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Purpose:  To develop and characterize an algorithm that mimics human expert visual assessment to quantitatively determine the quality
of three-dimensional (3D) whole-heart MR images.

Materials and Methods:  In this study, 3D whole-heart cardiac MRI scans from 424 participants (average age, 57 years + 18 [standard
deviation]; 66.5% men) were used to generate an image quality assessment algorithm. A deep convolutional neural network for image
quality assessment (IQ-DCNN) was designed, trained, optimized, and cross-validated on a clinical database of 324 (training set) scans.
On a separate test set (100 scans), two hypotheses were tested: () that the algorithm can assess image quality in concordance with hu-
man expert assessment as assessed by human-machine correlation and intra- and interobserver agreement and (%) that the IQ-DCNN
algorithm may be used to monitor a compressed sensing reconstruction process where image quality progressively improves. Weighted
K values, agreement and disagreement counts, and Krippendorff o reliability coefficients were reported.

Results:  Regression performance of the IQ-DCNN was within the range of human intra- and interobserver agreement and in very
good agreement with the human expert (R = 0.78, k = 0.67). The image quality assessment during compressed sensing reconstruction
correlated with the cost function at each iteration and was successfully applied to rank the results in very good agreement with the hu-
man expert.

Conclusion: The proposed IQ-DCNN was trained to mimic expert visual image quality assessment of 3D whole-heart MR images. The
results from the IQ-DCNN were in good agreement with human expert reading, and the network was capable of automatically com-

paring different reconstructed volumes.
Supplemental material is available for this article.

©RSNA, 2020

mage quality assessment is essential for many radiology
Iapplications (1). There are various methods for determin-
ing image quality, including visual inspection by human
experts and extraction of quantitative endpoints (2-5).
However, to promote an automated workflow, it is required
that more flexible and reproducible quantitative metrics
are extracted from images. An automated workflow would
facilitate the immediate assessment of image quality dur-
ing the patient examination and may potentially allow for
a timely rescan when needed. One of the main challenges
for generating an automated image quality extraction al-
gorithm relates to its capability of providing a meaningful
correlation with the general visual perception of human
experts (6), instead of only quantifying one specific fea-
ture of the image. In many cases, mathematical formulas,
such as the spatial variation of the image intensity, gradient
entropy, temporal total variation, or other metrics, lead to

computational results that tend to indicate agreement with
human expert perception (6). However, these formulas are
often independent of the specific context of the images
they are used to assess.

In cardiac MRI, aside from classic measures such as
signal-to-noise ratio or contrast-to-noise ratio, several
anatomy-specific metrics can be used to assess image qual-
ity, including coronary sharpness, visible vessel length (7),
or myocardial border sharpness (8). Alternative measures
for assessing image quality include the precision and ac-
curacy of the functional analysis for cine imaging (9) or,
more generically, one of many diagnostic quality scales
(eg, Likert scale) (10). Only recently (11), deep learning
has been identified as a way of implicitly learning image
features that may inform about quality. Current examples
in the literature mainly focus on natural image process-
ing, where extensive databases are freely available, and the
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Abbreviations

DCNN = deep convolutional neural network, IQ-DCNN =
DCNN for image quality assessment, 3D = three dimensional, 2D
= two dimensional

Summary

An artificial intelligence—based algorithm can mimic expert visual
image quality assessment and allows for fast and automated image
quality grading of three-dimensional whole-heart MR images.

Key Points

m The proposed deep learning framework shows that it is possible to
train a neural network to reproduce human expert image quality
assessment on a predefined scale with a performance that ap-
proaches that of human expert interobserver agreement.

= The proposed deep learning framework can be used to compare
image volumes that are reconstructed with different algorithms
from the same acquisition and to select the image with the best
quality.

meaning of image quality is straightforward. For example, the
classic structural similarity index (12) was developed to assess
two-dimensional (2D) image degradation under compression;
and face-specific quality metrics have been evaluated on face
image databases with multiple quality settings (13). Deep neu-
ral networks have already been successfully used to provide a
quality grade on a predefined scale (14,15). However, few ap-
plications for medical imaging have been proposed thus far.
Examples of image quality assessment algorithms include those
used for classification of fundus images of the retina in two
categories to assess in real time whether the image should be
reacquired (16,17), automated artifact detection (binary classi-
fication) on MRI scans (18), classifying T2-weighted liver MR
images as “diagnostic” or “nondiagnostic” (19), or transperi-
neal US image quality (20). In cardiac MRI, Zhang et al used
a convolutional neural network to detect missing apical and
basal slices (21) and a generative adversarial network to identify
complete left ventricular coverage (22).

In this work, we applied an alternative approach to set
out to understand the intrinsic concept of “image quality”
as assessed by human experts by using a predefined scale.
The hypothesis for this study was that a deep convolutional
neural network (DCNN) could be trained to reproduce the
grading performance of an expert observer. The results ob-
tained by the network would therefore be within the range
of the human inter- and intraobserver variabilitcy. We tested
our hypothesis in the specific scenario of whole-heart MRI
acquisitions. By employing a DCNN for image quality as-
sessment (IQ-DCNN), the proposed algorithm was first
trained and then cross-validated using a patient database of
three-dimensional (3D) MR images of the heart that were
graded for image quality by human experts. The performance
of the trained and validated IQ-DCNN was subsequently
tested using patient data that were not included during the
training and validation phases. The link between human and
IQ-DCNN grading was then studied and expressed relative
to expert intra- and interobserver agreement. Finally, we in-
vestigated the combination of this algorithm with an iterative

Table 1: Image Quality Scale

Grade Description
0 Nondiagnostic
1 Marked blurring, limited diagnostic value
2 Moderate blurring, but diagnostic value
B) Mild blurring, good diagnostic value
4 Excellent diagnostic value

Note.—Image quality scale used for the human expert grading.
Half grades were allowed when the expert reader was in doubt
between two grades.

compressed sensing image reconstruction process as an exem-
plary scenario where the IQ-DCNN would be used to assess
quality differences in the same dataset under different condi-
tions (eg, increasing number of iterations or different respi-
ratory phases). An automated workflow that can reproduce
expert image quality assessment could potentially facilitate
rescan decisions in a timely manner and may be useful to op-
timize iterative reconstruction algorithms in terms of number
of iterations and final image quality.

Materials and Methods

Patient Imaging Database

A clinical database consisting of 3D whole-heart MR im-
ages was used in this study. Written informed consent was
obtained from all participants. All images were acquired be-
tween 2013 and 2016. This retrospective study was approved
by the local ethics committee at the University Hospital of
Lausanne. Scans from 424 randomly selected patients (one
scan per patient) referred to general clinical cardiac MRI
(average age, 57 years + 18 [standard deviation], 66.5%
men) were collected and fully anonymized with no specific
inclusion criteria.

MRI Parameters

All scans were acquired with a 1.5-T clinical MR scanner
(MAGNETOM Aera, Siemens Healthcare, Erlangen, Ger-
many) using a prototype free-breathing and respiratory self-
navigated electrocardiographically triggered 3D radial golden-
angle balanced steady-state free precession sequence (23-26).
The field of view was 210 x 210 x 210 mm?, with 1-mm?
isotropic spatial resolution. Typical sequence parameters were
as follows: repetition time msec/echo time msec = 3.1/1.56,
radiofrequency excitation angle = 90°~115°, and receiver band-
width = 900 Hz/pixel. A total of approximately 15000 radial
readouts were acquired, equally divided over about 400-500
heartbeats, depending on the individual heart rate of each pa-
tient and with an overall sampling ratio of 20% of the Nyquist
limit. The trigger delay to the most quiescent middiastolic or
late systolic cardiac phase was set by the cardiologist operating
the MRI unit, using a midventricular short-axis cine image se-
ries acquired before the whole-heart scan.
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the two readers was compared with the 1Q-
DCNN assessment, and inter- and intraob-
server variability were determined.

Automated Assessment
Algorithm

A DCNN was designed to perform fully auto-
mated image quality assessment. The complete
algorithm is presented graphically in Figure 1
and described in more detail in Appendix E1
(supplement).

In brief, 2D patches of 128 x 128 pixels were
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extracted in axial, sagittal, and coronal orienta-
tions from all 3D image volumes and used as
input. The IQ-DCNN was designed with four
convolutional layers followed by three fully
connected layers. A final regression layer was
used to combine the implicitly extracted im-
age features into a quantitative image quality
value for each patch. An optimizer minimized a
cost-sensitive (27) antibiasing L, loss function
(L"**), which represents a measure of the
similarity between the grades predicted by the
network and the ground truth, while includ-
ing intrinsic compensation for the nonuniform

grade distribution (Eq 1).
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Figure 1:

optimized during cross-validation. RelU = rectified linear unit.

Reader Assessment for Inage Quality

Readers assessed images at two different stages. Reference stan-
dard image quality grading was established using a diagnostic
quality scale (10) from 0 to 4, in steps of 0.5 for finer scaling,
according to artifact level, blurring, vessel sharpness (7), and
noise content (Table 1). One expert reader (D.P, with 11 years
of experience in coronary MR angiography), whose grading
was considered as the ground truth in this work, graded all 424
anonymized datasets, and the resulting grade distribution was
studied. The expert was blinded to the patient’s identity, diag-
nosis, treatment, and any other patient-specific information.
Time spent by the expert to grade each dataset was recorded.
After IQ-DCNN assessed image quality (described in the
next section), the test dataset of 100 scans was assessed by an-
other expert reader (J.Y., with 6 years of experience in coronary
MR angiography), as well as a second time by the first reader
more than 1 month after the first assessment. Assessment from
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Visual representation of the deep neural network used in this study. A, The network input
is a two-dimensional (2D) patch extracted from the three-dimensional volume. Batches of 2D patches in
the three orthogonal orientations are used for training. B, Four convolutional layers are followed by three
fully connected layers. The final regression layer provides a grade for each patch. The mean value of
paich grades for one volume corresponds to the patient grade. The hyperparameters hp, o hp, were

?j T Tm
jeG j iEes;

Here, G is the set of all possible grades,
is the set of all patches having a true grade
of j, y, is the estimated grade, and y,* is the
true grade. To prevent overfitting, dropout
was used for regularization (28). Dropout is
defined as a regularization technique by which
neural network units and connections are ran-
domly dropped during training.

The network architecture is broadly inspired
by the VGG-16 model (29), while reducing the number of con-
volutional layers and having smaller fully connected layers to
account for the small size of the training set. The specific archi-
tecture was selected after some initial exploratory experiments on
the training and validation set.

The database was split into training and validation set
(324 scans) and test set (100 scans) with similar grade and
sex distributions. The training and validation set was further
split into three equal parts (z = 108) for the optimization
using threefold cross-validation of four preselected hyperpa-
rameters (generally defined as neural network settings that
are not directly modified by optimization of the network to
reduce the loss): hp, is size of receptive field of the first con-
volutional layer, hp, is probability of keeping connections
while using dropout, hp3 is initial learning rate, and hp4 is
half edge length of the cube of patch centers (Appendix E1
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[supplement]). Finally, the patch quality grades were com-
bined into a single grade using the average of the patch grades
for each patient.

Testing the IQ-DCNN and Statistical Analysis

Comparison with expert reference.—After hyperparameter op-

timization, the IQ-DCNN with the lowest Finitis was retrained
on the training and validation set (2 = 324) for evaluation on
the previously unseen test data. The network’s performance is
reported as a boxplot of the network’s quality estimation against
the reference standard. Correlation coeflicients, linear regression,
and weighted « statistics (Eq 2) were calculated. To validate the
robustness of the training procedure, the network was retrained
10 times, and mean and standard deviation of the figures of mer-
it were reported. Training and testing times were reported for a
Linux server with a Nvidia Tesla K40c GPU, 512GB RAM, and
Intel Xeon E5-2680 version 3 CPU.

Statistical analysis of intra- and interobserver variability.—
The variability of the IQ-DCNN was compared with the inter-
and intraobserver variability described earlier for the test set (7
= 100). The weighted k score (Eq 2) was used to quantify the
inter- and intraobserver variability (30):

Er',je(}li_ﬂof}'

:1—-
Z.i,je(r‘ j’;_j|eéf
with ‘ ‘
0= #(01 —1902 —]) o
and

#(0,=i)#(0, = j)

Here, G is the set of possible grades, O, and O, are two sets of
observations, and NV is the number of datasets. The IQ-DCNN
grade was rounded to the nearest half integer.

Kk was interpreted as follows: 0—0.2 = slight agreement, 0.2—
0.4 = fair agreement, 0.4-0.6 = moderate agreement, 0.6-0.8 =
substantial agreement, 0.8—1.0 = almost perfect agreement, and
K = 1 as perfect agreement. Corresponding heatmaps with agree-
ment and disagreement counts were plotted. Krippendorff o re-
liability coeflicients were computed for agreement between the
IQ-DCNN and each of the human readers, as well as between
the readers. An o value equal or greater than 0.8 was required
to show agreement. Spearman rank correlation coefficients were
additionally computed to account for the possible nonlinearity
of the fit. Bland-Altman analysis was performed to assess the
agreement between all human expert readers and the algorithm,
as well as an analysis of the average variation per grade for in-
traobserver, interobserver, and network-observer comparisons.
Variations in the response of the network with respect to the
average grade between the two expert readers (considered as the
expert consensus grading) were also calculated. Last, the mean

absolute error and the root mean squared error between human
raters and convolutional neural network output were calculated
to report on the magnitude of the errors.

Heatmap generation.—To highlight the features that the
DCNN uses to assign an overall quality value to a 3D vol-
ume, a heatmap was generated for one exemplary dataset.
Such a heatmap depicts the relative importance of different
regions as contributors for the overall image quality grade as-
signed by the network to the specific dataset. The heatmap
can be obtained by masking different parts of an input image
with a sliding window mask and evaluating the response in
the output image quality score. The generation process con-
sists of three main steps. First, for every valid mask position
in slice: (#) mask out region and set values to zero, (4) grade
masked image using the trained IQ-DCNN, and (¢) add this
grade to the nonmasked region in the heatmap. Second, com-
pute average grade for every pixel in the heatmap consider-
ing the number of patches in which it was included. Finally,
normalize all heatmap slices.

Validation in iterative compressed sensing image recon-
struction.—Finally, the IQ-DCNN algorithm was used to
evaluate the intermediate and final results of an iterative com-
pressed sensing reconstruction. A total of 69 raw datasets from
the test set were reconstructed with the pipeline described in
Piccini et al (31), with four respiratory phases using extra di-
mensional golden-angle radial sparse parallel MRI (32). The
IQ-DCNN was used to evaluate the quality of intermediate
images at subsequent iterations and to compare image quality
among the respiratory phases. The resulting quality evolution
curves were plotted together with the evolution of the math-
ematical objective cost function used by the reconstruction.
Paired comparisons were performed to evaluate the evolution
of the image quality grades during iterative reconstruction, the
average final image quality improvement, the image quality
differences among the respiratory phases, and the correlation
between final image quality grades and those obtained with
conventional gridding. A P value = .05 was considered signif-
icant. Finally, to further test the performance of the network
in assessing the image quality of different reconstructions of
the same dataset, an expert reader (D.P) visually compared
pairs of anonymized image volumes corresponding to the four
reconstructed respiratory phases in 16 datasets. The reader was
instructed to either select the phase with highest image quality
of the two or assign equal quality. The expert evaluations were
plotted against the same paired comparisons performed using
the IQ-DCNN assessment. While the human expert can only
say that one of the datasets has higher quality than the other or
that they appear to be of equal quality, the IQ-DCNN always
outputs a quality grade on a continuous scale and, therefore,
always indicates one dataset to be of higher quality, even by
only some decimals of a grade. As a consequence, and con-
sidering that the original scale was in steps of half a grade,
an assumption was made that when the network indicates
that there is a quality difference below one-quarter (0.25) of
a grade between two datasets, a human expert would not be
able to perceive it.

radiology-ai.rsna.org = Radiology: Artificial Intelligence Volume 2: Number 3—2020
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(a) Distribution of the grades in the database used in this work by observer 1. A standard image quality scale was extended to account for variations of half

a grade when the expert readers were uncertain between two values. (b) Axial (top) and sagittal (bottom) reformats from datasets with corresponding grades from O to 4
(left to right) are shown for reference. Note how a dataset with a metal arfifact in the chest and a clear flow artifact in the left ventricle (arrows) could still receive a high grade

(grade 3) as the evaluation was performed merely on the quality of the heart structure.

Statistical analyses were performed using R version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria), with
packages irr 0.84.1 and Metrics 0.1.4.

Results

Expert Image Quality Assessment for Reference Standards

Prior to IQ-DCNN training, images within the dataset (# =
424) were first assessed by an expert reader. The histogram
of all grades given by the first reader (observer 1) is shown in
Figure 2, together with examples of representative midven-
tricular axial and sagittal slice reformats and their respective
image quality grades. The time for an expert to grade one
dataset was 100 seconds on average.

Optimization of IQ-DCNN Network Parameters

Analysis of the threefold cross-validation results for different
combinations of the four hyperparameters under consider-
ation yielded the following optimal values: size of receptive
field first convolutional layer (hp,) = 5 pixels; probability of
keeping connections while using dropout (hp,) = 0.3; initial
learning rate (hp,) = 5e™’; and half edge length of the cube

of patch centers (hp,) = 40 pixels. The mean fivis for the
optimal network topology for all folds combined was 0.48

Radiology: Artificial Intelligence Volume 2: Number 3—2020 = radiology-ai.rsna.org

for the patches separately and 0.41 for the mean of all patches
per patient.

Test Performance

After retraining the IQ-DCNN with the selected hyperpa-
rameters on the complete training set, the final performance
was evaluated using the test set. Training time amounted to
approximately 14 minutes per 1000 iterations, and evalua-
tion took approximately 1.6 seconds per dataset. A boxplot of
the network’s patch grade output against the reference stan-

dard is shown in Figure 3a. The Lbis was 0.44, the Pearson
correlation (&%) was 0.72, and the weighted k score was 0.63.
When considering the patient grades (the mean of all patch

grades belonging to the same patient), pmitis became 0.39,
R* was 0.78, and k was 0.67. The corresponding boxplot is
shown in Figure 3b. Mean and standard deviation of the net-

work’s performance after 10 cycles of retraining were fmitiss =

0.45 + 0.01 for the patch level and fmivis = 0.40 £ 0.01, R =
0.78 £ 0.01 and k = 0.66 + 0.01 on the patient level.

As the IQ-DCNN assigns a grade to every 2D patch, the
estimated patch grade distribution within a single image vol-
ume is presented in Figure E2 (supplement) for six different
datasets representative for all phenomena within the test set.
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Figure 3: Boxplots and regression fits of the neural network when compared
with the expert grading on the test set. While the correlation is quite high, the variabil-
ity of the prediction depends on the grade. The regression fit is similar for both patch
(top) and patient level (bottom), but R? is higher when considering all the patches for
each patient. The boxplots represent the median and interquartile ranges. The dots
in the patch level plot are the outliers. The dots in the patient level plot represent the
actual image quality assigned to each volume of the test set.

While the red lines represent the average of all patch grades
for that specific volume and therefore the final patient grade
selected by the IQ-DCNN, the green lines correspond to the
grades given by the expert readers (two grades by the first
expert and one by the second) to the whole volume.

Comparison with Intra- and Interobserver Variability

The intraobserver agreement is presented graphically in a Bland-
Altman plot in Figure E3a (supplement). The mean intraobserver
agreement was substantial (k = 0.70). The interobserver agreement
is presented in Figure E3b (supplement), where the corresponding
mean interobserver agreement was substantial (k = 0.67) (33).
Krippendorff a scores were 0.86 between the first reader and the
IQ-DCNN, 0.91 between the second reader and the [Q-DCNN,
and 0.87 between the two human readers. For the Spearman rank
correlation coefficient, the correlation between the first reader and
the IQ-DCNN was 0.88, between second reader and the 1Q-
DCNN was 0.92, and between the two human readers was 0.88.

The correspondence between the network’s grade estimation
and the reference is represented as a Bland-Altman plot in Fig-
ure E3c (supplement) to allow for comparison with the intra-
and interobserver agreement. The agreement between all quality

Table 2: Bland-Altman Analyses

Rater Observer 1b Observer 2 IQ-DCNN
Observer 1a 0.01 + 0.50 0.03 £ 0.57 0.07 £ 0.52
Observer 1b 0.04 + 0.61 0.08 + 0.49
Observer 2 0.04 + 0.47

Note.—All values are means + standard deviation. Observer 1
viewed images twice: a denotes the first time, and b denotes the
second time. IQ-DCNN = image quality deep convolutional
neural network.

Table 3: Weighted « Scores

Rater Observer 1b Observer 2 IQ-DCNN
Observer 1a 0.70 0.67 0.67
Observer 1b 0.66 0.72
Observer 2 .. 0.74

Note.—Observer 1 viewed images twice: a denotes the first time,
and b denotes the second time. IQ-DCNN = image quality deep

convolutional neural network.

Table 4: Comparison of Readers and IQ-DCNN

Root Mean Squared
Comparison Mean Absolute Error Error
Observer 1 vs 0.42 0.57
Observer 2
Observer 1 vs IQ- 0.41 0.53
DCNN
Observer 2 vs IQ-  0.36 0.47
DCNN

Note.—IQ-DCNN = image quality deep convolutional neural
network.

assessments is summarized in Table 2 by the mean and standard
deviation resulting from Bland-Altman analysis and in Table 3
by the weighted k scores. Corresponding maps with agreement
and disagreement counts are reported in Figure 4. The variability
from the reference grade is depicted in Figure E3d (supplement)
together with the average variability per grade obtained from the
single observer on the one hand and multiple observers on the
other. A plot representing the error of the network with respect
to the human consensus (ie, the average of the two readers) can
be found in Figure E4 (supplement). Finally, mean absolute er-
ror and root mean squared error values are reported in Table 4.

Heatmap Generation

Three axial slices of the heatmap generated using one exem-
plary dataset are provided in Figure 5, while the full volume is
provided as an animation in the Movie (supplement). Such a
heatmap shows how it is not the general blurriness or sharpness
of the image that determines the final grade, but rather it seems
that some specific parts of the image volumes have more influ-

radiology-ai.rsna.org = Radiology: Artificial Intelligence Volume 2: Number 3—2020
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Maps with agreement and disagreement counts on the test set for the interobserver comparison between (@) the first expert reader and the IQ-DCNN, (b)

the second expert reader and the IQ-DCNN, and () the two expert readers. It is clear from these plots how most of the counts fall along the diagonal, meaning that there

is high inferobserver agreement.

ence than others on the final grade. In particular, in Figure 5,
we can notice how the sharpness of small vessels seems to have
a major impact on the overall grade. This would suggest that
deeper convolutional layers play a fundamental role in deter-
mining the response of the IQ-DCNN.

Quality Evolution in Compressed Sensing

Figure 6 represents an example dataset where the IQ-DCNN
assessment was applied to images from four different respiratory
phases as a function of the compressed sensing iteration (from 0
to 20). Phase 1 represents the most end-expiratory phase, while
phase 4 refers to end-inspiration. Iteration 0 represents the image
resulting from the first gridding step before the iterative com-
pressed sensing optimization starts. Here, we can notice (2) that
the improvement in image quality along with the iterations is
well represented by both the objective cost function (black line,
scaled to fit) and the image quality assessment (colored lines)
and (4) that the neural network can distinguish differences in
image quality among the different respiratory phases. In these
datasets, a clear increase in estimated image quality is visible,
and the images originating from the four respiratory phases do
not converge all to the same grade. The average image quality
grade for all the phases of all 69 datasets increased from 0.3 +
0.4 (maximum of 2.5, minimum of 0.0) for the gridding step
to 1.7 + 1.1 (maximum of 3.8, minimum of 0.1) for the final
iteration of the compressed sensing reconstruction. In this final
iteration, the best image quality grade was assigned in 17 of 69
(25%) of the cases in phase 1, in 39 of 69 (56%) cases in phase
2,in 11 of 69 (16%) in phase 3, and two of 69 (3%) in phase 4.
However, the average absolute image quality grade difference be-
tween phase 1 and phase 2 was only 0.1 + 0.1 (range, 0.0-0.4; P
< .05). The average grade difference between the best and worst
respiratory phases obtained at the last iteration was 0.4 + 0.3
(range, 0.1-1.4; P < .05). During iterative reconstruction, the
image quality grade seemed to reach a plateau (grade difference
< 2%) after 6 + 2 iterations on average of the 20 total iterations
evaluated. The mean image quality grade improvement from the
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gridding reconstruction (iteration 0) to the last iteration was 1.3
+ 0.7 (maximum of 2.7, minimum of 0.1) for all phases of all
datasets. A high linear correlation (R? = 0.69) was found between
the best image quality grade of the final iteration and the grid-
ding reconstruction, as well as between the best image quality
grade of the final iteration and that of the original image quality
grade of the self-navigated reconstruction (&* = 0.85).

In the 16 datasets where both the expert reader and the IQ-
DCNN evaluated the image quality differences between pairs of
reconstructed respiratory phases, the network graded one of the
two volumes to be of higher quality than the other by more than
one-quarter of a grade in 21 of 96 (22%) pairwise comparisons.
In these comparisons, there was 100% agreement between the
human assessment and the IQ-DCNN in indicating the phase
with the highest quality. Figure E5 (supplement) graphically dis-

plays the results of such comparisons for all 16 datasets.

Discussion

The use of a DCNN was proposed to automatically and quan-
titatively assess image quality of 3D whole-heart patient MR
images mimicking human expert grading. Retraining the
network several times does not yield high variability, and the
algorithm tends to converge to highly equivalent solutions.
The evaluation of the test set suggests that the algorithm esti-
mates image quality with an accuracy similar to that expected
from a human expert and with a precision within the bounds
of the interobserver agreement between two human experts.
Although the overall correlation with the expert assessment is
high, very low and very high grades are slightly over- and un-
derestimated, the variability increases for medium grades, and
averaging the patch grades into a single patient grade yields
better predictions by lowering the variance. In image volumes
with discordant expert values (Fig 4), the estimation of quality
is often less straightforward and multiple peaks occasionally
exist, suggesting that different experts may have looked at dif-
ferent image properties. The generated heatmap suggests how
in this specific case, it is not the general sharpness of the im-
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Figure 5:

Three representative axial slices from the heatmap display the relative contribution of different anatomic regions to the final qual-

ity grade. Some small sfructures, mainly vessels and some of the edges, seem to have a major influence in the final grade. The full volume of the

heatmap can be found in the Movie (supplement).
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Two examples of automated image quality assessment during iterative compressed sensing reconstruction using the proposed deep convolutional neural

nefwork. The quality of the whole-heart image volumes corresponding to the four reconstructed respiratory phases is assessed at each iteration on the standard image quality
scale from O (poor quality) to 4 (excellent). Phase 1 represents the most end-expiratory phase, while phase 4 refers to end-inspiration.

age that seems to determine the final grade, but rather specific
parts of the anatomy. Some features seem to be more promi-
nent than others in contributing to the final grade. Specifi-
cally, small vessels seem to have a major impact on the overall
grade, which corresponds nicely with the fact that the coronary
tree is a structure often looked at for determining the overall
quality of a whole-heart dataset. Finally, considering the re-
sults obtained for the respiratory-resolved compressed sensing
reconstructions, it may be concluded that the algorithm can
differentiate image quality even though it had never previously
been exposed to equivalent data during the training phase. In
this scenario, the comparison of the grades at each iteration
and the objective function of the iterative reconstruction can

be considered as a validation of the network output. Moreover,
the distribution of the best image quality grade within the four
respiratory phases seems to confirm the results in Ginami et
al (34), while these findings also advance the hypothesis that
automated image quality assessment could directly be applied
for the definition of a stopping criterion for iterative recon-
struction (ie, when the quality score reaches a plateau even
though the objective function keeps decreasing) and that it has
a potential role and utility in comparison studies. A robust au-
tomated image quality assessment algorithm would prove very
useful within the clinic. For example, an algorithm could be
used to assess several different reconstruction techniques and
could provide the best image quality results.
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In general, clinical and technical studies may greatly benefit
from an automated and quantitative determination of image
quality among two or more images. Moreover, because data
volumes will inevitably increase over time, an expert-based vi-
sual decision making on image quality will become a daunting
task. Therefore, support mechanisms that help the expert make
better informed decisions in a time-efficient way will be criti-
cally important. For instance, the IQ-DCNN algorithm can
help automatically select the respiratory and cardiac phase with
the best image quality (35).

This study had limitations. As the DCNN needs to be
trained, the first requirement before optimization and valida-
tion of an automated image quality algorithm is the availability
of human expert—established reference standard images. In this
specific case, the distribution of the quality grades was highly
nonuniform, and it was therefore necessary to use antibiasing
methods during the optimization of the algorithm to avoid pre-
diction bias toward low and mid grades. A variety of DCNNs
exist with numerous hyperparameters. Therefore, designing the
optimal network for a given task is not straightforward and,
ideally, an exhaustive optimality search should be performed
within the whole hyperspace of hyperparameters. Although the
network used in this study represents a high-dimensional op-
timization problem, empirical experience in other applications
of deep learning suggests that, even in these cases, stochastic
gradient descent results in acceptable solutions with good er-
ror bounds on unseen data, possibly because it tends to find
local minima which are reasonably flat (large basins). This
is in opposition to vanilla gradient (simplest) descent which
tends to converge to sharper minima and is due to the fact
that stochastic gradient descent methods rely on random ini-
tialization and discrete gradient steps. In this context, flatter
minima are thought to yield better generalization on unseen
data than sharper minima. However, the generalization capac-
ity of deep learning models is an area of active research with
several plausible explanations (36). To understand whether the
depth of the IQ-DCNN was justified and to assess what parts
of the image volumes most contribute to the overall final grade,
a heatmap was generated. Furthermore, an extension from 2D
to 3D patches can be considered at the expense of increased
computational demands. The neural network performance
may also depend on the image quality criteria used by the hu-
man experts to grade the images. In the current study, general
quality of the anatomic structures and coronary vessel sharp-
ness was used to assess quality, and therefore, the reported per-
formance of the DCNN should not be extrapolated to other
image quality criteria related to features such as valves, scars,
or ischemia visualization. Other limitations included that the
network was trained only based on one single reader and that
this was a single-center study, using a single-vendor scanner
and one specific MRI sequence. Although training the network
according to a consensus grading between two or more expert
readers may improve the generalizability of the approach, there
seems to be an intrinsically increased uncertainty for both read-
ers (intra- and interobserver alike) and for the network when it
comes to grading datasets of intermediate quality. This can be
detected in the regression plots, as well as in the Bland-Altman
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plots and in the correlation between interobserver uncertainty
and uncertainty of the IQ-DCNN with respect to a consensus
grading between the two observers.

In conclusion, an automated image quality assessment al-
gorithm employing a DCNN has been implemented, tested,
and applied to clinical 3D cardiac MR images in patients for
the determination of image quality. It has been shown that the
algorithm is capable of estimating image quality with good
agreement with respect to human expert reading. The accu-
racy was found to be within the bounds of expert interobserver
variability. Applied to an iterative compressed sensing pipe-
line where different respiratory phases are reconstructed, the
algorithm was not only capable of identifying improvements
in image quality as a function of the increasing iterations, but
also as a function of the respiratory level. In all, our findings
suggest that a variant of this algorithm may be exploited to
define termination criteria of an iterative process to improve
time efficiency and to help identify data with the least amount
of motion blurring.
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