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Introduction 

Flowering, the sexual reproductive development, is a multistep integrated and 
dynamical networking process, oriented in time (physiological clocks) and space (root, 
leaves, stem, shoot apex territories), producing as finality a new organ: the flower. 
Since the cretaceous time (-1,3-108 years), it ensures the reproduction (species 
survival) and the space expansion of higher plants (-3,5-105 different species). This 
phase of the plant life cycle is the most important, together with the biomass 
production by photosynthesis (vegetative growth and development: 2-1011 t dry weight 
per year). 

The dynamic stability of ecosystems and biosphere, as well as environmental 
adaptation, are widely dependent on the evolution of flowering, in connection with the 
response capacity to ecospace changes (light, temperature, water, soil, etc.) and to 
biospace specific structure (mutation, recombination; population genetics; ecological 
web) [4,14,21,68,140]. 

The flowering process, putting aside the inconvenience of complexity, is a good 
model to study and understand the co-action and adaptation between the genetic 
biospace and the physico-generic activities on one side and the ecospace properties 
changes on the other side. These properties are, for example, temperature, light and 
water that are important agents for growth and development, and also signalling by 
photo-nyctotemperature alternation, photo-nyctoperiodic induction, water stress, etc. 
[58-60, 112]. 

Despite the numerous publications that have appeared in this field during the last 
century, the flowering mechanism is still not clearly known. It is only recently, after a 
long period of morphological and ultrastructural description, followed by a chemical 
and biochemical analysis and a classical genetic approach, that we are progressively 
entering into a molecular genetic phase and a biophysical and physiological systemic 
approach. This new trend, with the help of a lot of new techniques (nucleic acids 
amplification and analysis, macro-and microarrays, bioinformatics, genomics, 
proteomics; atomic force microscopy, nuclear magnetic resonance, fluorescence 
analysis, network and far from equilibrium thermodynamics, metabolic compartmental 
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analysis, modeling, physiomatics, etc.) will probably allow to solve this always-open 
question during the new century (the Arabidopsis genome will be totally deciphered in 
2001) [35,63,64,90,110,112,133,145,171]. 

The different components of the flower (sepal, petal, stamen, pistil) are the end­
result of floral morphogenesis, determined by the action of some specific genes (floral 
meristem and organ identity genes) and the consecutive physico-biochemical changes 
in the apical shoot meristem: a few hundred cells constitute three territories, the initial 
ring for leaves production (plastochrone), the medullary and the prosporogenic 
territories for respectively stem and flowers formation. Significant knowledge has 
been acquired concerning the molecular nature of floral morphogenesis in the apex. 
Less is known about floral evocation, the phase following the vegetative functioning 
(leaves production). This period, lying from the onset of induction to the second wave 
of apical mitosis (onset of the floral pieces construction), is characterized by a 
dedifferentiation (hydrolytic activities) of the prosporogenic territory and then a 
stimulation of mitosis to produce, later, the flower. Evocation is coupled to a space­
time change in the mitotic distribution and control of the different territories in the 
shoot apex (change in the phyllotaxis and Fibonacci series) [36]. Good indicators of 
evocation, as we have proposed, are the localization and amount of glucose-6-
phosphate dehydrogenase activity, the mitochondrial and plastid DNA synthesis and 
the plasma membrane proliferation [5-7, 13,39,57,87, 151,157,194]. 

Another important progress has been made by the progressive identification of the 
genes responsible for the orientation in time (physiological clocks) and those encoding 
the pigments (phytochrome, cryptochrome, etc.) that enable to cope with 
environmental parameters triggering floral development (reproduction) or maintaining 
vegetative mass production [37,41,59,104,108,114,122, l50,160]. 

The environmental conditions may act as optimizing agents which are monitored by 
the plant to determine the best time for reproduction or for biomass production. Each 
ecotype has a specific set of different genetic modules interfacing with the 
environment and allowing various adaptation patterns. 

If the shoot apex has all the genetic information to produce flowers, the fitting of 
the reproductive program within some environmental and obliged internal parameters 
is an absolute necessity for the survival of the plant species, because they can not 
escape from the ecospace constraints. Plants are immobile, strictly depending on light 
and water for their autonomy and, contrarily to animals, have a low degree of global 
homeostasy against environmental pressure. They are however adapted by other 
specific ways, such as continuous embryogenesis, cellular totipotency, low degree of 
tissue and organ differentiation, leaf abscission, cross-resistance and stress resistance 
patterns, etc., affording a multifactorial solution leading to the same finality 
( equifinality). That "extraspection" feature offers multiple ways of responding to the 
fluctuating environment; some aspects of these modular responses are detected by the 
shoot apex to induce or not flower formation (integration with environmental and 
internal possibilities) [63,112,133] . 

Some signals (floral stimuli or inhibitors) are produced in the plant (leaves, root) by 
the transduction of eco- and internal sensors information ( environment perception; 
memory, Pavlov-like reactions, learning) and, under the control of biological clocks, 
are then transferred ( communication) to the apex where they trigger or block the 
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flowering process at the prosporogenic meristem level. The real nature of these stimuli 
and of the implicated genes (flowering genes) are for the moment not sufficiently 
known. But when the leaf has been induced to produce the floral stimuli, it is possible 
by grafting it to a vegetative plant, to induce the flowering of the receptor. This 
transition of vegetative leaf to floral state, characterized by specific proteins, is 
irreversible. The graft effect is linked to the plasma membrane symplastic 
reconnection with the stock. The phloem is an important conduit for the circulation of 
the floral stimuli. Senescence is accelerated when flowering is launched. 

By the dynamic integration of the environmental possibilities it becomes possible to 
achieve with security ( environmental risk) the reproductive development and to 
guarantee the future of the species. A varied networking of genes under activation or 
repression control (methylation, etc.) [22,34,38,45,72,146] associated with different 
functional modules and receptors in space and time (physiological, genetic and 
thermo-compensated clocks) is in operation (co-action) in the whole plant, integrating 
the influence of environmental stimuli to decide (at the apex) whether to enter the 
flowering stage or to remain at the vegetative state, on the wait. This particularity is 
important for ecological and geographical reasons and for optimization of the 
biosphere heterogenic and viable structure. Outcomes and applications from a better 
and perfect understanding of this process are manifold and relate to several fields: 
industry, agriculture, sylviculture, territory management, etc ... [25,51, 70, 170,171,175]. 

Genetics of flowering 
During the last decade, molecular genetic studies have increased our understanding 

of flower development from the vegetative-to-floral transition to the specification of 
floral organ identity by homeotic genes. The genetic control of flowering time in 
Arabidopsis has been the subject of intensive research that has been reviewed in 
details [71,89,101,102,136,144,157] and we will describe here only some aspects and 
recent findings. The genetics of organ specification in the flower structure will not be 
considered (for reviews and updating data of the famous ABC model, see 
[123,129,13,6,188]). Genetic analysis has also been conducted with other plants such 
as pea and wheat [159,189] but has not been yet complemented by a molecular 
approach as in Arabidopsis. 

Flowering is under the control of environmental signals such as light and 
temperature. In many plant species, the initiation of flowering is controlled by 
daylength, a phenomenon known as photoperiodism. The measurement of daylength 
by a daily timer, the circadian clock, is now generally accepted [ 171]. The control of 
flowering by temperature is operative through vemalization, a response of the plant to 
low temperature that abolish the repression of developmental processes, such as the 
initiation of flowering. This phenomenon is most apparent in plants growing at high 
latitudes, and the repression of flowering occurs even if the plant is grown under 
favorable photoperiods. The vemalization response can be considered in a way as a 
biological timer measuring the length of the winter period. Whereas the inductive 
daylength is perceived in the leaves and generates a signal that travels to the shoot 
apex, vemalization acts in the mitotically active cells that will form the inflorescence 
[ 45, 72]. Flowering is also influenced by environmental nutrient deprivation and by 
endogenous developmental factors associated with the age of the plant. 
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Arabidopsis is a facultative long-day plant that flowers faster under long days than 
short days conditions. It will also flower in complete darkness in specific laboratory 
conditions such as growth on vertical plates which provide sucrose directly to the 
developing cotyledons [142]. In the mutant embryonic flower (emf) the vegetative 
phase will even be skipped and an inflorescence meristem will be produced upon 
germination [168]. The commonly used laboratories varieties Columbia, Landsberg 
erecta and Wassillewskija are rapid cycling ecotypes in contrast to other ecotypes that 
show a vernalization response. 

Mutagenesis and molecular genetic studies has permitted the identification and 
cloning of many genes implicated in the control of transition to flowering. There are 
currently about 80 genes and loci known to affect flowering time in Arabidopsis [ 101]. 
In addition to the laboratory-induced mutants, the naturally occurring variation among 
accessions is becoming an alternative complementary source for mapping of loci and 
the cloning of large-effect genes ( discussed in [2]). 

The function of these genes, their distribution in specific genetic pathways, the 
interplay of these pathways in a complex genetic network has been has reviewed 
recently [16,89,101,136,157]. Mutants affected in flowering time are either late or 
early, mostly late. A collection of late-flowering mutations has been identified by the 
pioneering work of Koornneef and coworkers [88-91]. These late flowering mutants 
are derived from the early flowering parent Landsberg erecta and have been 
distributed in two groups, according to their response to daylength and vernalization. 
One group is unaffected by vernalization and short days and is constituted by the 
mutants fe, ft, fd, jwa, cons tans (co) and gigantea (gi). These mutants define genes 
required to promote flowering specifically in response to long day and belong 
therefore to a photoperiod pathway, photoperiod-dependent but temperature­
insensitive. The other group is accelerated by vernalization and delayed in short days 
and is constituted by the mutants/ea, fae,jy,fpa and luminidependens (Id). This group 
of mutants are recessive and still able to respond to environmental cues, and they are 
therefore considered to be disrupted in an autonomous promotion pathway, 
photoperiod-independent but temperature-sensitive. A third pathway consists of a class 
of mutants reducing the biosynthesis or the response to the growth regulator 
gibberellin, with most severe effects in short days. A fourth pathway has been defined 
with mutants that are specifically impaired in their response to a cold treatment and 
that may be defective either in the perception of cold temperature or in the 
transduction of the cold signal. No single mutation has been yet described in 
Arabidopsis that abolish flowering completely, because the promotive pathways are 
functionally redundant. Due to this redundancy, inactivation of two pathways results 
however in a more severe phenotype than inactivation of one. The inductive pathways 
will lead to activation of the meristem identity genes that will change the fate of the 
meristem from vegetative to floral [135,186,187]. 
Control by temperature 

In Arabidopsis, two major loci act together to delay flowering, FRIGIDA (FRI) and 
FLOWERING LOCUS C (FLC). These loci have been characterized by comparing the 
naturally occurring varieties having or not a vernalization response. The vernalization­
suppressible late-flowering phenotype of winter-annual ecotypes of Arabidopsis 
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results from the presence of dominant late-flowering alleles at these two loci. Both 
genes have recently been cloned. The FLC gene encodes a putative transcription factor 
of the MADS-box class acting as a dosage-dependent repressor of the floral transition 
[111,152]. The FRI gene is found as a single copy gene in the Arabidopsis genome and 
encodes an open reading frame for a protein of 609 amino acids, which shows no 
significant match to any known protein or domain or protein domain in the available 
databases [76]. The levels of FLC transcripts are regulated positively by FRI and 
negatively by vemalization and genome demethylation. A quantitative relationship has 
been found between the duration of the cold treatment and the extent of down­
regulation of FLC transcriptional activity [154]. DNA demethylation is assumed to 
mediate the vemalization response [34,43,45,153]. It has been shown indeed that a 
reduction in genome methylation by the demethylating agent 5-azacytidine or by a 
methyltransferase [MET+] anti sense substitutes for a vemalization treatment in 
promoting flowering [22,42,44]. A correlation was found between FLC transcription 
and decreased genomic methylation in the early-flowering METI antisense plants 
[152]. A third gene, VRN2 which has not been cloned yet, acts during vemalization 
and reduces FLC expression. From these observations, FLC is now considered to play 
a pivotal role in controlling the vemalization response. FLC is also regulated 
negatively by genes of the autonomous pathway (FCA, FVE, FP A, FD, FLD and LD), 
as indicated by the elevated levels of FLC and the vemalization-responsiveness of the 
late flowering mutants obtained from early ecotypes [111,154]. LD and FCA have 
been cloned and encode respectively a putative transcription factor [95] and an RNA 
binding protein [ 106], presuming a control of FLC at both the transcriptional and 
posttranscriptional levels. Taken together, FLC appears as integrating the vemalization 
and the autonomous pathways. It has also been proposed that FLC may act by 
antagonizing the promotive effect of gibberellins on flowering, since the flf-1 mutant, 
overexpressing the FLC transcripts, requires higher amount of exogenous GA to 
decrease flowering time [152]. Another MADS-box gene, SHORT VEGETATIVE 
PHASE [SVP], has been shown recently to repress flowering and the possibility of 
forming a FLC/SVP heterodimer has been suggested [69]. 

It is worth mentioning that contrasting phenotypes have been related to altering 
methylation, such as the late flowering phenotype of fiva mutants, which is caused by 
gain-of-function epigenetic alleles of a homeodomain gene induced by 
hypomethylation of two direct repeats in the 5' region of the gene [ 162]. The function 
of FWA in flowering of wild-type plants is questioned by the authors. 
Control by daylength 

The molecular relationships between the regulation of flowering time by daylength 
and the circadian clock has gained evidence from the recent description of mutants in 
which both circadian rhythms and flowering time are disrupted. The clock is entrained 
by light input signals that are perceived by the photoreceptors phytochromes (red light) 
and cryptochromes (blue light), which also regulate flowering [67,103,114,166,171]. 
The molecular basis of circadian oscillators has been established as oscillating 
transcription/translation loops of positive and negative elements more or less 
conserved between Drosophila, Neurospora and mammals [37]. In plants, candidates 
for a molecular circadian oscillator have been identified recently, but a specific role for 
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these candidates remains to be asserted. The plant oscillator would apparently be 
different to the ones established in other organisms, since components are not 
homologues. One of the best candidate as an oscillator component is TIMING OF CAB 
(TOC J), which encodes a nuclear protein containing an atypical response regulator 
receiver domain, and two motifs that suggest a role in transcriptional regulation [165]. 
The next two candidates are the CIRCADIAN CLOCK ASSOCIATED J(CCAI) and 
LATE ELONGATED HYPOCOTYL (LHY) genes encoding both MYB-related 
transcription factors [ 147,185]. Modulation of CCA l by protein kinase CK2 has been 
shown and suggested to play a role in vivo [167]. Two other candidates are the 
ZEITLUPE (ZTL) and FKFI genes and its related homologue LKP I [85,113,121,161]. 
These genes encode novel proteins with a PAS domain similar to the flavin-binding 
domain Arabidopsis blue-light photoreceptor NPHI, an F-box characteristics of 
proteins that direct ubiquitin-mediated protein degradation, and 6 kelch repeats that 
could serve as the protein-protein interaction domain recruiting specific protein for 
degradation. Disruption of any of these putative clock gene results in an altered 
flowering time. Mutations in FKF 1 is also responsive to vernalization. Its role might 
therefore be more complex than just acting in the pathway that promotes flowering in 
response to long days. The well known photoperiod mutant gi was characterized 
recently at the molecular level [ 46, 73,128]. From computer-based prediction, GI was 
first proposed to be an integral plasmamembrane-localized protein, but recent data 
have shown that it is a nucloplasmically localized protein [73]. GI was shown to be 
required for maintaining circadian amplitude and appropriate period length in the 
expression of its own gene as well as CCAJ and LHY, and also to affect light 
signalling to the clock, which suggests a role in a feed back, loop in the circadian 
clock. The photoperiod information is further relayed to CONSTANS (CO), a gene that 
encodes a zinc finger transcription factor and that activates downstream floral 
meristem identity genes such as LEAFY (LFY), TERMINAL FLOWER 1 (TFLJ) and 
APETALATA I (APJ) [15,135,138,141,156]. The FLOWERING LOCUS T (FI) is also 
acting downstream of CO , but its promotive action is antagonized by the homologous 
gene TFL [79,86]. The LFY promoter integrates the floral inductive signals of both the 
GA and the photoperiod pathways at different cis elements [ 17] and the protein LFY 
participate in cell signalling by moving from cell to cell [ 151]. 

Using a suppressor mutagenesis approach [127,145], CO has been shown recently 
to play a pivotal role in promoting flowering by activating at least four early target 
genes: SUPPRESSOR OF CONSTANS 1 (SOCJ), previously known as AGAMOUS­
LIKE 20 [AGL20], FLOWERING TIME [F1], ACSJO and AtP5C52, encoding 
respectively a MADS-box transcription factor a putative phosphatidylethanolamine 
binding protein, an enzyme involved in ethylene synthesis and an enzyme involved in 
proline biosynthesis. Floral meristem identity genes within the shoot apex are 
subsequently activated by SOCJ and FT. A reduction of the expression of SOCJ and 
FT has been observed in a low FLC mRNA background and it has been proposed that 
levels of SOC 1 and FT expression may be determined by a balance of CO and FLC, 
and represents therefore common components of distinct flowering-time pathways. 
The role of SOC1/AGL20 as an integrator of the autonomous, vernalization and 
photoperiod pathways was also shown by another group [94]. 
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Despite all the knowledge acquired from studies on the genetic control of flowering, 
there is no clear evidence about the identity of genes implicated in the signal 
generation in the leaves, its transmission and its perception in the shoot apical 
meristem (discussed in [25,105]). CO for example is expressed uniformly in the leaves 
and in the shoot apical meristem. In maize, ID 1 which encodes a zinc finger protein 
(like CO) acts non-cell-autonomously and has been proposed to regulate the 
production of a floral stimulus or the repression of a floral inhibitor [25,26], It has 
been hypothesized [25] that a mechanism for the long distance transmission of the 
flowering signal could be posttranscriptional gene silencing [ 40, 77,117]. Indeed, the 
epigenetic state of genes can be transferred form one part of a plant to the other via 
plasmodesmata and phloem channels and could implicate double-stranded RNA 
[134,169,178,192]. The epigenetic silencing at the transcriptional level can also be 
considered as a way of controlling developmental gene expression. It is for example 
regulated by the polycomb proteins and several of them have been identified in 
Arabidopsis, namely CURLY LEAF which is required to regulate expression of floral 
homeotic genes [52,84,126,137]. Chromatin remodelling through methylation­
dependent or -independent mechanisms has been observed lately in Arabidopsis and 
represent a basis for gene activation and repression during development 
[3,38, 74, 75,78,163, 164,191]. 
Flowering induction and ecospace 

In the case of photoperiodically controlled plants (LDP, SDP, etc ... ), it is possible to 
demonstrate that floral induction proceeds in a networking three-step process, as soon 
as the critical photo- or nyctoperiod is reached (physiological and molecular clocks 
control). These three steps are the following (Fig. 1): 

1) Following a juvenile phase of the leaf (emergence of sensitivity), light on and 
light off detection of photo-nyctoperiod duration by several specific pigments like 
phytochromes, cryptochromes and other photoreceptors [41,103,114,166]. Depending 
on external and internal coincidences of this event with the metabolic effects of clock 
genes [89,121,128,144] and of biophysical oscillators, photo-nyctoperiodic induction 
and structuro-functional transduction (flowering genes) of this processing to all the 
cells of the leaf. Then, production of the floral stimuli of unknown nature and, with 
some delay, acquisition by the leaves of the floral state, characterized by a few new 
specific proteins [9,17,96,97,109,141,157]. The induction property is transmissible to 
vegetative plants by grafting of an induced leaf. 

2) Migration-transmission of the floral stimuli through the petiole and stem towards 
the apical meristems which have become competent. The extraction and 
characterization of the floral stimuli are the subject of a lot of uncertainty despite the 
quality of the research [14,24,66,77,105,124,134,184,193]. 

3) Commitment of the meristem cells and territories to floral evocation, and 
topological modulation of the mitotic activity; then, after two general waves of 
mitosis, start of floral morphogenesis as a consequence of the activation of floral 
meristem and organ identity genes. This last step is well known for the moment [5-
7, 13, 14,156]. 
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Ecospace-Biospace (Higher Plants) 

The Flowering Process (Reproduction) 
Unsolved problem since> 100 years of studies 

(Autonomous , photoperiodic, vernalization pathways) 
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Regulatory Ways 
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Cellular 

and 
Organ 
Clocks 

Clocks Genes 
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Apex 

STEM 

Xylem 
Phloem 

FI. 

Vegetative Identity Genes 

Floral Meristem Identity Genes 

a) Mitosis 
b) Differentiation-Dedifferen tiation 
c) Elongation 
d) Organs: Leaf, Stem, Flower 

Environmental Stimuli 
Perception (transduction of 
messages and information) 
Network of functional 
modules - Flowering Genes. 
Signalling to the Apex by 
different ways (Floral Stimuli). 
Integrated Co-Action in 
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(sensitivity, receptors). 

Figure 1. The Plant System and the Flowering Process. P.M.: 
prosporogenic meristem territory; M.M.: medullary meristem territory; I.R.: 
initial ring, meristem territory. 
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Table 1. Some physical, chemical and biochemical parameters correlated with the induction 
process in leaves of spinach (LOP). Trends to a maximum or minimum value at the onset of 
induction [1 0-12, 1 9,20,29,31 ,32,99, 107, 133, 148, 1 49, 176]. 

Critical Photoperiod Floral induction 
Parameter 1 1-12 hrs light Effect 

1. Energv-signals 
a) Energetic charge max. + 50 %  
b )Red ox charge max. + 100 % 
c) Chloroplastic MDH.NADPH max. + 200 % 
dep. 
d) Cytosolic MDH. NADH dep. max. + 100 % 
e) Chloroplastic A.K, Cl min. - 70 %  
f) Cytosolic Adenylate Kinase max. + 50 %  
g) New pool of free glucose � max. + 400 % 

2. Proton [!Um[!s� AT-P de[!. 
a) App. K.n � min. - 68 % 
b) Activity � max. 
c) I A A desensitization transition 10·11M � 10-6 M 

-30% + 30 %  

I 

I 

3. Calcium Pum[!s. AT-P de[!. 
a) App. K.n � max + 50 %  
b) Calcium desensitization 

4. Water organization I a) + HNMR; T1 min - 50 % 

5. Plasma membrane 
a) Oleic/Linoleic acids in 

Rhospholipids (C1s, 1 / C1s,2 ) max. + 60 %  
b) 1PNMR Shoulder Hexagonal II ? 
c) Thickness max. + 20 % 
d) c6 

19FNMR (Iyophilized); T1 min - 40 % 
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Many hypotheses have been put forward during the last 100 years to explain the 
flowering process and the real nature of the floral stimuli, from J. Sachs to G. Klebs 
proposals (specific floral substances versus ratio between substances); for example, 
specific hormones and inhibitors [24,93, 195], sink-source chemical interaction 
[142,143,158], fragments of cell-wall specific oligosaccharides [124], volatile 
substances [193], plasmamembrane modification [53,56], electrochemical and 
hydraulic signalling and coded frequency [184], etc . . .  

Different ways and modules of interactions, feed-backs and communications could 
be activated during the induction of flowering in leaves and roots, implicating 
immediate and short-term regulation as the slower one. Quantitative increase or 
decrease and qualitative effects could be observed, depending on the evolution of 
environmental constraints (light, temperature, water, stress and shock) and on the 
species and genetic dotation of the strain: different ways could be activated or 
inhibited to tend, by equifinality, to the same final result, the production of the floral 
. stimuli. We will present here some aspects we have prospected with spinach, a 
qualitative long-day plant, Arabidopsis thaliana, a quantitative long-day plant and 
Chenopodium rubrum, a short-day plant. 
Energy-signal and brownian motion 

Energy and its control are playing a central and important role during development. 
Adaptation to new environmental conditions ( day, night duration) might be 
immediately reflected in the alteration of energy transduction. Therefore emphasis 
should be put on the time-dependent interconversion in adenine and pyridine 
nucleotide pools. The Energy Status [ 18-20,65, 112,179] has been determined by 
different approaches and evaluations: chemical analysis of free glucose or saccharose, 
biochemical analysis of nucleotides and calculation of the energy and redox charges 
(the energy charge (ATP+Y:zADP)/(ATP+ADP+AMP); the redox anabolic charge 
NADPH/(NADP+NADPH); the redox catabolic char�e NADH/(NAD+NADH)), 
spectroscopic analysis, as for example 1H-NMR or C6 

9F-NMR (nuclear magnetic 
resonance), a non-invasive method [54,99]. By this technique, it is possible to get a 
precise identification of chemicals and to appreciate intramolecular exchange, 
intermolecular dynamics and statistical entropy variation. The photoperiodic induction 
time in spinach leaves (Table 1 and Figs 2,3,4) corresponds to the circadian period of 
the maximum levels in energy and redox charges and of the minimum levels of 
statistical entropy (frequency of correlation fc). At this time, an important increase of 
free glucose is observed, which can also be detected when floral induction is provoked 
by a displaced-short-day treatment. This rise corresponds to a photoperiodic and clock 
control associated to the processing of floral induction, as it is usual for LDP. The 
comparison with SDP (Fig. 5) suggests that the photoperiodic free glucose control 
relates to the cell filling in LDP and the cell emptying in SDP ( differential threshold). 
Another aspect of the sensitivity of this photoperiodic free glucose pool is illustrated 
by the inhibition of induction by a stress or a pricking (Fig. 6), that can abolish this 
effect for about 48 hrs [31-33,47,133,158]. 

The plant cells contain 80 to 90 % of water and a great number of molecules are 
essentially constituted by hydrogen. Biodynamics attempts to investigate the physical 
status of living cells by the measurement of random movements, as for example the 
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22,8 hrs 
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Figure 2. Time-dependent evolution in short days (vegetative state) of the relative 
correlation frequencies fc (1 H-NMR: 90 MHz) and free glucose concentration in 
spinach leaves (8 hrs light, 16 hrs night, 4 weeks-old); fc rhythm: 22,8 hrs [31 ,32,99]. 
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Figure 3. Idem fig. 2, but after an inductive transfer to continuous light 
(flowering induction). Arrow: onset of the critical photoperiod (C. Ph) for the 
induction of flowering; fc rhythm: 24,4 hrs 
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Figure 4. Time-dependent evolution 
under permanent continuous light (3 
weeks) of fc in fully induced plants (floral 
state). 
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Figure 5. Free glucose content evolution in petioles of spinach leaves (LOP) and 
Chenopodium rubrum (SOP) during flowering induction, respectively by transfer to 
continuous light or to night. Arrows: critical photo- or nyctoperiod [1 33]. 
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Figure 6. Free glucose content in spinach leaves and petioles at the 
vegetative state (short days) and after a light inductive transfer (23 hrs). 
Comparison with pricked plants (stress) [33, 133]. 

brownian motion [63,98]. This particular motion is in relation with the general thermic 
motion of water (heat reservoir) through the dissipation. of energy by the metabolism. 
NMR spectra and other characteristics such as spin lattice relaxation time (T 1) give us 
some information about the status of the Brownian system, from random organization 
to different degree of order and liberty. Macromolecules and membranes are playing 
an important role in controlling the degree of order of water molecules and the 
exchange between molecules, at long distance too. Ordered water could in tum 
organize other molecules and transmit some signals. With a correlation time ranging 
from 10-12 sec to 10-6 sec, the motion gives essentially a thermic contribution to 
internal energy, entropy and pressure (E= � kT); but from 10·5 sec to 10·1 sec, it can 

2 
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provide signals (slow co-operative movement of polymer chains in membranes and 
chromosomes as momentaneous water molecules alignment). 

Brownian dynamics is quantitatively determined by the correlation time i-c, the 
activation energy Ea and the diffusion coefficient D. The dynamic entropy Sd is 
related with the correlation time and the frequency of correlation: Sd· a·_l ·a·fc. The TC 
correlation time may be determined by NMR spectra (bandwidth Ll) and the 
measurement of the spin lattice relaxation time T1 : L'.l·a·i-c·a·_l ·a· _!_ ·a· -1-.  The TC Jc Sd 
ordered molecular systems are present in membranes with lipid bilayers and in some 
part of water, in the vicinity of membranes, chromosomes, macromolecules and ions. 

22 h, 

EXO 

1 
T 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

hrs, dark 

Figure 7. 1 H-NMR spectra of Chenopodium rubrum plantlets (SOP) in continuous darkness 
(induction of flowering). C. N. :  critical nyctoperiod. Measurement, in a flux calorimeter, of heat 
exchanges during the same time (continuous curve). Endo-exothermic rhythm of 22 hrs [54]. 

Proton NMR in spinach leaves and Chenopodium plantlets (Figs 2,3,4,7; Table 2) 
gives us an information about the biodynamics of water molecules under the control 
and modulation by macromolecules, membranes and cell energetization. In both cases, 
it is when the photo- or nyctoperiod are critical that we observe a maximum of 
restriction of the water motion; it means a change in brownian versus semi-brownian 
dynamic order. The frequency of correlation fc, and also TI and Sd present a minimal 
value. A maximum is measured for the bandwidth line Ll, and the correlation time i-c 
(free water : i-c, 10-12 sec; T 1 , 2,6 sec; proton exchange time, 2· 10-4 sec; the situation in 
leaves is different because the presence of various populations of water molecules : i-c 
from 10-12 sec to 10-6sec, as 10-5 sec, 10-4 sec, etc.; T1 from 150 msec to 800 msec). 
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The dynamically ordered water, because of its specific physical and chemical 
exchange capacity, could transduce signals reflecting the energetic state in the cell, and 
through the physico-generic interaction with plasmalemma could operate at distance 
from leaves to apex ( chromosomes could be another target of that water signal). So we 
hypothesize that the water brownian motion control and modulation could play a role 
as primum movem in the flowering induction process in leaves by its interaction with 
plasmamembrane (T 1 Fl < T 1 Veg; -cc Fl > -cc Veg; fc FI < fc Veg; � FI > � Veg; Sd Fl 
< Sd Veg ratio of negative entropy variation - 2)[11,12,19,20,28,29,32,64,99, 
107,148,149,167,176]. 

Table 2. Plasmamembrane thickness evolution in apex or leaves of 
spinach (LOP) or Chenopodium rubrum (SOP) correlated with the induction 
process. [27,59, 107] 

Spinach : LDP Plasma membrane Thickness 

Short Days ( 8h. L, 16h. N): 4 weeks Leaves: 8,6 ± 0,3 nm 
Vegetative plants Apex: 8,9 ± 0,5 nm 

Transfer to continuous light (24hrs) Leaves: 10,2 ± 0,2 nm 
Floral induction Apex: 10,4 ± 0,4 nm 

Short days + GA3 ( 10-3 M, 3 days) Leaves: 10,2 ± 0,3 nm 
Floral induction Apex: 10,6 ± 0,4 nm 

Chenopodium rubrum: SDP Plasma membrane thickness 
Continuous light ( 3 weeks) Leaves: 8,2 ± 0,3 nm 

Vegetative plants 
Transfer to 12 hrs night Leaves: 9,6 ± 0,2 nm 

Floral induction 
Transfer + red light break of night. Leaves: 8,3 ± 0,5 nm 

Ve2etative plants 

Plasmamembrane 
During the critical period of leaf induction by light in spinach or Arabidopsis, by 

night for Chenopodium, some structural, biochemical and physiological modifications 
are very rapidly occurring in plasmalemma both in leaves and apex. For example, the 
thickness of the membrane is increasing (-2nm) and the peripheral aspect is more 
clotted or lumpy after photoperiodic induction ( osmic fixation). With NMR 
spectroscopy, we observe, at this time, a decrease of diffusivity of small molecules 
such as fluor nuclei (probe) or proton with about the same ratio of bandwidth line or T 1 
variation. This restriction of molecular motion corresponds to a higher crosslinking 
with the macromolecular cellular system after induction, and with a blocking of the 
molecular dynamics, an increase in structuration and order, a decrease of the entropy 
of fluctuation. The 31P-NMR suggest the appearance of hexagonal II phase in the 
plasmalemma (Fig. 8)[8,27-30,48,55,56,99,100,133]. 
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Figure 8. 31P-NMR (200 
MHz) of spinach leaves 
(plasmamembranes) at 
the vegetative state (T) 
and after transfer in con­
tinuous light ( I :  induction 
of flowering. Arrow: shoul­
der (hexagonal I I  ?) [28, 
1 33]. 

Figure 9. IAA sensitivity 
evolution of the H+ pumps 
activity, ATPase depen­
dent, at the vegetative 
state (spinach plasma­
membranes) and during 
the transition to floral 
state (transfer from SO to 
continuous light: CL: 1 3  
hrs, critical photoperiod). 
Three weeks-old spinach 
[1 1 , 12].  
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Usually the lamellar alpha phase is typical of membranes of young functioning 
cells, and the beta phase gel concerns the membranes of senescing cells. Under certain 
circumstances ( temperature transition, increase of intercellular ions, hydratation degree 
of tissue) a non-bilayer configuration could occur in the membrane mosaic. 
Phospholipids molecules could form cylinders with the polar head graps facing a 
water-filled core. Such inverted micelles could be distributed like hydrophobic buttons 
strewing the lumpy floral membrane and could serve as endogenous calcium 
ionophore or Ca channels. A rise of calcium is appearing during the photoperiodic 
induction and calcium pumps sensitivity is diminishing during this phase. All these 
modifications could influence the conformation of enzymes and their interactions 
( calcium and proton pumps, auxin receptors, etc.). The apparent Km of proton pumps 
ATPase dependent is decreasing and a desensitization to IAA occurs during floral 
induction (Table 1, Fig. 9). In spinach, the induction is associated with a high level in 
the endogenous auxin concentration and with a low level of peroxidase activity. 

s 

P.M 

� 
� 

Vegetative 

Genetic Biospace-Ecospace 
Cybernetic Regulation 

+ 
Feedbacks 

Signalling 
Communication 

Critical 
Pbotoperiod 
Transition 

Floral 

Irreversibility 

Status 

Figure 1 0. Cybernetical, structural and thermodynamical model. S: statistical 
entropy. P.M.:  plasmamembrane. E.C.: energetic charge. R.C.: redox charge. 
Vegetative homeostasy and rheostasy (plastochrone): global master negative 
feedback (specific energetic and structural envelope). Transition: appearance of 
some positive feedbacks. Floral state: new homeo- and rheostasy in a new 
envelope, stabilised with new proteins pattern. 
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Figure 1 1 .  Effect of 2 min R (660 nm; 0,045 W/m2) or 2 min FR (730 nm; 0,015 
W/m2) on the activity of free basic peroxidase extracted from leaves of SO-grown 
spinach (vegetative state). Data are expressed as % variation of the irradiated 
plants versus non-irradiated ones, extracted at the same time [80-83, 1 31-133]. 
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Figure 1 2. Idem fig. 1 1 ,  but after induction of flowering with transfer from SD to 
continuous light (24 hrs). The response is inverted. 
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During the floral trans11:J.on the chemical analysis points out a change in 
plasmamembrane sterols and an increase in the ratio of fatty acids C 18: 1  (saturated) to 
fatty acids C 18:2 (unsaturated). This could influence the structural conformation and 
the exchange capacity of membranes. For example, the tails of lipids exhibit rotational 
motion (re 10·9 sec to 10·7 sec), translational movement (re 10·7 sec to 10-6 sec), 
exchanges among polar heads (re 10·5 sec), slow flips along whole lipids (re 10·1 sec), 
with some consequences in the bilayer lipids transmission along the membrane and the 
interactions with various membrane ligands (receptors, ions, secondary messengers, 
etc.). This physico-generic aspect and the interaction with the water brownian control 
and modulation could be the primum movens of the induction in leaves that lead to 
floral information, after the perception of specific light duration and temperature in 
conjunction with a clock control. Externalities of these primary effects are ionic and 
electrical messengers and hormonal-receptors modifications in co-action with 
quantitative gene activation, in a first time, followed by qualitative activation to 
stabilize the leaf floral state (new specific proteins). The Figure 10 summarizes the 
regulatory relation between energy, plasmamembrane state and the induction of 
flowering. We attach importance to a systemic physico-chemical effect during the first 
step of leaf induction [46,49,58,63,64, 101 , 1 12, 130, 155, 177, 180-183]. 
Peroxidases and phytochrome 

Peroxidases have been implicated with various physiological process and in free 
radical scavenging and auxin catabolism: control of endogenous free auxin level, cell 
wall biogenesis, H202 consumers or producers. The number of genes and isozymes in 
a plant is very high (60 to 90 genes for Arabidopsis thaliana). 

Total peroxidase activity in leaves exhibits a clear correlation with the 
developmental stage of spinach : a minimum value is observed at the time of induction 
and floral evocation, after this period a progressive increase occurs until the floral 
morphogenesis and senescence. The balance between anodic and cathodic peroxidases 
is very rapidly modified during the leaf induction, with a great decrease in the activity 
of basic peroxidases. 

Basic peroxidasic activity is under the control of phytochrome as shown by the 660 
versus 730 nm light effect on the activity. The peroxidase activity reacts rapidly to 1 or 
2 minutes of in vivo irradiation of the leaves (Fig. 1 1) and this photocontrol is 
modified at the moment of floral induction in leaves (Fig. 12). The effect of this local 
photoconversion, was very rapidly propagated to all the parts of the plant (Figs 13, 14). 
This signal transmission was inhibited or delayed by several substances including 
LiCl, EGTA and the Ca ionophore A23187. Figure 15 gives a temptative model 
explaining the propagation of the signal and the modification of the kinetics after leaf 
induction that could be linked to the plasmamembrane modification [23,50,80,81, 130-
132]. 

We have demonstrated that it was possible to modulate, both in vivo and in vitro, a 
specific binding or release of the basic peroxidases (glycoproteins) on leaf 
plasmamembrane or tonoplast by far-red and red light (phytochrome), or by Mn2\ 
ca2+, and EGTA. This control is modified during the induction process in the LDP 
spinach as well in the SDP Pharbitis. This association of some peroxidases with 
membranes is specific to sites in membranes. The plasmamembrane of Pharbitis leaves 
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present a hemicircadian rhythm of the basic peroxidase association capacity, with a 
maximum at the moment when the sensitivity to red light in flowering inhibition is at 
its maximum ( Fig. 16). In spinach a similar observation could be associated with red 
or far-red light effect (Fig. 17). A correlation is observed with the light on, light off 
control of the plasmamembrane electrical potential [82,83] 
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Figure 1 3. Idem Fig. 1 1 ; test with the irradiated leaf ( continuous line) as  with non-irradiated 
leaf (broken line) of the same plant (communication at distance). Vegetative state (spinach). 
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Figure 1 5. Model of the transmission in the whole plant of the "peroxidase 
signal": interaction between light, phytochromes and other pigments, ions, 
plasmamembrane (timing mechanism, receptors, structural organisation, ion 
pumps, secondary signals, etc.) and peroxidases. The "flowering signals" 
are transmitted through plasmamembrane and phloem cells (symplast). The 
transmission of both signals implicates ea•• and could be blocked by LiCI, 
whereas ouabain blocks only the peroxidase signals. 

... u 
"' 4 
QJ 
V, "' "' 
>( 
0 ,._ 
8:. 2 

10nt,1 Mn2• 

9 1 2  1 5  1 8  21 24 
Local t1me ( hrs ) 

3 6 9 

Figure 1 6. Basic peroxidase binding on purified plasmamembrane (Pharbitis nil, SOP) 
extracted at d ifferent times of the day (hemicircadian rhythm). Vegetative state. Red light 
break (660 nm) during inductive long night has the maximum effect (inhibition of flowering) at 
20 hrs. It corresponds to the period when the maximum peroxidase binding could be 
observed [83, 1 33]. 
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Bioelectricity 

Active cells and organs are surrounded by electrochemical actlv1ties essentially 
stemming from photosynthetic metabolism during daylight and respiratory pathway 
during the night. About half of the generated energy is spent in electrochetnical 
activities. As a result, because of biological activity far from equilibrium and 
thermodynamically open .. . . ,dynamic electrical potentials (span: ± 150 mV) are 
generated at different compartmental levels (plasmamembrane, chloroplasts, 
tnitochondria, nucleus, vacuole). The value and evolution of these potentials give us an 
insight about the intra- and inter- compartinental relation in cells and between the 
tissues and organs, the interaction with environmental constraints and the stage of 
growth and development of the plant. The coupling of bioelectrical tests with the use 
of different LDP or SDP, and mutants or transgenic plants, could be a way of 
identifying, in different environmental background, what are the primary invariants of 
leaf induction producing the flowering stimuli. A pattern of gene activity upstream 
could be determined by microarray. 

40 

0 ... ... 
1 h CL I I 20 I 

Tit1E ( hou rs ) 
Figure 1 8. Fluctuation of the bioelectrical potential of plasmamembrane 
(spinach leaves) during one day, at the vegetative state (4 weeks-old 
plants. SD: 8 hrs light, 16 hrs night) [125]. 
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In continuous light (floral state) spinach leaves show a rest-potential at the 
plasmamembrane modulated by a circadian rhythm of 25,2 ± 0,9 hrs, supporting an 
alternate train of small electrical fluctuations (5 to 10 mV) with a frequency of about 
l,4· 10-3 Hz, for a first set and 8,9-104 Hz for another set (hemicircadian alternation). 
Under short days (vegetative state), a fluctuation of 8,4· 104 Hz is observed during the 
light period and 2,2-10-3 Hz during the night (Fig. 18). If we induce flowering by 
transfering the plant from short days to 30 hrs continuous light, and then back­
transfering the plant in short days, the frequency of electrical oscillation is 2,2· 10-3 Hz 
at the night, as before, and respectively 4,9· 104 Hz and 6, 7 · l 04 Hz during the light 
period of the first and second short-day. This result suggests that flowering induction 
in leaf has modified the electrical response and regulation in light, which indicated that 
some irreversible transformation has occurred [125]. 
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Figure 1 9. Detail of surface bioelectrical potential (leaf of bean) evolution: 
light on, light off effect (polarization, depolarization) during -20 minutes (12 
hrs light, 12  hrs night) [62]. 

In photoperiodic plants the orientation in time is dependent upon the coincidence of 
light on and light off signals with the internal clock system oscillations. The light-dark 
breaks produce specific fast variation of the plasmamembrane electrical potential and 
of the surface potential (Fig. 19). These signals present circadian property in the 
electrical signature with two series of fluctuations, 0,016 Hz and 0,0041 Hz, which are 
closely fitted with the photonyctoperiod length ( enslaving). Some modifications of the 
signal structure seem to be correlated with flowering induction (Fig. 20) [66]. 

These results and the existence of a clock adjustment between the different parts of 
the plant (multiplicity of rhythmic phenomena) suggest that the periodic organization 
in electrochemical oscillation could be the basis for communication between leaves 
and apex via frequency coded signals. Apical cells would be activated to modulate 
mitosis in the different apical territories, as a consequence of brownian water 
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modulation, and because of changes in plasmamembrane that provoke coded 
electrochemical fluctuations and transduction to secondary messengers, hormones and 
receptors (Figs 21,22) [ l,61,62,92,115,116,174,184]. 

Bioelectrical Potential 

Parameter Amplitude Period 
A 1 

Light FI. Veg. FI. Veg. 

ON 

� 
<;: /\-I I \ I 

OFF << << I 30% I 50% 

CHENOPODIUM: S.D.P 

Figure 20. Light on, light off global analysis at the vegetative state and after flowering 
induction in Chenopodium rubrum leaves (SOP): modification of the amplitude of the signal 
as the duration of this one [66]. 

Physiomatics 
Macrofunctions, plasmamembranes and clocks are playing an important role in this 

vision of the primary events of flowering induction in leaves (Figs 21 to 23). 
Concerning the time measurement, NADH oxidase associated to membranes, could be 
implicated as an ultradian and thermocompensated rhythm of redox activity 
[57,58,118-120,139,172,173,177,190]. 

During these last years, important progress has been made in computering 
registration and sensors development (macro, micro, nano-sensors), and in 
mathematical and system analysis. It is possible to fit out a plant with a lot of various 
probes for continuous measuring and registration of the different physical, chemical 
and biochemical parameters. Depending on the program, it is possible to stimulate or 
inhibit the plant with the action of electrodes and other devices. So we can prospect the 
capacity and pattern of cybernetic accommodation and adaptation of the plant under 
different and global environmental treatment (light, temperature, chemicals) in relation 
with genetic properties (mutants, transgenics, ecotypes). The set up of a 
phytofeedbacks between the measured parameters and the imposed program of 
stimulation or inhibition, under different global environmental constraints, allows by 
thi_s self-enslaving the determination of the different self-equilibrium level, by various 
genes activation or inhibition, and also the nature of the various transition 
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Figure 21 . General sketch of the basic events during the flowering induction in leaves. Veg: 
vegetative; FI: floral. dS: entropy variation. P.M.: prosporogenic meristem. M.M.:  medullary 
meristem. I .R. :  initial ring. E.C.: energetic charge. R.C.: redox charge. R.M. :  root meristem. 
L.D.: long day. S.D.: short day. 
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Figure 23. Cellular working programs supervised by a few macrofunctions controlling at 
distance a few number of tissues and organs [59]. 

possibilities and the damageable situations. An expected result, in particular when the 
experimentation is made with the extreme environmental constraints that lead to 
flowering induction, is the progressive determination of the operators which associate 
the genetic matrix of information with the dynamical phenotypic expression (non­
linear equation) (Fig. 24). It should represent a progress in the discovery of the 
information grammar of the interacting genes in plant, and also in the dialectic of 
biospace versus ecospace [51,58, 60,70,134,155,160,170,175,l 81]. 
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