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Résumé

Beaucoup de problèmes du monde réel se concentrent sur l’identification de l’effet

que certaines variables mesurées ont sur une réponse d’intérêt. Un point commun

entre les dispositifs d’enregistrement modernes est que le nombre P de variables

mesurées, qui correspondent souvent au nombre de paramètres, est grand. Il devient

donc fréquent analyser les données où P dépasse la taille de l’échantillon N . Ceci est

généralement appelé statistiques de grande dimension.

Dans cette thèse, nous commençons par examiner une famille de techniques de

sélection de modèles appelées seuillage qui supposent que le vecteur de paramètres

β a peu de coefficients non nuls. Cette hypothèse est appelée sparsité. Ces estima-

teurs sont indexés par un paramètre de régularisation λ. Nous passons en revue les

concepts importants liés au seuillage tels que la fonction zero thresholding function et

la null thresholding statistique qui sont utiles dans les chapitres 2 et 3.

Dans le chapitre 2, nous appliquons certaines propriétés des estimateurs de seuillage

pour dériver une nouvelle classe de tests statistiques pour les modèles linéaires gé-

néralisés. Ces tests peuvent être utilisés si le modèle inclut plus de paramètres que

d’observations ou non. Pour les modèles linéaires, les tests de seuillage reposent sur

des statistiques pivotales issues des techniques de sélection de modèles. Pour les mo-

dèles linéaires généralisés, nous avons dérivé des tests qui s’appuient sur de nouvelles

statistiques asymptotiquement pivotales. Un test de seuillage composite tente d’ob-

tenir uniformément la plus grande puissance possible sous des alternatives à la fois

sparses et denses. Dans une simulation, nous comparons le niveau et la puissance

de ces tests sous des hypothèses alternatives sparses et denses, ainsi que l’effet de la

sparsité dans la matrice de régression. Les tests de seuillage ont un meilleur contrôle

du niveau nominal et une puissance plus élevée que les tests existants.

Dans le chapitre 3 nous utilisons un estimateur de seuillage pour résoudre un
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2 Résumé

problème de cosmologie qui consiste à estimer l’émissivité 3D de gas d’un amas de

galaxies à partir d’une image 2D prise par un télescope. Un phénomène de flou-

tage et des sources ponctuelles rendent ce problème inverse encore plus difficile à

résoudre. Pour imposer la sparsité sur les paramètres dans l’esprit du lasso, on régu-

larise l’estimation du maximum de vraisemblance avec deux pénalités `1 : une pour

l’estimation de l’émissivité radiale et une pour la détection des sources ponctuelles.

Les deux pénalités de type lasso sont choisies sur une échelle probabiliste similaire au

niveau d’un test statistique. Nous quantifions également l’incertitude de l’estimation

avec une approche de type bootstrap pour guider les analystes dans l’évaluation de

l’importance de caractéristiques intéressantes. Nous effectuons des simulations dans

lesquelles nous montrons comment notre méthodologie surpasse en termes d’erreurs

quadratiques moyennes l’approche actuelle qui est en deux étapes, et comment elle

a une bonne probabilité de couverture. Nous appliquons nos méthodes à cinq images

réelles de télescope et discutons les résultats scientifiques.



Summary

Many real world problems focus on identifying the effect that some measured vari-

ables have on a response of interest. A shared pattern between modern recording

devices is that the number of measured variables P , which often correspond to the

number of parameters, is large. It is therefore getting common to analyze data where

P exceeds the sample size N . This is usually called high dimensional statistics.

In this thesis we start by reviewing a family of model selection techniques called

thresholding that assume the vector of parameters β has few non-zero coefficients.

This assumption is called sparsity. These estimators are indexed by a regularization

parameter λ. We review important concepts related to thresholding such as the zero
thresholding function and the null thresholding statistic that are useful in Chapters 2

and 3.

In Chapter 2 we apply these properties of the thresholding estimators to derive

a new class of statistical tests for generalized linear models. These tests can be em-

ployed whether the model includes more parameters than observations or not. For

linear models, thresholding tests rely on pivotal statistics derived from model selec-

tion techniques. For generalized linear models we derived tests that rely on new

asymptotically pivotal statistics. A composite thresholding test attempts to achieve

uniformly most power under both sparse and dense alternatives with success. In a

simulation, we compare the level and power of these tests under sparse and dense

alternative hypotheses, as well as the effect of sparsity in the design matrix. The

thresholding tests have a better control of the nominal level and higher power than

existing tests.

In Chapter 3 we use a thresholding estimator to solve a cosmology problem that

consists in recovering the 3D gas emissivity of a galaxy cluster from a 2D image taken

by a telescope. Blurring and point sources make this inverse problem even harder

3



4 Summary

to solve. To enforce sparsity on the parameters in the spirit of lasso, we regularize

the maximum likelihood estimation with two `1 penalties: one for the estimation of

the radial emissivity and one for the detection of the point sources. The two lasso

penalties are chosen on a probabilistic scale similarly to the level of a statistical test.

We also quantify the uncertainty of the estimation with bootstrap to guide analysts

in judging the significance of interesting features. We perform simulations in which

we show how our methodology outperforms the current state-of-the-art two-step ap-

proach in terms of mean squared errors, and how it has good coverage probability.

We apply our methods to five different real telescope images and discuss the scientific

findings.



Prologue

This thesis is divided into three chapters. The first chapter is the introduction. It

summarizes the main concepts that are common to the applications in Chapter 2 and

Chapter 3. These two chapters are the basis of this thesis and present two different

applications of thresholding estimators and the quantile universal threshold. It is im-

portant for the reader to notice that both the introduction and Chapter 2 share the

same notation. Since the cosmology application in Chapter 3 has a more specific in-

terpretation, we kept a different notation for the variables in this chapter to be more

consistent with the astrophysics community.

This thesis is the continuation of the work done during my Master’s thesis un-

der the direction of Professor Sylvain Sardy and with Dr. Caroline Giacobino on the

selection of the penalty parameter for thresholding estimators, namely the quantile
universal threshold. We published the main article that became the inspiration for the

two applications exposed in this thesis:

• C. Giacobino, S. Sardy, J. Diaz-Rodriguez, and N. Hengartner. Quantile Univer-

sal Threshold. Electronic Journal of Statistics, 2017.

In fact, some parts of the introduction of this thesis summarize the main points of

this paper. This work leads to a consulting work with Dr. Dorothea Hug Peter from

the Laboratory of Ecology and Aquatic Invertebrates of the University of Geneva,

resulting in another paper:

• D. Hug Peter, S. Sardy, J. Diaz-Rodriguez, E. Castella, and V. Slaveykova. Model-

ing whole body trace metal concentrations in aquatic invertebrate communities:

A trait-based approach. Environmental Pollution, 2018.

The study of the quantile universal threshold inspired the work of Chapter 2, an

application in hypothesis testing based on thresholding tests, another consulting work

5



6 Prologue

with Dr. Dominique Eckert from the Department of Astrophysics of the University of

Geneva inspired the second main part of this thesis: the cosmology application in

Chapter 3. The work of both chapters produced two papers currently in peer review

process:

• S. Sardy, C. Giacobino, and J. Diaz-Rodriguez. Thresholding based tests. Sent

to Biometrika, 2018.

• J. Diaz-Rodriguez, D. Eckert, H. Monajemi, S. Paltani, S. Sardy. Nonparametric

estimation of galaxy cluster’s emissivity and point source detection in astro-

physics with two lasso penalties. Sent to Annals of Applied Statistics, 2017.

We also published a proceedings in the IEEE-Xplore database with the cosmology

application:

• J. Diaz-Rodriguez and S. Sardy. A Composite Lasso Penalty With an Application

in Cosmology. IEEE Intl Conference on Computational Science and Engineering
(CSE), 2016.

Another important contribution is the R library we developed for the quantile univer-

sal threshold and the thresholding tests in Chapter 2:

• J. Diaz-Rodriguez, S. Sardy, C. Giacobino, and N. Hengartner. qut: Quantile

Universal Threshold, 2016. URL https://CRAN.R-project.org/package=qut. R
package version 1.3.



Chapter 1
Introduction

Several real world applications involve the study of the relationship between a set of

covariates and a dependent variable of interest by processing a set of measurements.

In Chemometrics, Sardy [2008] deals with a problem in which P = 315 covariates x

are spectrometer measurements and the responses Y are the octane level of N = 434

fuel samples: predicting the octane level from its cheap spectrometer measurements

can save time and money in comparison with tedious and time consuming mechanical

techniques. In Sociology, Kushmerick [1999] data set is a classification of N = 2359

possible advertisements on Internet pages based on P = 1430 features: the goal

is to identify the most significant features in this classification problem for future

predictions. In Genetics, Golub et al. [1999] study the expression of P = 3571 genes

of N = 72 samples of humans with different types of acute leukemia cancer: they

want to select the specific genes that determine the different types of leukemia cancer.

Also in genetics, Bühlmann et al. [2014] are interested in identifying the set of genes

that are significantly related to the riboflavin production rate from a population of

Bacillus subtilis. They have measurements from 71 individuals and expressions from

4088 genes. The purpose of collecting such data is to relate the covariates x =

(x1, . . . , xP ) to dependent variable Y . Up to model and measurement errors, it is

believed that a function µ(x) can predict Y well.

1.1 Generalized Linear Models

Generalized Linear Models (GLMs) provide a framework to model data as discussed

above. In such models the association µ(x) is believed to be a function of a linear

7



8 CHAPTER 1. INTRODUCTION

combination of the covariates. The goal is to estimate the parameters of this func-

tion based on a set of training measurements {(yn,xn)}n=1,...,N . If P grows with the

number N of samples, the method is nonparametric in the sense that the underlying

model increases in complexity, as the sample size increases. If P is fixed, then the

model is parametric. GLMs encompass normal linear models, logistic regression for

binary responses, Poisson regression for count data and log-linear models for contin-

gency tables. GLMs include many more possibilities in a class of distributions in the

exponential family, taking the form

fYn (yn; θn, φ) = exp

(
ynθn − b (θn)

a(φ)
+ c (yn, φ)

)
, (1.1)

where θn ∈ Θ := {θ ∈ R | b(θ) <∞}, yn ∈ Y ⊂ R, n = 1, 2, . . . , N , and the functions

a, b and c are known. For the Gaussian distribution, for instance, a(φ) = σ2, b(θn) =

θ2
n/2, and c(yn, φ) = −(y2

n/σ
2 +log(2πσ2))/2. Moreover, GLMs assume the mean of the

dependent variable Yn denoted by µn is linked to the covariates xn through a linear

term and a function g according to

µn := E[Yn | xn] = b′(θn) (1.2)

µ = g−1(β01 +Xβ), (1.3)

where β is the P × 1 vector of parameters and β0 is the intercept. We note y and X

the vector formed by yn, and the matrix with rows xTn , for n = 1, . . . , N , respectively,

where y is a realization of a random variable Y. For instance (1.2) and (1.3) lead

to the Normal linear model when g is the identity function and the distribution is

Gaussian. Commonly, GLMs assume the canonical form (i.e θn = β0 +xT
nβ in (1.2)) in

which case g is called the canonical link function. Many applications assume the link

function is the canonical one. There are also several applications in which a different

link function is assumed. For binomial distribution, Bliss [1934] proposes the pro-

bit model where the probit function is used instead of the canonical logit function.

Huettmann [2003] also shows alternatives to the traditional logit approach using pro-

bit and the complementary log log link function in an application of nesting location

of birds. In Poisson regression, the identity link is particularly useful in epidemiology

for modeling the way disease incidence is related to covariates [Benichou and Palta,

2005]. It is also important as an approximate method for fitting identity link binomial

models for risk and prevalence differences [Spiegelman and Hertzmark, 2005] and

it is as well highly used in x-ray astronomy to model photon counting experiments

[Cash, 1979]. For Single Index Model [Sharpe, 1963], the link function is estimated



1.2. REGULARIZING WHEN P IS LARGER THAN N 9

as well. We present in this thesis two applications in which we use GLMs with link

function different from the canonical one. In Chapter 2 we derive statistical tests

that amount to GLMs with new link functions. In Chapter 3 we show a Cosmology

application where a GLM for Poisson distribution uses the identity link function.

GLMs serve several purposes depending on the application, but we highlight three

of them. One is prediction, that is find models with good predictive accuracy. For

instance to classify tumor subtypes in an early phase of a disease, or to predict the oc-

tane level of a fuel sample from its cheap spectrometer measurements [Sardy, 2008].

A second purpose, called model selection, is to identify the relevant variables that

carry information to predict y. For instance, identify which genes are more signifi-

cant to predict a type of leukemia cancer in Golub et al. [1999]. A third purpose of

fundamental interest in Statistics is testing the significance of the parameters β. It is

for instance of particular interest to test the null hypothesis

H0 : β = 0, (1.4)

against the alternative H1 : β 6= 0. This amounts for instance to test whether a

microarray with some gene expressions carries any information to predict a certain

disease through a linear model. In this thesis we use GLMs for all of this three pur-

poses: testing in Chapter 2, and prediction and model selection in Chapter 3.

1.2 Regularizing when P is larger than N

A classical approach to estimate the coefficients [β0 β] is to maximize the negative

log-likelihood defined by

− l (β0,β) = C
N∑
n=1

[ynθn − b (θn)] , (1.5)

with the relationship between (β0,β) and θn given in (1.2) and (1.3), and C a con-

stant value. For Gaussian linear models, this equation is equivalent to the residual

sum of squares RSS = ‖y − Xβ‖2
2. In the case of testing, one of the most popular

procedures for linear models is Fisher’s F -test, and in GLMs the likelihood ratio or

deviance tests.

A common pattern between modern recording devices is that the number of co-

variates P measured per sample is large. It is therefore getting common to analyze

data where P exceeds the sample sizeN , which makes the task of Statistics more diffi-

cult, and some of the classical methods can no longer be employed. This is commonly



10 CHAPTER 1. INTRODUCTION

called high dimensional statistics. The maximum likelihood estimation principle falls

apart for many reasons in this situations, and classical tests such as Fisher’s F -test can

not be used. Motivated by the seminal papers of Tikhonov [1963] (for dealing with

the situation P > N) and James and Stein [1961], a considerable amount of litera-

ture has concentrated over the last fifty years on the estimation of the coefficients β

by regularization techniques that aim at decreasing the variance by introducing some

bias for a better prediction error. One very interesting assumption is to regularize

by imposing sparsity in the coefficients. This means, the dependent variable depends

on just some covariates (or few non-zero coefficients). Sparsity is natural in several

applications, for instance in Genetics where only a few genes are assumed to be re-

sponsible of a disease. Sparsity assumes that only a few covariates (much less than

N) compose the model to predict the response by a linear association. The goal of

model selection then becomes tightly connected with the goal of testing: identify the

correct covariates, or at least identify a model (not too big) that includes the correct

model.

1.3 Thresholding

1.3.1 Thresholding for point estimation

The concept of sparsity allows to introduce a special class of regularization techniques

called thresholding in the sense that:

• they assume that the true parameter β is sparse, meaning

S := {q ∈ {1, . . . , Q} : βq 6= 0} (1.6)

has small cardinality.

• result in an estimated support

Ŝλ := {q ∈ {1, . . . , Q} : β̂λ,q 6= 0} (1.7)

whose cardinality is governed by the choice of a threshold parameter λ ≥ 0.

Thresholding techniques are employed in various settings such as linear regression

[Donoho and Johnstone, 1994, Tibshirani, 1996], Generalized Linear Models [Park

and Hastie, 2007], low-rank matrix estimation [Mazumder et al., 2010, Cai et al.,
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2010], density estimation [Donoho et al., 1996, Sardy and Tseng, 2010], linear in-

verse problems [Donoho, 1995], compressed sensing [Donoho, 2006, Candès and

Romberg, 2007] and time series [Neto et al., 2012]. This thesis uses thresholding

techniques in two different settings: testing in Chapter 2 and solving a Cosmology

linear inverse problem in Chapter 3. A famous example of thresholding estimator in

linear regression is lasso [Tibshirani, 1996] which calculates

[β̂0 β̂λ] ∈ argmin
[β0 β]∈RP+1

1

2
‖y −Xβ − β01‖2

2 + λ‖β‖1, (1.8)

for a given λ > 0. Inspired by lasso, Belloni et al. [2011] proposed the square root

lasso by substituting the quadratic loss by its square root:

[β̂0 β̂λ] ∈ argmin
[β0 β]∈RP+1

1

2
‖y −Xβ − β01‖2 + λ‖β‖1. (1.9)

The advantage of square root lasso over lasso is that it is pivotal in the sense that

it neither relies on the knowledge of the standard deviation σ or nor does it need

to pre-estimate it. The extension of lasso to Generalized Linear Models replaces the

quadratic loss by the negative log-likelihood, up to constants [Park and Hastie, 2007]:

[β̂0 β̂λ] ∈ argmin
[β0 β]∈RP+1

N∑
n=1

[ynθn − b (θn)] + λ‖β‖1. (1.10)

Notice that we used the symbol "∈" instead of "=" in this three equations to point

out that uniqueness of the solution is not guaranteed. These estimators force spar-

sity in β and the amount of sparsity is controlled by λ. Assuming group sparsity,

group lasso [Yuan and Lin, 2006] and its extension to Generalized Linear Models, as

well as the group square root lasso [Bunea et al., 2014], replace the penalty term

in (1.8), (1.10) and (1.9) by λ
∑M

k=1 ‖βGk‖2, where {G1, · · · , GM} is a partition of

{1, · · · , P}. Many other thresholding estimators have been proposed for linear mod-

els: best subset selection, least absolute deviation (LAD) lasso [Wang et al., 2007],

Dantzig selector [Candès and Tao, 2007], Subbotin lasso [Sardy, 2009], smoothly

clipped absolute deviation (SCAD) [Fan and Peng, 2004], minimax concave penalty

(MCP) [Zhang, 2010], smooth lasso [Sardy, 2012], among others, some of which can

also be also extended to GLMs. The challenge of these estimators lies in identifying

the active subset S (1.6), which amounts to selecting basis coefficients in wavelet de-

noising, or in some cancer research applications for instance, identifying what genes

are responsible for cancer. The selection of the penalty parameter λ is crucial: a too
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large λ results in a simplistic model missing important features whereas a too small

λ leads to a model including many features outside the true model. A typical goal is

to determine λ such that with high probability the selected model Ŝλ satisfies

Ŝλ ⊇ S, (1.11)

along with few false detections {q : β̂λ,q 6= 0, βq = 0}. This property is called

variable screening. For a suitably chosen λ, certain estimators allow variable screen-

ing. The optimal threshold for model identification often differs from the thresh-

old aimed at prediction optimality [Yang, 2005, Leng et al., 2006, Meinshausen and

Bühlmann, 2006, Zou, 2006]. Several methodologies have been proposed to select

this parameter λ, for instance the Quantile Universal Threshold [Giacobino et al.,

2017], or the more classical approaches that consist in minimizing a criterion like

cross-validation, AIC [Akaike, 1998], BIC [Schwarz, 1978] or Stein unbiased risk

estimation (SURE) [Stein, 1981], among others.

1.3.2 Thresholding for testing linear models

A key property shared by a class of estimators is to set the estimated parameters to

zero for a sufficiently large but finite threshold λ, this is βλ(Y) = 0 for a certain value

of λ large enough. The smallest λ that satisfies this property is a function λ0(Y) of

the data called zero thresholding function [Giacobino et al., 2017], as formalized in

the following definition.

Definition 1.1 A thresholding estimator β̂λ(Y) admits a zero-thresholding function

λ0(Y) if
β̂λ(Y) = 0 ⇔ λ ≥ λ0(Y) almost everywhere. (1.12)

Some thresholding estimators have this property, and for some of them the zero-
thresholding function has a closed form expression. For instance, the zero-thresholding
function for lasso (1.8) is

λ0(y) = ‖XT(y − ȳ1)‖∞, (1.13)

and for square root lasso (1.9),

λ0(y) =
‖XT(y − ȳ1)‖∞
‖y − ȳ1‖2

. (1.14)

By observing the equivalence (1.12) in Definition 1.1 between setting all coefficients

in a thresholding estimator to zero, and the null hypothesis H0 : β = 0, Sardy et al.

[2018] define a thresholding test.
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Definition 1.2 Let β̂λ(Y) be a thresholding estimator of the linear model (1.2) and (1.3),
with zero thresholding function λ0(Y). Letting the null-thresholding statistic.

Λ0 := λ0(Y0) with Y0 =d Y under H0 : β = 0, (1.15)

then a test function of the form

φ(y) =

{
1 if λ0(y) > λα

0 otherwise
, (1.16)

defines a thresholding test, where λα = F−1
Λ0

(1− α) is a test-threshold of level α.

This is called a thresholding test since it is based on a thresholding estimator through

its zero-thresholding function λ0(Y). The test-threshold λα can be evaluated for in-

stance by Monte Carlo simulation. For example, using the lasso and its zero thresh-

olding function (1.13), the test-threshold can be evaluated simulating M vectors

y
(1)
0 , . . . ,y

(M)
0 from Y0 under H0, calculating the corresponding λ(m) = ‖XT(y

(m)
0 −

ȳ
(m)
0 1)‖∞ for m = 1, . . . ,M and taking the upper α-quantile. The larger M the more

precision on λα. One easily sees that test (1.16) has the desired level by choos-

ing λα = F−1
Λ0

(1 − α) where FΛ0 is the distribution of Λ0 = ‖XT(Y0 − Ȳ01)‖∞ and

Y0 =d Y under H0. Notice that in linear models, Y0 = β0 + σε with ε ∼ N(0, 1),

then Y0 − Ȳ01 = (I − 1
n
M)Y = σ(I − 1

n
O)ε and ‖Y0 − Ȳ01‖2 = σ‖(I − 1

n
O)ε‖2,

where O is a N × N matrix with all entries equal to one. Therefore the statistic

‖XT(y− ȳ1)‖∞ is pivotal under H0 with respect to the intercept β0, but is not pivotal

with respect to σ. On the contrary, the null thresholding statistic for square root lasso

‖XT(y − ȳ1)‖∞/‖y − ȳ1‖2 is pivotal under H0 to both nuisance parameters β0 and

σ. This property is useful to obtain the desired level α regardless of the underlying

unknown nuisance parameters. Notice that thresholding tests can be used in linear

models even if P > N , where classical Fisher’s F -test can not be used. Moreover,

Section 2.3 shows that they are more powerful under sparse alternatives. Classical

likelihood ratio tests also fail when P larger than N . For GLMs, Giacobino et al.

[2017] show that the zero thresholding function for (1.10) using the canonical link

function is the same as that of lasso (1.13). This statistic is not pivotal with respect

to the intercept parameter β0 in GLMs, since the variance of Y0 − Ȳ01 depends on β0

in some exponential distributions (i.e Poisson and binomial). In Chapter 2 we extend

thresholding tests by deriving test statistics that are asymptotically pivotal.
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1.4 Overview of this thesis

The challenging problem of testing GLMs when P > N is addressed in Chapter 2.

Thresholding tests in linear models have the advantage over classical tests like Fisher’s

F -test that they can be employed even if P > N through pivotal test statistics. In

GLMs, classical testing methods, such as likelihood ratio and deviance tests, also fail

when P > N and have a poor control of the level, even when P is large but not

higher than N . Inspired by the good results for linear models, we extend threshold-

ing tests to GLMs by deriving new thresholding test statistics. We prove that our test

statistics are asymptotically pivotal to all nuisance parameters under the null model.

We show through simulations that our method better controls the level of the test

and has better power than classical and more modern techniques.

In Chapter 3 we consider an inverse problem in Cosmology. The goal is to esti-

mate two cosmological objects, an emissivity function and a matrix of point sources,

from an X-ray emission image of photon counts. We model data as a GLM for Pois-

son distribution with identity link function. For the estimation of the parameters,

we consider the lasso for GLM with two penalty parameters, one for the emissivity

and other for the point sources. We derive the zero thresholding function for this

estimator, and we use it to choose the two penalties based on the quantile universal

threshold [Giacobino et al., 2017]. This optimization problem is high dimensional

and non differentiable. Commonly used methods to choose λ such as cross validation

are computationally inefficient and have no straightforward interpretation for the as-

tronomers, therefore the advantage of using the quantile universal threshold. Our

estimator outperforms the state-of-the-art methodology currently employed in Cos-

mology, in terms of mean square error and coverage probability in simulated data.

We show the performance of our methodology with five real X-ray emission images.



Chapter 2
Testing in Generalized Linear Models

This chapter proposes tests based on new asymptotic pivotal statistics for Generalized

Linear Models, and is organized as follows. First, Section 2.1 presents the settings of

the problem and shows the motivation to our approach. Section 2.2 considers asymp-

totic tests for Generalized Linear Models. Section 2.2.1 proposes a new asymptotic

pivot, while Section 2.2.2 shows its connection with the zero thresholding function

for a specific link function. Section 2.2.3 illustrates our methodology with an example

and Section 2.2.4 shows how to combine several tests in a single one and describes

the composite ⊕-test between lasso and group lasso. Since our test statistics are

asymptotically pivotal and do not have exact level with finite samples, Section 2.2.5

describes two methodologies that allow to obtain tests closer to the nominal level.

Section 2.3 presents the results of a simulation study to observe the behavior of our

tests. To compare the new thresholding tests to existing tests, Section 2.3.1 performs

power analyses in low- and high-dimensional settings for Gaussian, binomial and

Poisson data. Section 2.3.2 gives an insight into the asymptotic of our tests and the

effect of sparsity in matrix X. Inspired in metagenomics data, with an X matrix with

up to 70% of zero entries, Section 2.3.3 presents a power analysis to compare the

nominal level tests from Section 2.2.5. Section 2.4 concludes by giving recommenda-

tions on what test to use. The research is reproducible and codes are available in the

qut package in R [Diaz-Rodriguez et al., 2016].

15
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2.1 Motivation

The primary goal in this chapter is testing β based on lasso for GLMs. In linear models

with P < N , Fisher’s F -test is widely applied and based on the statistic

(RSSH0 − RSS)/R

RSS/(N − P )
∼ FR,N−P (2.1)

that is pivotal under H0 : Aβ = c, where A is an R × P full row rank matrix, and

RSSH0 and RSS are the residual sum of squares under the null model and the full

models, respectively. We contend that one drawback of the F -test is that it is based

on an indirect measure of the coefficients β through the predictive measure of Y that

is RSS. Arias-Castro et al. [2011] show the F -test is suboptimal and sometimes pow-

erless when testing against a sparse alternative, that is, when only a few coefficients

are different from zero. A test based on a direct measure of the coefficients shall bring

more power, as we see with thresholding tests. Another drawback is that the F -test

requires P < N for the second degree of freedom to be positive and for the rank of

X to be smaller than the length of the response vector Y, otherwise the estimation

of variance (the denominator in (2.1)) gives zero.

In Generalized Linear Models [Nelder and Wedderburn, 1972], testing H0 : β = 0

is also difficult because the model is saturated when P ≥ N . In the standard setting

with P < N fixed, φ known, letting L(β0,β) be the likelihood function, the likelihood

ratio test relies on the asymptotic distribution

− 2 log
supβ L(β0,β)

L(β0,0)
→d χ

2
P (2.2)

underH0 asN tends to infinity, provided the model satisfies the conditions for asymp-

totic normality of maximum likelihood estimation [Wilks, 1938]. But asymptotic con-

vergence is slow when P is large and fails in high-dimension P ≥ N , which motivated

Goeman et al. [2011], Guo and Chen [2016], Sur et al. [2017] to propose tests based

on other asymptotic distributions. In the Gaussian case, the F distribution of (2.1)

converges to the χ2
P distribution when N gets large for a fixed R = P .

The situation P ≥ N is difficult in testing but is well addressed in model selection.

In this chapter we exploit the ability of model selection of lasso in (1.10) to cope

with P ≥ N to provide new solutions to testing in Generalized Linear Models. As

mentioned before, lasso can be employed whether P < N or not, and is a model

selection technique in the sense that the solution β̂λ in (1.10) is sparse. Based on
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these two properties we develop new tests of the form (1.16) that continue to hold

when P ≥ N , and that have good level and power properties.

2.2 Generalized Linear Models

2.2.1 Asymptotic pivotal thresholding statistic

We assume each component of the response Y has a distribution in the exponential

family in (1.1) and follows the Generalized Linear Model (1.2) and (1.3). To test

H0 : Aβ = c in linear models, Sardy et al. [2018] derived thresholding tests based

on affine lasso estimator:

[β̂0 β̂λ] ∈ argmin
[β0 β]∈RP+1

1

2
‖Y −Xβ − β01‖2

2 + λ‖Aβ − c‖1. (2.3)

For the sake of simplicity we consider testing here the linear null hypothesis H0 :

β = 0. They derived pivotal test statistics of the form Λ0 = ‖XT(Y − Ȳ 1)‖/σ̂, where

σ̂/σ is pivotal under H0. A natural extension to Generalized Linear Models is to

consider test statistics of the form Λ0 = ‖XT(Y − Ȳ 1)‖/D(Y) with a denominator

D(Y) that makes the statistic Λ0 asymptotically pivotal. The aims of these new tests

are a tighter control of the level of the test when P is large or possibly larger than N ,

and to achieve higher power than the existing tests. Indeed, most tests are based on

the likelihood ratio statistic (2.2) which asymptotic chi-squared distribution can be a

poor approximation when P is large and fails when P is larger than N .

The following theorem leads to a new asymptotic pivot for Generalized Linear

Models.

Theorem 2.1 Let Y = (Y1, . . . , YN) with i.i.d. entries with E[Yn] = µ and finite vari-
ance ξ, for n = 1, . . . , N . Let X be an N × P random matrix of N vectors of non-
degenerate covariance Σ ∈ RP×P , with Y independent of X. Consider the test statistic

T (Y) =
‖XT(Y − Ȳ 1)‖√

Nξ̂

. (2.4)

Assuming ξ̂ →p ξ, then T (Y)→d ‖W‖, where W ∼ N (0,Σ).

Proof. Let M = 1µT
X be the matrix of size N × P with µX = E(X) and X is the

random vector generating covariates, and let E(Yn) = µ for n = 1, . . . , N . Notice that

XT(Y − Ȳ 1) = (X −M)T(Y − µ1) + (X −M)T(µ1− Ȳ 1). (2.5)
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On the one hand (X −M)T(Y− µ1) =
∑N

n=1 Zn with Zn = (Yn− µ)(Xn−µX) ∈ RP ,

where XT
n is the n-th (random) row of the matrix of covariates X for n = 1, . . . , N .

The first two moments are E[Zn] = 0 and var(Zn) = ξΣ. The central limit theorem

states that
∑N

n=1 Zn/
√
N →d N (0, ξΣ). On the other hand (X −M)T(µ1 − Ȳ 1) =

(µ− Ȳ )
∑N

n=1 Wn with Wn = (Xn −µX). The first two moments are E[Wn] = 0 and

var(Wn) = Σ. Combining central limit theorem, law of large numbers and Slutsky’s

lemma, we have that
(µ− Ȳ )(X −M)T1√

N

p−→ 0. (2.6)

Combining (2.5), the consistency of ξ̂ and (2.6) with Slutsky’s lemma leads to

XT(Y − Ȳ 1)√
Nξ̂

d−→ N (0,Σ) .

Finally, any norm being a continuous map, we have the desired result.

In GLM (1.2) and (1.3) under H0 : β = 0, the entries of Y are i.i.d with

E(Yn) = g−1(β0) and have finite variance, and Y is independent of X, so Theorem 2.1

implies that T (Y) is asymptotically pivotal under the null hypothesis for GLMs. No-

tice that the theorem is valid for any norm. This is particularly interesting since the

sup-norm is used for the lasso, and the l2-norm is used for group lasso. Therefore The-

orem 2.1 implies a test based on T (Y) can be employed for GLMs, and a critical value

asymptotically independent of the nuisance parameter β0 can be obtained by Monte

Carlo simulation as discussed in Section 1.3.2. For the Poisson distribution ξ̂ = Ȳ is

a consistent estimate of the variance under the null; likewise with ξ̂ = Ȳ (1 − Ȳ ) for

the Bernoulli distribution. Section 2.3.1 shows that the test has a good level even for

finite N and large P , and that the test has high power also when P is larger than N .

2.2.2 Connection with the zero-thresholding function

The statistic T (Y) is the zero-thresholding function λ0(Y) of lasso for Generalized

Linear Models [Park and Hastie, 2007] for certain link functions. When employing

the canonical link, Giacobino et al. [2017] show that the zero-thresholding function

of the estimator is the numerator of T (Y) in (2.4), which is not asymptotically pivotal.

The following theorem states a condition on the link function for lasso to have T (Y)

as a zero-thresholding function.
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Theorem 2.2 Let Y be a random vector with a distribution in the exponential family
with variance function V (µ) and known φ, and let X a matrix of predictors such that
E[Y] = g−1(β01+Xβ), where g is the link function. If h = g−1 satisfies that the negative
log-likelihood of Y is convex and that {h′(β0)}2 = V (h(β0)), then

λ0(Y) =
‖XT

(
Y − Ȳ 1

)
‖∞√

NV (Ȳ )a(φ)
, (2.7)

is (up to a constant) the zero-thresholding statistic of lasso for Generalized Linear Mod-
els. Here, a is the known function in the exponential distribution (1.1).

Proof. Assuming φ is known and for a fixed λ, Park and Hastie [2007] estimate β0

and β by minimizing the penalized likelihood

PLλ(β0,β) = −
N∑
n=1

(
Ynθn − b(θn)

a(φ)

)
+ λ‖β‖1. (2.8)

By properties of the exponential family, we have E(Yn) = b′(θn) = h(β0 + xT
nβ) and

var(Yn) = b′′(θn)a(φ). Consequently{
∂θn
∂β0

= h′(β0+xTnβ)
b′′(θn)

∇βθn = xnh′(β0+xTnβ)
b′′(θn)

.

By assumption PLλ is convex, so the point (β̂0,0) belongs to the minimum set of PLλ

if and only if 0 is a subgradient of PLλ at (β0,β) = (β̂0,0). This is equivalent to
∂PLλ
∂β0

=
∑N

n=1

(
yn

∂θn
∂β0
−b′(θn) ∂θn

∂β0

a(φ)

)
= 0

∇βPLλ =
∑N

n=1

(
yn∇βθn−b′(θn)∇βθn

a(φ)

)
+ λ[−1, 1]P 3 0.

Since at β = 0 we have b′(θn) = h(β0), ∂θn
∂β0

= h′(β0)
b′′(θn)

and ∇βθn = xnh′(β0)
b′′(θn)

, this is also

equivalent to 
∑N

n=1

(
h′(β0)

b′′(θn)a(φ)
(yn − h(β0))

)
= 0∑N

n=1

(
xnh′(β0)
b′′(θn)a(φ)

(yn − h(β0))
)

+ λ[−1, 1]P 3 0.

A solution exists if and only if h(β0) = ȳ and λ at least as large as

λ0(y) =

∥∥∥∥h′(β0)XT (y − ȳ1)

V (h(β0))a(φ)

∥∥∥∥
∞
,

where V is the variance function such that V (h(β0)) = b′′(θ).
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So if |h′(β0)| =
√
V (h(β0)), we obtain the desired zero-thresholding function λ0(y)

up to the constant
√
Na(φ).

In particular, one can obtain the specific link functions for GLMs in Gaussian,

binomial and Poisson distributions for which theorem 2.2 applies. The following

corollary describes it.

Corollary 2.3 Let h(x) = x, h(x) = x2/4 for x ≥ 0, and h(x) = (sin(x) + 1)/2 for
x ∈ [−π/2, π/2], be the inverse link function in Generalized Linear Models corresponding
to Gaussian, Poisson and binomial distributions, respectively. The zero-thresholding
function of the lasso estimator of Park and Hastie [2007] is (up to a constant) the
asymptotically pivotal test statistic (2.4) with ξ̂ = σ̂2, ξ̂ = Ȳ and ξ̂ = Ȳ (1 − Ȳ ),
respectively.

Proof. Using Theorem 2.2 it suffices to satisfy the equality {h′(β0)}2 = V (h(β0)).

Notice that V (x) equals 1, x and x(1 − x) for Gaussian, binomial and Poisson distri-

butions, respectively [Nelder and Wedderburn, 1972]. For each distribution is easy

to check that the result holds.

Notice that these new links, h−1(y) = 2
√
y for Poisson and h−1(y) = sin−1(2y −

1) for binomial, are reminiscent of Anscombe’s transforms A(y) =
√
y + 3/8 and

A(y) = sin−1
√

(8y + 3)/14, respectively [Anscombe, 1948]. With corollary 2.3, we

get the asymptotically pivotal test statistic (2.4) for Gaussian, Poisson and binomial,

respectively:

λ0(Y) =
‖XT

(
Y − Ȳ 1

)
‖

√
Nσ̂2

, (2.9)

λ0(Y) =
‖XT

(
Y − Ȳ 1

)
‖

√
NȲ

, (2.10)

λ0(Y) =
‖XT

(
Y − Ȳ 1

)
‖√

NȲ (1− Ȳ )
. (2.11)

By taking σ̂ = ‖Y − Ȳ 1‖2 we have a pivotal lasso test that corresponds to the square

root lasso. Notice that by taking the sup-norm or the l2-norm in the numerator of

(2.9) we have the corresponding test statistics for lasso or group lasso, respectively.

Table 2.1 shows the summary of the test statistics that we use. The test-threshold λα
can be obtained by Monte Carlo simulations as is described in Section 2.2.3.
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Table 2.1: Test statistics for Gaussian, Poisson and binomial distributions, with the corre-

sponding inverse link functions h(x) and Anscombe’s transforms A(y).
Family λ0(Y) ξ̂ h(x) h−1(y) A(y)

Gaussian

∥∥XT
(
Y − Ȳ 1

)∥∥
√
N
∥∥Y − Ȳ 1

∥∥
2

‖Y − Ȳ 1‖2 x y y

Poisson

∥∥XT
(
Y − Ȳ 1

)∥∥
√
NȲ

Ȳ x2/4 x ≥ 0 2
√
y

√
y + 3/8

Binomial

∥∥XT
(
Y − Ȳ 1

)∥∥√
NȲ (1− Ȳ )

Ȳ (1− Ȳ )
(sin(x) + 1)/2

x ∈ [−π/2, π/2]
sin−1(2y − 1) sin−1

√
(8y + 3)/14

2.2.3 Illustrative example

In order to show how our methodology works in practice, we describe here an illus-

trative example. Say we are interested in testing H0 : β = 0, from a given Poisson

data (y, X). The procedure is as follows.

1. Identify the corresponding Poisson test-statistic in Table 2.1 and choose the de-

sired norm, here the sup-norm to test with lasso penalty:

λ0(Y) =

∥∥XT
(
Y − Ȳ 1

)∥∥
∞√

NȲ
.

2. Obtain the empirical distribution of Λ0 by simulating M vectors y
(1)
0 , . . . ,y

(M)
0

from Y0
i.i.d∼ Poisson(g−1(β01)) underH0, and calculating λ(m) =

∥∥∥XT
(
y
(m)
0 −ȳ(m)

0 1
)∥∥∥
∞√

N ȳ
(m)
0

for m = 1, . . . ,M .

3. Calculate the test-threshold λα by taking the upper α-quantile of the empirical

distribution of Λ0.

4. Test the data with the corresponding thresholding-test (1.16):

φ(y) =

 1 if
‖XT (y−ȳ1)‖∞√

Nȳ
> λα

0 otherwise
.

To obtain the empirical distribution of Λ0 in step 2 it is necessary to choose a value

for β0. Since the statistic is asymptotically pivotal, any value of β0 can be chosen to

simulate y
(m)
0 , for instance β0 = 0. This choice is in particular convenient for binomial

data, since for any value of N , Λ0 has the following property.
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Property 2.1 Let λ0(Yβ0) be the distribution of the test-statistic (2.10) for binomial i.i.d
data Yβ0 and E(Yβ0) = g−1(β0)1 with g the canonical link. The distribution λ0(Yβ0) is
symmetric with respect to β0, this is

λ0(Yβ0) = λ0(Y−β0) (2.12)

Proof. Notice that λ0(Yβ0) =
‖XT (Yβ0

−Ȳβ01))‖√
NȲβ0 (1−Ȳβ0 )

=
‖XT ((1−Yβ0

)−(1−Ȳβ0 )1)‖√
N(1−Ȳβ0 )(1−(1−Ȳβ0 ))

. Since

1− Yβ0 ∼ Y−β0, we have λ0(Yβ0) =
‖XT (Y−β0−Ȳ−β01))‖√

NȲ−β0 (1−Ȳ−β0 )
.

2.2.4 Combining tests and the composite ⊕-test

Suppose that test φ(1) based on a first thresholding estimator has level α and good

power properties for a type of alternative hypothesis, and that test φ(2) based on a

second thresholding estimator has level α and good power properties for another

type of alternative hypothesis. It is reasonable to wish a single test φ that has level

α and that is almost as powerful as the best of both tests regardless of the type of

alternative hypothesis. We propose the following way to combine both tests. Let λ(i)
0

and λ(i)
α be the zero-thresholding function and test-threshold of test φ(i) for i ∈ {1, 2}.

The composite null-thresholding statistic

Λ0 = max

(
λ

(1)
0 (Y0)

λ
(1)
α

,
λ

(2)
0 (Y0)

λ
(2)
α

)
. (2.13)

can be employed to develop a single test of level α. The standardization by either λ(1)
α

or λ(2)
α ensures both individual test statistics within (2.13) possess the same rejection

region [1,∞].

Arias-Castro et al. [2011] conclude that a test based on lasso is powerful under

sparse alternatives and powerless under dense alternatives, while Fisher’s or group

lasso tests behave the other way around. Based on (2.13), Sardy et al. [2018] pro-

poses the composite ⊕-test that combines the test based on lasso (“+” character sym-

bolizes the coordinate-wise nature of lasso) and the test based on group lasso (“◦”
character symbolizes the `2-ball of group lasso’s penalty). We extend this test to the

generalized linear model scenario by combining the test based on lasso for GLMs

(sup-norm of statistics in Table 2.1) and the test based on group lasso for GLMs (l2-

norm of statistics in Table 2.1). The goal of this test is to be nearly as powerful as the

best test between lasso’s and group lasso’s tests, which we investigate in Section 2.3.1.
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2.2.5 Parametric and non-parametric pivotal statistics

Nowadays it is of great interest in scientific community to perform studies on a certain

type of data, called metagenomics, which is the study of genetic material recovered

directly from environmental samples. A specific characteristic of most of these data

is that their X matrix is sparse, with up to 70% of its entries equal to zero. Theo-

rem 2.1 shows the convergence of λ0(Y) as N increases. This means that in finite

samples, the level of the test becomes more sensitive to the selection of β0 if N is

small. Moreover, since the asymptotic convergence relies in the Central Limit Theo-

rem, if matrix X is sparse the convergence is slower. Step 2 in the illustrative example

in Section 2.2.3 relies on this convergence to obtain the level by Monte Carlo simula-

tion, therefore in this particular case the level may be far from its nominal level. To

cope with this problem, we propose here two methodologies to perform the Monte

Carlo simulation and obtain the empirical distribution of Λ0, leading to tests with

the nominal level. One is based on estimating β0 under the null model. Under the

null hypothesis the maximum likelihood estimator of the intercept is β̂0 = g(ȳ). We

propose to perform the Monte Carlo simulations to obtain Λ0 with this choice of β0.

According to Theorem 2.1 it is also asymptotically pivotal. The main difference is

that for finite samples the level is closer to its nominal value, regardless of the true

value of β0 or the structure of matrix X. The second proposal is to perform the Monte

Carlo simulation by bootstrapping y, in the spirit of permutation tests. This approach

is non-parametric and also has a level closer to the nominal one for finite samples.

Clearly both methodologies are pivotal under the null hypothesis regardless of X.

We perform some simulations in Section 2.3.3 and we obtain some power plots to

observe the general behavior of these new approaches for the selection of β0.

2.3 Simulation study

2.3.1 Comparative power analysis

To illustrate how thresholding tests in Generalized Linear Models compare with clas-

sical and more contemporary tests in terms of power, we consider the class of alter-

native hypotheses

Hs,θ
1 : β = θ · π((±1, . . . ,±1︸ ︷︷ ︸

s

, 0, . . . , 0︸ ︷︷ ︸
P−s

)T), (2.14)
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indexed by s ∈ {0, 1, . . . , P} and θ ∈ R: s controls the amount of sparsity and θ

controls the signal-to-noise ratio. Here π(u) performs a random permutation of the

vector u. The sign of the coefficients βp = ±θ are random and equiprobable for

p = 1, . . . , s. We say that the alternative hypothesis is sparse when s is small and dense

when s is large with respect to P . We estimate by Monte Carlo simulation power

functions as a function of the two parameters (s, θ) indexing the alternative Hs,θ
1 -

hypotheses (2.14). Three X matrices with dimension N = 100 and P ∈ {10, 40, 1000}
are generated according to the Monte Carlo simulation of Guo and Chen [2016].

We simulated Gaussian, binomial and Poisson data generated with the canonical link

according to linear model (1.2) and (1.3), and add an intercept β0 = −2. Five tests

are compared in all cases: three thresholding tests (lasso, group lasso, composite

lasso), the test of Guo and Chen [2016], and Fisher’s F -test (Gaussian) or likelihood

ratio test (non-Gaussian) when P < N . The test of Guo and Chen [2016] is based on

the convergence

(N − 1)
∑N

i 6=j
(
(Yi − Ȳ )(Yj − Ȳ )XT

i Xj

)√
2
∑N

i 6=j
(
(Yi − Ȳ )2(Yj − Ȳ )2(XT

i Xj)2
) →d N(0, 1),

under H0 and some assumptions. In the binomial case, the rescaled χ2 method of

Sur et al. [2017] is also compared. This method replaces the χ2 convergence of the

likelihood ratio test by an α(κ)χ2 convergence with κ = P/N to fix the error in the

level of the likelihood ratio test when P is not negligible to N . For the thresholding

tests, we simulate with β0 = 0 to obtain the test-threshold. The effect of the selection

of β0 and the asymptotic behavior of Λ0 is better discussed in Section 2.3.2.

Figures 2.1 and 2.2 plot the power functions for sparse and dense alternative hy-

potheses, respectively. First, second and third row correspond to Gaussian, binomial

and Poisson simulations, respectively, in both plots. Interesting behaviors can be ob-

served. First, comparing lasso and group lasso tests on sparse and dense situations,

one sees that lasso is more powerful when the alternative hypothesis is sparse; on

the contrary, when the alternative is dense, group lasso is more powerful. This cor-

roborates the results of Arias-Castro et al. [2011]. Second, the composite ⊕-test of

Section 2.2.4 has power close to the most powerful test between lasso and group

lasso. Third, Fisher’s test, like group lasso’s test, is better in the dense case than the

sparse case, while the likelihood ratio test performs poorly due to the poor χ2 approx-

imation when P is large. The test of Guo and Chen [2016] (HDGLM in the plot) is

slightly off in terms of level and its power is not as good as that of the ⊕-test except
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Figure 2.1: Power functions estimated by Monte Carlo simulation for sparse alternative hy-

potheses.

in the dense case when P = 1000.

Sometimes some tests appear to have higher power, but it is important to observe

that, at θ = 0 on the power plot, their level is larger than α = 0.05. Figure 2.3 plots

the empirical levels achieved by the tests in all cases. Clearly, the thresholding tests

have the best control on the level. Next comes the HDGLM method of Guo and Chen

[2016] with a slight bias. Likelihood ratio test has a poor control of the level with

two values outside the range [0, 0.1] of the plot (not shown here).

Overall the composite ⊕-test is best in terms of power and in respecting the nom-

inal level.
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Figure 2.2: Power functions estimated by Monte Carlo simulation for dense alternative hy-

potheses.

2.3.2 Selection of β0 and asymptotic behavior of λ0(Y)

We perform a simulation to observe the effect of selection of β0 and the asymptotic

convergence for several values of the intercept and sparsity levels in X. We simulate

six matrices X according to Monte Carlo simulation of Guo and Chen [2016]. Three

of size N = 100, P = 100, and three of size N = 1000, P = 100. We take the three

matrices of size N = 100, P = 1000 and we randomly set to zero 0%, 45% and 90% of

its entries, respectively. We do the same with the three matrices of size N = 1000, P =

100. We simulated binomial data with β0 ∈ {0, 1, 2}. Figure 2.4 plots the empirical

densities of Λ0 for the six matrices X. In each plot, the densities for β0 ∈ {0, 1, 2} are



2.3. SIMULATION STUDY 27
le

ve
l

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

lasso group lasso composite lasso likelihood ratio HDGLM rescaled Χ2

0
0.

02
5

0.
05

0.
07

5
0.

1

Figure 2.3: Empirical levels achieved by the tests for the nine scenarios (Gaussian, binomial

and Poisson and P ∈ {10, 40, 1000}). The values are plotted in the range [0, 0.1] around the

nominal level α = 0.05 (dotted line).

plotted in black, red, and green, respectively, and their corresponding test-thresholds

appear as a vertical dotted line. First and second row correspond to matrices with

N = 100, and N = 1000, respectively. First, second, and third column correspond to

matrices with 0%, 45% and 90% levels of sparsity, respectively.

As expected, we see that as sparsity in X increases, the densities for the three

values of β0 differ more. When N increases, the difference between them decreases.

2.3.3 Power analysis under different sparsity levels in X

We are interested in studying data consisting in measurements of gut microbiota i.e.

abundances of bacteria species in the gut. A specific characteristic of these data is that

its matrix X is sparse with up to 70% of zero entries. Due to disclosure prohibitions

regarding the project in which we are currently working on, we are not allowed to

share any results concerning this particular data. Nevertheless we mimic the structure

of such matrix by simulating one matrix of size N = 100, P = 200 according to

Monte Carlo simulation of Guo and Chen [2016], and choosing uniformly at random

70% of its entries and setting them to zero. We estimate by Monte Carlo simulation

power functions as in Section 2.3.1. We simulated binomial data generated with

the canonical link according to linear model (1.2) and (1.3), and add an intercept

β0 ∈ {0, 1, 2}. We compare the same tests for binomial data as in Section 2.3.1.

We also compared the two methodologies described in Section 2.2.5 with their three

lasso, group lasso and composite lasso versions. We call here lassohat and permalasso
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Figure 2.4: Empirical densities of Λ0 with β0 ∈ {0, 1, 2} in black, red and green curves,

respectively, and their corresponding test-thresholds λα in vertical dotted lines. First and

second row correspond to matrices with N = 100, and N = 1000, respectively, with P = 100.

First, second, and third column correspond to matrices with 0%, 45% and 90% levels of

sparsity, respectively.

the methodologies estimating β0 by β̂0 = g−1(ȳ) and bootstrapping y, respectively.

Finally we also compared the permanova test [Anderson, 2001], widely used for this

kind of data in current applications.

Figure 2.5 plots the power functions for different sparsity levels in X, sparse and

dense alternatives, and β0 ∈ {0, 1, 2}. First and second column correspond to sparse

alternative (s = 2), with matrix fully denseX andX with 70% of zero entries, respec-

tively. Third and fourth column correspond to dense alternative (s = 10), with matrix

fully dense X and X with 70% of zero entries, respectively. First, second and third

row correspond to β0 = 0, β0 = 1 and β0 = 2, respectively. For simplicity we just plot

the composite lasso in all thresholding tests (lasso, lassohat, permalasso), since the

conclusions regarding lasso and group lasso are similar to the ones in Section 2.3.1
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Figure 2.5: Power functions estimated by Monte Carlo simulation for two matrices X of size

N = 100, P = 200 with two different sparsity levels, sparse and dense alternatives, and

β0 ∈ {0, 1, 2}.

(in the plot we just call lasso the composite version of test in this section).

Results are interesting. First, we see that for β0 = 0, lasso, lassohat and permalasso

have a similar behavior. This is also the case when X is not sparse. As expected, in

this case lasso is still close to its nominal level regardless of β0, but when β0 increases

and X is sparse, this is not longer the case. In the sparse X scenario, lassohat and

permalasso still are close to the nominal level. Second, permanova and HDGLM have

a similar performance: good power in dense alternative and bad power in sparse

alternative. In dense alternatives they are the best, closely followed by lassohat and

permalasso. In sparse alternative these tests are the worst, and are affected when X

is sparse.
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Overall, lassohat and permalasso have the best performance in the sense that their

level is closer to the nominal level and their power is high.

2.4 Discussion

Thresholding tests have good control of the nominal level of the test and have high

power for distributions in the exponential family regardless of the relative size of

N and P . We can always use our approach whether N > P or not. When the

alternative hypothesis is dense, one should use group lasso since it has more power

than lasso. On the contrary, when the alternative hypothesis is sparse, choosing lasso

leads to more power than with group lasso’s and Fisher’s tests. When no a priori

dense or sparsity assumption can be made on the likely alternative hypothesis, the

composite lasso ⊕-test should be used. When matrix X is sparse, methodologies in

Section 2.2.5 are preferred to better control the level. Our approach can be extended

to null hypothesis of the form H0 : Aβ = c with future work in the extension of affine

lasso to GLMs.



Chapter 3
Estimation of galaxy cluster’s emissivity

in astrophysics

This chapter proposes a new methodology to estimate the 3D gas emissivity of a

galaxy cluster from a 2D image taken by a telescope. The image involves artifacts

such as blurring and sensitivity of the telescope, as well as the presence of point

sources that are behind the galaxy cluster in the universe. We start in Section 3.1 de-

scribing the general problem. In Section 3.1.1 we explain the astrophysical meaning

of the images taken by the telescope. Section 3.1.2 describes the XMM-mission tele-

scope from where most of the images were taken from, and Section 3.1.3 explains the

current state-of-the-art method. Then in Section 3.2 we describe our approach to the

problem. Section 3.2.1 details all the features involved in the image, assumptions,

artifacts, point sources, etc. Section 3.2.2 describes our modeling of the problem and

the parameters to estimate. Section 3.2.3 shows how to deal with the asymmetry of

the galaxy clusters. In Section 3.3 we model the data as a Poisson generalized lin-

ear model with identity link, penalized by two parameters, one corresponding to the

basis functions of the profile, and other to the point sources. Section 3.3.1 derives

the zero thresholding function for our model, and shows how to choose the penalty

parameters. Section 3.3.2 explains our approach to obtain uncertainty quantification

by bootstrapping the image. To test our methodology we do some numerical exper-

iments in Section 3.4, first with simulated data in Section 3.4.1 and then with five

real images in Section 3.4.2, with an explanation of our findings in Section 3.4.3. Fi-

nally we give some conclusions in Section 3.5. In Section 3.6 we provide information

regarding the reproducibility of our work.

31
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3.1 Motivation

3.1.1 Emissivity of astrophysical sources

Several types of astrophysical sources originate from the radiative processes occur-

ring in an “optically thin” environment, that is, a situation in which a photon has

a low probability of interacting with the surrounding material and can escape the

source freely. Such a situation occurs when the mean density of material in the

source is very low. Examples of such astronomical sources include galaxies (where

the observed light is the sum of the light emitted by all stars), the coronae of the

Sun and other convective stars, cocoons of expanding material after supernova ex-

plosions (supernova remnants) and galaxy groups and clusters (which are filled with

a hot (107 − 108 Kelvin) low-density plasma that constitutes the majority of the ordi-

nary matter of large-scale structures in the Universe). In case the source is optically

thin, the electromagnetic radiation I in a given direction is the integral of the intrinsic

emissivity of the source over the source volume,

I =
1

4πD2

∫
V

ε dV, (3.1)

where the emissivity ε is the energy emitted by the source in electromagnetic radia-

tion and D is the source distance. The three-dimensional distribution of the emissiv-

ity is of interest as it provides valuable information on the physical properties of the

emitting material (e.g., density, temperature, metallicity).

In the case of galaxy clusters, the emitting plasma is so hot that these structures

radiate predominantly in X-rays [Sarazin, 1988]. Current X-ray telescopes like XMM-
Newton and Chandra are able to detect the emission from the plasma and make de-

tailed maps of the distribution of hot gas in galaxy clusters, which are extremely use-

ful to understand the formation and evolution of structures in the Universe [Kravtsov

and Borgani, 2012], study the overall matter content and the missing mass (“dark

matter”) problem [Clowe et al., 2006], and constrain the cosmological parameters

governing the evolution of the Universe as a whole [Allen et al., 2011]. In most

cases, X-ray images of galaxy clusters show round, azimuthally symmetric morpholo-

gies indicating that the geometry of these structures is nearly spherical. The observed

emissivity decreases radially from the center of the source to its outermost border

[Eckert et al., 2012]. Assuming spherical symmetry, (3.1) can be written explicitly as
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a function of projected distance s to the cluster center,

I(s) ∝
∫
ε(r) dz with r2 = s2 + z2, (3.2)

where r is the three-dimensional distance to the cluster center, I(s) is the observed

azimuthally-averaged brightness profile, and the integral is performed along the line

of sight z. While ε(r) can in principle be evaluated directly from the observed emis-

sion by solving the integral (3.2), in practice the problem is rendered complicated

by the presence of noise in the original data, as for instance with the XMM-Newton

telescope described below. Indeed, as for many inverse problems the convolution

smooths small-scale fluctuations, thus the inverse transformation has the opposite

effect and the noise can be greatly amplified [see Lucy, 1974, 1994]. This effect is

particularly important in the low signal-to-noise regime.

3.1.2 The XMM-Newton mission

The XMM-Newton space telescope [Jansen et al., 2001] is a cornerstone mission of

the European Space Agency. It was put in orbit on December 10, 1999 by an Ariane

5 launcher and it remains to this day the largest X-ray telescope ever operated. The

spacecraft is made of three co-aligned X-ray telescopes that observe the sky simulta-

neously. At the focal point of the three telescopes are located two instrument, the

European Photon Imaging Camera (EPIC) and the Reflection Grating Spectrometer

(RGS). The bottom image of Figure 3.1 is an image of the galaxy cluster Abell 2142

recorded by the XMM-Newton observatory [Tchernin et al., 2016]. The data were

acquired in 2012 (PI: Eckert) as part of the XMM-Newton guest observer program,

in which astronomers are invited to propose suitable targets to be observed by the

spacecraft and provide a detailed scientific justification for their program.

EPIC [Turner et al., 2001] consists of three high-sensitivity cameras which cover

a field of view of 30 arcmin diameter roughly equivalent to the size of the full moon.

The cameras are made of 600×600 pixels organized in 8 individual chips which record

the time, energy and position of incoming X-ray photons, resulting in an image like

on the bottom of Figure 3.1. The sensitivity of the instrument is maximal for sources

precisely aligned with the axis of the telescopes (the aim point) and gradually declines

for sources located slightly offset from the optical axis. The angular resolution of the

telescope is 6 arcsec at the aim point and it degrades to 15 arcsec at the edge of the

field of view. Astrophysical sources with an apparent size smaller than the angular
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Figure 3.1: Upper: schematically view of a telescope, the image taken by it, a galaxy cluster

and two point sources. Lower: real image taken by the XMM-Newton telescope.
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resolution of the instrument thus appear blurred with a typical size and shape that

is known from the characteristics of the telescopes. Similarly, the degradation of the

sensitivity of the instrument with off-axis angle has been extensively calibrated and

follows a known pattern that needs to be taken into account to recover the true flux

radiated by a source.

Apparent on the image of Figure 3.1 are bright spots called point sources. The

vast majority of these sources are active galactic nuclei, which originate from material

falling onto a supermassive black hole located at the center of a galaxy. Since they

are not originated from the galaxy cluster under study, the estimation of emissivity

should be robust to potential point sources.

3.1.3 State-of-the-art “onion peeling” deprojection

Traditionally, the main approach used to solve (3.2) has been by inverting directly the

convolution [e.g. Fabian et al., 1981, Kriss et al., 1983]. Consider a segmentation of

the radius r from the center of the image of Figure 3.1 to the corner of the image into

P intervals [ri, ri+1) for i = 1, . . . , P . Within the region encompassed between pro-

jected radii ri and ri+1, the counts are averaged to give an estimate Îi of the quantity

of radiation received. This amounts to discretizing (3.2) such that the projection ker-

nel reduces to an upper-triangular convolution matrix V , where the matrix element

Vi,j correspond to the volume of the spherical shell j projected along the line of sight

of annulus i [Kriss et al., 1983]. The averaged counts Îi are related to the intrinsic

3D emissivity in the spherical shell between ri and ri+1 as

Îi =
P∑
j=1

Vi,jεj + errori, i = 1, . . . , P (3.3)

where P is the number of spherical shells. If P grows with the number of pixels of the

image, the method is nonparametric in the sense that the underlying model increases

complexity (here, the emissivity ε(r) is assumed piecewise constant on [ri, ri+1) for

i = 1, . . . , P ) as the number of pixels increases. If P is fixed, the method is paramet-

ric. Since the projection matrix V is upper triangular, the deprojected profile can be

evaluated starting from the outermost shell (where projection effects are assumed to

be negligible) and then solving (3.3) iteratively when proceeding inwards (hence the

nickname of “onion peeling”).

This method has the advantage of being nonparametric, if the level of discretiza-

tion P is large and grows with the number of pixels of the image. Nonparametric
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methods do not lead to strong biases caused by a wrongly specified low dimensional

model, at the cost of more variance however. This method suffers from severe draw-

backs. As already discussed in the introduction, this method is very sensitive to mea-

surement uncertainties, since small variations in the projected profile can be greatly

magnified; therefore, the resulting profile is generally not smooth. Moreover, the

propagation of statistical fluctuations can result in unphysical negative emissivities.

This method also requires that the position of contaminating point sources be esti-

mated in a first step, so as to mask the corresponding areas prior to applying the

algorithm.

To alleviate these issues, many variants of the direct deprojection technique ex-

ist, including a correction for edge effects [McLaughlin, 1999], spectral information

[Nulsen and Bohringer, 1995, Pizzolato et al., 2003], or emission-weighted volumes

[Morandi et al., 2007]. However, from the point of view of the mathematical treat-

ment these procedures are similar.

In summary, the current method is a two step method (identify, mask the point

sources, and then estimate the emissivity) that does not model well the stochastic

nature of the data and that propagates errors from the outskirt of the galaxy cluster

(large radius) to the center of the cluster.

3.2 A nonparametric Poisson linear inverse model

3.2.1 Astrophysical and instrumental features

The salient features of the astrophysical data described above can be summarized as

follows:

• Feature 1: Presence of point sources. Many bright spots are observed on the

image. They are the so-called point sources, that is, sources with an angular

size that is much smaller than the angular resolution of the telescope. Their

location is unknown.

• Feature 2: Brightness of point sources. Although point sources are expected to be

much smaller than the size of a pixel, their apparent size is much larger. This

is due to the finite precision of the alignment of the telescope, which induces a

blurring effect that has been well studied and can be considered as known.

• Feature 3: Telescope artifacts. There are artifacts in the form of lines that are due
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to the poor sensitivity of the telescope at the connection between the various

chips.

• Feature 4: Approximate spherical symmetry. Near its center, the image has a

region of high intensity: it is the center of a galaxy cluster where the gas density

is high. The emissivity decreases sharply towards the outskirts, implying that

the gas density drops radially. The overall shape is nearly spherically symmetric,

exception made of the point sources.

• Feature 5: Random counts. Each pixel is a random count of X-rays during a time

of exposure.

3.2.2 Model

To account for these specificities, we propose the following model. Considering the

telescope first, each image pixel indexed by (x, y) is modeled as

Yx,y ∼ Poisson(µx,y) for x = 1, . . . , N and y = 1, . . . , N, (3.4)

where µx,y reflects the integral of the intrinsic emissivity of the cosmos. Without the

presence of any cosmological background, the XMM telescope has its own electronic

noise with small and known mean counts ex,y ≥ 0. In other words, without any

cosmological object facing the telescope, we have µx,y = ex,y, which can be seen as a

known offset.

Considering now the cosmos, each pixel faces a region of the cosmos along a line

going from zero (the captor) to infinity. Some lines go through the galaxy cluster,

some go through a point source, other go through both. Calling ε(x, y, z) ≥ 0 the

emissivity of the galaxy cluster along that line and Sx,y ≥ 0 a potential point source,

the integral of the cosmos emissivity along that line is

Ix,y =

∫ ∞
0

ε(x, y, z)dz + Sx,y for x = 1, . . . , N and y = 1, . . . , N. (3.5)

Moreover, owing to the rare existence of point sources (see Feature 1), S is a sparse

N ×N matrix.

The connection between µx,y and Ix,y depends on the characteristics of the tele-

scope. The blurring effect (Feature 2) is known through the so-called point spread

function of the telescope. Likewise the sensitivity of the telescope (Feature 3) is

known. As a result, the Poisson intensity in (3.4) is modeled as

µx,y = g(ex,y + (B(E ◦ I))x,y), (3.6)
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where g is the identity function, B is the known blurring operator, E is the known

N × N matrix representing the sensitivity of the telescope at each pixel, and ◦ is

the notation for the Hadamard product between two matrices. We pause here to

make an important remark for statisticians. The Poisson counts (3.4) are linked to

the unknown parameters (3.5) through a linear model, which belongs to the class

of nonparametric generalized linear models [Nelder and Wedderburn, 1972, Green

and Silverman, 1994, Wood, 2017]. In Statistics, the canonical inverse link function

g = exp is often used since it necessarily leads to positive Poisson intensities µx,y
in (3.6). Physical considerations forces g in (3.6) to be the identity function in this

astrophysics application of GLMs, however. A consequence is that standard codes

used for estimation do not apply (see Section 3.3.1).

The unknown objects are the gas emissivity ε(x, y, z) as well as the location and

intensities of the point sources S. An assumption is needed to estimate the three-

dimensional gas density function because the problem is unidentifiable in its current

form. Indeed, an infinite number of 3D-functions have the same 2D projection, that is,

one cannot recover ε(x, y, z) from
∫
ε(x, y, z)dz. Feature 4 states that a good approxi-

mation of the shape of the galaxy cluster is that it is spherical, that is, ε(x, y, z) = εR(r)

with r =
√
x2 + y2 + z2 is radial. Invariance by rotation makes the problem simpler

since the emissivity is known through a univariate function εR(r) of the distance r to

the center must be estimated. The association is moreover linear since the integral

in (3.5) becomes∫ ∞
0

ε(x, y, z)dz = 2

∫ ∞
√
x2+y2

rεR(r)

r2 − x2 − y2
dr =: (AεR)(x, y), (3.7)

where A is called the Abel transform.

The final assumption we make is that εR has a sparse representation on basis

functions φp:

εR(r) = γ0 +
P∑
p=1

γpφp(r), (3.8)

where P is the number of basis functions used. Future telescopes will be more pre-

cise in many ways, including their number N2 of pixels that tends to increase. The

asymptotic relevant to our estimation procedure is defined as the limit as N tends to

infinity, for fixed exposure time and window size of the observed scene. If the number

P of basis function φp in (3.8) grows with N , the method is called nonparametric: it

becomes more flexible as the image gets more precise. Here we choose P of the order

of N , more precisely P = 2blog2(N)c. Such method can fit the underlying emissivity
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better than a parametric method, provided the many coefficients γ = (γ0, . . . , γP )

can be well estimated from the data. Our method is nonparametric by choosing P of

the order N (more details below). Our choice of basis functions φp is important and

partly based on prior knowledge. Cosmologists expect a decreasing function from the

center of the galaxy cluster to its outskirt. So we use a generalization of the so-called

King’s functions

φp(r) = (1 + (r/ρ)2)−β, ρ ∈ {ρ1, . . . , ρI}, β ∈ {β1, . . . , βJ} (3.9)

parametrized by p = (ρ, β) [Eckert et al., 2016]. A grid of (ρ, β) lead to P/2 such

functions. To allow more flexibility and discover galaxy clusters with singularities, we

also use P/2 orthonormal wavelets defined on equispaced radii [Daubechies, 1992,

Donoho and Johnstone, 1994]. By default we choose Daubechies wavelets of order

8 for estimation of the emissivity for their smoothness; other wavelets are consid-

ered for uncertainty quantification in Section 3.3.2. Another possible (nonlinear)

approach proposed by a reviewer would consist in estimating ρ and β, but we prefer

the more conventional linear approach of defining a large set of basis functions.

The emissivity function εR(r) defined on R+ typically has a peak at zero and de-

creases (often monotonically) to zero as r gets large. Because there is a big discrep-

ancy between the left boundary, typically a peak, and the right boundary, typically

flat, wavelets used in (3.8) will have difficulties even with wavelet boundary cor-

rections. Various boundary schemes have been proposed, the simplest one assumes

periodicity, which is clearly violated here. We overcome this difficulty by splitting the

original image into two half-images going through the center of the galaxy cluster, for

instance the left image and the right image. Each half faces half of the galaxy cluster.

Let us call εleft
R and εright

R the corresponding emissivities. If the galaxy cluster is exactly

spherical then εleft
R (r) = εright

R (r) for all r ≥ 0, otherwise they share the same value at

r = 0 and both tend to zero when the radius r is large. Hence the double emissivity

function

εleft∪right
R (r) = εleft

R (−r) · 1(r < 0) + εright
R (r) · 1(r ≥ 0) (3.10)

defined for negative radii (left part of the galaxy cluster) and for positive radii (right

part) can be well represented as a linear combination of wavelets with periodic

boundaries. Plotting both left and right estimated emissivities can reveal asymmetry

in the cluster, or can be averaged to provide the cosmologist with a single emissivity

curve. Note that instead of splitting the image into a left and right sectors, one could

also split into more sectors where the sphericity assumption seems to better hold.
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Putting all components together leads to the following linear model for the Poisson

parameters:

µx,y = ex,y + (B(E ◦ (A(γ01 + Φγ) + s)))x,y, (3.11)

where Φ is N × P matrix of discretized basis function φp (namely, Φn,p = φp(rn) for a

grid of radii r1, . . . , rN), and the unknown parameters are γ0 for the intercept vector

1 (vector of ones), the sparse N -vector γ of the linear expansion (3.8) and the sparse

N×N -matrix S of potential point sources put in vector form s. This is a linear inverse

problem in the sense that the unknown quantities are indirectly observed through the

linear operators.

3.2.3 Taking asymmetry into account

Feature 4 states that galaxy clusters are only approximately symmetric. In practice,

some galaxy clusters are strongly asymmetric (see for instance the images of Fig-

ure 3.4). In an attempt to be robust to asymmetry, we model the emission εR into

a left and right parts in (3.10), as discussed at the end of the previous section. The

potential left/right asymmetry of the emissivity is reflected in (3.11) in the way the

matrix Φ is built. The s-term in (3.11) originally introduced to detect point sources

also helps take into account asymmetry by combining the point sources with the

residuals due to a lack of symmetry. Looking at the image ŝ may reveal spatial fea-

tures pointing towards asymmetry in the observed galaxy cluster, as we do with five

cosmology images in Figure 3.4.

3.3 Estimation with two sparsity constraints

3.3.1 Estimation of emissivity

Based on Feature 5, the Poisson negative log-likelihood

−l(γ0,γ, S;y) =
∑

(x,y)∈{1,...,N}2
µx,y − Yx,y log µx,y (3.12)

is a natural measure of goodness-of-fit of the counts data to the linear model for

µx,y (3.11). This model is a generalized linear model (GLM) for Poisson noise with

identity link. Note that the log-term in (3.12) prevents the estimated Poisson intensi-

ties from being negative.
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The number 1 + 2blog2(N)c + N2 of parameters (γ0,γ, s) exceeds the number of

observations N2, so that regularization is needed. Owing to the sparse representation

of the univariate gas density on its basis functions and to the rare existence of point

sources, we regularize the likelihood by enforcing sparsity on the estimation of γ and

s with two `1 penalties

(γ̂0, γ̂, ŝ)λ1,λ2 = arg min
γ0,γ,s

−l(γ0,γ, s;y) + λ1‖γ‖1 + λ2‖s‖1 (3.13)

in the spirit of lasso [Tibshirani, 1996, Sardy et al., 2004] and glmnet [Park and

Hastie, 2007]. We rely on FISTA [Beck and Teboulle, 2009] to solve the high di-

mensional and non-differentiable optimization problem for given hyperparameters

(λ1, λ2). This gradient-based algorithm can solve general convex program by suc-

cessively solving quadratic approximation to the cost function by means of the soft-

thresholding function. It has the advantage over glmnet to handle the identity link

function and positivity constraints on the King’s coefficients, and does no require

building and storing a very large matrix. Our current implementation of FISTA algo-

rithm is in MATLAB.

The selection of the regularization parameters (λ1, λ2) is a key issue. Performing

cross validation on a 2D-grid would be computationally intensive and would require

segmenting the image into sub-images. The empirical Bayes approach is another

possible avenue that would entail calculating some multivariate integrals. Theoretical

results on lasso [Bühlmann and van de Geer, 2011] and wavelet smoothing with the

universal threshold of Donoho and Johnstone [1994] show that, for good prediction

and model selection, the threshold should have the property to reproduce the true

signal with a probability tending to one asymptotically (i.e., as the size of the image

N tends to infinity) when the true signal is the constant function. Such a choice of λ

has remarkable asymptotic near minimax properties when the function to estimate

is not null (e.g., existence of a galaxy cluster with some emissivity and existence of

point sources), in particular for an emissivity function εR(r) that belongs to a Besov

space [Donoho et al., 1995]. From a practical point of view, this property means that a

radial emissivity with sharp changes like a peak or an abrupt change in first derivative

can be well recovered by the procedure. And the asymptotic property means that as

future telescopes will increase their pixel resolution (i.e., the number of pixels N2

tending to infinity), the universal threshold leads to an emissivity estimation that is

near minimax (i.e., it minimizes the worst estimation for emissivity functions in a

Besov space).
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The quantile universal threshold is the extension of the universal threshold to

other noise distributions, models and estimators [Giacobino et al., 2017]. It is defined

as the upper quantile of the null thresholding statistic of a thresholding estimator. As

defined in Section 1.3.2, the null thresholding statistics requires the zero thresholding

function of the corresponding thresholding estimator. The derivation of the quantile

universal threshold for (3.13) requires new results because the link function g in (3.6)

is not the canonical one, and because two penalties are involved. First we derive the

zero-thresholding function for (3.13).

Property 3.1 Given an image y, the smallest λ1 and λ2 that jointly set (γ̂, ŝ)λ1,λ2 in (3.13)

to zero is given by the zero-thresholding function

λ(y) = (λ1(y), λ2(y)) :=

{ (
‖XT

1

(
y−µ̂λ(γ̂0)
µ̂λ(γ̂0)

)
‖∞, ‖XT

2

(
y−µ̂λ(γ̂0)
µ̂λ(γ̂0)

)
‖∞
)

if y ∈ D

(+∞,+∞) otherwise
,

(3.14)

where µ̂λ(γ̂0) = e + x0γ̂0, x0 = BE ◦ A1, X1 = BE ◦ AΦ, X2 = BE ◦ A and D = {y :

∃γ̂0 ∈ R satisfying x̂T
0 1 = xT

0 (y/(e + x0γ̂0)) and e + x0γ̂0 > 0}.

Proof. The KKT conditions for (3.13) at γ = 0 and s = 0 are

∂/∂γ0 : xT
0

(
µ− y

µ

)
= 0

∇γ : XT
1

(
µ− y

µ

)
∈ λ1B∞

∇s : XT
2

(
µ− y

µ

)
∈ λ2B∞

where B∞ is the `∞-unit ball and µ = e + x0γ0. The first equation has a solution pro-

vided y ∈ D = {y : ∃γ̂0 ∈ R satisfying x̂T
0 1 = xT

0 (y/(e + x0γ̂0)) and e + x0γ̂0 > 0},
and the smallest λi allowing this system to have a solution are λi = ‖XT

i

(
µ−y
µ

)
‖∞

for i ∈ {1, 2}

Second we define the corresponding null-thresholding statistic.

Definition 3.1 The null-thresholding statistic Λ0 for (γ̂, ŝ)λ1,λ2 in (3.13) is

Λ0 = (Λ
(1)
0 ,Λ

(2)
0 ) := (λ1(Y0), λ2(Y0)) with Y0 ∼ Poisson(e + x0γ0). (3.15)
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Note that Y0 has mean e + x0γ0, that is, the zero-scene assumes zero emissivity

(i.e., γ = 0) and no point source (i.e., s = 0). The goal of our selected hyperpa-

rameters (λQUT
1 , λQUT

2 ) is to reproduce this zero-scene with high probability. This is

achieved with the third step by taking marginal quantiles of the null-thresholding

statistic.

Definition 3.2 The quantile universal thresholds (λQUT
1 , λQUT

2 ) are the upper α1-quantile
of Λ

(1)
0 for λ1 and the upper α2-quantile of Λ

(2)
0 for λ2.

The quantile universal thresholds has the following desired property.

Property 3.2 With (λQUT
1 , λQUT

2 ), the estimator (3.13) reproduces the zero-scene with
probability at least 1 − α1 − α2 since P((γ̂, ŝ)λQUT

1 ,λQUT
2

= (0,0);γ = 0, s = 0) ≥
1− α1 − α2.

Proof. From Property 3.1 P((γ̂, ŝ)λQUT
1 ,λQUT

2
= (0,0);γ = 0, s = 0) = P(λQUT

1 >

λ1(Y0) ∩ λQUT
2 > λ2(Y0)) = 1− P(λQUT

1 ≤ λ1(Y0) ∪ λQUT
2 ≤ λ2(Y0)) ≥ 1− α1 − α2.

In practice, the choice of α1 and α2 can be guided by the following considerations.

Since the former is linked to the estimation of the emissivity function εR, we choose

α1 = 1/
√
π logP as for the universal threshold of Donoho and Johnstone [1994] in

the Gaussian case. The latter is linked to the identification of the point sources, so

we recommend for instance α2 = 1/N2 to control the false discovery rate at level α2

in the weak sense: with α2 = 1/N2, the average number of falsely detected point

sources is one per image when no point sources are present.

3.3.2 Uncertainty quantification

Estimation of the emissivity is of little value for astrophysical purposes without un-

certainty quantification, which helps judging whether a feature is significant or not.

The estimation of the emissivity εR is conditional on the observed (random) image,

the location of the center of the galaxy cluster and the choice of the bases in the

expansion (3.8). To quantify the uncertainty related to randomness of the image,

we first segment the image into boxes of size 4 × 4. Each pixel in each box faces

approximately the same region of the universe, therefore assuming the emissivity
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is approximately constant in each box, the 16 pixels can be seen as being approxi-

mately i.i.d., and therefore can be bootstrapped within each box [Efron and Tibshi-

rani, 1993]. Since the location of the center of the cluster is prone to uncertainty,

we also randomly select the center of the image. To prevent conditioning the estima-

tion on a particular type of wavelets in the expansion (3.8) so as to avoid artifacts,

we also choose randomly one type of wavelets out of nine (three Daubechies, three

symmlets, three coiflets [Daubechies, 1992]). The procedure is repeatedM times and

pointwise (1−α)-quantiles of these estimated emissivity curves provide a measure of

uncertainty.

3.4 Numerical experiments

3.4.1 Simulated data
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Figure 3.2: Three different simulation profiles (top row) with a corresponding simulated

galaxy cluster images (bottom row).

We simulate galaxy clusters according to model (3.11) with known constant back-

ground ex,y = 10−4, known sensitivity matrix E and blurring operator B correspond-
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ing to the point spread function

psf(r; r0, a) =

(
1 +

(
r

r0

)2
)−a

(3.16)

of the XMM telescope (a = 1.449 and r0 = 2.2364 pixels). The simulations are based

on four profile functions εR(r). The first three defined for r ∈ [0, 1] assume symmetry:

cosmoBlocks is a cropped version of the well known standard function blocks used

in signal processing [Donoho and Johnstone, 1994] and although not expected to

describe a galaxy cluster, it allows to show the flexibility of our procedure; cosmo1

and cosmo2 are typical symmetric profiles according to cosmologists; the cosmoAsym

profile defined for r ∈ [−1, 1] has some strong asymmetry to illustrate how to estimate

left and right emissivities. These four functions are publicly available, as discussed in

Section 3.6.

For each test profile, we simulate galaxy cluster images of size N × N for N ∈
{128, 256, 512} and repeat the Monte Carlo M ∈ {96, 48, 24} times, respectively, to

estimate the mean squared error. We consider two scenarios: without and with point

sources to quantify the robustness of the methods to the presence of point sources. To

make the simulation realistic, we simulate a total of N points sources that follow inte-

gral source flux distribution power law with index α = 1.82 with maximum boundary

flux Smax = 500Ī and Ī is the average intrinsic emissivity of the source without point

sources [Moretti et al., 2003, eq. (2) and (4)].

We compare our estimator (QUT-lasso) to the state-of-the-art method used by cos-

mologists (SA) described in Section 3.1.3. Recall that the SA method is a two step

method: first estimate the location of potential point sources, then perform the de-

projection. We help the SA method by being oracle in the first step: since we are

doing a simulation, we know where the point sources are and provide this informa-

tion through the sensitivity matrix E in that Ex,y = 0 when pixel (x, y) has a point

source. For the first three emissivities that are symmetric, the estimation is the aver-

age between the left and right emissivities in (3.10).

Table 3.1 reports the estimated mean square error between log ε̂R and log εR for

each simulation in column F. The other three columns break the estimated mean

square error into three even regions: inner (i), middle (m) and outer (o). Table 3.1

shows that QUT-lasso performs much better than the state-of-the-art method, without

and with point sources, whether in the heart or to the outskirt of the galaxy cluster.

A region of particular interest to cosmologists is the outer shell of the galaxy cluster
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Table 3.1: Results of Monte Carlo simulation for the mean squared errors.
MSE of the log-profile (*100)

cosmoBlocks cosmo1

M F i m o F i m o

Without

128 QUT-lasso 8.5 14 4 6.5 6.1 6.3 3 7.9

SA 21 41 5.4 15 33 55 34 6

256 QUT-lasso 3.8 1.9 4.6 4.4 1.1 1.7 0.66 0.77

SA 15 26 3.8 14 8.6 17 7.5 2.5

512 QUT-lasso 2.5 2.2 3.2 2 0.24 0.53 0.085 0.2

SA 12 20 2.9 14 2.7 4.7 2.3 1.1

With

128 QUT-lasso 24 55 11 6.7 17 5.9 15 29

SA 32 59 8.2 25 63 56 49 76

256 QUT-lasso 29 77 5.5 6.7 4 1.6 4.2 4.4

SA 20 39 4.8 17 15 15 11 17

512 QUT-lasso 4.5 7.4 3.6 2.2 1 0.76 0.58 1.3

SA 15 24 3.3 16 4 4.7 3.2 3.5

cosmo2 cosmoAsym

M F i m o F i m o

Without

128 QUT-lasso 7.2 3.6 0.36 17 5.4 1.3 1.4 13

SA 53 74 0.71 79 42 70 3.1 49

256 QUT-lasso 2.8 3.3 0.073 4.8 0.99 0.97 0.13 1.8

SA 29 37 0.21 51 26 50 1.4 25

512 QUT-lasso 0.95 1.7 0.11 0.94 0.71 1.1 0.098 0.91

SA 15 30 0.057 14 19 47 0.5 8.4

With

128 QUT-lasso 19 7.5 1.9 41 13 5.4 2.2 28

SA 60 67 0.72 109 49 67 5.2 74

256 QUT-lasso 2.8 4.1 0.28 3.9 1.4 1.3 0.39 2.5

SA 33 40 0.16 60 32 54 2 34

512 QUT-lasso 1.2 1.5 0.12 1.6 1 0.93 0.18 1.9

SA 17 35 0.054 17 20 50 0.68 10



3.4. NUMERICAL EXPERIMENTS 47

where QUT-lasso outperforms the state-of-the-art method in the presence of point

sources. As expected, we observe that QUT-lasso is robust to point sources thank to

the s-term in (3.11), and MSE decreases for the asymptotic we considered, namely

when the number N2 of pixels increases.

In the particular case of cosmoBlocks for N = 256 with point sources in Table 3.1,

SA is better than QUT-lasso. This is since cosmoBlocks is the only test function that

does not have a peak in the inner region. By adding point sources, QUT-lasso some-

times does not estimate a point source located in the center of the image as a point

source, but as part of the emissivity. Currently we help SA method with the mask of

the true locations of point sources. If we were not to help SA method then it would

also suffer from this problem. This is fixed increasing the image size since the size of

a point source becomes smaller in relation to the center of the image and it becomes

easier to identify it, as we see when N = 512.

We also investigate the coverage probability of the bootstrap-based uncertainty

quantification method of Section 3.3.2 with a Monte Carlo simulation summarized

in Table 3.2. Aiming at the target nominal value of 95% pointwise coverage prob-

ability, QUT-lasso achieves a reasonable coverage especially in the absence of point

sources. The SA method reaches a much lower coverage probability. We conclude

that this approach provides the astrophysicist with a reasonable guidance to judge

the significance of interesting features. To visually illustrate the benefit of pointwise

coverage with QUT-lasso, Figure 3.3 shows typical pointwise measures of uncertainty

for the four test signals. We observe that as the sample size increases from N = 256 to

N = 512, QUT-lasso gets better estimation of the emissivity and narrower pointwise

confidence intervals. The SA method shows some strong bias and wider intervals.

QUT-lasso outperforms SA in the two areas of great interest to cosmologists, the

inner and outer regions, both in terms of MSE and coverage probability. Figure 3.3

reveals the typical respective behaviors of both methods. In particular, SA tends

to overestimate emissivity in the outskirt and pointwise confidence regions with SA

are too wide in the inner region, showing great sensitivity of the method to small

perturbation of the data. In particular, cases where coverage percentage in the inner

part is almost 100% for SA are due to wide coverage regions, and it should not

mislead to good properties of SA. In summary, this Monte Carlo simulation shows

great improvement with our method in comparison with the SA method.
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Table 3.2: Results of Monte Carlo for pointwise coverage percentage at the 95% nominal

level.
Coverage percentage

cosmoBlocks cosmo1

M F i m o F i m o

Without

256 QUT-lasso 82 100 68 81 99 97 100 100

SA 37 35 54 22 64 11 77 100

512 QUT-lasso 73 65 76 78 99 98 100 100

SA 9 17 5 4 59 17 70 89

With

256 QUT-lasso 73 64 84 72 89 88 81 100

SA 49 50 61 38 39 26 81 11

512 QUT-lasso 66 47 73 78 77 94 100 39

SA 27 57 18 6 37 21 79 12

cosmo2 cosmoAsym

M F i m o F i m o

Without

256 QUT-lasso 79 38 100 100 82 62 88 96

SA 62 100 77 13 43 87 29 15

512 QUT-lasso 71 36 77 100 81 61 84 98

SA 46 100 30 10 31 86 6 2

With

256 QUT-lasso 89 71 100 97 62 62 40 84

SA 78 100 100 36 41 79 32 15

512 QUT-lasso 71 29 94 91 56 33 69 66

SA 71 95 100 19 41 68 47 8

3.4.2 Real data

We now apply QUT-lasso and the SA method to five telescope images shown on the

first column of Figure 3.4. These images cover a wide range of cases encountered in

the observed population of galaxy clusters. In addition to our test case Abell 2142,
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Figure 3.3: Example of an estimated emissivity and its pointwise confidence intervals ob-

tained by bootstrap for images of size N ×N with N = 256 (top) and N = 512 (bottom). The

true emissivity is in black, the SA method is in blue and QUT-lasso is in red.

we present the case of Abell 3667, which features a very sharp contact discontinuity

East of the cluster core (Vikhlinin et al. [2001]). This particular case allows us to test

our reconstruction method in the case of abrupt changes in the X-ray brightness. The

fourth row of Figure 3.4 shows the case of the “Bullet cluster” 1E 0657-56 (Marke-

vitch et al. [2002]), the prototypical merging cluster where a high-velocity subcluster

(the “Bullet”) has gone through the main cluster. Finally, the last row shows an im-

age of the Perseus cluster, where outflows originating from the supermassive black

hole located at the center of the cluster are interacting with the hot gas around, thus

creating bubbles and cavities within the surrounding medium (Fabian et al. [2000]).

The second column of Figure 3.4 plots the matrix Ŝ, the combination of estimated

point sources and residuals due to asymmetry. The third column of Figure 3.4 plots

ε̂R, the emissivity estimated either with the SA method in blue or with our proposal in

red. Along with the point estimate, we provide the measure of uncertainty discussed

in Section 3.3.2.

In the first two rows, we compare the XMM-Newton data for our test cluster Abell

2142 with the data acquired for the same target by the Chandra spacecraft. The an-
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gular resolution of Chandra (0.5 arcsec) is far superior to that of XMM-Newton (8

arcsec), which allows us to observe narrow features with more detail. The better

spatial resolution of Chandra allows to better sample the shape of the emissivity in

the innermost regions, whereas in XMM-Newton the peak is smeared out by the point

spread function of the telescope. Conversely, XMM-Newton is a bigger telescope and

covers a wider sky area, making it more sensitive than Chandra to detect faint X-ray

emission. Taking a closer look at the results, Figure 3.5 plots the four emissivities es-

timated by the two methods based on the two telescopes in the interval (−0.06, 0.06)

and (−0.16, 0.16) for Chandra and XMM-Newton, respectively. We find an excellent

agreement between the results obtained with the two independent telescopes.

The tests performed on three different cases (A3667, Bullet Cluster, Perseus)

demonstrate the stability of our method when applied to more complex cases where

the gas distribution can deviate substantially from spherical symmetry. In the case

of A3667, we find clear differences between the reconstructions obtained in different

sectors, as shown in the center-right panel of Fig. 3.4. The profile in the South-

West direction appears regular, whereas the profile reconstructed in the North-East

direction shows an abrupt drop consistent with the presence of the sharp cold front

discovered by Vikhlinin et al. [2001]. We recover a smooth profile as well for the case

of the merging Bullet cluster and for the case of the Perseus cluster, where cavities

and shocks injected by the central active galactic nucleus are present.

3.4.3 Summary of empirical findings

As shown in Table 3.1, our method outperforms the current state-of-the-art method

by providing results that are typically closer to the true value by a factor of three

to five on average. Thanks to the use of wavelets in the linear expansion (3.8),

QUT-lasso adapts to local features of the emissivity. Moreover our method does not

require an a priori knowledge of the position of contaminating point sources, but

proposes, in a single step, an estimation of the emissivity robust to the presence of

point sources. Table 3.2 and Figure 3.3 also shows good coverage by the bootstrap-

based pointwise uncertainty quantification. The new QUT-lasso approach provides

better estimation in the inner and outer regions which are particularly relevant to

astrophysicists. Overestimation of emissivity in the outer region seems to be corrected

with QUT-lasso.

Overestimation in the outer region may also occur with the state-of-the-art method
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on the five telescope images of Figure 3.5 where the blue curve (SA method) is always

above the red one (QUT-lasso). Given that the true emissivity is unknown here,

we cannot make a quantitative assessment of this statement, but if it is really the

case (as the Monte Carlo simulations suggest) then the SA approach currently used

by astrophysicists may mislead findings and interpretation in the outskirt of galaxy

clusters. Likewise, the behavior the SA approach in the inner region shows high

instability which renders poor estimation. QUT-lasso shows more stability in that

region as well, as expected from the numerical experiments performed on simulated

data. Application to the Chandra and XMM-Newton telescopes shows on Figure 3.5

good agreement between the profiles reconstructed with QUT-lasso and the standard

method, yet with a smoother profile recovered by QUT-lasso.

3.5 Conclusions

In this chapter, we have presented a novel technique to reconstruct the three dimen-

sional properties of an “optically thin” astrophysical source from two-dimensional

observations including the presence of background, unrelated point sources and Pois-

son noise. This method is based on Poisson GLM with identity link and a lasso-type

regularization with two regularization parameters that are selected with the quantile

universal threshold (QUT). The proposed method is fully automatic and superior by

far to the methods that are commonly used in astrophysics. The linear model for the

emissivity curve is based on an expansion on basis functions which include wavelets.

This makes the QUT-lasso method particularly flexible to discover galaxy clusters with

unusual shapes.

Future applications to real data will allow us to reconstruct accurately the three-

dimensional gas density profiles in galaxy clusters, which can be used to study the as-

trophysical properties of the plasma in clusters of galaxies, estimate cosmological pa-

rameters, and measure the gravitational field in massive structures to set constraints

on dark matter and modified gravity.

3.6 Reproducible research

The code and data that generated the figures in this article may be found online in

the following at http://www.unige.ch/math/folks/sardy/astroRepository



54 CHAPTER 3. ESTIMATION OF GALAXY CLUSTER’S EMISSIVITY IN ASTROPHYSICS



List of Tables

1 Introduction 7

2 Testing in Generalized Linear Models 15

2.1 Test statistics for Gaussian, Poisson and binomial distributions, with

the corresponding inverse link functions h(x) and Anscombe’s trans-

forms A(y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Estimation of galaxy cluster’s emissivity in astrophysics 31

3.1 Results of Monte Carlo simulation for the mean squared errors. . . . . 46

3.2 Results of Monte Carlo for pointwise coverage percentage at the 95%

nominal level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

55



56 LIST OF TABLES



List of Figures

1 Introduction 7

2 Testing in Generalized Linear Models 15

2.1 Power functions estimated by Monte Carlo simulation for sparse alter-

native hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Power functions estimated by Monte Carlo simulation for dense alter-

native hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Empirical levels achieved by the tests for the nine scenarios (Gaussian,

binomial and Poisson and P ∈ {10, 40, 1000}). . . . . . . . . . . . . . . 27

2.4 Empirical densities of Λ0 and their corresponding test-thresholds λα. . 28

2.5 Power functions estimated by Monte Carlo simulation for two matrices

X of size N = 100, P = 200 with two different sparsity levels, sparse

and dense alternatives, and β0 ∈ {0, 1, 2}. . . . . . . . . . . . . . . . . 29

3 Estimation of galaxy cluster’s emissivity in astrophysics 31

3.1 Schematic view of a telescope and a real image taken by the XMM-

Newton telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Three different simulation profiles with a corresponding simulated galaxy

cluster images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Example of an estimated emissivity and its pointwise confidence inter-

vals obtained by bootstrap for images of size 256× 256 and 512× 512 . 49

57



58 LIST OF FIGURES

3.4 Real data results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Real data results for pictures taken by XMM and Chandra telescopes of

same galaxy cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Bibliography

H. Akaike. Information theory and an extension of the maximum likelihood principle.

In Selected Papers of Hirotugu Akaike, pages 199–213. Springer, 1998.

S. W. Allen, A. E. Evrard, and A. B. Mantz. Cosmological Parameters from Observa-

tions of Galaxy Clusters. Annual Review of Astronomy and Astrophysics, 49:409–470,

2011.

M. Anderson. A new method for non-parametric multivariate analysis of variance.

26:32 – 46, 02 2001.

F. J. Anscombe. The transformation of poisson, binomial and negative-binomial data.

Biometrika, 35(3/4):246–254, 1948.

E. Arias-Castro, E. J. Candès, and Y. Plan. Global testing under sparse alternatives:

Anova, multiple comparisons and the higher criticism. The Annals of Statistics, 39

(5):2533–2556, 10 2011.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

A. Belloni, V. Chernozhukov, and L. Wang. Square-root lasso: pivotal recovery of

sparse signals via conic programming. Biometrika, 98(4):791–806, 2011.

J. Benichou and M. Palta. Handbook of epidemiology, chapter Risks, Measures of

Association and Impact. Springer-Verlag, 2005.

C. I. Bliss. The method of probits. Science, 79(2037):38–39, 1934.

P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer, Heidelberg, 2011.

59



60 BIBLIOGRAPHY

P. Bühlmann, M. Kalisch, and L. Meier. High-dimensional statistics with a view toward

applications in biology. Annual Review of Statistics and Its Application, 1:255–278,

2014.

F. Bunea, J. Lederer, and Y. She. The group square-root lasso: theoretical properties

and fast algorithms. IEEE Transactions on Information Theory, 60(2):1313–1325,

2014.

J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for

matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

E. Candès and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse
Problems, 23(3):969–985, 2007.

E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much

larger than n. The Annals of Statistics, 35(6):2313–2351, 2007.

W. Cash. Parameter estimation in astronomy through application of the likelihood

ratio. The Astrophysical Journal, 228:939–947, mar 1979.

D. Clowe, M. Brada, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and

D. Zaritsky. A Direct Empirical Proof of the Existence of Dark Matter. The Astro-
physical Journal Letters, 648:L109–L113, 2006.

I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathemat-

ics, 1992.

J. Diaz-Rodriguez, S. Sardy, C. Giacobino, and N. Hengartner. qut: Quantile Universal
Threshold, 2016. URL https://CRAN.R-project.org/package=qut. R package

version 1.3.

D. L. Donoho. Nonlinear solution of linear inverse problems by wavelet-vaguelette de-

composition. Applied and Computational Harmonic Analysis, 2(2):101–126, 1995.

D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):

1289–1306, 2006.

D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81(3):425–455, 1994.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage:

asymptopia? Journal of the Royal Statistical Society: Series B, 57(2):301–369, 1995.

https://CRAN.R-project.org/package=qut


BIBLIOGRAPHY 61

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Density estimation

by wavelet thresholding. The Annals of Statistics, 24:508–539, 1996.

D. Eckert, F. Vazza, S. Ettori, S. Molendi, D. Nagai, E. T. Lau, M. Roncarelli, M. Ros-

setti, S. L. Snowden, and F. Gastaldello. The gas distribution in the outer regions

of galaxy clusters. Astronomy and Astrophysics, 541:A57, 2012.

D. Eckert, S. Ettori, J. Coupon, F. Gastaldello, M. Pierre, J.-B. Melin, A. M. C. Le Brun,

I. G. McCarthy, C. Adami, L. Chiappetti, L. Faccioli, P. Giles, S. Lavoie, J. P. Lefèvre,

M. Lieu, A. Mantz, B. Maughan, S. McGee, F. Pacaud, S. Paltani, T. Sadibekova,

G. P. Smith, and F. Ziparo. The XXL Survey. XIII. Baryon content of the bright

cluster sample. Astronomy and Astrophysics, 592:A12, 2016.

B. Efron and R. Tibshirani. An introduction to the bootstrap. Chapman and Hall,

London; New York, 1993.

A. C. Fabian, E. M. Hu, L. L. Cowie, and J. Grindlay. The distribution and morphology

of X-ray-emitting gas in the core of the Perseus cluster. Astrophysical Journal, 248:

47–54, 1981.

A. C. Fabian, J. S. Sanders, S. Ettori, G. B. Taylor, S. W. Allen, C. S. Crawford, K. Iwa-

sawa, R. M. Johnstone, and P. M. Ogle. Chandra imaging of the complex x-ray core

of the perseus cluster. Monthly Notices of the Royal Astronomical Society, 318(4):

L65–L68, 2000.

J. Fan and H. Peng. Nonconcave penalized likelihood with a diverging number of

parameters. The Annals of Statistics, 32(3):928–961, 2004.

C. Giacobino, S. Sardy, J. Diaz-Rodriguez, and N. Hengartner. Quantile universal

threshold. Electronic Journal of Statistics, 11:4701–4722, 2017.

J. J. Goeman, H. C. van Houwelingen, and L. Finos. Testing against a high-

dimensional alternative in the generalized linear model: asymptotic type i error

control. Biometrika, 98(2):381–390, 2011.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,

H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.

Lander. Molecular classification of cancer: class discovery and class prediction by

gene expression monitoring. Science, 286(5439):531–537, 1999.



62 BIBLIOGRAPHY

P. J. Green and B. W. Silverman. Nonparametric regression and generalized linear
models: a roughness penalty approach. Chapman amd Hall, London; New York,

1994.

B. Guo and S. X. Chen. Tests for high dimensional generalized linear models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 78(5):1079–1102,

2016.

Julia Huettmann, Falkand Linke. Assessment of different link functions for modeling

binary data to derive sound inferences and predictions. In Marina L.and Tan Chih

Jeng Kennethand L’Ecuyer Pierre Kumar, Vipinand Gavrilova, editor, Computational
Science and Its Applications — ICCSA 2003, pages 43–48, Berlin, Heidelberg, 2003.

Springer Berlin Heidelberg.

W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contribu-
tions to the Theory of Statistics, pages 361–379, Berkeley, California, 1961. Univer-

sity of California Press.

F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, C. Gabriel, M. Guainazzi,

P. Gondoin, R. Much, R. Munoz, M. Santos, N. Schartel, D. Texier, and G. Vacanti.

XMM-Newton observatory. I. The spacecraft and operations. Astronomy and Astro-
physics, 365:L1–L6, 2001.

A. V. Kravtsov and S. Borgani. Formation of Galaxy Clusters. Annual Review of As-
tronomy and Astrophysics, 50:353–409, 2012.

G. A. Kriss, D. F. Cioffi, and C. R. Canizares. The X-ray emitting gas in poor clusters

with central dominant galaxies. Astrophysical Journal, 272:439–448, 1983.

N. Kushmerick. Learning to remove internet advertisements. In Proceedings of the
third international conference on Autonomous Agents, pages 175–181. ACM, 1999.

C. Leng, Y. Lin, and G. Wahba. A note on the lasso and related procedures in model

selection. Statistica Sinica, 16(4):1273–1284, 2006.

L. B. Lucy. An iterative technique for the rectification of observed distributions. As-
tronomical Journal, 79:745–754, 1974.

L. B. Lucy. Optimum strategies for inverse problems in statistical astronomy. Astron-
omy and Astrophysics, 289:983–994, 1994.



BIBLIOGRAPHY 63

M. Markevitch, A. H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C. Jones,

and W. Tucker. A Textbook Example of a Bow Shock in the Merging Galaxy Cluster

1E 0657-56. The Astrophysical Journal Letters, 567:L27–L31, mar 2002.

R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for

learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–

2322, 2010.

D. E. McLaughlin. The Efficiency of Globular Cluster Formation. Astronomical Journal,
117:2398–2427, 1999.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection

with the lasso. The Annals of Statistics, 34:1436–1462, 2006.

A. Morandi, S. Ettori, and L. Moscardini. X-ray and Sunyaev-Zel’dovich scaling re-

lations in galaxy clusters. Monthly notices of the royal astronomical society, 379:

518–534, 2007.

A. Moretti, S. Campana, D. Lazzati, and G. Tagliaferri. The Resolved Fraction of the

Cosmic X-Ray Background. The Astrophysical Journal, 588:696–703, may 2003.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the
Royal Statistical Society: Series A, 135(3):370–384, 1972.

D. Neto, S. Sardy, and P. Tseng. `1-penalized likelihood smoothing and segmentation

of volatility processes allowing for abrupt changes. Journal of Computational and
Graphical Statistics, 21(1):217–233, 2012.

P. E. J. Nulsen and H. Bohringer. A ROSAT determination of the mass of the central

Virgo Cluster. Monthly notices of the royal astronomical society, 274:1093–1106,

1995.

M. Y. Park and T. Hastie. L1-regularization-path algorithm for generalized linear

models. Journal of the Royal Statistical Society: Series B, 69(4):659–677, 2007.

F. Pizzolato, S. Molendi, S. Ghizzardi, and S. De Grandi. Smaug: A New Technique

for the Deprojection of Galaxy Clusters. Astrophysical Journal, 592:62–78, 2003.

C. L. Sarazin. X-ray emission from clusters of galaxies. Cambridge Astrophysics Series,

Cambridge: Cambridge University Press, 1988.



64 BIBLIOGRAPHY

S. Sardy. On the practice of rescaling covariates. International Statistical Review, 76

(2):285–297, 2008.

S. Sardy. Adaptive posterior mode estimation of a sparse sequence for model selec-

tion. Scandinavian Journal of Statistics, 36(4):577–601, 2009.

S. Sardy. Smooth blockwise iterative thresholding: a smooth fixed point estimator

based on the likelihood’s block gradient. Journal of the American Statistical Associ-
ation, 107(498):800–813, 2012.

S. Sardy and P. Tseng. Density estimation by total variation penalized likelihood

driven by the sparsity `1 information criterion. Scandinavian Journal of Statistics,
37(2):321–337, 2010.

S. Sardy, A. Antoniadis, and P. Tseng. Automatic smoothing with wavelets for a wide

class of distributions. Journal of Computational and Graphical Statistics, 13(2):

399–421, 2004.

S. Sardy, C. Giacobino, and J. Diaz-Rodriguez. Thresholding tests.

arXiv:1708.02908v2, 2018.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):

461–464, 1978.

W. Sharpe. A simplified model for portfolio analysis. 9:277–293, 01 1963.

Do. Spiegelman and E. Hertzmark. Easy sas calculations for risk or prevalence ratios

and differences. 162:199–200, 09 2005.

C. M. Stein. Estimation of the mean of a multivariate normal distribution. The Annals
of Statistics, 9(6):1135–1151, 1981.

P. Sur, Y. Chen, and E. J. Candès. The likelihood ratio test in high-dimensional logistic

regression is asymptotically a rescaled chi-square. arXiv:1706.01191v1, 2017.

C. Tchernin, D. Eckert, S. Ettori, E. Pointecouteau, S. Paltani, S. Molendi, G. Hurier,

F. Gastaldello, E. T. Lau, D. Nagai, M. Roncarelli, and M. Rossetti. The XMM Cluster

Outskirts Project (X-COP): Physical conditions to the virial radius of Abell 2142.

Astronomy and Astrophysics in press, 2016.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.



BIBLIOGRAPHY 65

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization

method. Soviet Mathematics Doklady, 4(4):1035–1038, 1963.

M. J. L. Turner, A. Abbey, M. Arnaud, M. Balasini, M. Barbera, E. Belsole, P. J. Bennie,

J. P. Bernard, G. F. Bignami, M. Boer, U. Briel, I. Butler, C. Cara, C. Chabaud,

R. Cole, A. Collura, M. Conte, A. Cros, M. Denby, P. Dhez, G. Di Coco, J. Dowson,

P. Ferrando, S. Ghizzardi, F. Gianotti, C. V. Goodall, L. Gretton, R. G. Griffiths,

O. Hainaut, J. F. Hochedez, A. D. Holland, E. Jourdain, E. Kendziorra, A. Lagostina,

R. Laine, N. La Palombara, M. Lortholary, D. Lumb, P. Marty, S. Molendi, C. Pigot,

E. Poindron, K. A. Pounds, J. N. Reeves, C. Reppin, R. Rothenflug, P. Salvetat, J. L.

Sauvageot, D. Schmitt, S. Sembay, A. D. T. Short, J. Spragg, J. Stephen, L. Strüder,

A. Tiengo, M. Trifoglio, J. Trümper, S. Vercellone, L. Vigroux, G. Villa, M. J. Ward,

S. Whitehead, and E. Zonca. The European Photon Imaging Camera on XMM-

Newton: The MOS cameras. Astronomy and Astrophysics, 365:L27–L35, 2001.

A. Vikhlinin, M. Markevitch, and S. Murray. A moving cold front in the intergalactic

medium of a3667. 551:160–171, 04 2001.

H. Wang, G. Li, and G. Jiang. Robust regression shrinkage and consistent variable

selection through the LAD-lasso. Journal of Business & Economic Statistics, 25(3):

347–355, 2007.

S. S. Wilks. The large-sample distribution of the likelihood ratio for testing composite

hypotheses. The Annals of Statistics, 9:60–62, 1938.

S. N. Wood. Generalized Additive Models: An Introduction with R. Chapman amd

Hall/CRC, London; New York, 2017.

Y. Yang. Can the strengths of AIC and BIC be shared? A conflict between model

indentification and regression estimation. Biometrika, 92(4):937–950, 2005.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped vari-

ables. Journal of the Royal Statistical Society, Series B, 68(1):49–67, 2006.

C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.


	Acknowledgments
	Résumé
	Summary
	Prologue
	Introduction 
	Generalized Linear Models
	Regularizing when P is larger than N
	Thresholding
	Thresholding for point estimation
	Thresholding for testing linear models

	Overview of this thesis

	Testing in Generalized Linear Models 
	Motivation
	Generalized Linear Models
	Asymptotic pivotal thresholding statistic
	Connection with the zero-thresholding function
	Illustrative example
	Combining tests and the composite -test
	Parametric and non-parametric pivotal statistics

	Simulation study
	Comparative power analysis
	Selection of 0 and asymptotic behavior of 0(Y)
	Power analysis under different sparsity levels in X

	Discussion

	Estimation of galaxy cluster's emissivity in astrophysics 
	Motivation
	Emissivity of astrophysical sources
	The XMM-Newton mission
	State-of-the-art ``onion peeling'' deprojection

	A nonparametric Poisson linear inverse model
	Astrophysical and instrumental features
	Model
	Taking asymmetry into account

	Estimation with two sparsity constraints
	Estimation of emissivity
	Uncertainty quantification

	Numerical experiments
	Simulated data
	Real data
	Summary of empirical findings

	Conclusions
	Reproducible research

	List of Tables
	List of Figures
	Bibliography

