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ABSTRACT

The field of transplantation currently faces a significant challenge of organ shortage. In Switzer-
land, the number of patients waiting for transplantation surpasses 1435, while only 342 trans-
plants were performed in 2022, amounting to a mere 20% of the number of waiting patients. To
address this problem, marginal donors, extended-criteria donors (ECD), and donation after cir-
culatory death (DCD) donors are being considered as alternative sources. However, the utiliza-
tion of such donors is limited by the absence of a reliable and non-invasive method for evaluat-
ing kidney viability. Phosphorus magnetic resonance spectroscopy (>'P-MRS) is a non-invasive
technique that can detect high-energy phosphate metabolites in the kidney and provide insight
into its energetic metabolism. This technique can identify several crucial metabolites, which
may serve as significant biomarkers for graft viability. Due to its non-invasive nature, 3! P-MRS
represents a promising approach for monitoring mitochondrial function and predicting graft
viability. The objective of this project is to implement the proposed methodology in actual clin-
ical scenarios, with the aim of enhancing kidney preservation and improving 3'P-MRSI into a
practical approach for evaluating organ viability.

31P_MRSI is currently limited by lengthy acquisition times and lower relative sensitivity com-
pared to proton spectroscopy (' H), which requires larger voxel size to achieve acceptable signal-
to-noise ratio (SNR). Analysis of MRS data is achieved through fitting algorithms that demand
considerable computing time and have poor performance for quantifying low SNR spectra. To
overcome these limitations, we have developed deep learning techniques based on convolu-
tional neural networks for the analysis, quantification, and reconstruction of measured spectra.
The proposed methodology encompasses the full pipeline, including the creation of simulated
datasets for training purposes, several networks with various applications such as metabolite
concentration quantification, spectral parameter estimation, and baseline correction. To address
the issue of lengthy acquisition times, the study investigates the potential of a reconstruction
acceleration technique that combines compressed sensing with low-rank and total generalized
variation regularization approaches to accelerate and enhance the acquisition process. The CS-
LR framework developed in this thesis features a new approach that employs distinct random
undersampling patterns for each k-space average to avoid the suppression of identical points,
thus facilitating greater k-space coverage without altering the acceleration factor.

Our research on organ preservation and viability assessment focused around three main
themes. Firstly, the study outlines the experimental setup utilized for evaluating kidney viability.
This involves a pneumatically-driven hypothermic pulsatile perfusion (HPP) system composed
of non-magnetic materials that is compatible with MRI technology. The HPP system was fully
developed at Geneva University Hospital (HUG) and is the only MR-compatible system world-
wide capable of conducting both MRI and 3'P-MRS acquisition while accommodating organ re-
covery procedures. The second aspect of our research is the investigation of sub-normothermic
preservation at 22 °C in contrast to hypothermic preservation at 4 °C. Thirdly, we investigated
the administration of hydrogen sulfide (H,S) through the injection of NaHS. This approach
aims to decrease oxygen and adenosine triphosphate (ATP) consumption in isolated perfused
kidneys, reduce inflammation, and enhance renal function following an ischemia-reperfusion
injury.

viii



RESUME

Le domaine de la transplantation fait face a un probléme significatif de pénurie d’organes. En
Suisse, le nombre de patients en attente d’une transplantation dépasse 1435, alors que seulement
342 transplantations sont réalisées en 2022, soit seulement 20%. Pour résoudre ce probléme, des
donneurs marginaux, des donneurs a critéres étendus (ECD) et des donneurs décédés aprés ar-
rét circulatoire (DCD) sont considérés comme des sources alternatives. Cependant, I'utilisation
de tels donneurs est limitée par I’absence d’'une méthode fiable et non invasive pour évaluer la
viabilité du rein. La spectroscopie par résonance magnétique au phosphore (3'P-MRS) est une
technique non invasive qui peut détecter certains métabolites énergétiques cellulaires du rein.
Cette technique peut identifier plusieurs métabolites cruciaux, qui peuvent servir de biomar-
queurs significatifs pour la viabilité de la greffe. En raison de sa nature non invasive, 3! P-MRS
représente une approche prometteuse pour déterminer la fonction mitochondriale et prédire la
viabilité de la greffe. L’objectif de ce projet est de mettre en ceuvre la méthodologie proposée
dans des scénarios cliniques réels, dans le but d’améliorer la préservation du rein et d’améliorer
I’approche 3'P-MRSI pour évaluer la viabilité des organes avant transplantation.

31P_MRSI est actuellement limité par des temps d’acquisition longs et une sensibilité rela-
tive inférieure par rapport 4 la spectroscopie proton ('H), qui nécessite des tailles de voxel plus
grandes pour atteindre un rapport signal sur bruit (SNR) acceptable. L’analyse des données MRS
est obtenue par des algorithmes d’ajustement qui demandent un temps de calcul considérable
et ont une faible performance pour quantifier les spectres a faible SNR. Pour surmonter ces
limites, nous avons développé des techniques d’intelligence artificielle basées sur des réseaux
de neurones convolutifs (CNN) pour I’analyse, la quantification et la reconstruction des spec-
tres mesurés. La méthodologie proposée englobe la création de données simulées a des fins
d’entrainement, plusieurs réseaux de neurones avec diverses applications telles que la quantifi-
cation de la concentration de métabolites, 'estimation de parameétres spectraux et la correction
de la ligne de base. Pour résoudre le probléme des temps d’acquisition longs, I’étude exam-
ine le potentiel d’une technique d’accélération et de reconstruction qui combine 'acquisition
comprimée (Compressed Sensing) avec des approches de régularisation a bas rang (Low Rank)
et de variation totale généralisée (TGV) pour améliorer le processus d’acquisition. Le cadre
CS-LR développé dans cette thése présente une nouvelle approche qui utilise des motifs de
sous-échantillonnage aléatoires distincts pour chaque mesure de 'espace k afin d’éviter la sup-
pression de points identiques, facilitant ainsi une plus grande couverture de I'espace de Fourier
sans altérer le facteur d’accélération.

Notre recherche sur la préservation et I’évaluation de la viabilité des organes a porté sur
trois principaux sujets. Tout d’abord, nous avons mis au point la configuration expérimentale
utilisée pour évaluer la viabilité rénale. Cela implique un systeme de perfusion pulsatile hy-
pothermique (HPP) a commande pneumatique composé de matériaux non magnétiques, qui est
compatible avec la technologie d’IRM. Le systeme HPP a été entierement développé a I'Hopital
universitaire de Geneve (HUG) et est le seul systéme compatible avec I'TRM au monde capa-
ble de réaliser a la fois I'IRM et I’acquisition 3'P-MRS tout en permettant les procédures de
régénération de 'organe. Le deuxiéme aspect de notre recherche concerne I’étude de la préser-
vation sub-normothermique a 22 °C par rapport a la préservation hypothermique a 4 °C. Enfin,
le troisieme sujet de notre recherche se concentre sur I’administration de sulfure d’hydrogéne
(H2S) par injection de NaHS. Cette approche vise a réduire la consommation d’oxygéne et
d’adénosine triphosphate (ATP) dans les reins perfusés isolés, a réduire I'inflammation et a
améliorer la fonction rénale aprés une lésion d’ischémie-reperfusion.
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INTRODUCTION

"

"Not all those who wander are lost.
- J.R.R. Tolkien, The Fellowship of the Ring

Contents
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1.2 Outline of thethesis . . . . .. .. ... ... .. ... ... ... .. .... 5

Magnetic Resonance Imaging (MRI) is a relatively new technique in the applied sciences,
with its beginnings traced back to the paper by Lauterbur and Mansfield in 1973 [1, 2]. The
development of MRI is the result of numerous discoveries made in the 20'™ century. The start-
ing point would be the discovery of spin and the development of quantum mechanics [3, 4], as
well as the Larmor precession of the spins when exposed to a magnetic field. Another crucial
discovery was nuclear magnetic resonance (NMR) by Prucell 5], and Bloch [6-8] in 1945; and
more specifically with in 1966 with the introduction of pulsed NMR combined with Fourier
transform by Ernst and Anderson [9], in combination to the discovery of the Zeeman effect
[10] and Rabbi oscillation [11]. The discovery and evolution of superconducting magnets also
made a significant contribution to the creation of the MRI machine, allowing for the production
of static magnetic fields of the order of Tesla. Despite being a relatively young discipline in the
realm of applied sciences, with only 50 years of history, MRI is a well-known and widely used
clinical tool for medical applications. The method has several advantages, the most significant
being that MRI is non-ionizing and non-invasive due to the nature of magnetic field physics.
The ability of the MR machine to image soft tissues in the human body and metabolic processes
therein has led to its strong position in biomedical science applications. MRI has the potential
to provide in-vivo insight into the physiology of human body functions. An additional valuable
feature of the MR system is the ability to investigate metabolism via magnetic resonance spec-
troscopy (MRS). Protons within identical nuclei of different molecules are subject to slightly
different magnetic fields, even in the presence of identical external magnetic fields. In other
words, various chemical compounds have slightly different local magnetic fields, leading to the
local excitation frequency being shifted to distinct values first observed by Proctor and Yu in
1949 [12]. By applying position-dependent magnetic fields in addition to the static magnetic
field, the reconstruction the spatial distribution of nuclear spins in the form of an image can
be achieved, utilizing a method called magnetic resonance spectroscopic imaging (MRSI). The
pioneering report of in-vivo proton NMR measurements dates back to 1985, when Bottomley
reported such measurements on a rat brain [13]. The application of multidimensional NMR
has facilitated the study of biological macromolecules and enabled the determination of the
3D structure of proteins in an aqueous environment, thereby providing an alternative to X-ray
crystallography.

The concept of transplantation can be traced back to pictorial representations from the 13"
century [14]. However, modern transplantation is attributed to Theodor Kocher, who performed
the first successful thyroid transplant in 1883 [15]. At the beginning of the 20" century, the
problem of rejection was first identified by Alexis Carrel [16], while Georg Schoéne discovered
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that the body’s own immune system was responsible for rejection [17]. The contemporary era
of transplantation may be deemed to have commenced in the early 1950s with two significant
breakthroughs. The first of these was the description by Peter Medawar of actively acquired
immunological tolerance in rats, which paved the way for an improved understanding of trans-
plant immunology [18]. The second was the performance of the first successful kidney trans-
plantation between identical twin brothers by Joseph Murray [19]. These two groundbreaking
accomplishments laid the foundation for the development of transplantation as a therapeutic op-
tion for patients with end-stage organ failure. Prior to 1970, the therapeutic options for patients
diagnosed with end-stage renal disease (ESRD) were extremely limited. At that time, only a few
dialysis facilities existed, leading to only a small number of patients receiving regular dialysis.
Kidney transplantation was in its nascent stages of development as a viable therapeutic option,
and transplant immunology and immunosuppressive therapy were also in their infancy. Con-
sequently, a diagnosis of chronic renal failure was once considered a death sentence. Dialysis
treatment, though it provided some relief, often left patients feeling unwell with persistent con-
stitutional symptoms of fatigue and malaise. Despite better anemia management, progressive
cardiovascular disease, peripheral and autonomic neuropathy, and bone disease were common.
However, the availability of renal transplantation therapy has improved drastically since it be-
came covered by the extend Medicare in the United States. Nowadays, renal transplantation
is theoretically available to all those who require it, even if it may not always be feasible in
practice [20]. Currently, the field of transplantation is grappling with a significant shortage of
viable organs. In the United States, it is estimated that around 100000 patients are awaiting kid-
ney transplantation, while only 18000 procedures are carried out each year [21]. Similarly, in
Switzerland, there are 1435 patients on the waiting list with only 342 kidney transplants per-
formed annually [22]. As a possible solution, marginal donors are being considered. However,
the use of such donors is limited by the lack of a reliable and non-invasive method for assessing
kidney viability.

Phosphorus magnetic resonance spectroscopy (3'P-MRS) is a non-invasive technique that
can detect high-energy phosphate metabolites in the kidney and provide insight into its ener-
getic metabolism [23]. This technique enables the detection of several metabolites, including
adenosine triphosphate (ATP), inorganic phosphates (Pi), phosphomonoesters (PME) contain-
ing cell membrane precursors such as phosphocholine, phosphoethanolamine, and ATP precur-
sors such as adenosine monophosphate (AMP). The PME/Pi intensity ratio measured during
cold storage prior to transplantation is an important biomarker for graft viability [24]. Viable
cells should be able to rephosphorylate AMP to ATP, especially when the reserve is abundant.
Additionally, degradation of phospholipids in cell membranes is reflected by a reduction of
PME and an increase of phosphodiester [25]. Thus, monitoring the PME level provides infor-
mation on both cell membrane integrity and AMP storage. The non-invasive nature of 3'P-MRS
makes it a promising approach for monitoring mitochondrial function and predicting graft vi-
ability. This project aims to apply the technique in real clinical situations to improve kidney
preservation and 3'P-MRS (shorter acquisition time and more sensitive metabolite detection).
Ultimately, we hope that the use of marginal donors can be extended, and that MR-related
techniques will be an accurate, non-invasive way to evaluate kidney outcomes following trans-
plantation.
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1.1 CONTRIBUTIONS
1.1.1  Improving 31 P-MRSI with Artificial Intelligence

The analysis of MR spectra is commonly performed through fitting algorithms. Multiple soft-
ware packages, such as LCModel or AMARES, are traditionally used to analyze and quantify
the measured spectra. Both algorithms rely on prior knowledge, in the form of a basis set of
each resonance. However, these methods have limitations, including long computation times,
particularly for multi-voxel magnetic resonance spectroscopic imaging (MRSI) measurements,
and difficulties in quantifying low signal-to-noise ratio (SNR) spectra. In the context of assess-
ing the viability of kidneys prior to transplantation using 3'P-MRSI measurements, there is a
need for a fast computation analysis that can handle the inherent low sensitivity of phosphorus
metabolites.

In order to address this need, we developed deep learning methods using convolutional neu-
ral networks to analyze, quantify, and reconstruct the measured spectra. We developed the full
pipeline, including the generation of simulated datasets for training the networks, multiple net-
works with different applications, such as quantification of metabolite concentrations, spectral
parameter estimation, and baseline estimation. We also developed a method for reconstructing
the spectra using the physical model with the estimated parameters, for the purpose of spec-
trum plotting. We demonstrated that the deep learning model performs similarly to the fitting
software LCModel, and even outperforms it at low SNR. The new model meets expectations for
fast computation time and has the potential to provide improved analysis and quantification of
31P-MRSI spectra for the assessment of kidney viability prior to transplantation.

1.1.2  Improving 31 P-MRSI with Compress Sensing Acceleration and Low Rank Reconstruction

Fourier-based methods have been instrumental in MRI, but they require complete sampling
of k-space, along with other specific requirements. This approach imposes constraints on ac-
quisition, which can be time-consuming and clinically impractical, especially when evaluating
organs for transplantation or ensuring patient comfort. Moreover, the inherent low SNR in
31P-MRSI can result in the use of multiple acquisition averages as compensation, leading to
prolonged scan times. Alternative approaches, such as non-Fourier-based techniques, propose
reconstruction methodologies that frame the reconstruction process as an optimization prob-
lem. Compressed sensing (CS) is a notable example of such methods that has garnered signifi-
cant attention due to its ability to reduce scanning time while preserving superior image quality.
Low-rank (LR) reconstruction has been shown to be particularly advantageous for applications
that require improved SNR, as it can effectively denoise the reconstructed images.

To address the challenges encountered in phosphorus spectroscopy, we investigated the po-
tential of an acceleration reconstruction method that combines compressed sensing with low-
rank and total generalized variation regularization approaches to enhance the acquisition pro-
cess. We developed the framework of the CS-LR methods, which includes a novel approach
of using distinct random undersampling patterns for each k-space average to prevent the sup-
pression of identical points, thereby enabling greater k-space coverage without altering the
acceleration factor. The effectiveness of these methods was evaluated using healthy volunteers’
brain data and ex-vivo perfused kidney. We demonstrated that the methods significantly im-
proved the SNR while preserving spectral and spatial quality, even when the acquisition was
accelerated threefold. Furthermore, the metabolite peak linewidth remained constant at all ac-
celeration factors, and anatomical information could be recovered from signal attenuation.
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1.1.3 Applications for Transplantation: Organ Preservation Techniques and Pre-Transplant Ex-
Vivo Viability Assessment

Transplantation plays a vital role in the medical field, particularly for end-stage diseases where
it may be the sole option for survival. However, the number of patients awaiting transplanta-
tion far exceeds the availability of organs, particularly in the case of end-stage renal disease.
The limited availability of these organs necessitates that many patients rely on dialysis or face
poor survival rates, incurring costs that can be up to 10 times higher than transplantation.
To address this scarcity, the donor pool has been expanded beyond standard-criteria donors
to include extended-criteria donors (ECD) and donation after circulatory death (DCD) donors,
commonly referred to as marginal donors. Despite these efforts, the use of marginal donors is
hindered by their poor outcomes. A significant challenge in the use of organs from marginal
donors is the lack of reliable non-invasive methods for assessing their viability. Marginal or-
gans are particularly vulnerable to ischemia-reperfusion injury, which can occur following the
restoration of blood flow to previously ischemic tissues.

The present study on organ preservation and viability assessment is part of two thesis projects.
This thesis focuses on the assessment of organ viability using a multi-modal MRI approach, in-
cluding imaging of the organs, assessment of kidney perfusion via contrast medium injection,
and phosphorus metabolic assessment via 3'P-MRSL The other part of the project was con-
ducted by Thomas Agius as part of his Biology thesis. He was responsible for performing the
same research using kidney biopsies and analyzing histological scores. He also managed the
surgical aspect of the research, including administration of the preservation product and man-
agement of the different experimental models.

Our research on organ preservation and viability assessment focused on three main areas.
Firstly, we presented the experimental setup used for evaluating kidney viability. This involved
a pneumatically-driven hypothermic pulsatile perfusion (HPP) system that is made of non-
magnetic materials and is compatible with MRI technology. The system was fully developed
at the Geneva University Hospital (HUG) and is the only MR-compatible system in the world
that can perform both MRI and 3'P-MRS acquisition while being compatible with organ re-
covery procedures. Our research was carried out using porcine kidneys and we were success-
ful in detecting ischemia-reperfusion damage. We found that the descending slope of gadolin-
ium perfusion elimination was correlated with histological damage scores. The second sub-
ject of our research was the investigation of sub-normothermic preservation at 22 °C com-
pared to hypothermic preservation at 4 °C. Our study showed that perfusing kidney grafts at
22 °C resulted in increased production of high-energy phosphorus metabolites and minimized
ischemia-reperfusion injury during transplantation, when compared to 4 °C perfusions. We ob-
served differences in the sub-normothermic preservation versus hypothermic preservation are
strongly correlated with the histological score that measures cellular damage. The third sub-
ject of our investigation focused on the administration of hydrogen sulfide (H,S) through the
injection of NaHS, which aimed to reduce oxygen and ATP consumption in isolated perfused
kidneys, diminish inflammation, and improve renal function following an ischemia-reperfusion
injury. Our findings indicated that H,S administration did not result in significant reductions in
ischemia-reperfusion injuries or improvements in kidney metabolism. Furthermore, no signifi-
cant difference was observed in renal artery injection of H, S or auto-transplantation in terms of
histological lesions or cortical/medullary kidney perfusion. As such, our study suggests that the
use of NaHS for H;S treatment does not significantly enhance renal graft function in porcine
kidneys.
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1.2 OUTLINE OF THE THESIS

The present thesis is structured as follows: The initial Part will present a comprehensive overview
of the theoretical concepts of magnetic resonance imaging and magnetic resonance spectroscopy,
divided into three chapters. Chapter 2 will begin with a discussion on nuclear physics, eluci-
dating the application of quantum theory in describing spin, and further expounding on the
equations of particle evolution in a magnetic field. The signal emission will be discussed, with
particular attention given to spin excitation and relaxation. Subsequently, Chapter 3 will de-
scribe the signal emitted from the excitation and acquisition techniques. The chapter will intro-
duce Faraday’s law of signal induction, which enables signal measurement, and then present a
few general acquisition methods. The chapter will conclude with a discussion on encoding prin-
ciples, including the Fourier domain acquisition and the use of an external gradient magnetic
field to encode multi-dimensional images. Chapter 4 will address another aspect of MR tech-
niques, magnetic resonance spectroscopy . The chapter will introduce the theory of molecule
resonances, incorporating electron shielding (chemical shift) and spin coupling (J-coupling). In
addition, it will elaborate on localization spectroscopy and multi-voxel spectroscopy, with the
goal of introducing magnetic resonance spectroscopic imaging (MRSI). The second part of the
chapter will focus on phosphorus spectroscopy, beginning with an overview of the biology of
relevant phosphorus molecules observed and the physiological functions of said molecules.

The second part of this thesis will explore the topic of Artificial Intelligence (AI). Chapter 5
will present an overview of machine learning (ML) and deep learning (DL), with a focus on Con-
volutional neural networks (CNNs). The chapter will provide all the necessary components to
support the discussion in Chapter 6, which is a published article presenting a novel analysis
tool for phosphorus spectroscopy that utilizes CNNs. The framework aims to enhance the anal-
ysis of phosphorus spectroscopy by providing faster computing analysis and robustness in low
signal situations.

The third part of the thesis will concentrate on acquisition and reconstruction techniques.
Chapter 7 will revisit k-space encoding and provide a more detailed explanation of Fourier
sampling and transformation. The chapter will also discuss the advantages and the need for
developing alternative non-Fourier reconstruction methods. This chapter will concentrate on
two techniques, namely, compressed sensing (CS) and low rank (LR) that enable faster acquisi-
tion and improved reconstruction. Chapter 8 will present a paper currently under review that
details the development of an enhancement of phosphorus spectroscopic acquisition using the
combination of compressed sensing acceleration and low rank reconstruction.

The fourth part of this thesis is dedicated to the application of ex-vivo phosphorus mag-
netic resonance spectroscopic imaging in transplantation. Chapter 9 will introduce the field of
transplantation and its relevance to this study. Chapter 10 will present a published article that
demonstrates the feasibility of assessing and quantifying phosphorus metabolites ex-vivo in
kidney grafts, and highlights the correlation between warm ischemia injuries and ATP levels.
In Chapter 11, a published article will be presented that discusses the benefits of subnormoth-
ermic temperatures for organ preservation compared to cold storage. Finally, Chapter 12 will
present a paper accepted for publication on the potential benefits of Sodium Hydrosulfide (H;S)
for kidney protection before transplantation.

The fifth and final part of this thesis will provide a summary of the presented work and
additional discussions. It will also outline the future research directions in this field.
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PHYSICS OF THE MRI : AN OVERVIEW

"To a physicist, beauty means symmetry and simplicity. If a theory is beautiful, this means it
has a powerful symmetry that can explain a large body of data in the most compact, economical

manner."
- Michio Kaku, Parallel Worlds: A Journey through Creation,
Higher Dimensions, and the Future of the Cosmos
Contents
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2.1 INTRODUCTION

Magnetic resonance imaging (MRI) is the application of nuclear magnetic resonance (NMR),
which was originally named nuclear magnetic resonance imaging. NMR involves the use of a
magnetic field and radio-frequency pulses to study the magnetic properties of a sample. The
nucleons (protons and neutrons) within the atomic nucleus of certain atoms have the capability
to absorb radio-frequency energy, resulting in the creation of a transverse magnetization. This
magnetization can then return to its initial state, inducing a signal in the process. The key
element in this process is spin, which is a fundamental quantum property of particles. Spin is
not straightforward to describe, the most generic explanation is that it can be thought of as the
angular momentum of an orbiting object in the classical world. However, particles are not in
orbit and therefore they do not have a classical counterpart.

The discovery of spin took place at the beginning of the 2oth century, when the foundations
of quantum theory were being established. In 1922, the Stern-Gerlach experiment demonstrated
that angular momentum was quantized [26]. A few years later, in 1925, George Uhlenbeck and
Samuel Goudsmit presented their theory of electron spin [3], the same year that Wolfgang Pauli
introduced the Pauli exclusion principle [27]. These discoveries indicated that the electron had
an additional degree of freedom and that two electrons could not occupy the same quantum
state. Paul Dirac further developed the theory of spin in quantum mechanics in 1930 [4], and
Pauli extended it to all elementary particles in 1940 [28]. In addition to the development of
quantum spin, two other discoveries have had a significant impact on the field of NRM. The
first is the Zeeman effect [10], which describes the splitting of the energy levels of electrons in
the presence of a static magnetic field as a function of their spin value. The second is the Rabi
cycle [11], which refers to the induction of state transitions between two energy levels in an
electron using time-varying fields.

Quantum physics theories are not necessary to comprehend and explain the physics and prin-
ciples of MRI. While they may be presented using classical theories to increase understanding,
it would be a shame to pass up the chance to delve into the quantum world and its marvels.
Therefore, this chapter will use quantum mechanics to derive the principles of MR, in tribute
to the elegance and beauty of the equations.
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2.2 PHYSICS OF ELEMENTARY PARTICLE
2.2.1 Symmetries

In physics, symmetry implies the invariance under some transformation. A symmetrical
transformation allows us to change our perspective without altering the possible outcomes of
an experiment [29]. This leads to one of the most fundamental theorems in theoretical physics:
Noether’s theorem, which states that every differentiable symmetry of the action has a corre-
sponding conservation law. In quantum physics, the most significant group of symmetry is the
Poincaré group, named after Henri Poincaré. This group includes the symmetry of translation
in space-time, rotational symmetry, and symmetry under a boost. The last two symmetries form
the Lorentz group together. This group has six generators JHV, with a pair of anti-symmetric
indices (i, v) [30]. These generators can be rearranged into two spatial vectors, one of which
is

Jt= %eiik]ik. (2.1)

The J* vector is the angular momentum. Since the Poincaré group is a Lie group and its
algebra is the Lie algebra as well, we can write the relation between the angular momentum
component as follow

J%, ] = iheYkJk, (2.2)

The subgroup of the Lorentz group that describes rotations is the SU(2) group. It has the
unique property of acquiring a negative sign under a 27 rotation and is only periodic under a
47 rotation. This means that the solution to equation (2.2) includes both half-integer and integer
spin. The SU(2) representation is labelled with an index j that takes the values 0,1/2,1,3/2, 2,
... and determines the possible values of the states. The index-j has 2j + 1 dimensions, and each
state within it is labeled j,, which ranges from —j to j in integer steps [31]. The fundamental
representation of SU(2) is j = 1/2, on which the J' are represented as

A
]1 = EhO‘l, (23)

where the o are the Pauli matrices

GX:<O 1>, Uy:<o —i>’ UZ:<1 o>‘ o)
10 i 0 0 —1

Angular momentum can be further divided into two components: orbital momentum L*V
and spin S*Y with J*Y = L*Y + S*Y. While [*V is independent of the representation used,
SHY depends on the specific representation. In contrast, L*Y depends on spatial coordinates,
while S*V does not. Therefore they commute [L*Y,S*Y] = 0 and both satisfy the angular
momentum commutations relations given in equation (2.2).

2.2.2  Spin

Spin is a fundamental intrinsic property of particles and does not have a counterpart in the
classical world. For example, an electron has a spin of 1/2 (an index-s of 1/2). Following the
same rule as the angular momentum, a one-half spin has two possible s, states: spin up with
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s, = *+1/2 and spin down with s, = —1/2. The spin is commonly represented using braket

1) = (;) spinup, |}) = (?) spin down. (2.5)

The spin operator S is derived from the generator S*V in the same way as angular momen-

notation.

tum. For a one-half spin, it is represented as follows.

A
St =-ho". (2.6)

2
In this representation, the spin up and spin down are eigenvector with eigenvalues of :I:%h,
respectively. Since the spin is a physical quantity that can be measured, the spin operator St is

an observable.

2.2.3 Schrédinger’s equation
In non-relativistic quantum mechanics, particles are described by wave functions. A general
wave function can be written as

—i

Wi 1)) = e [W(x). (27)

The function is decomposed into [W(x)), the initial state, and e%, the time evolution opera-
tor. The latter preserves the inner product between vectors in the Hilbert space. The Schrodinger
equation describes the time evolution of the wave in the presence of a specified potential energy
V(x,t). The time-dependent Schrédinger equation is

AY(x,t)) = ih% W(x,t)). (2.8)

If the potential V(x,t) in the Hamiltonian H does not depend explicitly on t, the wave func-
tion can be separated as shown in equation (2.7). [¥(x)) now satisfies the time-independent
Schrédinger equation.

h? .
—Tvz + v] W(x)). (2.9)
m

v (x)) = [

The equation describes stationary waves that have a solution of H[W(x)) = E [¥(x)), where
E is the energy of the particle and the eigenvalue associated with the eigenvector V. Like the
spin, the Hamiltonian is an observable.

2.2.4 Particle in a magnetic field

In the context of MRI, we are interested in the evolution of in a particle in a magnetic field [32,
33]). In the classical world, the magnetic moment describes the intensity of a magnetic object
and is calculated by multiplying a current value over an enclosed surface. In quantum physics,
charged particles have a magnetic moment due to their spin, known as spin magnetic moment.
For a particle of charge q, mass m and spin 1/2 the spin magnetic moment is

a4
meS
= vS. (2.11)

11
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The constant g, called g-factor, is intrinsic to each particle, and y is the gyromagnetic ratio
(rad - s~! - T~'). The g-factor and, by extension, the gyromagnetic ratio, can be extend to nu-
clei, atomes, and even molecules. This is particularly useful because MRI probes the nuclei of

atomes of molecules.

Let us consider a constant magnetic field in the form B = B(Z. The potential energy of this

magnetic field is given by
V=—u-B=—yS5*By (2.12)

If we consider the specific case of a particle at rest with no kinetic energy, the first term of
equation (2.9) becomes zero. Thus, the equations is now written as

AIV) = —v§7Bo ¥(x)) (2.13)
= —y3ho*Bol¥(x) (2.14)
= EW¥(x)) (2.15)

The equation (2.13) is known as the Zeeman Hamiltonian. Calculating of the spin observable
7 on the wave function in the equation (2.13) gives its eigenvalue 1/2ho?. It is useful to define
wo = YBy, because wp has the dimension of a frequency. The two solution for the energy

eigenvalues obtained in equation (2.15) are

E, = —%hwo Spin parallel (s, = +1/2) (2.16)
E_ = +%hw0 Spin anti-parallel(s, = —1/2) |

Thus, the difference of energy is AE = E_ — E; = hwy. This energy difference can be
associated with the absorption or the emission of a photon during the transition between one
state to another. The frequency wy is the Larmor precession frequency, which will be discussed
in the following section. The Figure 1 shows the Zeeman effect of the energy splitting in a

magnetic field.

SZ
s, =—1/2
U - +1/2hw0 l A
' AE Bo2
Y\ osp=+1/2
\ —1/2hwy

By =0 By #0

Figure 1: Zeeman effect of the energy splitting in a constant magnetic field By. In a situation with no
magnetic field (Bg = 0), particles in the same quantum state with opposite spin have the same
energy level. When they are immersed in a magnetic field (By # 0) these two particles are
now be at a different energy level. The spin that will align with the magnetic field will have
the lowest energy.
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It is possible to give the Hamiltonian of equation (2.13) a matrix representation (2.5).
_1
flm—y§Bo— [ 2" O (.17)
0 +%hwo

The two states, spin up and spin down, in equation (2.5) being the two possible states for
[W(x)) and the eigenfunctions of H and S$7. The wave function [¥(x, t)) can be simplified to

[¥(t)) because we neglect any dependence on the orbital or translational motion of the particle.

Thus, [W(x, t)) can be written as the sum of the solutions:

W) = Y s W), e w (2.18)
= cre M) +e_e M (2.19)

The constants ¢, and c_ are complex coefficients which must satisfy |c, > + |c_|* = 1.

With the same argument as before, the position x does not appear in this equation either.

2.2.5 Precession

We can represent the wave function as a unit vector in spherical coordinate. The solution
for the coefficients can be written in terms of the polar angles as ¢, = Cos(%)eq‘b/ * and
c_ = sin(%) e'®/2 _ Thus the eigenfunction becomes

e —i —w —i . e i —w —i
W(t)) = cos<2> e H(P0T W0t 2R/ +sm<2> g0 wot/2o 7 E/ |y (2.20)
In this representation, it is clear that the magnetic field induces a phase shift proportional to
time for the two spin states. Over time, the angles evolution are 6(t) = 0 and ¢ (t) = do — wot,
meaning that the angle of the vector along the z-axis (the direction of the magnetic field Bg)
remains constant while it revolves around the axis with a velocity of wy. This is the Larmor

precession. From there, we can calculate the expectation values for the spin magnetic moment.

For the three dimensions of the vector p in the equation (2.11), we obtain

(W) = yWY)IS*¥(t) (2.21)
= %sin(e)COS(dJOfwot) (2.22)

(W) = y(Y)ISY¥(L)) (2.23)
= %‘sin(e)sin(cbo—wot) (2.24)

(w5 = y¥)IS*¥() (2.25)
_ %cos(e) (2.26)
(2.27)

The equations for the three expected values behave like the classical components of angular
momentum. The negative sign in front of the wy in the (X — () plane describes a clockwise
precession around the magnetic field direction. A counter-clockwise precession will occur for
negative vy values.

13



14

PHYSICS OF THE MRI : AN OVERVIEW

X

Figure 2: The precession of the expectation values of p in the presence of a magnetic field in the z-
direction [32].

2.2.6  Thermal equilibrium

In the absence of a magnetic field, the atoms of a macroscopic system are all in their ground
state, as thermal excitation would require a temperature of around 10* K. When immersed in
a magnetic field, each atom switches to one of the available discrete energy levels. The macro-
scopic system acquires a magnetization M either in the direction of the magnetic field (param-
agnetic) or opposite to it (diamagnetic). For paramagnetic atoms, the spin will either align itself
with the magnetic field and thus minimize its energy, or use thermal contact to gain energy
and move to the higher energy state. The situation is the opposite for diamagnetic atoms. If the
distance between the atoms is large, we can neglect the magnetic moment interaction and con-
sider each atom independently. For a system with N particles (> 1) at equilibrium temperature
T, the Hamiltonian of the system is expressed as follow [34].

N N
H:Z—Ni'B:Z—HiZ'BO (2.28)
i i

Using the Boltzmann statistics, we can describe the probability of having the system in a
state A with energy E, is

1
Py = Ze Ak T (2.29)
with the associated partition function
Z=) e"/nr (2.30)

)

As we previously assumed that each atom is independent, the partition function Z is the
factorisation of the partition function of each atom Z = z™. For a single atome with spin 1/2,
the partition function becomes the sum of the contribution of the two spin states.
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1/2
S s
A=—1/2
z = tr (eﬂ%“tho/“bT) (2.32)
YhBo
= 2cosh .
Cos (Zka> (2.33)
The equilibrium magnetization can be derive from the partition function, over the total vol-
ume.
0In(Z)
Mo = kpT .
0 o T8, (2.34)
Nvyh vYhBo
tanh .
2 (2ka (235)
In the context of MRI, the magnetic field is considered low compared to the temperature with

hBop < kp T . We can make the approximation Z:ET() < 1 and therefore tanh(x) & x. Thus

the magnetization along the magnetic field then becomes

N(yh)?Bg
Mg~ ———— .36
0 I T (2.36)

We can see from the equation (2.36) that the magnetization M depends on the magnetic
field Bp and the gyromagnetic ratio y as well. The relationship is linear with the magnetic field,
which implies that the signal is enhanced at a higher field. The proportionality between M,
and y? expresses that isotopes with high resonance frequencies generate a stronger signal. The
magnetization is also inversely proportional to the temperature T, so it could be improved by
lowering the temperature, but it is unrealistic for in-vivo application. Other factors, such as the
sample volume and noise, will also affect sensitivity.

ISOTOPE SPIN GYROMAGNETIC RATIO RELATIVE

~ 10=¢.s—1.T°1] SENSITIVITY

H 1/2 42576 1.00
’H 1 6.536 1.45-107°
3He 1/2 —32.434 5.75-10~7
13¢ 1/2 10.705 1.76 104
14N 1 3.078 1.00-1073
15N 1/2 —4.316 3.86-10°
70 5/2 —5.774 1.08-107°
19 1/2 40.053 8.34-1071
23Na 3/2 11.268 9.27-1072
31p 1/2 17.235 6.65- 102
39K 3/2 1.989 4.75-1074
129%e 1/2 —11.777 5.71-1073

Table 1: NMR properties of the most commonly studied isotopes in MRIL The relative sensitivity is cal-
culated with the NMR sensitivity and the natural abundance of the isotope N.
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2.3 PHYSICS OF THE MRI
2.3.1 Physics of the Proton

In MRI, the goal is to probe the nucleus of an atom. A nucleus is made up of protons and neu-
trons, each of which is composed of up quarks and down quarks. Although the contributions
of each component are deeply non-trivial, it follows that protons and neutrons both have con-
venient one-half spins. Protons and neutrons make up the nucleus of atoms, and the spin of a
nucleus can be described using the nuclear shell model. Each type of nucleus (proton or neu-
tron) fills energy layers of its own type in a similar way to how atomic orbitals are filled with
electrons.

In general, MRI is described using the physics of protons, which are the only component of
the hydrogen nucleus, the most abundant atom in the universe. They are also the most abundant
atom in the human body, as the body is made up of about 60% water (H, O). However, for other
atoms, such as those listed in Table 1, both protons and neutrons are involved. The proton has
a g-factor of gp = +5.585 while the neutron has a g-factor of g, = —3.826. The spin of an
atom can be roughly explained by the fact that there is an odd number of at least one of the
two types of nuclei. The negative value of the neutron g-factor explains the negative values of
gyromagnetic ratios in Table 1. In the following sections, the physics of MRI will be presented
using the simple case of proton physics.

2.3.2  Bloch equations

To obtain the equation of motion that will describe the evolution of the magnetization over time,
we must use the Heisenberg representation. In the Heisenberg representation, the physical
state [¥(x)) is fixed in time, while observables evolve in time. In contrast, in Schrodinger’s
representation, the operators of the system are constant, and the quantum states evolve in time.
Observables, such as the magnetic moment pu, satisfy:
du(t) 1.
———= = —|H, 2.
i g H (2:37)
To compute the commutator, we use p = yS and A = —p - B = —yS - B. The derivation
of the equation (2.37) becomes:

dp 1 g
@ = nlYSByS (3%
)
- [S-B,S] (2.39)
_iy2
- }hy (S[B,S]+I[S, S]B) (2.40)

For only one of the three components, the derivation continues as:

d —iv?
<dit> - 11‘2/ (S5 [By, Si] +[S5, 8] By) (2.41)
1
2
= & [58B (242)
_. 2 .o
- %menks“Bi (2.43)
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.2
—1 .
= —-in(S x B); (245)
= v(p X B)i (2.46)
An observant reader will recognize the classical Bloch equations for NMR and free induction
decay.
dM(t)
T YM(t) x B(t) (2.47)

The original formula for single proton magnetization p(t) has been expanded to include
volume magnetization M(t). The static field is oriented in the Z direction, as indicated by B, =
BoZ. The remaining components of the field are derived from a radio-frequency field B;, which
will be explained in the subsequent section. The equation (2.47) can be further developed in

My
d dt(t) = YMy(t)Bo —yM.(t)B1,, (2.48)
dM
d%c(t) = YM_(t)B1x —YMx(t)Bo (2.49)
dM,

dt(t) = YMy()B1y —YMy(t)B« (2.50)

2.3.3 Radio-frequency Spin tipping

To generate an NRM signal, the net magnetization must be rotated in the transverse plane,
as stated in reference [32]. This is achieved by applying a radio-frequency (RF) pulse in con-
junction with the existing static field. For this discussion, the static field will be assumed to be
oriented in the z direction and the transverse plane will be the (8 — () plane. The purpose of
the By field is to ’tip’ the net magnetization in the transverse plane. The two fields are

B1 cos(wt)
Bo=| 0 and Bs(t) = | —B; sin(wt) (2.51)
Bo 0

B is define as a circularly polarised field. In this case, the rotation is defined as left-handed
polarization, but the direction of rotation should actually follow the gyromagnetic precession
direction of the excited isotope. For isotopes with negative gyromagnetic values, as shown in
Table 1, the B1 field must be right-handed polarized. Thus, the total field is the sum of the static
field and the RF pulse:

Biot(t) = Bo + By(t) (2.52)

The new potential of the field is now given with the total magnetic field V = —p - B1o+t. The
equation (2.13) can be used again with the new potentiel, to obtain the new Hamiltonian.

A = —p - Biot (2-53)
= —v [S"B1 cos(wt) — SYB; sin(wt) + SZBO] (2.54)

h
S0 [B1 (0™ cos(wt) — oY sin(wt)) + 0*By] (2.55)

2
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Figure 3.
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Since the two fields are orthogonal, we can compute them independently. The first and second
components give

hvB h iwt
Ll [0* cos(wt) — oY sin(wt)] = e O € (2.56)
2 2 e—iwt 0

In equation (2.56), we used the Larmor frequency identity w; = yB1. The third components
of equation (2.55) gives back the result obtained in the equation (2.17). Thus we can sum the
two equations to express the Hamiltonian.

N hw;q 0 ei‘”t hwo 1 0
T T I

_ b @ we .59)
2 w1e—iwt —wo

The time dependent Schrodinger equation can now be written as follow

S ) = A e
L d _h wo wielwt
1’ha W(t)) = ) <w1eiwt —wp ) [W(t)) (2.60)

In the same way as in the previous section, we can write the wave function as a sum of
its quantum states [W(t)) = a4 (t) 1) + a—(t) [{). The coefficients are now time dependent.
Because of its matrix form, equation (2.60) produce 2 differential equations.

pdert) _ hwo g RO e,y

dt 2 2 (2.61)
., da_(t)  hwo Rt it '
1h dt = 2 a_ (t) — Te (1+ (t)

It is convenient to move from the laboratory frame to the rotating reference frame. Such a
transformation can be expressed using a rotation matrix R(t).

P(t) = RO)[¥(L) (2.62)

= M y(t) (2.63)

The new wave function can be written as “I’(t)> = Dby (t)[1) +b_(t)[}). The new coeffi-

iiwt/z

cients are defined as b1 (t) = e a4 (t). The differentials equations now become

idbgt(t) - —Awa+(t) _ %b_(t)
.db_(t) . Awob (t) w1 b () (2.64)
Yar T 2 W Tt

We expressed the difference between the Larmor frequency and the rotation of the reference
frame as Aw = w — wy. This leads to a transformation of the hamiltonian as well.
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2 h ({—
H = —— Aw (2.65)
2 w1 Aw

In this representation, F1 does not depend explicitly on time. Thus, the solution of equation
(2.15) an be computed explicitly and gives the two energy levels.

E, =—1h/Aw? + w?
o2 ] (2.66)
E_ =+1h/Aw? + w?

It is noteworthy that the angular frequency can be expressed as the effective field |/ Aw? + w% =
|YBesf|- An interesting property to consider is the Rabi’s transition formula, which calculates
the probability of transitioning between energy states. If the initial energy state is set to the
aligned configuration with [W¥(0)) = [1), the transition rate

Pr(t) = [ (2.67)

w? t)?
— 1 ; 2 2
= ————sin|/Aw*+ w7z 2.68
Aw? + w? ( ! 2> (2.68)

2
The probability will oscillate between 0 and ﬁ—:—wz' For values with Aw > w71, the prob-

1

ability of transition remains close to zero. On the other hand, when Aw = 0 (wp = w), the

transition amplitude oscillates between 0 and 1.

Figure 3: Precession of the net magnetization tipped into the transverse plane with a right-handed B,
radio-frequency pulse. Inspired from [32].

After the excitation pulse ends, the system returns to its initial equilibrium state, in which
the populations of spins are distributed according to the Boltzmann distribution and there are
no coherences in the system. This return to the initial state is referred to as relaxation, and it is
characterized by two processes: longitudinal relaxation and transverse relaxation. The former
process is solely involved in the transition from the excited state to the equilibrium state, while
the latter process is related to the loss of coherence in the system.
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2.3.4 T1 longitudinal relaxation

Longitudinal relaxation is a spin-lattice relaxation process in which the excited particles trans-
fer their energy to the surrounding lattice and return to the equilibrium state. This relaxation
results in the regrowth of magnetization along the direction of the static magnetic field. Con-
sider a simple system of N particles with no interactions between them. From equation (2.19),
the probability of finding a nucleus in the state |1) is |c2 |, and the probability of finding it in
the state ||) is |c2 |. For a two-state spin system, the populations of particles in each state, ny
and n |, can be written as

N
ny = ZPi(T) (2.69)

N
n, = Zm). (2.70)

The summation is performed over P; (1) and P; (), which represent the probability of finding
particle i in one of the two states. The z-magnetization is directly proportional to the difference
between the two population states, M, o< ny —n|. For theoretical purpose, we can assume
that the magnetization is equal to the difference of population, M, = ny —n,. The probability
of transition is given by perturbation theory [35].

2 .
Wi =" [(FI V[i)* 8(E¢ — E5) (2.71)

The energies E¢ and E; are the energies E; and E_, respectively, for a transition from the low-
energy state to the high-energy state, and vice versa. A decrease in spin energy is accompanied
by an increase in lattice energy due to the conservation of energy. The indices 1 and j represent
the initial and final states, respectively, between [1) and ||.), or vice versa. We can express the
transition from one population to the other as

rate of transition from|[T) to|]) = Wi (ng — n?q)

W4 (ny —nl9) (2.73)

rate of transition from |}) to [1)

From here, only the first order of the perturbation will be further considered. Particles tran-
sitioning from state [1) to ||) will decrease the population of n and increase the population of
1, with the changes being relative to the equilibrium. Thus, the change in rate is

dTLT
= Wity =n) = Wi (ng —ni) (2.74)
dn¢
3t Wi (g —ni?) =W 4 (n) —nj9) (2.75)

As previously stated, the magnetization is assumed to be equal to the difference in popula-
tions. Therefore, the variation in magnetization is equal to the variation in the difference of
populations.
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dM_ (t) d(ny —ny)

= .76

dt dt (2.76)

= 2W p(ny —n{Y) —2W; (np —nf9) (2.77)

= —2W| 4 [(nT — n?q) —(n, — nfq)} (2.78)

= —2W, _ [(“T —ny)— (n?q —nfq)} (2.79)

= W M. - M) (280

The integration of both side of equation (2.80) is given by

dM,(t) = (M(0)—MEe9)e /11 4 Med (2.81)

We can identify —2W| _,; as the spin-relaxation decay rate and write 2W|_,4 = 1/7,. Ty is
the experimental spin-lattice relaxation time. The equation (2.50) can be rewritten as follow.

AML()  Ma(t) =M
- - _ T (2.82)

2.3.5 Tz transverse relaxation

Transverse relaxation is a spin-spin relaxation process in which the spins precessing in the
transverse plane interact with each other, accumulating phase shift that leads to a loss of the
coherence. Unlike the longitudinal relaxation, transverse relaxation does not involve any energy
loss as there is no energy state transition. The transverse dipolar relaxation for a two-spin
system can be calculated [36]. In the transverse plane, the derivation can be performed using
the transverse component of the angular momentum. The derivation will be presented with
respect to the X-axis, but it is entirely symmetrical to the {J-axis. We first need to write the
eigenvector.

(2.83)
) = (1) — 1)
In a similar way to equation (2.6), the eigenfunction and eigenvalues are
prlE) = yS¥IE) (2.84)
h
= =) (2.85)

For this two spin system we will have the two spin operators, one for each spins that will be
labelled 1 or 2. The expected values of the two operators are

$7) = s —m )+ —m__) (2.86)
(§3) = Mmyy—my)+MmMy—m__) (2.87)
(2.88)

Similarly to equation 2.77, the variation of magnetization in time is proportional to the vari-
ation of spin population. For the X-axis, we get
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Cross-relaxation
refers to the
transition of both
spins from a state
[+, —) to a state

|—, +), or vice versa.
There is no loss of
energy, but there is a
loss of coherence due
to the change in
angular momentum.
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d d

G IOEE A CHERC N0 (2:89)

Following the same derivation as the previous section, we can obtain the following solution

d

M = —(QWi +2W2)((S¥) — (7)) (2.90)
W1 is the transition of only one of the two spin from a state to another with the other spin

constant, and W) the transition probability of the two spins in the same state towards the same

state. It follows that (2W7 + 2W>) = 1/T,. We can write again the equations (2.48) and (2.49)

as follow.

dey (t) - _ MXU (t) (2.91)

dt T,

Dipolar relaxation is one of the relaxation processes; other factors that contribute to T, in-
clude the presence of macromolecules and cross-relaxation.

2.3.6 T2’ and T2*

In the context of MRI, additional phase shift can occur due to magnetic field inhomogeneities.
These modify the resonance frequencies around the Larmor frequency, leading to additional loss
of coherence in the sample that reduces the magnetization in the transverse plane. The time
constant for this effect is Tz/, and the time constant that account for both transverse relaxation
effect is T5.

1 1 n 1 (2.92)
===+ 2.92
o T T
It is evident from the equation that the observed (or apparent) T; decays faster than the
natural T,. Although the observe relaxation is T3, T, is reversible and some sequences are
designed to rephase the spins in order to measure the true T,. Ty and T, are determined by the
chemical environment and are therefore specific to different tissues. Table 2 shows exemple of
relaxation parameters values for different body tissues.

MAGNETIC FIELD

15T 3T

Tissue type Ty (ms) T, (ms) Ty (ms) T, (ms)

Brain Grey Matter (GM) 1188 +69 958 1820+114 99+7

Brain White Matter (WM) 656 + 16 72+4 1084 4+ 45 69+3
Blood 1540+23 290+30 19324+£85 275450

Fat 343+37 58+4 382+13 68+4

Kidney Cortex 966 £ 58 87+4 1142+£154 76+4

Kidney Medula 1412458 85+11 1545+142 81+8

Table 2: Exemple of relaxation parameters Ty and T, values for different field strength and different body
tissues [37].
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The solution to the equation (2.82) and (2.91) are

My(t) = e Y™ (My(0)cos(wot) + My (0) sin(wot)) (2.93)
My(t) = e 7™ (My(0) cos(wot) — My (0) sin(wot)) (2.94)
M.(t) = e /TM,(0)+(1—e )Mo (2.95)

It is possible to write the magnetization in the transverse plan with the contribution of both
M, (t) and My (t) as follow. This definition will be useful for the next chapter.

My (t) = Myy(t) (2.96)
e /2[M 1 (0)]e~ Hwot=do) (2.97)

Figure 4 shows an exemple of relaxation trajectory for a magnetization that following a 90°
excitation pulse. Figure 5a and Figure 5b illustrate the decay of the transverse magnetization
with the t, value constant, and the regrowth of the longiitudinal magnetization with the con-
stant value Tj.

Bo

Figure 4: Relaxation trajectory of the magnetization vector, with the regrowth of the longitudinal mag-
netization and the decay of the transverse component [32].

|Mxy | M,
MJ_ (O) Mo ————————————————————
37% | 63%
’ > M. (0) L— R
T2 Time T Time
() (b)

Figure 5: (a) Decay of the transverse magnetization from its initial value M| (0). (b) Regrowth of the
longitudinal magnetization from the initial magnetization M, (0) to the equilibrium value M
(32].
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"Nature flies from the infinite; for the infinite is imperfect, and nature always seeks an end."

"We, on the other hand, must take for granted that the things that exist by nature are, either
all or some of them, in motion which is indeed made plain by induction.”

- Aristotle, Complete Works of Aristotle Volume 1
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3.1 INTRODUCTION

The previous chapter explained how a magnetic field can induce magnetization in nuclei through
the Zeeman effect and how MRI can use radio-frequency pulses to induce rotation of the mag-
netization around the direction of the static field. To measure a signal, another law of electro-
magnetism is necessary: Faraday’s law of induction. Faraday’s law states that Whenever (and
for whatever reason) the magnetic flux through a loop changes, an electromotive force (emf) will
appear in the loop [10]. It is the spin’s magnetic flux that generates an electromotive force by ro-
tating after the excitation pulse. The MR signal is then detected using an RF coil placed near the
sample. The form of the current generated in the coil contains all the relevant information. This
chapter will discuss the physics behind electromagnetic induction and the sequence schemes
used to measure the induction signal. It will also describe the frequency domain in which the
signal is acquired and how MR images can be obtained from it.

3.2 NUCLEAR MAGNETIC RESONANCE SIGNAL
3.2.1 Faraday induction

The magnetic flux must first be defined in order to define the emf. The flux is defined as the
integration of the magnetic field through a closed surface. For MRI, the closed surface in the

coil area.

O = J B-dS (3.1)
coil area

This equation can then be used to define the emf. The negative sign in front of the derivative
means that the current created will induce a magnetic field which will oppose the change of
that received.
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This equation does
not define the
magnetic vector
potential uniquely
because it can be
modify with the
addition of curl-free
components that will
vanish and lead to
the same observed
magnetic field. This
is known as gauge
invariance.

MAGNETIC RESONANCE IMAGING

In order to compute the integral of equation (3.1), it is necessary to use the Stockes theorem
because the magnetic field B is currently unknown. The theorem states that the integral of the
curl of the vector field over some surface is equal to the line integral of the vector field around
the boundary of the surface.

J(VXA)-dS = 4; A-dr (3.3)
> ox

To perform the theorem, the magnetic field can be defined as the curl of the magnetic vector
potential A as follow B = V x A. Now that the magnetic field is define with a magnetic vector
potential, the effective current density can also be define ] = V x M(r, t). This leads to the
expression of the magnetic vector potential with the

Ar) =

V' xM(r/,t
| My, o
C

47t [r — 1’|

The magnetic flux equation (3.1) can be further developed using newly obtained equations
(3-3) and (3.4).

[ V' xM(r/,t
o = [“"J VI xMir,t) )dr’] .dr (3:5)

Jor [4m)acrs  [r—1/|
[ / / Ho dr /

= M(r',t) |V x [ — ; dr (3.6)
Jacrs 4m Jos lr—1'|

_ M(r’, t) . Breceived(r/) . dr’ (3.7)
JOCR3

The bracket in equation (3.6) can be rewrite in simple form as B*cV¢d(¢’) = B(r’) /I, with I
as the current in the loop. This makes B""*d(¢’) being the magnetic field per unit of current
that is produced in the coil at a given point. With this last equation, the emf can be written in
function of the magnetization and the received field by the RF coil.

d 4
— _J M(I'/, t) . Brecelved(r/) . dr’ (3.8)

dt Jocrs
The electromotive force is produced by the magnetization M as well as the received magnetic
field B¢, The emf is implicitly dependent on the transmitted magnetic field B; with the

magnetization of the sample.

3.2.2 Magnetization signal

The magnetic resonance is based on the detection of the electromotive force signal. The mea-
sured signal only have a proportionality relationship to the emf signal, because the strict equal-
ity depends on others factor, like amplifier gain, can affect the amplitude of the signal. The
measured signal s(t) is given by

s(t) o J M(r, t) - Breceived (p) . dr (3.9)
dt Jocrs
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The magnetization depends on time, whereas the received magnetic field only depends on
spatial coordinates. Using its linearity property, the integral can be decomposed into its three
coordinate components. The values of the magnetization from the previous chapter, equations
(2.93 - 2.95), can be extended to include dependency on spatial coordinates. The equations for
the transverse plane and the longitudinal plane are

M, (r,t) = e Y2OM, (r,0)e Hwot=bolr) (3.10)
M (t) = e /TOML(0)+ (1—e YN )M, (3.11)

By taking the derivative with respect to time, the following three factors will be brought
outside the integral: 1/T,(r), 1/T; (r), and wy. In MR, operating at magnetic fields on the order
of tesla, the Larmor frequency wy is at least four orders of magnitude greater than the other
two values. Therefore, we can neglect them, which eliminates the longitudinal component from
the integral with w( being the prefactor of the transverse magnetization. It is useful to express
the received magnetic field in terms of a transverse component as well. From a laboratory per-
spective, the received magnetic field is B**Ved(r) = B (r)e'®s(*) with 8y the angle in the
transverse plane. The approximated signal is now

s(t) woJ e /2 e Hwot=do(r)+Os()IN | (£, ¢)- B (r) - dr (3.12)
QCR3

The replacement of T to T3 can be made with the presence of inhomogeneity in a sample.

3.2.3 Demodulation of the signal

From a practical standpoint, analog-to-digital converters are not fast enough to digitize signals
in the RF range. In addition, noise can be induced by electronics at the Larmor frequency, lead-
ing to artifacts. To measure the signal, demodulation is applied to convert the high frequencies
into low frequencies, which still contain the modulated information from the frequency range
in the field of view. Demodulation involves multiplying the signal by a sinusoid or cosinusoid
with a frequency wg + dw near to the Larmor frequency. Physically, demodulation is a trans-
formation from the laboratory to the rotating reference frame. Mathematically, we can express
demodulation as

demodulation o sinusoid - signal (3.13)

o sin(wet + dwt) - sin(wot + ¢o — Op) (3.14)

1
x 5 [cos(dwt — g + 0p) —cos(2wot + dwt+ ¢o —Og)]  (3.15)

In a second step, a low-pass filter is applied on the data to remove the high frequency.

1
demodulation and low-pass filter 3 cos(dwt— o+ 0p) (3.16)
1 .
x 5 Re(et(3@wt—do+05)) (3.17)

The same demodulation can be achieved with a cosinusoid which gives

demodulation and low-pass filter sin(dwt — ¢y + Op) (3.18)

N =N =

Im(e'(®wt=Pot0s)) (3-19)
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The equations (3.17) and (3.19) are referred as the real channel and the imaginary channel.
Thus, the signal can be see as a sum of the real and imaginary channel demodulated signals.
Defining the reference frequency O = wo + dw used for signal demodulation, the signal be-
comes

s(t) x woj /T30 H(Q=w (1)t ba (1) =06 (N | (1 1) - B, (1) - dr (3.20)
OCR3

The precession frequency is now also dependent on the spatial position w(r) = wo + Aw(r),
the reason for this will be detailed in the Section 3.4. The received signal described in equation
(3.20) is dependent on the sample’s magnetic properties, but it is also determined by the different
magnetic field applications. Section 3.3 will describe the application of different RF pulses to
probe the Ty, T, and T3 parameters. Section 3.4 will describe the concept of gradient fields to
create a spatial variation of the static magnetic field for multidimensional acquisition.

3.3 ACQUISITION SCHEME

The measured signal by the coil is determined by the properties of the sample, but it is also
affected by the choice of RF excitation pulses. Previously, we discussed the use of a 90° RF pulse
that flips the magnetization My in the transverse plane. However, the application of different
pulses, such as an additional 180° pulse, can create an echo of the signal. By applying the 180°
pulse followed by the 90° pulse, it is possible to suppress the signal from certain tissues in
the sample and measure the signal from the remaining parts. For simplicity, we will assume
that the sample is homogenous, resulting in a constant Larmor frequency of w(r) = wo. We
will also assume that the phases, direction of the received field, and demodulation Q) are space-
independent. This leads to the following equation

s(t) ox woe™ 7 etlmwottdbo—0s) J M (r,t)-B (r)-dr (3.21)
QCR3

3.3.1 FID

The Free Induction Decay (FID), shown on the Figure 6, is a measurement process that involves
an initial radio-frequency (RF) pulse that flips the magnetization of the sample in the transverse
plane, followed by data acquisition with an analog-to-digital converter (ADC). The sequence is
then repeated cyclically, with a single repetition referred to as the repetition time Tgr. During
data acquisition, the signal is sampled at discrete intervals of At, with a total of N points being
measured. The total measurement time is given by Ty = T, - At(N —1).

The Figure 6 also presents an example of signal that can be measured with the FID.1 is at a
maximum immediately after the RF pulse and decays exponentially over time, with the rate of
decay being characterized by the T3 relaxation time. The signal exhibits oscillations with an
exponential envelope.
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90°

RF pulse ’\/\/‘

Acquisition 4‘

[

sampling

Signal

M, (0)e /73

AR

Figure 6: FID sequence with a single TR. The top of the figure presents a scheme of the sequence and
the bottom an example of measurable signal [32]. In the figure a truncated sinc is displayed for
the RF pulse, however, the pulse shape may have other shapes such as a rectangle, known also
as "hard pulse".

3.3.2 Spin Echo

As presented in the Section 2.3.6, the T3 relaxation consists of two relaxation constants. One
reflects the effect of magnetic field inhomogeneity (T;) and the other is due to molecular in-
teraction (T,). While T, is irreversible, T} is reversible and a substantial part of the transverse
magnetization can be recovered by using a Spin Echo. The spin echo effect was discovered by
Erwin Hahn [38], and is illustrated on Figure 7 with the sequence diagram and an example of
signal observed. The sequence starts with an excitation RF pulse followed by a second pulse
with double the amplitude of the first one after a time 7. The second pulse, also known as the
refocusing pulse, reverses the dephasing to create an echo. After the first pulse, the phase will
evolve as followed

¢o(r,t) = —yAB (r)t, 0<t<T (3.22)

The phase reaches ¢(r, T) = —yAB | (r)T before the second pulse is applied. Following the
refocusing, spins that had accumulated negative phases will now have a positive phase and vice
versa. Thus the phase becomes ¢(r, T) = YAB | (r)T. The evolution continues as

$(r,t) = YABL(r)t—yAB (r)(t—1), T<t (3.23)
= —yABL(r)(t—21) (3.24)

It is clear from this equation that the phase will be zero at a time t = 27, which we define as
the echo time Tg. As shown in Figure 7, the signal will regenerate after the second pulse and
reach a maximum at the echo time. The maximum amplitude of the echo will be lower than
the initial maximum of the signal, representing the T, decay. The Spin Eco sequence can be
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performed with multiple refocusing pulses at 21 intervals, with data acquisition in between, to
fully sample the T, envelope decay.

20° 180°
/\/\/\ ‘
! !
RF pulse | !
| |
| |
o | | —
Acquisition ; ‘ sampling
| |
ST
|
3 3 :
Signal ! ! |
g *_ : !
! !
| !
| !
|
|

A1/

Figure 7: Spin Echo sequence diagram with an example of signal. An excitation pulse is first applied
followed by a refocusing pulse after a time T, creating an echo of the signal at a time 2. The
signal decrease between the initial excitation and the echo is the T, decay [32].

3.3.3 Inversion Recovery

The previous sequences allow the measurement of the sample’s T, and T; constants. The third
relaxation constant, Ty, cannot be directly probed because the generated signal is in the trans-
verse plane and Ty is in the longitudinal axis. However, T; can still be estimated using the
inversion recovery sequence, which is shown in Figure 8. The sequence begins with a 180°
pulse that flips the spins to the negative longitudinal magnetization M, (0) = —M,. Using the
equation (2.95),The evolution of the magnetization can be described with

M.(t) = e /TM,(0)+(1—e """ )My, O<t<T; (3.25)
= —e "TMy+(1—e V"M, (3.26)
= (1—2e /"M, (3.27)

A second pulse is then applied after a time interval Ty, called the inversion time, followed by
data acquisition. Unlike the previous sequences, this sequence is repeated with the second pulse
applied at different T;. Figure 8 shows a diagram of the evolution of the absolute magnetization
over time. The second pulse acts as the excitation pulse, and the resulting signal is acquired. If
the pulse is applied at the exact time when the longitudinal magnetization is zero, there will be
no spins to excite, and therefore no signal will be produced. Using equation (2.97), the transverse
magnetization at the time of the second pulse application can be calculated

M, (t) = M (T))]-e T/ me—tlwolt=Ti)=do) = T, (3.28)
(1 =2 V" )Mg|- e/ e~ Hwo(t=Tr)—do) (3.29)
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The transverse magnetization, and therefore the acquired signal, depends on the inversion
time according to (1 —2e~"/™). The transverse magnetization becomes zero if the inversion
pulse is applied at the exact time of Ty = T; In(2). By repeating the sequence with different
values of Ty, it is possible to determine T; when the measured signal is zero.

180°
RF pulse w '\/\/\
Acquisition sampling ‘;
IM,|

Ty In(2) time

Figure 8: Inversion recovery sequence with example of transverse magnetization evolution. The magneti-
zation is tipped to the negative equilibrium magnetization, and the longitudinal magnetization
will be null after a time Ty In(2). Applying an excitation pulse o at this time will result in a
null signal. The T; relaxation constant can be accurately measured with the repetition of the
sequence [32].

This method is not limited to the measurement of T;. Different body tissues have different
longitudinal relaxation times, so they will not cancel at the same inversion time. Applying an
inversion pulse to eliminate the signal from one tissue type allows the pure signal from a second
body tissue to be measured.

3.4 K-SPACE

This chapter has introduced the magnetic induction produced in the coil by the excited sample
and the signals created using different sequence schemes to measure the three relaxation times.
While this material is sufficient for studying whole sample spectroscopy (which, as it happens,
is the subject of the next chapter), it is not sufficient for imaging. MRI requires spatial infor-
mation to produce images of the human body. In general, images are not about differentiating
nuclei, but rather about spatially resolving the same nucleus, particularly hydrogen 'H. To add
a spatial dependence to the signal, the static field can be modified with a variable field along the
three dimensions. The choice of variations is related to two other important concepts: k-space,
the spin density distribution, and its relationship to the measured signal through the Fourier
transform.
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3.4.1 Spin density

In quantum mechanics, the spin density is the probability of finding a particle’s spin in a given
orientation (up or down) at a given spatial position. For MR, this refers to the concentration
of nuclei’s spins that contribute to the magnetization My in equation (2.36) within a unit of
volume. It is possible to express the transverse magnetization as a function of the spin density.

po(r)(yh)?Bo

MJ_(].‘,O) = 4ka

(3-30)

For this section, we will use the previous equation (3.20) for the signal, with some convenient
assumptions. For simplicity, the equation moves from proportionality to equality with the in-
troduction of the constant © that includes the gain factor from the electronics, the relaxation,
and the phase direction. We will also assume that the signal transmitted to the RF coils is uni-
form, so the initial magnetization phase, the directional phase, and the received field amplitude
are independent of position. The reference frequency Q) is chosen to be equal to the Larmor
frequency wy. The signal becomes

s(t) = wo@BLJ M | (r,0) - el (Qt+d(x0)) gp (3.31)
QCR3
The magnetization phase is accumulating phases with time ¢(r,0) = — fé w(r,t’)dt’. The

effective spin density can be define with the new constant p(r) = wo®B | M | (r, 0). The signal
is now written in a simple equation

(0= | pl el gy (332)
QCR3
The purpose of signal measurement will be to determine the spin density of the sample.

3.4.2 Frequency encoding

As mentioned at the beginning of this section, we can apply a linear gradient on the static
field. that modifies the frequency resonance with respect to position. The linear gradient can
be applied in all three directions. The field will now be express as

B(r,t) =B, +G(t) - r (3-33)

Thus, the gradient is define as the variation of the total field.

G(t) = VB(r, t) (3.34)
The resonance frequency of the nuclei will now be dependent on the spatial position.
w(r,t) = wo+vG(t) r (3-35)

Equation (3.35) is referred to as frequency encoding. In equation (3.31), we assumed that the
spin density would have a field that is spatially independent. This assumption remains valid
despite the variation of the static field in equation (3.33), because the applied gradient is on the
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order of mT - m~". The contribution of the gradient to the signal amplitude can therefore be
neglected. However, the accumulating phase of the magnetization now becomes

t
bl1,0) = ~wot—y-x| Glt')ar’ (330
0
Since the reference frequency Q is chosen to be equal to wy in the equation (3.31), it will
cancel out with the first term of the accumulated phase. We define the spatial frequency k(t)
using ¥y =y/2m as

k(t) =y J G(t)at’ (3:37)

By inserting the spatial frequency in the signal equation from (3.31), it can be written as

s(k) = Lma o(r) - e~ 2k gy (3.38)

We can see that the signal is the Fourier transform of the spin density of the sample, s(k) =
F{p}(r). k is referred to as k-space. It may not be immediately apparent, but according to the
definition in equation (3.37), different gradient applications G result in different k-space posi-
tions. To recover the spin density position, we must perform an inverse Fourier transform of
the signal.

pr) = F s}r) (3-39)
— J s(k) - e?™kT gk (3-40)
QCR3

The Fourier transform is a function that transforms complex functions from the kspace-time
domain to the spatial-frequency domain. The frequency encoding modifies the resonance fre-
quency with the application of the gradient, and the signal is acquired in k-space. Since data
acquisition is performed with a finite number of points, k-space must be filled at equal intervals
in order to perform the inverse Fourier transform. The Chapter 7 will go further into details
on the Fourier transform. The next subsection will discuss techniques for applying gradients to
cover k-space.

3.4.3 Brief digression on the MRI coordinates system

The following sections will discuss multi-dimensional acquisition. Since MRI is used for medi-
cal purposes, its coordinate system is based on the anatomical coordinate system. This system
has three planes: transverse, sagittal, and coronal. The transverse plane is the (%X-{J) plane that
divides the body into superior (head) and inferior (feet). The sagittal plane is the({J-Z) plane
that separates the body into left and right. And the coronal plane is the (X-2) plane that divides
the anterior (front) from the posterior (back). The position of the patient during acquisition
determines the coordinate system within the MRI.

Figure 9 shows an example of patient positioning with the corresponding coordinate system.
In the figure, the patient is lying head-first supine, meaning they are lying with their back on
the table, looking upwards and going head-first into the MRI. In this position, the Z axis goes
out of the MRI in the direction of the patient, the {J axis goes upwards, and the X axis goes to
the right when facing the MRL

33

The transverse plane
can also be referred
to as the axial plane.
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sagittal 7

transverse

looking upward

coronal >

Figure 9: Example of anatomical coordinate system for a patient laying back on the table, looking upward
and going head first inside the MRI. This specific position is called head first supine [32].

The Figure 10 present three images, with one for each plane orientation. Prior to the acqui-
sition, the position of the patient inside the MRI needs to be registered in order to produce the
same set of images in the same orientation regardless of the patient position on the table.

(a) Transverse (b) Sagittal (c) Coronal

Figure 10: Example of brain acquisition with a preview of the images obtained in the three anatomical
planes. By conventions in radiology, images display the right side of the body on the left side
of the image and vice versa for transverse and coronal planes. This orientation is achieved by
reverting the X and {J axes compared to the MRI coordinate system presented in the Figure 9.

3.4.4 Gradient echo

The application of a gradient will cause the FID signal to dephase. The gradient echo, similar to
the spin echo, aims to rephase the signal for acquisition. The main difference between the two
methods is that the gradient echo only rephases spins that were dephased by itself. Figure 11
illustrates an example of a gradient echo sequence. The sequence begins with an RF excitation
pulse followed by the application of the gradient. The positions of the spins are frequency
encoded by the application of a gradient for a duration of T_. This causes the signal to decay
more rapidly. The dephasing caused by the first echo is:
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ort) =+vG-rlt—t1), ti<t<ts (3.41)

The second application of the gradient with inverse polarity and a duration T+ = 27_ will
form an echo. The phase becomes

o(r,t) =+yG-r(t2 —t1) —vG - r(t—t3), tz<t<ty (3-42)

It is easy to see that the phase will return to zero at t = t3 + t; — tq. This defines to the

echo time Tg, the echo correspond to the vanishing of the gradient waveform [ G(t)dt = 0.

Choosing the second gradient to have a duration of twice the first will result in an echo at its
center.

90°
RF pulse
t3 ta

t to \

G T
R Ty = 2T
L N
Acquisition ) sampling T

Signal

Figure 11: Gradient sequence scheme with the resulting signal. The first gradient will move the position
in the k-space while causing an accelerated dephasing in the signal, and the second gradient
will create an echo. The sampling of the data is performed during the second gradient [32].

In this example, the signal in k-space is acquired symmetrically and has bounds of kpmax and
Kmin, which are equal to £y G (1 /2), respectively. A k-space diagram of the acquisition would
look like Figure 12. The initial position is at the center of k-space, the first gradient moves the
position to the lower bound kpin, and the second moves to the upper bound kpmax, covering
the entire space.

Te
t3 ; t4
15 v: t
: | — k
Kmin 0 Kmax

Figure 12: Example of motion in the k-space using the sequence from the Figure 11 [32].
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From Figure 12, it is clear that we cover a line in k-space in a single TR. The direction in which
the gradient moves in k-space during acquisition is called the "readout direction." Frequency
encoding only requires one dimension. The spin echo variant of the gradient echo involves ap-
plying two gradients of the same polarity with a refocusing pulse in between. The first gradient
moves the position in k-space to kmax, and the refocusing pulse changes it to kmin.

3.4.5 Phase encoding

The reading gradient can move along an axis to acquire data, but additional gradients are needed
to move in k-space. In a Cartesian plane, frequency encoding can be attributed to the k, dimen-
sion. The purpose of phase encoding is to move the reading direction along another axis. By
applying phase encoding gradients after each pulse, the position in k-space will move along the
second and/or third dimension. Figure 13 shows a 3D phase encoding sequence.

20°

RF pulse

o)
o=
T \
Gr 2Ty
Acquisition }s:){—

ampling

Figure 13: Phase encoding sequence scheme. The sequence has a reading gradient and two phase encod-
ing gradients along the {J and 2 direction. For a 2D sequence, only a single phase encoding
gradient is needed. [32].

The sequence in Figure 13 starts with an excitation pulse, followed by two phase encoding
gradients G, and G and the first read gradient. Similar to Figure 12, the phase gradient moves
the initial position from the center of k-space to a border of the ky axis. The second read gradient
is then applied along with the sampling of the signal. Measurements are not continuous as
data are acquired in finite numbers. In the reading direction, k-space points are acquired at
time steps At, with a continuous gradient application, resulting in an interval between two
points of Aky = y GxAt. For the orthogonal directions, gradients are applied with the same
duration at each repetition but with different amplitudes, resulting in Aky = yAGyTy and
Ak, = yAG_7,. The amplitude of the phase gradient is incremented at each repetition time.
The phase gradient is usually depicted as shown in Figure 16.
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The total acquisition time is equal to the number of lines acquired in the y and z directions
and the repetition time to acquire a line in x, Tacq¢ = NyN_Tr. The Tg for images is usually in
the range of 10’s ms, resulting in acquisitions that take a few minutes. Figure 14a and Figure 14b
illustrate a conceptual example of k-space with the intervals between points in three dimensions
and the data acquisition trajectory with phase and read gradients. In Figure 14b, we can see
that the phase gradients move the position in single increments, while the read gradient travels
through the entire k-space. In this example, only one of the two encoding gradients is applied
at each repetition time. If both gradients were applied, the position would move diagonally.

T
/ﬂ&b/
sl

A\kx} b) Conceptual scanning scheme of the k-

space sampling with two phase gradients

\

(a) Example of discrete k-space sampling. and a read gradient.

Figure 14: A k-space coverage and sampling 3D example [32].

3.4.6 Slice encoding

Slice encoding is a technique used in 3D imaging to acquire data in "slices," or thin layers, along
the third dimension. This technique can be used in a two-dimensional acquisition, where each
slice is obtained individually, or in a three-dimensional acquisition, where a thicker slab is se-
lected and further divided into thinner slices through encoding. The slice selection gradient is
applied in conjunction with phase encoding and reading gradients. To perform slice selection,
a linear gradient field is created along a particular direction and an RF pulse is applied to excite
spins within a certain range of Larmor frequencies corresponding to the desired slice. The di-
rection of the slice selection gradient will depend on the chosen anatomical coordinate system.
For example, to obtain a transverse slice in the (%-(j) plane, the slice gradient must be applied
in the Z direction.

Previously, equation (3.33) described the linear variation of the field with a linear gradient
applied, and equation (3.35) described the resulting variation in resonance frequency. Figure 15
illustrates the linear gradient field variation along the Z direction. To excite a slice with thickness
Az centered at position zy, the RF pulse must have a bandwidth of excitation with a range of
Aw centered around the frequency w(Zg). The RF bandwidth is given by

Az

w(zo — =)

Az
w(zo+ =) — >

2
= yG;-Az
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Since the bandwidth and the gradient are the chosen values for the slice thickness selection,
it is convenient to describe them in the other way around.

Aw
Az = (3-45)
¥G,
Aw
w(zo) =¥(Bo + Gz z0) I
w(O) = ¥BO B i
D) : +— Az
G }
\4&0
o\ l
0 20

Figure 15: Schema of the evolution of the resonance frequency with the application of a linear gradient.
The relation between the bandwidth selection Aw and the corresponding excited slice thick-
ness Az is illustrated [32].

The purpose of slice selection is to uniformly excite a slice of a sample, but the gradients used
can cause a loss of signal similar to that seen in gradient echo sequences. Figure 16 illustrates
an example of a slice selection sequence acquisition.

90°
RF pulse —/\/\ﬁ

Gss —

Gr

Acquisition ;{—

sampling

Figure 16: Slice selection acquisition scheme. The slice selection gradient is applied during the RF pulse,
and then applied for half the time with inverse the polarity to compensate the signal loss
created.[32].
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The slice selection gradient is applied during the RF pulse, resulting in a loss of signal during
this period. The gradient is then reversed after the RF pulse and applied for half the duration
of the first one. As shown in Figure 16, the rephasing of the slice selection gradient, the phase
encoding gradient, and the first lobe of the read gradient are all applied at the same time. The
phase encoding gradient and slice selection gradient can be applied with a spin echo or a gra-
dient echo.
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"The mystery of life isn’t problem to solve, but a reality to experience "

- Frank Herbert Dune
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4.1 INTRODUCTION

The previous chapter introduced the concepts of MR imaging, including the principle of mag-
netic induction and its application to obtain images of a sample with the spin density spatial
distribution. Along with imaging, the application of spectroscopy has been developed for nu-
clear magnetic resonance (NMR) spectroscopy measurements. The application of NRM, known
as the magnetic resonance spectroscopy (MRS), was first successfully implemented by Bloch
and Purcell [39] in 1946, for which they were awarded the Nobel Prize in physics six years later.
MRI is primarily used for imaging, while MRS is used to study the chemical composition of
tissues. The signal obtain from MRS contains the information of the ensemble of all nuclear
species whose Larmor frequency falls within the pulse spectrum. The goal was to measure the
presence and concentration of these chemical species, and therefore the focus is on measur-
ing the spectral composition rather than the spatial distribution. Both techniques can be com-
bined in magnetic resonance spectroscopy imaging (MRSI), which measures the concentration
of molecules and their spatial distribution.

Hydrogen magnetic resonance spectroscopy (' H MRS) is the most commun application and
field of research in MRS. "H MRS allows the study of the metabolism of specific hydrogen-
containing biomolecules in living tissues. Hydrogen is the lightest atom and the most common
in the human body, with 62% atomic presence and 10% contribution of the total body mass. Its
prevalence result in a high contribution to the MR signal. In addition to the 'H, research has
expended to others nuclei notably carbon 13C, fluorine '?F, and phosphorus 3P, with the later
being of particular interest throughout the rest of this thesis.

Phosphorus magnetic resonance spectroscopic imaging (3'P MRSI) probs the metabolism
of phosphorus-containing biomolecules. The isotope 3'P has a 100% natural abundance but
has only 6.6% the sensitivity of the 'H for an equal number of nuclei while having a 0.22%
presence in the human body. 3' P MRS offers unique opportunities to probe cellular metabolism,
as phosphorus-based metabolites are associated with the metabolic activity of the cell, and allow
the measurement of biologically relevant information such as in-vivo pH and free magnesium
levels (Mg2 ") [40-42]. Moreover, in contrast to ' H MRS where the dominant water signal has to
be suppressed to make the chemical compounds of interest detectable, 3'P MRS does not need
any signal suppression solution. However, despite its many advantages, 3'P MRS also presents
some challenges as the low sensitivity of the technique means that it may not be suitable for
studying small or highly localized areas of the body.
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This chapter will introduce the concepts MR spectroscopy, including the chemical shift and
spin-spin coupling. The chapter will also cover single voxel and multi-voxel spectroscopy. In
the second part of the chapter, the focus will shift to phosphorus biology and the relevant
metabolites probed by 3P MRS. As this thesis focuses on the phosphorus spectroscopy, only
relevant topic will be discussed and topics such as water suppression will be omitted. The same
applies to topics on data filtering, as the aim of this thesis is to use artificial intelligence to
analyze unfiltered data.

4.2 MAGNETIC RESONANCE SPECTROSCOPY

In the previous chapter, Section 3.4.1 introduced the spin density equation (3.32) that describes
the signal obtained from the excitation of a particular nuclear species in a sample, while the
other species remain unexcited. For spectroscopy, the focus shifts to obtaining a signal from
multiples nuclear species using a broad-band RF excitation pulse. The bandwidth of the receive
filter must also be broadened to adapt to the resulting signal. The excited nucleus is sensitive to
its molecular environment, where interaction with neighbouring nuclei and electrons will affect
its Larmor frequency. The two dominant effects of these interactions are the chemical shift and
the spin-spin coupling. These effects are highly dependent on the molecular structure of each
substance, and as a result, each molecule will have its own unique resonance and therefore
allowing the study of the biochemistry.

Single voxel spectroscopy involves the analysis of the chemical composition of a single voxel,
as the name might suggest. This technique is commonly used to study specific areas of the body,
such as the brain, liver, or heart. It allows for precise measurement of the chemical composition
of a specific area, but does not provide information about the surrounding tissue. In contrast,
multi-voxel spectroscopy involves the analysis of the chemical composition of multiple voxels
at once. This technique is often used to study larger areas of the body, such as the entire brain
or liver. It provides more detailed information about the chemical composition of the tissue, but
comes with more challenges than single voxel spectroscopy.

4.2.1  Chemical Shift

The chemical shift is the variation in the Larmor frequency of a nucleus due to the distribu-
tion of electrons in its environment. The effect of the electrons is known as shielding . This
phenomenon occurs when the local field induced by the presence and movement of electrons
modifies the magnetic field felt by the nucleus. The magnetic field felt by the nucleus B¢ will
linearly differs from the static field By, and can be describe by the following equation [43]. For
a nuclear specie j, the effective magnetic field perceived is

Bere(j) = (1—05)Bo (4.1)

In this equation, 0j is referred to the chemical shift value, which is a dimensionless constant
[32]. The chemical shift can be either positive in the presence of a shielding or negative in a
presence of anti-shielding. Thus, the larmor resonance frequency will be modify accordingly
into

wj = YBo(l—o0j) (4-2)

If we consider a larger sample with j different chemical compositions of spin densities Nj,
the signal will be as follows
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s(t) o Z N]~e"“"l'yBot (4.3)
j

While the chemical shift is dimensionless, the frequency displacement can be express as
ws = —0oyBy. This is explicitly depends on the field strength, meaning that it linearly in-
creases with the field. This implies that molecular signature will also vary in its frequency
resonance with variation in the static magnetic field. To enable comparison between spectro-
scopic analyses that are independent of the field, a new scale is needed. This scale is called parts

per million (ppm) and is defined as follows:

W3 — Wref
6pp'm = T .10° (4.4)
Wref

The wef corresponds to the zero point of the axis. The reference is chosen by convention,
for 'H spectroscopy it is the signal of tetramethylsilane (TSM) and for 3'P it is the signal of
phosphocreatine (PCr). The abscissa axis is inverted with the higher values appearing on the
left and decreasing as you move to the right. Moving to the right on this axis corresponds to
an increase in shielding, which reduces the effective magnetic field and results in a decrease
in the resonance frequency and ppm values. Moving to the left on this axis corresponds to
an increase in anti-shielding, which increases the resonance frequency and ppm values. The
Figure 17 summaries the concept of parts per million (ppm).

less shielding

more electronegative neighbours

more shielding

less electronegative neighbours

high ppm low ppm

ppm axis

Figure 17: Ppm scale summerized [37].

4.2.2  Spin-spin coupling

J-coupling, also known as spin-spin coupling or scalar coupling, arises from the nuclear mag-
netic moments within a molecule affecting each other. This interaction is mediated by the elec-
tron cloud and cannot occur directly between the nucleus.The interaction can be represented
as the sum of the multi-linear interaction, starting with the linear interaction between the spin
and the static field. The Hamiltonian for this interaction can be expressed as follows [36]:

Ho = —) v(1—0w)ScBo (4.5)
K

The equation shows that the chemical shift previously described is the linear component of
the Hamiltonian. The spin-spin coupling is the bilinear term interaction between the spins.

~ 2n A A
Hy = — Y SiJus (4.6)
k<l
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In this equation, Ji is the 3x3 coupling tensor between the spin k and the spin 1 [36, 44].
Adding the two component leads to the complete hamiltonian description.

. " 27 A A
H = —;Y”_Uk)SkBO‘f’h];Sk]lel (4.7)

If we limit ourselves to a simple two 1/2 spin system, the Hamiltonian will modify as follows.
The spins operators must be transformed into 4x4 matrices. The right-hand side spin operator
is transformed using the Kronecker product according to §f<‘ = 59 ® 1 and the left-hand side
spin operator is transform with S{l = 1® 59, with a = {x,y,z}. The coupling tensor can
be separated into isotropic and anisotropic components, Ji; = Ji9 4 Jaiso = ], 4 Janise,
By averaging the coupling, we find that Ji; = %tr( 150) and tr(Ji%s°) = 0. Additionally, the
anisotropic contribution cannot be distinguished from direct dipolar contribution. Thus, in the
context of high-resolution NRM, only the isotropic contribution is considered.

N A A 27t]12 A &
H = —v1Bo(1—01)S7—v2Bo(1—02)S5 + f{]ZS]Sz

(4.8)

We can start by introducing a regime of weak coupling where the components in the % and
{) axes can be discarded, keeping only the components along the magnetic field. This coupling
works for resonances where wg|oy — 01| > 7J12. Thus the Hamiltonian can be written as
follow.

N R o 27 A
H = —y1Bo(l—01)8F —y2Bo(1 — 02)83 + 29128253 (4.9)

Such hamiltonian can be written in as a matrix form, and simplify as well. Using equation

(4.2), The matrix components are able to be simplify using wqvg = 152 and Aw = w7 —

w3. The matrix form of the Hamiltonian for weak coupling is

—~Wavg + Th2 0 0 0
R Aw—T 12
H = h 0 2 _Awo_n . 0 (4.10)
0 0 =hwomhe 0
0 0 0 Wavg + T2

As the Hamiltonian is diagonal, it is trivial to obtain its energy level. Using the equation (2.15)
with the set of spin arrangement [+, +), [+, —), |—, +), and |[—, —).

1
E+,+ = _hwavg + ihﬂllz (4'11)
1 1
Ei - = EhAw — Ehﬂhz (4.12)
1 1
E_. = _ZhAw - z1171]12 (4.13)
1

With the Energy values, we can calculate the corresponding frequency of transition with

AE = hw.
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W, )= (+—) = W —7J12 (4.15)
Wit 4)s(—4) = w2712 (4.16)
Wi, )s(——) = w2+7]12 (4.17)
W 4)s(——) = wWi1+712 (4.18)
Wi )s(—p) = W] —w2 (4.19)

With the equation (4.2), it is again possible write the transition frequencies in function of wy
and the chemical shifts of the two spins.

W, )s(r,—) = wol(l—o1)—m]12 (4.20)
W )= (—+) wo(1—02) =712 (4.21)
Wit )s(——) = wol(l—02)+712 (4.22)
Wi )s(——) = wo(l—o01)+m12 (4.23)
Wiy, )s(—4) = woloz—o07) (4-24)

Through further calculations with the evolution matrix, it is possible to show that the split-
woloz—0q|
27
are half the original one, while maintaining the conservation of the integral under the peaks.

ting between the two central peaks is , and that the amplitudes of the two peaks
The intra-doublet peaks are separated by 27t]1,. The multiplicity pattern with more than two
identical nucleus will have 2n + 1 lines, where n is the number of neighbouring nuclei and the
peak height intensity can be obtained from the Pascal’s triangle [45]. Example of doublets and
triplets will be observed in the second part of this chapter.

This result only holds for coupling where the chemical shift of the two spins is much greater
than the spin-spin coupling. For strong coupling, the spin-spin coupling contribution from the
% and {j axes can no longer be neglected. From the equation (4.8), the matrix form of the strong
coupling becomes

—Wavg + 2 0 0 0
n A(,U—T[!]z
A= h 0 2 Aﬂ] o ° (4.25)
0 )12 — w;ﬂ 1 0
0 0 0 Wavg + 2

The Hamiltonian is no longer diagonal, and the calculation of the energy levels requires more
computation. This results in the following energy levels:

1
E+,+ = _hwavg“‘ihnhz (4-26)

1 1
B, = Ehw [Aw? +472]3, — Ehﬂhz (4.27)
1 1
E_, = —E’ﬁ,\ [ Aw? + 47‘[2]%2 — zh?’[]]z (4.28)

1
B = hwavg+ 500 (4-29)

With the energy levels, it is possible to calculate the transition frequency for the strong
coupling.
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1 7

(U(+,+)_>(+’,) = wa\,g — 7'[]]2 + E A(Uz +47TZI%2 (4.30)
1 7

LU(+,+)_>(,,+) = wavg — 7'[]]2 — E A(Uz +47’EZI%2 (4.31)
1

Wi, )=(——) = wavg+ﬂ]12_§\/Aw2+47TZI%2 (4.32)
_ | A 2 4 2712

W, 4)=(——) = Wavg +7TI12+§ w? + 472, (4.33)

Wi, s = —\/Aw? +412]7, (434)

From these equations, we can see that we can recover the weak coupling regime by neglecting
the term 47 %2 in the square root.

4.3 LOCALIZED SPECTROSCOPY

Unlocalized spectroscopy is a technique for exciting and recording signals from a whole sam-
ple. While this approach allows for the contribution of all chemical compounds, it has some
drawbacks. Firstly, the signal measurement is highly dependent on the coil profile, so signals
close to the coil will be more intense than those further away and the 3D volume extends only
over the coil sensitivity area . Secondly, the signal can be contaminated by signals from other
sources that are not of interest, such as the skull or fat tissue for the "'H spectroscopy or from
muscle for 3'P. Heterogeneity within the sample can also impair the data, causing resonances
to be broader due to variation in local magnetic susceptibility between tissues, with potentially
baseline distortion caused by lipid and water contamination. The difficulty to achieve a homo-
geneous static magnetic field within a large sample can reduce spectral resolution.

Localized spectroscopy allows for the analysis of a specific region of interest, resulting in
narrower resonances and the ability to exclude unwanted resonances (and can also be used for
lipid suppression in 'H spectroscopy). This technique results in a more specific spatial char-
acterization, but with a decrease in SNR due to the reduced excitation volume. MR localized
spectroscopy involves defining a specific area of interest, or voxel, and measuring the chemical
composition of that area. There are two types of localization spectroscopy: single voxel and
multi-voxel spectroscopy. Both techniques aim to probe signal from a region of interest (ROI)
while avoiding signal from outside of the region. Techniques that are based on the magnetic
field gradients use slice selection applied consecutively in the three orthogonal directions with
the application of a frequency selective RF pulse. Spatial localization provides better field ho-
mogeneity, as Bo and By variations are greatly reduced in small, localized volumes. Positioning
the voxel allows for the specific characterisation of tissue, such as the difference between grey
and white matter in the brain [46].

4.3.1 Single Voxel Spectroscopy

Single voxel spectroscopy (SVS) allows for precise measurement of the chemical composition
within the voxel, but does not provide information about the surrounding tissue. SVS has the
advantages of having a well-defined volume with minimal contamination, good magnetic field
homogeneity across the volume. The consecutive application selects a slice, then a column
from the slice, and then a voxel. These techniques can be divided into two sub-categories: outer
volume suppression (OVS) which leaves the magnetization in volume of interest (VOI) unper-
turbed, and techniques that rely on selective perturbation of the magnetic field such that only
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the signal from the VOI remains.Since the inception of MR spectroscopy, various sequences
have been developed. In this section, we will highlight some of the most significant ones.

Image selected in-vivo spectroscopy (ISIS) [47] involves the use of a selective inversion RF
pulse with gradients followed by nonselective excitation pulse on the entire sample. The un-
wanted magnetization outside the VOI remains unaffected by the inversion pulse. This sequence
requires multiple acquisitions, up to eight to perform three-dimensional localization. The result
is obtained by adding or subtracting the acquisitions in such a way that the signal inside the
VOI combines while the signal outside destructively interferes. The sequence can be combined
with an out of volume and noise suppression to create the "Outer volume Suppressed Image
Related In-vivo Spectroscopy” (OSIRIS) [48, 49].

Stimulated Echo Acquisition Mode (STEAM) [50] is a 3D localization technique that can
be performed in a single shot. It uses three 90° pulses creating three FIDs, followed by four
spin echos and one stimulated echo. Only the signal from the stimulated echo is of interest,
while the signals from the other echoes are suppressed using additional gradients, known as
crusher gradients. A disadvantage of this sequence is that it only captures half of the total signal
compared to spin-echo.

Point Resolve Spectroscopy (PRESS) [51] is a double spin-echo method where slice-selective
excitation is used in combination with two volume selective refocusing pulses. The first echo
contains signal from the column at the intersection of the two volumes selected by the 90° and
180° pulses. The second echo only contains signal from the intersection of the three volumes
resulting in the desired volume. Signal from outside the VOI is either not excited or not refo-
cused, leading to a rapid dephasing of the signal with the application of the crusher gradients.
PRESS is preferred at lower field strengths due to its higher SNR compared to STEAM.

Localization by Adiabatic Selective Refocusing (LASER) [52] uses adiabatic pulses that offer
a larger bandwidth and produce a uniform flip angle despite variations in the By field. LASER
uses a non-slice-selective excitation pulse followed by three pairs of adiabatic full-passage (AFP)
pulses for signal refocusing as well as the selection of three orthogonal planes in space. To
minimize the echo time and the RF deposition, semi-LASER [53] is an identical sequence with
the replacement of one of the AFP pair and the non-selective excitation with a slice-selective
pulse.

4.3.2 Chemical Shift Displacement

In Section 3.4.6, the slice selection technique and the impact of applying a linear gradient dur-
ing RF pulse excitation were introduced. As shown in Figure 15, the excitation of a bandwidth
Aw resulted in the selection of a slice thickness Ar according to the equation (3.45). When
using localized spectroscopy, applying a linear gradient during excitation will result in the ex-
citation of a localized voxel for on-resonance metabolite signals, but also in the excitation of
off-resonance metabolite signals from a different voxel position. This effect is known as chem-
ical shift displacement artifact (CSDA) or chemical shift displacement error (CSDE).

Figure 18 illustrates the chemical shift displacement artifact in a phosphorus spectrum. A
frequency selective pulse is applied on the PCr resonance according to the black line, the exci-
tation of a bandwidth centered at w(r) results in a voxel at the position . The same RF pulse
also selects off-resonance, such as AMP and 3-ATP in red and orange, respectively, resulting in
signals from voxels at localization r + Ar and v + Ar’.
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Frequency

w(r) + /

Figure 18: Adaptation of the Figure 15 for the localized spectroscopic application. The excitation of a
bandwidth centered at w(r) results in a voxel at the position 1, but also selects off-resonance,
such as AMP and (3-ATP in red and orange, respectively, resulting in signals from voxels at
localization T + Ar and r + Ar’ [46]. Examples of voxel displacement is shown on the right-
hand side (displacement not to scale).

The chemical shift displacement artifact error is given by the relationship between the slice
thickness, the RF excitation bandwidth Awgyy and the chemical shift Aw;; between metabolite
iandj.

ﬂAr

“Awpw (4-35)

Arcspa =

The chemical shift displacement artifact scales linearly with the static magnetic field strength.
According to equation (4.35), the chemical shift displacement artifact can be minimized by
increasing the pulse bandwidth Awpgyy,. However, there are limitations to increasing the RF
power, including hardware constraints and power deposition limitations in human tissue. Fur-
thermore, when slice selection is applied in all three dimensions for MRSI, the overlap between
voxels decreases further. Chemical shift displacement artifact can lead to misinterpretation of
the results and contamination from others signals.

4.3.3  Multi-Voxel Spectroscopy: MRSI

In Section 4.3.1, the advantages of single voxel spectroscopy were presented. While single voxel
spectroscopy provides valuable information about the chemical compounds in a tissue, its use is
limited because it only focuses on a small volume in an organ and does not provide information
about the spatial distribution of the signals. This can result in missing important information
or areas of interest. Magnetic resonance spectroscopic imaging (MRSI), on the other hand, is
a localized spectroscopic technique that acquires multidimensional arrays of localized voxels.
MRSI allows for the investigation of an entire organ or body part, providing a comprehensive
and unbiased characterization of the metabolic spatial distribution. However, the technique re-
mains challenging due to significant magnetic field inhomogeneities across the volume being
acquired, inter-voxel contamination, long acquisition times, and sometimes the need to process
a large amount of data. The principles of magnetic resonance spectroscopic imaging (MRSI) are
largely based on phase encoding principles, similar to those described in Section 3.4.5. Phase
encoding is applied during the time between the excitation pulse and the sampling to encode
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the k-space. The signal can be measured using a FID or a spin-echo. The nominal size of the
voxel is obtained by dividing the field of view size by the number of encoding increments. One
of the most basic MRSI techniques is chemical shift imaging (CSI) [54], which consists of an
RF pulse followed by three phase encoding gradients and the acquisition of the free evolution
signal. In practice, MRSI can be used with any of the previously described sequence in Sec-
tion 4.3.1 by adding phase encoding steps. An example of 3D 3'P-MRSI acquisition using the
3D CSI acquisition sequence is illustrated in Figure 19. The grid is presented in the three or-
thogonal orientation, with a colour reference for each.

(a) Transverse (b) Sagittal

Figure 19: Example of 3D 3'P-MRSI acquisition grid obtained using the sequence from Figure 20. The

presented grid is a 10 x 10 x 10 matrix, each voxel has a volume of 25 mm?3.

CSI has the advantage to have no slice or volume selection and thus no CSDA. This is the
only sequence use for data acquisition throughout the thesis. Adapting the equation (3.38) to
describe the CSI signal give the following equation.

+00 .
s(k,t) = J JQ " p(r, 0) - e 2millker=ofot) 4yq 4 (4.36)
C

—00

The modified equation includes the observation of the transverse magnetization evolution
over time under the influence of chemical shifts, with the reference frequency fy chosen as a
reference as described in Section 4.2.1. The relationship between k and the gradients is describe
in Section 3.4.2 and in Section 7.2.2. The resulting signal obtained through MRSI is now a four-
dimensional array comprising three spatial coordinates and a temporal axis. The data are then
sampled at n points, separated by At, to encode the information along the temporal axis. Inverse
Fourier is performed to obtain a spatial image with each voxel containing a spectrum. It is then
possible to display images of a particular value of sigma. The acquisition time is now given
by Tacq = NxNyN_Tg, with TR on the order of 1s leading to acquisition that can range from
half an hour to an hour for a single CSI acquisition. The Figure 20 show an example of 3D CSI
sequence.
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Figure 20: 3D CSI sequence with an 90 © RF pulse followed by three phase encoding and the sampling
of the signal [32].

4.4 PHOSPHORUS AND CELLULAR BIOLOGY

Phosphorus, a chemical element with symbol P, is an essential component of biological systems
due to its crucial role in many cellular processes, such as energy metabolism, DNA synthesis,
and the regulation of enzyme activity. The five valence electrons of the phosphorus atom allow
for three or five covalent bonds, thus enabling it to bond easily with other atoms. The phosphate
group, which contains a phosphorus atom, is among the seven most important chemical groups
in biological processes. This group contributes a single negative charge when positioned inside
a molecule and two negative charges when positioned at the end, endowing the molecule with
the ability to react with water, releasing energy [55]. In addition, phosphorus plays a vital role
in the synthesis of DNA and RNA, but this is outside the scope of this thesis.

4.4.1 Phosphorus metabolites in 31 P MRS

As mentioned above, there are many molecules that contain a phosphorus atom in their com-
position, but only a few of them can be observed using MRI. A list of the most commonly ob-
served metabolites, along with their acronyms and chemical shifts, can be found in Table 3. For
metabolites with multiple phosphorus atoms, the different resonances are also listed. Detailed
descriptions of each metabolite can be found in the following sub-sections.
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Compound Acronym Resonances Chemical shift 6 (ppm)
Adenosine monophosphate AMP 6.3
Adenosine diphosphate ADP - —7.1

-B —3.1
Adenosine triphosphate ATP - —7.5

-B —16.3

-y —2.5
Glycerol phosphorylcholine GPC 2.8
Glycerol phosphorylethanolamine GPE 3.2
Inorganic phosphate Pi 5.0
Phosphocreatine PCr 0.0
Phosphorylcholine PCh 5.9
Phosphorylethanolamine PE 6.8
Nicotinamide adenine dinucleotide, NAD+ —8.2
oxidized

Nicotinamide adenine dinucleotide, =~ NADH

reduced

—&.1

Table 3: Chemical shift of the most prominent phosphorus compound [46].

4.4.2  Phosphocreatine

Phosphocreatine (PCr), also referred to as creatine phosphate, is a high-energy molecule that is

found within cells, particularly muscle cells. It is produced through the reaction of creatine with

adenosine triphosphate (ATP), which involves the transfer of a phosphate group from ATP to

creatine. This reaction is reversible, and PCr can be broken down to regenerate ATP when cells

require energy, such as during muscle activity [56]. The reaction occurs outside the mitochon-

drion. In phosphorus spectroscopy, PCr is often used as the chemical shift frequency reference.

The chemical structure of PCr is depicted in Figure 21.

OH 0
HO—P—NH NJL
[ OH
O
NH

Phosphocreatine (PCr)

Figure 21: Chemical structure of the Phosphocreatine.
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regenerating its
entire pool of ATP in
less than a minute,
representing 10
million molecules.
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4.4.3 Adenosine mono-, di-, and triphosphate

Adenosine mono-, di-, or triphosphate (AMP, ADP, ATP) are molecules composed of a ribose
sugar, which is made up of an adenine and a D-ribose, attached to one, two, or three phosphorus
atoms. ATP has three distinct resonances for each of its phosphorus atoms, referred to as &x—,
[3—, and y— as shown in Figure 22. As shown in Table 3, the chemical shifts of phosphorus are
sufficiently separated to be computed using the weak j-coupling approximation.

NH,
vo9 9 )7 N

O-P-O-P-O-P-0O < | )
I I I o NN

@)

OH OH

Adenosine monophosphate (AMP)

Adenosine diphosphate (ADP)

Adenosine triphosphate (ATP)

Figure 22: Chemical structure of the adenosine monophosphate (AMP), adenosine diphosphate (ADP)
and adenosine triphosphate (ATP).

Adenosine diphosphate (ADP) only has two resonances, x— and 3—, as it has only two phos-
phorus atoms. Together with PCr, ATP is a primary molecule involved in the transfer of energy
in biological systems. While it is often said that ATP stores energy, it is more accurate to say
that it stores the potential to react with water or other molecules, releasing energy in the pro-
cess. The bonds between the phosphate groups can be broken through hydrolysis. When an
ATP molecule reacts with a water H,O molecule, the terminal phosphate bonds are broken,
resulting in an ADP molecule and an inorganic phosphate (Pi) molecule. This reaction is exer-
gonic and releases 7.3 kcal of energy per mole of ATP hydrolysed under standard conditions.
However, the inside of a cell does not correspond to standard conditions, which would increase
this value to 13 kcal, or almost 80% greater. The released energy is used by the cell to per-
form one of three types of work: cellular work, chemical work, or transport work. The released
energy allows for endergonic reactions to occur. ATP is a renewable resource that can be regen-
erated through the addition of a Pi to an ADP. This process is endergonic and requires cellular
respiration to provide the necessary energy [46, 55, 57].

4.4.4 Phospholipids

Phospholipids are a class of lipids that are an essential component of cell membranes. They are
composed of a glycerol molecule bonded to two fatty acids and a phosphate group, which is usu-
ally bonded to a molecule of choline, ethanolamine, or serine. Phospholipids form the structural
basis of cell membranes, such as the outer and inner mitochondrial membranes in Figure 28,
by arranging themselves in a lipid bilayer. The phospholipids have a hydrophilic head facing
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outward and a hydrophobic tail facing inward towards each other, resulting in a selectively
permeable bilayer. There are multiple phospholipids, but the ones observed in the phosphorus
spectrum are phosphorylethanolamine (PE) and phosphorylcholine (PCh), which can bond to
glycerol compounds to form glycerophospholipids such as glycerol phosphorylethanolamine
(GPE) and glycerol phosphorylcholine (GPC). PE and PCh are monoesters, while GPE and GPC
are diesters due to the single or double alkoxy groups that substitute for hydroxyl groups. They
are shown in Figure 23 and Figure 24.

7

HO/\/\O/P\O/\/NHZ

OH

Phosphorylethanolamine (PE)

Glycerol phosphorylethanolamine (GPE)

Figure 23: Chemical structure of the Phosphorylethanolamine and the Glycerol phospho-
rylethanolamine. For the Phosphorylethanolamine, an hydrogen atom is bounded to
the oxygen instead of the glycerol.

2 |
\ 7 -

HOYO SR RN

OH

Phosphorylcholine (PCh)

Glycerol phosphorylcholine (GPC)

Figure 24: Chemical structure of the Phosphorylcholine and the Glycerol phosphorylcholine. For the
Phosphorylcholine, an hydrogen atom is bounded to the oxygen instead of the glycerol.

4.4.5 Inorganic phosphate

Inorganic phosphate (Pi) is depicted in Figure 25. As previously mentioned, Pi is formed through
the hydrolysis of ATP. Inorganic phosphate helps regulate pH in the body through its role
in the buffering system. One way in which it acts as a buffer is by forming a complex with
hydrogen ions (H). When hydrogen ions are added to a solution, the pH becomes more acidic.
However, if inorganic phosphate is present, it can react with hydrogen ions to form a less
acidic compound called mono-hydrogen or di-hydrogen phosphate. Inorganic phosphate exists
in half as the mono-anion H PO, and in the other half as the di-anion HPOi_ [42, 58]. As the
molecule changes its number of hydrogen atoms, it also changes its chemical shift. It is therefore
possible to measure the physiological pH through the variation of the Pi’s chemical shift with
respect to PCr. The exchange between the two forms can be written as HA =H™' + A, where
the unprotonated molecule HPOi_ is written as A. The chemical shift (8) of Pi is given by:

53
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particularly in the
process of apoptosis.
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6 = XA5A+(]*XQ)5AH (4.37)

The value x, represents the molar fraction of the unprotonated molecule. Using the relation
pH = pK+1log;,(xa /(1T —xa)), intercellular pH can be obtained through the variation of the

chemical shift [59, 60].

5—96
pH = pK+log,;, AH (4.38)
SA—5
HO—P—OH

Inorganic Phosphate (Pi)

Figure 25: Chemical structure of the inorganic phosphate (Pi).

4.4.6 Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide exists in two related coenzymes: the reduced form (NADH)
and the oxidized form (NAD+) that are presented in Figure 26.

O O
o NH, o N NH,
O=P—-0 N O=P—0 +/
N
O O
(@) O
OH OH NH, OH OH NH,
N X N X
O=P—0O </ j\)\)N O=P—0 </ j\)\)N
- N Z - N Z
o) N o o) N
OH OH OH OH
Nicotinamide adenine dinucleotide Nicotinamide adenine dinucleotide
reduced (NADH) oxidized (NAD+)

Figure 26: Chemical structure of the Nicotinamide adenine dinucleotide reduced (NADH) and oxidized
(NAD+).
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These are electron carriers because they can cycle between the two forms in cellular reduction-
oxidation (redox) reactions. An enzyme called dehydrogenase has the ability to remove a pair
of hydrogen atoms (both protons and electrons) from a substrate (for example, glucose). The
enzyme then delivers two electrons and a proton to NAD+, forming NADH and releasing the
other proton as a hydrogen ion. The stored electrons do not lose potential energy as they move
from NAD+ to NADH, representing stored energy that can be used to produce ATP. The elec-
tron transport chain will be discussed below. The combination of O, and H; yields a large
amount of energy, and through the breakdown of water molecules into multiple steps, cells are
able to produce multiple molecules of ATP, thereby controlling their energy storage.

NAD+ NADH NAD+ and NADH
. J\ J\
ppm” ppm” ppm”
: /\/\ /\
ppm” ppm” ppm”
- A/\ /\A\
ppm” ppm” ppm”

Figure 27: Example of NAD+ and NADH resonances for magnetic field of 3T, 7T, and 11T with a
linewidth of 15 Hz.

The ratio of NAD+ to NADH is known as the redox state of a cell and is a crucial indicator
of the activity and health of cells. However, as shown in Table 3, both molecules have similar
chemical shifts and NAD+ charge small asymmetry leads to different electron shielding, causing
a strong coupling between the two phosphorus atoms. This results in a resonance that appears
as a doublet of doublet. The overlapping of the two NADH and NAD+ resonances, along with
the multiple peaks for NAD+, makes it challenging to evaluate the redox state at low field. The
Figure 27 presents the NAD+ and NADH resonances individually and together at different field
with a linewidth of 15 Hz.
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4.4.7 Mitochondria is the Powerhouse of the Cell

Mitochondria are organelles found in most eukaryotic cells and are responsible for producing
the majority of the cell’s adenosine triphosphate (ATP), the primary source of energy for the
cell. This has earned them the nickname of powerhouses of the cell [61]. A schematic view of a
mitochondrion is shown in Figure 28. The inner and outer membranes are composed of a dou-
ble layer of phospholipids, the green and red ovals represent embedded proteins that allow the
passage of specific molecules. The membrane consists of various proteins, forming a mosaic of
tiles. More than 50 different proteins can be found on the membrane, which can be divided into
two categories: integral proteins and peripheral proteins. The former can penetrate through the
membrane and some can even go through the other side, while the latter only remain loosely
bound to the surface. The green and red proteins shown in Figure 28 are integral proteins as
they are transport proteins that allow the passage of substances through the membrane. The
green proteins allow hydrogen nuclei to travel to the intermembrane space and the red proteins
allow them to return to the matrix of the membrane to be used for ATP production. Ion chan-
nels facilitate the diffusion of ions across the membrane.

Outer mitochondrial membrane

/Inner mitochondrial membrane \

Pyruvate Fatty acide

(S Acetyl CoA Py

2H,0 (\ Citric Acid Cycle
w ADP + Pi
H*+ NAD™
NADH
|

> 1

Vi Vo Vo

Figure 28: General schematic view of the mitochondrial citric acid cycle and the oxidative phosphoryla-
tion. It shows the coupling of the respiratory chain with the phosphorylation of ADP to ATP
by ATP synthase. The oxidations that occur during the flow of electrons along the respira-
tory chain release energy, which is used by proteins to create a proton concentration gradient
around the inner mitochondrial membrane. The resulting electrochemical gradient provides
energy to drive a molecular reactions that allows ATP synthase to produce ATP [55, 58].

Phosphorus-based molecules, like ATP, are found in mitochondria and play a crucial role in
energy metabolism. The citric acid cycle, also known as the Krebs cycle, is a series of chem-
ical reactions that occur in mitochondria and are responsible for the production of ATP. The
citric acid cycle involves the breakdown of glucose and other organic molecules to release en-
ergy. After glucose is broken down into pyruvate through multiple steps, it is transported into
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the mitochondrion. Pyruvate is first converted to acetyl coenzyme A (Acetyl CoA), releasing
CO; and transferring energy to NAD+ through the formation of NADH. Acetyl CoA then en-
ters the citric acid cycle, which produces 2CO;, reduces FAD to FADH,, generates ATP, and
reduces three NAD+ to NADH. The resulting NADH participates in the oxidative phosphory-
lation process, which occurs through the electron transport chain in the inner membrane of
the mitochondrion (shown in Figure 28 by the black and white arrow). The process starts with
NADH as the highest energy in the chain and ends with the capture of electrons and hydrogen
ions by O, molecules to form water. The release of energy at each step of the chain is stored
in a way that the mitochondrion can use it to form ATP from ADP. The synthesis of ATP is
called oxidative phosphorylation because it is powered by redox reactions. For every molecule
of glucose converted to CO;, or H, O, the cell can produce up to 32 molecules of ATP. Hydrogen
ions are transferred from the matrix to the intermembrane space and move to the ATP synthase
protein (shown in the red oval in Figure 28), where they are transferred back to the matrix to
produce ATP [46, 55].
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DEEP LEARNING

"Thou shalt not make a machine to counterfeit a humain mind."
- Frank Herbert, Dune
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5.1 INTRODUCTION

The concept of artificial intelligence (AI) has captured the imagination of humans for centuries,
although its practical applications have only existed for less than a century. The notion of ani-
mating inanimate objects with the ability to think can be traced back to ancient Greek mythol-
ogy, where the myth of Talos, a robot created by the god Hephaestus to guard the princess
Europa, serves as an early example of Al [62]. Other well-known examples can be found in the
story of Galatea, a statue brought to life by Pygmalion [63]. These tales illustrate humanity’s
fascination with creating Al and the prospect of bringing non-living entities to life.

The practical application of Al in our daily lives differs substantially from the fictional depic-
tions of Al The field of Alresearch originated in the 1950s with the advent of modern computers.
Computers possess an inherent ability to excel at computation and can outperform humans in
computation-intensive tasks. The primary objective of Al is to design systems that can out-
perform humans in specific tasks, such as data analysis and prediction, which can be abstract
and mentally challenging for humans. Conversely, tasks that are intuitive for humans, such as
object recognition, have only been achieved by computers in recent decades. The challenge in
creating Al lies in imparting the computer with knowledge about the world to enable intelligent
behavior. Early attempts at Al using a knowledge-based approach were not very successful, as
researchers attempted to manually encode rules into the system. This approach was limited
in its effectiveness as the rules could never fully encompass the complexity of the world [64].
Such algorithms were only functional in limited environments with simple rules. An exemplary
instance of this is Deep Blue, a chess-playing expert system run on a dedicated supercomputer
that defeated Garry Kasparov, the chess world champion in 1997. Deep Blue had almost a mil-
lion grandmaster chess games stored in its memory and could compute millions of positions to
determine the best moves [65].

The field of Al experienced a significant breakthrough with the advent of machine learning
(ML), which enables machines to learn and derive their knowledge from data analysis. The ef-
ficacy of machine learning is contingent on the data representation provided to the machine.
The challenge in this approach lies in the numerous factors that may influence the observed
data and the requirement for the machine to extract high-level, abstract features from the data
to perform accurately. Deep learning (DL) was developed to tackle this challenge by utilizing
multiple layers to progressively encode raw input into higher-level features or simpler, more
compact representations of information. [64, 66]. Presently, Al has widespread applications,
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such as self-driving cars, facial recognition, and personalized movie and music recommenda-
tions. These advances demonstrate the ongoing progress in Al and its growing impact on our
daily lives.

This chapter introduces the concepts of artificial intelligence essential to comprehend the
content of Chapter 6. The first section presents the general concepts of machine learning. The
second section elaborates on deep learning, and the third section focuses on convolutional neu-
ral networks, which is a special use case of deep learning.

5.2 MACHINE LEARNING

Deep Learning is a specialized field of Machine Learning, which in turn is a subfield of artificial
intelligence. Machine learning algorithms can be employed to address a wide range of prob-
lems, including but not limited to image and speech recognition, natural language processing,
regression, classification, and predictive modeling. Deep learning models cannot be regarded
as stacking of simpler units since this would overlook the importance of the complex hierarchi-
cal arrangement that enables the models to achieve optimal performance. The multiple layers
each performing a mathematical transformation that become slightly more abstract to model
complex non-linear relationships. The architecture of deep learning networks is critical to their
accuracy and efficiency. To fully comprehend the principles of deep learning, it is essential to
first grasp the fundamentals of machine learning.

A machine is considered to have learned if as a result of experience E with respect to a given
task T, its performance P improves [67]. The task may encompass any of the examples outlined
in the introduction, and each task has a specific input and output. For instance, classification
may accept an image as input and return a numerical code identifying the object within the im-
age, while language translation may take a sequence of text as input and return its translation
into another language. Performance is evaluated by determining the percentage of incorrect
outputs. The models of machine learning are categorized based on their experiences, which
can be either supervised or unsupervised. In supervised learning, the machine is trained using
labeled data, meaning that the input-output pairs are already known. A well designed model
would generalize the relationship between the input and output, allowing it to produce accurate
predictions on new, unseen data within the training data distribution. In contrast, unsupervised
learning involves training the model on unlabelled data, seeking to identify patterns and struc-
tures within the data itself. The machine is expected to extract features and relationships from
the data without any prior knowledge of the input-output mapping. This chapter will focus on
supervised learning, as unsupervised learning is outside of the scope of the thesis.

5.2.1 General model: Linear regression

One of the most basic machine learning algorithms is the linear regression model, which seeks
to predict a scalar value y based on an input vector x € IR™. In this model, the algorithm
computes a linear combination of the elements in the input vector and maps it to an output
value . Specifically, the model can be expressed mathematically as:

n

J = ZWi'XH-b (5.1)
i=1

= w'x+b (5.2)

The model consists of a weight vector w € IR™ and a scalar bias term b. The weight vector
represents the relative importance of each input feature in the prediction, while the bias term
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accounts for the model’s prediction in the absence of input. The model’s task T is to perform
the prediction {J given x. To train the model, a labeled dataset is employed where each input
has a corresponding output label. The model’s objective is to find the optimal values of the
weight vector w and bias term b that minimize the discrepancy between the predicted out-
put J and the actual output y. This difference can be computed by defining a loss function
L:(0,y € RxY — L(,y) € R, where Y denotes the set of possible output labels. The
most commonly used loss functions are presented in the Table 4.
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LEAST SQUARED ERROR LOGISTIC LOSS HINGE LOSS CROSS-ENTROPY

Ty—1)? log(T+eY9)  max(0,1—yy) —[ylog(y)+(1—y)log(1—

9]

Table 4: Example of the most commonly used Loss functions.

The choice of loss function is based on the machine learning model. For example, the least
squared error will mostly be used for linear regression model whereas the cross-entropy loss
will be mostly used for neural network. The loss function is used in by the cost function 7,
where the error is computed for m training examples.

Jw) = = £@g™,y™) (5:3)

The loss function is calculated on both the training set and a previously unseen testing set to
ensure that the model does not solely learn the training data instead of learning the underlying
data representation.

5.2.2  Gradient Descent

In order to enhance the performance of the algorithm, it is necessary to minimize the cost
function J (w) with respect to the weight vector w. The algorithm can subsequently update
the weights iteratively, until convergence is achieved. One common technique for minimizing
the cost function is through the use of gradient descent algorithms. This approach involves
calculating the derivative of the cost function with respect to the parameters, and then updating
the weights accordingly. The gradient descent algorithm can be expressed as follows:

W — w—aVuJ (5-4)

Here, « € R is referred to as the learning rate. It is typically assigned a small constant
value to prevent divergence. The iterative nature of the gradient descent algorithm is illustrated
in Figure 29. It is worth mentioning that some application may be interested in the second
derivative by computing the Hessian matrix H, and applying the Newton algorithm bellow

w <« w-—H'V,J
where  Hij = 0w, 0w, J (5.6)

Table 4 also presents
the logistic loss,
which is primarily
utilized for logistic
regression, while the
hinge loss is typically
favoured for support
vector machines.

The bias b is updated
in a similar way as
the weights.
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Figure 29: Schema of a two-dimensional top view representation of a multi-dimensional plane illustrat-
ing the gradient descent algorithm. The ellipses denote areas that share the same J value,
with the blue color indicating the minimum value at the center in a darker blue shade, grad-
ually increasing in value in a lighter blue shade. The figure showcases the trajectory of the
updated weights in red, depicting each step of the process until the cost function is minimized
at the center. Inspired by [68].

5.2.3 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a powerful alternative to gradient descent, which operates
similarly by computing the gradient of the loss function. However, rather than calculating the
gradient of the cost function, SGD calculates the gradient of the loss function and update the
weights for each training example. This can be expressed as follows:

.l m
_ 1 S (k) - (k)
Vwd — % Vw L™,y w) (5.7)

One disadvantage of this method is the requirement to compute the derivation for all exam-
ples, therefore the computational time scale linearly with the number of training examples m.
An alternative approach is to use mini-batch training, where the training set is randomly and
uniformly divided into j subsets, each with a size of m’ < m. SGD is then computed for each
mini-batch V7 U), as shown below:

. 1 m’
VIV = vy L™,y w) (58)
k

Updating the weights after each mini-batch results in faster cost function minimization than
the original gradient descent. Additionally, the computational cost of SGD does not scale with
the size of the training dataset, as the size of the mini-batches can be kept constant. Mini-
batch gradient descent can offer significant improvements over true stochastic gradient descent.
The algorithm is faster as it is no longer computing each training separately. This allows for a
smoother convergence, since the gradient computed at each step is averaged over more training
samples.
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5.2.4 Hyperparameters

Hyperparameters refer to parameters that are predetermined by the user prior to the commence-
ment of training a model, distinct from the model parameters that are acquired through train-
ing data. As presented previously, hyperparameters such as the learning rate and the size of
the mini-batch can be adjusted prior to the training process. There exist other hyperparame-
ters, including regularization, number of hidden layers, convolution kernel, and padding, which
will be expounded upon in the following section. Notably, the list of hyperparameters is non-
exhaustive and is dependent on the type of machine learning or deep learning method em-
ployed. The significance of hyperparameters lies in their ability to significantly impact model
performance. The search for optimal hyperparameter values is often an empirical process.

5.2.5 Motivation to deep learning

The presentation of machine learning in this section is not exhaustive, as it omits numerous
applications beyond linear models (classification model, decision trees, ...). While conventional
machine learning methods may suffice for many tasks, certain domains necessitate the use of
deep learning techniques. A significant challenge posed by traditional machine learning meth-
ods is their inability to extract and represent high-level features from raw data. In contrast,
deep learning approaches are designed to learn these features effectively by utilizing multiple
layers of nonlinear processing units. Moreover, deep learning algorithms typically outperform
machine learning algorithms in a variety of tasks such as image and speech recognition, as well
as natural language processing. Deep learning algorithms also tend to generalize better than
conventional machine learning algorithms, making them more robust and reliable. However,
the application of deep learning methods is not without challenges, as their capacity to handle
large amounts of data is balanced by their need for substantial training data and computational
resources for both training and deployment.

5.3 DEEP LEARNING

In contrast to conventional machine learning algorithm, deep learning algorithms utilize neural
networks with multiple hidden layers. The depth of the model is defined by the number of
hidden layers, which can be viewed as either the number of sequential instructions executed,
such as summation and multiplication, or as a computational graph flowchart that describes
the interconnection between concepts, such as a function that performs multiple operations.
As both representations do not lead to the same depth value, there is no consensus on the
minimum depth required for a model to be classified as "deep".

Learning in deep learning also follows a distinct philosophy from machine learning. In ma-
chine learning, the task T is considered to be improved if the performance P increases with
training. The reduction of error E through the cost function 7 serves as a performance im-
provement proxy as it is hoped that reducing the error will lead to performance enhancement.
In deep learning, the primary goal of learning is the minimization of the cost function. This
approach was deemed problematic in the 1990s since machine learning models are designed
to optimize a convex problem, enabling gradient descent to converge to a global minimum,
whereas deep learning models are challenged by non-convex situations with multiple minima.
However, in the 2010s, it was uncovered that for a network of sufficient size, the majority of
local minima exhibit a cost value low enough to render the search for a global minimum unnec-
essary [69].
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5.3.1 Single layer: Perceptron

The Perceptron constitutes a fundamental concept in the domain of artificial neural networks
and deep learning. Its originates dates back to the late 1950s and early 1960s when it emerged as
one of the initial models designed to simulate the cognitive processes of the human brain within
the context of machine learning. The Perceptron, at its core, represents a simplistic binary clas-
sifier that leverages an activation function to make binary predictions based on input features.
Although the initial Perceptron model was confined to performing separable binary classifica-
tion tasks, the development of multilayer Perceptron (MLP) networks has significantly extended
the capabilities of the Perceptron to address complex nonlinear classification and regression
challenges. An MLP network is composed of numerous layers of interconnected Perceptrons,
with each layer progressively transforming the input data into increasingly abstract representa-
tions. The Perceptron concept was the basis or the essential design of Artificial Neural Network
(ANN) and has consequently started the evolution of numerous modern deep learning models,
including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

@ W:I
T W
Wwq

Figure 30: Example of the Perceptron architecture, inspired by [68]

O,

As shown in Figure 30, the perceptron takes a vector x € IR™ as input and outputs a pre-
diction {J based on a linear combination of the input vector and a set of learned weights, as
described in the equation (5.2). Specifically, the perceptron computes the dot product of the
input vector and weight vector, followed by an activation function @(-), which maps the lin-
ear combination to a binary output. Traditionally, the perceptron used the sign function as its
activation function, defined as:

. —1, if x<0
sign(x) = (5.9)
+1, if x>0

The sign function is applied in order to convert the dot product between the input and the
weights to a class label. However, other activation functions have been introduced to improve
the performance of the perceptron, which will be discussed in Section 5.3.2. The perceptron’s
output can be written as:

g = O(w'x+Db) (5.10)

where @ is the activation function. With a binary prediction, the error is restricted to the set
{—2,0, 2}. The weights are updated using the SGC described in the Section 5.2.3, using the least
squared error loss presented in Table 4. While the computation is performed in two steps, first
the dot product and then the activation, it is actually considered to be a single computational
layer network.
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5.3.2 Activation Functions

As presented in the preceding section, the application of deep learning involves an activation
function that is employed at each node following the computation of the dot product between
the output of the previous layer and the weights. The fundamental objective of the activation
function is to introduce non-linearity into the model’s computation, thereby allowing non-
linear evaluations. The non-linearity of the activation function is of critical importance, as a
linear function applied to a linear function would result in an output that is linear with re-
spect to the input. This would simplifies in a linear regression. The most noteworthy activation
functions, denoted by @ : R — IR, are presented in the following equations.

1
d(x) = T (sigmoid) (5.11)
et —e ™ i
d(x) = < rex (tangent hyperbolid) (5.12)
®(x) = max{0,x} (Rectified Linear activation Unit (ReLU) ) (5.13)
®d(x) = max{0,x}+ o-min{0,x} (Parametric ReLU (PReLU)) (5.14)

The four equations are plotted in the Figure 31.
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Figure 31: Example of the most important activation functions.

The sigmoid function and the hyperbolic tangent function exhibit comparable characteristics
in their output ranges, with the former yielding results within the interval [o0,1], and the latter
within [-1,1]. On the other hand, the Rectified Linear activation unit (ReLU) and the Paramet-
ric ReLU (PReLU) are variants of the linear function, that allow for easier optimization with
gradient-based techniques. The sign function, while useful for binary classification tasks, lacks
differentiability in contrast to the aforementioned fonctions that are monotone, continuous and
differentiable.
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5.3.3 Multilayer perceptron

A multilayer network comprises two or more layers, as exemplified by the 2-hidden-layer net-
work depicted in Figure 32. The blue layers, are called hidden layers because the output of
the computations performed in the layers are not accessible by the users. The illustrated archi-
tecture is a feed-forward network, where each layer’s output feeds into the next layer in the
forward direction, progressing from the input to the output.

Figure 32: Example of a 2-hidden-layer feed-forward neural network. The input is presented in the green
layer, the hidden layers in blue and the output layer in red. Inspired by [68]

One of the hyperparameters specified by the user when designing a neural network is the
number of nodes in each layer. The number of nodes are referred to as the dimensionality of the
layer. The computations at each layer can be succinctly described through the use of matrices.

Figure 33: Computation between two hidden layers of different dimensionality. Inspired by [68]

As depicted in Figure 33, this matrix-based computation occurs between two hidden layers in
a fully connected network the first with a dimensionality n and the second with a dimensional-
ity m. The mathematical expression for the input received by the node hz1 can be represented
using equation (5.16).

h21 = (D(W],]hq]+W],2h12+...+W],nh1n+bgo)> (5.15)

n
= (Z wi ihi +b11> (5.16)

i=1
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The computation can be generalized to all the nodes within the layer 2, and is outlined in the
subsequent equations.

hzl W11 W12 cee Win h11 b11
h 2 W2 1 W22 ... W2 h 2 b 2
21— o ' ' > Tl+] ! (5.17)
hzm L Wm/] Wm,Z coe Wm,n h]n b]m i
h, = @ (W(O)m +b1) (5.18)

The activation function is applied element-wise to the vector, without explicit mention, and
is assumed to be the same function throughout the network.

5.3.4 Back propagation

In Section 5.2.2, we presented an optimization technique for iteratively updating the weights.
In deep neural networks, this process is known as backpropagation. Specifically, the gradient of
the loss function with respect to the output of a given layer i can be computed by multiplying
the gradient of the loss function with respect to the output of the following layer 1 4+ 1 with
the derivative of the activation function of the current layer 1. This iterative process can be
applied to each layer in the neural network, thereby allowing the gradient of the loss function
with respect to the weights of the entire network to be determined. This procedure is executed
using the chain rule. To illustrate, consider a single node and let z; = WTh; + b; the product
between the weights and the hidden layer 1, such that hi; 1 = ®(z;). The chain rule for a
specific weight yields

aj 6j ) ahi+1 ) aZi

aWi - ahi_._] aZi aWi

(5.19)

Equation (5.19) describes the first component as the derivative of the error with respect to the
output of the node. The backpropagation will requiers to start from the output of the network
97 /ay. The second component is the derivative of the activation function 9hi+1/9z; = @', while
the third component denotes the input of the associated weight with 9zi/aw;. Expending this
process, for a neural network with n hidden layer, the backpropagation between a two units

hi_7 and h; is

-1
0T 0T [ 3 Ti—[ ath] dh;
. . (5.20)

aW(

OW(h_ k) - 0f Ohn I hi_1,hy)
The above equation only considers a single path between unit hi_; and the output. In order to

generalize to any path, we must consider a set P of existing paths.

07 T 5 oY ‘i—[‘ahkﬂ oy

SN 4 (5.21)
OW(h k) gy Ohn I Ohx OW(h_y,hy)

(hihig1,. hn,glEP

The equation presents a computational cost that can exponentially increase with the number
of nodes. However, it is possible to compute backward layer by layer, allowing for the accumu-
lation of gradients in the backward pass and processing of each node exactly once.
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54 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) are a category of deep learning algorithms designed to
perform convolutional operations on data, followed by non-linear transformations and pooling
operations. Pooling layers are used to downsample the feature maps produced by the convolu-
tional layers. The output of the final pooling layer, of the convolutional layers, is then fed into
one or more fully connected neural network layers. An example of the general architecture of
a CNN is presented in Figure 34. Compared to the multilayers perceptron, the novelty of these
methods is the inclusion of convolutional layers between the input and the fully connected
hidden layers. By the properties of the convolution, the network have the useful property of
learning spatially invariant features, which make the technique robust to small translations or
rotations in the input data.

input convolutional fully-connected  output
layer layers hidden layers layer

Figure 34: Example of a convolutional neural network architecture. Inspired by [68]

An important aspect that is not illustrated in Figure 34 is that the input to a CNN is typically
multi-dimensional, and as the pooling layers downsample the original dimensions of the data,
the network is designed to expand in one of the original dimensions, which becomes the filter
dimension.

5.4.1  Convolution

The convolutional operation constitutes a fundamental building block in CNNs. It involves the
sliding of a filter over the input data, and computing the dot product between the filter and the
corresponding input patch at each location. As a result, a feature map is generated that repre-
sents the presence of specific features or patterns in the input data. The weights of the filters
are learned during the training process via backpropagation and gradient descent, enabling the
network to learn filters that are optimized to specific features in the data. Mathematically, con-
volution is an operation between two functions that produces a third function, and it can be
expressed in general form as follows:

h(t) = (fxg)(t) (5:22)
+o00
= | regie-xax (529
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Neural networks operate on finite and discrete inputs, thus the convolution operation should
also be discrete. Consider the example of a two-dimensional image I as the input, which is
convolved with a two-dimensional filter K. The convolution operation is commutative, and
thus one can use the relation [ * K = K x [ to express the convolution as follows:

SHj5) = (KxI)(i,j)
= > > Kmmn)-Ii-m,j—n)

This expression is more intuitive as the sum goes through every element of the filter ker-
nel, instead of the image element. The convolution can be simply presented with the diagram
shown in Figure 35 below. The filter moves over all possible spatial positions of the image and
convolves with it.

o[111T1]olofol
olo[1]1]1]0]0] . __[rFaT3Tan
olofo[1]1]1]0 1]o]1 112141313
ololo[1]1]0olol = [ol1lo] = [+]2]3]a]1
olo[1]1]ololo] ~~[1lol1]| -~ [1]3]3]1]1
o[1[1]ololo]o 3[3[1]1]0
1[1]ofo]o]o]0

I K I+K

Figure 35: Example of convolution of a 7 x 7 x 1 image with a 3 x 3 x 1 filter [68]

The output of the convolution of the image with the filter is called the feature map. The more
similar the filter is to a patch of the image, the highest the output of the convolution will be. As
previously mentioned, CNNs are designed to expand in the filter dimension, and the number
of filters to be applied on the input data is an important hyperparameter that can be defined
by the user during network creation. The use of multiple filters results in the stacking of their
respective outputs, thus increasing the filter dimension. An illustrative example of this process
is shown in Figure 36.

o[1]1]1Too]0
olo[1[1[10]0 :
ololof1[1[1]0o] [Tofal
ololo[1[1]0o]0] *[o[1]o] —
olo[1[1lololo] [1fof1]
ol1[110]0lolo
1[170]ololo]o0 .
K§(4
K>
I K;

Figure 36: Example of convolution of an image with multiple filters. Inspired by [68]
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The initial layers of the convolutional neural network (CNN) apply filters that extract low-
level features, such as edges and basic shapes, from the input data. In contrast to the final hidden
layer of the CNN where the extracted high-level features are abstract and are complex combi-
nations of low-level features. This hierarchy of learned features enables the CNN to capture
and represent the input data in an abstract and meaningful way.

5.4.2 Padding

An observation that can be made from both Figure 35 and Figure 36 is that the dimensionality
of the output feature maps shrinks as the convolution operation is performed. Specifically, if
the input image at a layer 1 has dimensions l; X wj, applying a filter of dimensions f; x f,,
will result in an output feature map with dimensions

g = L—fi+1 (5.26)

Wit1 = wij—fy +1 (5-27)

This can be represented as the movement of a filter across an image and can be quantified
as the number of steps taken from one side of the image to the other, incremented by one to
account for the initial position. The depth of the output is determined by the number of filters
employed. Although reducing the dimension of the output is a key objective of CNNs, such
reductions may result in complications, particularly at the image borders, where convolution is
less applied compared to the center of the image, leading to a loss of information at the edges.
Padding can be utilized to address this issue. This involves adding extra pixels around both the
input image and feature maps before performing subsequent convolutions, without causing
the output size to decrease. This technique can help to maintain the spatial information near
the edges of the input image and improve the overall performance of the model. Two types of
padding are commonly used: "valid" and "same". In valid padding, no extra pixels are added to
the input image, resulting in a smaller output size compared to the input size, as illustrated in
Figure 35. In same padding, the input image is padded with zeros such that the output size is
the same as the input size, with (fi=1)/2 and (fw—1)/2 added on each side of the image. The
prevalent technique for padding is zero-padding, where the additional values are set to zero.
However, other padding methods also exist, including reflective padding, which mirrors the
edges of the image, replicate padding, which duplicates the values at the edges, and circular
padding, which wraps the values on the opposite side of the image.

5.4.3 Activation layer

The activation layer is typically positioned following the convolutional layer and operates sim-
ilarly to the method described in the preceding section. One-to-one computation is used for
activation, which preserves the dimension of the feature maps. ReLU and PReLU are preferred
activation functions for CNNs since they have demonstrated an ability to train deeper models
and improve accuracy while being computationally light and have straightforward derivative,
as supported by the literature [70]. They are also convenient because they are computationally
light and theirs derivative are straightforward.
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5.4.4 Pooling

Padding is used to prevent the loss of edge information, resulting in a convolution output that
has the same dimensions as the input. To decrease the dimensions while preserving depth, a
pooling operation is performed. This technique entails using a small grid of size py X p.,,, which
is moved across the output, mostly the output of the convolution, and returns a single value
per grid. The most common type of pooling is max pooling, which returns the maximum value.
Other techniques, such as average pooling, calculate the average value of the grid. An instance
of max pooling is illustrated in Figure 37.

- ——Te[8
P 34
2)4]2]3 %ooling with stride = 2
0/6(8|7
311|11]4
slv2] ™~ rersrs
688
3(3(8

max pooling with stride = 1

Figure 37: Example of max-pooling, with a stride of 1, and 2. Inspired by [68]

Figure 37 demonstrates the implementation of max-pooling with two distinct stride values.
The stride value determines the pooling grid’s motion increment. A stride of 1 moves the pool-
ing grid by one step, while a value of 2 moves it by two steps. Given an output size of 1; X w;
from the convolution and a stride value of s, the size after pooling is determined by:

L —

Lo = P (5.28)

Wi_pw+1
S

Wi = (5-29)

Using 2 x 2 pooling with a stride of 2 results in non-overlapping pooled regions, as illustrated
in the top portion of Figure 37. Although Section 5.4.1 presented the use of filters with a stride
value of 1, it is feasible to increase this value for convolution.

5.4.5 Fully connected layers and overfitting

After multiple successions of convolution, activation, and pooling, the final module comprises
fully connected layers that act as a multilayer perceptron feed-forward network, as previously
described. The fully connected layers contain a large number of connections, while the convo-
lutional layers have a large number of activations but fewer connections. Most of the network
parameters are present in the last layers. The model uses supervised learning to update the
weights using backpropagation. An essential aspect of learning is to avoid both under-fitting
and over-fitting. A model that is too simple, not suitable for the application, or that lacks
sufficient training examples may under-perform. Conversely, a model that is overly complex
for the task, with too many parameters in the model, and/or trained on too many iterations,
may learn every training example, leading to over-performance on the training sets but under-
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performance in its general application. A schematic example of under-fitting and over-fitting
is illustrated in Figure 38.

Under-fitting Optimal-fitting Over-fitting

Regression

Classification

A A A
Validation Validation
Deep Learning
Training o
Validation
Training Training
Epochsr Epochsr Epochsr

Figure 38: Schematic representation of under-fitting, over-fitting and optimal-fitting, for various appli-
cation. Inspired by [68]

Achieving optimal model fitting involves ensuring that the model performs well on both
the training and validation datasets. In the literature, optimal fitting is often likened to the
Ockham’s razor principle, where simpler models and features are favored over more complex
ones, since they are more likely to be generalizable.

5.4.6  Dropouts

In order to mitigate over-fitting, regularization techniques can be employed. One of the most
commonly used methods is known as dropout. As demonstrated by equation (5.21), there exist
a vast number of possible pathways that connect the input and output nodes, with an expo-
nential increase in complexity as the number of layers and nodes increase. Dropout relies on
stochasticity during the training process, randomly setting certain nodes to zero and thus elim-
inating some of the connections during one training batch or mini-batch. This prevents the
model from becoming too reliant on particular nodes or features, which can lead to over-fitting
of the training data. The dropout technique is simple to implement, and enhances model ro-
bustness by using a more diverse range of nodes rather than relying heavily on a few key ones.
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Additionally, it is computationally efficient, as it reduces the workload during the backpropa-
gation phase. The user can specify the percentage of dropout in each training iteration as an
hyperparameter. An example of dropout is illustrated in Figure 39.
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Figure 39: Schematic representation of the fully connected layers on the left hand-side, and a 40% dropout
on the right hand-side. Inspired by [68]

5.4.7 Dataset

The act of making predictions appears to be a simple endeavor, as it involves a straightforward
mapping of input to output. However, generating accurate predictions is a considerably more
complex task. It is contingent upon the utilization of a precise training (and validation) dataset,
which must be free of bias. Instances of biased datasets resulting in prediction failures are all
too common.

The significance of data in the process of training machine learning and deep learning algo-
rithms is often overlooked, despite its critical role. Training a neural network necessitates access
to training data. Both supervised and unsupervised learning techniques require data, with su-
pervised learning necessitating labeled data. Two approaches can be employed to obtain data:
real-world measurements such as real images and spectra, which necessitate manual labelling
by an expert for supervised learning, or data generated from simulations. The process of man-
ually labelling measurements can prove to be time-consuming, particularly when attempting
to achieve an adequate quantity of training examples. Collaboration with multiple experts or
entities may prove to be an effective means of addressing such challenges. In contrast, the simu-
lation of datasets necessitates the development of a physical or mathematical representation of
the data. While this approach may not be applicable in every scenario, when feasible, it allows
for the rapid generation of labeled datasets. When simulated, many learning algorithms benefit
from standardisation of the data where the distribution is centered at zero and the standard de-
viation is fixed, such that they can be scaled while keeping their properties. It is important that
datasets possess a uniform distribution, as the over-representation of a particular parameter or
group of parameters may result in inaccurate predictions.
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PHOSPHORUS SPECTROSCOPIC ANALYSIS WITH DEEP LEARNING

"A process cannot be understood by stopping it. Understanding must move with the flow of the
process, must join it and flow with it."
- Frank Herbert, Dune
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6.1 SUMMARY

Chapter 4 provided an introduction to phosphorus magnetic resonance spectroscopy, highlight-
ing its potential for in-vivo probing of cellular metabolism as well as the challenges associated
with a relatively lower sensitivity compared to the hydrogen atom at a given magnetic field.
To compensate for the low sensitivity, larger voxels are used during acquisition, up to an or-
der of magnitude higher, to achieve a satisfactory signal-to-noise ratio (SNR). The acquisition
must also respect an acceptable scan time to avoid patient discomfort, which limits the num-
ber of measurable acquisition averages. Fitting algorithms, such as LCModel or AMARES, are
traditionally used to analyze and quantify the measured spectra. Both algorithms rely on prior
knowledge, in the form of a basis set of each resonance. AMARES utilizes prior knowledge
based on high SNR spectra to fit low SNR spectra [71], while LCModel uses simulated spectra
for its basis, utilizing known chemical shift and J-coupling [72]. Fitting methods iteratively fit
all resonances along with the baseline until the difference between the fit and the data is min-
imized. The software tools perform non-linear optimization to fit the experimental data with
a linear combination of reference basis spectra and to estimate various spectral parameters,
including line shape, overlap, and chemical shift of the metabolites. However, fitting methods
encounter challenges as they necessitate the individual analysis of all acquired spectra, which
results in a significant computation time. The methods also suffers from reliable quantification
at low SNR.

The utilization of artificial intelligence in the medical field has gained increasing attention,
particularly in the field of magnetic resonance imaging [73]. The applications of deep learning
have been proposed for the entire MRI workflow, from image acquisition [74-76], to image
reconstruction [77-79], image restoration [80o, 81], image registration [82, 83], and image seg-
mentation [84, 85]. Among the deep learning methods, convolutional neural networks (CNNs)
have been widely used due to their ability to learn useful representations for image-oriented
tasks. The field of magnetic resonance spectroscopy has also seen the emergence of artificial
intelligence techniques, such as machine learning decision trees [86] and CNNs for spectral
quantification [87] where Hatami et al. utilized a simple physical model to develop a regression
framework for evaluating spectral parameters using proton spectroscopy.
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The present study addresses the challenges encountered in phosphorus spectroscopy by in-
vestigating the application of deep learning methods, specifically convolutional neural net-
works, for analyzing phosphorus spectroscopic data. This research is detailed in our article
6.2. Two different CNN architectures, namely LeNets [88] and U-Net [89], were employed in
the study. To train the model, we simulated 10° spectra using the physical model of resonances
[36]. The simulated spectra were assigned labelled spectral parameters, including 0'"* and 15t
order phases, chemical shift, frequency shift, line width, baseline, and SNR, as well as metabolic
concentration for each resonance. The former model was developed to evaluate the parameters
and metabolic concentration, while the latter was used to evaluate the baseline. Furthermore,
we proposed a reconstruction pipeline that utilized the physical model from the simulation, to-
gether with the evaluated parameters from the CNN, to reconstruct the spectra. The analysis
was performed without measuring a reference signal, and as such, absolute quantification was
not feasible. LCModel was used as a reference for comparison in the analysis. The proposed
31p_Spectral Analysis With Neural Networks (31P-SPAWNN) demonstrated high accuracy and
robustness, particularly at low SNR levels, enabling high-resolution reconstruction with an ex-
tremely rapid computation time.
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We have
31P-SPAWNN, in order to fully analyze phosphorus-31 (3! P) magnetic resonance

Purpose: introduced an artificial intelligence framework,
spectra. The flexibility and speed of the technique rival traditional least-square
fitting methods, with the performance of the two approaches, are compared in
this work.

Theory and Methods: Convolutional neural network architectures have been
proposed for the analysis and quantification of 3! P-spectroscopy. The generation
of training and test data using a fully parameterized model is presented herein.
In vivo unlocalized free induction decay and three-dimensional 3! P-magnetic
resonance spectroscopy imaging data were acquired from healthy volunteers
before being quantified using either 31P-SPAWNN or traditional least-square
fitting techniques.

Results: The presented experiment has demonstrated both the reliability and
accuracy of 31P-SPAWNN for estimating metabolite concentrations and spec-
tral parameters. Simulated test data showed improved quantification using
31P-SPAWNN compared with LCModel. In vivo data analysis revealed higher
accuracy at low signal-to-noise ratio using 31P-SPAWNN, yet with equivalent
precision. Processing time using 31P-SPAWNN can be further shortened up to
two orders of magnitude.

Conclusion: The accuracy, reliability, and computational speed of the
method open new perspectives for integrating these applications in a clinical
setting.
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2 . . ..
J—Magnetlc Resonance in Medicine

1 | INTRODUCTION
Phosphorus-31  magnetic  resonance  spectroscopy
(3'P-MRS) is a noninvasive technique that is widely used
to probe cellular metabolism in vivo.'? 3IP-MRS notably
allows to measure high-energy phosphate metabolites
that are associated with the metabolic activity of the cell,
and represents an alternative method for estimating the
intracellular pH.>> 3'P-MRS acquisition displays a lower
relative sensitivity than hydrogen-1 (H) at a constant mag-
netic field. Thus, acquisition is usually performed using
larger voxel sizes to achieve a sufficient signal-to-noise
ratio (SNR), while maintaining an acceptable scan time
for the patient. When performed in combination with spa-
tial phase encoding, 3'P-MRS imaging (MRSI) provides a
multi-voxels acquisition that maps metabolites across the
entire field-of-view (FOV).” As the current resolution is
still a limitation for clinical applications, there has been
increasing interest in achieving efficient quantification,
while improving the spatial resolution.?1

In recent decades, advances in computing power and
parallelization capability have resulted in the rapid devel-
opment of a wide variety of machine learning algorithms.
These performance improvements along with the renewed
interest in the field have broadened its scope of applica-
tion.!! One popular deep learning (DL) technique has so
far been the convolutional neural network (CNN). CNNs
are employed to detect and extract structural relation-
ship features from data samples. This general character-
istic is used for many applications, including visual and
speech recognition, localization, segmentation, and gen-
eral regression analysis, as well as classification.'? The
method requires a labeled training dataset that must be
representative of the actual data to be analyzed. For some
applications, the labeled dataset can be generated by sim-
ulation so as to create a training set of arbitrary size. Once
trained, the CNN model is able to process large datasets
within a short time without further adjustments.'3

The widely used method of reference in this field,
LCModel, is an a priori knowledge software for MRS fit-
ting and quantification. The software performs a nonlinear
optimization in order to fit the data with a linear combina-
tion of reference basis spectra, as well as to estimate spec-
tral parameters, including line shape, phase, and chemical
shift of the metabolites. However, the method requires
non-negligible computing time and may thus be limited
in quantifying low SNR spectra.'* While the software has
been originally developed to fit 'H'> spectra, researchers
were able to extend its use further in order to analyze
carbon-13 (33C)!® and 3'P!” spectra.

CNNs are increasingly employed for medical image
analysis such as MRL!®2! Preliminary application of
machine learning'*??> and CNN?*2¢ in proton MRSI

8o

revealed high robustness to noise. In addition, CNNs can
be applied in order to perform concentration quantifica-
tion.?* Application of CNN to !H-MRS has demonstrated
this method to display equal or better level of perfor-
mance, while having a faster computational time than
current standard MRS metabolites quantification methods
like LCModel.**

Whereas current methods for estimating metabolite
concentration in MRS primarily rely on spectral fitting
with residual least-square minimization, we have herein
proposed an alternative approach using 31P-SPAWNN. Its
objective function is based on residual minimization of
the spectra parameters (i.e., metabolite concentrations). A
spectrum can be reconstructed based on these estimates,
which must, however, not be confused with a spectrum
fitting.

Using our proposed 31P-SPAWNN method, we have
demonstrated its feasibility and reliability in accurately
quantifying 3'P-MRS related metabolite concentrations
and spectral parameters, even at low SNR, obtained on
both simulated and in vivo data. The current study
describes SPAWNN’s architecture, and the generation of
simulated datasets for supervised learning, as well as the
reconstruction based on the physical model for compari-
son with fitted spectra. A performance evaluation is pro-
vided based on a comparison of our model with LCModel
using simulated datasets. Lastly, we present the results
using our proposed technique on the 3'P-MRS in vivo and
brain data acquired on a 3 tesla (T) clinical MRI.

2 | THEORY

2.1 | Generation of simulated spectra

The simulation of spectra must incorporate an extensive
set of parameters in order to faithfully mimic the measured
MRS spectra. The signal of a metabolite is the combination
of multiple resonance modes, M,,(t), based on the NMR
parameters observed in vitro.?” The complex magnetiza-
tion of a molecule of metabolite m at time ¢ after an exci-
tation RF pulse can be calculated based on the expected
value of the spin-raising operator for the corresponding
coupled-spin system?3(p- 158-165)

modes

Mn(t) = D, Ay - €9nne? W, ¢))
n

where n is the transition index between energy states
within the density matrix formalism, which we refer to as
“mode”. Ay, is the transition amplitude, ¢,,, the phase
modulation (e.g., due to J-coupling), v, , the transition
frequency (chemical shift) of the n* mode, and i is the
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imaginary unit. A mode corresponds to a singlet resonance
or one of the multiplet resonances observed in the fre-
quency domain, such as the phosphocreatine (PCr) singlet,
the a-adenosine triphosphate (ATP) doublet, or the g-ATP
triplet. The spectroscopic signal (FID) S;(t) of a sample is a
linear combination of all the metabolite time domain sig-
nals. A spectrum of index j versus time can be written as
follows

metabolites

Sj([) = eiq)? Z Cm,ij([ + Atj)
m
. eZ”ithm.j e—(le,/"'lZan./) + Bj(At/) + ej(t)’ (2)

where <1>5.) is the zeroth-order phase and Cp,; is the con-
centration of the m!" metabolite, which multiplies the
corresponding M,,(f) metabolite time series signal. ¥y, ;
corresponds to the chemical shift variation specific to the
m'™ metabolite. In the context of an excite-acquire acqui-
sition scheme (FID-MRS, FID-MRSI), At; represents the
acquisition delay time between the RF pulse and the begin-
ning of the signal acquisition. This delay is associated with
the first-order phase of the spectrum. L,,; and G, ; cor-
respond to the Lorentzian and Gaussian parameters that
combine into a Voigt linewidth V,, ;. €;(f) is the noise,
while B;(t) is a baseline created by the sum of multiple
Gaussian components, computed as follows

no. of Gaussian components

B;() = >

k

; ; 42,2
fk . elakeZﬂllﬁke 7y, , (3)

where & is the amplitude, ay is the zero-order phase, f is
the frequency shift, and yy is the width of one component.
The time domain signal S;(¢) is finally Fourier transformed
in order to obtain the simulated spectrum used as input
for either the SPAWNN or LCModel approaches that are
described below.

2.2 | Convolutional neural networks
architectures

For our proposed SPAWNN method, we have combined
two different CNN models, one being a variant of a LeNet-5
model? and the other being based on a U-Net model.*
LeNet-5, which is one of the most common neural net-
work models, is widely used for classification and regres-
sion.?! LeNet-based CNNs have been applied in the spec-
troscopy field.?>3%33 The model consists of consecutive
convolution layers that encode the data into features, and
it is terminated by fully connected layers. Each convolu-
tion layer convolves the output of the previous layer using
different filters, while extracting at each step higher-level
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features and patterns.>* Fully connected layers enable
nonlinear relationships between features and extraction
of targeted information. This SPAWNN-Quantification
(SPAWNN-Q) model takes the Fourier transform of S;(t)
from Equation (2) as input, and it returns a finite num-
ber of target values. Our proposed approach uses the
SPAWNN-Q model in order to estimate the metabolite con-
centrations, as well as the values of spectral parameters
like <I)? or At; from Equation (2).

The U-Net combines both low-level detail information
and high-level semantic information.>> This type of model
that is mainly used for segmentation purposes® finds
applications in MRS.3%3” The model has been successfully
applied to medical image classification, segmentation, and
detection tasks.3® The U-Net type model’s architecture is
first composed of an encoding part, and then of a decod-
ing part. The contracting part uses a series of convolutional
and down-sampling layers to extract information in fea-
tures, while the expanding part then performs a series of
up-sampling in order to recover the initial input’s dimen-
sion.?® At each up-scaling step, the U-Net performs a con-
catenation between the upscaled layer and the correspond-
inglayer of the contracting part, allowing for higher resolu-
tion and less encoded information to be mixed in the sub-
sequent decoding. Our SPAWNN-Baseline (SPAWNN-BI)
U-Net model estimates the baseline, taking as input the
Fourier transform of S;(¢) from Equation (2) and returning
the estimated baseline B;(t) from Equation (3).

3 | METHODS
3.1 | Spectrasimulation and training
dataset

The following metabolites have been included in the simu-
lated spectra: phosphocreatine (PCr), inorganic phosphate
(Pi), membrane phospholipids (MP), adenosine triphos-
phate (a-ATP, f-ATP, and y-ATP), and nicotinamide ade-
nine dinucleotide (NAD+ and NADH). In addition, the
phosphomonoesters (PME), composed of phosphocholine
(PC) and phosphoethanolamine (PE), and the phos-
phodiesters (PDE), composed of glycerophosphocholine
(GPC) and glycerophosphoethanolamine (GPE), were also
included. Spectra were simulated with this 12-metabolite
set, as previously described in the theory section. The
resulting dataset consisted of 10° simulated spectra for
training, 10* simulated spectra for validation, and 10* sim-
ulated spectra for testing. Generating the training dataset
took 1.5h. The generated spectra were set to reproduce
the experimental conditions at a 3T field strength, using
spectra made from discrete time series of 2048 points
with a dwell time of 0.25 ms, corresponding to a 4000 Hz
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bandwidth ranging from —40 to 40 ppm centered at the PCr
resonance.

The structural modes of each metabolite multiplet
were calculated by means of a density matrix simula-
tion using GAMMA software library, including 3'P-3!P
J-coupling (Jpp) as appropriate, while yielding the mode
amplitude, the resonance frequency and the phase accord-
ing to Equation (1).** Homonuclear values of Jpp were
found using the previously reported values of chemical
shift and J-coupling.!” Each metabolite time series was
then multiplied by a concentration value C,, chosen fol-
lowing a normal distribution with a mean value of 1 and a
standard deviation of 5, and taking account of its absolute
value so as to impose positive concentration values.

Each Fourier transform S;(¢t) of the Equation (2) was
generated from randomly chosen parameters. The fol-
lowing parameters were chosen using a uniform proba-
bility distribution: ®° € [0, 2] rad, At € [0,0.6] ms, and
Y € [-20, 20] Hz. Each of the metabolites was chemically
shifted within a range of +16 Hz, in addition to the chem-
ical shift ¥ of the spectrum. The Voigt linewidth was
set between 1 and 80 Hz, before being decomposed into
a Lorentzian L coefficient and a Gaussian G coefficient.
Given that the B, inhomogeneity was the same for all
metabolites, the linewidth was assumed to reflect a T2
effect, so PCh, PE, GPE, and GPC were grouped with the
same linewidth coefficients values. ATPs were grouped
together, as were NAD+ and NADH, while Pi, PCr, and
MP all displayed their independent T2 values. The value
of ¢n turned out to be negligible and was thus set to
zero as our data were acquired with an excite-acquire
sequence.

The baseline B was a sum of 30 Gaussian components.
Each Gaussian function exhibited four random parame-
ters, chosen with a uniform probability distribution. The
amplitude ranged from 0 to the spectrum’s maximum
amplitude. The Gaussian displayed the zero-order phase
between 0 rad and 2z rad, along with a frequency shift to
cover the spectrum’s 80 ppm range, and a linewidth with

a minimum value of 300 Hz. The noise ¢ was simulated
as a complex white noise, exhibiting a normal distribu-
tion centered around zero, and with a scaled deviation to
the metabolite spectrum’s energy so as to reach SNR val-
ues between 0.5 and 20. SNR was therefore defined as the
ratio metabolite signals’ mean value to the standard devi-
ation of the noise. As all metabolites contributed to the
SNR in our definition, we labeled SNRyean for SPAWNN.
This definition was useful upon developing the neural net-
work for generating noise in the simulated dataset with the
broad metabolite concentration variation.

The neural network was trained using a generated data
set with specific parameter ranges, including spectrum fre-
quency shift, metabolite chemical shifts, and linewidth.
A trained network was then be able to accurately esti-
mate these parameters within the simulation ranges. For
example, given that the range of metabolite chemical shifts
was between —16 and +16 Hz, the neural network’s esti-
mation in an in vivo spectrum is anticipated to be accurate,
provided that the actual metabolite chemical shifts are
within this range.

3.2 | Convolutional neural network

All the networks were trained on 10° simulated spectra.
The regression loss function was calculated based on the
mean squared error (MSE) function, and we used Adam as
an optimized gradient descent algorithm.*’ Figure 1 illus-
trates the flowchart of our method with the input data
preparation and the different neural networks. The CNNs
were trained on spectra ranging from 10 to —25 ppm, corre-
sponding to the in vivo metabolites chemical shifts range.
With a resolution of 25.6 points/ppm, the frequency win-
dowing of the spectrum corresponded to an array of 899
complex points. Prior to the input, each spectrum was
normalized with respect to its energy, following which
complex values were represented by two-channel arrays of
899 points.

O| Metabolites CNN }—O@oncentration estimation outpuD --- -

0| Parameters CNN }—Oéarameters estimation output )— ----1-0 O%T%Q:IT; IREEETEH e

o| Baseline CNN ’—O(Baselineoutput

SPAWNN-Q
Preprocessing
Input data *Frequency windowing (10 ppm to -25 ppm)
(spectrum) *Spectra normalization
*Padding and stacking real and imaginary parts|
SPAWNN-BI
FIGURE 1

Data analysis flowchart illustrating the different steps of the Spectral Analysis With Neural Networks (SPAWNN) pipeline.

The method uses three convolutional neural networks (CNN) to estimate the metabolite concentrations, spectrum parameters, and baseline.

Data preparation consists of spectrum normalization, with windowing over the range of 10 to —25 ppm. Padding (mirror replication of the

first and last 5 points of the array) and stacking of the real and imaginary parts (switch from a complex array of 1 X 899 points to a real array

of 2 X 909 points by separating the real and complex part of each point) were then applied.
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input :
spectll'um I ‘
compiex conv conv conv conv H estimation tg?gme/?
conv (13x1) (13x1) (7x1) (9x1) : Fully II H |]
padding: conv (13x2) RelU ReLU RelU RelU flatten | COMnected 5 H
wrap (11x2) RelU maxPool maxPool maxPool maxPool layers, 50 25
(55)(1,0) || ReLU (2x1) (2x1) (2x1) (2x1) PReLU g5
Loss:
897x1x32 437x1x40 212x1x40 103x1x48 47x1x64 3008 MSE
899x2 909x3 899x2x32
FIGURE 2 SPAWNN-Quantification (SPAWNN-Q) model architecture for metabolite concentration and parameter estimation. The

convolutional neural network takes the spectrum as an input layer and performs six successive steps of convolution, ReLU activation, and
pooling. Then, the five final steps are fully connected layers with PReLU activation. § is equal to 20 for the parameters, and 14 for the

metabolite concentration estimations.

input :
spectrum

complex 7 7
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920x3x64  920x3x32  920x3x32 920x3x32  89N2 pcr
up-sampling

(2x1x1)

conv conv
(7x2) (72)
PRelU PReLU

460x3x32  460x3x32
up-sampling
(2x1x1)

conv conv
(7x2) (7x2)
PRelU PRelU

230x3x40 230x3x40

899x2

460x3x80

up-sampling
(2x1x1)

conv (7x2) conv (13x2)
PReLU PRelU

115x3x48 115x3x48

FIGURE 3

115x3x48

SPAWNN-Baseline (SPAWNN-BI) model architecture for baseline estimation. The U-Net takes the spectrum as an input

layer and performs three down-sampling steps with convolution and PReLU activation. Then, it performs three up-scaling steps with

convolution and PReLU activation. At each up-scaling, the new layer is concatenated with the corresponding down-sampling layer. The
output is the estimation of the baseline and has the same dimension as the input.

The first two CNNs, which were inspired by a LeNet-5
model, were designed to assess metabolite concentra-
tion quantification and parameter estimation, as shown
in Figure 2, with a network’s output represented by 6,
as the number of targeted values returned by SPAWNN.
For the metabolite concentration estimation, SPAWNN
was trained to estimate the concentration of the 12
metabolites listed in section (IIL.A), along with adding
the sum of PMEs and PDEs, whereby the metabolite
concentration estimation returned 14 values. The sec-
ond CNN was trained to estimate the values of 28 spec-
tral parameters, including zero-order phase, time delay,
spectrum frequency shift, metabolite chemical shifts,
Voigt linewidths, Gaussian linewidths, and SNRean. The
Lorentzian linewidths were then calculated with the Voigt
and Gaussian values using the pseudo-Voigt approxima-
tion.*! The CNNs were implemented in Python (3.6.9)
using the libraries TensorFlow (2.2.2) and Keras (2.4.3).
The networks were trained on 80 epochs with 800 spec-
tra per mini-batch. There were about 3 - 10° parameters to

train, with the training time taking less than 2h on the
GPU (NVIDIA Titan V).

The third network was a U-Net model, as shown in
Figure 3. The network was able to estimate the input spec-
trum’s baseline, returning an array of the same size (899
complex points). The U-Net was trained on 50 epochs
with 500 spectra per mini-batch. There were about 4 - 10°
parameters to train, with the training time taking around
6h.

3.3 | LCModel

As reference for comparison, we have analyzed all
31P-spectra using LCModel (Version 6.3-1L).** The basis
spectra were simulated using the GAMMA software
library®® using the same physical model as for the simu-
lated data for SPAWNN. The metabolites included in the
basis were the 12 metabolites described above. Since phos-
phorus spectra were centered on the PCr peak at Oppm,
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the reference peak was set at 15 ppm (PPMK = —15) for
generating the basis set. The basis was created using a
fixed linewidth of 5Hz, with the LCModel parameters:
DEEXT?2 = 15 and DESDT2 = 10. For LCModel fitting, Pi
and y-ATP were chosen as reference metabolites, result-
ing in the following parameters: CHUSE1 ="Pi’,gATP’ and
PPMREF(1,2) = 5. We set SDDEGP = 50 and SDDEGZ = 50
to enable LCModel to find the correct zero- and first-order
phases. The other parameters used were the same as those
reported by Deelchand et al.'”

3.4 | Magnetic resonance spectroscopy
protocol

In vivo measurements were performed on a clinical
Prisma-fit 3T MRI scanner (Siemens Healthineers, Erlan-
gen, Germany) equipped with multinuclear capabilities.
Data were obtained from 10 healthy volunteers. Writ-
ten informed consent was given by all the volunteers
before participation and the study protocol was approved
by the institutional ethics committee. No decoupling was
applied during the phosphorus acquisition. Anatomical
reference 'H images were obtained with T1-weighted
MP-RAGE acquisition. The volunteers were scanned using
a dual-tuned 'H and 3'P head coil (Clinical MR solutions,
Brookfield, Wi.)

The unlocalized FID sequence consisted of a rectangu-
lar excitation pulse of 0.25 ms with a flip angle of 45°. The
repetition time (TR) was set at 1500 ms, and the echo time
(TE) was 0.35 ms with 32 averages. The bandwidth was
4000 Hz for 2048 sampling points. The acquisition took
about 1 min. For three volunteers out of 10, another unlo-
calized FID was obtained using the same parameters, yet
with 600 averages.

The 3D 3'P-MRSI was acquired on the whole brain
with a 10X 10x 10 matrix. The FOV dimension was
250 mm isotropic for a nominal spatial resolution of 25 mm
isotropic. The sequence consisted of a rectangular excita-
tion pulse of 0.25 ms with a flip angle of 45°. The repetition
time (TR) was set at 1500 ms, and the echo time (TE) was
0.5 ms with 24 weighted averages.*> The bandwidth was
4000 Hz for 2048 sampling points. The acquisition took
37 min.

3.5 | Spectrum processing

The in vivo FID data were extracted from the MRI
raw data format. Averages and Fourier transforms
were calculated using a Python script (Python Soft-
ware Foundation, version 3.6.9), and the data were
converted to Hierarchical Data Format (HDF5). No
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preprocessing was applied to the spectra prior to
analysis.

3.6 | Data analysis and statistic
The results estimated on the simulated dataset were ana-
lyzed using the coefficient of determination R%.* To com-
pute the variability of the coefficient of determination,
bootstrap statistics was performed on the data.*> The boot-
strapping was performed by selecting randomly spectrum
subsets with replacement and repeated computation of R?
on these subsets. This evaluation was repeated 2000 times
in order to compute the probability distribution of R?.

Concerning volunteer data, no reference measure-
ment was available to correct for variation of B1 and sig-
nal intensity, allowing absolute concentration estimation.
Both methods, LCModel and SPAWNN, returned normal-
ized concentration values that were within a constant,
yet unknown, factor of the actual concentration value.
The results were presented and analyzed as metabolite
concentration ratios, since the ratio of two metabolites is
independent of the scaling factor.*®

The computational analysis was performed using
Python.

4 | RESULTS

Results of simulated data are shown in Figure 4. An
example of a simulated spectrum with three decreasing
SNRpean (N0 noise added, 4, 2) is presented in panel (A).
For illustration purposes, the simulated spectra shown in
the figure do not contain baselines, phase or frequency
shifts, and significant linewidth. Panel (B) illustrates the
performance of SPAWNN and LCModel with the coef-
ficient of determination R?> and bootstrapping. The per-
formance was assessed on another test set of 10* spec-
tra that were independent of the training dataset and
never evaluated by the model before. The bootstrap statis-
tics was computed using random spectra subset selec-
tion with replacement and repetition of the analysis 2000
times. The results showed similar to slightly better per-
formance of SPAWNN compared with LCModel for the
quantifying Pi, ATPs, PCr, PE, PCh, and GPE, with sim-
ilar or higher R? values and smaller variance. Since
LCModel displayed strong pairwise correlations between
NAD+ and NADH, the total NAD (tNAD) concentra-
tion was computed for both methods for comparison pur-
poses. The performance of SPAWNN in quantifying tNAD
(R?> = 0.813 [+0.005]) was comparable to that of other
metabolites, whereas the results of LCModel were less
accurate (R? = 0.771 [+0.006]). GPC concentration was
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FIGURE 4

Results on simulated data. (A) Examples of SNR ., for a simulated spectrum with no noise (top), SNR;can of 4 (middle),

and SNRea, of 2 (bottom). (B) Comparison of the coefficient of determination R? with bootstrapping between SPAWNN and LCModel for
each metabolite. A new dataset of 10* spectra was created to compare the two methods. (C) SPAWNN’s coefficient of determination R? for
each metabolite concentration estimation as a function of the SNR ¢, range.

better estimated with SPAWNN (R? = 0.916 [+0.002]) than
LCModel (R? = 0.862 [+0.005]). Regarding MP estima-
tion, both SPWANN (R? = 0.770 [+0.004]) and LCModel
(R? = 0.787 [+0.008]) exhibited a low performance com-
pared with all other metabolites, regardless of SNR bins
(Figure 4C). Figure 4C shows the SPAWNN’s coefficient of
determination R? for each metabolite concentration esti-
mation as a function of SNR range. The evaluation was
performed on the simulated test dataset of 10* spectra,
separated in SNR bins with increment of 1. The coeffi-
cient of determination R> was computed on the entire
test dataset between the model evaluation concentration
and the ground truth. For all the metabolites, the value
of the coefficient of determination decreased with SNR.
Most metabolites had an R? value greater than 0.8 for
all SNR bins. SPAWNN-BI evaluation of the test set base-
line yielded a coefficient of determination of R? = 0.97
calculated between the pairwise correlation of the true
baseline and the estimated baseline.

Analyzed 3'P-MRSI in vivo data are shown in Figure 5
for SPAWNN (left) and LCModel (right). The data dis-
played are the sum of 8 voxels from the occipital cortex
of one of the volunteers. The top plots are the spec-
tra with either the reconstruction or the fit from each
model. The middle plots are the residuals and the bot-
tom plots show the signals for each metabolite sepa-
rately. For SPAWNN, reconstruction of a spectrum was
performed by using the estimated baseline, parameters,
and concentration values, and by recreating the spec-
trum after Fourier transform of equation (2). The recon-
structed spectrum is shown in red overlapping the in vivo
data.

Comparative analysis of the metabolite concentration
ratio between LCModel and SPAWNN is displayed in
Figure 6. The results were derived from the sum of 8 MRSI
voxels located in the occipital region for each of the 10 vol-
unteers. The mean value of a-ATP, f-ATP, and y-ATP was
computed and reported as ATP. The concentration of PCr

85



SONGEON ET AL.

8 . . ..
J—Magnetlc Resonance in Medicine

CNN

—— Spectrum
—— CNN reconstruction

LCModel

—— Spectrum
—— LCModel fit

10 5 0 -5 -10 -15 =20 10 5 0 -5 -10 -15 -20
ppm ppm
Residual Residual
1 1
0 0
-1 -1
10 5 0 =5 -10 =15 =20 10 5 0 =5 -10 =15 -20
ppm ppm
o ‘\‘ \ pi- J\ ‘\
aATP- — — AATP- ‘ — —
bATP - 1‘ — — bATP- H — —
gATP - — — gATP - m 7
tNAD- It - tNAD - Il N
PCr- — —— PCr- - ) L
PE-  —— pE- — —
PCh-  ——— PCh- S\
GPE- —"\ GPE-
GPC- — GPC-
N\
MP- — MP-
10 5 0 -5 -10 -15 =20 10 5 0 -5 -10 =15 =20
ppm ppm
FIGURE 5 Comparison of in vivo 3 P-MRSI spectrum (TR = 1.5 s, TE = 0.5 ms, sum of 8 voxels with 24 weighted averages each)

evaluated and reconstructed with SPAWNN (left) and fitted with LCModel (right). The figure displays SPAWNN reconstruction and the
LCModel fit (top), the residuals (middle), and the contribution of each metabolite (bottom). No correction was applied before analysis.
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Results on 3'P-MRSI data, with the sum on 8 voxels. (A) Comparison of metabolite concentration ratios for the 10

volunteers with SPAWNN (circles) and LCModel (squares). ATP concentration is computed by averaging the concentration of the three
resonances. (B) Bland-Altman plot of the difference between estimated values by SPAWNN and LCModel versus the average of the estimated

values across all metabolite ratios and subjects.

was used as denominator for the ratios. Figure 6A shows
a plot of the metabolite concentration ratio estimated by
SPAWNN and LCModel, with a line connecting the data
of the same subject. Figure 6B shows a Bland-Altman plot
of the data from Figure 6C, with the difference between
the SPAWNN and LCModel estimations versus the aver-
age of the two values. The mean difference between the
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two methods is 4.0 - 1073, and the limits of agreements
(+1.960) are +0.139 and —0.131. The Bland-Altman plot
shows few outliers, but no systematic bias. Relative dif-
ferences and relative standard deviations are presented
in Table 1. A statistical ¢-test with Bonferroni correction
was performed, and the p-values are reported in the table
as well. The Bonferroni correction took into account the
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TABLE 1
concentration ratio for the 10 volunteers with SPAWNN and
LCModel from Figure 6

Statistics of the comparison of the metabolic

Relative

Relative standard
Metabolite difference deviation p-value
ratio (%) (%) (uncorrected)
ATP/PCr —4.69 6.93 0.073
Pi/PCr 7.37 7.68 0.018
tNAD/PCr 14.8 31.1 0.19
PE/PCr 3.0 13.6 0.53
PCh/PCr 2.16 15.5 0.68
GPE/PCr 8.36 11.4 0.055
GPC/PCr 1.63 11.3 0.83
MP/PCr -10.4 15.5 0.075
PME/PCr 3.0 9.4 0.36
PDE/PCr 3.9 17.6 0.52

Note: Statistical ¢-test was performed with Bonferroni correction for multiple
comparisons resulting in a lower threshold for rejecting the null hypothesis
to @ = 0.0056. No difference in metabolite ratios was found to be significant.

repeated t-tests (10 metabolites) and reduced the thresh-
old for rejecting the null hypothesis to a = 0.0056. The
metabolite ratios showed relative differences lower than
10% for most of the ratios, except for tNAD/PCr and
MP/PCr. All metabolite ratios had a relative standard devi-
ation higher than the relative differences, with none found
to be significant.

Figure 7 illustrates the quantification performance of
SPAWNN and LCModel with respect to noise. The data
used were unlocalized FIDs with 600 averages acquired on
three volunteers. The 600 spectra acquired were randomly
selected retrospectively and averaged in groups ranging
from 1 to 600 spectra. We considered the reference values
to be the values estimated with 600 averages. The conver-
gence was then defined as the difference between the mean
value of the estimations and the reference value, with pre-
cision representing the standard deviation of the reference
value. Figure 7 presents the results for the y-ATP, PCr, PE,
PCh, GPC, and GPE. The two spikes in Subject #3 origi-
nate from an LCModel fatal error where the model failed
to converge.

Analysis of single voxels from in vivo *'P-MRSI with
the two methods is shown in Figure 8. The SPAWNN
spectrum reconstruction from two distinct brain voxels is
displayed. The T1 MP-RAGE 'H image is presented on the
left; the grid shows the voxel locations in the sagittal view
(top) and the corresponding axial slice (bottom) centered
on the blue box location. The analysis of voxel A and B
with SPAWNN and LCModel is shown on the right. Each
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spectrum is presented with either the reconstruction or the
fit, with the residual underneath. The estimated SNRean
for the spectra were 1.56 and 1.63, and the LCModel SNRs
were 16 and 20 for voxels A and B, respectively.

5 | DISCUSSION

This study demonstrated the ability of SPAWNN to eval-
uate, quantify, and reconstruct 3'P-MRS data. We focused
on two network architectures specifically developed to
fully identify spectral features of MRS data. SPAWNN-Q,
displayed in Figure 2, was used to extract the metabo-
lite concentrations and spectral parameters. We used two
separate networks running in parallel for efficiency and
flexibility, which also allowed for a better control of the
training phase during model development. However, a
single LeNet for both concentration and parameters esti-
mation was tested and yielded similar results. SPAWNN-Q
parameter network can be applied to MRSI data for phases
and frequency shift correction in order to sum individ-
ual spectra before complete quantification. SPAWNN-BI
(Figure 3) was used for spectral baseline estimation.

Our synthetic dataset was simulated by summing inde-
pendent metabolite signals. However, ATP was simulated
as three independent resonances for y-, a-, and f-ATP,
thereby rendering the network more flexible in estimat-
ing concentration as well as chemical shift. The reason for
this choice was that other metabolites, such as adenosine
diphosphate (ADP), may overlap with y- and a-ATP and
influence the estimated concentration. In addition, three
ATP resonances were shown to exhibit different chemi-
cal shifts with varying concentrations of Mg?*.*” However,
our physical model assumed the same linewidth for the
three ATP resonances because of their identical T2 relax-
ation times. SPAWNN results demonstrated a high perfor-
mance on simulated datasets as well as on in vivo data
(Figures 4 and 6). This indicates that our simulation model
(equation (2)) is a good emulation of the physical NMR sig-
nal and faithfully represents the measured spectra using
excite-acquire sequences. The SPAWNN evaluations pre-
sented in Figures 5 and 8 show the reconstruction of the
spectra and illustrate the ability of SPAWNN to provide
a good estimation of the spectral parameters, concentra-
tions, and baseline, as the reconstructions matched the
spectra. Artificial intelligence (AI) approaches, such as
CNN, perform accurately if the measured parameters are
in the range of the training set. For specific applications,
it might be possible to train the network with a smaller
range of concentrations to possibly achieve better perfor-
mance. One could imagine having a specialized model for
each organ, with the concentration distribution centered
on the values reported in the literature. However, training
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position and voxel locations. The voxel has a resolution of 25 mm isotropic. The spectra on the left represent the SPAWNN reconstruction
with the measurement data, and the spectra on the right the LCModel fitting for voxels A and B.

with a narrower parameter distribution could induce a bias
in the analysis of specific conditions or pathologies that
strongly affects the metabolism. Moreover, in a situation
where data are acquired with parameters outside the train-
ing range (e.g., strong artifact), the results of the analysis
should be discarded. The spectral reconstruction based on
estimates is an important tool to visually validate whether
the neural network estimate matches the in vivo spectrum,
in which case the results should be discarded. In this study,
we chose to train the networks over a very wide range of
parameter values to avoid this limitation. This wide range
does not compromise the quantification accuracy while
avoiding bias.

On the simulated data, SPAWNN compared favorably
to LCModel in terms of precision. The coefficient of deter-
mination R? per metabolites, as a whole, was similar
for both approaches (Figure 4B). Of the 11 metabolites,
only three significantly differed between the two meth-
ods. SPAWNN performed better for tNAD and GPC, while
LCModel showed better performance on MP. NAD+ and
NADH can be accurately estimated with LCModel at 7T,*®
due to the higher signal and greater chemical shift dis-
persion. By contrast, at 3T without proton decoupling, the
distinction between NAD+ and NADH is more difficult,
as illustrated by the results where tNAD was estimated
with the least accuracy. MPs were also estimated with
low accuracy by both SPAWNN and LCModel. This is
due to the larger peak width that makes the distinction
between the baseline and noise difficult. Figure 4B shows
that with bootstrap statistics, the standard deviation of the

coefficient of determination of the LCModel was larger
than that of SPAWNN for all metabolites. In addition,
SPAWNN estimates remained accurate (R?> > 0.8) for most
metabolites at a very low SNR (Figure 4C), highlighting the
robustness of the method.

In vivo data (Figures 5 and 8) showed that SPAWNN
can estimate the spectral parameters with good accuracy,
since the reconstruction of the spectra based on these esti-
mates closely matched the measured data. An example of
analysis with both methods for a volunteer is presented
in Figure 5. The data were obtained by summing 8 neigh-
bor voxels in the occipital region. By contrast, an analy-
sis with both methods for singles voxels of the volunteer
data is shown in Figure 8. The individual signals of each
metabolite as estimated by SPAWNN and LCModel are
displayed in Figures 5 and 8. The two methods showed
consistent signal for each metabolite. The residuals are low
with both approaches but nevertheless slightly higher with
SPAWNN. This is explained by the fact that LCModel is
a fitting algorithm while SPAWNN does not aim at mini-
mizing the residuals. Figure 6 presents the concentration
ratio values of the metabolites obtained on 8 averaged vox-
els from the occipital region of each subject. The results
are in very good agreement with the values reported using
PCr as internal reference.***>> The Bland-Altman plot
shows that the mean difference of the two methods was
much smaller than the standard deviation and demon-
strates the absence of bias. The outlier points in Subject
#9 could be explained by poor BO homogeneity during
the acquisition. By contrast, Subject #7 was the one with
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the best BO homogeneity and showed close estimation
with both methods. Table 1 reveals that all relative stan-
dard deviations were greater than the relative differences,
indicating that inter-subject variation was greater than
between-method variation.

Figure 7 shows the convergence toward the esti-
mated value at high SNR by SPAWNN and LCModel.
The data originate from unlocalized FID with 600 aver-
ages acquired from three volunteers. Unlocalized FID was
used instead of MRSI in order to get optimum SNR with
reasonable acquisition duration considering 600 averages.
The plots aim to present the convergence of both mod-
els toward the reference value estimated at the highest
SNR, corresponding to the spectra obtained with 600 aver-
ages. For high-signal metabolites, such as PCr and ATPs,
both models displayed similar speed of convergence. For
lower-signal metabolites, such as PCh and GPC, the esti-
mation with LCModel differed by more than 10% from
the high SNR value even with high numbers of aver-
ages. SPAWNN showed faster asymptotic convergence
toward the concentration reference. Both SPAWNN and
LCModel demonstrated similar precisions, with more vari-
ation across subjects than across methods. Spectra from
Subject #1 had more noise and half lower SNR compared
with the other two subjects, which can be due to worst
shimming. The discontinuities observed in Subject #2 are
attributable to LCModel failure to converge (“fatal errors”)
and were considered as outliers. Over all the metabolites,
SPAWNN displayed more consistency and stability, espe-
cially at low SNR. This result suggests that the SPAWNN
approach is more robust at low SNR than LCModel, thus
implying a fewer number of averages to match the results
of traditional fitting methods. This could translate into
shorter acquisition time in a clinical setting or higher
reconstruction resolution for MRSI.

SPAWNN training time was 4 and 6 h for the two sub-
models. Nevertheless, once the weights were computed,
spectral analysis with SPAWNN was almost instantaneous.
Indeed, the evaluation of 103 spectra required approxi-
mately 5 min. This could be useful in the prospect of apply-
ing the method to 3D metabolite mapping, which requires
the analysis of the full dataset. As illustrated in Figure 8,
the 10° voxels of the dataset were analyzed in a few min-
utes, whereas the same analysis performed by LCModel
lasted almost 1 h. Faster computing time is a clear advan-
tage for clinical applications where a fast online processing
is highly desired.

Our study results compared with those of previously
published works that used neural network approaches
to analyze MRS.14?324 Das et al.'# presented a method
using random forest machine learning, while Hatami
et al.?* used a DL CNN model for quantification. Com-
pared with both methods, the physical model proposed
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here for generating the simulated training set includes
a larger number of parameters, which should result in
a more complete variety of spectra, as well as artifacts
and distortions, as observed in vivo. The approach pro-
posed by Lee et al.?* aimed to learn the reconstruction
of the spectral real part, while ours aimed to learn the
metabolite concentration and parameters directly, with-
out optimized reconstruction. Other studies used a dif-
ferent approach to applying AI to NMR, such as the one
conducted by Da-Wei et al.°! who used a neural net-
work approach to perform deconvolution on overlapping
peaks.

The analysis was performed without measuring a ref-
erence signal, with therefore no possibility of absolute
quantification, and LCModel was used as a fair reference
for comparison of metabolite ratios. In a possible perspec-
tive, both models could be compared for absolute quan-
tification with the measurement of an in vitro reference
with a known concentration. The influence of the training
parameter ranges over SPAWNN robustness and stability
remains to be established. As mentioned above, narrow
specific parameter ranges might improve accuracy but
SPAWNN results would be unreliable for spectral param-
eters falling outside the training range. Possible improve-
ments of SPAWNN can be explored: the physical model
could notably be improved by taking into account more
distortions, such as eddy current effects. Future develop-
ments also include implementing SPAWNN for metabolite
mapping and determining a confidence interval for the
estimated values.

In conclusion, we presented a DL method of evalua-
tion, quantification, and baseline estimation for 3'P-MRS,
combined with a reconstruction pipeline for spectral
reconstruction. The proposed SPAWNN method had a
high accuracy and robustness overall, especially at low
SNR, thereby allowing higher resolution reconstruction in
MRSI schemes. Our proposed approach had an extremely
fast computation time that offers the ability to analyze
large 31P-MRSI datasets almost instantaneously, which is a
significant advantage for possible applications in a clinical
setting.
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IMAGING RECONSTRUCTION

"Physicists have come to realize that mathematics, when used with sufficient care, is a proven
pathway to truth."

- Brian Greene, The Fabric of the Cosmos
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7.1 INTRODUCTION

Chapter 3 presents the fundamental mathematical principles of MRI. The chapter explains how
the signal is generated in a coil by an electromotive force induced by the magnetic field vari-
ation in the sample. In Section 3.4.2, the Fourier transform is introduced as a mathematical
approach to transform the signal data s(k) into the spin density distribution p(x). The signal
is presented as the Fourier transform of the spin density, and an inverse Fourier transform can
recover the spin density distribution. The transformation is performed by integrating the sig-
nal over the three-dimensional volume of interest, and the results appear straightforward to
obtain. However, as Brian Cox and Jeff Forshaw have emphasized in The Quantum Universe:
"Translating the mathematics of quantum mechanics into the real-world context of an experiment
is not always straightforward". The analog signal generated by MRI is continuous, but it is sam-
pled and stored as finite and digitized data. The measurement involves a finite amount of point
collection in k-space. Therefore, it is critical for the data to be acquired in such a way that they
can be transformed by Fourier analysis to recover the spin density distribution.

Fourier transform has largely contributed to the success of MRI; however, the uniform sam-
pling of k-space and periodic spacing between points can restrict data acquisition. These con-
straints, coupled with other limitations, can result in lengthy acquisition times, which can be
impractical for patients. Consequently, the total measurement time is limited. To address this
issue, various methods have been proposed to accelerate data acquisition and reduce image re-
construction time. Notable examples include echo-planar spectroscopic imaging (EPSI) [90, 91],
parallel imaging [92-94], and compressed sensing (CS) [95].

This chapter serves as an introduction to the materials necessary to understand the contents
of Chapter 8. The first section provides an overview of Fourier transformations, while the sec-
ond section delves into the acceleration and reconstruction techniques used, with a specific
emphasis on compressed sensing acceleration and low-rank reconstruction methods.
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The DC component
in a Fourier
transform represents
the constant part of
the signal, which can
be seen as the
average value of the
signal. It is
represented by the
zero frequency term
in the Fourier series.

IMAGING RECONSTRUCTION

7.2 FOURIER TRANSFORMS AND K-SPACE SAMPLING
7.2.1  Fourier transforms and discretization of the sampling

Fourier transform is a powerful mathematical tool, which underpins the success of MRI. The
fourier transform hastily been presented in Section 3.4.2, specifically in the equation (3.40). For
this chapter, we will reduce to a one dimensional situation. The generalization to the two and
three dimensions is straightforward. The spin density lives in the x-space (the position space),
while the signal lives in the k-space (the spatial-frequency space). The general form of the
Fourier transform (FT) can be written as

s(k) = FHp}k) (7.1)
— J p(x) - e 27k xqx (7.2)

And its inverse function, the inverse Fourier transform (IFT) is

p(x) = F {shx) (73)
_ J s(k) - et 2k gy (7.4)

—00
The application of the Fourier transform on its inverse is a self-identity operation. It results in
the retrieval of the initial function due to the integral of the exponential leading to a Dirac delta
function in either space. While the aforementioned representation of the Fourier transform is
widely used, there are alternative forms of the transform that differ in the absence of the 27
factor in the exponential and the presence of a normalization factor in front of the integral.

Figure 4o: Illustration of the Fourier transform and its inverse applied to a brain slice in the transverse
plane. The image on the left represents the original brain slice, while the image on the right
shows its Fourier transform. The values in the Fourier transform image have been logarithmi-
cally scaled to visualize the non-DC components, as the DC component has a very high value
that makes the non-DC components appear black.

As outlined in the opening section of this chapter, the signal emitted by the sample in the
coil cannot be recorded as a continuous function, and is instead measured at a finite number
of points. Due to the discrete nature of the sampling process, differences can arise between
the physical spin density p(x) and the reconstructed MR image p(x). These differences may be
attributable to errors in data acquisition or signal processing, and are generally referred to as
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artifacts. In some cases, differences may arise due to complex values being acquired when the
expected image is purely real, resulting in a constant phase difference with the real density spin.
Such artifacts may manifest as a linear phase when points are shifted in the k-space. To avoid
dependence on phases, a common practice is to compute the magnitude of the reconstructed
image. In order to describe the discrete sampling, the Dirac comb distribution can be utilized
as a sampling function. This distribution, and its Fourier transform, are defined as follows.

(k) =T )  8(k—pT) (7:5)

p=—00

1

F LT} (x) = = 11 (x) (7.6)
This distribution is defined in such a way that its product with a continuous function is

zero everywhere except at the points where the function is sampled. The Fourier transform of

the comb distribution is also a sampling function. It can be obtained using the two following

relationship.

Y efFine= % §la—n) (7.7)
1 ) ) X

dlax) = —0o6(x) = |alé(x) =6 <) (7.8)
lal la]

The first relation, expressed in equation (7.7), defines a relationship of the delta form of the
Dirac comb and its representation as a Fourier series. The second relation, given in equation
(7.8), defines one of the identities of the delta distribution. Consequently, the sampled signal
can be expressed as the product of the continuous function and the Dirac comb distribution.

strr(k) = s(k)-IIak(k) (7.9)
= Ak ) s(pAk)-5(k—pAk) (7.10)
p=—00

The reconstruction of the spin density from the sampled signal syy;(k) can be achieved by
computing the inverse Fourier transform.

plx) = _]{Sm}() (7.11)
= J Ak Z s(pAk) - 5(k — pAk) - e 2T X gy (7.12)
_ el
= Ak Z s(pAk) - eF2TiPAkX (7.13)
p=—00

The spin density reconstructed from the sampled signal can be represented as an infinite
Fourier series, which serves as an approximation of the continuous function in the form of a
histogram. To express the reconstructed spin density in terms of the physical spin density, we
can use the convolution theorem which states that the Fourier transform of a product is the
convolution of the Fourier transforms of the individual functions, i.e., F{g - h}(x) = G(k) *
H(k). We can apply this theorem directly to equation (7.9) to obtain the following equation.
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p(x) = (T s}*TF {IIIax}) (x) (7.14)
= ol % A1 () (7.15

= g
= q;oop(x—Ak> (7.16)

The result presents a translation invariance with the transformation x — x + q/Ak. The
reconstructed function is expressed as an infinite repetition of spin distributions uniformly
spaced at intervals of 1/Ak. It is noteworthy that the interval value represents the field of view,
such that 1/Ak = FOV.

7.2.2  Nyquist-Shannon sampling criterion

The field of view is an important aspect in imaging. If the field of view is chosen to be too small
in comparison to the size of the imaged object, the reconstructions will overlap and result in an
aliasing artifact in the reconstructed image. For ease of notation, we define the spatial length of
the scanned image as L = FOV and the size of the object being analyzed as A. To avoid aliasing,
the Nyquist-Shannon criterion dictates that the field of view must be larger than the size of the
imaged object, that is, L > A or equivalently Ak < 1/A. The criterion dictates the choice
of sampling intervals. In equation (3.37), a relationship was established between the spatial
frequency k and the applied gradients. During sampling in the read direction, data points are
acquired at time intervals of At while a gradient G is applied, resulting in intervals of Akg
given by:

t+At

Ak =¥J Grl(t)at’ (7.17)
t

When considering a rectangular gradient, the integral yields Akg = y GrAt. To satisfy the
Nyquist criterion, we must have Yy GRAt = 1/Ly, where Lr denotes the length of the region of
interest in the read direction. Consequently, the sampling frequency for a constant read gradient
is BW;ead = 1/at = ¥ GRrLg, subject to the condition that y GRLr > ¥ GrARg. The criterion
also applies for the phases encoding gradient, with Tpg the duration of the phase encoding
pulse.

t+Tpe

Akpe — ¥J AGpe (t)dt! (7.18)

t

With the same rectangular gradient consideration, the intervals in the phase encoding direc-
tion are Akpg = YAGpeTpE.

7.2.3  Discrete Fourier transform

A special case of the continuous Fourier transform is the Discrete Fourier transform (DFT),
which represents an exact Fourier transform of a set of uniformly spaced and finite points.
Along with the DFT, the discrete inverse Fourier transform (DIFT) is also introduced, which is
equivalent to the inverse Fourier transform. The DFT shares the same properties as the con-
tinuous FT described above. The MR acquisition of a finite number of points can be perceived
as a truncation of the data or as a windowing operation. In a similar manner to the previous
section, we can model the truncation using a function. The rectangular function, denoted as
rect, is defined as follows:
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0, if |k| > p/2
rectp(k) = ¢ 172, if k| =p/2 (7.19)
1, if k| <»/2

The rectangular function possesses a Fourier transform which is ¥~ {rectyy/} = W - sinc(Wx),

with the normalized cardinal sine function sinc(x) = sin(7x)/zx. By applying the rectangular
function to the signal, the resulting expression of the signal can be obtained by multiplying
equation (7.9) with the rectangular function:

stiw(k) = s(k) - IIIak (k) - rectyw (k + Ak/2) (7.20)
N/2—1

= Ak ) s(pAk)-5(k—pAk) (7.21)
p=—N/2

The summation is no longer carried out to infinity; rather, it is now summed up to a total of
N sampled points, which in turn defines the size of the window as W = NAk. The rectangular
function has an additional term, as shifting the points by Ak/2 leads to a symmetrical sampling
in the k-space with respect to the origin. Similar to the previous section, the reconstructed spin
density can be determined by performing the discrete inverse Fourier transform (DIFT) on the
equation (7.20).

p(x) = T {stwlx) (722)
= (F Ys}*F IIar) = F rectw (- + 8K/2)}) (x) (7.23)
= p(x)* ﬁlnf( ) * (W sinc(Wx) - e_"i"Ak) (7.24)
N/2—1
= Z/ P <x — ﬁ) W - sinc(Wx) - e T4k (7-25)
p="N/2
N/2—1
= Ak ) s(pAk).e?TIPXAK (7.26)
p=—N/2

The exponential term in equation (7.24) is a result of the half-point shift in the rectangular
function. For ease of use, equation (7.25) has been simplified to equation (7.26), which will be
beneficial in subsequent discussions. To establish a Fourier pair between the discrete signal
and the spin density, the discrete spin density must be connected to its Fourier transform to
establish a relationship with a signal using the DFT. The discretized spin density can be written
as follow.

priLL(x) = P(x) - Ilax(x) - recty (x + Ax/2) (7.27)
M/2—1

= Ax ) plqAx)-5(x— qAx) (7.28)
q=-M/2

There exists a relationship between the size of the field of view and the number of samples
taken L = MAX, which is analogous to the window of the signal. The Fourier transform of
equation (7.28) is expressed as follows:
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$(k) = T Yprrrik) (7.29)
M/2—1

— Ax Z qAX —2miqkAx (7.30)
q=—M/2

In order for the two sets s and p to form a discrete Fourier pair, they must have an equal
number of points in both domains, i.e., N = M. By substituting equation (7.26) into equation
(7.30) and vice versa, we obtain:

N/2—1

s(pAk) = Ax ) p(gAx)-e TN (7.31)
q=-N/2
N/2—1

plgAx) = Ak Y s(pAk)-e /N (7.32)
p="N/2

A final rewriting of these equations enables linking the Fourier pairs with the field of view
L.

N/2—1

]— —27i
S(%) = ) ﬁ(qﬁ)'ez N (7.33)
a="N/2
L 1!
ﬁ(qﬁ) =3 X ~°>(%)'e+2mqp/’V (7.34)
p="N/2

The last equations represent the discrete Fourier pair describing the reconstructed spin den-
sity with the acquired signal. The normalization in the final equation arises from 1/N = AkAx.

7.2.4 Pointspread Function

The Point Spread Function (PSF) describes the spatial resolution of the imaging system. The
PSF is defined as the response of the system to a point source of signal, which would be the
MR signal in this context, and describe the spread of the signal in space. The effect of the PSF
reduces the sharpness and resolution of the image, making it more difficult to distinguish small
details. In absence of filtering, the PSF is define as follow.

PSF = (T "{IIlak}* T rectw}) (x) (7.35)
N/2—1

= ) emivxAk (7.36)
p=-N/2

The impact of the PSF on the reconstructed spin density has been describe above. The PSF
can be used to quantify the blur of the reconstructed image.
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7.3 NON-FOURIER RECONSTRUCTION

The Fourier transform has been instrumental in the success of MRI. Since data are acquired
in the k-space, the Fourier transform has been the reconstruction method of choice. This tech-
nique is unbiased of the acquisition scheme, but requires the complete sampling of the k-space
and assumes that the data are band-limited to the acquired spatial frequencies. The technique
also assumes that the Nyquist criterion is met in the sampling interval of the data; otherwise,
it results in artefacts. Although the Fourier transform provide the best reconstruction when
MRI satisfied its requirements, the constant improvement of methods has pushed these require-
ments to their limits. The acquisition speed is defined by the ability to traverse the k-space,
limited by hardware capacity and the maximum amplitude that can be generated with the gra-
dients, as well as the physiological limitation of peripheral nerve stimulation with rapid gra-
dient switching. Furthermore, techniques such as MRSI require long scan times, necessitating
multiple averages to achieve sufficient SNR. These limitations have led to a different approach,
where fewer measurements are acquired and the full k-space is not sampled. The Fourier trans-
form is inadequate for reconstruction since zero-filling the missing points will not change the
sub-Nyquist nature of the data that will produce artefacts. Novel methods are required to face
this challenge and reconstruct these data.

7.3.1  Model-based

The measurement of the MR signal involves acquiring noisy samples of the signal [96]. Math-
ematically, the MR signal s can be expressed as a linear mapping encoding A of the input
function f. However, in practice, the measured signal § is a combination of the signal s and
noise 1. Hence, the emitted signal and the measured signal can be mathematically formulated
as follows.

s = Alf} (7-37)
§ = s+n7m (7-38)
= Alf}+n (7-39)

The noise 11 in MR signal measurements is an additive complex, zero-mean, temporally white
Gaussian noise. The primary objective of reconstruction is to generate a function f from the
measured signal § that accurately represents the original function f. One commonly employed
approach to achieve this objective is through the utilization of least square residual minimiza-
tion, which involves minimizing the sum of the squared difference between the acquired signal
and the acquisition model prediction. Mathematically, the least-squares method is defined as:

f = argmin|ls — A{f)If (7.40)

The least-squares method is a statistical technique that seeks to obtain the optimal solution
for a linear equation. This method employs the L? norm, which is appropriate for the optimiza-
tion problem because it is quadratic in the error terms. This quadratic property results in a
convex optimization problem. Considering the discretization of the sampling process, the op-
timization problem can be formulated in a vector form. Specifically, the input vector x € CN,
the measured signal § € CM, and the mapping A € CM*N can be represented in this form.
The optimization problem can now be formulated as follow.

X = argrnXiHHE—Ax||%2 (7.41)
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The equation (7.41) admits as solution the equation (7.42).

x = (A"A)"TAMs (7.42)

For simplification, it is possible to express (AHA)~TA" = A*, where A* represents the
Moore-Penrose pseudo-inverse. For the application in MRSI, a set of K = {k }™ spatial posi-
tions and 7 = {t;}" temporal measurements can be defined. Equation (4.36) can be reformu-
lated as follows:

S = 3§k, t; .
S‘{IC,T} Sk, ti] (7.43)
—+00 .
- J J o(r, o) - e 2milkmr=0foti) 4rqo 4 1k, ti (7.44)
—o0 JOCR3
= ) Fulkmlcaltid +nlkm, ti] (7.45)
mn

The integral in equation (7.44) is discretized using the sum in equation (7.45). In this repre-
sentation, F € CM*N is the Fourier matrix comprising the Fourier exponentials e ~27"tkmrn_
with n indexing the spatial positions {r, }". In the latter equation, the amplitude coefficients
for each time sample are represented by the vector c. F is assumed to be square, resulting in its

unitarity by construction. Therefore, equation (7.45) can be expressed in a vectorized form.

§[ti] = Fc[ti] +nft;] (7.46)

Using the least square equation, the equation (7.46) has for solution

efty] = F3[ty) (7.47)

The equation indicates that the solution corresponds to the discrete inverse Fourier trans-
form. It is noteworthy that the inverse Fourier transform is a viable solution; however, it repre-
sents a particular case of the optimization-based reconstruction.

7.3.2  Regularization

Reconstructions that rely on optimization techniques are often referred to as ill-posed problems
due to the need for inverting an ill-conditioned linear system during the reconstruction process.
In many cases, such as when dealing with undersampled k-space, the number of unknowns
exceeds the number of measurements, resulting in an underdetermined problem. This generates
a multitude of possible solutions that can fit the measured data, rendering it challenging to
identify the correct solution uniquely. The kernel of the mapping A : V. — W is defined as
follows.

ker(A) = {veV | AWN) =0w} (7.48)

The existence of multiple solutions arises from the fact that the kernel of the mapping is
nontrivial, ker(.4) # {0}. This indicates that the function is not injective, allowing for different
values to be mapped to the same output. To overcome this issue, regularization techniques
have been developed to impose additional constraints on the reconstruction, improving the
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uniqueness and stability of the solution. These regularization techniques can be incorporated
into the reconstruction algorithm with an additional term R that acts as a penalty term that
promotes a smoother or sparser solution.

f = arg min 1§ — A{FHIE, + R{f} (7-49)

7.3.3 Compressed sensing

Compressed sensing is a signal processing technique that allows for the efficient acquisition
and reconstruction of signals that are in a specific representation. The techniques relies on
several key components, including a sparse transformation that is known a priori in a specific
domain, the incoherence of the undersampling artifacts, and a non-linear reconstruction algo-
rithm. Sparsity refers to the property of having a small number of non-zero elements, which
can be utilized to compress a signal. A sparse transformation of an image or an object refers to
the idea of compression without any perceptible loss of information. To achieve this, various
methods rely on a sparse transformation that maps the image into vectors of coefficients, and
then encodes the sparse vector by approximating the most significant one and discarding the
others. The concept of compressed sensing takes advantage on the sparsity or compressibility
of signals by acquiring them in a compressed form, utilizing only a small number of random
measurements. These measurements are then used to reconstruct the original signal through
a non-linear optimization algorithm that enforces sparsity or compressibility in the signal do-
main [95, 97, 98].

In many cases, techniques leverage the sparse nature of MR images to recover undersampled
signals. To achieve this, the most commonly used regularization method can be formulated as
follows:

R(x) = Alixlk (7.50)

The use of the 1y pseudo-norm indeed encourages the sparsity of the reconstruction, but its
non-convex nature makes it unsuitable for optimization problems. Therefore, it is replaced by
the convex 11 pseudo-norm which is widely used in compressed sensing. The parameter A € R
is a regularization weight that controls the trade-off between the data fidelity term and the
regularization penalty term. For compressed sensing, the regularization is performed on the
sparse transformation ¥ of the image, such that x becomes WYm in the context of MRI.

Compressed sensing has showed better performence using random undersampling with vari-
able density sampling, as the majority of the energy distribution in an MR image is concentrated
at the center and quickly decays towards the periphery of the k-space. The incoherence in ran-
dom sampling can be assessed by means of the transform point spread function (TPSF), which
extends the concept of the point spread function (PSF). The TPSF measures how a single trans-
form coefficient of the underlying object affects other transform coeflicients of the measured
undersampled object. Let S be the sample subset of the k-space and Fs be the Fourier transform
evaluated only at the frequencies of the subset. The point spread function of the pixel (i,j) is
given by

PSF(i,j) = (FiFs)i,j) (7.51)

The PSF equals the identity in the case of Cartesian sampling. A non-zero value at pixel (1, j)
indicates that pixel i is affected by interference from pixel j # 1i. Thus, the PSF provides a
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measure of the blurring and artefact caused by the leakage of energy from one pixel to another.
Using ¥ to represent the sparsifying transform, the TPSF can be defined as

TPSF(,j) = (W FsFs¥)(i,j) (7.52)

The degree of coherence is determined by max;_; [TPSF(i, j)|. Incoherence, therefore small
values of coherence, is preferred. Using the equation (7.49) to reconstruct an image represented
by a complex vector m, given the measured k-space y, the equation becomes:

arg min [|Fsm —yllf, + AlYmlly, (7.53)

The equation try fo find a solution that is compressible by the transformation V. The param-
eter A is a small constant that determines the tolerance level for the reconstruction error.

7.3.4 TV regularization

The concept of total variation (TV) arises in cases when finite-differences is used as the sparsi-
fiying transform. TV quantifies the degree of variation or change in an image or signal. In the
context of images, total variation represents the magnitude of changes in color or brightness
between adjacent pixels. For a function f € L' (Q) where Q C R denotes an open subset, the
total variation of f is defined by the equation (7.54) [99].

TVq(f) = sup {Ll f(x) - Vo(x)dx | ¢ € CL(Q,R™), [IdllLe(a) < 1} (7-54)

A function f is said to possess bounded variation if its total variation is finite. Here, C} (Q, R™)
represents the set of continuously differentiable vector functions of compact support in Q. If
feC l (Q,R) and the subset has 9Q of class C', then the definition is simplified as follows:

J f(x) - Vox)dx = —J (x) - VE(x)dx (7.55)
Q O
< J b (x)] - [V(x)|dx (7.56)
Q
< J |V T(x)|dx (7-57)
(0]

The last step can be performed because the supremum of phi has been constructed to be 1 at
max by def. We can then redefined the TV as

TV(f) = JQ IV£(x)|dx (7.58)

The regularization with total variation encourages sparsity in the solution by penalizing large
gradients, resulting in a smooth and piecewise-constant structure. This can be implemented as
a regularization in equation (7.53), which can be rewritten as:

arg min [ Fsm —y|If, +Al¥mlfy, +«TV(m) (7.59)
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« trades the ¥ sparsity with finite-differences sparsity. TV models are particularly advanta-
geous in the context of removing random noise while preserving image edges. However, the
underlying assumption of TV is that images comprise regions that are piecewise constant. In
practice, this assumption may be violated due to the inhomogeneities of the exciting B1 field
in high-field systems, or simply because images are generally not piecewise constant. Further-
more, even in situations where this assumption of piecewise-constancy holds, the use of TV
may result in staircasing artifacts, which is a known limitation of this regularization method
[98, 100].

7.3.5 TGV regularization

Total generalized variation (TGV) is a regularization method that shares similar properties with
total variation (TV) in terms of preserving edges and removing noise from images. However, un-
like TV, TGV can be applied in imaging situations where the assumption of piecewise-constancy
does not hold because TGV tend to sparsify higher order spatial derivative [100, 101].

TGV (f) = sup {J f(x) - VEo(x)dx | & € CK(Q,Sym*(RY)),
Q

(7.60)

Hvl(I)HLOO(Q) <o,l=0,..,k—1 }

The equation includes Sym*(IR9) , which represents the space of symmetric tensors of order
k with arguments RY. Additionally, the parameters & are fixed positive constant values.

Sym*(RY) = {£:RY¥x..xRY—= R | & k-linear and symmetric} (7.61)
H—/

ktimes

The equation (7.60) recovers the total variation for k = 1 and o > 0: TGV] (f) = «TV(f).
In most applications, TGV is used at the second order with k = 2. At the second order, the
equation (7.60) can be expressed as

TGVZ(f) = inf oy J IVF(x) —p(x)ldx + oo J lep (x)]dx (7.62)
p Q Q
where €, = %(V‘p + Vp') represents the symmetrized derivative of p in the distributional
sense. The TGV optimization now considers both the first and second-order derivatives, which
promotes piecewise linear solutions and helps to mitigate the staircase effect [33].

7.3.6 Low-Rank

The low-rank decomposition is a mathematical method utilized to approximate a high-dimensional
matrix by factorizing it into a product of three lower-dimensional matrices. The partial-separability
assumption allow us to express the Low rank decomposition with two matrices. The concept
of representing an object as a finite linear combination of unspecified components motivates a
feature-based interpretation of the data, as opposed to the conventional voxel-based analysis.

This bilinear model decomposition approximation can be formulated as follows: The bilinear model is
often referred to as
partially-separable
model.

K
ot ) = 3 wc(rve(f) (7.63)
k=1
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The objective of the decomposition is to disentangle the spatial and temporal signal char-
acteristics while retaining the underlying spatio-temporal correlations through the previously
outlined variational framework. Constraints such as non-negativity or sparsity may be applied
independently to the temporal and spatial components. By exploiting the commutativity of the
spatial and temporal Fourier transforms, the low rank decomposition can be applied to acquired
measurements under ideal conditions.

+o0o K .
8k, t) = J JQ . ZuK(r)vK(f)~e*2m(km'r*“i)drdf (7.64)
—® R =1
K . +o00 )
= Z J \ U (r) - e 27 km T gy J Vi (f) - 2Tt gr (7.65)
=1 QOCR —00
X« (k) & (t)
K
= > xe(®E(t) (7.66)
=1

The acquired measurements comprise a set of k-space points {km}m:] and temporal samples

CMXT that represents the measured signal. The validity of

{ti}iT:], resulting in a matrix § €
the decomposition in equation (7.66) hinges on the rank K of the number of components, which
must satisfy K < min(M, T). In cases where the measurements are non-ideal, estimating the
rank K becomes non-trivial. In MRSI, the use of a bilinear model is justified in in-vivo settings
due to the limited number of detectable metabolites in a given spectrum. Thus, an upper and

lower bound on K can be imposed in this context [102].



IMPROVED PHOSPHORUS MRSI THROUGH COMPRESSED SENSING
AND LOW-RANK

"The ability to manipulate the environment thoughtfully provides the capacity to shift our van-
tage point, to hover above the timeline and contemplate what was and imagine what will be."
- Brian Greene, Until the End of Time
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8.1 SUMMARY

Chapter 7 provides an overview of MR reconstruction techniques. In particular, it emphasizes
the significance of non-Fourier-based reconstruction methods that enable flexible acquisition
sampling. Although Fourier-based methods have been pivotal in MRI, they require complete
sampling of k-space and assume that the Nyquist criterion is satisfied. This approach imposes
constraints on acquisition that can be time-consuming and clinically impractical, such as when
evaluating organs for transplantation or ensuring patient comfort. Additionally, multiple aver-
ages can be employed to compensate for low SNR in 3'P-MRSI, but this results in prolonged
scan times.

Within the category of non-Fourier-based techniques, there exist certain reconstruction method-
ologies that approach the reconstruction process as an optimization problem. Compressed sens-
ing (CS) is a prominent example of such methods, which has garnered considerable attention
due to its capability to shorten scanning time while preserving superior image quality [97, 98,
103]. CS has been applied in various spectroscopy applications, including 2D and 3D 'H-MRSI
[104-106], resulting in fast high-resolution metabolic mapping of the brain [107-109]. Low-
Rank (LR) reconstruction has been demonstrated to be particularly advantageous for applica-
tions requiring improved SNR, as it can achieved promising results in denoising and signal
recovery [110, 111].

The present study aims to address a challenge encountered in phosphorus spectroscopy by
investigating the potential of compressed sensing combined with low-rank and total general-
ized variation regularization approach to enhance the acquisition process using an acceleration
reconstruction method. The framework of the CS-LR methods is presented in our article 8.2,
detailing the novelty of utilizing distinct random undersampling patterns for each k-space av-
erage to prevent the suppression of identical points, thereby enabling greater k-space coverage
without altering the acceleration factor. The effectiveness of the methods was evaluated using
healthy volunteers’ brain data from Chapter 6 and ex-vivo perfused kidney from Chapter 10.
Results indicate that the methods significantly improved the SNR while preserving spectral and
spatial quality, even when the acquisition is accelerated threefold. Furthermore, the metabolite
peak linewidth remained constant at all acceleration factors, and anatomical information could
be recovered from signal attenuation. This study achieved fast acquisition with reliable recon-
struction to reduce the scan time.
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CELERATION COMBINED WITH LOW-RANK RECONSTRUCTION

combined with Low-Rank Reconstruction
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Purpose: Phosphorus-31 magnetic resonance spectroscopic imaging (**P-MRSI) is a valuable non-
invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers
from a lower sensitivity, which necessitates larger voxel sizes or multiple averages to achieve an
acceptable signal-to-noise ratio (SNR), resulting in long scan times.

Theory and Methods: To overcome these limitations, we propose an acquisition and reconstruction
scheme for FID-MRSI sequences. Specifically, we employed Compressed Sensing (CS) and Low-Rank
(LR) with Total Generalized Variation (TGV) regularization in a CS-LR method. Additionally, we
used a novel approach to k-space undersampling that utilizes distinct random patterns for each
average. To evaluate the proposed method’s performance, we tested it on healthy volunteers’ brains
and ex-vivo perfused kidneys.

Results: The presented method effectively improves the SNR while preserving the spectral and
spatial quality even when the acquisition is accelerated threefold. We were able to recover signal
attenuation of anatomical information, and the SNR improvement was obtained while maintaining
the metabolites peaks linewidth.

Conclusion: We presented a novel combined CS-LR acceleration and reconstruction method for
FID-MRSI sequences, utilizing a unique approach to k-space undersampling. Our proposed method
has demonstrated promising results in enhancing the SNR making it applicable for reducing scan
time.
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Spectroscopic Imaging (3! P-MRSI)

I. INTRODUCTION

Phosphorus-31 magnetic resonance spectroscopy (3!P-
MRS) is a non-invasive technique that provides valuable
information on cellular high-energy metabolism in-vivo
[1-5]. When combined with spatial phase encoding, 3!P-
MRS imaging (MRSI) allows for multi-voxel acquisition,
enabling metabolite mapping across the entire field-of-
view (FoV) [6]. In addition, 3'P-MRS can provide an
estimation of intracellular pH (pHi) from the chemical
shifts, which can be utilized for pH mapping [7—11]|. The
unique information obtained through phosphorus spec-
troscopy has generated increasing interest towards de-
veloping the map distribution of biochemicals in-vivo.
These features find widespread applications in study-
ing various medical conditions such as diabetes [12-14],
Alzheimer’s disease [15, 16], migraine [17, 18], oxidative
stress [19], muscular dystrophies [20-22], and cancer [23—-
25].

Despite the advantages of 3' P-MRS, its acquisition dis-
plays a lower relative sensitivity than hydrogen-1 (*H)
at a constant magnetic field, necessitating larger voxel
sizes to achieve a sufficient signal-to-noise ratio (SNR)
while maintaining an acceptable scan time for the pa-
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tient [26, 27]. Furthermore, to compensate for a low SNR,
multiple averages can be employed, but this comes at the
expense of prolonging the scan time. Thankfully, lengthy
acquisition could be overcome by using acceleration tech-
niques, such as Compressed Sensing (CS), which has been
widely studied in 'H-MRSI and is gaining popularity in
other nuclei as well [28].

Compressed Sensing (CS) is an acquisition accelera-
tion method involving random k-space undersampling
[29, 30]. This technique has been demonstrated to sig-
nificantly reduce scan time while maintaining high image
quality, making it attractive in clinical settings [31]. The
application of CS in 'H imaging has been extensively
investigated and has been shown to be effective for a va-
riety of applications [32-35]. In parallel, CS has been ap-
plied in spectroscopy, specifically in 2D and 3D 'H-MRSI
[36-38], enabling fast high-resolution metabolic mapping
of the brain [39-41]. The success of CS in 'H imaging
and spectroscopy has opened up opportunities to explore
its application to other nuclei, such as '3C to accelerate
hyperpolarized 3D-MRSI acquisition that requires short
acquisition time [42-45].

The Low-Rank (LR) method has been employed to
reconstruct accelerated CS data. This approaches is
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FIG. 1. Example of k-space filling of a 10 x 10 x 10 voxel acquisition, illustrating the differences between fully sampled k-space
and randomly undersampled k-space. Panel (A) shows the center slice of fully sampled k-space, while panels (B) and (C) depict
the first and the 10th (out of 24) weighted average, respectively. The impact of undersampling can be seen in panels (D) and
(E), which display unique randomly undersampled k-space for an acceleration factor of 2.

particularly advantageous for application requiring an
improved SNR, as they can effectively denoise as well
[46, 47]. A LR method described as union-of-subspaces
was successfully applied to 'H-MRSI [48]. Likewise, LR
tensor model has allowed sparse 3'P-MRSI acquisition
scheme to be used, resulting in faster acquisition with
high resolution and improved SNR [49]. The combination
of CS-LR has been increasingly applied to MRI [50-52]
and MRS [39-41], benefiting scan time acceleration while
improving image quality and quantitation accuracy. By
combining the CS-LR method with total generalized vari-
ation (TGV) for data regularization, the acquisition time
of MRSI data can be significantly reduced without com-
promising the quality of the reconstructed image [53, 54].

The current study aims to demonstrate the feasibility
of a novel approach that combines compressed sensing
and low-rank techniques with total generalized variation
regularization (CS-LR), specifically for 3!P-MRSI data
obtained via the FID-MRSI 3D sequence, in situations
where the signal-to-noise ratio (SNR) is low. The pro-
posed approach utilizes elliptical encoding and weighted
averages, with each average subjected to a random un-
dersampling scheme. The resulting information is then
incorporated into the reconstruction. To demonstrate
the versatility of this CS-LR approach, the methods were
applied in two distinct conditions: in-vivo on the human
brain and ex-vivo on perfused pig kidneys.

II. METHODS
A. Acceleration and reconstruction
1. Undersampling with weighted averaging

Data acquisition is time-consuming and can become
prohibitive in regard to clinical constrains such as or-
gan evaluation before transplantation or patient com-
fort. One approach to accelerating MRSI data acqui-
sition is to use weighted averages [55]. Initially, MRSI
data were acquired with a weighted average elliptical
sampled k-space, as illustrated on Figure 1(A), (B) and
(C). This fully sampled k-space was a posteriori un-
dersampled. To achieve this, the Fourier domain was
characterized by a radius ¢, which was expressed as
q = \J (ko /R0)2 4+ (ky /)2 + (k. k)2, The ran-
dom sampling was constructed such that the density dis-
tribution had a density of ¢~'. To simulate the accel-
erated acquisition, we removed retrospectively k; values
of the 3D phase encoded measurements, while maintain-
ing a fully sampled center of the k-space for ¢ < é [39].
The acceleration is quantified using the acceleration fac-
tor (AF), which represents the inverse of the undersam-
pling factor. The random undersampling was performed
for each weighted average individually. Figure 1 depicts
the fully sampled k-space for two averages (centered (B)
and 10" (C) averages) along with potential undersam-
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pling patterns (D) and (E) respectively. Employing dif-
ferent random undersampling patterns for each average
prevents the suppression of identical points, thereby en-
abling greater k-space coverage without altering the ac-
celeration factor.

2.  CS-LR reconstruction

The CS-LR method presented in this article has been
developed based on the work of Klauser et al. [39-41].
In MRSI, the signal measured by a coil element at a spe-
cific time ¢ and Fourier-space position k can be expressed
using the integral equation shown in Equation (1).

s(k,t):/ p(r,t)C(r)e_QW”ABO(r)e_zmk'rdr (1)
QCR3

Here, the local transverse magnetization p(r, t) is mod-
ulated by the coil sensitivity profile C(r) and is affected
by the map of field inhomogeneity in Hz ABy(r) over
the measured object Q. By employing a single coil el-
ement, we can combine p(r,t) and C(r). Although the
sensitivity profile of a volumetric coil is uniform, this can-
not be assumed for a loop coil. This implies a weighting
of the transverse magnetization with the coil sensitivity
profile. For a weighted average a, the equation (1) can
be discretized to give the relationship between the mea-
sured signal s,, the Fourier transform operator F, which
includes the Fourier transform as well as the unique un-
dersampling pattern of each average, the frequency shift
operator created by the inhomogeneity B, and the local
transverse magnetization p.

Sq = FoBp + € (2)

e accounts for the noise and is assumed to be Gaus-
sian. The CS-LR reconstruction provides a solution to
the inverse problem that is the reconstruction of the lo-
cal transverse magnetization p knowing F,8 with s. The
method assumes that the MRSI data can be represented
by a low-rank matrix, which decomposes the spectral
data into a small number of dominant components K
[56]. The low rank reconstruction is presented in the
following equations.

K

PL; = ZUl,nVn,j (3)
n=1

p = UV (4)

pi,; can be represented as a linear combination of a
small number of characteristic spectra that are spatially
distributed across the measured volume. 7T represents
the time series, with 5 = 1,...,7; and N” the number
of r vectors in the image space with [ = 1,..., N". The
matrix V € CK*T contains the finite set of characteris-
tic time series, and U € CV" %K represents their spatial

distribution. The proposed method is well-suited for pro-
cessing MRSI data due to the finite number of metabolite
resonances that are assumed to be partially separable of
their spatial distribution [46, 49]. Moreover, noise within
the MRSI dataset is typically stochastic and lacks spe-
cific spatial distributions, which renders the fitting of a
low-rank model to be an effective denoising tool. Regu-
larization applied on spatial metabolite components per-
mits the denoising in space while preserving edges and
enforcing data consistency [57]. The inverse problem is
written as

K
- _ 2 2
argmin Ea lIsa — FuBUV]|5 + A E TGVU  (5)

n=1

The spatial and temporal components are obtained
by minimizing the inverse problem in conjunction with
total generalized variation (TGV) spatial regularization
method [53]. In our research, the values of K = 5 and
A = 0.001 were determined empirically yielding optimal
outcome. The CS-LR reconstruction with and without
acceleration will be compared to traditional FFT trans-
formation. The reconstruction was performed in Matlab
(The MathWorks, Natick, Massachusetts, US), and re-
quired 5hours computation time for the 3D MRSI using
8 cores of a 3.00 GHz Intel(R) Xeon(R)-E5 CPU, and
124 GB of RAM.

B. MRI measurements

In-vivo measurements were conducted on a clinical
Prisma-fit 3T MRI scanner (Siemens Healthineers, Er-
langen, Germany) that is equipped with multinuclear ca-
pabilities. Notably, no decoupling was applied.

1. Brain

The present results were obtained retrospectively from
anonymous raw data, for which written informed consent
was given by all the volunteers and the initial study was
approved by the institutional ethics committee [58]. T1-
weighted MP-RAGE acquisition was employed to obtain
anatomical reference 'H images. The dual-tuned 'H and
31P head coil (Clinical MR solutions, Brookfield) was
used for scanning 10 healthy volunteers. A 10 x 10 x
10 matrix was employed for the acquisition of 3D 3'P-
MRST of the whole brain, with an isotropic field of view
(FoV) dimension of 250mm yielding a nominal spatial
isotropic resolution of 25mm. The sequence consisted of
a rectangular excitation pulse of 0.25ms with a flip angle
of 45°, a repetition time (TR) of 1500ms, and an echo
time (TE) of 0.5ms with 24 weighted averages [55]. The
bandwidth was 4000Hz for 2048 sampling points, and the
MRSI acquisition lasted 37 minutes.



2.  Kidney

In the context of a study aimed at improving and eval-
uating the viability of marginal grafts, MRSI was per-
formed on ex-vivo pig kidneys. To enable imaging, the
organs were perfused using a homemade MR-compatible
perfusion system [59, 60], with a single-loop coil fixed to
the bottom of the perfusion tank. The coil was inter-
faced with a specially designed transceiver that allowed
for both 1H imaging and 31P spectroscopy (Clinical MR
Solutions, Brookfield, WI). The body coil was used to
perform 'H imaging with a T2-weighted sequence (turbo
SE, TR 6530ms, TE 110ms, 2mm slices) for kidney lo-
calization and structural imaging. The 3D 3'P-MRSI
was acquired with a field of view of 250mm x 250mm x
160mm and a matrix size of 16 x 16 x 8, yielding a nom-
inal spatial resolution of 15.6mm x 15.6mm X 20mm.
The TR was set to 1000ms, the flip-angle was 45°, the
echo delay was 0.6 ms, and the bandwidth was 4000Hz
for 2048 sampling points. The acquisition employed el-
liptical encoding with 18 weighted averages, and the ac-
quisition time was 45 minutes. The chemical shift signal
was referenced to the inorganic phosphate (Pi) resonance
at 5.2ppm, which can be considered homogeneously dis-
tributed over the surface of the coil.

C. Spectral quantification and reconstruction

The 3'P-MRSI spectra were analysed and quanti-
fied using the openly available 31P-SPAWNN method
(gitlab.unige.ch/Julien.Songeon/31P-SPAWNN) [58].
The method uses convolution neural network (CNN)
to estimate spectral parameters (phase, linewidth, fre-
quency, etc.) and metabolite concentrations that are
used to reconstruct individual spectra. The quanti-
fied metabolites included phosphocreatine (PCr), inor-
ganic phosphate (Pi), adenosine triphosphate (a-ATP, -
ATP, and 7-ATP). Additionally, the phosphomonoesters
(PME) cousisting of phosphocholine (PC) and phospho-
ethanolamine (PE), and the phosphodiesters (PDE) con-
sisting of glycerophosphocholine (GPC) and glycerophos-
phoethanolamine (GPE), as well as nicotinamide adenine
dinucleotide (NAD+ and NADH) and membrane phos-
pholipids (Mp) were also included in the quantification.
MRSI data did not have an internal reference for quantifi-
cation, and therefore, the results will only be presented
as a ratio of metabolite concentrations.

D. Evaluation of performance
1. Error quantification

The performance of compressed sensing with the CS-
LR model was evaluated using the normalized root mean
square error (NRMSE).

no acc.
>ilo;
no acc.
Zi Pi

NRMSE was computed by comparing the undersam-
pled data to the fully sampled data, both reconstructed
using the CS-LR method. The sum over the index i was
taken for all the voxels in the brain or the kidney. For
the brain, the ratio of metabolite concentration was cal-
culated with respect to PCr across the whole brain for
the 10 subjects. For the kidney, the ratio was computed
with respect to Pi.

_pqcc.|2
NRMSE = C

(6)

2. Spectral evaluation

The present study evaluates the spectral quality by cal-
culating the SNR for the voxels of interest, both for the
original data and for the CS-LR methods implemented
with and without acceleration. Specifically, the SNR is
computed for the brain data by utilizing the PCr peak
intensity as the reference signal and divided by the noise
standard deviation. Similarly, for the kidney data, the
PME peak is employed for this purpose. Additionally,
linewidth of all resonances were measured to determine
whether the implemented methods cause peak broaden-
ing.

8. Spatial evaluation

The study assesses the spatial quality of the data using
metabolic mapping. An intensity map was obtained with
the FFT of the original data and the CS-LR methods im-
plemented with and without acceleration. The sharpness
of the image was evaluated by computing the image gra-
dient. To determine the sharpness and complexity of the
image, the Sobel method presented by Yu et al. [61] was
employed. Spatial information was estimated by comput-
ing the image gradient in both the horizontal and vertical
directions. Subsequently, the root-mean-square (RMS)
and its standard deviation of the edge magnitudes were
computed from the spatial information values for each
metabolite and method.
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FIG. 2. Plots of a voxel from brain 3! P-MRSI data to demonstrate the effect of acceleration and reconstruction on the spectra.
Panel (A) displays spectra of the FFT of the original data, the CS-LR methods without and with acceleration factors of 1.4,
1.9, 2.4, and 3. Panel (B) presents the plots of the normalized mean square error (NRMSE) for the concentration ratio of the
estimated metabolites with acceleration compared to the non-accelerated method.

III. RESULTS

Figure 2 presents the brain results obtained on the 10
healthy volunteers. Figure 2(A) displays the spectra ob-
tained from a voxel using different approaches, including
the original data, the CS-LR method without accelera-
tion, and with various acceleration factors (1.42, 1.93,
2.39, and 3.03) in combination with the LR approach.
Spectra are displayed without any apodization. Normal-
ized mean square error (NRMSE) in Figure 2(B) was
calculated to assess the accuracy of the ratio estimation
obtained with the CS-LR method with acceleration com-
pared to the CS-LR method without acceleration. The
computation was performed with the acceleration factor
of 1.11, 1.24, 1.42, 1.64, 1.93, 2.39, 2.92 and 3.03; corre-
sponding to 90%, 80%, 70%, 60%, 50%, 40%, and approx-
imately 30% of the fully sampled k-space. The reduction
in k-space sampling is associated with a linear decrease
in scan time, the resulting scan times were 33, 29, 26,
22, 19, 15, and approximately 12 minutes, respectively.
The NRMSE was computed on all the voxels, data points
correspond to the mean and SD values across the 10 sub-
jects. The application of the CS-LR approach led to a
substantial enhancement in the SNR of the spectra, and
is maintained for all acceleration factors. The NRMSE
exhibited a monotonic trend, closely resembling a linear
relationship with the acceleration factor. In the case of
ATP metabolites, the error rate was approximately 5%

at an acceleration of 1.11, increasing to 10% at an ac-

celeration of 3.03. The concentration estimation of Pi,
PME, and PDE presented an initial error rate between
7% and 10%, which escalated to a range of 13% to 17%.

Figure 3 displays the SNR measurements relative to
the PCr of the original data, and the CS-LR method
without acceleration, and with various acceleration fac-
tors combined. The figure also displays the width values
of the PCr peak for all 10 volunteers. Similar results are
presented for different metabolite resonances in Figure S1
for the width of Pi, ATP, and PME. The CS-LR meth-
ods resulted in a significant improvement of the SNR
ranging from two to three times compared to the orig-
inal data, without acceleration. This improvement was
observed uniformly across all participants. Although the
SNR exhibited some variation with a decreasing trend,
the CS-LR method with an acceleration factor of 3.03
maintained an SNR value of at least twice that of the
original data. No broadening of metabolite linewidth was
observed, as indicated by a constant line in the linewidth
values across all methods depicted in the figure.

Figure 4 displays the brain mapping of a-ATP for the
original data, and the CS-LR method, without and with
acceleration factors of 1.4, 1.9, and 3. The data are pre-
sented in a coronal plane as illustrated with anatomical
reference images. Along with the mapping, the gradi-
ent of the image is presented. The gradient was calcu-
lated from left to right and shows the intensity variation
between voxels. For the original data, and the CS-LR
method without and with an acceleration factor of 3,
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FIG. 3. A summary of the outcomes obtained from the group of 10 participants.

Panel (A) signal-to-noise ratio (SNR)

measurements relative to phosphocreatine (PCr) and Panel (B) the corresponding peak width of PCr for the FFT of the

original data, the CS-LR method without, and with various acceleration factors.

the gradient maps are presented in 3D plots. The results
present an improvement in metabolite signal through the
use of CS-LR reconstruction, while maintaining spatial
definition during acceleration. This observation is further
supported by the gradient maps in Figure 4(C), which
exhibit sharper edge measurements of the CS-LR recon-

celeration factors of 2.4 and 3.2 in combination with the
LR approach. The figure also presents NRMSE values
for the metabolic quantification, with a reduced number
of metabolites. Specifically, only ATPs, PME, and Pi
are observed on the spectra, and the acceleration was

extended to a maximum factor of 4. The analysis was
also performed with the same 31P-SPAWNN model than

struction in comparison with fully sampled FFT.
Table I presents the quantitative results for the ability
of the CS-LR method to enhance the complexity of ac-
quired information. The table reports combined vertical
and horizontal edge magnitudes using Sobel kernel. T-
tests were performed to determine significant differences
CS-LR method with each acceleration factor with respect
to the FFT of the original data. To correct for multiple
testing, the Bonferroni correction was applied to adjust
the significance threshold by o' = «/45, since 45 inde-
pendent t-tests were performed. The analysis of all ma-
jor metabolites (ATPs, PCr, and Pi) revealed significant
improvements in edge detection with the implementation
of CS-LR as opposed to inverse FFT reconstruction, re-
gardless of the acceleration factor used. Although the
SNR of PCr was already relatively high, similar trends
were observed but did not reach statistical significance
(p=2.0-1073).

Figure 5 provides analogous findings as the previous
figure, but applied to the kidney data. The Figure show-
cases maps of a-ATP intensity, its corresponding gradi-
ent, and an example of voxel spectra for the FFT of the
original data, the CS-LR method without, and with ac-

the brain, highlighting its robustness to low SNR.

IV. DISCUSSION

The current study examines the efficacy of the Low
Rank method in combination with Compressed Sens-
ing (CS-LR) for acceleration and reconstruction of 31P-
MRSI. A unique feature of the presented acceleration is
the use of different random patterns for each weighted
average. The original data were compared to data re-
constructed using the LR method alone, as well as with

data reconstructed using the LR-CS method with varying
acceleration factors. The utilization of acceleration has
important practical implications, allowing for significant
time savings and enhancing the feasibility of 3'P-MRSI in
clinical settings. The results reported in this research are
retrospective, obtained through a posteriori acceleration
of 3'P-MRSI data acquired from both brain and kidney
tissues. The acceleration was achieved by undersampling
k-space while maintaining a hard radius at the center of
k-space, which was fully sampled. The technique
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FIG. 4. Effects of CS-LR method on metabolic mapping. Panel (A) displays the reference anatomical images in the coronal axis.
Panel (B) exhibits maps of the signal intensity of a-ATP with its corresponding left-to-right gradient on panel (C). The first row
exhibits the FFT of the original data, while the succeeding rows display the reconstructed data using the CS-LR method. The
second row illustrates the CS-LR method without acceleration, while the third, fourth, and fifth rows correspond to the CS-LR
method with acceleration factors of 1.4, 2, and 3, respectively. Panel (D) depicts 3D plots of intensity profile corresponding to
gradient maps of panel (C) with the FFT of the original data (top), the CS-LR reconstruction without acceleration (middle),

and with acceleration of 3 (bottom).
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PCr a-ATP B-ATP ~v-ATP Pi
IFFT 0.84 £ 0.04 0.90 £0.04 0.87£0.04 0.92+£0.03 0.86 £ 0.06
LR no acc. 0.99 £0.10 1.07 + 0.05™* 1.07 £ 0.05*** 1.06 £ 0.05** 1.04 + 0.05**
LR acc. 1.11 0.99 £+ 0.08" 1.07 £ 0.05™** 1.08 + 0.05*** 1.06 £ 0.04*** 1.06 + 0.05**
LR acc. 1.24 1.00 + 0.08* 1.08 £ 0.05™** 1.07 £ 0.06™** 1.07 £ 0.06** 1.06 + 0.07*
LR acc. 1.42 0.99 £+ 0.09* 1.05 + 0.06™* 1.07 £ 0.05*** 1.05 £ 0.06** 1.05 + 0.09*
LR acc. 1.64 0.98 +£0.10* 1.06 + 0.06™** 1.06 £ 0.05*** 1.05 £ 0.06** 1.05 + 0.08**
LR acc. 1.93 1.01 £0.09** 1.06 £ 0.08* 1.06 £ 0.07** 1.06 £ 0.07** 1.09 £ 0.07***
LR acc. 2.39 1.00 £ 0.08** 1.05+0.07* 1.04 £ 0.05** 1.05 £ 0.07 1.06 £ 0.12**
LR acc. 2.92 1.03 £0.07** 1.08 + 0.09* 1.06 £+ 0.08** 1.07 £ 0.08* 1.06 £ 0.07**
LR acc. 3.03 0.99 + 0.09* 1.05 +0.10* 1.04 £0.10** 1.07 £0.10 1.07 £ 0.12*

TABLE I. Edges magnitudes RMS with their standard devia-
tions computed from the Sobel kernel. T-tests were performed
to determine significant differences CS-LR method with each
acceleration factor with respect to the FFT of the original
data. Bonferroni correction was applied to adjust the signifi-
cance thresholds by o’ = a/45, resulting in: * p < 1.1-1073,
*p<22-107% and *** p <2.2-107°.

leverages the elliptical weighted average to generate dis-
tinct random patterns for each average, consequently
maintaining a higher k-space coverage. Overall, the re-
sults indicate that 31P-MRSI acquisition can be reduced
to 12-15 minutes with an acceleration factor of 3 while
keeping comparable data quality. SPAWNN was able to
evaluate all spectra utilizing the same training model.
The LR methods employed in the study demonstrated
that a number of K = 5 components was optimal for
the specific application. A lower number of components
did not provide the model with sufficient information to
extract the essential components required for reconstruc-
tion, while a higher number resulted in the absorption of
noise into the final components, ultimately deteriorating
the results. The regularization factor A = 1- 1072 was
determined empirically in the present study. Specifically,
the value of A\ was iteratively increased from a smaller
value of A = 1-107°. For values of X less than 11073,
the reconstruction were observed to be noisy, and it was
difficult to extract spectral components. On the other
hand, when the values of A\ exceeded this threshold, the
reconstruction exhibited over-regularization, leading to
solutions that were almost independent of .

The results of our study illustrate the efficacy of the
CS-LR method in reducing noise in the acquired data, as
demonstrated by the enhanced SNR values presented in
Figures 2 and 3. Specifically, Figure 3(A) exhibited a 2-3
fold increase in SNR for brain spectra, computed with
respect to the PCr peak, while Figure 5 indicates a gain
factor of 1.5 SNR for kidney data, computed with respect
to the PME peak. Although SNR values fluctuated as

the acceleration factor varied, they remained markedly
higher than those of the original data. The benefits of CS
acceleration were thus maintained alongside the observed
improvements in SNR.

Figure 3 illustrates a noteworthy finding that the en-
hancement in signal-to-noise ratio (SNR) is not accompa-
nied by any increase in the linewidth of the phosphocrea-
tine (PCr) peaks. This observation was consistent across
different metabolite resonances, as demonstrated in Fig-
ure S1 for the Pi, ATP, and PME. Notably, the linewidth
of the metabolite peaks remained stable across subjects,
suggesting that the utilization of the CS-LR technique
does not impact the linewidth of metabolites, in con-
trast to other approaches that enhance sensitivity, such
as apodization and smoothing filters, which are associ-
ated with peak broadening. This conclusion is reinforced
by the results presented in Figure S1, which provide addi-
tional evidence for the stability of the peak width. Thus,
the use of LR technique offers the benefit of enhancing
SNR while maintaining the linewidth of the metabolite
resonance peaks, which allows more precise analysis.

The impact of the CS-LR methods on the accuracy of
quantification is assessed with the NRMSE, as shown in
Figures 2 and 5. The accuracy was evaluated by com-
puting the NRMSE for the concentration ratios, which
revealed a linear relationship between the quantification
error and the acceleration factor, and subsequently the
undersampling. The metabolites with high signal and
low spectral overlap, including the three resonances of
ATP and Pi, exhibited an error of less than 15% in the
ratio estimation with the removal of 2/3 of the k-space.

For acceleration factors below 2, the brain’s ATP, Pi,
and PME over the PCr and kidney’s ATP, Pi, and PME
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the metabolic ratio estimation with respect to the Pi for the ATP and the PME.

over the Pi showed errors below 10%, indicating good
agreement between the accelerated CS-LR data com-
pared to the non accelerated CS-LR data. However, for
an acceleration of 3 in the brain and between 3 and 4 for
the kidneys, the error estimation reached 15%. Metabo-
lites with lower signal levels and greater spectral over-
lap, such as PDE and NAD, displayed NRMSE values
as high as 30%. It is worth noting that the acceleration
also induced errors, as previously reported in the litera-
ture [36, 37, 40]. The loss of spatial information is due to
the loss of frequency information in the k-space, and re-
sults in a smoothing effect as evidenced in Figures 4 and
5. The loss of spatial information is a consequence of
the loss of frequency information in the k-space domain,
which leads to a smoothing effect, as depicted in Fig-
ures 4 and 5. Since the reconstruction is non-linear, the
loss of spatial information cannot be precisely quantified
or recovered [39, 41]. Additionally, the effectiveness of
the 31P-SPAWNN model in analyzing and reconstruct-
ing the MRSI data was demonstrated, as no adjustments
were required to analyze the voxels throughout the entire
dataset.

The results presented in Figure 4 illustrate the ef-
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fectiveness of CS-LR reconstruction in improving the
metabolite SNR while preserving the spectral quality
during acceleration. These findings are consistent with
the observed increase in SNR depicted in Figure 3 and
the spectra SNR improvement shown in Figure 2. The
CS-LR method succeeded in recovering signal attenua-
tion illustrated by the presence of the anatomical oral
cavity, which is discernible up to an acceleration factor of
2 as illustrated in Figure 4(B). Moreover, the 3D plots in
Figure 4(D) emphasize the observation of signal attenua-
tion at the center of the z-axis, with a clear reduction in
signal intensity. As acceleration is applied, the structure
becomes less evident, resulting in a smoothing effect and
loss of spatial resolution. Notably, the signal and gradi-
ent maps of the original data and their counterparts with
an acceleration factor of 3 display similar levels of infor-
mation.Furthermore, the images of the kidneys presented
in Figure 5 demonstrate the efficacy of the LR method
in enhancing signal and edge sharpness.

Table I displays the quantitative evaluation of edge
detection using the FFT of the original data and the CS-
LR methods. The CS-LR methods without acceleration
showed a significant improvement in edge sharpness for



all metabolites, except for PCr. The improvement in
edge sharpness was observed for all acceleration factors,
except for the v-ATP that did not reach statistical sig-
nificance for acceleration factor of 2.39 and 3.03 although
showing the same trend. No statistical significance dif-
ferences were found between the different acceleration
factors and the CS-LR method without acceleration, in-
dicating that the acceleration preserved edge sharpness.
However, an increase in standard deviation was observed
with increasing acceleration factor, indicating a decrease
in measurement precision, consistent with the less pre-
cise measures seen in the NRMSE for the concentration
in Figure 2.

The analysis of kidney data in Figure 5 yielded results
similar to those observed in brain data analysis. Appli-
cation of the CS-LR method resulted in improved SNR,
particularly for the low signal of ATP. The a-ATP inten-
sity map exhibited sharper signal resolution with clear
contrast on the gradient map. For the kidney data, an
acceleration factor of 3 resulted in higher signal resolu-
tion and a sharper gradient image than the original data.
Similar to the brain data, the NRMSE exhibited a linear
increase in error with acceleration, with an error of less
than 20% for measured metabolites at an acceleration
factor of 4 and less than 15% for an acceleration of 3.

The enhancement in SNR while keeping the linewidth
constant for all metabolite resonance peaks provides dis-
tinct benefits for more accurate analysis. The technique
confers significant advantages in terms of SNR gain, spec-
tral quality and image quality and sharpness. With ac-
celeration, the CS-LR method provides the potential to
acquire data at a faster rate, albeit with an inherent
tradeoff in spatial resolution and errors in metabolite
quantification. Our results demonstrate that up to an
acceleration of 2 for brain sequence acquisition and 3 for
kidney sequence acquisition, the spatial loss and quan-
tification errors remain within a 10% range. The abil-
ity to accelerate acquisition is highly desirable in clinical
settings to ensure patient comfort and avoid lengthy ac-
quisitions that could degrade data quality. This is par-
ticularly relevant in the context of the kidney scan, as
the measurement of metabolite concentration in organs
is crucial for ongoing research evaluating their viability
for transplantation. Thus, a fast acquisition is a critical
requirement in such applications.

A potential aspect of the CS-LR method that has yet
to be explored in this study is the potential to utilize the
acceleration to achieve an acquisition with the same ac-
quisition time but at a higher resolution. In our ongoing
research, we intend to modify the FID-MRSI sequence
to include the acceleration into the acquisition proto-
col. One limitation of our experiment was the lack of
multi-channel capability in the 3'P-MRSI coil. Incorpo-
rating multi-channel measurements from multiple spatial
points, coupled with the coil sensitivity profile, would

10

have provided more information for reconstruction and
possibly improved results.

In a recent study by Santos-Diaz et al. [62], CS was
combined with echo-planar spectroscopic imaging (EPSI)
to accelerate the acquisition of dynamic 3'P-MRSI data.
The researchers successfully applied CS to accelerate the
acquisition of an 8 x 8 matrix by a factor of 2.7. In
another study by Santos-Diaz et al. [63], the authors
compared the performance of the CS model and the
LR model, both in combination with a flyback EPSI se-
quence. The study demonstrated that the spectral qual-
ity was well preserved at accelerations of 2 and 3 using
two CS reconstruction methods (one using L1 norm min-
imization and the other using low-rank Hankel matrix
completion). The study demonstrated that the LR ap-
proach for reconstruction outperformed the CS methods
at up to three-fold acceleration. This is in line with our
results using combined CS-LR reconstruction.

In summary, we have presented a novel acquisi-
tion/reconstruction scheme, CS-LR, for the FID-MRSI
sequence. A distinguishing aspect of this CS-LR method
is the implementation of distinct random undersampling
patterns for each weighted average. This approach of
random k-space undersampling accelerates scan time and
enables faster acquisition. Additionally, the reconstruc-
tion method has demonstrated remarkable efficiency in
enhancing the SNR while preserving the spectral and
spatial quality of the data at 3T.
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FIG. S1. This supplementary figure presents the peak width measurements of Pi, ATP, and PME. These peak width mea-
surements were obtained using the same experimental setup as Figure 3, with the FFT of the original data and the CS-LR
reconstruction without and with acceleration. The data were acquired from the same 10 volunteers and the peak widths were
computed using the same fitting procedure. These measurements provide additional insights into the impact of the reconstruc-

tion methods on the spectral peaks.
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Part IV

TRANSPLANTATION APPLICATIONS: PHOSPHORUS
SPECTROSCOPIC IMAGING FOR PRE-TRANSPLANTATION
KIDNEY PRESERVATION AND VIABILITY ASSESSMENT






TRANSPLANTATION ASSESSMENT BY MRI

"I learned that myth doesn’t mean a lie; it means a traditional story that tells you something
about people and their worldview and what they hold sacred.”
- John Green Looking for Alaska
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9.1 INTRODUCTION

The field of organ transplantation has seen significant growth since its inception in the 20*™ cen-
tury. The growing demand for transplantation has been met with improved clinical outcomes
and higher survival rates, leading to a more reliable procedure[112]. The objective of transplant
programs is to maximize the utilization of available organs. The success of transplantation is
dependent on the quality of the donor graft, and chronic rejection or graft failure can often
occur after an acute rejection episode [113, 114]. In order to prevent wastage and the use of
organs that may lead to primary graft dysfunction, it is crucial to have a dependable evaluation
of stored organ viability [115].

Magnetic Resonance Spectroscopy (MRS) can provide both a pre-transplant evaluation and
a follow-up procedure [116]. MRI and MRS are non-invasive techniques that offer anatomical
and metabolic information about the patient. These techniques are important as biopsy carries
risks for the subject and is prone to sampling errors [117]. MRI has excellent soft tissue contrast
and can detect organ function and morphology with high resolution, without being limited
by the depth of tissue penetration [118]. MRI-based methodologies can not only identify the
infiltration of immune cells at rejection sites but also evaluate organ dysfunction resulting from
acute rejection.

Transplantation has become a preferred treatment option for patients suffering from end-
stage organ dysfunction due to its expanding pool of transplantable solid organs, including the
liver, kidney, heart, pancreas, stomach, and lungs [119]. Despite its success, the field of trans-
plantation faces two major challenges. The first challenge is the high demand for transplants,
which exceeds the current supply of available organs. The second challenge is the persistent
issue of chronic allograft rejection, which remains a leading cause of mortality among trans-
plant patients. Efforts have been made to expand the donor pool by considering organs from
marginal donors or donors after circulatory death (DCD). This includes those from donors over
60 years of age without any pre-existing conditions and those between 50 and 60 years of age
with specific conditions such as arterial hypertension or a history of cerebrovascular disease
with no additional risk factors [120]. However, the use of marginal organs can result in pre-
existing graft damage and increases the risk of ischemia-reperfusion injury, leading to delayed
graft function, acute rejection, and poor long-term survival [121, 122]. In order to address these
challenges, two areas of research stand out: early diagnosis of acute rejection and continued
monitoring of transplanted organs. Early diagnosis would provide tools to expand the donor
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pool by evaluating marginal organs, and improve the success of transplantation by reducing
the risk of acute rejection. Additionally, given the limited success of retransplantation, there is
also a need for improvement in the diagnosis and management of chronic allograft rejection
[123].

This chapter will begin with a comprehensive literature review on the application of phos-
phorus magnetic resonance spectroscopy to the field of organ transplantation, conducted as
part of an assessment for a doctoral course on Advanced biomedical imaging methods and in-
strumentation. The subsequent section will focus on the viability assessment and preservation
of kidneys before transplantation using MRIL This discussion will provide an introduction to
the succeeding chapters, namely Chapter 10, Chapter 11, and Chapter 12.

31

9.2 REVIEW OF TRANSPLANT ORGANS ASSESSMENT WITH P-MRS

9.2.1 Transplant Rejection: Diagnosis and Outcomes

9.2.1.1 Acute rejection

The process of acute allograft rejection occurs when the transplant recipient’s immune system
identifies the newly transplanted organ as a foreign entity and launches an attack against it.
This reaction is rapid and can occur within the first two weeks following transplantation, and it
occurs in the absence of immunosuppression [124]. Macrophages and leukocytes, among other
immune cells, infiltrate the graft and cause cell necrosis, vessel thrombosis, and a loss of organ
function. T-lymphocytes and NK cells also directly damage myocytes, endothelial cells, and
connective tissue [125]. The use of immunosuppressant medications can help to prevent acute
rejection by reducing the activity of the immune system. Despite the use of such treatments,
however, the graft can still undergo chronic rejection. Research has shown that an episode of
acute rejection increases the likelihood of chronic rejection later on [126]. Despite advances in
reducing early acute rejection and improving the efficacy of immunosuppressive treatments,
the incidence of chronic rejection and late graft loss has not been significantly altered [127].

9.2.1.2 Chronic rejection

Chronic rejection is a significant issue in organ transplantation as it is the leading cause of late
graft loss, leading to a gradual decline in graft function and a reduction in long-term survival
rates [128]. The factors affecting the organ and resulting in rejection are numerous, includ-
ing ischemia which negatively impacts the mitochondrial antioxidant system by reducing the
activity of antioxidant enzymes, such as manganese superoxide dismutase, and depleting es-
sential substrates such as glutathione, making cells more susceptible to oxidative stress during
reperfusion [129-132]. Reperfusion, the reintroduction of oxygen after a period of ischemia,
results in an increase in reactive oxygen species production, a decrease in ATP production, and
cell death. The formation of these species is exacerbated by glutathione depletion, leading to
further oxidative damage to thiols and hydroxyl radical formation. Additionally, reactive oxy-
gen species produced during reperfusion may cause damage to proteins, lipids, and DNA, lead-
ing to further mitochondrial disruption, sterile immune inflammation, and cell death through
necrosis and apoptosis [133, 134]. In heart transplantation, ischemia and reperfusion injury are
inevitable due to the hypothermic preservation, warm ischemia, and reperfusion of the graft.
These events may contribute to early graft failure and reduce the longevity of the donor heart.
Preservation fluids are designed to limit oxidative stress and calcium overload, with cold is-
chemic storage being the cornerstone of myocardial preservation. However, hypothermia on
its own is associated with cellular swelling and intracellular acidosis [135].
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9.2.1.3 Rejection diagnosis

The evaluation of acute and chronic rejections in organ transplantation requires several tools.
The clinical gold standard for diagnosing rejection is biopsy, where a small tissue sample from
the graft is analyzed through hematologic analysis to determine immune cell infiltration and
pathological changes [136]. Currently, biopsy is the only technique capable of differentiating
between antibody-mediated rejection and acute cellular rejection. Despite its proven low risk,
such as in endomyocardial biopsy, there is still a finite risk of morbidity and mortality [137, 138].
Furthermore, the procedure is invasive and susceptible to sampling errors due to limited tissue
size and location [118]. Biopsy also has limitations. For instance, the presence of T cell-mediated
rejection or antibody-mediated rejection in a kidney transplant biopsy sample is only inferred
from the identification of nonspecific lesions in histology. These assessments are probabilistic
and the true disease state is often uncertain as there is no external method to assess the accuracy
of the diagnosis [139].

Acute and chronic rejection pose a significant risk to allograft survival. Thus, implement-
ing reliable methods for organ viability assessment, prior to transplantation, are crucial in im-
proving the viability of an allograft after transplantation. The next sections will explore the
possibilities of assessing the viability of an organ before transplantation and its recovery after
transplantation.

9.2.2 Assessing organ viability before transplantation with 31 P-MRS

9.2.2.1 Evaluation of organ viability

Organ transplantation outcome can be improved through effective evaluation of the quality of
the organ to be transplanted. Currently, the selection of an organ is based on subjective criteria,
such as the age and medical history of the donor. An ideal donor is considered to be under the
age of 40, have died from trauma, be in hemodynamic stability at the time of procurement, have
no underlying chronic liver lesions or steatosis, and not have any transmissible diseases [140,
141]. Such criteria have been associated with better transplant outcomes and reduced risk of
initial organ dysfunction [142]. However, it is important to note that an ideal donor does not
guarantee an ideal graft, as post-harvest factors, such as ischemia, can also affect the quality of
the graft [143]. Donors who do not meet these criteria are typically discarded, but can still be
considered as extended criteria donors. The use of extended criteria donors increases the risk
of poor graft function, graft failure, or transmission of disease [144]. The possibility of a more
thorough evaluation of grafts from extended criteria donors could help to expand the pool of
available organs while reducing the risk of complications associated with their use.

9.2.2.2 Kidney viability

The study of the kidney using 3'P magnetic resonance spectroscopy (MRS) has a long and
storied history, beginning in the late 1970s with the landmark study performed by Sher et al.
[145, 146]. This pioneering work demonstrated the depletion of high energy phosphates in the
kidney during cold ischemia and its subsequent recovery after reperfusion, and suggested that
MRS could be used to assess the kidney during cold storage.

In the decades that followed, advances in MRS technology allowed for more detailed and
nuanced assessments of kidney viability. One such study was performed by Bretan et al. [147]
in the early 1990s. This study used 3'P-MRS analysis to investigate the impact of cold static
storage (CSS) on 4o kidneys prior to transplantation, using a 1.5 Tesla magnetic field. The au-
thors were able to observe the MRS parameters impact on the kidney and found no correlation
with the CSS (p=0.74). However, the results showed that specific observed metabolites, x-ATP
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and NAD+, were only present in 11 of the 40 kidneys studied, but their presence was asso-
ciated with the best renal function on the post-operative day (POD). In addition, the authors
observed that only 36% of patients with detectable x-ATP or NAD+ required dialysis, while 71%
of patients without detectable metabolites required dialysis. The authors postulated that while
the observation of a-ATP and NAD+ is useful for qualitative purposes, it is not quantitative.
Kidneys that exhibit higher PME/Pi ratio, which is linked to better renal function, are charac-
terized by observable levels of x-ATP or NAD+. The authors observed that a lower PME/P1i ratio
is associated with prolonged non-function caused by acute tubular necrosis (ATN) (p<0.001).
Furthermore, the PME/P1i ratio has a correlation (p<0.002) with renal function and the need for
dialysis post-operative day (POD). This ratio can be used as a quantitative indicator of viability,
with a ratio less than 0.5 indicating the need for dialysis, and a ratio greater than 0.5 indicating
the lack of need for dialysis. The PME/Pi ratio has been found to be a sensitive and specific
parameter for assessing renal function.

A study by Hené et al. [148] investigated deeper into the PME/Pi ratio using a 3'P-MRS
study on kidneys preserved with non-phosphate fluid. The study included 42 kidneys, with 5
coming from living related donors (LRD), 28 from 22 heart beating donors (HBD), and 9 from 6
non-heart donors (non-HBD). The results showed that all recipients of kidneys from LRD had
immediate postoperative function, while delayed function was observed in 21% of the HBD
group and 56% in the non-HBD group. NMR assessment revealed that the kidneys from LRD
had a higher mean PME/Pi ratio compared to the kidneys from the HBD and non-HBD groups
(p<0.0T). Both the HBD and non-HBD groups whose kidneys were from patients with ATN
had a lower PME/Pi ratio compared to the LRD group (p<0.05). The authors also conducted a
measurement of the time evolution of the PME/Pi ratio and found that kidneys from the HBD
group and two non-implanted kidneys had an inverse correlation with time, showing a linear
decrease in the ratio. This observation concurs with the findings of Bretan et al. [147] regarding
the gradual decay of high-energy phosphate over time. The primary conclusion of this study
highlights the relationship between high-energy phosphate and graft dysfunction caused by
ATN. The authors suggest that transplanting an organ with a low PME/Pi ratio in patients with
other risk factors could potentially lead to complications, and it may be wise to avoid such a
transplant.

9.2.2.3 Liver viability

In addition to the ongoing research on the viability of kidneys, the liver viability was also being
evaluated using 3'P-MRS. While the kidney had artificial support available, the liver lacked this
support until recent times, requiring immediate graft function to treat end-stage liver diseases.
The development of the first artificial support, known as the Molecular Adsorbent Recirculating
System (MARS), began in the 1990s and became widely available for clinical use in 1998 [149].
The system is based on the principle of albumin dialysis [150]. Before this support was available,
researchers sought to evaluate liver viability before transplantation by testing the integrity of
adenine nucleotide composition, which determines the organ’s intrinsic capacity to regain its
original function. This was done through high-performance liquid chromatography but the
technique was time-consuming and carried the risk of damaging the organ through biopsy.

In 1997, Wolf et al. publish a paper in which they assess donors liver before transplantation
using 31P-MRS as an alternative to the biopsy [151]. Their analysis revealed a positive correla-
tion between the PME to NAD+/NADH ratio and fibrinogen concentrations in the three days
following transplantation (P<0.001, P<0.01, and P<0.01, respectively). The authors observed
that the presence of 3-ATP in the spectrum was significantly correlated with several indicators
of hepatocellular graft damage and liver metabolic function, such as postoperative bilirubin
levels and prothrombin time. Based on their observations, they concluded that although a cor-
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relation between PME and postoperative fibrinogen was found, PME in human livers is not
a reliable prognostic indicator of postoperative organ function. They also noted that the pres-
ence of ATP was of prognostic significance for prothrombin time, bilirubin, and fibrinogen after
transplantation.

9.2.3 Assessing organ recovery after transplantation with 31 P-MRS

9.2.3.1 Post-transplantation evaluation

The advancements in post-operative medical treatments have resulted in significant improve-
ment in transplantation outcomes [152]. In order to monitor the progress of the graft, various
techniques have been developed, including biopsy, immunological monitoring, computerized
tomography, ultrasound, and MRI and MRS [117]. These techniques play a crucial role in en-
suring the successful integration of the graft with the recipient’s body. MRI is a commonly
used method for monitoring transplanted organs. The method is based on the measurement of
changes in Ty and T, values, which are indicative of the state of the transplant. An increase in
these values and an enlargement of the organ volume have been reported in cases of allograft
rejection, including kidney transplantation [118]. By providing insight into the progress of the
transplant, MRI plays an important role in ensuring the success of the transplantation process.

9.2.3.2 Kidney evaluation

In 1987, Shapiro et al. published a study on the use of 3! P-MRS to evaluate acute renal dysfunc-
tion in rat kidney transplantation [153]. The study aimed to investigate the causes of renal allo-
graft rejection, including ischemia, cyclosporine toxicity, and ureteral obstruction. The results
showed that rejected kidneys exhibited an increase in the inorganic phosphate signal (19.8 a.u.
vs 6.6 a.u., p<0.01) and a decrease in 3-ATP (8.6 a.u. vs 17.9 a.u., p<0.01), which was confirmed
through histological analysis. The intercellular pH did not show any significant differences
from the control group in cases of rejection. In the group subjected to ischemia, an increase
in inorganic phosphate (21.7 a.u vs 6.6 a.u, p<0.01) and a decrease in 3-ATP (7.6 a.u vs 17.9
a.u, p<0.01) were observed, along with a decrease in intercellular pH (p<0.01). The kidney from
the ureteral obstructed group showed an enormous increase in phosphodiesters and urine phos-
phate (44.5 a.u vs 13.6 a.u, p<0.01), which the authors suggest could be linked to the increase in
net urine phosphate caused by the obstruction. Interestingly, no distinguishable changes were
observed in the spectroscopy of the kidney subjected to toxic doses of cyclosporine. This high-
lights the importance of using 3! P-MRS as a tool to better understand the mechanisms of renal
dysfunction in transplantation and to develop more effective treatments for rejection.

The study by Boska et al. [154] evaluated the feasibility of obtaining high-quality spatially
localized 3P spectra in humans. The research was conducted on 14 volunteers with healthy
kidneys and 6 patients with functioning kidney transplants for more than a year. The results
revealed no statistically significant differences in the concentration of major peaks, such as
the ATP resonances, PMD, PDE, and Pi, between the two groups. Grist et al. [155] conducted
a similar study by performing 3'P-MRS on patients with functioning kidney transplants and
those undergoing biopsy for suspected allograft dysfunction. Out of the 21 spectroscopy results
obtained, 14 showed evidence of rejection, while 7 showed no evidence of rejection. In the case
of patients with signs of rejection, biopsy results indicated that 5 had mild rejection, 5 had
moderate rejection, and 4 had severe rejection. The results showed a statistically significant
difference in the mean ratio of PDE/PME (1.43 for the rejecting group vs 0.55 for the control
group, p=0.024) and Pi/ATP (1.1 for the rejecting group vs 0.35 for the control group, p=0.017).
The study also revealed that the three patients with no evidence of rejection had cyclosporine
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toxicity and a higher ratio of PDE/PME, but it was not statistically significant (0.79 vs 0.55,
p=0.085). The authors reported that the elevation of the Pi/ATP ratio was consistent with animal
models and was a sensitive indicator of tissue ischemia. However, they also noted that the low
pH in urine was responsible for the chemical shift of Pi, resulting in overlap between Pi and
PDE. This caused an increase in the PDE peak in urine Pi, but the authors found no signs of
obstruction in the patients, contradicting the assumption in Shapiro’s paper.

9.2.3.3 Liver evaluation

In early study on liver assessment after transplantation, Sumimoto et al. paper [156] investi-
gated rat liver immediately after orthotopic transplantation. They studies rats livers after trans-
plantation, and compared the ATP levels with bile flow. Four hours after the translation, livers
exposed to warm ischemia (0-min, 15-min and 30-min) had a lower ATP resynthesis with a con-
centration of 2.27 —mol/g for the livers with no warm ischemia, and 1.79 —mol/g and o.19
umol/g for the livers with warm ischemia. The authors also observed a decrease of bile flow
rate with 2.84 ml/g/hr for liver with no warm ischemia, and 1.98 ml/g/hr and 0.46 ml/g/hr
for the others group respectively. The authors wrote that the results were an indicator that the
bile rate flow recovery and ATP resynthesis, and that they are correlated with the survival rate
of the animals.

31P_MRSI was used to study the liver regeneration and energetic changes in rats following
a hepatic radiating therapy and hepatocyte transplantation [157]. In their paper, Landis et al.
investigate the metabolic changes on rodents that occur in the treatment of radiation-induced
liver disease (RILD). The treatments studied were partial hepatectomy (PH), PH with hepatic
irradiation (PHRT), and PHRT with hepatocyte transplantation (HT). Radiation therapy is used
as treatment of solid tumours, but has limited usage on metastatic liver cancers as it has the
potential of inducing complication with radiation-induced liver disease. The hepatocyte trans-
plantation is proposed as treatment of RILD. The authors highlights the lack of early diagnostic
for RILD, as symptoms appear in late stage, and emphasise that the need to monitor the success
and efficacy of HT. They observed that ATP/Pi ratio was reduced within 24 h of PH and relate
the significance of ATP/Pi ratio as a reliable index of the hepatic cytosolic energy status. HT has
a gradual normalization of ATP over time, meaning that it restored the bioenergetic reserve and
the liver function. The reduced ATP/Pi combined with the normalization of ATP levels in the
PHRT-HT group suggested that the transplanted hepatocytes is able to restore the metabolic
function and proliferate in time. The authors conclude that the results suggested the possibility
of using 3'P-MRSI to monitor RILD and its improvement after transplantation.

9.2.4 Review conclusion

31P-MRS and 3'P-MRSI represent powerful tools for investigating in vivo energy metabolism.
Their development over the years has demonstrated their potential for application in the field
of transplantation. While biopsy remains the gold standard for assessing graft status, its use
is limited and invasive. On the other hand, phosphorus magnetic resonance spectroscopy pro-
vides a non-invasive approach for monitoring the status of transplanted organs and evaluating
the health status of donor organs. 3'P-MRS has shown promising results throughout the trans-
plantation procedure, and has the potential to become a future gold standard in this field.
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9.3 KIDNEY PRESERVATION AND AND PRE-TRANSPLANT ASSESSMENT BY MRI
9.3.1 Organ shortage and marginal grafts transplant

As outlined in the introduction, organ transplantation is the preferred mode of treatment for
end-stage disease; however, it is afflicted by a critical shortage of available organs. Figure 41
provides statistical information on the number of individuals on the organ transplant waiting
list in Switzerland, the number of fatalities that occurred while awaiting transplantation, and
the total number of successful transplantations that were carried out in the country in 2022.
These figures comprise both deceased and living donor donations.
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Figure 41: Number of persons on the waiting list (at least one day), number of deaths on the waiting list,
and number of transplants in Switzerland in 2022 by organ (including living donor donations).
Individuals who were on the waiting list for more than one organ are included in the corre-
sponding waiting list for each organ but are only counted once for the overall total. Likewise,
a combined transplantation involving multiple organs is counted for each relevant organ but
only counted once for the overall total [22].

This information is crucial in enhancing comprehension of the present state of organ trans-
plantation in Switzerland and the demand for organs. Of particular concern is the situation
with respect to end-stage renal disease (ESRD), as the number of patients on the kidney wait-
ing list is four times greater than that of any other organ. ESRD is a condition estimated to affect
a minimum of two million individuals worldwide [158]. The limited availability of organs for
transplantation forces many ESRD patients to rely on dialysis or face poor survival rates, with a
5-year survival rate of only 40%-50% and costs up to 10 times higher than transplantation [159].
To address the shortage of available organs, marginal donors are being considered. This donor
pool has been expanded beyond standard-criteria donors to include extended-criteria donors
(ECD) and donation after circulatory death (DCD) donors, also known as marginal donors [160,
161]. Marginal donors are defined as individuals over 60 years of age or over 50 years of age
with a history of high blood pressure, creatinine levels greater than or equal to 1.5mg/dL,
or death due to a stroke [162]. However, the usage of marginal donors is limited by the lack
of a reliable non-invasive means of determining kidney viability. Although the organs from
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marginal donors have a better survival rate than dialysis [163], their usage is complicated by a
higher rate of delayed graft function (DGF) [164] and acute rejection [159]. During the trans-
plantation procedure, the organs are subjected to several stresses, including those associated
with ischemia-reperfusion injury (IRI) because of the organ’s reperfusion after a delay of cold
or warm ischemia. Unfortunately, marginal organs are highly vulnerable to IRI and are at risk
of transplant failure and subsequent poor long-term survival [159, 164].

9.3.2 Ischemia-Reperfusion Injury

The procurement of organs is inherently linked to ischemia-reperfusion injury (IRI), which
occurs when the blood supply to a tissue is obstructed for several minutes to hours and then
restored. IRI is associated with an increased likelihood of delayed graft function, acute graft
rejection, and graft loss [121, 122]. Currently, the methods employed to reduce IRI during renal
transplantation involve the use of optimized preservation solutions and cold storage of kidneys
during the peritransplantation and transportation period [165]. However, these techniques have
reached their maximum potential, and prolonged periods of cold ischemia (> 24 h) are still
associated with acute tubular necrosis (ATN), delayed graft function, and poor graft survival
[166-168].
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Figure 42: Schematic illustrating the principal components involved in ischemia-reperfusion injury (IRI),
with the ischemic phase in blue and the reperfusion phase in red [169]

According to current consensus, human kidney tissue that experiences ischemia lasting more
than 30 minutes is predisposed to further injury upon reperfusion. Although the majority of
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the damage occurs during reperfusion, ischemic cells will die if blood flow is not restored. Fig-
ure 42 presents a schematic diagram that depicts the primary constituents implicated in the
phenomenon of ischemia-reperfusion injury.

During the ischemic phase, the depletion of ATP inhibits mitochondrial Na* /K™ ion chan-
nels, which results in a decrease in mitochondrial membrane potential (AY¥,y), an increase in
mitochondrial inner membrane permeability, an influx of calcium ions, and subsequent swelling
of mitochondria. Inner membrane permeability also alters the redox state by oxidizing pyridines
and thiols and modifying the reduced/oxidized of NADH/NAD+ ratio [169—171]. Ischemia also
affects the mitochondrial antioxidant system by reducing the activity of antioxidant enzymes
rendering cells more susceptible to oxidative stress during reperfusion [129, 130, 132, 172]. The
deprivation of oxygen promotes a shift to anaerobic respiration, which generates lactate and
causes a decrease in intracellular pH. The low pH also inhibits the opening of the mitochon-
drial permeability transition pore (mPTP) [173]. Upon reperfusion, the electron transport chain
is restored, resulting in the normalization of intracellular pH and AY,,, and a significant influx
of Ca?" into the mitochondrion. The reperfusion is characterized by an increase in reactive
oxygen species (ROS) formation, a decrease in ATP production, and cell death. Reintroduction
of O; at reperfusion may lead to significant ROS production, worsening the oxidation of thiols
and hydroxyl radical (OH) formation. ROS produced during reperfusion may also damage pro-
teins, lipids, and DNA, resulting in further mitochondrial disruption, sterile immune activation
[134, 174], and necrotic interaction of a dysfunctional respiratory chain with oxygen during
reperfusion [175].

9.3.3 Measuring IRI with 31 p-MRSI

Section 9.2.2 described how 3'P-MRS can be utilized to provide valuable insights into the ener-
getic metabolism of kidneys. As detailed in Chapter 4, phosphorus spectroscopy allows for the
detection of signal contributions from various metabolites, including ATP, Pi, NAD+, NADH,
PME (which contains cell membrane precursors, PCh and PE), and AMP. During cold ischemic
conditions, oxidative phosphorylation ceases, and ATP levels rapidly decrease, while NAD+,
NADH, and PME signals remain stable. The PME/P1i intensity ratio measured during cold stor-
age before transplantation serves as a critical biomarker for graft viability[24]. In particular,
viable cells should be able to rephosphorylate AMP to ATP, especially when the PME reserve
is abundant. Furthermore, a reduction in PME and an increase in phosphodiesther levels reflect
the degradation of cell membrane phospholipids [25]. Therefore, monitoring PME levels can
provide valuable information about both cell membrane integrity and AMP storage.

NAD+/NADH plays a significant role in the mitochondrial mechanism against reactive oxy-
gen species (ROS) [176]. During prolonged ischemia, the efficacy of the antioxidant system
progressively declines, which can be detrimental to the cell during reperfusion that induces a
burst of ROS [177]. Notably, the production of ROS and the deregulation of mitochondrial mem-
brane permeability, both reflected by the NAD+/NADH ratio, are major factors for cell death
and apoptosis after reperfusion [178]. In human kidney transplantation, a measurable level of
NADH during cold storage has been linked to better post-transplantation function [147]. The
measurement of the NAD+/NADH ratio is feasible in the human brain and may also be achiev-
able in the kidney [179].

MRI is widely accepted as a diagnostic tool for identifying renal abnormalities, including
tumors and cystic lesions [180]. Renal perfusion can be evaluated using dynamic MRI with the
first passage of a bolus of gadolinium (Gd) [181]. Abnormal uptake of Gd may indicate arterial
stenosis, glomerular filtration dysfunction , and ischemic kidney [182, 183]. The assessment
of renal filtration function is not possible in isolated perfused kidney due to the low systolic
pressure, which is insufficient for glomerular filtration. However, microcirculation anomalies
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of the cortex and medulla caused by ischemic shunting effect [184] can be detected, providing
a valuable indicator of ischemia [185].

9.3.4 Organ preservation with ex-vivo machine perfusion

The significance of energy metabolism, which is responsible for providing energy to living
cells to maintain their viability, has been recognized in organ transplantation [186]. As a result,
present-day preservation techniques focus on maintaining the energy-producing machinery
of the organ and limiting the rate of energy depletion [187, 188]. When the energy reserves
fall below a critical threshold, the ensuing damage becomes irreversible [189]. Static cold stor-
age remains the most widely used approach for allograft preservation, with novel preservation
methods involving machine perfusion that has emerged in recent years. Hypothermic machine
perfusion without oxygen has been demonstrated to delay graft function and enhance 1- and
3-year graft survival compared with static cold storage in kidney transplantation [190]. Hy-
pothermic oxygenated perfusion has also been shown to improve the quality of organ from do-
nation after cardiac death and donation after brain death donors by preventing the development
of post-transplantation complications [191]. Chapter 10 will present our study of oxygenated
hypothermic storage with the assessment of cellular metabolic energy using 3! P-MRSL

Recent studies have shown that preserving organs at more physiologically relevant tempera-
tures (37 °C) can reduce injuries related to preservation and improve the outcomes of marginal
grafts [192]. Normothermic perfusion of kidneys allows for high metabolic activity by providing
a continuous flow of warmed, oxygenated perfusate with nutritional substrates, which enables
reconditioning and repair protocols [193]. The use of a red blood cell-based plasma-free solution
to perfuse marginal kidneys at 37 °C reduced the need for dialysis within the first 7 days com-
pared to static cold storage [194]. However, the availability and cost of a blood perfusion system,
the complexity of the heating system, tight pH and glucose control, red blood cell hemolysis,
and the risk of infection limit the use of organ perfusion at 37 °C [195]. Perfusion of kidneys
at sub-normothermic temperatures (22 °C) has been proposed as a more practical alternative
to perfusion at 37 °C. Furthermore, in a DCD porcine model, perfusion at 22 °C using a hu-
man plasma mimetic reduced acute tubular necrosis compared to perfusion at 15 °C and 37 °C.
Thus, 22 °C may be the optimal temperature to protect against kidney IRI and a more feasible
approach. Prior to transplantation, perfusion at 22 °C promoted mitochondrial respiration and
ATP stores in liver grafts, but viability assessment is yet to be well-defined [196]. Chapter 11
will describe our study on subnormothermic kidney perfusion at a temperature of 22 °C with
a corresponding assessment of metabolism using 3TP-MRSL

Hydrogen sulfide (H,S) is a colorless gas that exerts toxicity to humans and most animals
by inhibiting cellular respiration. However, endogenously produced H;S has emerged as a vital
signaling molecule that provides protection against renal ischemia-reperfusion injury [197],
lowers blood pressure [198], and prevents neurodegeneration [199]. H,S also exhibits anti-
inflammatory and antioxidant properties, which limit inflammation, reduce reactive oxygen
species (ROS) formation, and prevent apoptosis. These properties have been shown to be cy-
toprotective in cardiovascular diseases [200]. In vitro studies have demonstrated that H,S re-
versibly reduces mitochondrial O, consumption and mitochondrial membrane potential [201].
Furthermore, ex vivo experiments revealed that H,S reduces O, consumption and total ATP
content in isolated perfused kidneys [202]. In the context of transplantation, pharmacologically
reducing the demand for oxygen via oxidative phosphorylation is a promising strategy for min-
imizing unavoidable hypoxia-induced injuries, such as ischemia/reperfusion, and improving
organ preservation. In Chapter 12, we present our study on the utilization of H;S for organ
preservation.



ANALYSIS OF EX-VIVO KIDNEY GRAFT VIABILITY

"If it takes a little myth and ritual to get through a night that seems endless, who among us
cannot sympathize and understand ?"
- Carl Sagan, Cosmos
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10.1 SUMMARY

Chapter g discussed the organ shortage crisis and the potential to expand the donor pool by con-
sidering marginal donors who do not meet the standard criteria for transplantation. However,
the use of marginal donors is hindered by their poor outcomes. As highlighted in the earlier
section of the chapter, conventional histological evaluation of procurement biopsies lacks pre-
dictive power for post-transplant outcomes and may deter the use of kidneys that are otherwise
viable for transplantation. Therefore, phosphorus spectroscopy was introduced as a valuable
method for evaluating high energy metabolism and assessing the viability of organs. Our re-
search on the analysis of perfused organ with 31 P-MRSI is presented in the article Section 10.2.

In this article, we presented the experimental setup used to evaluate kidney viability. Our
group employed a machine capable of perfusing kidneys, which is compatible with MRI tech-
nology. The perfusion machine is constructed of non-magnetic materials and is a pneumatically
driven and controlled system. During MRI acquisition, the machine is dismantled, leaving only
the perfusion module connected to the drive module, which is kept outside the Faraday cage
of the MRI scanner to avoid any potential interferences. The perfusion is pulsatile, and the pH
and pCO; levels are maintained constantly by gazometry. This hypothermic pulsatile perfusion
system (HPP) was developed fully at the Geneva University Hospital (HUG) and is currently
the only system in the world that is MR-compatible, includes MRI and 3'P-MRS acquisition
capabilities, and is compatible with organ recovery procedures. In this study, porcine kidneys
underwent either no warm ischemia, 30 minutes of warm ischemia, or 60 minutes of warm
ischemia before being placed in the HPP system to simulate donation after circulatory death
(DCD). Kidney function was assessed through measurements of high energy metabolites using
31P-MRSI, Gadolinium elimination, and histopathological scoring.

The present study was successful in detecting ischemia-reperfusion damage through histo-
logical analysis of biopsy samples. Furthermore, a correlation between the descending slope of
gadolinium perfusion elimination and histological damage scores was established. Nonetheless,
amajor constraint was encountered with a lengthy acquisition time (nearly 1 hour) which could
potentially hinder the application of this diagnostic technique in a clinical environment. Addi-
tionally, under hypothermic perfusion conditions, we were able to calculate the time constant
of ATP and PME levels, and our results suggest that ATP remains stable as long as adequate
precursor (evaluated by PME level) is present.
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10.2 EX-VIVO ANALYSIS OF KIDNEY GRAFT VIABILITY USING

NANCE SPECTROSCOPY

Original Basic Science—General

P MAGNETIC RESO-

Ex Vivo Analysis of Kidney Graft Viability Using

31P Magnetic Resonance Imaging Spectroscopy

Alban Longchamp, MD, PhD," Antoine Klauser, PhD,?® Julien Songeon, MS,? Thomas Agius, MS,’
Antonio Nastasi, BS,* Raphael Ruttiman, BS,* Solange Moll, MD,® Raphael P. H. Meier, MD, PhD,*®
Leo Buhler, MD,’ Jean-Marc Corpataux, MD," and Francois Lazeyras, PhD?®

/

Background. The lack of organs for kidney transplantation is a growing concern. Expansion in organ supply has been
proposed through the use of organs after circulatory death (donation after circulatory death [DCD]). However, many DCD
grafts are discarded because of long warm ischemia times, and the absence of reliable measure of kidney viability. *'P
magnetic resonance imaging (PMRI) spectroscopy is a noninvasive method to detect high-energy phosphate metabolites,
such as ATP. Thus, pMRI could predict kidney energy state, and its viability before transplantation. Methods. To mimic
DCD, pig kidneys underwent 0, 30, or 60 min of warm ischemia, before hypothermic machine perfusion. During the ex vivo
perfusion, we assessed energy metabolites using pMRI. In addition, we performed Gadolinium perfusion sequences. Each
sample underwent histopathological analyzing and scoring. Energy status and kidney perfusion were correlated with kidney
injury. Results. Using pMRI, we found that in pig kidney, ATP was rapidly generated in presence of oxygen (100 kPa),
which remained stable up to 22 h. Warm ischemia (30 and 60 min) induced significant histological damages, delayed cortical
and medullary Gadolinium elimination (perfusion), and reduced ATP levels, but not its precursors (AMP). Finally, ATP levels
and kidney perfusion both inversely correlated with the severity of kidney histological injury. Conclusions. ATP levels, and
kidney perfusion measurements using pMRI, are biomarkers of kidney injury after warm ischemia. Future work will define the

role of pMRI in predicting kidney graft and patient’s survival.
(Transplantation 2020;104: 1825-1831).

)

INTRODUCTION

The lack of available kidneys for transplantation is a major
concern, responsible for excess in morbimortality, and cost
to healthcare systems.' Thus, to expand the organ sup-
ply, a variety of efforts have been made, such as accepting
organs from donors after circulatory death (DCD), or with
comorbidities (extended criteria donors [ECDs]). However,
their usage is limited, due mainly to the fact that there is
no reliable, noninvasive means to assess graft viability ex
vivo. Shockingly, in the United States, 18% of all donated
kidneys and 45% of ECD kidneys were not allocated for
transplantation, despite that such kidneys could have
been transplanted with good outcomes.™” In addition, the

introduction of policies that penalize centers with poor
outcomes resulted in an increase in the number discarded
marginal kidneys,® a practice called “risk-averse transplant
behavior*

A number of tools are used to predict the suitability
of kidneys before transplantation. These include strati-
fication of donors according to clinical parameters, risk
scores, histological donor biopsy scores, machine per-
fusion characteristics, biomarkers, and so on.’ Besides
the dichotomous ECD classification,® none of the scor-
ing tools are clinically used.” Consequently, transplant
outcome remains difficult to predict based on current
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methods, and useful predictors of outcome that incorpo-
rate tissue viability are urgently needed.

The importance of energy metabolism, by which living
cells acquire, and use the energy needed to stay alive, dur-
ing organ transplantation has been duly acknowledged.?
Consequently, current methods of organ preservation aim
to preserve the energy machinery’ and reduce the rate
energy depletion.'® The consensus is that a period of warm
ischemia (>30min in human kidney'!), primes the tissue
for subsequent damage upon reperfusion. During ischemia,
ATP depletion disrupts mitochondrial Na*/K* ion chan-
nels, which reduce mitochondrial membrane potential and
increase mitochondrial inner membrane permeability, influx
of calcium ions, and subsequent swelling of mitochondria.'?
Once energy levels have fallen beyond a critical point, the
resulting injury is irreversible.!® Respiratory defects were
identified as early events of injury during preservation'? and
after ischemia-reperfusion.'* In livers, ATP content corre-
lated with transplant outcome.'>'® Unfortunately, clinical
applicability of ATP measurement has been limited by time-
consuming, invasive, and costly methods of ATP analysis.”

Magnetic resonance imaging (MRI) is well established
as a clinical diagnostic modality. Kidney perfusion can
be assessed by dynamic MRI using the first passage of
Gadolinium (Gd)-chelate bolus.!” Abnormal Gd uptake
may also reflect arterial stenosis, glomerular filtration
dysfunction,'® and ischemia.'® In addition to imaging the
hydrogen nucleus, MRI enables detection of high-energy
phosphate metabolites (*'P MRI [pMRI] spectroscopy),
such as ATP, phosphomonoesters (PMEs, that contain the
ATP precursor AMP), phosphodiesters, and phosphocre-
atine. Therefore, this method could be particularly suitable
for monitoring tissue function and graft viability during
transplantation.

Here, we demonstrate that using pMRI, ATP can be
quantified ex vivo in kidney graft. Importantly, kidney
ATP levels significantly correlated with graft Gd perfusion,
and tissue injuries after warm ischemia. Thus, pMRI could
facilitate rapid, and accurate assessment of kidney viabil-
ity, with the hope to predict survival of kidney recipients.

MR compatible
perfusion
module

o
. Umbilical ci

I’“ Bl
Control module
el 8
i

FIGURE 1. The homemade MR-compatible kidney ex vivo
perfusion system. (A) The system is made of a control module to
drive the pulsating pump and regulate the oxygenator, a perfusion
tank containing the kidney graft, and linked through the umbilical
cord. Compatible perfusion module fits in the MRI bore with a
maximum size of 40cm. (B, C) Inside view of the perfusion tank (B)
with the kidney artery connected to a cannula (C). MRI, magnetic
resonance imaging.
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MATERIALS AND METHODS

Ex Vivo Hypothermic Oxygenated Pulsatile Perfusion

Kidneys were perfused by a homemade MRI-compatible
machine with Belzer MPS UW Machine Perfusion Solution,
and kept at 4°C for up to 22 h. All of the experiments were
performed in presence of oxygen (100 kPa), as we previ-
ously demonstrated that the ability of the kidney to gener-
ate ATP relies on sufficient oxygenation.”’ The perfusion
module, and its cooling box were MRI compatible. During
the MRI acquisition, the control module was kept outside
of the Faraday cage and was connected through the wall
with an “umbilical cord,” that ensured adequate kidney
oxygenation (Figure 1) and pulsatile perfusion. Systolic
and diastolic pressure were set at 50 and 15 mmHg,
respectively. Measurements were performed on a multi-
nuclear Prisma-fit 3T whole-body MRI scanner (Siemens,
Erlangen, Germany). Kidney localization was performed
with a T2-weighted sequence (turbo spin echo, repetition
time (TR) 5000 ms, echo time (TE) 108 ms, 3-mm slices).

Gadolinium Perfusion

Gd perfusion enables the observation of the internal dis-
tribution of the flow between the cortex and the medulla.
Low molecular weight Gd has a predominant renal elimi-
nation by glomerular filtration without any tubular secre-
tion or reabsorption. Having a similar pharmacokinetics
as tracer, they allow glomerular filtration rate assessment
with MRI. The perfusion-descending cortical slope (DS)
is evaluated with the elimination of the Gd using the
angle between the maximum signal value in the cortex
and the lowest intensity point at the end of the flushing
(around 200s).?! In this study, SmL (0.025 mmol/mL)
Gd-diethylenetriaminepentaacetic acid bolus injection was
used for the renal perfusion (at 4°C), followed by a 20-mL
flush of MP Belzer. The perfusion is a fast sequence, as data
were collected using a dynamic 2D saturation-prepared
turbo flash sequence with the scanner body coil. This
sequence has an inversion time of 240ms, a flip angle of
12°, 1.0 mmx 1.3 mm resolution, § slices of Smm (1-mm
gap), TR 460ms, and a TE of 1.3 ms.

31p Magnetic Resonance Imaging Spectroscopy

pPMRI was performed with a single-loop coil tuned at
49.5 MHz, which was part of the perfusion machine, as
it was fixed at the bottom of the perfusion tank. The coil
was interfaced with a specially designed transceiver that
allows both 1H imaging and *'P spectroscopy (Clinical MR
Solutions, Brookfield, W1). The field homogeneity was opti-
mized with automatic shimming over the kidneys. pMRI
consisted of 3D spatial encoding, with a field of view 250
mmx250 mmx160mm, matrix size 16x16x 8, nominal
spatial resolution 15.6 mmx15.6 mmx20mm, TR 1.0 s,
flip-angle 45°, echo delay 0.6 ms, bandwidth 4000 Hz, 2k
sampling points. Elliptical encoding with 32 weighted aver-
ages, resulted in an acquisition time of 45 min. Chemical
shift signal was referenced to the inorganic phosphate (Pi)
resonance at 5.2 ppm, which can be considered homogene-
ously distributed over the surface of the coil. A frequency
offset of —-500 Hz was used to center excitation pulse band-
width over ATP frequency range. Afterward, the spectrum
was processed with a 20-Hz exponential time filter, and
order 0 and 1 phase corrections. The metabolites (ATP,
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PME, Pi, phosphocreatine) were fitted with Gaussian peaks
using the syngo software (SIEMENS, Erlangen, Germany)
and were estimated over all the kidneys by averaging pMRI
voxels containing kidney tissue (combined voxels result-
ing in a single spectrum). a, B, and y ATP correspond to
the resonances of the 3 *'P nuclei contained in ATP. All 3
peak amplitudes are proportional to the ATP concentration
but were quantified separately to prevent methodological
bias. Indeed the excitation pulse profile might vary over the
large frequency range spanned by the 3 peaks, and their
quantification might be influenced by overlaps with other
metabolite like nicotinamide adenine dinucleotide (NAD)
(discussed further in the text). The metabolite concentra-
tions were obtained as previously described.”’ Briefly,
[31Pm], expressed as mmol/L (mM), was calculated using
the following formula: [31Pm] =(S,/S,p) % [31Pbu“er] xC_
where S_ and S, are the mean metabolite and buffer Pi
signals (area), respectively. [31Pbuﬁer] is the buffer phosphate
concentration (25 mmol/L). C_  is the sensitivity correc-
tion factor.

Animals

The study was approved by the University of Geneva ani-
mal ethics committee (protocol number: GE/53/14/22826).
Five-month-old female pigs were obtained from the animal
facility of Arare, Switzerland. All pigs were maintained
under standard conditions. Water and food were pro-
vided ad libitum. Animals were first premedicated using
azaperone (2.2mg/kg IM), midazolam (1.6mg/kg IM),
and atropine (0.02 mg/kg IM) and anesthetized with keta-
mine (2-6mg/kg/h), fentanyl (4-6 pg/kg/h), midazolam
(0.2-0.4mg/kg/h), and atracurium (1mg/kg/h). Animals
were then intubated and ventilated before a nasogas-
tric tube was placed. The arterial line was placed in the
internal carotid artery. Monitoring included heart rate,
systemic blood pressure, pulse oximetry, and end-tidal
CO,. Following a midline incision, the peritoneal cav-
ity was opened, and the bowels were reclined. First, the
aorta, vena cava, and renal vessels were prepared. The pigs
received 300 Ul/kg heparin intravenous injections. Renal
arteries and veins were clamped, and the kidneys were
either immediately explanted or explanted after 30 and 60
min of warm ischemia (to mimic circulatory arrest during
DCD procurement). Kidneys were then instantly flushed
with 4°C Institut Georges Lopez-1 preservation solution
on ice. Surgical kidney biopsies, including the cortex and
the medulla, were formalin fixed and embedded in par-
affin. The renal artery was cannulated, and the kidneys
were cold perfused using our MR-compatible machine
(Figure 1) before imaging. Pigs were sacrificed using 100
mEq of potassium chloride intravenous injections.

Histopathological Analysis of Biopsies

Sections of 3-pm thickness were prepared from forma-
lin-fixed kidney biopsies and stained with silver Jones and
Periodic Acid-Schiff. Histopathological analysis score was
performed based on those described by Goujon et al***
using Osirix software (www.osirix-viewer.com) and modi-
fied as previously described.?>** Four different representa-
tive fields were assessed and blinded to group assignment.
Lesion severity was graded 0-5 according to the follow-
ing criteria: no abnormality (0), mild lesions affecting,
respectively, 1%-10% (1), 10%-25% (2), 25%-50% (3),
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50%-75% (4), and >75% (5) of the sample surface. The
final score for each biopsy ranges from 0 to 30. A higher
score corresponding to the more severe ischemic damage.

Statistical Analysis

The statistical tests used are defined for each figure in
the appropriate legend. A P value <0.05 was considered
statistically significant. Computations were performed
using Prism 7 (GraphPad Softwares, San Diego, CA).

RESULTS

Kidney ATP Is Rapidly Generated During Ex Vivo
Perfusion

Kidneys were perfused using a homemade MRI-
compatible, hypothermic-oxygenated pulsatile perfusion
machine (Figure 1). During the ex vivo perfusion, kidneys
metabolites were estimated by averaging pMRI voxels,
resulting in a single spectrum (Figure 2A and B). In healthy
kidneys (Omin of warm ischemia), pMRI allowed the
detection of a-, B-, and y-ATP, PME and inorganic phos-
phate (Pi, Figure 2B). ADP was below the detection thresh-
old. ATP and PME concentration (mM) were extrapolated
from their spectra peak area and the buffer phosphate con-
centration (Pi, 25 mmol/L). In absence of warm ischemia,
kidney a-, B-, and y-ATP, remained stable up to 22 h of
perfusions (Figure 2C). On the other hand, PME concen-
tration was 4 times higher than ATP at the initiation of
the perfusion but gradually declined over time (Figure 2C).
This is consistent with the hypothesis that the PME con-
taining AMP signal is utilized over time to generate ATP.

Warm Ischemia Reduces Kidney ATP Levels

To determine the effect of warm ischemia and to ensure
sufficient sensibility of ATP measurement using pMRI in
injured grafts, kidneys underwent 0 (control), 30 or 60 min
of warm ischemia before retrieval. There was a significant
reduction in the amount of B-ATP after 30 min (-48.4%;
P=0.04) and 60 min (-66.4%; P=0.007) of warm ischemia
(compared with no warm ischemia, Figure 3A). Similarly,
v-ATP was significantly decreased after 60 min of ischemia
(-45.5%; P=0.05; Figure 3A). a-ATP did not significantly
decrease, which could be explained by the presence of NAD
overlapping at -8.3 ppm (Figure 3A). Since the peak of a-
ATP appears to be “contaminated” by NAD signal, ATP con-
centration was estimated by averaging (- and y-ATP only.
Compared with control, 60 min of warm ischemia induced a
58.5% fold reduction in total ATP (Student ¢ test; P=0.03).
On the other hand, PME concentrations were not altered by
warm ischemia (Figure 3B).

ATP Levels and Kidney Perfusion Correlate With
Histological Damage

To establish the relevance of ATP quantification using
pMRI, we next examined the correlation with histological
damage, as assessed by the Goujon score, which is thought
to reflect kidney function.?? As expected, 30 and 60 min
of warm ischemia induced significant histological injuries
(Figure 4A). Histological damages were quantified based
on the number of tubules lumina with cellular debris,
the loss of brush border, tubular dilatation, the percent-
age of floculus in Bowman’s capsule, vacuolization, and
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FIGURE 2. Representative pMRI spectra, and kidney ATP levels over time. (A) T2 image of a kidney, with the blue border representing
the area of combined voxels that are analyzed for metabolite concentration. (B) Representative spectrum of kidney after 8h (left) and
21 h (right) of hypothermic pulsatile perfusion. (C) Concentration (mM) of the indicated metabolites over time, in pig kidney, after Omin
of warm ischemia, during hypothermic pulsatile perfusion with a fixed pO, of 110 kPa. pMRI, 1P magnetic resonance imaging; PME,

phosphomonoester.

interstitial edema (Figure 4B), which were all increased
by warm ischemia (except for vacuolization, Figure 4B).
Of importance, the ability to produce ATP (Figure 4C and
D) was tightly correlated with the degree of kidney injury
(Figure 4D, Pearson’s R>=0.52; P<0.001). Histological
injury did not correlate with PME levels (data not shown).

Gd perfusion enables the observation of flow between
the cortex and the medulla, which was suggested to be
altered during injury.”! Consistent with our previous
findings, kidney Gd cortex, and medulla perfusion were
altered after 60 min of warm ischemia. This was reflected
by a decrease in the DS (Figure 5SA). Interestingly, kidney
injury assessed using the cortex DS was significantly cor-
related with kidney ATP and with histological damage
(Figure 5B and C; Pearson’s R?=0.64 and 0.43, respec-
tively; P<0.001). Thus, combining both ATP and DS
measurements might allow the accurate prediction of kid-
ney damage before transplantation.

DISCUSSION

This study provides a noninvasive method to asses
viability of kidneys ex vivo during hypothermic machine
perfusion. In particular, the objective assessment of graft
damage (eg, resulting from prolonged circulatory arrest,
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DCD) could translate into greater utilization of kidney
allograft.

Besides being used to reduce the risk of delayed graft
function and improved graft survival after kidney trans-
plantation,” machine perfusion enables viability testing
by offering a dynamic environment. Various parameters
have been proposed as predictive biomarkers, ranging
from intrarenal resistance, markers of acid-base homeosta-
sis, or lactate production.”® Interestingly, we observed an
exponential decrease of PME during the ex vivo perfusion,
suggesting that AMP reserve contained in the PME metab-
olites is consumed to produce ATP. This is consistent with
the idea that the kidneys are functionally and metaboli-
cally active in presence of oxygen.””?! In addition, there
is emerging evidence that oxygenation is an important
advantage during hypothermic machine perfusion.?’-®
Oxygen supplementation during organ preservation may
drive ATP production through oxidative phosphorylation.
Thus, cells can use ATP to sustain metabolic processes
that protect from ischemic damage.”’ These further sug-
gest the importance of functional mitochondria and the
dependence on oxidative metabolism in healthy kidney.
In addition, this suggests that kidney viability depends on
the ability to generate ATP and not only the remaining

Metabolites
I PME
4 [ ATP
T
2
! =
- =
Omin 30min 60min

Warm Ischemia

FIGURE 3. Kidney metabolite levels after 0, 30, and 60 min of warm ischemia. (A, B) a-, -, and y-ATP expressed individually (A), and
- and y-ATP combined and PME (B) following 0, 30, or 60min of warm ischemia. n=4-9 per group. Metabolites levels represent an
average throughout perfusion. Error bars indicate SD *P<0.05, *P<0.01, by 2-way ANOVA. PME, phosphomonoesters.
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ATP store. Several studies demonstrated that ATP levels
correlate with ischemic injury of the kidney®® and liver.”’
Moreover, ATP is often used as a marker of viability during
ischemia.’"3? In humans, ATP level in liver tissue is an inde-
pendent predictor of initial graft function.?® Interestingly,
ATP levels measured after transplantation were inversely
related to warm ischemia time."® Similarly, low ATP levels
were significantly associated with primary graft nonfunc-
tion.** Of importance, the inadequate recovery might be
different in various marginal organs. For instance, ATP
levels were lower in the DCD and steatotic livers.” Despite
good correlation with outcome, energy status is difficult
to measure, and yet to be used routinely for clinical test-
ing. ATP measurements would be a precious addition to
the pretransplant assessment of suboptimal organs, par-
ticularly in the setting of uncontrolled DCD procurement,
where in the exact maximal donor warm ischemia dura-
tion is unknown, which is responsible for a large variation
of acceptance criteria between centers.>

Our study has several limitations that need to be
acknowledged. First, the broader utility of this methodology
in determining graft viability should be tested in all form
of marginal donor, including kidney from old donor, after
acute kidney injury, and after prolonged cold preservation.
In addition, we did not correlate ATP levels with kidney
function in vivo, or after transplantation, mostly because of
local regulation, that did not allow survival surgery. All of
the above will hopefully be tested in a future human clinical
trial. Although the histological score was not validated in
a prospective human cohort, it was freviously correlated
with the degree of kidney injury.”*** The clinical use of
PMRI might be limited by the time of acquisition (45 min).
However, the acquisition was performed during the hypo-
thermic ex vivo perfusion,”” and the imaging time could be
reduced either by reducing spatial encoding resolution or by
using advanced method for fast spatial encoding.*® In addi-
tion, the fitting of a-ATP with a broad Gaussian probably
includes the NAD+ and NADH signal at —-8.3 ppm. Thus,
the quantification of the pMRI spectra could be improved
for overlapping metabolites, using a model that com-
prises each metabolite spectrum with multiplet structures.
This could for instance allow for the specific detection of
NAD+/H signal that is weak and overlaps with alpha-ATP
peak.?” Altogether, it is likely that the pMRI process can be
integrated within the “normal” cold ischemia period.

In conclusion, pMRI performed on a kidney graft held
in an ex vivo perfusion system produced excellent qual-
ity spectra. ATP levels and kidney perfusion measure-
ments could accurately predict kidney damage caused by
warm ischemia. In an era when up to 45% of ECD kid-
neys are discarded, this study provides a timely and inno-
vative noninvasive tool to assess kidney viability before
transplantation.
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SUB-NORMOTHERMIC EX-VIVO KIDNEY PRESERVATION

"There is a strange comfort in knowing that no matter what happens today, the Sun will rise

. "
again tomorrow.
- Aaron Lauritsen, 100 Days Drive
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11.1 SUMMARY

Chapter 9 highlighted the significance of improving preservation procedures for marginal kid-
ney grafts to increase the number of viable kidneys and improve patient outcomes. Enhanced
preservation techniques for marginal kidney grafts have the potential to increase the availabil-
ity of viable kidneys for transplantation. Warm ex-vivo perfusion at temperatures of 22 °C and
37 °C has been suggested as a means to reduce preservation injury, but the underlying mecha-
nism is currently unknown. In this study, we investigated kidney quality, including adenosine
triphosphate (ATP) production, during sub-normothermic (22 °C) versus hypothermic (4 °C)
ex-vivo kidney machine perfusion in a porcine autotransplantation model using phosphorus
magnetic resonance spectroscopic imaging (3! P-MRSI) coupled with a fitting method using
LCModel. Our research on sub-normothermic preservation is presented in the article Section 11.2.

This article introduces a novel clinical approach that employs non-invasive 3! P-magnetic
resonance spectroscopic imaging (MRSI) to evaluate energy metabolism in donation after cir-
culatory death (DCD) grafts during two clinically relevant hypothermic ex-vivo perfusions and
sub-normothermic ex-vivo perfusion in a porcine model of autotransplantation. We utilized
31P-MRSI to measure ATP production and assess the perfusion quality of the perfused kidneys.
Specifically, the study compared sub-normothermic preservation at 22 °C with active oxygena-
tion to hypothermic preservation at 4 °C with active and passive oxygenation. To evaluate
cellular ischemia-reperfusion injury (IRI), a histological score was performed on biopsy sam-
ples at four time points (baseline, after warm ischemia, after 4 hours of perfusion, and after
transplantation). Notably, the histological score was only conducted on post-transplanted kid-
neys, whereas the 3'P-MRSI was performed on both pre- and post-transplanted kidneys.

Our study demonstrates that perfusion of kidney grafts at 22 °C results in increased ATP
production and minimized ischemia-reperfusion injury (IRI) during transplantation compared
to both passive and active oxygenated 4 °C perfusions. The observed differences in the sub-
normothermic preservation versus hypothermic preservation are strongly correlated with the
histological score, which measures cellular damage. Thus, perfusing kidney grafts at 22 °C may
increase the utilization of kidney allografts, and warrants further investigation through clinical

trials.
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SUBNORMOTHERMIC EX VIVO PORCINE KIDNEY PERFUSION IMPROVES ENERGY
31 P MAGNETIC RESONANCE SPECTROSCOPIC IMAG-

11.2
METABOLISM: ANALYSIS USING

Organ Donation and Procurement

Subnormothermic Ex Vivo Porcine Kidney Perfusion
Improves Energy Metabolism: Analysis Using

31p Magnetic Resonance Spectroscopic Imaging

Thomas Agius, MS," Julien Songeon, MS,? Antoine Klauser, PhD,?2 Florent Allagnat, PhD,’

Grégoire Longchamp, MD,*Raphael Ruttimann, BS,* Arnaud Lyon, MD," Julijana Ivaniesevic, PhD,®
Raphael Meier, MD, PhD,® Sébastien Déglise, MD,' James F. Markmann, MD, PhD,” Korkut Uygun, PhD,?
Leo Buhler, MD,° Christian Toso, MD, PhD,* Jean-Marc Corpataux, MD,! Francois Lazeyras, PhD,??

and Alban Longchamp, MD, PhD!

Background. The ideal preservation temperature for donation after circulatory death kidney grafts is unknown. We investigated
whether subnormothermic (22 °C) ex vivo kidney machine perfusion could improve kidney metabolism and reduce ischemia-
reperfusion injury. Methods. To mimic donation after circulatory death procurement, kidneys from 45-kg pigs underwent 60min
of warm ischemia. Kidneys were then perfused ex vivo for 4h with Belzer machine perfusion solution UW at 22 °C or at 4 °C before
transplantation. Magnetic resonance spectroscopic imaging coupled with LCModel fitting was used to assess energy metabolites.
Kidney perfusion was evaluated with dynamic-contrast enhanced MRI. Renal biopsies were collected at various time points for
histopathologic analysis. Results. Total adenosine triphosphate content was 4 times higher during ex vivo perfusion at 22 °C
than at 4 °C perfusion. At 22 °C, adenosine triphosphate levels increased during the first hours of perfusion but declined afterward.
Similarly, phosphomonoesters, containing adenosine monophosphate, were increased at 22 °C and then slowly consumed over
time. Compared with 4 °C, ex vivo perfusion at 22 °C improved cortical and medullary perfusion. Finally, kidney perfusion at 22 °C
reduced histological lesions after transplantation (injury score: 22 °C: 10.5+3.5; 4 °C: 18+2.25 over 30). Conclusions. Ex vivo
kidney perfusion at 22°C improved graft metabolism and protected from ischemia-reperfusion injuries upon transplantation. Future
clinical studies will need to define the benefits of subnormothermic perfusion in improving kidney graft function and patient’s survival.

(Transplantation Direct 2022;8: e1354; doi: 10.1097/TXD.0000000000001354).

Transplantation is the preferred treatment for end-stage
kidney disease, but it suffers from a severe shortage of

available organs. Approximately 100000 patients are cur-
rently waiting for a donor kidney, with only 18 000 kidney
transplants performed in the United States each year.! This
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scarcity led to the expansion of the donor pool beyond
standard-criteria kidney donors, including extended crite-
ria donors and donation after circulatory death (DCD).!?
Although organs from these donors allow a higher survival
rate than dialysis, their use is complicated by an increased
rate of delayed graft function (DGF)® and acute rejection.*

DCD grafts are particularly vulnerable to ischemia-rep-
erfusion (IR) injury, an issue that is not addressed at all by
current standard storage strategies, including static cold stor-
age and nonoxygenated hypothermic machine perfusion (eg,
LifePort).>* With this approach, prolonged periods (>24h) of
cold ischemia are associated with tubular necrosis, DGFE, and
poor graft survival.*”$ Although static cold storage is the most
prevalent method for renal allograft preservation, hypother-
mic machine perfusion without oxygen was shown to reduce
DGEF and to improve 1- and 3-y graft survival.” Hypothermic
storage slows but does not entirely suspend cellular metabo-
lism, resulting in a slow but inexorable consumption of cel-
lular energy stores.!” In a prior preclinical study, we found
that, at 4 °C, oxygen supplementation was required to main-
tain adenosine triphosphate (ATP) levels.!® In the COMPARE
study, oxygen supplementation reduced biopsy-proven acute
rejection but did not improve kidney graft survival or glo-
merular filtration rate at 12 mo."

Although cold anoxic storage aims to arrest cell
metabolism, ex vivo perfusion at physiologic normother-
mic temperature (37 °C) provides a continuous flow of
warmed, oxygenated perfusate containing nutritional
substrates, thereby maintaining the metabolic activity
of the tissue.'>? Normothermic red cell-based-perfusion
of porcine kidneys at 37 °C improved early postopera-
tive creatinine and urea clearance in DCD grafts.!® In
addition, normothermic ex vivo perfusion allows graft
assessment, reconditioning, and repair.'*!5 Using a red
cell-based plasma-free solution, perfusion of marginal
kidneys at 37 °C reduced DGF compared with static cold
storage.'® However, perfusion of organ at 37 °C is limited
by the availability and cost of a blood perfusion system,
complex heating system, tight pH and glucose control,
red blood cell hemolysis, and risk of infection and immu-
nization.'”!¥ In addition, failure of the perfusion machine
would rapidly lead to graft loss.

Subnormothermic (22 °C) ex vivo kidney perfusion
was proposed as an alternative to perfusion at 37 °C.”
Importantly, a previous study demonstrated that, com-
pared with perfusion at 37 °C, kidney perfusion with
blood:PlasmaLyte at 22 °C reduced acute tubular necrosis
and improved kidney function in a DCD porcine model.?° In
liver grafts, perfusion of a cell-free, oxygenated perfusate at
22 °C promoted mitochondrial respiration and ATP stores
before transplantation.?! Overall, these studies suggest that
22 °C might be the optimal temperature to protect against
kidney (IR) injuries, whereas avoiding complex normother-
mic perfusion machines.

Several tools are used to predict the suitability of kidney
grafts. Although MRI is a well-established clinical diagnos-
tic tool for assessing kidney graft function,?? 3'P magnetic
resonance spectroscopic imaging (pMRSI) enables the detec-
tion of high-energy phosphate metabolites such as ATP.??> In
fact, we previously reported that, in porcine kidneys, warm
ischemia reduced energy stores, which correlated with kidney
viability.!

www.transplantationdirect.com

MATERIAL AND METHODS

Ex Vivo Kidney Perfusion

Kidneys were assigned to the following ex vivo perfusion
groups: (i) 4 °C with passive oxygenation of the perfusate
(4 °C), (i) 4 °C with active oxygenation (PO,>100kPa) of
the perfusate (4 °C+0,), (iii) 22 °C ex vivo kidney perfu-
sion with active oxygenation (PO, >100kPa) of the perfusate
(22 °C+0,, Figure 1A). Passive oxygenation corresponded to
ambient air oxygen diffusion.

Immediately after retrieval, kidneys were flushed with
Belzer machine perfusion solution (MPS) UW Machine
Perfusion Solution and immediately perfused for 4h (before
autotransplantation) or 42h (time course experiment) using
a homemade MRI-compatible pulsatile perfusion machine as
published.!® Belzer MPS UW solution can be stored between
2 °C and 25 °C and has a pH of 7.4 at 22 °C. Active oxy-
genation was achieved using a 0.15 m? membrane oxygenator
(Biochrom Ltd, Cambridge, United Kingdom), maintaining
the PO, levels at 100 kPa for the whole preservation time.
The PO, levels during passive oxygenation were set at 20 kPa.
The perfusion module was kept in an isolating box that pas-
sively kept the kidney at the desired temperature. Systolic and
diastolic pressure were set at 40 and 20 mmHg, respectively.

MRI Imaging

Measurements were performed on a 3 Tesla multinuclear
Prisma-fit 3T whole-body MRI scanner (Siemens Healthineers,
Erlangen, Germany). 'H imaging was performed with the body
coil using a T2-weighted sequence (turbo SE, TR 6530 ms,
TE 110 ms, 2 mm slices) for kidney localization and structural
imaging. Dynamic-contrast enhanced MRI with gadolinium
(Gd-MRI) was used to determine the perfusion distribution
between the cortex and the medulla and as an estimate of glo-
merular filtration rate as previously described.”!® Data were
collected using a dynamic 2D saturation-prepared turbo flash
sequence with the scanner body coil. This sequence has an
inversion time of 255 ms, a flip angle of 12°, 1.3 mm x 1.3 mm
resolution, and 6 slices of 4mm (1 mm gap), TR 500 ms, and
a TE of 1.4ms. The perfusion-descending cortical slope was
determined using the angle of the linear regression between
the maximum signal value and the lowest intensity point after
the initial peak.?!

31p Magnetic Resonance Imaging Spectroscopy
pPMRSI was performed as described previously.” Briefly, a
single loop 3'P-tuned coil fixed at the bottom of the perfusion
tank allows the measurement of the signal. Scanner embedded
body coil was used for '"H imaging and for shimming to ensure
field homogeneity. pMRSI consisted of 3D spatial encoding,
with a field of view 250 x 250 x 160 mm?, matrix size 16 x 16 x 8,
nominal spatial resolution 15.6x15.6 x20mm?, TR 1.0s, flip
angle of 35°, echo delay 0.6 ms, bandwidth 4000 Hz, and 2k
sampling points. Elliptical encoding with 18 weighted aver-
ages resulted in an acquisition time of 45 min. The resonance
of the inorganic phosphate (Pi, 5.2 ppm), which is uniformly
present in the container and the kidney, was used as a refer-
ence for quantification of the pMRSI signal. Excitation pulse
bandwidth has been adjusted to the ATP frequency range (Pi
resonance—500 Hz). An exponential time filter with 20 Hz
frequency width and zeroth and first order phase corrections
were used to process the spectra. The metabolites (ATP, phos-
phomonoesters [PME], Pi, phosphocreatine/PCr) were fitted
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FIGURE 1. Ex vivo subnormothermic perfusion improves kidney perfusion. A, Experimental groups and design. Kidneys were retrieved
after 60min warm ischemia and placed into a hypothermic +passive oxygenation (4 °C), hypothermic +active oxygenation (4 °C+0O,), or
subnormothermic +active oxygenation (22 °C+0,) perfusion machine with or without oxygen for 4h. Kidney were autografted into the same
pig. Dynamic-contrast enhanced MRI analysis was performed prior (4 °C+0,, 22 °C+0,) and after transplantation (4 °C, 4 °C+0,, 22 °C+0,).
B, Pretransplant representative Gd uptake in cortex (top) and medulla (bottom) of kidneys during hypothermic (blue line) or subnormothermic
(red) perfusion and Gd perfusion-DS quantification (right, n=5/group). Bars indicate mean + SEM, and asterisks indicate the significance of the
difference between perfusions methods by Student’s t test or 1-way ANOVA and Tukey test. *P<0.05, ®*P<0.01. n=4 to 6 per group. DS,

descending slope.

with Gaussian peaks using the syngo.via software (SIEMENS,
Erlangen, Germany) and were estimated over the whole
kidneys by averaging pMRSI voxels containing graft tissue,
resulting in a single spectrum. Quantification results provided
by 3D 3'P-MRSI at 3 T were analyzed with LCModel for mag-
netic resonance spectroscopy fitting as previously described.??
The 3 ATP peaks were quantified separately to prevent meth-
odological bias because of excitation profile imperfection. In
each condition, pMRSI allowed the detection of a-, -, and
v-ATP and PME composed by phosphocholine, phosphoetha-
nolamine (PE), and adenosine monophosphate (AMP). ATP
and PME concentration (mM) were quantified from the fitting
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and using the concentration of the inorganic-phosphate buffer
(Pi, 25 mmol/L) as reference.” As single ATP concentration
was calculated by average of the a-, -, and y-ATP values,
ATP maps were generated using the spectroscopy software
(Syngo MR Spectroscopy Evaluation, Siemens Healthineers,
Erlangen, Germany). The colors represent the metabolite con-
centration normalized to the Pi for each voxel.

Animals and Surgery

The study was approved by the University of Geneva’s
animal ethics committee (protocol number: GE83/33556).
Female pigs of 5 mo old were obtained from the animal facility
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of Arare, Switzerland (n=16). All pigs were maintained under
standard conditions. Water and food were provided ad libi-
tum. Animals were premedicated and anesthetized as previ-
ously described.?* Animals were kept intubated and ventilated
during the procedure. An arterial line was inserted in the
internal carotid artery. Monitoring included heart rate, sys-
temic blood pressure, pulse oximetry, and end-tidal CO,.

Kidneys were explanted and transplanted back into the
same animal (autotransplantation).”* To mimic circulatory
arrest during DCD procurement, renal arteries were crossed
clamped for 60min before collection. Kidneys were then
immediately flushed and perfused as described earlier in the
ex vivo kidney perfusion section above. At the end of the per-
fusion, both kidneys were transplanted sequentially onto the
vena cava and aorta using a 6-0 running suture. After 2h of
reperfusion, pigs were sacrificed using 100 mEq of potassium
chloride intravenously.

Histopathologic Analysis of Biopsies

Cortical kidney biopsies were obtained at baseline, after
60min of warm ischemia, after 4h of ex vivo perfusion, and
at 2h after autotransplantation. Biopsies were immediately
flash frozen or formalin fixed and embedded in paraffin.
Fixed kidney biopsies were cut into sections of 3 pm thick-
ness and stained with silver Jones and Periodic Acid-Schiff.
Slides were scanned using a Axio Scan z1 slide scanner (Zeiss).
Histopathologic analysis score was performed based on those
described by Goujon et al*2¢ using Zen software (Zeiss).
Whole biopsies were assessed and blinded to group assign-
ment. The following categories were assessed: glomerular
integrity, tubular dilatation, brush border integrity, cellular
debris in lumina of tubules, interstitial edema, and tubular cell
vacuolization. Briefly, to assess glomerulus integrity, >10 glo-
meruli were randomly selected from the section and assigned
a score of 0 to 3. The same procedure was followed in the
remaining categories. After that, the score for each category
was converted to a percentage. The final score was converted
to a final scale from 0 to 5 according to the percentage of
damage: 0% to 15% (0), 15% to 30% (1), 30% to 45% (2),
45% to 60% (3), 60% to 75% (4), and >75% (5) using the
following formula: (Category,, . /3) *100. The final score
for each biopsy ranged from 0 to 30, with 30 the highest score
corresponding to more severe damage. Scoring was performed
blindly by 2 independent researchers.

RT-gPCR Analysis

Kidney biopsy powder was homogenized in Tripure
Isolation Reagent (Roche, Switzerland). Total RNA was
extracted as previously described.?”” cDNA was synthesized by
random hexamer priming with the Verso ¢cDNA kit (Prime
Script RT reagent, Takara). RT-qPCR was performed with
Power SYBR Green Master Mix (Ref: 4367659, Applied
Biosystems, Thermo Fisher Scientific AG, Switzerland) in a
ViiA 7 Real-Time PCR System (Applied Biosystems, Thermo
Fisher Scientific AG, Switzerland). Amplification data were
analyzed using the QuantStudio 1.3 software (Thermo Fisher
Scientific AG, Switzerland). Fold changes were calculated
using relative standard curves methods, using ribosomal pro-
tein RPL27 genes as standards. Inflammatory gene expression
was quantified 2 h after reperfusion and compared with their
respective baseline. Primers’ sequences are indicated in Table
S1 (SDC, http://links.lww.com/TXD/A437).
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Metabolite Analysis

Tissue samples were preextracted and homogenized by
the addition of 150 pL of MeOH:H2O (4:1) in the Cryolys
Precellys 24 sample homogenizer (2x20s at 10000 rpm,
Bertin Technologies, Rockville, MD, United States) with
ceramic beads. The bead beater was air-cooled down at a
flow rate of 110L/min at 6 bar. Homogenized extracts were
centrifuged for 15 min at 4000 g at 4 °C (Hermle, Gosheim,
Germany). The resulting supernatant was collected and ana-
lyzed by hydrophilic interaction liquid chromatography cou-
pled to tandem mass spectrometry (HILIC-MS/MS). Proteins
were extracted using 20 mmol/L Tris-HCI (pH 7.5), 4M guan-
idine hydrochloride, 150 mmol/L NaCl, 1 mmol/L Na2EDTA,
1 mmol/L EGTA, 1% Triton, 2.5 mmol/L sodium pyrophos-
phate, 1 mmol/L betaglycerophosphate, 1 mmol/L Na3VO4,
and 1 pg/mL leupeptin using the Cryolys Precellys 24 sample
Homogenizer (2x20s at 10000rpm, Bertin Technologies,
Rockville, MD, United States) with ceramic beads. BCA
Protein Assay Kit (Thermo Scientific, Massachusetts, United
States) was used to measure (A562nm) total protein concen-
tration (Hidex, Turku, Finland), and samples were normalized
based on the tissue weight before the LC-MS/MS analysis by
extracting with different volumes of MeOH:H2O (4:1, v/v).
Extracted samples were analyzed by HILIC-MS/MS in both
positive and negative ionization modes using a 6495 triple
quadrupole system (QqQ) interfaced with a 1290 UHPLC
system (Agilent Technologies). Raw LC-MS/MS data were
processed using the Agilent Quantitative analysis software
(version B.07.00, MassHunter Agilent technologies). Relative
quantification of metabolites was based on extracted ion
chromatogram areas for the monitored MRM transitions.
Peak areas of detected metabolites were analyzed in “R” soft-
ware, and signal intensity drift correction and noise filtering
(if necessary, using CV [QC features] >30%) was done within
the MRM PROBS software.

Statistical Analysis

Data are presented as mean=SEM, and differences are
considered significant when P<0.05. Comparisons between
groups were analyzed using ANOVA and post hoc Tukey tests
or Sidak’s test when indicated. Tukey’s and Sidak’s test were
used to test for differences between 22 °C+ O, and 4 °C perfu-
sions. Two-group comparisons were performed using Student
t tests (Prism 9.2, GraphPad Softwares, San Diego, CA, United
States). Fitting curves of the metabolites concentration over
time were computed using R (version 4.1, https://cran.r-pro-
ject.org).

RESULTS

Ex Vivo Kidney Perfusion Improves Kidney Perfusion
and ATP Generation

To mimic DCD, kidneys underwent 60min of warm
ischemia before procurement. Kidney grafts were then per-
fused in a homemade MRI-compatible pulsatile perfusion
machine at 22 °C with active oxygenation (22 °C+0,), at
4 °C with active oxygenation (4 °C+0,), or 4 °C without
additional oxygen (4 °C, Figure 1A). After 4h at 22°C+0,,
cortical and medullary flows were improved compared
with 4 °C+0O,. This was reflected by an increase in the
perfusion-descending slope (+35% cortex +26% medulla,
Figure 1B).
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Next, mean ATP levels were measured by averaging pMRSI
voxels containing graft tissue resulting in a single spectrum
(Figure 2A). In fact, we previously demonstrated that mean
ATP levels (average AUC of the B- and y-ATP peaks) are
reduced by warm ischemia and correlate with (IR) injuries.'
Using pMRSI, a-, -, and y-ATP and PME containing AMP
were only detected during ex vivo perfusion with active oxy-
genation at 4 °C and 22 °C (Figure 2A). In kidneys perfused
at 22 °C+0,, ATP and PME levels were 3 times higher than
at 4 °C+0O, perfusion (5.5 mmol/L versus 2.1 mmol/L and
0.79 mmol/L versus 0.26 mmol/L, Figure 2B). This increase
of AMP and ATP levels at 22 °C+0O, was confirmed by lig-
uid chromatography-mass spectrometry (LC-MS, +59%,
+36% and +45 %, respectively; Figure 2C). Surprisingly, PME
and ATP concentrations tended to be higher in the medulla
independently of the perfusion conditions, as demonstrated
by voxel mapping of the metabolites (Figure S1, SDC, http:/
links.lww.com/TXD/A437).

Kidney ATP Levels Increased up to 10h During Ex
Vivo Subnormothermic Kidney Perfusion

In healthy kidneys perfused at 4 °C+0O,, a-, -, and y-ATP
remained stable for up to 22h of perfusions.!® To determine
the effect of 22 °C perfusion on ATP production over time in
DCD grafts, PME and a-, -, and y-ATP concentrations were
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monitored for 42h (time course experiment). Kidney a-, -,
and y-ATP concentrations were 2 times higher after 10h of
perfusion compared with baseline (0.5 mmol/L to 1 mmol/L
for 3-ATP, 0.75 mmol/L to 1.5 mmol/L for y-ATP; Figure 3A)
and 4 °C+0," The PME concentration was 4 times higher
than ATP at the beginning of the perfusion (4 mmol/L of PME
versus 1 mmol/L of a-, -, and y-ATP), and rapidly decreased
to reach a plateau at 2 mmol/L. This is consistent with the
hypothesis that the PME containing the AMP is consumed
over time to generate ATP. Finally, after 10h of perfusion at
22 °C+0,, ATP levels gradually decline to ultimately reach 0
mmol/L after 42h of perfusion (Figure 3B). PME concentra-
tion remains stable for up to 42h (Figure 3B).

Ex Vivo Kidney Perfusion at 22 °C Reduces Kidney
Ischemia and Reperfusion Injuries

To evaluate the benefit of 22 °C ex vivo perfusion before
transplantation, we examined the histological damage using
a modified Goujon score (described in the methods section),
shown to reflect kidney function.!®* Kidney biopsies were
analyzed at baseline, after 60 min of warm ischemia, at the
end of the ex vivo perfusion, and at 1h after transplantation.
Surprisingly, no significant damage was observed after warm
ischemia (Figure 4A,B). Consistent with previous findings, his-
tological damages were significantly increased at the end of the
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FIGURE 2. Energy metabolism is improved during subnormothermic perfusion. A and B, Representative of pMRSI spectra fitted with LCModel
(A) and kidney PME and f, y-mean ATP levels (B) during 4 °C+0O, and 22 °C+0O, perfusion before transplantation. C, Kidney AMP, ADP,
and ATP levels measured by LC-MS. Bars indicate mean +SEM, and asterisks indicate the significance of the difference between perfusions
methods by Student’s t test or 1-way ANOVA and Tukey test. ***P<0.0001. n=4 to 5 per group. ADP, adenosine diphosphate; AMP, adenosine
monophosphate; ATP, adenosine triphosphate; LC-MS, liquid chromatography-mass spectrometry; PME, phosphomonoesters; pMRSI, P

magnetic resonance spectroscopic imaging.
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ex vivo perfusion and after reperfusion in vivo (Figure 4A,B;
Table S2, SDC, http://links.lww.com/TXD/A437). Importantly,
22 °C perfusion led to the greatest protection from IR
injury (score of 22 °C+0,, 4 °C+0,, and 4 °C: 10.5£2.3,
19.25+3.9, and 18.3+2.5,+SD, Figure 4A,B). Perfusion
of 22 °C significantly reduced tubular dilatation and luminal
cell debris and protected the brush border (Figure 4A; Figure
S2, SDC, http://links.lww.com/TXD/A437). In the 22 °C
ex vivo perfusion group, interleukin (IL)-6 and IL-10 gene
expressions were upregulated after transplantation (log2 fold-
change of 22 °C+0,,4 °C+0,, and 4 °C: 6.5+0.8,2.4x0.9,
and 3.9x0.4 and 3.9x0.4, 1.4+0.9, 2.6 0.7, respectively),
whereas the expression of TNFalpha and Argl remained unaf-
fected (Figure 4C). In addition, 2 h after kidney implantation,
flow in the cortex and medulla improved at 22 °C+0O, (+18%
and +4% cortex, +17% and +11% medulla compared with
4 °C and 4 °C+0O, respectively; Figure 52, SDC, http:/links.
lww.com/TXD/A437). Finally, ATP and, to a lesser extent,
PME levels were significantly higher after transplantation in
organs that were previously perfused 22 °C+O, (Figure 4D).
Altogether, ex vivo perfusion at 22°C improved kidney metab-
olism and reduced (IR) injuries during transplantation.

DISCUSSION

Here, we found that kidney graft perfusion at 22 °C with
an oxygenated MP-Belzer solution, without oxygen carrier,
increased ATP production and minimized IR injuries during
transplantation compared with perfusion at 4 °C. Of inter-
est, active oxygenation did not increase ATP production at
4 °C. In addition, the simplicity of subnormothermic perfu-
sion machine, without the need for a heating unit or oxygen
carrier, could be easily used in a clinical setting and lower the
costs. Altogether, perfusion of kidney graft at 22 °C could
translate into greater utilization of kidney allograft.

Previously, the benefits of normothermic perfusion (37 °C)
were linked to an increase in fatty acid metabolism and oxi-
dative phosphorylation.!? Similarly, kidney perfusion at 22°C
improved mitochondrial ATP production, consistent with our
hypothesis that, at 22 °C, kidneys are metabolically active.???®
Interestingly, in cold-stored organs, it has also been shown
that gradual rewarming from hypothermia to normother-
mia before transplantation improves kidney function,?*
highlighting the importance of restoring metabolism before
implantation. At 22 °C, we observed an increase in PME and
ATP levels during the first 10h of perfusion. After 10h of
perfusion at 22 °C, ATP level gradually declined to reach 0
mmol/L at 42h of perfusion. We previously reported that, at
4 °C, in the absence of warm ischemia, ATP levels remained
stable up to 22h of perfusion but at significantly lower lev-
els (0.26 mmol/L)."° Similarly, ATP levels decrease during
cold storage in the kidney?® and liver®' and correlate with the
degree of injury. In humans, ATP predicted immediate graft
function,'®" and ATP is often used as a marker of viability
during ischemia.?”? Although long-term perfusion at 22 °C
using MP-Belzer solution might not by viable, it is a promis-
ing strategy to recondition organs and improve initial graft
function. Future studies should investigate the advantages of
short-term (<10 h) reconditioning at 22 °C of previously cold-
stored organs.

In this study, LC-MS/MS was used to validate the accurate
quantification of nucleotides by pMRSL.?” Indeed, the fitting
of 0-ATP with a broad Gaussian might include the NAD+
and NADH signal.!®33 Recent improvements using deep learn-
ing algorithms were used to reduce concentration estimation
bias of metabolites with overlapping spectra.’* pRMSI also
suffers from a relative low sensitivity compared with liquid
chromatography or 1H imaging at a constant magnetic field.'°
Thus, the acquisition is generally performed with higher voxel
size to achieve enough signal to noise ratio while keeping an
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FIGURE 4. Subnormothermic perfusion reduces kidney damages. A and B, Representative cortical kidney sections (A) stained with PAS, and
histological score (B) at the indicated time and conditions (4 °C, 4 °C+0,, 22 °C+0,). C, Expression of the indicated gene in kidney, analyzed by
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quantification (right) of kidney AMP and ATP levels during 4 °C, 4 °C+0,, or 22 °C + 0, perfusion after transplantation. The spectra are fitted using
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acceptable scan time. As an example, this lack of sensitivity
limitation hinders the measurement of ATP at 4 °C without
oxygen. The application of machine learning® and neural
network can further improve pMRSI sensitivity, spatial reso-
lution, and computing time.** Indeed, ongoing improvement
in pMRSI spatial resolution, in combination with spatial
phase encoding, can provide multivoxels acquisition of the
kidney graft that enables metabolite mapping over the full
field of view (Figure S1, SDC, http:/links.lww.com/TXD/
A437%). Overall pMRSI remains a powerful, noninvasive tool
to quantify ATP.1

During ex vivo perfusion at 22 °C, we did not compare
passive versus active oxygenation of Belzer MPS UW, perfu-
sion with Hb-based oxygen carrier, or packed red blood cells.
Importantly, oxygenated machine perfusion at 22 °C lowers
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metabolic demand compared with organs perfused at 37 °C.3
Thus, although still metabolically active, grafts maintained
at 22 °C could be safely perfused with MP-Belzer without
oxygen carriers. At 22 °C, Hb-based oxygen carrier achieved
short-term kidney function equivalent to blood.** Similarly in
human kidneys, compared with hemoglobin oxygen carrier,
perfusion with packed red blood cells at 37 °C resulted in
similar vascular flow, oxygen consumption, or ATP levels.** It
is likely, that, although perfusion at 22 °C allows considerable
recovery of energy metabolism compared with 4 °C, metabo-
lism is significantly reduced (compared to 37 °C) so that pas-
sive oxygenation is sufficient for adequate oxygen delivery.
Altogether, we hypothesize that adequate tissue oxygenation
can be achieved at 22 °C without the use of packed red blood
cells and complex blood perfusion machine.
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Interestingly, we did not observe a benefit of active oxy-
genation at 4 °C, except for slightly improved graft perfusion.
Consistently, the addition of oxygen to hypothermic machine
perfusion did not significantly improved DCD porcine kid-
ney function.*' Similarly, a recent clinical trial failed to show
12-mo difference in eGFR between kidneys perfused at 4 °C
with oxygen compared with hypothermic perfusion alone.!
Previous studies comparing oxygenated perfusion used vari-
ous flow rates (50-100mL/min) and PO, levels (500-650
mmHg), complicating data interpretation.'#-#

A potential disadvantage of normothermic preserva-
tion appears to be the generation of a proinflammatory
milieu, with the accumulation of inflammatory mediators
including cytokines and damage-associated molecular pat-
terns.** Consistently, here both pro- and anti-inflamma-
tory cytokines (IL-6 and IL-10, respectively) were increased
after ex vivo perfusion at 22 °C. On the other hand, com-
pared with 37 °C, ex vivo lung perfusion at 25 °C reduced
the production of inflammatory mediators and was associ-
ated with reduced histologic graft injury after transplanta-
tion.*” Altogether, cytokines profile and its relevance over
time in kidney graft undergoing perfusion at 22 °C needs to
be evaluated further.

Our study has several limitations that need to be acknowl-
edged. First, the impact of perfusion at 22 °C and ATP
levels on kidney function (serum creatinine, urea, and esti-
mated glomerular filtration rate) or urine production after
transplantation were not assessed. Consistent with previous
reports, no urine output was recorded during the first hour
following transplantation.*® Interestingly, in human, urine
production during normothermic ex vivo perfusion was not
correlated with posttransplant kidney function.* Moreover,
proper assessment of kidney function could not be performed
because of local regulation, which did not allow survival sur-
gery. Thus, the histological score, previously correlated with
the degree of kidney injury,'®?*2¢ was used as a surrogate
endpoint of kidney function. Future clinical trials should help
determine the benefits of perfusion at 22 °C on postoperative
graft function. In addition, the benefits of subnormothermic
perfusion should be tested in all forms of marginal donors,
including kidneys from old donors, after acute kidney injury,
and after prolonged cold preservation.

In conclusion, subnormothermic perfusion of porcine DCD
kidneys improved ATP production and reduced IRI. Perfusion
of DCD grafts at 22 °C should be tested in clinical trials to
determine if it can improve posttransplant graft function and
patient survival.
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BENEFITS OF SODIUM HYDROSULFIDE (H,S) FOR KIDNEY
PROTECTION

"It takes a fearless, unflinching love and deep humility to accept the univers at it is. The most
effective way he knew to accomplish that, the most powerful tool at his disposal, was the scientific
method, which over time winnows out deception. It can’t give you absolute truth because science
is a permanent revolution, always subject to revision."

- Ann Druyan, Cosmos
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12.1 SUMMARY

In Chapter 9, ischemia-reperfusion injury (IRI) has been shown to be associated with decreased
oxygen availability within the organ during ischemic events, as well as with the reintroduction
of oxygen upon reperfusion. A potential strategy to minimize IRI-induced damages involves re-
ducing the oxygen demand of the organ. Hydrogen sulfide (H,S) has been shown to reduce oxy-
gen and ATP consumption in isolated perfused kidneys, as well as inflammation and improve
renal function following IRI in rodents. Investigating the effects of H,S during warm ischemia,
specifically as an extension of cold storage time, could lead to larger geographic organ-sharing
regions, reduced procedural logistics, and optimized recipient preparation. These advancements
could contribute to worldwide donor sharing with improved outcomes, thereby mitigating the
donor shortage. Our research on the benefits and applicability of H,S in clinical settings is
presented in the article Section 12.2.

In this study, porcine kidneys underwent either no warm ischemia or 60 minutes of warm
ischemia before undergoing oxygenated hypothermic machine perfusion (HMP) to simulate
donation after circulatory death (DCD). An intra-arterial bolus of 100 uM of NaHS, an H;S
donor, was injected before the warm ischemia. Following 2 hours of HMP, the kidneys were
transplanted and reperfused for 1 hour before being harvested. Kidney function was assessed
through measurements of high energy metabolites using 3! P-MRSI, Gadolinium elimination,
and histopathological scoring before, during, and after ex vivo perfusion. Warm ischemia (60
minutes) caused significant histological damage, delayed cortical and medullary Gadolinium
elimination (perfusion), and reduced ATP levels, but not its precursors (AMP). As expected, ATP
levels and kidney perfusion both inversely correlated with the severity of kidney histological
injury.

The results indicate that administration of H,S did not result in significant reductions in
ischemia-reperfusion injuries or improvements in kidney metabolism. When NaHS was admin-
istered via the renal artery before ischemia, both donation after brain death (DBD) and DCD
pig kidneys showed similar renal perfusion and ATP levels as the control group after 4 hours
of ex-vivo perfusion. Additionally, no significant difference was observed in renal artery in-
jection of NaHS or auto-transplantation in histological lesions or cortical/medullary kidney
perfusion. Therefore, this study suggests that the use of NaHS to deliver H,S treatment does
not significantly improve renal graft function in porcine kidneys. Further studies are required
to determine the potential benefits of H>S in humans and explore the use of other molecules.
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12.2 SODIUM HYDROSULFIDE (NAHS) TREATMENT DURING PORCINE KIDNEY EX-VIVO

PERFUSION AND TRANSPLANTATION

Sodium Hydrosulfide (NaHS) Treatment During Porcine Kidney Ex-Vivo Perfusion

and Transplantation.
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In rodents, Hydrogen Sulfide (H2S) reduces ischemia reperfusion injuries and improves renal graft
function after transplantation. However, the benefits of H2S in larger mammals, or in grafts donated
after circulatory death (DCD) is unknown. To test the benefits of H2S in a relevant pre- clinical
model, both DBD and DCD adult porcine kidneys were exposed to 100uM NaHS 4. during the hy-
pothermic ex-vivo perfusion only 4. During warm ischemia only, and 4. During both warm ischemia
and ex-vivo perfusion. Kidney perfusion was evaluated with dynamic contrast enhanced magnetic
resonance imaging (MRI). MRI spectroscopy was further employed to assess energy metabolites
including ATP. Renal biopsies were collected at various time points for histopathological analysis.
Both DBD and DCD pig kidneys perfused with Belzer MPS® UW + NaHS showed similar renal
perfusion and ATP levels than the control kidney after 4hrs of ex-vivo-perfusion. Similarly, no
difference was observed when NaHS was administered in the renal artery prior to ischemia. After
auto-transplantation no improvement in histological lesions or cortical / medullary kidney perfusion
was observed upon H2S administration. In addition, AMP and ATP levels were identical in both
groups. In conclusion, treatment of porcine kidney grafts using NaHS did not result in a significant
reduction or ischemia-reperfusion injuries or improvement of kidney metabolism. Future studies will

need to define the benefits of H2S in human and using other molecules.

I. INTRODUCTION

One of the challenges in organ transplant is improving
the organ preservation method especially in the grafts
with inferior quality. The current clinical standard for
kidney preservation is hypothermic storage at 4°C for
a typical storage duration of =20 hours, which results
in unwanted side-effects that severely compromise graft
quality. Hypothermic machine perfusion (HMP) has
been developed as an alternative preservation method to
static cold storage (SCS) with promising short-term re-
sult [1]. In a landmark study including 672 kidney recip-

* Authorship: AL, AK, JS, FA, TA, LB, JMC and FL participated
in research design. AL, AK, RM, KU, DG, CT, HY, JFM, and
FL participated in the writing of the paper. AL, AK, JS, TA,
AN, RR, Ar, SM, RM, RR, SD, JMC, and FL participated in
the performance of the research. AL, AK, JS, TA, SD, RM, LB,
JMC, and FL participated in data analysis.

ients, HMP reduced ischemia reperfusion injuries, clini-
cally manifest as delayed graft function (DGF) [2]. These
results were confirmed by later meta-analyses, demon-
strating that HMP reduces the incidence of DGF in all
types of donors (standard and extended criteria donor,
DBD, DCD) [1].

Hydrogen sulfide (H2S) is a small, endogenously
produced gaseous molecules produced by cystathion-
ine gamma-lyase (CGL or CTH) or cystathionine beta-
synthase (CBS) [3, 4] . HsS is an important signaling
molecule that was shown to have vasorelaxant and an-
giogenic properties, and reduced blood pressure [5]. HaS
has anti-inflammatory and antioxidant properties, and
can reversibly inhibit the mitochondrial electron trans-
port chain, thus reducing ROS formation during reper-
fusion [6]. During ischemia, HyS could further promote
glucose uptake and glycolytic ATP production3. Com-
pared with wild-type mice, CGL deficiency was asso-
ciated with increased damage and mortality after re-



nal ischemia/reperfusion injury, which could be rescued
by exogenous HoS (NaHS) [7]. Similarly, we demon-
strated that administration of NaHS reduced hepatic
and renal ischemia/reperfusion injuires [8]. SCS of rat
kidney in HyS-suplemented Belzer MPS® UW solution
(150 uM150 NaHS) treatment reduced necrosis, apopto-
sis and improved early allograft function after transplan-
tation, compared to Belzer MPS® UW preservation so-
lution alone [9]. In porcine kidneys subjected to 2 hours
of warm ischemia, administration of HsS systemically or
into the renal artery prior reperfusion improved crea-
tine clearance, reduced apoptosis and tubular injury [10].
In addition, the addition of AP39 (a mitochondrial tar-
geted HyS donor) during porcine kidneys subnormoth-
ermic perfusion (21°C) for 4 hours with an Oz carrier
(Hemopure) improved urine output and graft oxygena-
tion [11].

During ischemia, ATP depletion causes inhibition of
mitochondrial Na+/K+ ion channels, resulting in in-
creased mitochondrial inner membrane permeability and
cell death. In prior studies, we used magnetic resonance
imaging (MRI), and 3'P magnetic resonance spectro-
scopic imaging (pMRSI) [12] to image the hydrogen nu-
cleus and for detection of high-energy phosphate metabo-
lites such as ATP during kidney transplantation. Our
group further demonstrated that ATP levels and kidney
Gd perfusion could predict graft function after transplan-
tation [13, 14]. In fact, recovery from (IR) injury is an
ATP-dependent process [15], and ATP level was shown
to determine kidney graft function following transplan-
tation [13].

Here, using MRI and pMRSI, we examined the effect
of exogenous HyS (NaHS) in a relevant porcine ex-vivo
HMP model and auto-transplantation. The effect of HoS
was evaluated in both DBD and DCD model. To increase
the translational value of our study, NaHS was given in
relevant clinical situations, including ex-vivo perfusion
only, or concomitant to heparin administration prior to
warm ischemia.

II. MATERIAL AND METHODS
A. Animals and Surgery

The study was approved by the University of
Geneva’s animal ethics committee (protocol number:
GES83/33556). 5-months-old female pigs were obtained
from the animal facility of Arare, Switzerland. All pigs
were maintained under standard conditions. Water and
food were provided ad libitum. Animals were premed-
icated, anesthetized then kept intubated and ventilated
during the procedure [16]. An arterial line was inserted
in the internal carotid artery. Monitoring included heart
rate, systemic blood pressure, pulse oximetry, and end-

tidal CO5. Following a midline incision, the peritoneal
cavity was opened, and the bowels were reclined. First,
the aorta, vena cava, and renal vessels were prepared.
The pigs received 300 UI/kg heparin intravenous injec-
tions. In some groups, 1 mL of 100 uM NaHS was ad-
ministered into the renal artery 10 min before clamping.
The kidneys were either immediately explanted (DBD)
or explanted after 60 min of warm ischemia (to mimic
circulatory arrest during DCD procurement). Kidneys
were then instantly flushed flushed with 1L of Belzer
MPS® UW Machine Perfusion Solution on ice with or
without 100 pM NaHS. The renal artery was cannulated,
and the kidneys were perfused for 3 hours (see below),
as previously described [13, 17] using our MR~compatible
machine. At the end of the perfusion, both kidneys were
transplanted sequentially onto the vena cava and aorta
using a 6-0 running suture. After 2 hours of reperfusion,
pigs were sacrificed using 100 mEq of potassium chloride
intravenously.

B. Ex-vivo kidney perfusion

Flushed kidney were perfused for 3 hours (before auto-
transplantation) with Belzer MPS® UW Machine Per-
fusion Solution, in presence or absence of 100 uM NaHS
(as indicated in the figures and legends) Active oxygena-
tion was achieved using a 0.15 m? membrane oxygenator
(Biochrom Ltd, Cambridge, UK), maintaining the pOq
levels at 100kPa for the whole preservation time. The
perfusion module was kept in an isolating box containing
ice that kept the kidney at 4°C. Systolic and diastolic
pressure were set at 40 and 20 mmHg, respectively.

C. MRI imaging

MRI and pMRSI (see below) were performed during
the ex-vivo perfusion prior (pre-Tx), and after trans-
plantation (post-Tx), as indicated in the figures and leg-
ends. Measurements were performed on a multi-nuclear
Prisma-fit 3 T whole-body MRI scanner (Siemens Health-
ineers, Erlangen, Germany). 'H imaging was performed
with the body coil using a T2-weighted sequence (turbo
SE, TR 6530ms, TE 110ms, 2mm slices) for kidney
localisation and structural imaging. Dynamics-contrast
enhanced MRI with gadolinium (Gd-MRI) was used to
determine the perfusion distribution between the cortex
and the medulla, a surrogate of glomerular filtration rate
(GFR) as previously described [7, 13, 17]. Data were
collected using a dynamic 2D saturation-prepared turbo
flash sequence with the scanner body coil. This sequence
has an inversion time of 255ms, a flip angle of 12°,
1.3 mm x 1.3 mm resolution, and six slices of 4 mm (1 mm
gap), TR 500ms, and a TE of 1.4ms. The perfusion-
descending cortical slope (DS) was determined using the
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angle of the linear regression between the maximum sig-
nal value and the lowest intensity point after the initial
peak [17].

D. 3'P Magnetic resonance imaging spectroscopy

pMRSI was performed as described previously [7, 17,
18]. Briefly, a single loop ?!P-tuned coil fixed at the
bottom of the perfusion tank allows the measurement of
the signal. Scanner embedded body coil was used for 'H
imaging and for shimming to ensure field homogeneity.
PMRSI consisted of 3D spatial encoding, with a field-of
view (FOV) 250 x 250 x 160 mm?, matrix size 16x16x8,
nominal spatial resolution 15.6 x 15.6 x 20 mm?, TR 1.0,
flip-angle 35 °, echo delay 6.0 ms, bandwidth 4000 Hz, 2k
sampling points. Elliptical encoding with 18 weighted av-
erages resulted in an acquisition time of 45min. The res-
onance of the inorganic phosphate (Pi, 5.2 ppm), which
is uniformly present in the container and the kidney, was
used as a reference for quantification of the pMRSI sig-
nal. Excitation pulse bandwidth has been adjusted to the
ATP frequency range (Pi resonance - 500 Hz). An expo-
nential time filter with 20 Hz frequency width, 0** and 15
order phase corrections were used to process the spectra.
The metabolites (ATP, phosphomonoesters/PME, Pi,
Phosphocreatine/PCr) were fitted with Gaussian peaks
using the syngo.via software (SIEMENS, Erlangen, Ger-
many) and were estimated over the whole kidneys by av-
eraging pMRSI voxels containing graft tissue, resulting in
a single spectrum. Quantification results provided by 3D
3IP-MRSI at 3T were analyzed with LCModel for MRS
fitting as previously described [19]. The three ATP peaks
were quantified separately to prevent methodological bias
due to excitation profile imperfection. In each condi-
tion, pMRSI allowed the detection of a-, 8-, and v-ATP
and phosphomonoesters (PME) composed by phospho-
choline (PCh), phosphoethanolamine (PE) and adeno-
sine monophosphate (AMP). ATP and PME concentra-
tion (mM) were quantified from the fitting and using
the concentration of the inorganic-phosphate buffer (Pi,
25mM) as reference?. As single ATP concentration was
calculated by average of the a-, 8-, and y-ATP values.

E. Histopathological analysis of biopsies

Surgical kidney cortical biopsies were collected at base-
line (before clamping), after warm ischemia (Post W.1.),
at the end of the ex-vivo perfusion (Pre-Tx), and af-
ter 2 hours of reperfusion/transplantation (Post Tx) and
were formalin fixed then embedded in paraffin. Fixed
kidney biopsies were cut into sections of 3 um thick-
ness and stained with silver Jones and Periodic Acid-
Schiff (PAS). Slides were scanned using a Axio Scan zl
slide scanner (Zeiss®). Histopathological analysis score
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was performed based on those described by Goujon et
al. [17, 20, 21| using Zen software (Zeiss®), and previ-
ously demonstrated to reflect the degree of injury post-
transplantation [13, 17]. Whole biopsies were assessed
and blinded to group assignment. The following cat-
egories were assessed: glomerular integrity, tubular di-
latation, brush border integrity, cellular debris in lu-
mina of tubules, interstitial edema, and tubular cell vac-
uolization. Briefly, to assess glomerulus integrity, more
than ten glomeruli were randomly selected from the sec-
tion and assigned a score of 0 to 3. The same pro-
cedure was followed in the remaining categories. Af-
ter that, the score for each category was converted to
a percentage. The final score was converted to a final
scale from 0 to 5 according to the percentage of dam-
age: 0-15% (0), 15-30% (1), 30-45% (2), 45-60% (3),
60-75% (4) and >75% (5) using the following formula:
(Categorypinal score/3) X 100. The final score for each
biopsy ranged from 0 to 30 with 30 the highest score
corresponding to more severe damage. Scoring was per-
formed blindly by two independent researchers.

F. Statistical analysis

Data are presented as mean +SEM, and differences are
considered significant when p < 0.05. Comparisons be-
tween groups were analyzed using ANOVA and post hoc
Tukey’s tests. Two-group comparisons were performed
using Student’s t tests (Prism 9.2, GraphPad Softwares,
San Diego, CA, USA). Fitting curves of the metabolites
concentration over time were computed using R (4.1,
https://cran.r-project.org).

III. RESULTS

A. H;S treatment during hypothermic machine
perfusion in DBD

We first examined the effect of HyS administration dur-
ing ex-vivo perfusion in a DBD model (Figure 1A). Im-
mediately after harvest, kidneys were flushed and per-
fused during 2hrs with 4°C Belzer MPS® UW solu-
tion with or without (Ctrl) 100 uM NaHS before auto-
transplantation. After 2 hours of cold perfusion, cortical
and medullary flow were similar in both the Ctrl and the
NaHS treated kidneys (Figure 1B). This was reflected
by the absence of significant differences in the perfusion-
descending slope (DS, —78 4 1.32 and p = 0.53 cortex,
—67 £ 14.8 p = 0.10 medulla for Ctrl and NaHS respec-
tively, Figure 1B). Next, mean ATP levels were mea-
sured by averaging pMRSI voxels containing graft tissue
[13, 17]. Alpha (), beta (3), and gamma () adenosine
triphosphate (ATP), and PME containing AMP, were



similar in both groups (Figure 1C). Similarly, post auto-
transplantation, cortical and medullary flow (Figure 1D)
as well as ATP levels (Figure 1E) were similar in both
Ctrl and NaHS treated kidneys. Finally, we examined
the histological damage using a modified Goujon score
(described in the methods section), shown to reflect kid-
ney function [13, 17, 20|. Kidney biopsies were analyzed
at baseline, at the end of the ex-vivo perfusion (Pre-Tx),
and 2 hours after transplantation (post-Tx). Consistent
with previous findings, histological damages, were signifi-
cantly increased after transplantation / reperfusion (Fig-
ure 1F). Importantly, treatment with NaHS during ex-
vivo perfusion did not reduce histological injuries, such as
tubular dilatation, luminal cell debris and brush border
lesions before and after transplantation (Figure 1F).

B. H,S treatment during hypothermic machine
perfusion in DCD grafts

Since we did not observe any benefits of HyS treatment
in "healthy" DBD organs, we next investigated the effect
of NaHS in kidneys obtained via donation after circula-
tory death (DCD). After 60min of warm ischemia, kid-
neys were after harvested, flushed and perfused during 2
hours with 4 °C Belzer MPS® UW solution with 100 xM
NaHS or vehicle (Ctrl) before auto-transplantation (Fig-
ure 2A). In DCD kidneys, at the end of 4 °C ex-vivo per-
fusion, cortical and medullary flow were similar in both
the Ctrl and the NaHS treated kidneys (Figure 2B). Sim-
ilarly, at the end of ex-vivo perfusion, ATP levels were
unaffected by NaHS administration (Figure 2C). In addi-
tion, after transplantation, kidney perfusion (Figure 2D),
ATP levels (Figure 2E) and histological injuries (Figure
2F) were not reduced in by administration of NaHS dur-
ing the ex-vivo perfusion.

C. HsS treatment prior to ischemia in DCD

The absence of significant differences observed between
the Ctrl and HsS treated DCD kidneys might be related
to the timing of NaHS administration. Thus, we next in-
vestigated the effect of a single injection of 100 uM NaHS,
directly into the renal artery and prior to the interrup-
tion of blood flow (warm ischemia, Figure 3A). In these
conditions, kidney perfusion and descending slopes were
similar in both the Ctrl and NaHS treated kidney (Fig-
ure 3B) during ex-vivo perfusion. Similarly, intra-arterial
NaHS administration prior to ischemia did not impact
ATP production in perfused kidneys (Figure 3C). After
transplantation, cortical and medullary perfusion were
similar in both groups (Figure 3D). Similarly, we did not
observe differences in ATP concentration (Figure 3E) or
histological injuries (Figure 3F).

We reasoned that single injection of NaHS prior to
warm ischemia might be insufficient due to uncontrolled
rapid delivery of HyS observed with NaHS. Therefore
100 uM NaHS was administered i.a. prior to warm is-
chemia as well as in the perfusate, during the entire ex-
vivo perfusion period (Figure 4A). Under this condition,
cortical and medullary perfusion after transplantation
were similar in the vehicle and NaHS treated kidney (Fig-
ure 4B). Alpha («), beta (), and gamma () adenosine
triphosphate (ATP), and PME containing AMP, were
similar in both groups (Figure 4C). Finally, using the
Goujon score, we did not detect significant differences in
histological damages in both groups (Figure 4D).

IV. DISCUSSION

In this study we found that 100uM NaHS administra-
tion during ex-vivo kidney perfusion in DBD and DCD
kidney porcine graft, or prior to warm ischemia in a
DCD model, did not improve energy metabolism, kidney
perfusion of histological injury. In addition, early post-
transplantation outcomes were similar in both vehicle or
NaHS-treated kidneys.

Our group and others previously demonstrated that
NaHS protected against renal ischemia/reperfusion in in-
jury in several models of warm tissue ischaemia [3, 8, 10],
as well as during cold preservation prior to transplanta-
tion in rodents [22]. However, we could not recapitu-
late these findings here in an adult pig model (approx.
animal weight 35kg) during cold storage followed by in-
vivo reperfusion/transplantation. Of interest, in mice,
exposure to 20-80 ppm gaseous HsS dose-dependently
decreased energy expenditure within a few minutes, as
assessed by whole-body Os uptake and COy produc-
tion. This fall in metabolic activity was associated with
bradypnea and consecutive hypothermia, with core tem-
perature falling to levels close to ambient values [23].
Subsequent work has thus described and studied HS in-
duced suspended animation - a hibernation like state.
Various other rodent models confirmed these observa-
tions: Inhaling gaseous HaS [24] and infusing the sol-
uble sulfide salts (NaHS or Na2S) NayS also induced a
reversible reduction in energy expenditure with a subse-
quent fall in core temperature [25]. Of utmost impor-
tance, the metabolic depressant property of HoS appears
to depend on the animal size. In rats HyS-induced de-
crease in Oy uptake was several-fold lower than in mice
[26]. In larger species (swine, sheep), various authors
failed to confirm any HyS-related reduction in metabolic
activity at all, regardless of whether inhalation of gaseous
H,S or injection of sulfide salts were studied [27]. Sim-
ilarly, in sheep, gaseous HoS administration whole body
O, uptake, CO5 production, and cardiac output re-
mained unaffected [28]. Altogether, these data are consis-
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tent with our latest findings, and suggest that achieving
metabolic suppression (suspended animation-like status),
and subsequent protection from warm and cold in larger
animals, or humans will be more difficult and require
much more time because of the small surface area/mass
ratio [29].

NaHS dissociates to Nat and HS™, and then binds
partially to HT to form undissociated H,S. While HyS
levels were not measured in this study, NaHS rapidly
released HyS, the effect occurring within seconds [3].
Thus, NaHS rapid and uncontrolled delivery of HsS
might contribute to the results of our study. Alterna-
tively, it was shown that NaHS can affect protein struc-
ture [30], and HyS promotes the sulfhydration of en-
zymes in energy metabolism and stimulates glycolytic
flux [31]. DATS (Diallyl trisulfide) and DADS (Dial-
lyl disulfide) are other HoS-releasing molecules that pro-
tect from ischemia/reperfusion [32] but are also unsta-
ble and short lived. Morpholin-4-ium-4-methoxyphenyl
phosphinodithioate (GY'Y4137) might be a more attrac-
tive alternative, as is it releases hyS at a slow and steady
rate at physiological pH and temperature [33]. GYY4137
was shown to mitigate renal acute kidney injury follow-
ing ischemia/reperfusion in mice [34], but remained to be
tested during cold preservation and in larger animals. In-
vitro, the mitochondrial targeted HoS prodrug AP39 was
shown be significantly more potent than GYY413722.
Similarly, AP39 improved renal allograft survival follow-
ing 24 hours SCS and allogeneic renal transplantation
[22]. In DCD porcine kidneys, ex vivo subnormother-
mic perfusion (SNMP, 21 °C) with autologous blood and
AP39 improved urine output and reduced apoptosis com-
pared to SCS or SNMP alone for 4 hours [11]. Of note,
reperfusion was assessed ex-vivo with autologous blood
at 37°C, and the kidneys were not transplanted [11].

We did not compare the effect of NaHS at higher per-
fusion temperature (SNMP 21 °C or NMP at 37°C). In-
deed, the rationale was to uses HyS specific inhibition of
the mitochondrial electron transport chain3 during cold
preservation and reduce ROS generation during reperfu-
sion, rather than only relying on passive temperature ef-
fects to depress metabolism. On the other hand, (S)NMP
provides a continuous flow of warmed, oxygenated per-
fusate containing nutritional substrates, instead aiming
to maintain the metabolic activity of the kidney [35].

Here, ATP measurement relied exclusively on pRMSI.
However, we previously, demonstrated that nucleotide
quantification with pRMSI was accuarate [17]. pRMSI
also suffers from a relative low sensitivity compared to
liquid chromatography or 'H imaging at a constant mag-
neticfield [13]. Thus, the acquisition is generally per-
formed with higher voxels size to achieve enough signal
to noise ratio while keeping an acceptable scan time. Of
importance this lack of sensitivity limitation hinders the
measurement, of ATP at 4 °C without oxygen. The appli-
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cation of machine learning [36] and neural network can
further improve pMRSI sensitivity, spatial resolution and
computing time [37]. Overall pMRSI remains a powerful,
non-invasive tool to quantify ATP [13].

Our study has several limitations that need to be ac-
knowledged. Kidney function (serum creatinine, urea,
and estimated glomerular filtration rate) or urine pro-
duction after transplantation was not assessed. Kidney
function could not be performed due to local regulation,
which did not allow survival surgery. Thus, the histologi-
cal score, previously correlated with the degree of kidney
injury [10, 24-26] was used as a surrogate endpoint of kid-
ney function. Similarly, the sample size was small, thus
increasing the risk of type II errors. As discussed above,
other HyS-releasing molecules and /or gaseous HsS should
be evaluated in (pre)-clinical model of kidney transplan-
tation. In addition, our study only included health adult
pig kidney. Similar studies should be performed using
marginal (e.g. old) kidney grafts.

In conclusion, perfusion of porcine DBD and DCD kid-
neys with NaHS did not improve preservation nor re-
duced ischemia / reperfusion. Perfusion of organ with
alternative HoS-donors, and/or at different temperatures
should be tested to determine if HyS can improve post-
transplant graft function, and patient survival.
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FIG. 1. Effects of Hydrogen Sulfide Supplementation during Hypothermic Machine Perfusion in a DBD model. (A) Experimental
design. Pig kidneys were perfused at 4°C with O, (HMP) with Belzer MPS® UW with or without 100 uM NaHS for 2hrs,
during #'P MRSI and prior to auto-transplantation (reperfusion) and post-transplant 3'P MRSI during *'P MRSI and prior
to auto-transplantation (reperfusion) and post-transplant *'P MRSI (B) Pre-transplant cortical and medullar Gd normalized
signal intensity over time (right) and quantification (descending slopes, left) in the indicated groups. (C) Pre-transplant PME,
a, 3, and v ATP levels (left) and mean ATP (right) in Ctrl and NaHS treated kidney. (D) Post-transplant cortical and medullar
Gd normalized signal intensity over time (right) and quantification (descending slopes, left) in the indicated groups. (E) Post-
transplant PME, «, 8, and v ATP levels (left) and mean ATP (right) in Ctrl and NaHS treated kidney. (F) Representative
transverse PAS-stained sections of kidneys at the indicated time in Ctrl and NaHS groups (left) and quantification of histological
damages (score, right). Data expressed as mean + SEM, n=4.
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FIG. 2. Effects of Hydrogen Sulfide Supplementation during Hypothermic Machine Perfusion in a DCD model. (A) Experimental
design. Pig kidneys underwent 60min of warm ischemia (WI) prior to 4°C oxygenated (HMP) with Belzer MPS® UW with
or without 100 uM NaHS for 2hrs during *'P MRSI and prior to auto-transplantation (reperfusion) and post-transplant *'P
MRSI assessment. (B) Pre-transplant cortical and medullar Gd normalized signal intensity over time (right) and quantification
(descending slopes, left) in the indicated groups. (C) Pre-transplant PME, «, 8, and v ATP levels (left) and mean ATP (right)
in Ctrl and NaHS treated kidney. (D) Post-transplant cortical and medullar Gd normalized signal intensity over time (right)
and quantification (descending slopes, left) in the indicated groups. (E) Post-transplant PME, «, 8, and v ATP levels (left)
and mean ATP (right) in Ctrl and NaHS treated kidney. (F) Representative transverse PAS-stained sections of kidneys at the
indicated time in Ctrl and NaHS groups (left) and quantification of histological damages (score, right) . Data expressed as
mean £SEM, n=3.
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FIG. 3. Administration of Hydrogen Sulfide prior to Warm Ischemia in a DCD model. (A) Experimental design: Administration
of 100 uM NaHS into the renal artery prior to 60min warm ischemia. Immediately after procurement, kideny were perfused at
4°C with Oz, in Belzer MPS® UW for 2hrs and underwent 3'P MRSI, prior to auto-transplantation (reperfusion) and post-
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CONCLUSION

"It’s not for any one generation to see the completed picture. That’s the point. The picture is
never completed. There is always so much more that remains to be discovered."
- Ann Druyan, Cosmos
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13.1 SUMMARY

Over the course of this thesis work, several tools were developed to enhance phosphorus spec-
troscopic imaging, and multiple investigations were conducted to assess organ viability and
preservation techniques. In the following section, we recapitulate each topic with a summary
of the main findings and primary contribution and possible future work to improve the findings
or to continue the research.

13.2 DISCUSSION AND OUTLOOK
13.2.1 3V P-MRSI analysis with Artificial Intelligence

In Chapter 6, we described the development of convolutional neural network-based deep learn-
ing methods to analyze, quantify, and reconstruct measured 3'P-MRSI spectra. While prior
published works have integrated machine learning and deep learning for MRS analysis, our
work is distinguished by several critical differences. Our approach employs a more comprehen-
sive physical model, enabling the use of a larger number of training parameters to create a more
diverse range of spectra for network training. Additionally, our approach shifts the traditional
paradigm by aiming to evaluate the spectral parameters and metabolite quantification, which
can be subsequently used to reconstruct the spectrum, rather than relying on fitting algorithms
where residual minimization is the primary focus. Our methods have demonstrated favorable
performance in comparison to fitting algorithms, even surpassing them in low SNR scenarios.
The developed technique met the project’s goal of achieving rapid computational analysis for
potential use in clinical settings.

The methods developed in this study is primarily focused on analyzing the spectrum of the
phosphorus nucleus, but the approach could be extended to analyze spectra from other nuclei
as well. To enable this, the model would require modifications to account for variations in the
chemical shift and J-coupling of the resonances, allowing for the creation of a dataset specific
to the targeted nucleus. Moreover, the current model is based on the free induction decay (FID)
signal, however, it can be adapted to other sequences as well.

Future work on the method should focus on implementing a confidence interval measure-
ment, in a similar way than fitting algorithms like LCModel that provide an estimation of quan-
tification along with confidence intervals. Additionally, an analysis on the impact of training
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parameter ranges on SPAWNN’s stability and robustness needs to be established. The model
may benefit from an improved physical model that takes into account additional distortions,
such as eddy current effects. The 31P-SPAWNN method is openly available on gitlab: https:
//gitlab.unige.ch/Julien.Songeon/31P-SPAWNN.

13.2.2 3V P-MRSI Acceleration and Reconstruction with Compressed Sensing and Low Rank

In Chapter 8, we implemented of Compressed Sensing and Low Rank (CS-LR) acceleration and
reconstruction techniques for 3! P-MRSI. The method involved the use of total generalized vari-
ation regularization and was adapted from previously published work on 'H-MRSL. One unique
aspect of our approach was the incorporation of different random undersampling patterns for
each k-space average. This was of particular interest as the phosphorus nucleus is inherently
less sensitive, requiring multiple averages for adequate SNR. By utilizing distinct undersam-
pling patterns, we were able to achieve a greater k-space coverage while maintaining the desired
acceleration factor. The findings demonstrated that the proposed method effectively enhanced
the SNR while retaining high-quality spectral and spatial information, even under acceleration
by a factor of three. The linewidth of the metabolite peaks remained unchanged at all acceler-
ation factors, and anatomical details could still be extracted from the attenuated signals. This
improvement also met the project’s goal of achieving fast acquisition with reliable reconstruc-
tion to reduce the scan time of the transplantation viability assessment.

In order to make the CS-LR sequence available on the MRI for 3TP-MRSI, future work could
include its development. Although a sequence for 3! P-MRSI has already been created, the incor-
poration of random undersampling patterns has not been developed yet. Currently, the study
was performed on retrospective data, and analyzing accelerated in-vivo data to confirm the
findings could be of interest.

13.2.3 Assessment of Kidney viability with 31 P-MRSI

In Chapter 10, we describe the experimental setup utilized for evaluating kidney viability. Our
research team had fully developed a hypothermic pulsatile perfusion system (HPP), which is
compatible with MRI technology and capable of perfusing kidneys. The HPP was also equipped
with 31P spectroscopic acquisition capability. This machine was utilized to evaluate porcine kid-
neys in an auto-transplantation setup model. The kidneys were subjected to warm ischemia
for 30 or 60 minutes, and the results were compared to a control group without ischemia.
Kidney function was assessed using measurements of 3! P-MRSI, gadolinium elimination, and
histopathological scoring. The study successfully detected ischemia-reperfusion damage, which
was observed with the three measurement methods. Notably, we established a correlation be-
tween the descending slope of gadolinium perfusion elimination and histological damage scores.
This study achieved the project’s objectives of assessing kidney viability with 31 P-MRSI and
assessing mitochondrial functions ex-vivo.

The study encountered some limitations, and missed some of its objective. First and fore-
most, it was not possible to correlate the measurement of ATP from the ex-vivo mitochondrial
functions with kidney function in-vivo or after transplantation, as legal authorization did not
permit the survival of the animals. Long-term survival of the animals after transplant would be
necessary for assessing the success or failure of the transplantation. Second, while the ischemia-
reperfusion injury was observed and correlated with our measurements, the methodology does
not cover the broad group of marginal donors (e.g., old donors, prolonged preservation, etc.).
Therefore, an assessment of different organs from this group should be investigated. Thirdly,
we concluded that the 45-minute scan time of 3'P-MRSI was too long to be a viable clinical
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method. However, this limitation could be addressed with the improved 3 P-MRSI accelerated
sequence. Fourthly, we intended to assess the two nicotinamide adenine dinucleotide metabo-
lites NAD+ and NADH) to measure the alteration of the redox state. This was not possible due
to the low signal-to-noise ratio of the spectra at 3T and the overlap of the resonances, which
did not allow for the disentanglement and quantification of each metabolite.

13.2.4 Sub-normothermic Preservation of Kidney

In Chapter 11, we investigated the preservation of kidney grafts at a sub-normothermic tem-
perature of 22 °C and compared the results with the current hypothermic preservation process
at 4 °C. Our findings revealed that kidney grafts perfused at 22 °C exhibited increased ATP
production and reduced ischemia-reperfusion injury (IRI) during transplantation, as compared
to hypothermic preservation. The significant differences observed between the two groups
were strongly correlated with histological scores and measurements of ATP and AMP pre-
transplanted. We concluded that perfusing kidney grafts at 22 °C may enhance the utilization
of kidney allografts. Although the sub-normothermic project was not initially within the scope
of the thesis, this study successfully met the objective of assessing organ preservation and via-
bility using 3'P-MRSIL.

This study also faced some limitations. Firstly, the research design did not allow for the
assessment of metabolism with 3'P-MRSI or the performance of Gadolinium perfusion after
transplantation. Additionally, as with the previous study, legal authorization did not permit the
survival of the animals, limiting the post-transplantation assessment. Furthermore, this study
did not cover the broad group of marginal donors, which should be investigated in future works.

13.2.5 Preservationt of Kidney with Sodium Hydrosulfide (H,S)

In Chapter 12, we investigated the efficacy of hydrogen sulfide (H,S) in reducing oxygen and
ATP consumption in order to mitigate the effects of ischemia-reperfusion injury and improve
renal function. Our results showed that ATP levels and kidney perfusion were inversely corre-
lated with the severity of kidney histological injury. However, the administration of H,S via
NaHS did not result in significant reductions in IRI or improvements in kidney metabolism.
Thus, we concluded that H,S treatment does not significantly improve renal graft function in
porcine kidneys. This study failed to demonstrate the potential benefits of using H, S to preserve
organs from ischemic injury for cold storage as part of our project objectives.

In addition to the aforementioned limitation, the outcome of this study was constrained by
the uncontrolled delivery of H,S via NaHS. To further investigate the effects of H,S, future
studies could be conducted under sub-normothermic preservation conditions, as higher tem-
peratures would result in continuous oxygenation of the organ and could potentially enhance
the effects of H5S.

13.3 GENERAL CONCLUSION

All research projects were completed within the allocated timeframe. Although the original re-
search plan aimed to translate H, S preservation to clinical practice, the mitigated resultsled to a
shift towards investigating sub-normothermic preservation. As with any research endeavor, we
encountered several challenges. Few pigs died before completing the experiment, resulting in
loss of data. In some cases, the kidneys were only partially or not perfused in the HPP machine.
Additionally, the development of autosomal dominant polycystic kidney disease (ADPKD) in a
few animals also resulted in loss of data. Issues with MRI were also faced, where some experi-
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ments had to be prematurely terminated due to software issues, which impacted the amount of
data collected.

On the other hand, we must acknowledge the exceptional facilities and support at our dis-
posal for this research. The availability of a world-unique HPP system that is compatible with
MRI, coupled with access to a research 3 T MRI with multi-nuclei spectroscopy capability, are
significant advantages. These resources enabled us to perform the complex and necessary re-
search outlined in this thesis. It is fair to say that this research would not have been possible
without them.

In conclusion, we have developed a methodology that substantially enhances the sensitivity
of our technique through the implementation of acceleration and reconstruction methods based
on Low Rank and Compressed Sensing. We have also improved the spectral evaluation through
the use of neural networks, enabling more efficient analysis of low signal-to-noise ratio and
overlapping resonances. These advancements provide novel avenues for in vivo biochemistry
studies, including the imaging of oxidative stress at ultra-high magnetic field strengths (7 T).
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