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1 Introduction

Mobility of users and code, coupled with todays powerful handheld devices,
allows us to anticipate that a class of applications, which will take more and
more importance in the next years, is that of mobile agent-based applications.
Indeed, handheld devices need light code that can be freely moved from one
device to another, according to the user’s mobility or needs. Mobile agent-based
applications typically run on a mobile coordination-based environment, where
programs communicate asynchronously through a shared memory space. There is
a number of outstanding issues in providing fault tolerance of such applications.
The aim of this paper is to propose an exception handling model suitable for
mobile coordination-based environments.

1.1 Exception Handling

One of the chief trends in providing dependability of modern systems is the de-
creasing role played by tolerance to hardware-related faults. This is due to several
factors: improvements in hardware quality, a dramatic growth of the complexity
of software, the increasing involvement of the unexperienced users in managing
such systems, a growing variety of abnormal situations in the system environ-
ment. As a result of this, modern applications have to be designed in such a way
that they are capable of dealing with a growing number of various abnormal
situations in a disciplined fashion. The only general solution to these problems
is to systematically incorporate software fault tolerance into the applications.
One approach is to use backward error recovery techniques (such as rollback)
which can be made almost transparent for the application. Unfortunately it is
not general, usually quite expensive, and often not-applicable at all. This is why
employing application-specific exception handling is nowadays playing a major
role in building complex dependable applications.

Exception handling relies on features for declaring exceptions in different
scopes (exception contexts) and associating handlers with them, as well as on



ability to raise exceptions and propagate them outside the (nested) scopes. Most
practical languages (including Java and Ada) as well as a number of component
technologies (such as EJB) provide features for handling exceptions. Exception
handling features should match the characteristics of the application to be de-
veloped and the environment, the design paradigm, the computational model
and the language/technology used [8]. Developing specialized exception han-
dling mechanisms is an area of a very active research. For example, a number
of object-oriented mechanisms were proposed around 1990, atomic action based
mechanisms for providing fault tolerance (exception handling) in concurrent co-
operative systems were developed in mid 80s.

1.2 Coordination-Based Mobile Environments

Mobile coordination-based environments usually follow a data-driven coordina-
tion model [3], using a shared data space & la Linda. Agents coordinate in a
Linda space by inserting, reading or removing tuples of data from a blackboard.
Tuples are retrieved according to an associative search. Mobile coordination-
based environments provides several tuple spaces and ways for agents to denote
and access the different spaces.

Among mobile coordination-based environment, we can cite Lime [7], MARS [2],
and Lana [1]. Lime (Linda in a mobile environment) is well suited for both logical
mobility of agents and physical mobility of devices. Lime mobile agents coordi-
nate through Linda tuple spaces using a fixed set of interaction primitives. Lime
tuple spaces at different sites are merged together and agents access them trans-
parently as if they were local. MARS (Mobile Agent Reactive Spaces) is an
object-oriented Java-based environment, where Java agents coordinate through
an object-oriented tuple space & la Linda, using a programmable set of prim-
itives. A MARS agent can only access the tuple space associated to the host
where it is currently executing. Lana is an object-oriented Java-based environ-
ment, which combines provision of coordination and security and is designed to
run on both standard user PCs connected to the Internet and handheld devices.
Lana agents coordinate through an object-oriented tuple space a la Linda, using
a default fixed set of primitives, which can nevertheless be extended by the pro-
grammer. An agent can access both remote and local tuple spaces. Lana defines
protection domains for information access, and prevents application crashes by
considering network failures as normal events.

1.3 Fault-Tolerance in Mobile Coordination-Based Environments

Early work on fault-tolerance in coordination-based environments focused on
using transactions in Linda-like environment. Two additional primitives allow
all produced tuples to be retained until the transaction commits, the tuples are
then actually added to the tuple space. Retaining tuples ensures the transaction
semantics, but raises problems among dependent agents. A relaxed version [9]



provides the all or nothing transaction semantics, avoiding problems among de-
pendent agents, by relaxing the atomicity property. Tuples are available imme-
diately in the tuple space, even if later the transaction does not commit.

Mobile coordination-based environments, like WCL and JavaSpace, define
notification mechanisms. Agents ask to be notified whenever a matching entry
is written to the space. The notification mechanism, coupled with the notion
of transactions, provides a fault-tolerant mechanism, where an event catcher
is notified of matching entries for the duration of the transaction. In the case
of Lana, fault-tolerance is achieved in an asynchronous fashion, through the
notion of events. Events are deposited into the tuple space and retrieved by the
corresponding agent: immediately, if the agent was waiting for the event; later
on, if it searches for it later in the tuple space; or never, if the agent does not
care about the event.

However, all the above mentioned mechanisms for dealing with fault-tolerance
at the application level, suffer from the fact that exception handling, in its tra-
ditional sense, cannot be realized. Indeed, an exception, signaling an abnor-
mal event, is not necessarily caught or handled, neither synchronously or asyn-
chronously, by an agent.

1.4 Contribution

The focus of this paper is on discussing a new model of exception handling suit-
able for mobile applications developed in coordination-based environments. Our
general view here is that exceptions are special (abnormal) events that cannot
be treated as usual (normal) events. Exceptions have to be always caught and
handled, they are abnormal events always needing reaction. Generally speaking,
the agent putting tuple in the space and continuing its work acts under wrong
assumption that its processing would go smoothly. The problems here are: due
to decoupling event producers from consumers this agent continues its execution
as if no exception has been raised, so it is not ready to be involved in han-
dling. Moreover, it can leave the location. There is clearly a need to have (to
dynamically create or link) a local handler that would synchronously deal with
exceptions, while the processes raising exceptions keep communicating asyn-
chronously. In addition to this, it is important to make exception handling as
flexible as possible. For example, to offer features to change dynamically the
direction of exception propagation.

2 Running Example

We introduce a small banking system that operates with mobile agents and
requires fault tolerance, and which is implemented in the Lana environment. This
example will be used to illustrate the discussion on the fault-tolerant techniques
intended for mobile coordination-based environments.



2.1 The Lana Environment

Since Lana will serve as a basis for our discussion on fault tolerance, we will first
explain some Lana features. Communication inside a program occur through
synchronous method calls. However, Lana programs communicate using asyn-
chronous method calls. These calls are secure in that the calling program is given
a fresh Key object when the call is issued, and only this key can be used to in-
terpret the method reply. This mechanism prevents malicious programs from
intercepting or tampering with messages destined for others.

FEvents are used for signaling returned values of asynchronous method calls.
They are also used for signaling errors or exceptions, such as: security violation
(no permission for a method call), or the fact that the required program has
moved. Pre-defined event types include those: that indicate that a method has
returned (MethodReturn); that the method call has failed due to the invoked
program having moved (MigrationEvent); no access right having been granted
(SecurityViolation); the execution of the method code has generated an ex-
ception; the remote platform generated an (system) exception. Keys are used
to lock objects and events. Unique keys are automatically generated for each
asynchronous method call. Fized keys can be generated by several programs,
they allow transfer of well-known object copies through the use of a common
key.

The asynchronous notification of events is at the heart of the current fault-
tolerance mechanism provided by Lana. The typical scenario is the following:
an agent performs first an asynchronous method call, it then continues its exe-
cution (without waiting for the method return), once it is interested in having
the method return, it performs an observe (), which blocks the agent until the
method has returned. The return can either be the expected result, or an “ex-
ception” explaining the problem. Lana allows such exceptions to be generated
from a remote platform, however the observe() command must be local, i.e.,
an agent that moves must delegate the observe() to an agent that stays in the
platform from where the call has been issued.

2.2 Market Place Example: Lana Design

Figure 1 shows a user, wishing to acquire some product. He launches a buyer
agent that will roam the Internet searching for a seller agent offering the re-
quested object. The buyer and seller agents will meet in an electronic market
place, where they will exchange information regarding products that their respec-
tive users desire to buy or sell. Each agent is equipped with an e-purse holding
some amount of electronic money. If the two agents have matching requests, they
reach an agreement (the product is booked, and a contract is concluded), and
the payment is then realized by transferring some money from the e-purse of the
buyer agent directly to the e-purse of the seller agent. In this case the e-purse
acts as cash money, there is no need to ask for a bank certification. If the pay-
ment fails, then the agreement has to be cancelled, and the seller agent releases
the product. An e-purse is implemented by an additional agent that handles



the amount of money of the e-purse, access privileges, deposit and withdrawal
operations.

In this scenario, the buyer agent can be either alone or composed of several
agents roaming the Internet simultaneously. It may be difficult or even impossible
for the user to contact the buyer agent or for the buyer agent to contact the
agents distributed world-wide. Indeed, a mobile IP scheme enabling to contact
mobile agents irrespectively of their position is difficult to consider when agents
neither know each other nor participate in the same application.

Electronic Market Place

Ly

Seller

Fig. 1. Market Place Example

This examples consists of two main Lana agents: the buyer and the seller
agent that work on behalf of the buyer, and seller respectively. Once both the
buyer and seller agents have reached the market place, a sequence of data ex-
change occurs through the message board (in the case where there is no error):
the buyer (seller) agent inserts a buying (selling) request respectively in the tu-
ple space. The buyer agent retrieves the selling request and proposes a contract,
which is accepted by the seller. The interaction ends with the payment, i.e., by
transferring money from the buyer e-purse to seller e-purse.

We will now consider three types of errors: system error, application errors,
network failures; and see how they can be handled within the current Lana
model:

— System error. The local or remote platform generates an error, e.g., the code
cannot be executed, the called agent has moved, etc.
— Local Application Errors. For instance, we can mention:
e there is no offer matching the request;
e there is a bug in the seller agent code: it is impossible to reach an agree-
ment or to access to e-purse;
e the buyer e-purse does not contain sufficient money;
e the buyer e-purse does not present sufficient privileges, e.g., a configura-
tion error does not authorize money to be withdrawn from the e-purse.



— Distributed Application Errors. Several agents work cooperatively, e.g., to
buy several items of the same series. In the case of an error, there is a need
for a collective recovery of the error.

— Network Failures. There are communication failures between the buyer and
seller agent platforms, or between the agent platform and its user.

In the case of system errors, the local or remote Lana platform generates
an event, i.e., it inserts the corresponding tuple in the shared memory space.
Thanks to the key, the tuple is then retrieved by the agent that was waiting for
the corresponding operation.

In the case of application errors, e.g., there is an error during the payment
due to insufficient money, the buyer agent inserts a payment fail event, retrieved
by the seller agent that was waiting for the payment. The latter cancels the
transaction, and reinserts the selling request. Finally, the buyer agent informs
the buyer in the original platform that an error occurred during the payment, it
inserts the corresponding event in the original platform.

The case of distributed applications errors is the most interesting one. Indeed,
the problem here is to reach, even asynchronously, but necessarily, agents whose
location is not known. A possible approach to realizing this in Lana is for the
agents to agree upon a common platform where events, related to abnormal
situations, are stored. After that both the Buyer and the Seller agents leave an
additional assistant agent in this platform, whose role is to observe those events,
and to inform their respective agents.

Finally, the Lana model allows network disconnections to be handled in a
very similar way. Agents are informed of the failure through events, and either
wait for the availability of the connection, or continue their execution until the
connection is up, or definitely give up.

2.3 Analysis

Lana treats exceptions as the conventional tuples and offers basic primitives for
implementing exception handling. But we have found that there is clearly a space
for expanding these features to help application programmers in developing fault
tolerant applications in a safer and less error-prone way. First of all, Lana allows
exceptions to be left unhandled - which is clearly error-prone and can have serious
effects on system reliability. Secondly, this model mixes normal and abnormal
flows of control and code, and does not separate sufficiently the normal system
behaviour from the abnormal one - which is the main idea behind exception
handling [6] (as a matter of fact in their early work the authors of Lana stated
clearly [1] that exceptions should not be introduced as normal events). Thirdly,
the Lana model does not include any specific support for exception handling and
leaves all complicated issues with the application designers. These has several
serious consequences which may complicate system design and make it more
error-prone. One of the example is that to guarantee that the information is
delivered the producer should wait for the notification to be implemented at the
application level, in the code of both the producer and the consumer. Another



example is that Lana does not provides any systematic ways for transferring
responsibility for handling exceptions from the producer of an event to some
other process/code. Moreover, this model does not introduce the concept of
exception context, which is crucial for any exception handling methodology -
which makes it impossible to understand who handles exceptions, when and if
they are handled at all. Too many responsibilities (and room for mistakes) are
left with application programmers. In addition to this Lana exception handling
does not support nesting, nor it supports cooperative handling that involves
several processes.

3 Exception Handling Model

In this section we discuss our approach to introducing coordination-based ex-
ception handling which specifically focuses on code mobility.

3.1 Requirements

Novel fault tolerance techniques to be applying in developing complex mobile
systems have to correspond to their specific characteristics. As our analysis in [4]
shows the main way of ensuring fault tolerance in such systems is by employ-
ing application-specific exception handling mechanisms. Among other important
properties these mechanisms should be light and flexible, they should allow for
dynamic adjustments and for autonomous (localized) handling of abnormal sit-
uations. These mechanisms should be suitable for open systems in which mobile
agents are to operate in unknown environments and be capable of dealing with
abnormal situations that are not known in advance.

3.2 Model

The first problem here is to stay within decoupled (asynchronous) communica-
tion model and at the same time to guarantee delivery of exceptions to handlers.
Only in this case we can guarantee that all exceptions are caught and after that
handled. Our idea is to keep using usual standard asynchronous ways of com-
munication (i.e. keys or events) but to make sure that, should an exception be
raised, the handler always exists in the location.

As depicted in Figure 2, the underlying idea here is that we assume that,
if an event is consumed by a program EventConsumer, and an exception E
is raised during processing of this event, then this event is the cause of the
exception, and such exception should be treated outside EventConsumer. One
possible solution is to allow only synchronous communication, in which case the
producer of the event, EventProducer would be the best handler. But if we want
to allow asynchronous communication and agent mobility we cannot bind the
producer. So the only possible solution is to create a new process H(E) to handle
the exception.
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Fig. 2. Exception Model

The specialized process H(E) is created when an exception E is signaled by
EventConsumer. In our approach any exception is a tuple of a special type:
there is always a process waiting to handle (i.e. to consume) it. Such handler
H(E), representing the exception context, is usually designed by the developer
of EventProducer but it can be designed by the designer of EventConsumer
as well. In the latter case either the handler provided by EventProducer is
ignored in runtime and only the handler supplied by EventConsumer is used, or
both handlers receive exception E (in which case they can decide to handle it
cooperatively). The handler process usually completes handling and dies. But
they do not have to. Generally speaking, they can be involved in further system
execution for as long as necessary.

In our approach each tuple T produced by EventProducer has a number of
exceptions declared in its signature: E1, .., En in addition to a set of parameters.
When T is put into a tuple space the system should have references to declarations
of n handlers: one for each exception. The handler process is created locally, when
an exception is signaled but it does not have to be always local: it can move to
better handle the exception. But it is important to always create it when an
exception is signaled. We believe that it would be wrong to make any existing
process to be a handler because there is no guarantee that it will handle the
exception without delays: it can move to another location before an exception
is signaled or it can be busy doing other job and because of the asynchronous
nature of communication may decide to handle it when it is too late.

Our scheme allows defining a process handling several (or, even, all excep-
tions) from the signature of T, or, even, from the signatures of different tuples.

One problem we are planning to address is: what happens if EventConsumer
moves to another location and signals exception E while continuing processing
the consumed tuple T in this location. We should be able to create handler H(E)
in the new location because this is where the exception tuple is put in the local
tuple space.



To make our scheme even more flexible we plan to allow: an exception to be
propagated to several handler processes and the handler and the exception to
be dynamically associated (e.g. while inserting T into a local tuple space).

Another feature which would add flexibility to our scheme is to allow any
existing process, which is local to EventConsumer and to exception E, to handle
it together with standard handler processes. In particular, it seems to be useful
to allow EventProducer to join in the handling.

3.3 Market Place Example Revisited

We demonstrate our approach using the market place example introduced earlier.

Shared Tuple Space
Buyer Agent Buyer E-Purse Agent Seller Agent
StartPayment
_— _—
J Handmrl\\i\nsjﬁicientMoneyEx ception _
o P I D %Zexcepnon
| % Asks Money to the Bank
N )
A L —t= DepositMoney | v
ST StartPayment —— 1=
/
e
Money Transfer Seller E-Purse Agent
_— %
PaymentReceived___|

N
ContractConcluded /
| I _

Vo |

Fig. 3. Example Revisited: Successful Recovery

In this particular scenario the Buyer Agent asks its E-Purse Agent to release
the money and provides the E-Purse Agent with a name of its proxy agent
(Handler1) that can be locally created when necessary to deal with exceptions.
The Buyer E-purse Agent raises an exception due to the fact that there is not
enough money in the e-purse for realizing the payment. The system then created
Handler1, which catches the exception. Handlerl accesses the bank, in order to
transfer money from the bank account to the e-purse (see Figure 3). It deposits
then the money on the e-purse, and starts again the payment procedure. The
money transfer from the Buyer e-purse to the Seller e-purse occurs now correctly.
The Seller e-purse agent then informs the Seller agent that the payment has been
realized, and the Seller agent finally informs the Buyer agent that the transaction
was successful.

Figure 4 shows a different case. Handlerl does not succeed in retrieving ad-
ditional money from the bank (the bank account is not sufficiently furnished, or
there are no privileges). Handlerl informs the Buyer Agent through a regular
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Fig. 4. Example Revisited: Failed Recovery

event about the insufficient money present in the e-purse. The Buyer Agent is
not able to cope with this situation, and raises an exception, caught by Handler2,
provided by the Seller Agent. Handler2 is in charge of cancelling the on-going
contract, it then informs the Seller Agent, that subsequently starts a new selling
request. As an alternative, we could also envisage that Handler2 creates an ad-
ditional Seller Agent that will start the same selling request, leaving the original
Seller Agent free to continue its work (e.g., buying a series of items). This is
particularly useful, when the original Seller Agent needs to move.
This simple example allows us to draw several conclusions:

— in Lana the interacting agents have to always wait until the end and until all
notifications have been received, but in our approach they do not because the
handler agents can handle problems (our solution allows us to build really
asynchronous systems);

— moreover, our approach allows agents to freely move to other locations and
start other work without waiting for all notifications - if an exception is
signaled in the original locality there always is a handler to deal with it
locally;

— in Lana all handling is a part of the Seller, the Buyer and the E-Purse Agents
but in our approach handling is implemented in separate handler agents -
our design is cleaner and we separate the normal code from the abnormal
one. Because of this, our approach is more flexible. We can, for example,
use different handler processes for different locations which the Buyer Agent
visits, while in Lana handling is hardwired into the Buyer Agent.

With respect to dealing with distributed application errors we will be extend-
ing our approach with the concept of the context (see the Discussion Section)
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but in Lana everything again should be developed explicitly by the application
programmers with no additional support from the system.

It is clear that any particular feature which our approach provides can be
implemented in Lana or any other coordinated models. The real question is how
expensive and error-prone these solutions are and what sort of support the pro-
grammers have to systematically employ exception handling. This is where our
solution provides a number of benefits ensuring, for example, that any excep-
tion is always treated. In addition to that our approach respects asynchronous
communication mechanism and does not restrict unnecessarily process mobility.

4 Related Works

To the best of our knowledge there are no general exception handling features
developed for mobile coordination-based environments meeting the requirements
above. There are only few relevant papers on exception handling in coordination-
based systems. Diaz et al [5] put forward a basic exception handling framework
for the logic channel-based coordination model. In this model when a process
is created a special logical channel is associated with it, so when the process
raises an exception it is propagated through this dedicated channel. The idea
here is that when a process is created a special process used for handling all
its exceptions is created and sent as well. This scheme is not oriented towards
mobile environments, it relies on asynchronous exception handling making no
difference between normal and abnormal events (we will discuss this issue in
detail later on) and, besides, associating handlers with the process processing
information appears to be very static. Two more issues with this approach are:
there is one handler for all possible exceptions raised by a process and there is
no support for raising exceptions in several processes.

Another relevant work, by Rowstron [9], considers fault-tolerance for dis-
tributed tuple space, in the framework of stationary agents. It introduces the
notion of "mobile coordination”, where mobile is related to the movement of co-
ordination primitives, forming together a coordination operation, to the server
storing the tuple space. The operation is executed according to an all or noth-
ing semantics, which nevertheless allows intermediate tuples to be available in
the tuple space. Fault-tolerance for small segments of programs is then real-
ized by transferring the corresponding primitives, and associated state, to the
server. This approach does not enable the propagation of exceptions, in their
traditional sense, outside the coordination operation. However, the additional
notion of ”agent will” allows to perform some exception handling outside coor-
dinations. Wills are mainly used to cleanup the tuple space if an agent fails, and
are associated with a tuple space, and the same will is applied to all operations.

5 Discussion

In our future work we plan to apply the ideas discussed in the paper for develop-
ing a novel exception handling mechanism for Lana. One topic of our following
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work will be introducing rules for scoping to involve all processes from the same
scope in cooperative handling of any exception signaled by any of them. All
processes belonging to the same locality is the most likely candidate for intro-
ducing scoping rules but we are considering other ways of scoping as well. This
would resolve the following problem with the solution proposed in Section 3: we
implicitly assume here that the consumer always detects an error and signals an
exception before it produces any tuple or before it starts consuming the next
tuple - which is in effect a very strong assumption for many practical situations.
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