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CIRCULAR BILLIARD

MICHAEL DREXLER �� MARTIN J� GANDER y

Abstract� We analyze the problem of perfectly inelastic billiard on a circular table with exactly
one permitted bounce� We present a new and intuitively appealing geometric derivation of the
solution� Analyzing the solution with respect to the number of permitted paths for any given scenario�
we �nd an analytical expression for a separatrix between regions with two and four solutions� We
identify and discuss symmetry aspects of the problem and singular points on the billiard table�
Finally we apply the results to an optical experiment which can be performed in any classroom�
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�� Introduction� Imagine a circular billiard table with two billiard balls on it�
In which direction does one have to hit the �rst ball so that it bounces o� the cushion
once and then hits the other ball� A typical situation is shown in Figure ����
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Fig� ���� A typical case of the circular billiard problem

This problem has been considered in the literature before� Gander and Gruntz
��	 solve the problem using the computer algebra system Maple� Barto
n ��	 shows two
analytical solutions� His �rst solution relies upon the re�ection law which states that
the angles between the inbound and outbound track of the moving billiard ball and
the normal at the point of impact have to be equal� The second solution uses Fer

mat�s principle that a light ray between two points always chooses the shortest path�
Waldvogel ��	 derives an analytical solution using complex numbers and Hungerb�uhler
presents an elegant geometrical argument in ��	� Further work on general table shapes
has been done in ��	� In the present study� we are interested in a geometrical argument
which improves the intuition for �nding the number of solutions to this problem� We
discuss symmetry aspects and generalize the results to explain an optical experiment
via a hitherto unconsidered analogy�
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�� Geometric Solution� For an elliptical billiard table with one ball in each
focus� any point on the rim is a solution� Hence to solve the billiard problem for the
circle� we have to �nd an ellipse touching the given circle with the two given billiard
balls as focal points of the ellipse�

Without loss of generality we choose the coordinate system such that the major
axis of the ellipse lies on the x
axis with the focal points symmetric to the origin� as
shown in Figure ���� The center of the circular billiard table is at �m��m��� To �nd
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Fig� ���� Coordinate system with the ellipse centered around the origin

an ellipse touching the circular table tangentially� we have to �nd a point �x� y� which
satis�es the equation of the circle�

�x�m��
� � �y �m��

� � �������

the equation of the ellipse�

x�

��
�

y�

�� � e�
� ������

and an equation� ensuring that the ellipse touches the circle at �x� y� tangentially� This
last condition can be imposed by noting that equations ����� and ����� are describing
level sets of the left hand side functions� Since the gradient of these functions is
orthogonal to the level sets� the circle and ellipse touch tangentially at �x� y� if the
gradients at that point are parallel� Setting the cross product of the gradients equal
to zero� we arrive at the third equation

x

��
�y �m���

y

�� � e�
�x�m�� � �������

Before solving this system of nonlinear equations in the variables fx� y� �g� we would
like to gain some intuition from the ellipse model� Suppose the two billiard balls are
located close to each other� and away from the boundary� Then a small ellipse with
the two balls as its focuses lies completely inside the circle� Increasing the parameter
� the ellipse becomes bigger� and also its shape becomes more and more circular� as
shown in Figure ��� on the left� If the two balls were in the same place� the ellipse
would be a circle and thus only touch the other circle twice during the increase of the
parameter �� This result remains valid if the balls are close together� If� however�
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the balls are far apart� the ellipse touches the circle four times during the increase of
the parameter �� as shown in Figure ��� on the right� So in general we expect two
solutions if the balls are close to each other� and four if they are far apart� But what
happens between these limiting cases� To analyze this� we solve the system ������
������ ������ Prior to attempting a general solution� we consider two pathological
cases� which have to be excluded from the general solution�

For e � �� the problem reduces geometrically to �nding the points where two
circles with displacement vector d � �m��m��

T touch� In this context� one circle
�the billiard table� is the unit circle and the other circle has radius �� There are two
solutions on the line de�ned by d� with

�� � �� kdk� �� � � � kdk�

where k � k denotes the Euclidean norm�
For m� � m� � �� the ellipse is centered with the circle� We have thus four

solutions� two at y � �� x � �� and two at x � �� y � ��� The parameter � for these
cases is found to be

�� � �� �� �
p
� � e��

For a general solution� we parametrize the circle by x �� m� � cos��� and y ��
m� � sin���� solve equation ����� for ���

�� �
xe��m� � y�

ym� � xm�

�����

and substitute the result together with the parametrized coordinates into equation
������ This equation depends now only on �� To eliminate the trigonometric functions�
we introduce the transformation � � �arctan�u�� Equation ����� becomes

Q�u�

e�u�u� ���u� ��
� �������

where

Q�u� � �m� �m�m��u
� � ��m� � �m�

�
� �e� � �m�

�
�u�

��u�m�m� � ���m�
� � �m�

� � �m� � �e��u�m�m� �m��
�����

To �nd a solution u from ������ we can ignore the denominator except if the solution
is u � � or u � ��� We show now that we can ignore the denominator in these cases
as well�

u � � implies � � � and thus the y
coordinate of this solution is y � m�� Since
at y � m� the circle has a vertical tangent� the only possibility for a solution at that
point is that the ellipse has a vertical tangent as well� because at the solution the
ellipse touches the circle tangentially� Hence the center of the circle must lie on the
big axis of the ellipse and therefore y � m� � �� In that case our derivation breaks
down� since the denominator in ����� vanishes� Nevertheless the numerator provides
the appropriate solution� since Q��� � � for m� � ��

u � �� implies � � ��
�
and therefore the x
coordinate of this solution is x � m��

Note that at x � m� the circle has a horizontal tangent� so the only possibility for a
solution at that point is that the ellipse has a horizontal tangent as well� Thus the
center of the circle must lie on the small axis of the ellipse and therefore x � m� � ��
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Again our derivation breaks down� since the denominator in ����� vanishes� But as in
the previous case� the numerator provides the appropriate solution� since Q���� � �
for m� � ��

Therefore it is su�cient to analyze the fourth order polynomial equation

Q�u� � ������

to determine the solutions to our problem� If the billiard balls are close together�
equation ����� has two real and two complex roots� whereas if the balls are far apart�
it has four real roots� as shown in Figure ����
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Fig� ���� A case with two and one with four solutions

�� Number of Valid Solutions� To study the number of solutions dependent
on the position of the balls� it is more convenient to transform the coordinates so
that the circular billiard table has its center in the origin� as given in Figure ����
Transforming the polynomial ����� accordingly� we obtain

P �v� �� b�c� ��v� ���c��ac� a�v� � �bcv� ���c� �ac� a�v � b�c� �� � �������

where we used the notation in Figure ���� namely
� The �rst ball is positioned at the Cartesian coordinates �a� b�� with the con

straint a� � b� � �� on a billiard table of unit radius�

� The second ball is located at the position �c� ��� �� � c � ��
� The parameter v is related to � by the substitution � � �arctan�v��

It is noted that any other scenario on the billiard table can be obtained from this via
a simple rotation� We emphasize that equation ����� is identical with the equation
derived in ��	 using the law of re�ection�

We �rst conduct a computer experiment to demonstrate the problem� Fixing one
ball on the x
axis at the position �c� ��� we let the other ball at �a� b� vary and compute
the number of real roots we obtain from ������ Doing this on a �ne mesh� we see the
interesting result that there are only two connected regions on the circular billiard
table� one �light grey� which allows for four solutions and one �dark grey� which allows
for two� An example is shown in Figure ���� To compute the separatrix of those two
regions� note that two roots of the polynomial P �t� are becoming complex if a zero
of the derivative of P �t� moves through the x
axis� Thus to �nd the separatrix as a
function of t for given c in parameter form� we have to solve the system of equations

P �t� � �

P ��t� � �






Fig� ���� Regions on the billiard table with two and four solutions� c � ����

for the position �a� b�� Note that P �t� is linear in a and b� so that the above system
is linear and can be solved analytically� The solutions are given by

a� � �
c

h

�
�� � c�t� � ��� � �c�t� � ���� �c�t� � ��� c�

�
�

b� �
��

h
c�t��

h � �� � �c� �c��t� � ��� � c� �c��t� � ���� c� �c��t� � ��� �c� �c���

�����

The connected set of points �a�� b�� for t � ������ de�nes the separatrix be

tween the regions with two and four solutions� In this notation� t serves as a parameter
to identify a point �a�� b�� on the curve� Due to the symmetry arguments outlined in
the next section� there can be no less than two solutions for b �� �� The discussion
of singular �i�e� non
di�erentiable� points on the separatrix will be postponed until
then�

Figure ��� shows the separatrix for di�erent values of the �xed
ball parameter c�
The locus of the region with two solutions is evident from comparison with Figure
���� To determine the number of solutions on the separatrix� we substitute ����� into
����� to obtain

Ps�t� v� �
�c�

hs
�v � t��

�
�t��� � c�v� �

�
t��� � c� � �ct� � c� �

�
v � �t�c� ��

�
�

hs �
�
� � t�

�� �
��c� � �c� ��t� � �c� � �c� �

�
�

�����

This determines a polynomial in v for each point de�ned by t on the separatrix� The
number of roots of that polynomial determines the number of solutions at that point�
We note that Ps has a double root at v � t� therefore� the number of solutions can at
most be �� The determinant of the second quadratic term of Ps in ����� shows that
no other double root can exist for jcj � �� To examine the existence of triple roots�
we di�erentiate twice with respect to v and get at the point of interest v � t

P
��

s �t� t� �
��c�t

hs

�
�� � c�t� � �ct� � c� �

�

with hs as de�ned in ������ This yields three points on the separatrix where Ps has a
triple root at v � t�

t� � �� t��� � �

r
�� c

� � c
�
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Fig� ���� The separatrix for di�erent positions of the ball �xed at c �
������������������������������

Figure ��� depicts the change in the polynomial as t 	 � marches along the separatrix�
For the chosen c � ����� the critical value is t� � ���� The pictures for negative t are
similar with the direction of the axes reversed�

Starting from the degeneracy at t � �� the double root is bracketed by the two
simple roots for jtj � jt���j and marches through the positive�t � �� or negative�t � ��
simple root at the point of degeneracy� For larger jtj� it resides outside the two simple
roots� Of course� this solution in v can be translated into a geometrically relevant
angle � by using the substitution proposed earlier�

It can thus be said that in general� two of the four solutions merge into one on
the separatrix� This double solution then disappears into the complex plane as the
separatrix is left for the region with two solutions� It is easy from Figure ��� to
visualize this process via vertical shifting of the polynomial Ps�

�� Singularity and Symmetry� For a � b � c � �� the polynomial P degener

ates to P �v� 
 �� This is consistent with the geometrical view of the problem� Every
straight line starting from the origin is normal to the circle and therefore re�ected
back into the origin� It is noted that the singularity at the origin arises from a smooth
variation of the polynomial coe�cients and thus the polynomials become closer and
closer to a zero function� numerically harder to solve� but never does the number of
solutions become larger than �� Only at the origin does the number of solutions jump
from � to �� As �a� b� � �c� �� implies the two balls sitting on top of each other� it is
of course a physically impossible setting�

On the x
axis with b � �� P �v� degenerates to a cubic� The process of degenera

tion� as indicated in Figure ���� is such that one root of the quartic converges closer
to zero� and one root gets larger and larger� reaching� in the limit b� �� This is in
accordance with the angle � � 	 not being allowed in the trigonometric substitution
for v stated earlier 
 by introducing this unphysical solution �one ball would have to
pass the other after hitting�� the quartic character could be retained� Due to the
cubic character� there is at least one real solution for b � � with � � �� Exactly two
solutions are forbidden due to symmetry considerations 
 any re�ection point with
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Fig� ���� Ps for t � �� 
��� ���� ��� along the separatrix for c � ����

� �� � must have a symmetric point in the other half
circle that would also constitute
a valid solution� Therefore� excluding the solution � � 	� the x
axis contains either
one or three solutions to the billiard problem�

The solution pattern should by symmetry be invariant with respect to re�ec

tions about the x
axis� The separatrix as noted in ����� does obviously exhibit this
symmetry with a���t� � a��t� and b���t� � �b��t��

For b � �� we can determine

lim
v���

P �v� � ��� P ��� � �b��� c� � ��

Therefore� as P �v� is of order � for non
vanishing b� at least two real roots must exist�

As there are two regions with either two or four solutions to the billiard problem�
the only set of points that needs to be analyzed further is the separatrix of these
regions� Since the number of roots on this curve has been previously established� we
are here concerned with singularities of the curve itself� To �nd the singular points
on the parametrized separatrix ������ we compute the derivatives of a� and b� with
respect to t� Setting them to zero simultaneously yields the condition

��c�t �c� � � t��� � c�	 �c� �� �ct� � t��� � c�	 � ��
��c�t� �c� � � t��� � c�	 ��c� �� t��� � �c�	 � ��
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which has three solutions for general c�

t� � �� t��� � �

r
�� c

� � c
�

From these� we can obtain a �rst approximation to the appearance of the separatrix
for given c� The position of the �rst singular point on the x
axis can be obtained by
substituting t � � in ������ It is determined by

a��t�� � �
c

�� �c
�

The singular points for non
vanishing t are obtained by

a��t���� � c
�
�c� � �

�
�

b��t���� � ��c��� � c�

r
�� c

� � c
�

We note that for jcj � �

�
� there is a fourth singular point inside the unit circle on

the x
axis into which the two branches of the separatrix converge for jtj � �� The
position of that point is governed by

a��t��� � �
c

� � �c
�

It is noted that the singular �i�e� non
di�erentiable� points of the separatrix are
also these points where the number of solutions to the billiard problem changes from
two to four �one to three on b � �� abruptly via a triple zero of Ps without the
intermediate three solutions generally present on the separatrix�

�� An Experiment� In this section� we want to show how the separatrix can
be seen in a simple optical experiment� Imagine a point
like �or very small� light

Fig� ���� The optical caustic for two positions of the light source

source being positioned in a cylindrical geometry with a �at bottom� For an easy
experiment� an empty co�ee mug and a �ashlight bulb will do� In the projection onto
the bottom� the light source can be identi�ed with the second billiard ball at �c� ���

	



Our eyes run the computer experiment outlined earlier in an instantaneous� parallel
fashion� with the path being reversed� At each point �a� b� on the circular �table�� how
many re�ected light rays arrive from the source� This determines the intensity of
that point to our eyes� As expected� the brighter region is the one with four solutions�
and the darker one has only two solutions� similar to the pattern in Figure ���� The
special case b � � is remedied with the now physical inclusion of � � 	 as a solution�
The separatrix is clearly visible and as we vary the position of the light source� its
shape changes just like depicted in Figure ���� Two positions of the point light source
are photographed in Figure ���� The light source has been covered with a wedged
blind to avoid over exposure�

�� Conclusion� We treated the circular billiard problem in a comprehensive
fashion� outlining both geometric and analytic aspects of the solution� We depicted
regions with a given number of solutions and derived their separatrix in analytic
form� We identi�ed and discussed degenerate points on the billiard table� Relating
the results to an optical experiment� which can be easily performed in a classroom or
at home� we made the material more accessible�
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