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An essential part in the clinical success of any direct or in-
direct adhesive restoration is a perfect marginal adap-

tation between restorative material and tooth structure.26

Researchers’ and manufacturers’ efforts led to the devel-
opment of resin composites and adhesives able to provide
good marginal adaptation, both in enamel and dentin.16,48

The adhesive revolution stimulated growing interest for min-
imally invasive dentistry.47 Minimally invasive dentistry has
been defined as a philosophy in which relatively new treat-

ment concepts such as early caries diagnosis, minimally in-
vasive treatment, maximum patient comfort, and adhesive
cosmetic restorations are closely associated with the use of
magnifying devices (stereomicroscopes, etc), transforming
dental treatment from a macro to a micro dimension.27,28

Supporting this concept, new technologies – such as ozone
treatment – have been developed, and older ones – such as
sandblasting – have been adapted. Ozone treatment seems
to have the potential to inactivate microorganisms4,7 that
cause tooth decay and allow for re-mineralization of the
tooth structures, providing in certain cases an alternative to
conventional “drilling and filling”.5,6,20 According to manu-
facturers’ instructions, a cavity treated with ozone can be
sealed or restored if necessary for functional or cosmetic
reasons. Air abrasion using aluminum oxide particles allows
for minimally invasive, atraumatic preparations.28 This tech-
nique is commonly used to prepare occlusal pits and fis-
sures for sealing.21 In the literature, sandblasting with Al2O3
powder was also successfully used to enhance mechanical
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retention to metal surfaces,38,47 repair fractured porcelain-
fused-to-metal or all-ceramic restorations,21,34,42,47 bond to
aged composite restorations37,49 or amalgams,15 and to pro-
mote bonding of orthodontic brackets.15,18 Based on the
same sandblasting technology, surface treatment with SiOx
powder, also called silicatization (silica coating), may even
promote better adhesion than Al2O3 on certain substrates.
Silica coating was initially used to improve bonding of resin
composites to metals.34,47 Subsequently, the literature de-
scribed the use of this procedure to repair resin composite32

and alumina ceramic3,8,34 restorations and to improve bond
strength between resin composite and amalgam35 or en-
dodontic posts.43

As all these surface treatment methods may interact in
the clinical situation with enamel and dentin, the aim of this
in vitro study was to quantify the effect of these methods on
marginal adaptation of adhesive composite restorations in
these dental substrates. The null hypothesis was that the
above mentioned methods do not significantly influence
marginal adaptation either in enamel or dentin.

MATERIALS AND METHODS

Twelve intact, caries-free extracted human third molars, 
previously stored in 0.1% thymol solution, were chosen for
the study. After scaling and pumicing, the teeth were ran-
domly assigned to 4 experimental groups (n = 3) of equal size
and mounted on custom-made specimen holders using a
cold-polymerizing resin (Technovit 4071, Heraeus-Kulzer;
Wehrheim, Germany). Prior to the mounting procedures, the
apices were sealed with an adhesive system (OptiBond FL,
Kerr; West Collins, CA, USA). Simulation of dentinal fluid was
done using horse serum diluted in a 1:3 ratio with 0.9% Na-
Cl at 25 mmHg hydrostatic pressure fed into the pulpal cham-
ber of the test teeth and maintained throughout cavity prepa-
ration, restoration placement, finishing, and loading.

Two V-shaped standardized Class V cavities24,26 were pre-
pared in the buccal and lingual surfaces of each test tooth,
with half of the margins located in enamel and half in dentin.
For that purpose, 80 μm diamond burs (Universal Prep Set,

Intensiv SA; Lugano, Switzerland) were used under continu-
ous water spray. The standardized dimensions of the cavi-
ties were as follows: 3.0 to 3.5 mm in diameter, 2.5 to 3.0
mm in height, and 1.5 mm in depth. The margin in enamel
was bevelled to a crescent shape with a maximum width of
1.2 mm. The entire cavity was finished using 25 μm finish-
ing diamond burs (Universal Prep Set, Intensiv SA). The cav-
ity preparations were checked for marginal imperfections,
such as fractures or chipping, under a stereomicroscope (MZ
6, Leica Mikroskopie Systeme; Heerbrugg, Switzerland) at
12X magnification and corrected if necessary.

Before placing the restorations, the cavity surfaces were
treated according to the procedures detailed in Table 1. Cav-
ities of group 1 were exposed to ozone gas for 30 s using a
5-mm-diameter silicon cup, perfectly adapted to the dental
surface surrounding the preparation. An ozone delivery sys-
tem (Heal Ozone, Kavo; Biberach, Germany) was employed,
which generates the gas at a concentration of 2100 ppm ±
10%.4 For 10 s after the exposure, the ozone was evacuat-
ed by the device itself and neutralized to oxygen while the
cup was still adapted to the cavity.

In the second group, cavity surfaces were treated using a
sandblasting system (RONDOflex 2013, Kavo) which oper-
ates with silica-coated Al2O3 particles (CoJet, 3M-ESPE;
Seefeld, Germany). The exposure parameters were as fol-
lows: 27 μm particle size, application time 20 s, 2 bars air
pressure, 5 mm from the cavity surface, followed by clean-
ing with compressed air.

In the third group, cavity surfaces were exposed to air
abrasion using an angled sandblasting handpiece connect-
ed to the dental unit (Dento-Prep, Rønvig; Daugaard, Den-
mark). The application time was 20 s using 50-μm alu-
minum oxide particles with a distance of 5 mm between the
tip and the tooth surface, followed by cleaning with com-
pressed air.

Group four served as the control without any pre-treat-
ment of the cavity surface.

Subsequently, adhesive composite restorations were
placed (Table 1). Enamel was etched using 35% phosphoric
acid (Ultra-Etch, Ultradent; South Jordan, UT, USA). The ad-
hesive system (Syntac Classic, Ivoclar Vivadent; Schaan,
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Group 1 Group 2 Group 3 Group 4

Surface treatment Ozone exposure 30 s CoJet 20 s Al2O3 20 s None (control)

Etching UltraEtch: 35% phosphoric acid on enamel for 60 s, water spray 30 s, air dry

Adhesive system Syntac Classic:
Primer (Batch E43475) 20 s, air dry
Adhesive(Batch D66860) 20 s, air dry
Heliobond (Batch D63722) 20 s, air dry gently
Light curing 20 s

Composite Tetric Ceram, shade A2 (Batch F09942)
Light curing 40 s/layer

Table 1  Description of the experimental groups
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Liechtenstein) was applied according to the manufacturer’s
instructions. The composite (Tetric Ceram, Ivoclar Vivadent)
was inserted into the cavity in two layers, the first layer be-
ing placed cervically up to one-half of the cavity. The two lay-
ers were cured for 40 s each with a halogen light (Optilux
501, Kerr/Demetron; Danbury, CT, USA).

Immediately after polymerization, the restorations were
finished and polished by using flexible disks with different
grain sizes (SofLex PopOn, 3M-ESPE; St Paul, MN, USA). Pol-
ishing was controlled using 12X magnification under a stere-
omicroscope and corrected if necessary.

After storage at 37°C in water in the dark, the restored
teeth were simultaneously loaded with repeated thermal
and mechanical stresses in a chewing machine.22-24 Ther-
mocycling was carried out in flushing water with tempera-
tures changing 3000 times from 5°C to 50 °C and back with
a dwell time of 2 min at each temperature. The mechanical
stress comprised 1,200,000 load cycles transferred to the
center of the occlusal surface with a frequency of 1.7 Hz and
a maximal load of 49 N applied by using a natural lingual
cusp taken from an extracted human molar.

Immediately after completion of the polishing procedure
and after stressing, respectively, impressions were made of
each restoration with a polyvinylsiloxane impression mater-
ial (President light body, Coltène; Altstätten, Switzerland).
Subsequently, epoxy replicas were prepared for the com-
puter-assisted quantitative margin analysis in a scanning
electron microscope (XL20, Philips; Eindhoven, NL) at 200X
magnification.24 The different marginal qualities were as-
sessed as percent of the total length of margins analyzed.25

Additionally, typical morphologies of the enamel and denti-
nal surfaces were documented in the SEM.

RESULTS

As “marginal enamel fractures”, “marginal restoration frac-
tures”, “overfilled margins” and “underfilled margins” did
not exceed 5% in all groups and “marginal openings” were

calculated as 100 minus % “continuous margin”, only the
means and standard deviations for the criterion “continuous
margin” are reported. Differences between groups were sta-
tistically evaluated by using ANOVA and Sheffe’s post-hoc
test at p < 0.05 (JPM/N, JMP; Cary, NC, USA).
Before loading, total marginal adaptation was very high for
all four groups (more than 93% continuous margin), without
significant differences. However, thermal and mechanical
stressing significantly decreased the percentage of contin-
uous margin in all four groups (Fig 1).

No significant effect of the different surface treatments
could be detected on enamel either before or after loading
(Table 2). However, for margins located in dentin, the situa-
tion was different. Even though the initial results exceeded
94% continuous margin, there were differences between
groups, with significantly lower values in the case of speci-
mens treated with ozone and CoJet, before and after load-
ing in comparison to the control group. Marginal adaptation
in dentin was also significantly affected by loading in these
two groups, in contrast to groups 3 and 4, where differences
between initial and terminal values were not statistically sig-
nificant. CoJet system specimens seemed to be the most af-
fected by thermal and mechanical stressing (Table 3). Typi-
cal surface morphologies after the different treatments are
shown in SEM micrographs (Figs 2 to 8).

DISCUSSION

As explained by Frankenberger and Tay,16 preclinical labo-
ratory tests are valuable rapid research tools in the field of
adhesive dentistry. According to these authors,16 a realistic
test for adhesive restorations is the evaluation of “gap for-
mation” between the resin composite and tooth structures.
This is why marginal adaptation of composite to enamel and
dentin was investigated in this in vitro study.

Two restaurations per tooth were prepared to minimize
the number of human teeth needed for the experiment. Even
if the cavties were completely separated from each other,
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Fig 1 Percentages of continuous margin
for the total marginal length (mean ± SD).
No significant differences were detected
between groups, either before (ini) or
after (ter) loading (p < 0.05).
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Fig 6 SEM micrograph of the dentinal surface of the cavity
preparation after 50-μm Al2O3 treatment.

Fig 2 SEM micrograph of the enamel surface of the cavity prepa-
ration with 40-μm diamond bur after ozone exposure. The
enamel on the left-hand side was acid etched after ozone expo-
sure and represents the typical acid etching pattern.

Fig 4a  SEM micrograph of the enamel surface of the cavity
preparation after CoJet treatment. The enamel on the left side of
the picture was additionally acid–etched after CoJet treatment.

Fig 4b  SEM micrograph of the enamel surface of the cavity
preparation after CoJet treatment without acid etching.

Fig 5 SEM micrograph of the enamel surface of the cavity prepa-
ration after 50-μm Al2O3 treatment. The enamel on the left-hand
side of the picture was additionally acid etched after treatment.

Fig 3 SEM micrograph of the dentinal surface of the cavity
preparation with 40-μm diamond bur after ozone exposure with
typical smear layer and traces of the diamond bur.
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the question of the dependence of the results of the two cav-
ities may arise. This is why statistical evaluation was also
performed on the mean values of every tooth instead of a
cavity. The results did not change in respect to the statisti-
cal evaluation performed on all cavities.

Looking at the total margin length of the restorations,
more than 93% of the margins were gap-free before loading,
and 81% remained intact after loading (Fig 1). These posi-
tive findings confirm the results of a previous study on enam-
el.16 The results of the control group in dentin even slightly
exceeded the ones reported by that study. This difference

might be attributed to the fact that in the present study, the
adhesive system was used without phosphoric acid etching
on dentin. Thus, conditioning of dentin with the self-etching
Syntac Primer seems to increase dentinal adhesion of the
Syntac-Tetric system when compared to the double-etch pro-
cedure used by Frankenberger and Tay, in which phosphor-
ic acid was applied for 15 s on dentin before the application
of the self-etching primer.

No significant difference was detected for marginal adap-
tation in enamel between any groups, either before or after
loading. This might be attributed to the cleaning effect of

Fig 8 SEM micrograph of the dentinal surface of the cavity
preparation with 40-μm diamond bur, without any special treat-
ment.

Fig 7 SEM micrograph of the enamel surface of the cavity prepa-
ration with 40-μm diamond bur, without any further treatment.
The enamel on the left-hand side of the picture was additionally
acid etched after treatment. Original magnification 683X.

Group Before loading After loading
(mean ± SD) (mean ± SD)

Ozone 92.6 ± 3.2 A 81.3 ± 5.5 * A’
SiOx 93.2 ± 5.4 A 84.1 ± 4.0 * A’
Al2O3 92.3 ± 6.7 A 79.5 ± 6.9 * A’
Control 93.2 ± 9.2 A 76.9 ± 9.0 * A’

*= significant differences between initial and terminal values of the same group, p < 0.05. Different letters 
indicate significant differences between groups, both before and after loading, p < 0.05.

Group                           Before loading After loading
(mean ± SD) (mean ± SD)

Ozone 94.2 ± 5.7 A 83.0 ± 9.7 * A’B’
SiOx 97.7 ± 2.3 AB 76.4 ± 11.8 * B’
Al2O3 98.4 ± 1.9 B 89.1 ± 10.3 A’C’
Control 98.9 ± 1.8 B 95.9 ± 5.3 C’

*= significant differences between initial and terminal values of the same group, p < 0.05. Different letters
indicate significant differences between groups, both before and after loading, p < 0.05.

Table 2  Percentages of continuous margin for margins located in enamel

Table 3  Percentages of continuous margin for margins located in dentin
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phosphoric acid, which was apparently able to remove pos-
sible contamination from the enamel surface16,46 (Table 2),
and/or to the fact that at least some procedures tested did
not interfere with enamel properties, for example, as was
shown for ozone by Celiberti et al.12

The situation was different in dentin, as significant dif-
ferences before and after loading were detected between
groups (Table 3). It is well known that bonding to dentin is a
challenge because of its morphology, composition, and high
water content.10,14,48 Coming back to ozone, for example,
the percentage of continuous margins in dentin was already
initially lower than that of the control, and the difference was
even enhanced by loading. Ozone is a strong oxidant, able
to penetrate root lesions.4,7 Its negative effect on dentinal
adhesion could be a consequence of the oxygen inhibition
of polymerization.41,51 As ozone dissipates quickly in water,9
the effect of ozone might be more intense and persistent in
dentin, where  the water content is much higher as com-
pared to enamel. Another explanation could be the dehy-
dration effect of ozone, which decreases dentin wettability
and, in consequence, its bonding capacity.12 Schmidlin et
al45 demonstrated that shear bond strength was not im-
paired after the exposure of dental structures to ozone and
thus, according to these authors, adhesive restoration place-
ment should be possible immediately after ozone applica-
tion. However, Moll et al30 observed no correlation between
bond strength and marginal adaptation. In addition to that,
Schmidlin et al45 did not simulate dentinal fluid flow, as was
done in the present study. This is why the results of that
study cannot be compared with those of the present inves-
tigation.

Air abrasion or sandblasting technology is used in adhe-
sive dentistry for minimal cavity preparation, repair of exist-
ing restorations, or preparation of interfaces for adhesive lut-
ing. The system uses aluminum oxide particles propelled by
a stream of compressed dry air.28 This “kinetic” prepara-
tion29 is able to create rough, irregular surfaces, which may
increase the adhesion area for bonding.14,28,31 Silicatization
is a variation of the sandblasting procedure where alu-
minum trioxide particles of 27 μm are modified with silica
acid.34,35 Silica coating42 followed by silane application was
initially used to increase adhesion to metals. Over the years
it found access into composite, ceramic, and zirconia con-
ditioning as well.34,36,47 During intraoral operations, both
sandblasting techniques may interfere with enamel and
dentin. Stavridakis et al48 showed that the film thickness of
dentin bonding agent is not uniform across the adhesive in-
terface and that air abrasion preparation of a previously
sealed cavity may expose dentin. A great number of studies
tried to elucidate the problem of adhesion to air abraded
(Al2O3) enamel and dentin, but only a few studied the effects
of SiOx on dental structures. The majority of the studies
found in the literature investigated the tensile or shear bond
strength between restorative materials and sandblasted
enamel and dentin, with results that were often contradic-
tory: in dentin, aluminum oxide kinetic preparation had no
effect on bond strength,13 an adverse effect on dentin ad-
hesion when it was not followed by phosphoric acid etching
but the effect was compensated by additional etch-
ing,11,17,50 an adverse effect on dentin adhesion even when

followed by acid etching,1 or an enhancing effect on the
bond strength when acid etching followed.2,14

In enamel, a majority of authors agree that air abrasion
with Al2O3 alone cannot produce a properly conditioned sur-
face able to deliver a bond strength comparable to etched
enamel,1,15,32,40 although the combination of the two treat-
ments was shown to increase bond strength.15,31,50,52

There are also reports that tried to establish optimal pa-
rameters for the use of the air-abrasion method, in terms of
air pressure, particle size, distance from the tooth surface,
time of application, and tip design of the handpiece.28,29,44

Our interest was to simulate a contamination of the cavity
surface by sandblasting prior to the restorative procedure,
which is why a sufficient time of 20 s was applied to be sure
that the surface was completely treated by the air abrasion.

Excellent marginal adaptation was found in the present
study after Al2O3 treatment, both in enamel and dentin. Re-
sults were not significantly different from the control group
and no significant effect of stressing on dentinal margins
could be observed. In other words, Al2O3 does not appear to
interfere with the surface properties of either enamel or
dentin.

The situation in the CoJet treated group was different.
Hanning et al19 found that the CoJet system “drastically re-
duced the bond strength of composite on etched enamel,”
and Rathke et al39 concluded that silica coating followed by
silane “may interfere with the composite bond to dentin and
enamel”. In the present study, silica coating followed by
phosphoric acid etching did not change the quality of the
marginal adaptation in enamel. In dentin, the initially good
marginal adaptation was significantly affected by stressing.
One possible explanation might be a higher adhesion of Co-
Jet particles to dentin in comparison to Al2O3, in analogy to
metal surfaces.33 Another factor may be a possible conta-
mination of dentin with silica that creates a problem of wet-
ting,10 thus preventing the self-etching Syntac primer from
penetrating the collagen fibers and forming a strong, load-
resistant hybrid layer.

CONCLUSIONS

1. Ozone application does not significantly interfere with
marginal adaptation of an adhesive restoration in enam-
el but may interfere with marginal adaptation of a restora-
tion in dentin.

2. Sandblasting with aluminum oxide particles does not sig-
nificantly interfere with marginal adaptation of an adhe-
sive restoration in either enamel or dentin.

3. Silicatization should be carefully used for intraoral appli-
cations, since it may decrease marginal adaptation in
dentin.
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