 2.5% in the purity of
the resulting sample, which accounts for the
different response of the tagging algorithm to
data and Monte Carlo.

Monte Carlo uncertaintiesThe analysis is repeated
using ARIADNE instead of JETSET to de-
termine the corrections and the unfolding ma-
trix. The difference between the two results is
taken as the systematic uncertainty. Further,
the c- and b-quark fragmentation parameters,
εc and εb, are varied. Also, the strangeness
suppression parameter is varied by an amount
consistent with the measured K0

S production
rate [17]. In each case, half the difference be-
tween the results using the two parameter val-
ues is taken as the systematic uncertainty.

Unfolding methodThree contributions are deter-
mined: first, ARIADNE is used to derive the
initial distribution. Secondly, the analysis is
repeated using a different number of itera-
tions in the unfolding. Finally, the detector
level multiplicity distribution of events gener-
ated by ARIADNE is unfolded using the re-
sponse matrix,R(ndet, n), determined using
JETSET events. In each case, the difference
from the default value is taken as the system-
atic uncertainty.

BackgroundThe background of about 0.2% is most-
ly from two-photon processes. We take as a
systematic uncertainty the effect of twice the
amount of estimated background.

The contributions from each of these sources are
added in quadrature. The track selection contributes
the dominant part of the total systematic uncertainty
when all events are used, while the flavor-tagging
purity uncertainty dominates that of the udsc sample.

Table 1
Contribution of the various sources of systematic uncertainty to the
measurement of the mean charged-particle multiplicity,〈n〉
Source full udsc b

Event selection 0.005 0.006 0.004
Track selection 0.090 0.080 0.116
Tagging cuts 0.018 0.021
Tagging purity 0.185 0.126
MC modeling 0.032 0.031 0.040
Unfolding 0.034 0.034 0.043
Background 0.024 0.024 0.023
γ conversion 0.039 0.039 0.039

Total 0.11 0.21 0.19
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Fig. 2. Charged-particle multiplicity distribution for all, udsc-, and b-quark events compared to the expectations of (a), (c), (e), (g) JETSET and
(b), (d), (f), (h) HERWIG. The error bars include both statistical and systematic uncertainties.

For the b-quark sample, these two contributions are
about equal.

In addition, the accuracy of the simulation of the
rate of photon conversion is considered. This is found
to be about 15% smaller than in data [10] and is
assigned as a systematic uncertainty on〈n〉. It is found
to be negligible for the other moments. Breakdowns
of the systematic uncertainties on〈n〉 are shown in
Table 1.

3. Results

3.1. Charged-particle multiplicity distributions

Charged-particle multiplicity distributions are mea-
sured both including and excluding K0

S and� decay

products.7 Fig. 2 shows the charged-particle multiplic-
ity distribution including K0

S and� decay products for
the full, udsc- and b-quark samples. All distributions
agree rather well with JETSET, but in all cases HER-
WIG gives a poor description of the data, as is seen in
Fig. 2(a) and 2(b).

From these distributions various moments of the
charged-particle multiplicity distribution are calcu-
lated. The results are summarized in Table 2. The
mean multiplicity including K0S and� decay products

7 Note that�−, �− and �− have only one charged particle
among their decay products apart from those produced in� decay,
and�0 and�0 have none. Thus including or not the decay products
of these baryons does not affect the charged multiplicity except
through the� decay.
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Table 2
Moments of the charged-particle multiplicity distribution for all, udsc-, and b-quark events. The first uncertainty is statistical, the second
systematic

Moments Without K0S and� decay With K0
S and� decay

All events

〈n〉 18.63± 0.01± 0.11 20.46± 0.01± 0.11

〈n2〉 381.7± 0.3± 4.4 457.7± 0.3± 4.9

〈n3〉 × 10−2 85.2± 0.1± 1.5 111.1± 0.1± 1.8

〈n4〉 × 10−3 205.9± 0.4± 5.1 290.6± 0.5± 6.5

D =
√

〈(n − 〈n〉)2〉 5.888± 0.005± 0.051 6.244± 0.005± 0.051

S = 〈(n − 〈n〉)3〉/D3 0.596± 0.004± 0.010 0.600± 0.004± 0.010

K = 〈(n − 〈n〉)4〉/D4 − 3 0.51± 0.01± 0.04 0.49± 0.01± 0.03

〈n〉/D 3.164± 0.002± 0.016 3.277± 0.002± 0.016

F2 = 〈n(n − 1)〉/〈n〉2 1.0461± 0.0002± 0.0040 1.0441± 0.0001± 0.0034

udsc-quark events

〈n〉 18.07± 0.01± 0.21 19.88± 0.01± 0.21

〈n2〉 340.0± 0.3± 8.4 432.4± 0.4± 9.2

〈n3〉 × 10−2 78.3± 0.1± 2.7 102.2± 0.1± 3.3

〈n4〉 × 10−3 184.4± 0.4± 8.6 260.7± 0.5± 11.1

D =
√

〈(n − 〈n〉)2〉 5.769± 0.007± 0.071 6.111± 0.007± 0.071

S = 〈(n − 〈n〉)3〉/D3 0.613± 0.005± 0.014 0.617± 0.005± 0.012

K = 〈(n − 〈n〉)4〉/D4 − 3 0.54± 0.02± 0.06 0.53± 0.02± 0.05

〈n〉/D 3.133± 0.003± 0.020 3.252± 0.003± 0.020

F2 = 〈n(n − 1)〉/〈n〉2 1.0464± 0.0002± 0.0045 1.0441± 0.0002± 0.0038

b-quark events

〈n〉 20.51± 0.02± 0.19 22.45± 0.03± 0.19

〈n2〉 453.9± 1.1± 1.8 542.0± 1.2± 3.0

〈n3〉 × 10−2 107.9± 0.4± 0.7 140.1± 0.5± 1.1

〈n4〉 × 10−3 273.9± 1.5± 1.9 385.8± 1.9± 1.7

D =
√

〈(n − 〈n〉)2〉 5.78± 0.01± 0.07 6.16± 0.01± 0.07

S = 〈(n − 〈n〉)3〉/D3 0.574± 0.017± 0.008 0.573± 0.017± 0.007

K = 〈(n − 〈n〉)4〉/D4 − 3 0.43± 0.04± 0.04 0.42± 0.04± 0.03

〈n〉/D 3.551± 0.006± 0.055 3.645± 0.005± 0.049

F2 = 〈n(n − 1)〉/〈n〉2 1.0305± 0.0003± 0.0027 1.0307± 0.0002± 0.0023

is consistent with our previous measurements [18,19]
and about 0.6 below the world average (21.07± 0.11)
[17]. The difference in mean multiplicity between the
cases of including or not the K0S and� decay prod-
ucts is consistent with our measurement of the K0 and
� production rates [20] and with the world average
[17]. All the moments, with the exception of the dis-
persion,D, show significant flavor dependence. How-
ever, the flavor dependence ofF2 is quite small.F2 is
also quite insensitive to the inclusion or not of K0

S and
� decay products. The difference between the mean

charged-particle multiplicity of the b-quark sample
and that of the udsc-quark sample is 2.58±0.03±0.08
when K0

S and � decay products are included and
2.43± 0.03± 0.08 otherwise.

3.2. Hq

TheHq are calculated from the unfolded charged-
particle multiplicity distributions. Since theHq are
sensitive to low statistics at very high multiplicities,
we truncate the multiplicity distribution. TheHq thus
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Fig. 3. TheHq of the truncated (a), (b) and non-truncated (c), (d) charged-particle multiplicity distribution compared to the expectations of (a),
(c) JETSET and (b), (d) HERWIG. The error bars include both statistical and systematic uncertainties.

obtained are biased estimators of theHq of the untrun-
cated distribution. This bias increases with stronger
truncation, while the statistical uncertainty decreases,
which allows a more significant comparison with mod-
els. It was suggested [21] that even without this trun-
cation, theHq may be biased since a natural trunca-
tion occurs as a consequence of the finiteness of the
sample. The truncation can induce oscillations or in-
crease their size [21]. The truncation also introduces
correlations between theHq , although these are small
for low q [10,21,22]. We choose the point of trunca-
tion such that multiplicities with relative error onP(n)

greater than 50% are rejected. This corresponds, for
all multiplicity distributions studied, to about 0.005%
of events. For all three samples (full, udsc, and b) the

truncation is at 53 if K0S and� decay products are in-
cluded in the multiplicity and at 49 when they are not.
The Hq presented here are calculated from distribu-
tions not including these decay products. However, the
Hq are insensitive to their inclusion [10].

TheHq of the truncated charged-particle multiplic-
ity distribution from all, udsc- and b-quark events,
shown in Fig. 3, have a first negative minimum at
q = 5 and quasi-oscillations for largerq . They are very
similar for the three samples, with only slight differ-
ences for the b-quark sample. Similar behavior is seen
for JETSET (Fig. 3(c)). Oscillations are also observed
for HERWIG (Fig. 3(d)), but they do not agree with
those seen in the data. For both data and the Monte
Carlo models, truncation at a lower value increases the
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Fig. 4. 1-standard deviation bands of expectedHq of the
non-truncated charged-particle multiplicity distribution from
PYTHIA for sample sizes of 105, 106 and 107. The insert shows
the meanHq of 100 samples of 105, 106 and 107 PYTHIA events.

depth of the first minimum and the amplitudes of the
oscillations, while truncation at a larger value has the
opposite effect.

We note that ourHq , based on an order of magni-
tude greater statistics, agree with theHq of SLD if we
truncate at a value equal to the maximum multiplicity
they observed [5].

No truncation, other than that due to the finiteness
of the sample, reduces the amplitudes of the oscilla-
tions to statistical insignificance, but the minimum at
q = 5 remains, as is shown in Fig. 3. Again, JETSET
agrees well with the data, while HERWIG does not.

To investigate the effect of sample size on theHq ,
100 samples of PYTHIA [23] Monte Carlo events,
were generated for sample sizes of 105, 106 and 107

events, and theirHq determined. Their±1 standard
deviation bands are shown in Fig. 4. In the insert of
Fig. 4 the mean of the values is shown. For large
q the values of theHq depend on the sample size.
However, for smallq the values of theHq are stable.
In particular,H5 (the first minimum) changes little
with the sample size, giving us confidence that the
measuredH5 is robust. Fig. 4 suggests that at least 107

events, an order of magnitude beyond the statistics of
the present experiment, would be needed to establish
the maximum atq = 8.

4. Conclusions

The charged particle multiplicity distribution of
hadronic Z decay and its moments are measured for
light-quark and for b-quark, as well as for all fla-
vor events. TheHq moments of truncated multiplic-
ity distributions, which have smaller statistical uncer-
tainties than those of the full distributions, are plotted
versus the rankq . A negative minimum is observed
at q = 5 followed by quasi-oscillations about zero,
which is qualitatively similar to the behavior expected
in NNLLA for the Hq moments of the full multiplic-
ity distribution. Since Monte Carlo studies show that
these oscillations are magnified, or even created, by
truncation of the multiplicity distribution, theHq are
also measured for the untruncated multiplicity distrib-
ution. In this case the minimum atq = 5, expected in
both MLLA and NNLLA, is confirmed. But the os-
cillations at higher values ofq , which are expected
only in NNLLA, cannot be confirmed. Previous ob-
servations of these oscillations are most likely a conse-
quence of truncation resulting from limited statistics.
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