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ABSTRACT 

 
Our everyday life includes more than one social interaction, which are based mainly on human 

communication. The latter consists of human emotional and behavioral informations, expressed by voice, 

facial expressions or body movements. However, a social interaction is not limited between humans and 

thus, Human-Computer and Human-Robot Interactions (HRI) are meeting their golden point of research. 

The multidisciplinary area of computer graphics, neuroscience, psychology, and artificial intelligence is 

trying to explore, decipher, decode and model the human emotional behaviors and expressions to enhance 

the field of social interactions between humans and technology. Toward this direction, the goal of this 

research is to delve deeper into the features and the nature of Human – Human (H-H) and Human – 

NonHuman (H-NH) social interactions, providing a detailed validated assessment of how humans react 

towards technology but also how the latter affects humans.  

In the first place, we examined the effect of the well-used virtual environments in the brain, identifying 

possible differences in perception between the virtual and the real world. An EEG device was used to 

capture participants’ brain activity in different brain areas examining motor, cognitive and other function 

of the users and a questionnaire was used to evaluate psychological factors and the sense of presence. Our 

results enhanced the current literature by revealing new brain states involved in virtual environments, like 

frontal theta state and centra alpha state and they highlighted the importance of the graphics content 

revealing a difference in the occipital area.  

The second part of our work is concentrated on the broad area of HRI, consisting of two different 

experiments. The first one concerned the identification of the effects human-humanoid interaction can have 

on human emotional states and behaviors, through a physical interaction with a robot, an identical human 

and a human. This research was supported by EEG and audio recordings as well as a questionnaire 

indicating that the human brain does understand visually and auditorily the difference between a robot and 

an identical human but the levels of concentration and motivation remain higher during HRI. 

The second experiment led us to multidisciplinary in-depth documentation, analysis, and comparison 

between H-H and H-NH interactions recording brain activity, muscles activity, body movements, voice, 

and emotional states. A dataset was created with 40 participants interacting with three different agents 

(human, virtual human and a robot) under the same scenario. The robot was also tested under four different 

roles. Human emotional and behavioral patterns were extracted and compared, providing valuable insights 
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regarding the role of robots and the effort for humanization. The role of physical presence was also assessed.  

Up-to-date researches show us that the need is focused on designing social agents in a more human-like 

way behaviorwise and not in terms of appearance and our study complemented the above concluding that 

it is the reactions of the agents that trigger the different human responses and not the appearance alone. 

Lastly, we developed a model that can recognize and classify the human voice based on the nature of the 

interlocutor with a score of 82%.   

This thesis bridge the gap among studies that have examined the role of human – likeness in nonhuman 

agents, studies that have examined human-human interactions alone and the ones that have analyzed and 

compared human reactions during nonhuman social interactions. Further research with more extended 

studies is required to shed more light to this broad area of H-NH interaction, revealing human reactions that 

can guide the design of nonhuman agents, can elicit better cognitive and emotional responses and ensure a 

higher level of engagement, respecting the human needs.  
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RÉSUMÉ 

 
Notre vie quotidienne est rythmée par plus d’une interaction dont la base repose principalement sur la 

communication humaine. Cette dernière est constituée d’informations émotionnelles et comportementales 

exprimées par la voix, les expressions faciales ou les mouvements corporels. Cependant, une interaction 

sociale n’est pas limitée aux humains et, par conséquent, les interactions Humain-Ordinateur et Humain-

Robot connaissent une croissance exponentielle du nombre de recherches s’y attardant. Les domaines de 

l’infographie, de la neuroscience, de la psychologie et de l’intelligence artificielle tentent d’explorer, de 

déchiffrer et de modéliser les comportements et expressions émotionnels  des personnes afin de renforcer 

les interactions sociales que nous avons avec la technologie. Dans le prolongement de ceci, l’objectif de 

cette recherche est de plonger plus profondément dans les caractéristiques et la nature des échanges sociaux 

entre humains et lorsque la personne interagit avec les non humains. Cette thèse fournit une évaluation 

détaillée et validée de la réaction des êtres humains face à la technologie, mais également de la façon dont 

celle-ci affecte les premiers.  

Premièrement, nous avons examiné les effets induits par les environnements virtuels dans le cerveau. Nous 

avons donc identifié les différences possibles de perception entre les mondes virtuels et réels. Un dispositif 

EEG a été utilisé pour capturer l’activité cérébrale des participants sur plusieurs zones en examinant les 

fonctions motrices, cognitives et d’autres types. Nous avons également créé un questionnaire évaluant les 

facteurs psychologiques et le sentiment de présence. Nos résultats améliorent la littérature actuelle en 

révélant de nouveaux signaux cérébraux lorsque ce dernier est confronté à un environnement virtuels. 

Parmis ces signaux, nous pouvons citer l’état thêta frontal et alpha central. Finalement, nos conclusions 

soulignent l’importance des contenus graphiques révélant une différence dans la zone occipitale.  

Dans un second temps, notre travail s’est concentré autour de deux expériences basées sur le vaste domaine 

de l’IRH. La première a identifié les effets que l’interaction humain-humanoïde peut avoir sur les émotions 

et les comportements humains. Trois types de contreparties ont été impliquées : un robot, son clone humain 

et un humain. Cette recherche s’appuie sur des enregistrements EEG et audio ainsi qu’un questionnaire 

indiquant que le cerveau de l’humain comprend bien visuellement et auditivement la différence entre un 

robot et un humain identique. Cette expérience met également en exergue des niveaux de concentration et 

de motivation plus élevés pendant l’IRH. 
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 La deuxième expérience nous a conduit à une documentation, une analyse et une comparaison 

multidisciplinaires approfondies des interactions H-H et H-NH en enregistrant l’activité cérébrale et 

musculaire, les mouvements du corps, la voix et les états émotionnels. Un ensemble de données a été créé 

sur la base de 40 participants interagissant avec trois agents différents (humain, avatar et robot) dans des 

scénarios identiques. Le robot a également été testé sous quatre rôles différents. Les schémas émotionnels 

et comportementaux humains ont été extraits et comparés fournissant de précieuses indications sur le rôle 

des robots et l’effort d’humanisation. Le rôle de la présence physique a également été évaluée. De récentes 

recherches montrent que l’effort d’humanisation des agents sociaux doit se concentrer sur l’intégration de 

comportements plus humains et non sur l’apparence de ceux-ci. Notre étude complète ce postulat en 

affirmant que ce sont les réactions des agents qui déclenchent certaines réponses humaines et non 

l’apparence seule. Enfin, nous avons développé un modèle capable de reconnaître et classifier la voix 

humaine en fonction de la nature de l’interlocuteur avec une précision de 82%. 

Cette thèse comble l’écart entre les études ayant analysé le rôle de l’humain, les études examinant 

uniquement les interactions entre humains et celles qui ont comparé et analysé les réactions humaines lors 

d’interactions sociales non humaines. Plus de recherches avancées sont nécessaires afin de mettre en 

lumière ce vaste domaine des interactions entre l’humain et le non humain. Afin de susciter de meilleures 

réactions cognitives et émotionnelles chez l’humain lorsqu’il interagit avec des agents non humains, il est 

primordial d’intégrer des réactions humaines dans ces mêmes agents non humains. Finalement, cela 

assurera un niveau d’engagement plus élevé tout en respectant les besoins humains. 
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“Robots touch something deeply human within us. For me, robots are all about people.”   

− Cynthia Breazeal, roboticist and entrepreneur 
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Introduction  

1.1. Human-Nonhuman Interaction 

Alan Turing’s famous question “Can machines think?” inspired several researchers to start examining the 

potentials of Human-Computer Interaction (HCI) and later, of Human-Robot Interaction (HRI), leading to 

a point where technology has started to be actively involved in the communication process. However, the 

communication between human beings has been guided and facilitated by other factors, like emotions, 

empathy, emotional intelligence, and awareness. Emotions, as an inherent internal procedure, are the mirror 

of what we feel and they allow us to perceive and understand our environment and even ourselves. They 

have been classified into three major categories: the basic emotions, such as happy, sad, anger, fear, 

surprise, emotions based on motivation like thirst, hunger, pain, mood, and emotions based on self-

consciousness and social interactions, such as shame, dignity or guilt [1]. Thus, the first questions raised 

here are if and how we can be based on the extraction of the human emotional and behavioral information 

to contribute to the design,  Artificial Intelligence (AI), and Emotional Intelligence (EI) of digital humans 

and robots. 

The importance of emotions in human communication has been supported since 1973 by Ekman [2], 

influenced by Darwin’s work. In around 1870, Darwin was the first to examine expressed emotion by other 

species, like animals, trying to find similarities between them and humans and to understand if these 

emotions are inherited or acquired. Ekman supported that humans experience six different emotions: 

happiness, sadness, anger, fear, disgust, and surprise. However, research on that has even started before 

Darwin, with the philosophical studies of the ancient Greeks and Romans. Based on the Stoics, Cicero 

identified and organized emotions in four categories: metus (fear), aegritudo (pain), libido (lust) and Laetitia 

(pleasure) [3].   

People, intentionally or not, use both facial expressions and body movements to convey emotional states 

and intentions to others. This conveyance is crucial for a flowing, mild social integration as everyday life 

is based on social interactions that demand an optimal adaptation to every context. The multidisciplinary 

area of computer graphics, neuroscience, psychology, and artificial intelligence is in its golden age of trying 

to explore, decipher, decode and model such human emotional behaviors and expressions to enhance the 

field of social interactions between humans and between humans and technology. To decipher and interpret 

the features and the boundaries between humans and technology, a first step is to compare human-human 

interaction with the one between humans and machines. The research of human-human (H-H) 

communication can reveal the most useful information for enhancing the HCI and HRI fields and thus, it 
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can clearly be stated as a starting point. It has already been proven that people are more willing to discuss 

and even disclose private information when computers follow and present human-based conversational 

rules [4].  

Baylor [5] stated the three main factors that can characterize a natural social interaction between a human 

and an agent. What we characterize as an agent, based on what Ferber defined, is “a physical or virtual 

entity that can act, perceive its environment (in a partial way) and communicate with others, is autonomous 

and has skills to achieve its goals and tendencies” [6].  Thus, according to Baylor’s research, social 

interaction is portrayed by the appearance of the agent, i.e cartoon or realistic figures, the communication 

features, such as gestures or facial expressions and the content of the dialogue. All this research has been 

based on Bandura’s first theoretical social cognitive learning theory, where he supports that people learn 

behaviors and norms by imitating other people who react in the same way. Trying to boost this imitation, 

researchers are trying to create more realistic digital humans and robots to facilitate the human-nonhuman  

(H-NH) interaction. This realism is based on human responses and reactions as well as on human 

appearance. It is undoubtably that robots, compared to digital humans, can present more human features 

that allow them to better incorporate human behaviors. However, the question raised here is to what extent 

an agent needs to adopt human behaviors and appearance, known as anthropomorphism? In other words, it 

is required to explore when and if the humanization of robots, or in general of social agents, needs to stop 

and which human need each level can meet.   

1.1.1 Research context and motivations 

Fast-forward to the 21st century, the focus has shifted towards the relationship between humans and 

machines, creating the broad area of affective computing, examining emotions and perception evoked by 

HCI or the use of emotions for the emotional intelligence of the machines. The ultimate purpose is the 

facilitation of smooth communication between humans and computer-generated characters or robots.  

Affective signals 

The first step towards this purpose is recognizing and decoding affective signals derived from our face or 

body under several social interaction contexts. Around 1973, as we mentioned before, studies started 

examining behavioral and emotional intentions, proving that they can be predicted through facial 

expressions [2]. It has been shown that observers tend to activate similar facial muscle activity with the 

speakers’ intended facial expressions [7]. Based on that, studies until 2009 have mostly examined signals 

extracted from facial expressions and voice [8]. The majority of such studies have used a congruent 

direction of gaze and body using an eye-tracking system for the gaze, EMG for the face muscles, and a 
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questionnaire for the self-assessment [9]. More recently, studies have started to include the analysis of the 

whole body and face, as they support that both play an essential role in human communication. There are 

even studies supporting that body movement can convey emotional information more efficiently than face 

under specific circumstances [10], as the body can have some advantages. First of all, due to its bigger size, 

it can facilitate emotional communication by making expressions visible at greater distances [8]. Moreover, 

the expressions can be noticed no matter what the position of the body is, compared to the face which needs 

always to be towards the interlocutor [10]. However, recent investigations have shown that the processing 

of body expression is similar to the one of facial expressions [11] as they both work as channels through 

which we convey emotions.  

Robots and digital humans can improve the accessibility of various contexts. Robots and other intelligent 

systems are able to improve the quality of human life by providing assistance in intensive and difficult 

situations or even independence in the way of living for people who have the need, like the elderly or people 

with motor/cognitive disabilities. Nowadays, agents have the ability to embody and fill social roles 

[12][13][14][15].  An embodied agent can be a physical robot or a virtual character that has an identifiable 

body and can use modalities like voice, gestures, or facial expressions to communicate. The main 

differences between a virtual and a robotic agent are the physiology of the human face, the natural neck 

motion, the shared gaze but mostly the physical presence [16].  For children, adults or the elderly, agents 

can play a role of service, but the question is what level of effectiveness. We should not forget that a 

nonhuman agent cannot substitute a human, no matter its appearance but can approach the reactions and 

behavior of the latter. 

Nature and design  

Although the continuous effort of the existing studies to enhance the domain of HCI and HRI by addressing 

all the aforementioned features, it seems that the fluidity and the naturalness of the interaction have not 

been completely achieved yet. This has as a consequence to people who still prefer human communication 

in any context. In a study, for example, robotic and digital agents were compared through a video setting 

in an educational context, as instructors [16]. It was found that attitude was more positive towards humans 

compared to robots, but agents have the potential to act as an alternative with the strict requirement that 

they are designed well. Moreover, humans tend to be more open, self-disclosing, outgoing and in general 

more positive when interacting with another human compared to an AI agent [17]. The same was verified 

by another study where humans when talking to another human instead of a computer, tended to be more 

talkative and spend more time in the conversation [18]. This preference can also be an outcome of the low 
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degree of naturalism. It has been found that people laughed when they had to respond to a robot’s greetings, 

admitting that they found the movement unusual and foreign during their interaction [19]. 

However, there are a lot the studies supporting that the design of agents should not completely rely on 

humans’ nature.  We need to find the key point where humans socially approve and accept social agents 

and social agents have as a principle the human needs. The definition of how humans evaluate robots or 

any type of social agents, as well as the documentation and interpretation of humans’ reactions towards 

them, can help us identify the weakness of the up-to-date technology and improve its functionality and 

design.   

Anthropomorphism can be derived through several characteristics, like the external design, motion features, 

communication skills, hypothetical emotions, and the sense of autonomy [20]. On top of all these, the 

human’s expectations and imagination take place to guide how the aforementioned elements will be 

interpreted and understood. Other secondary factors that can influence the perception of anthropomorphism 

are gender, culture and language. Another important factor to be considered is the group dynamics and how 

these can affect the quality and the balance of conversation [21]. The role of human imagination during 

HRI in the perception of human-likeness and the abilities of the robot has already been examined by 

MIRALab before [20]. A realistic humanoid robotic head called Eva was used, with a high ability to imitate 

human facial expressions and two different situations were tested: a human interacting with a robot and a 

human observing an interaction.  

 

Figure 1.1 The humanoid robotic head Eva used by Zawieska et al. at the University of Geneva to assess how the role of human 

imagination in the perception of human likeness and intelligence of the robot [20]. 

The results were very interesting and very promising for future research. The most important was that the 

observers found the robot more anthropomorphic and they tended to attribute more abilities, like 

intelligence, compared to the ones who interacted with Eva. Thus, they concluded that the less the 

interaction occurs in a controlled environment, the higher the human tendency to associate human 

characteristics to the machine. This outcome can raise again a question: At what extent does a robot, or in 

general a social agent, need to be humanlike? In the end, is it subjective? However, it is worth mentioning 
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that the reasons, stated by the participants who interacted with the robot, for perceiving it as less human-

like were mainly the robot design (close distance and physically present interaction so limitations of the 

appearance were obvious) and the context of the scenario.  

Robotic head Eva has been used by MIRALab in several types of research to explore the human-robot 

relationship. In [22], memory and emotional aspects of the robot in a long-term interaction experience have 

been studied, highlighting the role of memory in task engagement. The importance of memory and emotion 

in H-NH interaction has also been investigated and reviewed by [23, 24]. Eva has also been used to enhance 

emotional decision making by integrating attachment and learning to it, in a study towards a more empathic 

nonhuman agent [25]. MIRALab has also provided some insight regarding the H-H audio and visual social 

behavior measuring sociometrics [26]. 

However, to characterize a social interaction between a human and an agent successfully, two main points 

need to be fulfilled. First of all, the human, while interacting, needs to produce social signals and expects 

responses that will give a continuation to the communication. On the other hand, the agent should receive 

actively the human feedback but also respond in a way that can maintain the interaction. However, there 

are two main challenges regarding the reaction of the agent; the cultural context and the followed rules [27]. 

To wit, robots or digital humans are not yet trained to get adapted to any kind of interlocutor they face as 

they usually obey some predefined rules. Even people have difficulty coping with cultural settings they are 

not familiar with, thus it is normal that artificial agents are not yet at the point where they can distinguish 

the different contexts and adapt their behavior to them. However, the big challenge is how this problem can 

meet its solution. And this goes back to our first speculation on how and if we can enhance the AI and EI 

of an agent.  The second challenge regards the internal rules that agents need to follow to execute an order. 

By order, we mean any kind of social cue an agent will generate to fit in the communication framework. 

Especially, if everything is predefined, and this predefinition consists of limited yet resources, the 

naturalism and the reaction of the agent lack depth. Indeed, it is not easy to decipher the complexity and 

the richness of real-life social communication but this is the key engaging humans during a H-NH 

interaction more efficiently and for a longer period. 

In summary, H-NH interaction, including affecting computing and social signal processing, consists of 

multiple interdisciplinary research features that finally motivate us to conduct our research: 

• Body motion analysis (motion and gestures features and dynamic)  

• Face expression analysis  

• Voice recognition and analysis (audio features for speech-based emotion analysis)  

• Physiological data extraction and analysis 

• Psychometric parameters  
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• Comparison and correlations of modalities (machine learning techniques)  

• Several types of social interactions (with other humans, avatars, or robots)  

1.2 Objectives and Contributions 

Our basic research efforts are confined to comparing the communication between humans with the one 

between humans and technology, concluding to a disclosure of the humans’ needs towards H-NH 

communication and a suggestion of potential improvements. This objective is twofold: a) to define the 

difference in comparison with the human-nonhuman interaction and b) to use the collected data, extracted 

from all kinds of interactions, to provide behavioral, physiological, and psychological patterns and decipher 

the dynamics in a natural human interaction. This could create new guidelines for a better engagement 

between humans and agents. Our goal is to assess how humans react and perceive social nonhuman agents 

and their technology but also, how the latter can affect humans. The understanding of human responses can 

help us decipher the human needs and understand how and if we need to change the up-to-date technology 

and design of social agents.  

Emotional information can be transmitted through verbal (speech and semantic content of a message) and 

non-verbal (facial and maybe vocal expressions, gestures) communicative tools that can be influenced by 

several internal or external conditions, like the mood of the person or the environment [28]. In this kind of 

research, a multimodal approach is preferred, avoiding the limitations each modality may have. Facial 

expressions, for example, are dependent upon context and the character and thus, they vary across cultures 

[28]. Speech can complement the above, making the distinction between verbal and non-verbal signals 

more delicate, although it can also be limited if it depends on the language [29]. However, it is usually 

accompanied by gestures that people usually do unintentionally when interacting with each other, like hand 

and posture movements or gaze. When a unimodal modality has been used, then it concerns physiological 

signals, and usually the use of EEG.  

However, in a social context, specific emotions can be developed facilitating communication by enhancing 

the trust and belief between the people. These emotions are called social or moral emotions, like shame, 

empathy, jealousy, or admiration and they are dependent on the behaviors, feelings, and actions of other 

people [30]. Most of the conducted research on affective computing has been focused on basic emotions 

and dimensional models. Specifically, emotions, to be examined and categorized, need to be defined in a 

dimensional space, with the most commonly used the one of Arousal/Valence, as it forms the primary 

orthogonal dimension of the affective experience, or they can be examined in discrete states like happiness 

and sadness [31]. However, social interaction is a complex situation, consisting of emotions, attitudes, 
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cognitions, personality traits that it is not easy to be deciphered and consequently translated to the machines. 

It is said though that attitudes are modified through experience [32] and emotions are shaped based on 

previous experiences a human may have with other humans or other kinds of technology [21]. There are 

several studies though that have tried to create a link between humans’ reactions and emotions, based on 

voice [33, 34], body [35], or brain [36–39], facilitating the creation of behavioral patterns  

The current research, with its multidisciplinary approach, aims to address possible limitations of the existing 

technology used in the broad area of human-robot interaction up to now. Although different kinds of agents 

have been used to contribute to several domains, like education, health, entertainment, both in virtual and 

physical environments, the digital human or robot that will make a human feel comfortable interacting with 

another human has not been reported yet. What is mainly missing from the up-to-date state-of-the-art is the 

direct comparison of any kind of nonhuman interaction with the original human-human communication and 

the clarification of human behavioral patterns in the context of both physical and technological frameworks.  

What we need to do is to keep studying human-human communication, and not only features of the HCI or 

HRI, as what we lack is how we, as humans, react in several contexts of communication. The extraction of 

human features in such contexts, as vocal features, gestures, or body movements, and physiological features 

like brain or muscle signals can complement the existing technologies and studies. Moreover, the way 

humans react to computer-mediated characters and virtual environments can be a tool to decipher and 

understand existing human communication theories that can also support the aforementioned. Towards this 

direction, “robotic psychology”, aims to find and cover the gap between humans and robots by shading 

some light in features peculiar to HRI and consequently, more broadly, to HCI [21]. It is important to orient 

the research towards humans extracting human features, revealing humans’ needs and integrating them into 

the technology. The latter can ensure a more successful and efficient collaboration between humans and 

robots or other kinds of similar technology (i.e. avatars).  

To sum up, our main contributions are the following:  

• A database of human reactions extracted from H-H and H-NH interactions. It is a collection of 

voice, brain, muscles, and motion of forty participants, including 29 men and 11 women, aged 21 

to 65 years old.  

• A complete analysis of human behavior and perception in different technological interactive 

experiences (virtual reality, digital humans, and robots) 

• A machine learning model that can differentiate human voice while speaking to a nonhuman agent 

and to another human.  
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Thus, through this kind of research and by creating patterns for the human nonverbal communication, we 

can contribute to the enhancement of naturalism of every kind of agent, offering a higher level of 

understanding in the context of everyday communication.  To the best of our knowledge, such 

multidisciplinary and in-depth documentation, analysis and comparison between H-H and H-NH 

interactions have not yet appeared in the current literature, as illustrated in Chapter 2. 

1.2.1 Limitations  

In the following list, we provide a series of limitations, derived from the current literature, that assisted us 

in driving our research:  

• The unnatural scenarios and tasks and the intervention of the researchers. This limitation has also 

been noticed in a very recent study conducted by Stock et al., highlighting the restrictions a 

laboratory environment may provoke to the intensity of an interaction [21]. According to the need 

of each experiment, some tasks don’t necessarily correspond to real-life scenarios and 

consequently, they create biases and affect the outcome. An example of such a task can be the study 

of facial emotional expressions, as emotions in real life are represented by the whole body and the 

restriction of it can unintentionally cause an issue. Moreover, there is in general a gap between the 

interaction scenarios that people face in a laboratory environment by having to actively participate 

or passively observe a social interaction. It has been proven that the scene of the interaction can 

influence the response of the persons involved and their perception of emotional expressions. This 

effect is called the perceptual bias effect and it was thoroughly studied by Van de Stock et al. [40] 

• Most of the studies examining human-computer or human-robot interaction have been based on 

the observation of images or video without providing a real physical interaction that can conceal a 

lot of important information. However, the interaction may differ if it concerns a humanoid or a 

robot with a mechanical appearance and it is true that there is a limited number of studies that have 

used humanoids with realistic physical appearance. The lack of this physical interaction deprives 

the sense of physical presence and embodiment, which is the mutual influence of the physical 

environment and the actions taking place in it.   

• The small sample size, which affects the reliability and the validity of the results.  

• The limited combination of modalities and extracted features. The focus of the current literature is 

on the extraction of specific and limited human patterns that cannot provide a deep understanding 

of how and why humans react and think like that towards this kind of technology. Based on the 

existing studies, the most common combination is the one of facial expressions and speech.  A 

detailed description of the type and the number of modalities used are presented in chapter 2.  
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• The direct comparison between the human-human and human-nonhuman interactions to extract 

and compare the differences in the human body.  

1.2.2. Research questions  

Based on these limitations, the current study intends to answer the following research questions:  

1. Can a simulated experience, like Virtual Reality, activate regions of the brain, affecting 

behavioral, motor, or other functions?  

A thorough analysis of brain activity under different conditions of physical and virtual environment have 

been measured. The answer to this question can also help us to identify the optimal environment for the use 

of digital humans.  

2. Is there a difference in human perception when interacting with a human and an identical 

human-like robot?  

2.1 Is there a difference in emotions and motivation when simply interacting with a human and an 

identical robot? 

 

3. How do humans’ voice and body react when interacting socially with humans compared to 

nonhuman agents? 

3.1  Do gender or ethnicity affect human behavior when interacting with a nonhuman agent?  

We compared physiological, motion and psychological human features under different social interactions. 

Although the proportion of our participants was not well balanced, we examined possible differences and 

similarities due to gender or ethnicity.  

4. Can changes in agents' up-to-date technology and design be related to smoother, more 

pleasant, and efficient human-nonhuman interactions?  

4.1 Can different roles of a robot change the perception and preference of the participants?  

Based on our results from the second research question and the testimonies of our participants, we want to 

reach a conclusion regarding the current nature and design of nonhuman agents and how they can affect 

humans’ acceptance. This question, along with its subquestion, was answered via two different experiments. 

Lastly, we end up with some features that could possibly make an agent react physically and vocally in a 

more human-like way, being more accessible and accepted?  
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1.3 Potential Applications 

Digital humans and robots have started to be applied in many fields like  

§ Education (i.e teaching assistance) 

§ Medicine (i.e rehabilitation methods, medical 3D games with virtual guidance) 

§ Entertainment (i.e gaming with characters)  

§ Psychology (i.e robots as social companions, virtual platforms for elderly home assistance)  

 

 
Figure 1.2 Examples of agents that have been used, experimentally or practically, in several fields. Minutely, the first line from 

left to right: a. Orpheas, the alien musician used for rehabilitation of the fine movement of the hand in stroke patients [41], b. Nao 

robot, used as a mediator in a multi-party support group to reduce stress [42], second line from left to right: c. PARO the baby 

seal used as a social companion in elderly people [43], d. a virtual human used as a lecturer in a video presentation [16] 

It has already started to be proven that robotic and virtual applications, under specific circumstances such 

as in the medical field, have better results than the conventional interventions, usually performed by other 

humans. As Magnenat-Thalmann and Zhang have mentioned in their work, social robots and virtual humans 

can provide a very broad range of services, improving humans’ quality of life [44]. The analysis of H-H 

interaction has a lot to give, enhancing the role and the nature of different agents in these applications. The 

biggest need is to decode the “behavioral loop” created during a human-human interaction. Humans have 

the ability to adapt to the needs of their interlocutor, modifying their expressions and providing them with 

emotional feedback that allows the interaction to continue naturally and efficiently. This is something that 



 12 

needs to be considered in such kind of research, as it is the key for an agent to go a step further. The recent 

development of virtual reality systems or human-like robots but in terms of appearance are not enough to 

ensure a more effective human-computer or human-robot interaction. 

1.4 Manuscript Organization  

This manuscript is organized as follows:  

• Chapter 1 (Introduction) introduces the research, its background and objectives, and presents the 

research questions.  

• Chapter 2 (Related Work) provides a detailed literature review on the domains of HCI, HRI, and 

HHI, focusing on nonverbal communication.  

• Chapter 3 (Interaction in Virtual and Physical Environments) describes the methodology, 

research protocol, and results of the first experiment regarding the human interaction with the 

virtual and physical environment.   

• Chapter 4 (Human – Robot Interaction) presents the methodology, research protocol, and results 

of the second experiment regarding HRI.  

• Chapter 5 (Human – nonHuman Interaction) presents the methodology, research protocol, and 

results of the third and last experiment regarding the human social interaction with a physical 

present robot and a digital human.  

• Chapter 6 (Conclusion) summarizes and discusses the results, answering the research questions. 

The conclusion is extracted from all the experiments, pointing out the significant contribution of 

this multidisciplinary research.  
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2. CHAPTER  2  

 

RELATED WORK 

 

 

 

 

 
 

 

 
“Computers are incredibly fast, accurate and stupid; humans are incredibly slow, inaccurate and brilliant; 

together they are powerful beyond imagination” . Albert Einstein, theoretical physicist 

Image: Ó Einstein robotic head by  the University of California San Diego [45]  
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Related Work 

2.1 Introduction  

In this chapter, we present a review of the relevant literature regarding our multidisciplinary subject, human-

human (H-H) and human-nonhuman (H-NH) interaction. To interpret and consequently broaden the 

boundaries between humans and technology, the first step is to compare the human-human interaction with 

the one between humans and machines. The challenge here is to find a way to translate appropriately the 

human features to the “machine language”  and to decide what features can contribute to the fluidity and 

the naturalness of a human-machine interaction.  

 
Figure 2.1 The flow of the literature review and the research questions each section addresses, as mentioned in chapter 1  

The structure of this literature review is depicted in Figure 2.1. We have tried to cover all the possible 

aspects of such research so that we find any possible limitation that can lead us to more substantial research 

questions and results. Thus, we have started with the role of the human likeness as well as the role of 

presence and embodiment to cover the importance of the appearance and the physical or virtual presence 

of an agent. In the next section, we describe the basic principles of Human-Robot Interaction and we focus 

on social robots and their features, as we used one for our research. Section 3 describes the basis of human-

avatar interaction, delimiting the definition of the term avatar and providing a summary of its use in several 

The role of appearance and
features that influence human’s
perception during H-NH Interaction

HRI and robots’ roles HCI, avatars, and their roles

Link with humans

NONVERBAL COMMUNICATION and
how we measure it

Affective 
Computing

Social Signal 
Processing

How human behavior has been
technically used to complement HRI

Can a simulated experience, like 
VR, activate regions of the brain, 
affecting behavioral, motor or 
other functions?

How do humans’ voice and 
body react when interacting 
socially with humans 
compared to nonhuman 
agents?

Can changes in agents’ up-to-
date technology and design 
be related to smoother, more 
pleasant, and efficient H-NH 
interactions?

Is there a difference in 
human perception when 
interacting with a human 
and an identical human-like 
robot?
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fields. Section 4 creates the link between the previous two sections and the human-human interaction as it 

describes the principles of nonverbal communication and tries to cover the field of imitation and mimicry 

that seems to play an important role in human interactions. Section 5 provides us with the ways that we can 

measure this nonverbal communication which belongs to the broad area of affective computing and social 

signal processing. The basic features used for human data extraction have been noted down for modalities 

like audio, body movements, gestures, and physiological signals. Lastly, section 6 depicts how all these 

features have been analyzed and modeled, representing a human behavior that can be integrated into an 

avatar or a robot.  

2.1.1 The role of human likeness  

There are several hypotheses tested for human likeness. The most commonly used are the uncanny valley, 

the atypical feature, the category conflict, and the similarity hypothesis.  The first one, the uncanny valley 

hypothesis (UVH), described by Professor Mori, suggests that when a character just resembles a human, 

without being one, creates awkward feelings in human observers [46]. Figure 2.1 depicts the relationship 

between the natural resemblance and the affinity for it. The higher the human likeliness, the stronger the 

sensation of eeriness. There are several promoters of this hypothesis, supporting that an agent, avatar or a 

robot, is better to be cartoon-based rather than having a physical appearance to be more accepted by a 

human [5]. Research on virtual representation has proved that high levels of anthropomorphism can lead to 

negative effects, less trust, and discomfort [47]. Stein and Ohler supported the extension of this theory as 

the “uncanny valley of the mind”,  where they argue that it is also the “behavioral anthropomorphism” 

meaning the human-like behavior of the agent, that can cause negative reactions [48]. Some researchers 

also support that it is not only the high degree of human-like appearance that can trigger this hypothesis but 

also a possible mismatch between the form and the behavior [47].  However, Mori et al. expressed their 

doubts, proving that if the agent is designed in a way that it is hardly distinguishable from a real person, 

then the valence becomes positive again [46]. The morphology of an agent, aligned with the uncanny valley 

hypothesis, may indeed influence the perception and the behavior of a person during an interaction, but the 

degree depends on the task. People prefer more human-like morphology when they refer to social roles or 

real-time interaction for example [49].  An evaluation of UVH was conducted by Lupkowski and 

Gierszewska in their recent work, where they used 12 computer-rendered humanoid models to test the 

human perception and the UV effect [32]. For their purpose, they used a subscale of the NARS 

questionnaire regarding human traits. The main points of their research are that the highest comfort level 

was noticed for a cartoon-based character and that the belief of a person in human uniqueness can directly 

affect his/her attitude towards an agent; the higher the belief, the more nervous the person towards the agent.  
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The atypical feature hypothesis supports that atypical features of the stimulus may influence the 

perception [50]. Burleigh et al. noticed that eye size constitutes such a feature. Moreover, they found that 

whenever human likeness was high, eeriness was low (linear relationship) [51]. Third, the category conflict 

hypothesis [50] suggests that “when human likeness of the stimulus is comprised of a morph between two 

categories, the stimuli in the middle of this scale are perceived as ambiguous, leading to a negative effect”. 

Yamada et al. tested also this hypothesis, concluding that the most ambiguous image reflects an increased 

processing time [52]. Lastly, the similarity hypothesis by Rosenberg-Kima et al. [53] predicts that the 

gender similarity (male or female) and the attractivity of an agent have a more positive effect on the 

motivational outcome. This hypothesis was confirmed by Shiban et al [54] who used a young female agent 

and an older male one to test the effects on performance and motivation in the learning process.  

However, the question here is if the appearance of the agent alone can influence the perception and the 

performance of the user, or their behavior in combination with a contextual environment play also a role. 

Are there measurable benefits for the user and can we reach a level where a virtual avatar or a robot can 

really simulate the human behavior so that we can compare the different cases and come to a conclusion 

about the usability of such agents? And most importantly, is it really a need of reaching this level? To 

answer all these questions efficiently, more research should follow, deciphering the human-human 

interaction and exploring the potential of integrating its features to digital humans and robots.  

 

 
Figure 2.2 The uncanny valley as described by Mori et al. [46], depicting the relationship between the natural resemblance and 

the affinity for it. The dotted line represents the effect of the presence of movement.  

The majority of studies, having examined the role of human likeness or the human perception towards H-

NH interaction, have been evaluated through validated questionnaires. As Kätsyri et al. though mentioned, 

these kinds of studies cannot easily resolve the existing ambiguity in this field, so psychophysiological 
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studies are of need [55]. Ratajczyk et al. continued the work of Lupkowski and Gierszewska mentioned 

above, using electrodermal activity (EDA) and response time measurement to evaluate the UV effect and 

the human perception towards the same 12 characters, assessing also the role of their environment 

(background). Another interesting recent example is the one of Ciechanowski et al. who used facial 

electromyography (EMG), respirometer, electrocardiography, and EDA to examine the human-nonhuman 

interaction process between a human and a chatbox [56]. However, all these studies cannot imply that 

agents with mechanical appearance cannot positively affect humans.  

2.1.2 The role of embodiment and presence 

Intelligent systems have two critical features that can affect human perception during HCI: embodiment 

and presence. The embodiment was defined by Pfeifer and Scheier [57] as a term which refers to the fact 

that “intelligence cannot merely exist in the form of an abstract algorithm but requires a physical 

instantiation, a body”. The level of the embodiment is dependent on the nature of the agent (physical, 

virtual, or even a combination of both), the morphology (i.e human-like or cartoon based), as well as the 

modalities it can support, and the extent to which these modalities can be carried out [58]. Other variables, 

like gestures, speech speed, and haptic stimuli, may also be considered as aspects of an agent’s embodiment. 

Whereas embodiment concerns the agent and its relationship with its environment, presence deals with the 

way this agent is presented to others. Milgram et al [59]defined physical and digital presence as a situation 

where the embodied agent can be touched, saying specifically “whether primary world objects are viewed 

directly or by means of some electronic synthesis process”. Zhao categorized physical and digital presence 

as copresence and telepresence respectively [60]. Copresence, as a term in a sociological framework, 

describes the conditions under which humans interact with each other [60]. Under the umbrella of HCI and 

HRI, copresence refers to how the agent is displayed to the user. Zhao (2003) used two dimensions to 

describe the copresence. The first one refers to “the mode of being with others” and concerns features that 

can physically shape a human interaction whereas the second one refers to “the sense of being with others”, 

linked to the feeling and the subjectivity of the user [60]. We need though to differentiate physical 

embodiment and physical presence (copresence) as an agent, that may have physical embodiment, may not 

have a physical morphology presented to the user [58]. Several researchers tried to evaluate the role and 

the influence of presence and embodiment in virtual environments or robotics [58, 61, 62]. In the case of 

Virtual Reality (VR), we find these features also from a user perspective. As Slater has stated, “presence is 

a response to a system of a certain level of immersion” [63]. VR has some differences compared to robotics 

as it can create the illusion to the users that they really experience the presented situation, especially if they 
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are also able to see themselves in it (bodily self-consciousness) [64]. This requires that the brain cannot 

really distinguish any difference between the expected and the given outcome of the experience [64].  

So, here we pose the first question, regarding the effect of physical presence. Do people react differently in 

an interaction with a copresent agent (robot) compared to a telepresent one? Research up to now has proved 

that psychological responses between these two situations differ due to a variety of reasons. Initially, one 

reason is the size of the agent and consequently the influence it can have [65]. Robots that are physically 

present have usually a bigger size than a virtual agent displayed on a screen. As Huang et al. have 

mentioned, taller individuals tend to provoke a bigger social influence [66] and thus, the larger size of the 

physical robot may be more imposing, having a stronger impact.  

Distance is one of the main aspects of presence, as Zhao also supported [60], which can be divided into 

physical and electronic proximity. This leads to the second reason which is the physical distance between 

the user and the agent as physical proximity is normal to have different effects compared to the electronic 

one [67]. Moreover, the interaction with a physical agent allows a better understanding of its morphology 

and motion, creating a more familiar environment with the user. In general, it has been shown that physical 

presence can improve the user’s behavior as well as increase the level of enjoyment and trust [58]. In the 

case of the same appearance, a recent survey showed that 79% of the up-to-date studies favored a robot that 

is copresent compared to a telepresent one [58]. 

The next question derives as a continuation of the latter and examines the effect of physical embodiment. 

Do people react differently interacting with a physical agent compared to a virtual one? One reason for 

which the embodiment may result in the psychological processing of the user is the degree of realism [65]. 

Han et al. compared, with the use of functional Magnetic Resonance Imaging (fMRI), real and virtual visual 

worlds through the observation of movie or cartoon clips, aiming to provide information on how we 

perceive characters in real and virtual worlds [68]. They concluded that the perception of real-world 

characters triggers the medial prefrontal cortex (MPFC) of the brain and the cerebellum which act as an 

online representation and empathy of mental states of others, whereas cartoon clips of humans and non-

human agents activated the superior parietal lobes which are associated with attention when referring to 

actions [68]. The cartoon-based clips also engaged the occipital area of the brain which is linked with the 

visual attention mechanism.  

Studies that have examined the influence of physical embodiment separately from the physical presence, 

comparing telepresent robots to virtual avatars, reported no significant results [58]. However, what if the 

physical embodiment and the physical presence are combined? The majority of the studies have supported 

that people prefer the physical presence of a robot to a virtual avatar [58], having also significant effects in 

several behavioral responses like performance, attention [69], and response speed [70]. However, gesturing 
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has been proved to play an important role in the response of people during HCI. Thus, to complement the 

above, people prefer copresent agents, compared to telepresent robots or virtual agents, but only when they 

use gestures to complete their interaction [71]. 

In general, Jamy Li proved through his survey that physical presence plays a greater role in psychological 

responses to an agent than physical embodiment [58]. So, it seems that no matter the nature of the 

embodiment (virtual or physical) which constitutes a feature of the character, the presence is the one that 

can directly influence the response and behavior of the people [58]. To wit, what matters is how the agent 

will be presented to the user and finally, how the embodiment can allow that. However, there is a limitation 

in this field as there are not a lot of studies that have used avatars of high-level naturalism, decreasing the 

effect of human appearance.  

2.1.3 Other features that can influence human’s perception during HCI 

Eye gaze and facial expressions 

Another important feature that has been tested in such interactions is the role of the eye gaze. Eye gaze is 

one of the most important features of human behavior while a social interaction as it can serve several 

purposes and functions like enhancing attention, revealing emotional information, preserving engagement. 

Therefore, it has been proved that the physical presence plays a greater role in the gaze’s perception 

compared to physical embodiment and thus a robot’s eye gaze can be more accurate than the one of a virtual 

agent [62].  

Studies that have examined and proved that through facial expressions the behavioral and emotional 

intentions of another person can be predicted, started around 1973 [2]. It has been shown that observers 

tend to activate similar facial muscle activity with the speakers’ intended facial expressions [7]. This 

reaction has been characterized as Rapid Facial Reaction (RFS) [72] constituting an affective reaction that 

can occur automatically after the stimulus presentation. The majority of such studies have used a congruent 

direction of gaze and body using an eye-tracking system for the gaze, EMG for the face muscles, and a 

questionnaire for the self-assessment [9]. However, the importance of the body’s direction started to raise 

questions and more recent studies [73, 74] examined the influence of the difference in body and gaze 

direction. Thus, although it has been shown that the gaze is one of the major indicators of socio-

communicative dimensions, it has been finally proved that only when it is combined and congruent with 

the body orientation, it can modulate emotional experience and attention. 

Humans can express different kinds of emotions while interacting with different types of agents, under the 

same circumstances. A priori, the communication between human beings has been guided and facilitated 
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by the existence of emotions. Emotions, as an inherent internal procedure, are the mirror of what we feel, 

allowing us to perceive and understand our environment, including ourselves. It has been proved that people 

experience more positive emotions when interacting with a virtual agent that provides positive feedback 

instead of a negative one [75, 76]. Mollahosseini et al. (2018) studied the perception of people towards 

facial expressions of a virtual agent, a copresent retro-projected robot, a telepresent robot, and a video 

recording of a human and they found that the emotion recognition rates differentiated among the several 

agent conditions. In other words, humans perceived, and consequently expressed, differently the emotions 

based on the nature of the agent [62]. They proved that the physical presence plays a greater role in the 

gaze’s perception and thus a robot’s eye gaze can be more accurate than the one of a virtual agent. Lazzeri 

et al. (2015) also proved that emotions that are expressed through facial expressions, can be better perceived 

on a robotic agent than a virtual one [77]. On the contrary, virtual agents seem to be more effective when it 

concerns visual speech due to the computer graphics that can provide a better accuracy on the realism and 

the animations [62]. Kompatsiari et al. in their recent study, examined human-robot social interaction, 

measuring EEG signals under several gaze cueing, proving that a humanoid robot with mechanistic eyes 

and human-like characteristics can activate similar brain attention mechanisms as another human would do 

[78]. Gaze coordination is a crucial part of a well-designed nonhuman agent. 

Voice and gender 

Another variable that can influence human’ perception during a H-NH interaction is the voice of the agent. 

The first to examine the role of the voice nature (human-like, robot-like), as well as the gender of the agent, 

was the Eyssel et al. They stated that idiosyncratic features of both users and robots play a crucial role in 

the acceptance and the user-friendliness of the technological system [79].  They also indicated that same-

gender robots were perceived more positively. Towards this direction, more studies have studied the 

importance of congruence between the visual appearance and the voice characteristics of robots in humans’ 

perception and expectations [80, 81]. The more human-like the voice, the higher the expectation of 

anthropomorphism. Thus, it is not clear yet if there is always a need for nonhuman agents who mimic the 

human voice. Trying to answer this question, Google developed an artificial intelligence technology, called 

Duplex, which imitated completely the human voice, including pauses and hesitations but without a body 

[82]. The result was the rise of several ethical questions regarding how confusing and deceiving can be for 

a human to vocally interact with such a technological interlocutor.  

However, it has been proved that nonhuman agents with vocal entrainment, able to change features like 

pitch, speaking rate, and intensity to mimic the user, have a positive outcome in the perception and 

trustworthiness [83, 84].  The general outcome of all these studies though is that the key to increase the 
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acceptance the trust that can enhance the flow of a social interaction is to match as much as possible the 

user preferences with their expectations [85]. In other words, if we want to have nonhuman agents with a 

natural human-like voice, their appearance should accompany the latter. However, it has been shown that 

an agent can have a positive effect on a user only when the voice it supports is human-like and not a machine 

voice [86]. 

Once again, all the aforementioned studies have validated their results through questionnaires. For a more 

profound conclusion, more research is required and physiological features need to be measured.  

2.2  Human-Robot Interaction (HRI)  

There has been a lot of research trying to decipher human behavior and perception when interacting with 

robots compared to other humans. There are even movies that describe such interactions and, even if we 

consider them as science fiction films, we are at a point where people have started communicating and 

meeting social robots in a real-life context incorporating personal or professional roles [49].  

It has already been shown that the first reaction of people toward an initial communication with a social 

robot is a feeling of uncertainty and decreased anticipation [49]. However, Edwards et al. suggested that 

this behavior is a result of the deviating social communication pattern, that leads to the alteration of the 

“script” and expectations during a human-human interaction. Humans, unintentionally, follow a script when 

interacting with each other, adapted to various social situations. One of the roles of HRI research though is 

to decode these scripts and allow similar behaviors to take place during a human-robot interaction.   

Communication has been described by Kellerman (1992) as a “heavily-scripted procedure” [87]. In the 

framework of this procedure, humans are used to interacting with other humans, creating an anthropocentric 

expectancy in communication. However, despite these expectations, it has been supported that people tend 

to treat computers or other social intelligent technology as if they were people, by applying similar social 

scripts like the ones used during a human-human interaction. Reeves and Nass (1996) first illustrated this 

opinion with their Computers Are Social Actors (CASA) paradigm, showing that people mindlessly relate 

to machines and apply social rules as if they were indeed real people, even if they are aware of their 

incapability to embody emotions and intentions [88]. Reeves and Nass, in the same study, also suggested 

that people treat televisions like real people. This was confirmed by Nass and Moon (2000), who examined 

users’ responses to different kinds of televisions and they concluded that humans perceive them also as 

social actors [4]. In general, Nass and Moon supported that people tend to focus on the social cues, even if 

they are a few, bypassing the asocial features of the entities.  CASA has been already involved in several 

studies in a broader field of research including AI and social robots. More recently, Yi Mou & Kun Xu 
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compared the initial human-AI social interaction with the one between humans in terms of personality traits 

and communication attributes [17]. They support that their outcome complements the CASA paradigm as 

they found that people can change their behavior towards social actors if they are aware that they will 

interact with an AI.  

Edwards et al. showed that the human-like morphology can satisfy this anthropocentric expectancy during 

an interaction. They also confirmed the hyperpersonal model, launched by Walther, based on which 

computer-mediated communication can sometimes surpass a face-to-face interaction in terms of intimacy 

and liking [89]. Thus, they concluded that according to the context of the discussion an interaction with a 

robot can increase the level of attribution of social presence and decrease the degree of uncertainty.  

While the boundary between human-computer and human-human interaction is described by the CASA 

concept, social psychologists maintain doubts regarding the psychological invariance that can characterize 

a person across several different situations. This is the so-called personality paradox or consistency paradox, 

describing that a person can present different personality traits and behaviors under different circumstances. 

Attempting to solve this paradox, in the framework of human-computer interaction, Mischel and Shoda 

developed the Cognitive – Affective Processing System (CAPS) [90]. Mischel wanted the psychologists to 

think like mechanics and valuate people’s responses according to particular conditions.  According to this 

model, the personality system encompasses mental representations consisting of various cognitive-affective 

units (CAUs) that include a person’s goals, beliefs, values, affective responses, and memories [91]. 

Different CAUs can be activated under different conditions and different contexts, shaping accordingly the 

behavior of the individual. Consequently, when interacting with a machine, some people may feel more 

confident during the interacting process whereas others can feel confused and frightened.  Therefore, based 

on the CAPS model, when interacting with a machine, humans’ behavior and reaction should be different 

than the one presented when communicating with another human [17].  

However, it has been shown that putting robots in an anthropomorphic framework, by giving to them a 

personal name and even a story to follow, can affect human behavior and reaction towards them [49]. 

Moreover, visual gender-stereotypical cues can also affect the perceived robot’s gender [92]. 

2.2.1 Social robots and their features  

The idea of robots, as a mechanical agent serving specific purposes, has started a very long time ago, 

described even in Greek mythology. However, robots with natural language features, able to participate in 

a conversation, appeared in the 1990s, with the example of MAIA [93] and RHINO [94]. These kinds of 

robots were developed to cover a specific range of applications and consequently had some limitations, like 



 23 

the limited non-verbal communication, the difficulty in the perception of human speech, the specific pre-

defined range of responses [95]. All these restraints of the ‘90s have become the inspiration of the next 

years’ research trying to understand and enhance the features of human-machine interaction.  

Robots have been tested in several roles serving various applications where verbal and nonverbal 

communication are needed, like assistance and companionship [96, 97], receptionist [98], educational 

purposes [16, 99], museum robots and tour guides [100], or even involved in art, like musicians [101]and 

dancers [102]. In all the above applications, the main goal is the fluidity and the naturalness in the 

communication between the human and the machine, for any verbal or nonverbal feature. To succeed in 

this, researchers had to address limitations like breaking the “simple command only” barrier, coordination 

of motion and nonverbal communication, affective interaction, multiple speech acts, mixed-initiative 

dialogue, etc [95]. On the contrary, this kind of restraints has already been addressed in the virtual world 

since the early seventies, with Winograd’s SHRDLU program that could support different speech acts and 

basic mixed-initiative dialogue [103]. Due to the lack of the physical entity of a robot, VR was easier to be 

developed faster and in a different way than the area of robotics. We can assume that this is why people are 

more used to this technology, expressing also a higher preference towards it. Nevertheless, the main 

difference between robots and virtual agents is the physical embodiment.  

Birmingham et al. examined a new role for robots, as a mediator in a fMR multi-party support group [42]. 

The role of the robot was to motivate people to speak to each other and overcome their stress by increasing 

their sense of trust. Participants however declared at the end that the robot made the discussion mechanical, 

with a lack of real flow and they noticed the specific features of the robot responsible for that. As the authors 

used a Nao robot, the participants noticed the lack of humanity first of all in the expressions of its face. 

Thus, in line with other studies, facial expressions play a crucial role in efficient interactions.  For example, 

Zawieska et al. highlighted the importance of facial expressions as the majority of their participants 

attributed the intelligent behavior of the robot used for their experiment to its facial expressions [20]. 

Moreover, Birmingham et al. found that the sound of the robot was not natural and consequently, non-

native speakers had difficulty understanding its voice [42]. 

One of the most important items that has been addressed by both worlds (robots and virtual agents), is the 

affective/emotional aspect. Affection during human interaction plays a crucial role as it is directly 

associated with learning processes, persuasion, and empathy [95]. Pioneering work in this domain was 

made on virtual avatars like Steve [104] or Greta [105] that became the inspiration for Cynthia Breazeal to 

develop the Kismet robot, an expressive mechanomorphic robot head with perceptual and motor modalities 

that can support multiple facial expressions [106, 107]. 
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The second most important feature is the one of motor and nonverbal communication coordination. People, 

when interacting with each other, they use several kinds of motor actions head nods, hand gestures, gaze 

movements, and of course lip-syncing [95]. There has been also stated that humans use lip information to 

perceive better a communication, the so-called McGurk effect [95]. Thus, to support even the basic level 

of naturalness during an interaction, agents should be able to use some of these features to accompany their 

sound production.  

Social robotics is a rapidly increasing field aiming to develop robots capable of socio-emotionally 

interacting and communicating with humans serving several domains like education, health, entertainment 

[62]. The research and recent technologies are trying to define the best choice between robots and virtual 

agents, best suited for the needs of social interaction.  

Table 2.1 Examples of social robots from several domains in a chronological order 

Robot’s name Reference Year Type Role 

WABOT [108] Sugano and Kato 1987 Humanoid Piano player 

PARO [109] Shibata et al. 1997 Baby seal Social reintegration of elderly 
people 

Care-O-bot [110]  Graf et al. 2004 Non-humanoid Home assistance for elderly 
people 

RI-MAN [111] Odasima et al. 2006 Humanoid On-site caregiver / lifting 
humans 

ROBOTA [112] Billard et al 2007 Humanoid Robot - assisted therapy for 
autistic children 

IROMEC [113]  Marti et al. 2009 Non-humanoid Children companion for 
knowledge enhancement 

KASPAR [114] Dautenhahn et al. 2009 Humanoid Robot - assisted therapy for 
autistic children 

SHIMON [115] Hoffmann and 
Weinberg 

2010 Humanoid Playing of percussive 
instruments 

NADINE [116] Kokoro and 

Thalmann 

2013 Humanoid Social companion 

SOPHIA [117] Hanson Robotics 2016 Humanoid Social robot 

LIO [118] Miseikis et al. 2019 Mechanical Personal care assistant tasks 

TENGAI [119] TNG 2020 Robotic head Job Interviewer 
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QTRobot V2 [120] LuXAI 2020 Mechanical For AI research and Teaching 

ERICA [13] Inoue et al. 2021 Humanoid Social companion / Job 
interviewer 

AMECA [121] Engineered Arts 2021 Humanoid Social Robot 

 

Although the continuous effort of the existing studies to enhance the domain of HRI, it seems that the 

fluidity and the naturalness of the interaction have not been completely achieved yet. Consequently, people 

still tend to prefer human communication in any context. Jamy Li et al. compared videos of robots and 

virtual agents acting as instructors in an educational content, concluding that attitude was more positive 

towards humans compared to robots [58]. However, they noticed that the agents could potentially take this 

role but only if they are designed well. In this direction, Yi Mou and Kun Xu, as well as Shechtman and 

Horowitz, found that people tend to be more talkative, outgoing, spend more time in the conversation, and 

present more self-disclosure when interacting with another human than with an AI agent [17, 18]. The first 

question raised here is if this choice is an outcome of a low degree of naturalism and a lack of expressivity. 

Fischer et al. for example found that people who had to respond in a robot’s greetings felt weird and 

laughed, reporting the unusual nature of the movement [19]. Thus, can this preference be affected by the 

nature of the agent? Mollahosseini et al. studied the perception of people towards facial expressions of 

several agents in a video recording, concluding that each agent’s condition affects the emotion recognition 

rates. To wit, participants perceived and expressed their emotions differently according to the nature of 

each agent [62]. Lazzeri et al. also compared facial expressions between a robotic agent and a virtual one, 

proving that emotions through facial expressions can be better perceived when presented by the former 

[77]. However, Tsiourti et al. recently showed that human perception and believability towards robots is 

also affected by the accordance of this reaction with the overall context of the interaction [122]. 

2.2.2 Robots and their roles  

Robots have been tested under different roles, with the most common to be interviewers, teachers, customer 

guides, and companions.  

Robots as Interviewers  

The world’s first robot designed to carry out unbiased job interviews by Furhart Robotics and Stockholm’s 

KTH Royal Institute of Technology is called Tengai and it is a robotic AI head [119]. Another example of 

such robots is the Australian Matilda [123] and the Russian Vera [124]. Nowadays, a lot of companies in 
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their effort to conduct impersonal and unbiased interviews, prefer to use artificial intelligence. HireVue is 

an example of that, where the AI analyzes voice, body language, and facial expressions to determine the 

qualifications and suitabilitity of the candidate [125]. Hubert is also a similar, more recent, AI recruiting 

platform [126].  

Robots as Teachers  

Another frequently used role is the one of teacher or classroom companion. Robots and AI have been used 

at all levels of education from kindergarten [127], elementary school [128], high school [129, 130], to 

universities [16, 42, 131]. However, at least for the time being, such robots need the human intervention to 

prepare the proper material, although they can serve as a motivation to students [16]. Large scale projects, 

such as “The Robotics Alliance Project” by NASA [132] and “The telepresence Robot Kit” [133] have been 

used to motivate students to be involved in technological fields of study.  

It has also been proved that robots can support language development, enhance writing skills and teach sign 

language, letting teachers give more time to other groups [134]. In general, robot teachers present pros like 

new ways of teaching, preparation of children for a world of AI-based products but also cons like reduction 

of human interaction and limitation on what robots can do [135]. Nevertheless, they have the potential to 

teach successfully but more research is required to identify humans’ needs and preferences.  

Robots as Costumer guides 

Guiding customers is a suitable task for a robot. “Service robots lend a hand at China’s banks and railway 

stations” [136] and “Will robots take your job?” [137] are a few of the increasing news headlines about the 

emergence of service robots. In [99], a robot was explored in possible tasks as a guide in a shopping mall. 

The robot interacted with the customers and provided shopping information. However, the robot was 

partially controlled by a human operator. In recent years, robots have also been tested in frontline service, 

assisting human users [138]. The social robot Nadine has already been tested as a support desk in an 

insurance company [139].  Some tasks with repetitive or back-breaking nature have already been replaced 

by robots, especially in Asian countries. Nestlé, for example, has placed hundreds of robots to sell coffee 

on shop floors in Japan [138]. However, what is important is to examine how a robot can guide as effective 

as a human and what human characteristics we need to implement in a social robot. This work was recently 

partially done by Heikkila et al. who studied how a social robot should be designed to give effective proper 

guidance in a shopping mall [140]. 
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Robots as Companions 

Although it is evident that a robotic companion could not replace human interaction, friendly and well-

designed robotic creations have started the effort to fill the gap of loneliness, especially in the elderly. Table 

2.1 summarizes some of the most commonly used robotic companions, starting with the furry robotic seal 

Paro [109], dedicated to the social reintegration of elderly people.  Robots like Jibo [141] or Robota [112] 

have also been tried to assist children with autism spectrum disorder with success. Miko [14, 142] is another 

very recent example of  children playmate, starting from the age of five years old. Buddy [143] is called 

the first emotional robot for all the family. Nadine [116] is also designed to give companionship to the 

elderly, supporting them [15]. 

2.3 Humans and Virtual Humans  

Over the last years, the use of Virtual Human (VH), or Virtual Avatar, has started to be known for its 

effectiveness over the use of real humans, boosting users’ motivation and even performance. Thus, the 

question of whether to implement a virtual agent or a robot is still under a lot of investigation and is 

considered to be completely dependent on the requirements of the task to be performed. The main 

advantages of a VH, as they have been stated until now, are the overall little cost of use, the easiness and 

flexibility of its use as it can be used anytime and from anywhere, and the dynamical anytime changes of 

its appearance. further possibilities can be offered like collecting and examining real-time physiological 

data, such as facial or movement expressions [58, 75]. For a better understanding of this comparison 

(Virtual vs real human), we need to mention two terms. The first one, the agency belief, refers to the reaction 

of people towards VHs and specifically to the extent to which they can believe that a VH represents a real 

human [76] whereas the second one, the behavioral realism, concerns the degree to which a VH can really 

behave like a real human [144].  

It has been shown that different levels of agency belief and behavioral realism serve different purposes. For 

example, VH’s low behavioral realism is considered to be suitable for interviews settings [145]. 

Specifically, voice-only interviews have been proved to be more effective than face-to-face ones, helping 

participants to feel more comfortable, speaking with a higher level of self-disclosure [146]. Moreover, 

participants’ low agency belief seems also to be more effective in such cases [76]. On the other hand, Baylor 

and Kim [147] showed that a physically present agent can provoke better motivational results than a voice 

or a text box under learning circumstances. Several studies are supporting that embodied talking agents can 

enhance the engagement of the user [62]. However, Mayer and Dapra showed that an agent can have a 

positive effect on a user only when the voice it supports is human-like and not a machine voice [86]. 
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2.3.1 Conceptualization and Perception of Avatars  

VR Environments (VE), with their virtual characters, can offer opportunities and enable manipulations that 

may be difficult, or even impossible, to happen in a natural environment. In these environments, users can 

control, embody and interact through avatars in several contexts, shaping the field of computer-mediated 

communication [47]. The use of an avatar, in such kind of communication, plays a crucial role as avatars 

can be used as a means of influence in a variety of contexts like health communication, interpersonal 

communication, nonverbal communication, advertising, etc. [47]. It can also support more complex 

behaviors and actions, enhancing nonverbal communication through gestures or body movements.  

Every avatar has each own characteristics that can include for example appearance, behaviors, or abilities 

and can be specified based on several factors like the users’ preference and their previous experiences in 

such environments as well as the technological capabilities of the system. However, as Nowak and Fox. 

(2018) mentioned, the term “avatar” is used by many researchers without being properly defined, causing 

sometimes misinterpretations in the framework of the relevant studies.  

The origin of the word “avatar” is derived from Hinduism and specifically from the Sanskrit word for 

“descent” [47]. In this concept, an avatar is the incarnation of a deity on earth, being able to experience the 

human aspects. Nowadays, and for more than twenty years, avatars have been acknowledged as digital 

representations. The term became popular mainly through the novel of Neal Stephenson (1992), who used 

it repeatedly to refer to characters being in digital environments [148]. Following that, a lot of researchers 

gave several definitions to this term trying to include features like appearance, abilities, the degree of 

realism, or anthropomorphism. Therefore, some definitions include terms like “cartoon-based” or two 

dimensional” but these are continuously evolving as the technologies advance. We often hear terms like 

“embodied avatar”, “virtual human”, “digital human”, “agent”.  In every case, two main points are served; 

the avatar can represent the user in a computer-mediated environment, and it can provide the experience of 

interaction with the environment or with another user. The most recent definition is the one of Nowak and 

Fox (2018) where “an avatar is a digital representation of a human user that facilitates interaction with 

other users, entities, or the environment” [47]. They chose to use a broad definition that can be used as an 

umbrella, independent of any specifications or characteristics.  

The characteristics of an avatar can directly influence the user’s perception. For example, based on the 

Information Processing Theory, people can get easier affected and can pay higher attention to sources that 

consist of dynamism [149]. Aspects that can influence a person’s perception of an agent being in a virtual 

environment can be technical, like anthropomorphism or realism, or in a more social context, like gender, 

age and ethnicity.  
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Minutely, anthropomorphism includes the perception of any human trait or quality such as emotions, 

behavior, cognition, presented in any human or non-human entity. It can be mainly increased by the image 

of the avatar as well as its behavior [47]. There are a lot of studies on how anthropomorphic representations 

can influence communication, showing that the higher level of it can lead to a more natural and persuasive 

[150], more attractive [151] interaction, with an increased level of social presence and engagement [152]. 

Furthermore, realism is the perception of how a situation or an object can be realistic, and it is often mixed 

up with the term anthropomorphism. In the context of realism, an avatar can be judged based on its 

appearance, the rendering, naturalness, and the fluidity of its movements and way of speaking. Very 

interesting is the work of Ciechanowski et al. who, in their recent study, used several physiological 

measures to examine the human-nonhuman interaction [56]. For the nonhuman part, the researchers used 

two types of chatbox, a simple text chatbox and an avatar. Their results concluded to the main point that a 

chatbox should not be designed to replace a human, not even to pretend to be one. The physiological data 

demonstrated that the physiological arousal is higher when participants had to interact with the nonperfect 

imitation of the human.  Minutely, more negative emotions appeared when participants interacted with the 

avatar, with the general outcome that the more the chatbox was considered as inhuman or strange, the less 

it was preferred.   

On the other hand, given that avatars are perceived as social entities based on CASA [88], there are also 

social factors that can influence the perception of the users. First of all, the most common categorization 

humans use to do is the determination of gender. As Lakoff (1987) said people tend to attribute a gender to 

others even when physical or biological information is not available [153] and probably this is an instinctual 

procedure as they believe that they can understand others or predict behaviors. Studies have proven that 

gender in specific contextual virtual environments plays a role in human reaction. For example, children 

prefer a male voice when it regards to football and a female when to princesses or make-up [154] whereas 

adults prefer a young female avatar compared to an older male one for educational purposes [54]. Moreover, 

people often try to decipher the ethnicity of a person as they believe they can predict her/his behavior [47]. 

A study by Eastwick and Gardner (2009), among others, showed that people were influenced by the 

existence of black and white people in a virtual environment [155].  

Another study that proved the role of gender combined with self-similarity in a gaming environment, is the 

one of Lucas et al. [156] where men preferred to be represented by their avatar whereas women preferred a 

stranger. In this study, a photorealistic self-similar avatar was used to study the effect of the appearance of 

the avatar in the performance and the perception of the user under a gaming environment. Lucas et al. tried 

to answer the question of the importance of the self-relevance of a virtual human under a specific context 

and although the difference in gender, they noticed that the self-similarity provokes a bigger engagement 



 30 

and connection between the user and the avatar. A similar recent study is the one of Wauck et al. [157] who 

used a more natural photorealistic self-similar avatar in a gaming context but with better technological 

features with which they respected even the gender aspect and they used different animations (male and 

female) for the two genders. Their results indicated that there is no difference in the performance of the 

user based on the appearance of the avatar and no effect on gender as well. They attribute that to the better 

technology they used with which they avoided any negative effect on user’s experience. However, further 

investigation is needed under different environments and contexts to verify or contradict all these results.  

2.4 Nonverbal Communication  

Nonverbal communication (NVC) consists of nonverbal cues expressed by facial expressions, body 

movements or gestures, and voice, without the linguistic content. However, its interpretation is dependent 

on the intention of the perceiver as such expressions and movements can be totally subjective. For this 

reason, it is said that a complete understanding of NVC should include also verbal communication [158], 

as a holistic interaction involve both nonverbal and verbal features. NVC is studied in the framework of 

many applied fields like medicine and mental health, business, education. The broad area of computer 

science carries out extensive research on that to help the design and the development of virtual humans and 

robots.  

The main purpose of the NVC research is the study of stereotypes in human attitudes or behaviors, or the 

study of emotions and their behavioral parameters. There are several functions, represented by the NVC 

like expressing affection, regulating interactions, managing impressions, exposing opinions, or revealing 

several conditions [158]. We can divide the whole procedure of NVC into three basic steps, based on 

Brunswik’s lens model [159] given that an encoding and a decoding process are required. The first step is 

the translation of any emotion or a personality trait into a nonverbal cue and constitutes the encoding 

process. The second one is the interpretation of this translation by the perceiver and consequently, the third 

one concerns the accuracy of the decoding which is dependent on the available cues. Both the second and 

third steps form the decoding part.  

2.4.1 Part 1 – Encoding process  

People encode several visual, tactile, auditory, or even olfactory information from the environment 

revealing facts of their personal states or features of their interaction with others. This encoding is a result 

of a two-dimensional process where the horizontal axis covers all the static and dynamic cues whereas the 
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vertical one represents the consciousness during the process. Figure 4 below, as stated by Hall et al., 

presents the framework of recent findings of nonverbal encoding [158].  

During interactions, as can also be inferred by Figure 4, static information concerning people’s self is 

encoded unintentionally. Such information may regard the identity of the person or the gender. For the 

identification of the identity, we are referring to a domain of computer science called biometrics, which can 

include iris recognition, body odor, hand geometry, etc [160]. 

Other features, like voice, body gestures, or gait, have been considered to work as markers for the person’s 

gender. Mutic et al., for example, found that women tend to be more expressive in terms of facial 

expressions, voice, and hands movements compared to men [161]. Moreover, it has been shown that men 

present a higher nervousness expressed by their legs and feet. Up to now, voice, timbre, and pitch seem to 

be the most used voice markers [158]. Furthermore, body and voice features, like pitch variability, gaze 

patterns, hand gestures, eye movements, have been used as diagnostic biomarkers for mental disorders for 

example, like autism, schizophrenia, or even anxiety. Wieser et al. conducted an experiment where people 

had to interact with a virtual avatar from a distance and they noted that socially anxious people gazed less, 

verifying the results of the physical environment [162]. Other nonverbal cues can be more dynamic as the 

person can choose their nature (intentionally or not). It has been shown that changes in nonverbal 

unintentional cues, as shown in quadrant 2 of Figure 2.3, can provide information about the cognitive status 

of the sender [158]. This has been also correlated with the existence of gestures that accompany the vocal 

qualities.  
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Figure 2.3 A framework of nonverbal encoding cues created by Hall et al, 2019. The horizontal axis shows that encoding can 

have a range of static and dynamic cues whereas the vertical axis covers the consciousness of the encoding process. Examples of 

encoded information are presented within the resulting quadrants [158].  

All the aforementioned nonverbal cues can be both seen and heard by the perceiver. Cues that can only be 

heard, vocal qualities, have been examined separately as it has been shown that they can reveal features 

like the motivation, the status, or the interlocutor’s qualities. Most used vocal factors for such purposes are 

timbre, pitch, speech rate, and length of pauses. The most common example is how our voice changes when 

we speak to babies or the elderly accordingly. The first case is called infant-directed speech and it has been 

associated with a higher pitch, slower speech rate, and changes in timbre [158]. These changes can be 

consciously on unconsciously done but it has been shown that infants can understand the difference between 

infant-directed and adult-directed speech by presenting higher event-related potentials (ERPs) [163]. 

Respectively, people change their way of speaking when addressing the elderly in a way that resembles the 

infant-directed speech.  

Voice changes can also characterize status relations among several contexts. Under a position of 

negotiation, for example, people tend to use a higher but less variable pitch and to speak louder [158]. 

However, most importantly, vocal qualities have been correlated with affective states.  
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2.4.2 Part 2 – Decoding process  

The decoding process is the continuation of the encoding one and it refers to the interpretation of the NVC. 

This interpretation is usually subjective and thus, not necessarily accurate. This accuracy is dependent on 

the emotional state, the personality features, the gender, the education, the motivation as well as the culture 

of the perceiver [158] but in any case, the cues will create a social relationship. The decoding process 

consists of both automatic and cognitively controlled components but it has been shown that during the first 

seconds or even microseconds of an interaction the first impression is created with little or no cognitive 

control [164]. The role of NVC has been recognized by several social-cognitive models that have tried to 

examine the question of accuracy in human perception. Such models started to be created around 1977 with 

the ecological theory of social perception by Zebrowitz and Collins [165] and they continue to be developed 

with a recent example the one of Zaki [166] and the model of a social cue integration framework. To 

measure this interpersonal accuracy, several factors are considered, like psychometric properties, affective 

states, and social situations. 

2.4.3 Mimicry or adjustment?  

Research in psychology has shown that people tend to mimic behaviors when interacting with each other. 

Behaviors in this sense refer to facial expressions, body postures, hand gestures, and other nonverbal or 

verbal cues in the context of  social interaction. Mimicry theoretically can be divided into two parts: motion 

and emotional mimicry [167]. Motion mimicry includes behaviors that are identical in expression whereas 

the emotional one consists of behaviors that may not be identical but they convey the same affective state. 

It is also supported that motor mimicry is a part of emotional mimicry as the former can be used as a tool 

of expression for the latter. Psychophysiological studies examining the interdependency of behaviors in a 

human social interaction have proved that empathy plays a really important role as it is responsible for the 

adjustment of people’s affective states through mimicry [168]. Mimicry is a domain that has been studied 

enough between human and nonhuman agents, mainly through facial EMG, examining if humans can 

imitate an expressive human agent, even if they are aware that the expression is not emotionally based.  

Except a complete mimicry, it has been shown that people tend to adapt their behaviors when interacting 

with each other, according to the received emotional and social cues. Specifically, emotional expressions 

consist of information regarding the producer and are then used by the perceiver to adjust her\his behavior 

[169].  

The goal is to identify mechanisms that people use to understand others, to respond and react, i.e the 

mechanism of imitation. Facial expressions that can convey emotions are one of the main elements of this 
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mechanism.  Several studies have used robots as tools to examine such mechanisms of interaction as 

mimicry. However, mimicry is supposed to be a more complex procedure as there are two different 

explanations for its nature. Firstly, it can be completely motor dependent, which means that the imitative 

expression mirrors only the shape and maybe the dynamic of the observed one. The other explanation 

describes mimicry as a more internal procedure triggering emotional responses [45]. Based on the latter, 

opinions are supporting that mimicry cannot happen if the observer isn’t convinced that the agent has mental 

states (psychological anthropomorphism). Hofree et al. examined the mechanism of spontaneous mimicry 

during a human interaction with a hyper-realistic agent with a virtual and physical presence and they tested 

if the perception of human-likeness can influence the existence of mimicry, using the individual Differences 

in Anthropomorphism Questionnaire (IDAQ) and facial EMG [45]. They found that when the agent is 

virtually present, mimicry occurs only when participants describe the android humanlike whereas when it 

is physically present participant tend to imitate its facial expressions without limitation. However, the users 

described the physically present android as less humanlike than the virtual one, suggesting that perception 

plays a role in mimicry and creating a link between the UVH and the mimicry procedure. In other words, 

participants tend to imitate facial expressions when the agent is physically present [17], and the direction 

of the body and the eye gaze can affect the experience [73]. 

2.5 Affective Computing and Social Signal Processing 

Except the theoretical base of the NVC and the social models behind it, what is important to go beyond is 

the technology that can be used to enhance this field. This technology is used for the recording and the 

recognition of different features during several interactions of various contexts. However, for such research 

and high-level inferences, except the computer assistance that can automatically recognize face, body, hand, 

and finger movements, the existence of human observers is also essential for behavior and intention 

judgment. This interdisciplinary research area that aims to the detection, the labeling, and simulation of 

human affective states is called affective computing and it gathers researchers from various fields like 

computer science, cognitive sciences, psychology, and social sciences. Affective computing research has 

evolved from a typical unimodal analysis to more demanding complex forms of multimodal analysis. This 

was a natural consequence of the multimodal way with which humans communicate providing both 

semantic and affective information.  

Emotion assessment and its technology have contributed to the improvement of interfaces that can be easier 

adjusted to human communication. However, the latter doesn’t consist only of emotions but also of other 

nonverbal cues that constitute social signals and behaviors like gestures with intention or head nodding. 
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The analysis of these signals and their integration in the H-NH interfaces have been named social signal 

processing (SSP) and it is very close to the broad area of affective computing, complementing the field of 

emotion assessment [30].  SSP is a field introduced around 2007 by Pentland [170] and aims to complement 

the field of affective computing by examining social signals during H-H interaction. It differs from affective 

computing in two different aspects. First, it works with signals derived from groups, and second the range 

of extracted signals, cues, and behaviors is wider. Most of the recent studies that examine features during 

H-H interaction, with the aim or not to integrate the results into the field of H-NH interaction, use SSP for 

their analysis. 

2.5.1 Affect Recognition  

Affect recognition has been based on the extraction of two kinds of signals: the physiological and the non-

physiological ones. Physiological signals include the Galvanic skin response (GSR), electrocardiogram 

(ECG), skin temperature (ST), electroencephalogram (EEG), Heart Rate (HR), pupillary diameter, or 

respiration patterns and the non-physiological include facial expressions, voice detection, and bodily 

expressions or gestures. The early works have been mainly based on the second ones and especially in 

visual and aural information. Ekman, and then Izard, were the first to examine facial expressions, using 

facial muscles to explain how the facial appearance can present an emotion [28].  Physiological signals 

though, in recent works, seem to have higher accuracy, with EEG being in advantage as the signal comes 

directly from the central nervous system, so it can provide useful and, most of the time accurate, information 

about internal affective states [171]. Researchers started to examine emotion recognition in 1986, using 

simple signals like skin conductance or heart rate [172, 173].  

To increase the accuracy and the reliability of such estimations, a multimodal data fusion has recently 

started to be tested. In the beginning, studies started to combine non-physiological signals [171], like facial 

expressions, audio features, and text-based emotion recognition. In the meantime, other studies tried to use 

a combination of physiological signals, like EEG and eye-tracking [174]. Castellano et al. used information 

of four modalities, facial expressions, body movements, gestures, and speech to examine the presence of 

eight basic emotions [175]. Recently, Liu et al. though, were one of the first to try to combine physiological 

with nonphysiological signals and to integrate an emotion recognition system with the use of speech, 

expression, and gestures receiving also physiological signals during a human-robot interaction [175]. 

However, their results are not clear so we cannot come to an accurate conclusion about the combination of 

such modalities.  
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2.5.2 Affect Computation  

The big question raised here is how individual affective and cognitive signals can be translated to social 

ones and thereby, to social cues. Affective states can act as social cues and their observation can lead to the 

adjustment of behavior during social interactions. For their assessment, physiological and 

neurophysiological signals have been mainly used, derived either from the peripheral or the central nervous 

system. However, such signals cannot be considered directly social signals as their use is to be analyzed to 

provide social cues. 

Audio modality  

Research on the extraction of audio features has been focused on phonetic and acoustic properties of a 

spoken language that have been used to train machines for emotion detection [177]. Through psychological 

studies, it has been found that vocal features and mainly pitch, intensity, speech rate, and voice quality can 

represent human emotions [3]. However, these parameters depend also on personality traits.  

The most important audio features used up to now from studies on audio-based emotion analysis are:  

• Pitch (frequency) is the quality of a sound governed by the rate of vibrations producing it [3]; the 

frequency of the sound we perceive, indicating how high or low is a tone  

• Pause duration shows the time a person remains silent during her\his speech.  

• Intensity shows the volume of the sound 

• Speechrate is the rhythm of the speech, often presented as the number of syllables per second 

• Jitter and Shimmer refer to frequency and amplitude perturbations respectively 

• Spectral centroid indicates the center of mass of the magnitude spectrum [3]; it is associated with 

the brightness of a sound  

• Spectral flux is a measure of the change speed of the power spectrum 

• Beat histogram is a plot presenting the strength of different rhythmic periodicities in a signal  

• Beat sum defines  the regular beats in a signal  

• Strongest beat is the strongest beat existed in a signal  

• Mel Frequency Cepstral Coefficients (MFCC) are coefficients that form a mel-frequency 

spectrum (MFC). The term MFC is referred to a short-term power spectrum of a sound that 

approaches the human auditory system more approximately that any other linearly-spaced 

frequency band distribution.  



 37 

The majority of the recent studies use a toolkit for audio feature extraction called OPENSMILE and it can 

extract all the aforementioned features [178]. Another commonly used software is the Praat [179]. 

Audio signal and emotions 

Studies have already created some links between specific audio features and emotion.  Increased levels of 

frequency combined with slower speechrate and high volume are associated with nervousness and agitation 

[34]. Moreover, high levels of volume with high frequency are related to fear [34]. Anxiety is characterized 

by higher pitch, voice tremor, several speech flaws, and faster articulation [180]. Sadness is associated with 

low pitch, long pauses, slow speechrate and soft voice whereas joy with high pitch, loud voice and faster 

speech rate. Interest is characterized by a large frequency range and fast-talking [34]. 

Body movements and gestures  

Body movements usually complement other modalities, like speech or facial expressions, to facilitate social 

interaction. However, body language and gestures are also essential aspects of human communication, as 

they are human innate skills to directly decipher the different social signals. 

Emotions and behaviors can be recognized by postures, whole-body movements, or gestures. For example, 

existing studies have shown that collar joint angle and shoulder joint angle can be used for such a purpose 

[181]. This has been also verified by another study where the amplitude of the elbow joint angles, combined 

with the head inclination, is associated with the expression of fear and anger [182]. The most commonly 

used features to evaluate the quality of movement are strength, fluidity, repetition, tempo, and amplitude 

[183].  

In general, up to now, in HRI only simple actions have been examined [184]. Beck et al. examined some 

basic body postures using a Nao robot to see how humans can emotionally perceive them [185] . It is 

essential that robots can have integrated nonverbal aspects of communication as it can enhance their 

expressiveness.  

Motion and emotions 

Human body movements have been minutely meticulously described and interpreted by the 

method/language Laban Movement Analysis (LMA). It offers clear documentation of human motion and it 

is divided into four basic components: BODY which provides the structural and physical characteristics of 

the human body, EFFORT  which describes the quality of the movement and the intention behind it, SHAPE 

which depicts the way the body changes during the movement and the SPACE, which connects the 

movement with its environment [186]. These movement characteristics are related to emotional states and 

studies are trying to discriminate human behaviors according to this emotion categorization. For example, 
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happy emotions are related to the spreading of movements whereas anger is represented by small, intense 

movements [35]. Fear is related to compressed and confined movements [35]. 

Physiological and Neurophysiological signals  

Affective signals can represent the activity both of the peripheral and the central nervous system. For the 

peripheral one, the most commonly used signals are the ones coming from the electrodermal activity (EDA) 

and the cardiovascular activity such as heart rate (HR) [30]. EDA can be used as a direct measure of 

physiological arousal and it has been reported that there is a correlation with self-reported arousal [187]. 

The increase and decrease of HR, on the other hand, has been associated with several emotions, such as 

stress or happiness. There are more physiological signals used for the periphery, such as facial EMG signals 

or skin temperature.  

Regarding the central nervous system, several neuroanatomical structures have been proved to be involved 

in the processing of affective information [30]. The most commonly used measure for this system is 

electroencephalography (EEG) due to its easiness of use and its low cost compared to other methods. EEG 

measures the electrical potentials from the brain and up to now, several characteristics have been associated 

with the emotional states. For example, the frontal alpha asymmetry, which measures the lateralization of 

brain function toward both frontal cortices separately, has been correlated with the valence dimension, 

meaning the range of positive to negative feelings. In general, the frontal lobe is more related to Valence 

emotions [188]. Moreover, an increase in fronto-central theta waves has also been related to detecting 

prosodic emotional changes [189] and thus, theta band is associated with the perception of emotions through 

vocal expressions [190].  

Except from the affective states, delta oscillations play also an important role in cognitive processes like 

attention, memory, and decision making and they are focused on frontal, central, and parietal areas, as well 

as occipital if they are related to emotional processes [191]. Specifically, they have been associated with 

arousal in posterior brain areas and with valence in anterior brain areas, as well as with surprise [39]. 

Moreover, delta activity in frontal areas has also been linked to the perception of face recognition related 

to emotional expressions [192]. Physiological and neurophysiological signals have been used for the 

assessment of cognitive states, like the EDA we mentioned before which is associated with cognitive 

arousal and consequently with cognitive effort [30]. Another indicator has been considered to be the whole 

alpha activity, which presents a decrease towards an increasing arousal and an increase with relaxation [30]. 

However, studies are supporting that high-frequency bands, like beta or gamma, are more related to the 

Valence dimension compared to the lower ones [188, 193]. Unpleasant stimuli can trigger effects in the 

gamma range whereas other studies are supporting that higher frequencies are a reliable indicator of arousal 
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[39]. No matter what the band is, frontal and parietal areas have been proved to be the most dominant brain 

areas for emotion recognition [193]. The parietal area is also related to perception processes, and alpha 

activity in it acts as an index of presence experience while in a VE[194]. Posterior alpha activity has been 

associated with visual attention mechanisms [195] and thus it can be used as an indicator of the level of 

attention in a scene. Moreover, it has been noticed that prefrontal alpha and theta activity can vary according 

to different levels of cognitive effort and thus it can be used to measure mental engagement [30].  

Psychophysiological studies have been started examining the interdependency of behaviors in human social 

interaction since the early 1980s. Researchers were trying to examine if the behavior of a person can affect 

or even predicts the behavior of others. Levenson and Gottman, for example, developed a method where 

they were measuring the coupling index from peripheral physiological signals and they found mainly 

negative social interactions [196]. Later on, the coupling index, also known as physiological linkage, was 

also correlated with empathy [197] showing that people who recognized the negative emotions of others, 

concluded to share their physiology. This was later explained by Janssen who supported that this is the 

outcome of emotional convergence, which is part of empathy and is mainly responsible for the adjustment 

of people’s affective states through mimicry [168].  

Two main systems have been identified to play an important role during a social interaction in humans: the 

mirror neuron system (MNS) and the mentalizing network (MTN) [30]. Recent neuroimaging studies have 

proved that social inferences from human interactions lead also to another brain network called the person 

perception network (PPN) [198]. The MNS was discovered by Giacomo  Rizollati et al [199] and consists 

of structures like the premotor cortex, the primary somatosensory cortex, and the inferior parietal cortex. It 

is important for functions like action understanding, imitation, and empathy and its main role is to “mirror” 

the action of others. The second network, the MTN, represents our ability to decipher the mental states of 

others and it is important for the interpretation of other’s intentions in novel or difficult situations [200]. It 

consists of the medial prefrontal cortex, the temporal lobes, the posterior superior temporal sulcus (PSTS), 

and the temporal-parietal junction.  

EEG studies on individuals have already proved that MNS plays a role in social interactions. However, 

recent studies have started to examine the interaction between humans and robots or avatars to verify if and 

what is the difference in these systems between H-H and H-NH interactions. Urgen et al. [201] examined 

the difference in perception between humans and robots (mechanical and anthropomorphic) having the 

participants watch some video clips of actions performed by three agents: a human, a humanoid and a 

mechanical robot. They used only EEG recording for examining the sensorimotor mu rhythm (8-13 Hz) 

which is linked to the motor simulation aspect of action processing and acts as a MNS index, as well as the 

frontal theta (4-8 Hz) related to semantic and memory-related aspects. Their results showed that the human 
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MNS cannot differentiate the actions of robots and humans and thus its activity is similar. Moreover, frontal 

theta oscillations were noticed when humans interacted with the humanoid, but not with the mechanical 

robot. Yoon et al. examined human-robot interaction under the context of meditation, and they noticed 

fewer gamma and beta activity, especially in the frontal area, for the group that was practically interacting 

with the robot compared to the one that was just listening to it [202]. This reveals that the people who were 

guided by the robot were in a more relaxed state.   

Wang et al. [198] also examined such an interaction based on the observation of images of several social 

interactions, presented in two versions: human-human and human-robot. They used a Nao mechanical robot 

and fMRI to detect evoked emotions and differences in neural processing between the two states. The 

outcome was that robot observation leads to lower MTN engagement and thus, the interaction between the 

robot and the human was considered less believable.  

2.6 Modeling, Analysis, and Synthesis of Human Behavior  

Data can be collected by scripted or non-scripted scenarios. The majority of the research is conducted based 

on predefined scenarios that however, lack naturalism and even spontaneity in users’ responses.  Some 

studies have tried to collect data from real-world situations, like real phone conversations [27] but they 

consist of enough limitations as they are based on unimodality and the quality of the recordings still remain 

low. Thus, the collection of data able to be used in multimodal research requires a combination of a real-

world scenario, naturalistic setup and resources, as well as equipment to ensure the high quality of the 

recordings. This leaves the option of a laboratory setting where the setup is carefully designed and 

controlled. Datasets of recent studies include physiological signals, motion capture, and computer vision 

and act as an effort to create models of realistic human social behavior [203–206]. Table 2.2 summarizes 

the most commonly used multimodal datasets created from dyadic human and nonhuman interactions or 

other affective stimuli, like music.  

Table 2.1 The most commonly used multimodal datasets up to now on realistic human social behavior. 

Reference DATASET # of 
part. 

Sensors Modalities Type 
of 

interac
tion 

Result 

Cafaro et 
al. 

[203] 

NoXi 84 Kinect 

Headset 

Gestures, 

Facial behavior, 

Video 

 

HHI 

A multi-lingual database of 
natural dyadic expert-
novice interactions, 

focused on unexpected 
events 
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Audio (prosodic 
and acoustic 

features) 

 

Bilakhia et 
al.  

[167] 

MAHNOB-
Mimicry 

60 Headset+far 
field 

microphone,  

Cameras 

Audio,  

Face and head 
movements 

Natural  

 

HHI 

A set of highly-accurately 
synchronized multi-sensory 
audiovisual recordings of 

naturalistic dyadic 
interactions, for the study 

of mimicry and negotiation 
behavior 

McKeown 
et al.  

[204] 

SEMAINE 150 AVT 
stringay 
cameras,  

Head and 
room 

microphone 

Significant 
gestures (head 

shakes and nods) 
and facial actions, 

speech and 
prosodic features 

Video 

 

HCI 

A large audiovisual dataset 
derived by emotional 

enhanced conversation 
between a human and a 

Sensitive Artificial 
Listener (SAL) agent  

Koelstra et 
al. [206] 

DEAP 32 Biosemi 
ActiveTwo 

system,  

Peripheral 
physiologica

l sensors,  

Sony DCR-
HC27E 
camera 

EEG, facial 
EMG, EOG, 

GSR, 
temperature, 

respiration, self-
assessment 

questionnaire 

Video,  

 

HCI 

A database of spontaneous 
emotions induced by music 

Douglas-
Cowie et 
al. [205] 

HUMAINE 125 Camera,  

Microphone, 

Physiologica
l sensors,  

  

Speech and 
language, 

Gestures, Facial 
actions,  

Physiological 
measures (ECG, 
breathing, GSR), 

questionnaire 

Natural 
and 

Video  

 

HHI 

HCI 

A dataset of naturalistic 
and induced emotions in 

several contexts 

Ringeval et 
al. [207] 

RECOLA 46 Video,  

Microphone,  

Physiologica
l sensors 

Audio, Body 
language, 

ECG, EDA,  

Self-assessment 
questionnaire 

Video 

HHI 

Dyadic collaborative and 
Affective Human 

Interactions 

Lefter et 
al. [208] 

NAA 16 Microphone,  

Microsoft 
Kinect v2,  

Peripheral 
physiologica
l measures 

Audio,  

Gestures and 
body movements,  

EMG, ECG  

Natural  

HHI 

A dataset of dyadic 
interactions for negative 

affect and aggresion 
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Newman et 
al. [209]  

Harmonic 24 Video,  

Physiologica
l signals  

Eye gaze,  

Arm joint 
positions,  

EMG, 

Natural  

HRI 

A dataset of human 
interactions with a robotic 

arm measuring mental 
states and intention 

Hazer-Rau 
et al. [210] 

uulmMAC 60 Microphone,  

Kinect v2,  

Physiologica
l signals 

 

Audio,  

Body movements,  

EMG, ECG, SCL, 
respiration, body 

temperature,  

questionnaire 

Natural 

HCI 

A dataset for emotional 
and cognitive states 

recognition in a mobile 
interactive HCI gaming 

scenario 

 

Several different studies have tried to examine human behavior during several kinds of interactions, aiming 

to model the human social behavior in order to enhance the domain of H-NH interaction. An interesting 

study is the one of Rasheed et al. [211] who examined dyadic face to face dialogs, extracting audio features 

to assess speaking mannerisms and human social behavior that can be used as a real-time sociofeedback 

system. The researchers extracted nonverbal speech cues, including conversational and prosodic features 

using HMM and based on their manual annotation they concluded to some speech mannerisms. Then, they 

created the link between the aforementioned features and human social behavior. Another study where the 

examination of nonverbal human behavior was used for an expressive virtual tutor is the one of Ben Moussa 

et al [212] . They extracted audio signals with nonverbal cues and facial expressions and they modeled the 

nonverbal behavior in order to create a complete system of virtual tutoring.  

There are also enough studies that have tried to decipher human behavior completely from a clear human 

perspective, without directly aiming to apply their results to the technology. From this point and on, the 

question raised is how we can do translate all these features to the broad HRI field or how we can create a 

better, more efficient connection between humans and agents. As we are in the golden age of humanizing 

social agents, there are a lot of thoughts and concerns over this topic trying to find answers on how, and 

most importantly if, humanlike agents can improve HCI and HRI and facilitate human acceptance [213]. 

Figure 2.4 is a table from a recent study of Giger et al. [213] where the authors have collected all the 

negative and positive aspects of robotization and the effort of making social agents resemble human 

behavior.  
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Figure 2.4  The most recent table, created by Giger et al. [213], expressing the thoughts and concerns of humanizing social 

robots 

2.6.1 Robotic Psychology 

Stock et al., in their very recent work, presented “robotic psychology”, which aims to find and cover the 

gap between humans and robots by shading some light in features peculiar to HRI and, more broadly, to 

HCI [21]. Statistical researches expect that the number of social and service robots will increase 

dramatically, integrating around 1.2 million robots in domains like medicine, public relations, etc., and thus, 

it is important to orient the research towards humans extracting human values and applying them to the 

technology. The latter can ensure a more successful and efficient collaboration between humans and robots 

or other kinds of similar technology (i.e avatars) [21].  

Robotic psychology, enhancing the field of H-NH interaction and going a step further, tries to examine the 

relation of humans and robots via a sensorimotor, emotional, cognitive, and social level [214]. The 

understanding of human responses in all the aforementioned domains can help us decipher the human needs 

towards technology and to verify where we stand up to now. Stock et al. modeled the framework of this 

concept, as shown in Figure 2.5, to facilitate the description and exploration of humans’ behavior in the 

context of a technological environment [21]. 
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Figure 2.5 The conceptualization of robotic psychology as modeled by Stock et al. [21] 

The purpose of this model is to reveal human behavioral patterns that need to be clearly differentiated by 

experiences during HCI or HHI. We can see from Figure 2.5 that robotic psychology consists of three 

levels: the Individual, the Interaction, and the Outcome level. At the individual level, personal features are 

examined, either human-related or robot-related, to extract the behavioral patterns. During the Interaction 

level, features and effects that are extracted through the mutual influencing processing are examined. 

Normally, the robot should receive the human reaction as input and respond in a corresponding manner. 

Towards this direction, nowadays, several social robots are being developed to detect humans’ affection 

and react to it [215–217]. The Outcome level mainly controls if the interaction was successful by fulfilling 

the predefined needs.  

To facilitate such kind of research, studies have examined several factors regarding how humans evaluate 

technology and how the latter affects humans. Humans, with their multidisciplinary mature, have a lot of 

factors that need to be considered for a successful H-NH Interaction. Personality is one of them, but we 

need also to assess attitudes and provoked emotions. By attitude, we refer to a mental and neural state of 

promptitude which is modified through experience and for its assessment there are several verified 

questionnaires, like the Negative Attitudes Toward Robots Scale (NARS) that Nomura et al. designed [218]. 

In general, such scales are designed to assess three levels of attitude toward interaction with robots, social 

influence, and emotional experience with them. Up to now, negative attitudes have been associated with 
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specific human behaviors like emotional expression constraint, avoidance of touching, and lack of 

communication [32, 218, 219].   

Emotions, on the other hand, play a major role in the engagement during H-NH interactions and they can 

act as predictors of human behavior. In the context of HRI, the most common emotion detected is anxiety 

and it is correlated with avoidance or distancing between humans and robots [21]. This emotion was also 

verified by the work of Lupkowski and Gierszewska, who tested the UV effect in humanoid characters, and 

they found that when the UV effect was apparent, the dominant emotions were anxiety and strangeness, 

whereas the highest comfort level was noticed for a cartoon-based character [32]. It is said though that 

emotions are shaped based on previous experiences a human may have with other humans or other kinds 

of technology [21]. However, from another point of view, it is very important to examine how robots can 

“transfer” emotions to humans, gaining better access to them. Stock et al. used a term for this, as “emotional 

contagion”, referring to any way robots can use, mainly mimicry and synchronization of humans’ features, 

to express but also transfer emotions [21]. Emotional processes, as shown in figure 2.6, can be conscious 

or subconscious and can serve or fulfill different purposes. 

 

Figure 2.6  Diagram depicted the emotional contagion in HRI, as designed by Stock et al. [21] 
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Table 2.1 Studies on human perception and behavior under several types of interaction during the last decade 

RR: Robot with realistic appearance, HAI: Human-Avatar Interaction, PP: Physical presence 

REFERENCES PURPOSE FEATURES RESULTS 

  
HRI RR HAI HHI PP EEG EMG Voice Body 

Questi
onnair

e 

 

Mollahosseini et 
al. (2018)  

[62] 

The role of embodiment 
and presence in human 

perception of agent’s facial 
cues 

          The eye gaze and some facial 
expressions are perceived better 

when the embodied agent is 
physically present 

Mara et al. 
(2020) 

 [81] 

Correlation between 
agents’ voice and 

appearance’s expectation 

          The more human-like the voice, 
higher the expectation of 

anthropomorphism 

Li et al. (2016)  

[16] 

Comparison between a VH 
and a social robot as a 
video instructor in an 
educational context 

          The preference is towards the 
human lecturer, however agents, 
if designed well, can provide an 

alternative with a higher 
preference in the robot. 

Urgen et al. 
(2013)  

[201] 

Brain theta and mu activity 
during human-robot 

interaction 

          A robot with mechanical 
appearance results in a greater 
frontal theta activity which is 

correlated with greater memory 
processing 

Hofree et al. 
(2014) 

 [45] 

Differences between 
physically present and 

virtual android in humans’ 
mimicry 

          The physical interaction made the 
users feel more uncomfortable. 

However, mimicry occurs 
naturally compared to the virtual 

presence.  
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Birmingham et 
al. (2020)  

[42] 

Use of a Nao robot as a 
mediator in a support 

group for control stress 

          The robot made the discussion 
mechanical, with lack of real flow 

(lack of faxial expressions and 
non natural voice) 

Inoue et al. 
(2021) 

[13] 

 

Comparison between an 
android (ERICA) and a 
virtual agent for a job 

interview training 

          Similar results for both agents, 
but the virtual one lacks the 

physical presence 

Lupkowski et al. 
(2019)  

[32] 

Evaluation of the UVH 
and of the emotional 

response to the humanoid 
models 

          Individuals’ attitudes can 
influence their perception towards 

agents. The higher the belief in 
human uniqueness, the higher the 

nervousness towards artificial 
agents 

Rasheed et al. 
(2013) 

[211] 

Use of conversational and 
prosodic features to assess 

human social behavior 

          A real time system that combined 
sociometrics with speech features 
representing human behavior in 

dialogs 

Moreau et al. 
(2019)  

[220] 

Brain correlates during 
Human-Avatar joint 

performance 

          Fronto-central and occipito-
temporal theta activity for 

processing and integrating visual 
and motor information in social 

interaction 

Marschner et al. 
(2015)  

[73] 

The role of body and gaze 
direction on attention and 
emotional responding in 

social human-avatar 
communication 

          The gaze and the body direction 
of a VA can ifluence the visual 

attention of the human, the facial 
mimicry and the experience 
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Shiban et al. 
(2015) 

[54] 

How the appearance of a 
virtual agent can influence 

the performance and 
motivation in an education 

context 

          Appearance features can influence 
independently the performance 

and motivation of 
studentsàproposition for a 

personalized tutor. The younger 
and more attractive avatar had a 

more positive impact. 

Wauck et al. 
(2018) 

[157] 

How the appearance of a 
virtual avatar can affect the 

performance in a game 
context 

          Self-relevance cannot influence 
the performance of the user in a 

gaming context and has no effect 
on gender 

Yokotani et al. 
(2018) 

[75] 

Comparison between 
clinical psychologists and 
virtual agents for a mental 

health interview 

          The anonimity of the VAs is 
relevant to patients’ self-

disclosure 

Amershi et al. 
(2019)  

[221] 

Verification of design 
guidelines for human-AI 

interaction 

          Proposition and evalutation of 18 
desing guidelines for human-AI 

interaction 

Our work A multimodal in-depth 
documentation, analysis, 
and comparison between 

H-H and H-NH 
interactions 

          Differences in human perception, 
behavior and emotions, a new 
database with human reactions 
extracted from H-H and H-NH 

interactions, a voice-based model 
differentiating H-H and H-NH 

interactions 
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Table 2.3 above presents a selection of studies that have examined human features and human behavior via 

several modalities under different types of interaction during the last decade. The modalities and the 

interactions described in this table were selected based on the setup of our work. The first part of the table 

presents studies that have used at least HRI, the second part HHI, and the last part HAI. Summing up, we 

can see that robots with human-like appearance and physically present, are more difficult to be perceived 

and they don’t easily allow humans to feel comfortable. However, mechanical features like lack of facial 

expressions or non-natural voice create a distance. Thus, it is important to find if there is a balance between 

the human-likeness and humans needs. Up to now, most of the studies have shown that the most important 

features a robot or a digital human should have to be more acceptable by humans are the facial expressions 

and the eye contact. Moreover, in studies where robots and virtual humans have been compared, the former 

has been preferred, mainly because of its physical presence. Some studies have already tried to extract 

humans’ features only during H-H social interactions. However, to integrate this information into 

nonhuman agents, we need a direct comparison between H-H and H-NH interactions to evaluate what is 

really missing. In such a case, the more features we extract (physiological, psychological, technical), the 

better we will understand human behavior, and thus, the better we can approach the design and the 

functionality of the nonhuman agents. This direct multimodal comparison is one of the basic limitations of 

the current literature.  

2.7 Summary and Discussion 

In this chapter, we tried to cover all the dimensions of H-NH interaction and the ways of approaching them. 

We analyzed the role of human likeness and presence in human perception, concluding that human 

expectations are directly linked to the influence a robot’s appearance may have. A human-like voice, for 

example, should be accompanied by an anthropomorphic appearance. We described the research behind 

human perception during HRI and the role of social robots and virtual humans in human life. We then 

presented in detail any physiological and psychological modality used to capture and measure human 

behavior during social interactions, concluding that EEG is one of the most reliable measures.  

Inspired by all described approaches, our work aims to fulfill current limitations, as described in chapter 1,  

and provide some answers regarding human perception and humans’ behavioral and attitude patterns 

towards social nonhuman agents developed based on the up-to-date technology. Our goal is to delve deeper 

into the features and the nature of H-H and H-NH social interactions, providing a detailed validated 

assessment of how humans react towards technology but also how the latter affects humans. We are trying 

to decipher the complex human social behavior by measuring as many features as possible, like audio, 
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motion, upper body muscles, brain signals as well as psychological indexes. Psychometric measures can 

help us verify the provoked emotions, personality traits, or even personal attitudes. Our work is based on a 

human-human, human-avatar, and human-robot natural interaction under the same scenarios that allow us 

to proceed to a direct comparison between the three different conditions, which is clearly missing from the 

up-to-date literature. People are more used to the existence of animated on-screen avatars, but they are 

unfamiliar with the presence of physical robots and this can provoke biased responses. To examine this 

unfamiliarity we conducted another experiment where we studied H-H and HR interactions, using a human 

and an identical humanoid robot with which participants had to interact under the same scenario.  

Our main question after all is to what extent a social agent or a robot need to be human-like to fulfill 

humans’ needs and to be socially accepted. We need to find the key point where humans socially approve 

and accept social agents and social agents have as a principle the human needs. Several studies are trying 

to verify the UVH and the role of human-likeness in human-nonhuman interaction but as Katsyri et al. [55] 

and Ratajczyk et al. [219] noticed, there is a lack of physiological human measures that can verify all the 

used well-validated questionnaires dedicated to this purpose. We tried to cover this limitation by using a 

multimodal approach. Moreover, to complement the above, we tested our humanoid robot, Nadine, under 

several roles in order to examine when and how the human-likeness can affect our perception, imagination, 

emotions, or even concentration and how different roles can affect human’s preference.  

We want eventually to create a better link between humans and technology that can facilitate the use of 

social agents in several fields like health or education. Our purpose is to use human’s complete behavior to 

reveal the humans’ needs towards human-nonhuman communication and to find a possible way to suggest 

potential improvements. Our approach might also define what is still missing from the existing technology, 

trying to cover some of the negative aspects of Figure 2.4.  
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3. CHAPTER  3   

 

INTERACTION IN VIRTUAL AND PHYSICAL ENVIRONMENTS 

 

 

 

 

 

 
 

“Virtual Reality is a self-created form of chosen reality. Therefore it exists.”  

-Joan Lowery Nixon, American journalist and author 
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Interaction in Virtual and Physical Environments 

3.1 Introduction 

VEs, due to their multi-sensory nature, have become a very powerful tool in several domains and nowadays, 

people tend to prefer their use over a simple 3D environment. The question though is if there is indeed a 

need of using VR and whether the exposure to VR applications can affect the brain activity of the users and 

their cognitive, behavioral, motor, or other functions, or VR has just started to be considered “in fashion”. 

However, we don’t underestimate the usefulness of VR as it is undoubtable that it can expand the 

possibilities of the real world. Moreover, in the context of an experiment setup it can ensure that the 

conditions and the parameters used are controlled and adjustable.  

To address the limitations of previous studies, we conducted a small experiment with three different types 

of environments. It is said that VR engages the sensorimotor system, so we wanted to verify if it can provoke 

naturalistic psychological and behavioral responses. It has been proved that VR can simulate or rehash the 

neural activity induced by a Physical Environment (PE) and thus, VR platforms can be designed in such a 

way whereby they can create the desired and adequate differences between neural functions in PE and VE 

[222]. Therefore, through VR the quantification of the parameters becomes easier.  

The thought behind this study was to examine if there is indeed a need of using VR and what is the optimal 

environment for a digital human. We need to mention that VR depends on the up-to-date technology so it 

is sure that a lot will change when technology becomes more advanced. Our study is conducted with the 

up-to-date technology and aims to answer questions of nowadays.  

Thus, in this chapter, we present the experimental design, the methodology, the results, and the total 

outcome of our first experiment.  

3.2 Experimental Design 

We conducted an experiment with three different types of environments: Physical/Real environment (PE), 

VR with realistic design (VR) and VR with imaginary design (VRI), as illustrated in Figure 3.1. The reason 

we chose two different VR environments was to examine if the graphics and the design of the environment 

can play a role in human perception and maximize the impact. Τhe scenario for the three cases was the 

same and it is based on a classroom environment where multiculturalism and bullying cases were taking 

place. During the experiment, the users could experience the environment from a teacher perspective but 
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also through the eyes of the student who received the bullying. We expected that the observation of the 

scene from both perspectives would provoke a higher sense of engagement and empathy. No physical 

interaction was expected from the participants as the main goal was to evaluate the impact of the 

environment. The total duration of the experiment was about 2-3 minutes for each case.  

Volunteers were separated into three groups, according to the different environments. The VR group 

depicted a realistic classroom, similar to the one we used for the physical environment. The VRI group was 

exposed to an imaginary class environment, different from the setup that people with academic background  

are used to. The third group of the PE was used to validate the effect of the VR. The whole procedure took 

place at the University of Geneva (UNIGE). The scenario and the dialogs for all three cases were identical.  

  

 

 

 

Figure 3.1 Screenshots of the environments used for the 

experiment.  ABOVE LEFT: Virtual classroom with realistic 

appearance (VR). ABOVE RIGHT: Virtual classroom with 

imaginary appearance (VRI). BELOW RIGHT: Real/Physical 

classroom setting 

 

The environments were developed using the Unity3D game engine in collaboration with the Visual 

Computing Media Lab at Cyprus University of Technology (CUT). The avatars used were created with the 

Maya Autodesk Character Generator and the methodology is detailed in [223]. To ensure the sense of 

presence participants had the experience of the Head Mounted Display VIVE.  

For the validation of our experiment and the proper examination of the VR effect, we used EEG recordings 

to capture the brain activity, as well as psychometric measures through a questionnaire that subjectively 

examined the sense of presence, the empathy, and the reflections of the users.  
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3.2.1 Participants 

Thirty-three healthy adults (22 males and 11 females), aged from 25 to 59 years old participated voluntarily 

in this study. All our subjects were Ph.D. students, Postdoctoral researchers and Professors currently 

working at the UNIGE, as the academic profile was necessary.  We ensured that the majority of our 

participants had no previous experience with VR (only 6% claimed an experience with such environments). 

All participants were fully informed about the whole procedure and the time-consuming placement of the 

EEG device, for which we made sure that no discomfort was presented.  

3.3 Data Collection and Analysis  

3.3.1 EEG recordings and Analysis 

EEG signals were recorded and amplified using a BIOSEMI Active Two 64 channel amplifier system 

(www.biosemi.com). Active electrodes were used in association with a headcap, on which 64 electrodes 

were attached according to 10-20 system at the locations Fp (Fp1, Fpz, Fp2), AF (AF7, AF3, AFz, AF4, 

AF8), F ( F7,F5, F3, F1, Fz, F2, F4, F6,F8), FT(FT7, FT8), FC ( FC5, FC3, FC1, FCz, FC2, FC4, FC6), 

T(T7, T8), C (C5, C3, C1, Cz, C2, C4, C6), TP (TP7, TP8), CP (CP5, CP3, CP1, CPz, CP2, CP4, CP6), P( 

P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10), PO(PO7, PO3, POz, PO4, PO8), O (O1, Oz, O2), I (Iz) based 

on BIOSEMI layout and referenced to Cz. BIOSEMI’s acquisition program, ActiveView, was used to 

record the data with electrode impedance < 5kΩ and sample rate 2048 Hz.  

The analysis of the EEG data and the processing of the signal were carried out in MATLAB. All data were 

carefully checked for artifacts, like eye blinks or abrupt head and/or body movements. Raw signals were 

filtered using a bandpass filter from 0.1 to 60 Hz. The electrical line noise (60Hz) was removed using a 

notch filter. Signal was segmented over time windows of 20 seconds and Fast Fourier Transforms (FFT) 

was applied to each segment for each electrode so that we could transfer and analyze it to the frequency 

domain. Then the power spectra were calculated, as well as the average across segments to examine the 

total activation in the ten selected Regions of Interest (ROIs), as depicted in Figure 3.2, enabling us to reveal 

the dominant frequency for each brain area. We also chose to examine the occipital region (10th ROI), as 

it is mainly associated with the visual attention mechanisms. This can give us some results concerning the 

difference between the designs of the two VE considered in the experiment. Brain rhythms, which we are 

mainly interested in, are theta (3-7 Hz), alpha (8-12 Hz), beta state (13-30 Hz), and low gamma (30-42 Hz). 

The time that the brain needs to adapt to the new state, was also calculated based on the activity seen in the 

segments. 



 55 

 
Figure 3.2 LEFT: A participant weating the headcap with some EEG electrodes on. RIGHT: Regions of Interest, separated 

according to the brain areas we wanted to examine: FL = Frontal left, FC = Frontal center, FR = Frontal right, CL = Central left, 

CC = Central center, CR = Central right, PL = Parietal left, PC = Parietal center, PR = Parietal right, O = Occipital 

The participants were informed on how to minimize the inducing noise into the ongoing EEG signal, e.g 

they were advised not to make big movements in order to avoid wrong comments on the signal. Moreover, 

for this reason, the experiment was also conducted in a sitting position, so that the subjects didn’t have any 

distraction from the cables or other EEG equipment. The environment was also carefully modified in order 

not to influence the subject and measurement system, e.g no fluorescent lamps were near the system.  

Brain signaling and Brain waves  

Several neurophysiological methods have been used to monitor and assess brain activity, the choice of 

which depends on the needs and the design of each research. Electroencephalography (EEG), thanks to its 

design, constitutes the most comfortable, but most importantly the most cost-effective non-invasive 

solution.  

EEG measures the cortical activity and specifically it measures the summed electrical field potentials from 

cortical neurons that correspond at a specific region of the scalp to each electrode used [Error! Reference 

source not found.]. It has been proved that certain types of neurons have oscillatory properties that can 

reveal rhythmic EEG activities [Error! Reference source not found.]. Thus, every time a neuron in the 

brain is activated during synaptic excitation of the dendrites, creates a local current that can be measured 
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as an EEG signal. The dynamic pattern of synchronization and desynchronization within different neuronal 

groups generates the visible outcome of the EEG. Any change in the level of synchronization of such 

activity is depicted in changes in EEG amplitude of several frequencies at the scalp [224].  

 

 
Figure 3.3 ABOVE: The frequencies and the characteristics of the five basic brain waves as we use them today, described by 

Abhang et al. [225]. BELOW: Samples of the five basic brain waves in the time domain [225] 

These rhythms have been translated through the so-called brain waves and can correspond to a brain state. 

Nowadays, we have concluded to the five basic brain waves, whose main frequencies, for a human EEG, 

are shown in Figure 3.3, as described by Abhang et al. [225]. The alpha rhythm was noticed and named 

first, in 1934 by Andrian and Matthews [226]. 

Each brain area is related to a different brain function, and consequently body function. Usually, according 

to the dominance of the brain waves in each region, we can figure out how the latter is activated and what 

is its role in the examined task. However, the exact location of each region is not always found and this is 

why EEG has still some limitations as a technique [225]. Another limitation is its low spatial resolution and 
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its lengthy set up procedure [225]. Albeit all these, it allows the examination of fast temporal dynamics and 

it remains the most accessible neurophysiological method for modern research.  

3.3.2 Psychometric data 

To complete our physiological measures, we used a validated questionnaire named Igroup Presence 

Questionnaire (IPQ) [227], including 14 items for the measurement of presence and the perception of the 

environment.  

3.3.3 Statistics  

Reliability tests were carried out for the variables for both EEG and The IPQ. The overall alpha was 0.715 

> 0.7 for the questionnaire and 0.893 > 0.7, as well as 0.719 > 7 for the brain frequency and the time 

accordingly. This indicates the reliability of our variables.  

However, the tests of normality used ( Kolmogorov-Smirnov Test and Shapiro-Wilk Test ) indicated that 

our data didn’t follow a normal distribution. Thus, we used non-parametric tests ( Mann Whitney and 

Kruskal Wallis tests) to validate the significance level.  

3.4 Results: Evaluation of Human Perception between Virtual and 

Physical Environments  

Our aim in this study was to examine the possible influence of a VE in human brain, helping us understand 

how humans perceive the technology of VR. To wit, we were interested to see if the exposure in a VE can 

affect several functions of a healthy brain compared to an exposure to a physical real environment.  

Minutely, we examined the dominant frequencies in order to find the dominant brain state, in different brain 

areas, examining the possible influence that a VE might have over a PE. Moreover, we compared the two 

different VEs investigating if the features of each environment can play a significant role in influencing the 

brain of the users. Finally, we measured the average time needed for the adaptation of the brain to the new 

dominant state, defining the optimal duration of a task in order to be effective. To validate our results, apart 

from analyzing EEG signals, we also used an Igroup Presence questionnaire to examine if the way we think 

that we perceive the environments is in line with the reaction of our brain.  
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3.4.1 Effects of VR in specific regions of the brain, influencing behavioral, motor, or 

other functions 

First, we examined each selected brain area separately. In Frontal area, we found that both VR groups were 

synchronized in a theta state. Specifically, VR group reached an average frequency of around 6 Hz, for both 

hemispheres. VRI group was also synchronized in a theta state, but in a slightly higher value. Frontal theta 

state has been associated with focused attentional processing and especially cognitive effort and novelty 

detection [198]. In general, the frequency in the theta power band increases as the relevant task is becoming 

more demanding [201]. On the other hand, for the PE group we noticed a low beta state, which is linked 

with memory recall for this part of the brain. In this group, participants had just to deal with conditions they 

face in their everyday life. Thus, the beta state can be completely explained, as the procedure probably 

triggered images extracted from their memory, without the need for an extra cognitive effort. To the best 

of our knowledge, no theta activation has so far been observed in frontal regions during a VR experience. 

Regarding the central area, it was difficult to derive decisive conclusions because the associated data was 

noisy. Moreover, as we will mention later, we noticed that the signal on this part of the brain needed the 

longest time to adapt in a state. However, we found that both VR groups were mainly synchronized in alpha 

state. The presence of such a state in this brain area has been linked to creativity-related demands and the 

process of producing new ideas [193]. In our case, this can be fully explained by the context of our 

educational scenario. Nevertheless, as we can see in Figure 4, VRI group showed a clearer alpha dominance, 

which means that more creativity-related mechanisms were engaged. However, for PE we found a clear 

beta state dominance and the difference between PE and the two VR groups presents a high statistical 

significance.  

As far as the parietal area was concerned, we found exactly what we expected. Alpha rhythm in the parietal 

area has been used in several studies as an indicator of the sense of presence in a VE [194][228]. Thus, we 

confirmed the dominance of alpha power, compared to the PE group for which we noticed a beta state. The 

sense of presence was also verified by the results of our questionnaire where both VE groups reported a 

high level of presence.  Moreover, the alpha band in this area is mostly connected to perception processes 

[201].  

Lastly, we examined the activation of the occipital area that is associated with visual attention mechanisms 

and the recognition of objects. Interestingly, only the VRI group showed a synchronization in the alpha 

state. Although the difference between VR and VRI is not significant, we could explain such a difference 

due to the familiarity the simulated physical environment may have. In the VR group, participants didn’t 
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have to process new features in the overall environment given that it was almost identical to the physical 

one. The difference between VRI and PE though was highly significant. 

 

Figure 3.4 Power spectra observed in each of the 10 ROIs, in response to each environment. The 10 ROIs have been depicted in 

Fig. 3.2. Power spectra was defined as . Frequency bands examined: theta (4 – 7.9 Hz), alpha (8 – 
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12.9 Hz), beta low (13 – 20) and beta high (20 – 30 Hz). We didn’t notice any activation in the low gamma band (30 – 45 Hz). 

Whiskers indicate the standard deviation and the asterisks indicate the level of significance: *p < 0.05, **p < 0.01 according to 

Mann Whitney and Kruskal Wallis test. 

In general, the increase in alpha power in posterior brain regions can be an indicator of qualitative 

information processing [193], so the fact that we noticed it in both parietal and occipital lobes for both VR 

groups demonstrates a possible efficient recruitment of the desired networks.   

Figure 3.4 shows explicitly the average frequencies for all brain areas and both hemispheres, indicating the 

dominant brain state for each and the significant differences. We can notice that we always have a 

significant difference between the groups exposed to the VR settings compared to the one having had the 

experience of the physical classroom. Based also on our questionnaire results, we found that both VR groups 

reported high levels of presence, although the one with the realistic design claimed a higher level. Moreover, 

we were able to create a link between the spatial presence and the experience of the user. Spearman’s 

correlation provides us with a positive correlation between this feature and the participants’ previous 

experience in VR, indicating that the more experienced users are in VR, the higher level of presence they 

can meet. 

Summing up, we found that VR, by itself, without any obvious interaction of the participants with the 

environment, can indeed affect functions of the brain, showing different effects in different brain areas. 

This means that it can be used for several behavioral, motor, cognitive or other needs.  

3.4.2 The role of the VR design  

Although we did not find many significant differences between the two VR groups, they have been enough 

for a first conclusion regarding the role of the design of a VE.  

The biggest difference between the two groups is located in the occipital lobe and can clearly indicate the 

distinction between the two VEs in terms of visual attention. Moreover, the slight difference that the two 

groups presented in the central area, with the VRI group showing a higher alpha dominance, can also reveal 

the engagement of more creativity-related mechanisms.  

In general, the main differences we found between the two VE groups were in frontal and occipital lobes, 

indicating that the design and the graphics of the environment do play a role in the brain effect. We also 

noticed that the VR group needed slightly less time to process the information and adapt to the new state. 

However, only the frontal region of both hemispheres, the left part of the parietal lobe and the occipital lobe 

showed a significant difference. In any case, this can be attributed to the familiarity provoked by the VR 

setting compared to the one with the imaginary design.  
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We extracted also some interesting results through our questionnaire. The participants of the VR group 

declared that they were more aware of the real environment around them and any possible external stimulus, 

compared to VRI. This can also be directly correlated with the impact of the design of the VE.  

3.4.3 Brain adaptation time to a VE 

Figure 3.5 shows the time needed for the adaptation of the brain to the new state for each brain part for both 

VE groups separately. We noticed that, in general, the VR group needed less time to process the given 

information and proceed to the adaptation.  

Given that we don’t have a lot of significant differences between the time needed for each brain area, except 

the frontal region in both hemispheres, the left part of the parietal lobe and the occipital lobe, we calculated 

the average of the time between both groups, concluding that the mean time the brain needs to perceive a 

VE is 42.8 seconds ( SD = 4.1 seconds). This means that a VR task should ideally last for at least 43 seconds 

so that the brain understands the impact of the VR and so the task can be effective.  

 

Figure 3.5 The duration of time needed for the adaptation of the brain to the new state for both VR groups. Significant 

differences can be observed in frontal and occipital regions. Whiskers indicate the standard deviation and the asterisks indicate 

the level of significance: *p < 0.05, **p < 0.01 according to Mann Whitney and Kruskal Wallis tests. 
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3.5 Summary and Discussion 

With this study, we explored if exposure to VEs can affect the brain and how, compared to exposure in 

physical environments. We also used two VEs, a realistic and an imaginary one, to test the effects of 

different VR features. To verify our results, we formed a third, control, group which followed the same task 

in a real environment. Brain signals and a questionnaire were used for validation.  

With this study, we answer our first research question: Can a simulated experience, like Virtual Reality, 

activate regions of the brain, affecting behavioral, motor, or other functions? In line with previous results 

reported in the literature [194], we verified the role of the parietal lobe in the VR experience, as an indicator 

of the sense of presence. Our questionnaire confirmed the above. Both VR groups reported a high level of 

presence, although the one with the realistic appearance claimed higher levels. Moreover, through the 

questionnaire, participants reported low levels of spatial presence, especially in the VRI group and 

Spearman’s correlation provided us with a positive correlation for this feature and the previous VR 

experience. We concluded that the more experienced users are in VR, the higher level of presence they can 

meet. Although participants didn’t have a direct interaction with the VE, we noticed the sense of presence 

which means that interaction doesn’t always play a significant role in the presence and immersion. It was 

not in our intention to urge participants to get involved physically with the VR task. Contrariwise, we 

wanted to determine possible differences in brain activity in several fixed environments and to examine if 

the design of a VE can also make a difference in this activity. However, we are aware that the possibility 

to move in the physical space could have given higher levels of presence and immersion, and maybe better 

results, but we tried to eliminate the noise in the recording of the EEG. 

Of great interest is the presence of the theta state in the frontal region in both VR groups, indicating the 

cognitive effort and representing the attentional processing. To the best of our knowledge, such a result 

hasn’t been reported in the literature before. However, the educational nature of the specific task possibly 

contributed to this activity, as the cognitive effort of an educational process might be bigger. Moreover, 

interesting is the dominance of the alpha band in the occipital lobe during VRI, indicating the difference 

between the two VEs in terms of visual attention mechanisms. It is also worth mentioning that through the 

questionnaire, we noticed that participants who experienced the normal VE (VR group) were more 

conscious of the real external stimuli and overall environment.  

Having presented all our results, we need to mention that our study didn’t involve any kind of physical 

interaction with the environment as our aim wasn’t to urge participants to get actively involved in the VR 

task but to determine possible effects that several fixed environments can have in brain activity. The lack 

of activity was also present in the results of our questionnaire, as participants declared that they didn’t feel 
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very active during both VR experiences. This, however, enhance our outcome as we know that it was the 

VR by itself that had all the influence.   

Most of our participants, among the three groups, claimed that they would prefer to be trained via a VE 

rather than a PE for such an educational context. Given that we determined the impact of VR on the brain 

activity, and given that this impact is in line with the results of our questionnaire, there is strong evidence 

that VR has, for the time being, and under the existing technology, the potential to become a useful, 

efficient, reliable tool.  

 

Figure 3.6  Summary of the results extracted from the EEG data and the questionnaire. 
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Figure 3.6 summarizes our results123, combining EEG and the questionnaire. These results enhanced the 

SoA by : 

§ revealing some new brain states involved in VEs, like the Frontal theta state   

§ confirming existing ones, like the alpha waves in the parietal area and  

§ creating some links between the experience of the user and the sense of presence.  

The outcome motivated us to proceed with our second study. 
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4. CHAPTER  4 

 

HUMAN – ROBOT INTERACTION  

 

 

 

 
 
“We are fascinated with robots because they are reflections of ourselves” 

-Ken Goldberg, American Professor, artist, researcher  
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Human – Robot Interaction 

4.1 Introduction 

The outcome of our first research motivated us to explore more technological environments. We started 

wondering how the human brain would be affected by an environment with robots. Thus, we moved on to 

our second study, which was exclusively on HRI, and we tried to answer some first questions regarding the 

human’s perception when interacting with a robot.  

To develop empathic social robots that can persuade for their emotional awareness, it is important to 

consider human reactions derived from the interaction with them. The up-to-date research aims to develop 

robots or avatars that will be able to comprehend people. Thus, an interesting question is whether interacting 

with them could trigger human-like responses. To that end, enriching robots with a degree of emotional 

intelligence could lead to more efficient, meaningful, and natural human-robot interactions. Our purpose 

lies in examining the effects of human-humanoid interaction in humans’	cognitive states and emotions, 

including the way the brain responds to such an interaction. The latter can give us an insight into the degree 

to which humans can perceive the difference of interacting with robots instead of other human beings. Most 

of the studies have tried to examine interactive tasks through observation, which means using video clips, 

or images [198, 201], highlighting the limitation of the physical interaction and the loss of the sense of 

embodiment.  

To address the limitations of previous studies, we conducted an experiment, with three different types of 

interaction. Our main consideration is to examine if the brain can perceive the difference between a human 

and a robot that looks exactly like the human. In this chapter, we describe the experimental design of such 

an experiment, the methodology, and the results. 

4.2 Experimental Design 

During the experiment, volunteers were exposed to three different types of interaction under the same 

scenario. The first case (A) constitutes the control case and participants interacted with a neutral person. 

We chose to put the control case first to avoid any discomfort that might be caused by the interaction with 

the robot and to enhance the sense of familiarity during the whole process. The second case (B) concerns 

the human-robot interaction and participants had the opportunity to communicate with Nadine. Nadine is 

modeled on Prof. Nadia Thalmann, she has very natural-looking skin and hair and realistic hands, providing 
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a strong human-likeness. We chose to use the interaction with the real identical person as the third and last 

case (C) to examine if the brain can directly perceive the differences between the two last conditions. Figure 

4.1 presents an example of a participant in the three cases. The whole experimental process was video and 

audio recorded with the consent of the participants. 

The thematic areas of the discussion were pre-defined and guided by the people or the robot involved in the 

process, but the time of the interaction was up to the participants.  

 
Figure 4.1 Participants during the three types of interaction. LEFT: Case A - Participant with a natural person, MIDDLE: Case B 

- Participants interacting with Nadine, RIGHT: Case C - Participant discussing with Prof. Nadia Magnenat Thalmann 

Table 4.1 presents the chosen topics of discussion and the expected emotions for each condition. The 
discrete emotions are chosen based on the questionnaire we used.  

Table 4.1 Thematic areas used for the facilitation of the discussion during the three interaction 

Question Topic Example Probable emotions triggered 

Introduction “Hi, my name is Nadine. What is your name?” Joy, Fear, Interest, Nervous 

Profession “What do you do for a living?” Joy, Calm, Inspired 

Family and relationships “Are you married, or do you have a partner?” Confident, Ashamed, Nervous 

Hobbies and recreation “What are your hobbies?” Calm, Joy, Inspired 

Religious Views “Do you believe in the existence of God?” Inspired, Fear, Ashamed, Calm 

Miscellaneous “Do you like this experiment?” Interested, Nervous 
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For the validation and the accuracy of our experiment, that is to properly examine the effect of such 

interactions, we used EEG recording to capture the brain activity, an audio recorder to capture voice 

features, and psychometric measures through a questionnaire that subjectively examined the emotional 

states of the participants.  

4.2.1 Participants 

This study acted as a preliminary study and thus, the number of our participants was limited; though enough 

to have a decent statistical validity. So, twelve healthy adults, aged from 20 to 35, participated voluntarily 

in this study. The study took place in the Institute for Media and Innovation (IMI) at the Nanyang 

Technological University (NTU) as the humanoid robot Nadine was currently situated there.  We tried to 

ensure no previous experience of the participants with robots to avoid any bias in our results. A form of 

consent, based on the NTU requirements, was signed by all the subjects before the onset of the experiment. 

None of them mentioned any sign of discomfort. 

4.3 Data Collection and Analysis 

4.3.1 EEG recordings and analysis 

EEG signals were recorded and amplified using a NuAmps amplifier 

(https://compumedicsneuroscan.com/applications/eeg/). 34 electrodes were attached on a Quick-Cap 

according to 10-20 system at the locations Fp, F, FT, FC, C, T, TP, CP, P, PO, O.  Curry 8 X was used for 

the data acquisition and the online processing with a sample rate 1kHz per channel.  

The analysis of the EEG data and the processing of the signal were carried out in MATLAB. All data were 

carefully checked for artifacts, like eye blinks or head/body movements. Fast Fourier Transform was 

applied to the signal to transport it to the frequency domain and then the power spectra was calculated. The 

analysis was conducted in two setups. The first one consists of 5 Regions of Interest (ROI) examining five 

brain areas: Prefrontal (Fp), Frontal (F), Parietal (P), Temporal (T), and Occipital (O) whereas the second 

one analyses the same areas but for each hemisphere (10 ROIs). Figure 4.2 illustrates the examined ROIs. 

Brain rhythms that we are mainly interested in are theta (3-7 Hz), alpha (8-12), beta (13-30 Hz), and low 

gamma (30-42 Hz).  
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Figure 4.2 Regions of Interest (ROIs) used for this study. 32 EEG electrodes were used, with the help of a QuickCap, attached 

according to the 10-20 system. We examined two groups of ROIs. The first corresponds to the five brain areas (Prefrontal – Fp, 

Frontal – F, Temporal – T, Parietal – P, Occipital – O) and the second to the five brain areas for each hemisphere ( Fpleft – Fpl 

and Fpright – Fpr, Fl and Fr, Pl and Pr, Tl and Tr, Ol and Or) 

Based on previous studies, we will focus our research in the frontal and parietal areas [193]and we will use 

the occipital region to investigate the recruitment of visual attention mechanisms, as before. We will also 

examine the possible existence of frontal theta oscillations that some studies have already noticed during 

HRI [201].  

The experiment was conducted in a sitting position so that we could minimize as much as possible the noise 

and probable distraction from the cables or other features.  

4.3.2 Dialog and audio analysis  

The language was understood by Nadine using Google Cloud Speech-to-Text transcription and the whole 

conversation was held in English. The audio signal was processed using Praat software, extracting the 

features of pitch and intensity. The duration of each interaction was also assessed. The human participants 

were from different cultural backgrounds with unique styles of conversation. The thematic areas though 

were specific, no matter the choice of each interviewer. On the other hand, Nadine was operated in two 

modes: control and free mode.  
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The social robot Nadine’s architecture  

Our humanoid in the control mode used the Wizard-of-Oz technique and the questions in the interviews 

were asked in an orderly fashion. The participants had to respond to each of those questions, followed by 

the free mode, where the participant was asked to ask for anything. In the free mode, the answers are based 

on a chatbot with the architecture in Figure 4.3. In our experiment, the episodic memory portion is ignored, 

since the participant was unfamiliar to Nadine.  

 

 
Figure 4.3 Nadine’s architecture [116]. A social robot (Nadine) must mimic humans in all possible scenarios and behaviors. Like 

any human, she should be able to process all information about the environment, user, and context to come up with appropriate 

correct responses and reactions. Nadine’s perception layer helps her to collect information about the environment such as where is 

the human located, capturing human’s face images, capturing images of the environment, and getting speech of the user.  The 

processing layer is the core module of Nadine that receives all results from the perception layer about the environment and user to 

act upon them.  Each perception layer output is processed in this layer taking into account the customization done to come up with 

appropriate verbal or nonverbal responses.  Verbal responses are spoken by Nadine and nonverbal responses are shown by Nadine 

in the form of gesture, facial expression, and lip-sync with a verbal response. 

In our experiment, the episodic memory portion is ignored, since the participant was unfamiliar to Nadine. 

Therefore, once the speech of the participant is converted to text, it is sent to the chatbot. If the chatbot does 

not have an appropriate response, it is looked up online. If the online results are not available, a generic 

default response is given. 

4.3.3 Psychometric data  

To provide our results with a higher validity, a reliable and validated questionnaire, including closed-ended 

Likert-scale questions, was used. The questionnaire consisted of questions regarding participants’ 
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demographic data and mood states for each condition. The emotions scale was based on the Positive and 

Negative Affect Schedule, which comprises two scales: one measuring positive affect and the other 

measuring negative.  

4.3.4 Statistical analysis 

Statistical analysis was carried out for the variables of the EEG and the questionnaire, through SPSS. We 

conducted Repeated Measures ANOVAs and followed up statistically significant results with the 

Bonferonni post hoc tests. When the data did not meet the sphericity requirement, the corresponding non-

parametric Friedman test was used and the corresponding post hoc tests (Connover’s Post Hoc Comparisons 

- Conditions test) validated the statistical significance. 

4.4 Human Perception during Human-Humanoid Interaction and its 

Effects in Human Cognitive and Emotional States  

Having verified that VR can indeed affect several functions, we were motivated to go a step further and 

examine human perception towards another framework; the one of human-robot interaction. We were 

interested to see if the interaction with a robot can trigger human-like responses and how such an outcome 

could lead to a more efficient and natural HRI. Hence, our purpose lies in examining the effects of human-

humanoid interaction in humans’ cognitive and emotional states and the degree to which a human can 

perceive the difference between a robot and another human being.  

4.4.1 Brain activity during  human-humanoid interaction  

As we have mentioned before, we were focused on five brain areas. Starting from the prefrontal cortex, we 

noticed a general alpha rhythm, the same for all three conditions with no significance difference (F(2, 22) 

= .43, p=0.654). Prefrontal cortex is fully associated with the personality, planning of complex and social 

behaviors, decision making and in general with the orientation of our behavior in line with our goals and 

values [229]. 

For the frontal cortex, we observed a significant difference between the two human cases and the one of 

the robot. In both Η-Η interaction (A and C) we noticed a high alpha state, around 12 to 12.2 Hz whereas, 

during the interaction with Nadine, theta oscillations were observed (7.8 ± 0.6 Hz) (p=0.002). In this case, 

sphericity requirements were not met, and non-parametric tests were used (Friedman Test and Connover’s 

Post Hoc tests). As we mentioned before, frontal theta oscillations are associated with focused attentional 
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processing and they increase as a task becomes more demanding [230]. Thus, the outcome can be attributed 

to the participants’ bigger cognitive effort to get focused while interacting with Nadine. Moreover, this 

result is in line with other studies that have noted the existence of theta oscillations when a human interacts 

with a humanoid robot [201]. The case however is not the same when interacting with a mechanical one.  

Our results in the parietal cortex complement the above. We noticed beta oscillations in both H-H 

interactions (13.4 ± 3.8 Hz for the A case and 14.7 ± 5.5 Hz for the C case) whereas in B case we found 

dominance of the alpha state (10.8 ± 2.6 Hz).  

In the temporal cortex, we noticed the same pattern as in the parietal area. Both H-H interactions were 

characterized by beta oscillations (A: 14.2 ± 4.8 Hz, C: 21.1 ± 5.3 Hz) whereas the HRI by alpha (B: 12.2 

± 2.8 Hz) with p < 0.001, indicating a high statistically significance. However, the post hoc analyses 

exhibited that case C differed from case A and B (p = .007) and p<.001 respectively). The temporal lobe, 

in general, is associated with processing of auditory information [230]. The presence of the alpha band 

during HRI may indicate that participants put a higher effort to decipher Nadine’s speech compared to the 

human’s way of talking they are used to. 

Regarding the occipital region, the results were as expected. The analysis exhibited statistically significant 

differences for the three cases( F(2, 22) = 8.06, p=.002). The post hoc analysis exhibited that Nadine’s case 

(B) presented an alpha rhythm (9.7 ± 2.3 Hz) that differed from both A and C cases (A: 14.5 ± 5.7 Hz, C: 

19.4 ± 7.6 Hz), (p=.004 and p = .090, respectively). This result proves that the brain can completely visually 

understand the difference between a human and a robot, whatever appearance the latter may have. However, 

we can also notice the higher value of the C case, which reveals a bigger familiarity compared to the A 

case. That may be explained by the fact that participants had first seen Nadine and then Nadia, so they 

already had created a memory image of this appearance.   

Figure 4.4 depicts the results described above for the five brain areas.  
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Figure 4.4 Power spectra observed in each of the 5 ROIs, in response to each case. The 5 ROIs have been depicted in Fig. 4.2. 

Power spectra was calculated as 𝑃𝑆 = 𝑎𝑏𝑠(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑠𝑖𝑔𝑛𝑎𝑙)!2. 

For all these areas, we also examined possible differences between the two hemispheres. Figure 4.5 presents 

the differences among the three conditions for each hemisphere. No significant differences were noticed 

for the prefrontal cortex in the three conditions. For the frontal cortex though, we saw that the left 

hemisphere had a bigger activity during the C case (12.3 Hz ± 3.9 Hz) and only the latter had a significant 

difference with HRI (case B). The right hemisphere though presented higher activity during the case A but 

both H-H interactions were significant different from case B. For the parietal cortex, the left part of the 

brain didn’t present any difference whereas for the right part, only the A case shows a significant difference 

with case B. For the temporal cortex, both in right and left hemispheres the differences are statistically 

significant. Lastly, for the occipital region, we have the same result in both hemispheres, meaning that cases 

A and B present a significant difference compared to case C.  

 

 

Figure 4.5 Mean of frequencies for each brain area for both hemispheres in three conditions 

The second, and maybe a bit more interesting question, is if each case has a different effect in the two 

hemispheres. Thus, we run statistical tests for the three cases separately and we concluded to the results 

depicted in Figure 4.6. For the case A, we noticed a slightly bigger activity for the right hemisphere, but 

ANOVA tests revealed no significant differences between the two hemispheres. For the case B, we noticed 

exactly the opposite, with the left hemisphere presenting  higher activity. Parametric post hoc tests showed 

significant validity only for the frontal and parietal areas. For case C, we noticed again higher values of 

frequencies in the left hemisphere, but ANOVA tests revealed no statistical significance. 
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Figure 4.6 Differences in frequencies of each case for the two hemispheres 

4.4.2 Audio data and human perception between HH and HR Interactions  

From what EEG data revealed, the main difference in human perception when interacting with a human 

and an identical human-like robot is in the visual perception. However, this is normal and expected as 

people are not yet familiar with such kind of technology and interactions, not with physically present robots. 

The analysis of the audio data complemented the above.  

We observed the higher pitch of the voice (= 133 Hz) during the humanoid conversation. Although it may 

be inconclusive due to our small sample size, it seems promising and motivating to explore the hypothesis 

that people speak in a higher pitch when interacting with humanoids. This may reveal a lower level of 

comfort and a higher level of nervousness during such interaction. It can also be combined with the outcome 

of the EEG analysis in the temporal cortex, where the presence of alpha band was noticed only for the case 

of Nadine, indicating the higher cognitive effort of the participants to understand Nadine’s voice. 

Regarding the intensity, we found that participants had a louder voice when interacting with humans, with 

a significant difference from the HRI (p =.011 for case A and p=.003 for case C). We also examined each 

thematic area of the discussion separately and we found a peak in the intensity during the question regarding 
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the belief in the existence of God. This can be due to the emotional nature of the question or possible 

discomfort.  

There was also a noticeable delay in the speech during the HRI. However, the duration of the conversation 

was longer during the case C.  In figure 4.7 we can find the comparison between the three audio features 

described above. 

   

Figure 4.7 Mean values for Pitch, Intensity, and duration of the interaction for each condition, derived from the audio analysis 

4.4.3 Differences in emotions and motivation when interacting with a human and an 

identical robot 

Based on the EEG data, the existence of the alpha state in the parietal cortex during the HRI led us to the 

conclusion that during such an interaction, humans are unintentionally more concentrated on their tasks. 

We can attribute that to the existence of new, non-familiar elements people are forced to face. It is the same 

result we retrieved from the exposure of people to VR environments, as we presented in our previous study. 

Thus, we can claim that people unintentionally tend to be more concentrated when they are exposed to 

environments that they are not familiar with.  

The longer duration of the conversation in case C comes to verify the results we acquired from our 

questionnaire where participants showed a higher amount of inspiration and concentration during that case. 

We can also see that the duration with the neutral human was lower than the humanoid which is also verified 

by the questionnaire results. Moreover, we can note that the conversation with the humanoid had no 

interruptions by the participant when compared to humans. This highlights the limitation of the humanoids 

of the present generation which lack a fully natural conversational ability.  

Based on our questionnaire we noticed no significant negative emotions during the whole procedure. The 

most dominant emotions were Interest, Inspiration and Confidence which reveal also a sense of motivation. 
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It is also worth mentioning that the state of inspiration appears from case B and on, with an ascending value, 

meaning that Nadine triggered this reaction to the participants who kept being inspired for the rest of the 

procedure. We may also justify this by the fact that they found the similarity in the appearance interesting 

and motivating. At this point, we could have expected to find also a negative emotion, like scared or 

anxious, due to the high degree of human-likeness and the UVH. The fact that no negative emotions were 

noticed reveals that the nature of the interaction (the scenario or even the purpose) can affect the UVH and 

the human perception.  

The state of the interest is higher in case B which is normal if we assume that people are not yet so used to 

the existence of robots and they don’t often have the chance to interact with them. The state of concentration 

was increasing along the process. Lastly, the participants felt significantly active only in cases B and C. 

Figure 4.8 presents the results of the questionnaire for the three cases.  

However, in the question of who was the most comfortable to discuss with, participants preferred the human 

existence, voting equally the neutral person and Professor Nadia Thalmann.  

 

Figure 4.8 Participants’ emotional states for each condition. The questionnaire was distributed at the end of the whole procedure. 

Summing up, we noticed that there is a motivation enhancement throughout our process, with no 

observation of negative feelings. Participants, in the beginning, were presented as calm, confident, and 

concentrated and while interacting with Nadine new states appeared like inspiration, activation, and interest. 

The values of all the emotional states were ascending, revealing the high level of motivation. The increasing 

duration of speech in the three scenarios verifies the same. 
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4.5 Summary and Discussion  

In this preliminary study, we investigated the human perception during human-humanoid interaction and 

its effects on cognitive and emotional states. We have used three cases where people face three different 

types of interaction. To support our research, we used EEG and audio recordings as well as a questionnaire 

to complement the psychometric data.  

With this study, we answer our second research question: Is there a difference in the perception of a human 

and an identical human-like robot? Our results revealed a difference in the perception of a human and an 

identical human-like robot mainly in visual perception. We consider that people are not yet familiar with 

physically present robots, so this is normal. This difference was uncovered by the existence of the alpha 

state in the occipital cortex, which proves the activation of visual attention mechanisms compared to the 

human-human interaction where we noticed the existence of beta states and consequently, the sense of 

familiarity. The latter was more enhanced in the third case, where the human interacted with professor 

Nadia Magnenat-Thalmann and thus, we are not sure if this familiarity is a result of previous interaction 

with the humanoid.  

Regarding brain activity, we found some very interesting results. In the prefrontal cortex, we found no 

difference between the three cases, all of them synchronized in alpha brain state. However, we noticed 

frontal theta oscillation in case B, Human-Nadine interaction, with a clear difference from the other two 

conditions where we saw the dominance of the alpha state. This comes in line with previous studies [201] 

that have noticed the existence of theta oscillations when a human interacts with a humanoid but not with 

a mechanical robot.  

The same result was observed in the parietal cortex where, only in the human-robot interaction, we noticed 

the existence of the alpha state, which is associated with the perception process. In general, we conclude 

that during such an interaction, humans are unintentionally more concentrated on their tasks and we can 

attribute that to the existence of new, non-familiar elements people are forced to face. This has also been 

supported by the results of the questionnaire used, where emotions related to motivational states are 

developed during the human-robot interaction. This is in line with our previous studies regarding the 

comparison between VR and physical environments where it was found that people tend to unintentionally 

be more concentrated on an environment they are not familiar with [231].  

Of great interest is the result of the temporal area, which is linked with the processing of auditory 

information, and is verified by the outcome of the audio analysis. We noticed the presence of the alpha 

power only in case B which can be attributed to a higher cognitive effort participant made to understand 

Nadine’s voice. This can also be correlated with the higher pitch of the voice participants presented during 
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their interaction with Nadine. It could also be a result of nervousness, but the results of the questionnaire 

didn’t reveal any negative emotions. Figure 4.9 summarizes the results of the brain activity and possible 

connections with the audio signal.  

Completing the answer to the second research question, we need to reply to the subsection of it: Is there a 

difference in emotions and motivation when simply interacting with a human and an identical robot? Thus, 

we concluded that there is a motivation enhancement throughout our process, with no observation of 

negative feelings. In the beginning, participants were presented as calm, confident, and concentrated and 

while interacting with Nadine new states appeared like inspired, active, and interested. The values of all the 

emotional states were ascending, revealing the high level of motivation. The increasing duration of speech 

in the three scenarios verifies the same.  

 
Figure 4.9 Summary of the results 

To sum up, we remind that the purpose of this study was to provide a first glance at this innovative approach 

of human-robot interaction, examining human cognitive states when interacting with a robot and a human 

that look alike. Robots and virtual characters are increasingly becoming ubiquitous in our daily lives. 

Therefore, it is paramount to study our behaviour and emotions to these technological transitions to aid in 

their human development and to enhance their applications in several domains like education, rehabilitation, 

or even entertainment.  
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Our work1 contributed to the SoA as it was the first study to compare a humanoid with an identical human 

and assess the human perception, concluding that the human brain does understand visually and auditorily 

the difference but the level of concentration remains higher during HRI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Baka E., Vishwanath A., Mishra N., Vleioras G, Magnenat Thalmann N.(2019), “Am I talking to a Human 

or a Robot?”: A preliminary study of Human’s perception during Human – Humanoid interaction and its 

effects in cognitive and emotional states. M. Gavrilova et al. (Eds.): CGI 2019, LNCS 11542, pp. 240–252, 

2019. https://doi.org/10.1007/978-3-030-22514-8_20 
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5.  CHAPTER  5 

 

HUMAN – NONHUMAN INTERACTION 

 

 

 

 
 
“I do not fear computers. I fear the lack of them.” 

- Isaac Asimov, American writer and professor 
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Human – Nonhuman Interaction 

5.1 Introduction 

Robotics and virtual agents can improve the accessibility of various content. As we have mentioned earlier, 

what we need is to find the key point where humans socially approve and accept social agents and social 

agents have as a principle the human needs. With the current COVID-19 pandemic making our social life 

difficult and increasing the level of stress and vulnerability among populations [232], the development of 

more efficient technology-assisted interventions is crucial. Additionally, the existence of nonhumans agents 

that can make humans feel comfortable and more motivated can make a difference. Although different 

kinds of agents have been used to contribute to several domains, like education, health, entertainment, both 

in virtual and physical environments, the digital human or robot that will make a human feel as comfortable 

as interacting with another human has not been reported yet.  

Inspired by the results of the previously described experiment, we decided to go a step further, delving 

deeper into the features and the nature of Η-Η and Η-ΝH interaction. Thus, we designed an experiment 

where our main purpose is to use human complete behavior to reveal the humans’ needs towards technology 

and to possibly find a way to suggest an improvement. We performed in-depth documentation, analysis, 

and comparison between the natural human-human and the human-nonhuman interaction, to find the gaps 

between them revealing humans’ needs and what can affect the efficiency, fluidity, and naturalness of an 

interaction. We also examined possible correlations among the extracted features to examine how and if 

our reactions are related. Moreover, we tested HRI under several roles to examine possible changes in 

humans’ perception and acceptance towards robots.  To the best of our knowledge, such multidisciplinary 

and in-depth documentation, analysis, and comparison between H-H and H-NH interactions has not been 

described in the current literature yet.  

Thus, this chapter is divided into two parts. Subchapters 5.2 and 5.3 describe the first and the second 

experiment respectively, providing detailed information on the experimental design, the methodology, the 

results, and the conclusions. Finally, 5.4 discusses the overall outcome of this work, pointing out the 

contribution to the existing SoA.  
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5.2  Human Behaviors and Reactions during H-NH Interactions 

5.2.1 Experimental design 

To serve our purpose, our experiment consists of two parts.  The first part includes three different types of 

interaction under the same scenario.   

• Interaction of a human with Nadine humanoid social robot (N) 

• Interaction of a human with a virtual human (VH)  

• Interaction of a human with another human (H)  

The scenario simulates the first phase of a job interview where participants had to answer several predefined 

questions and present themselves.  All participants took part in all three different types of interactions. 

Figure 5.1 shows an example of a participant interacting with the virtual human Nicole and presents the 

two nonhuman agents used. Given that participants had to face all three interactions, the sequence was 

different for each one of them to exclude any possible bias during our feature extraction (like preparation 

of the answers or familiarity with the nonhuman agents). The whole procedure took place in an isolated 

room under identical circumstances and with no external noises. The experiment was in collaboration with 

the Institute for Media and Innovation (IMI) at the Nanyang Technological University (NTU) and it took 

place in NTU where we had full access to Nadine social robot and the virtual human Nicole. Our first plan, 

based on our results from our first experiment regarding the physical and virtual environments, was to use 

Nicole in a VR setting. However, we decided to keep the experiment as simple as possible to simulate 

conditions that are more accessible to everybody.  

 

 

Figure 5.1 LEFT: case VH where the participant interacted with Nicole, the virtual human. RIGHT: the nonhuman agents used in 

our experiment: Left: Nicole the virtual human, Right: Nadine the social robot 
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To validate our study, we followed a multimodal approach, and we used the following human modalities:  

• EEG to capture brain activity  

• An audio recorder to capture voice and speech features  

• Kinect to record and examine body skeleton movements  

• EMG to capture the activity of specifically selected muscles  

• A questionnaire (Panas X) to assess humans’ emotions, mood states, and the overall experience of 

the interactions. 

• A Negative Attitude Towards Robot scale (NARS) to assess users’ overall attitude towards robots 

Figure 5.2 presents the modalities and the extracted features of our work.   

 

 
Figure 5.2 The setup of our work 

All three interactions had the same job interview scenario and the questions asked were predefined. 

However, the content and the order of the questions were different for each case so that participants 
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wouldn’t get directly familiar and used to them. Table 5.1 presents the thematic areas and the relevant 

questions used for the case of Nadine the robot.  

All interactions were held in English. The overall duration of the experiment for each participant was around 

one hour, including the time needed for the setup of the devices, the explanation of the procedure, the 

completion of the questionnaire, and the consent form. The expected outcome was to obtain global 

information on how humans react during interactions with digital humans and robots and compare the latter 

with a natural H-H interaction under the same scenario. 

Trying to avoid any latencies or lack of synchronization due to the simultaneous multimodal recordings, 

we performed a fast calibration for all the modalities. We used as a base the EEG signal and participants 

were asked to relax in their position with their eyes open and closed periodically. Then, they were asked to 

move their hands alternately. The procedure lasted for one minute. In this way, we ensured that signals 

were influenced by the human reactions and were synchronized.  

Table 5.1 The thematic areas used for the job interview scenario and the questions for each one of them as posed for the case of 

Nadine robot. 

Job Interview scenario 

Thematic Areas Questions Keyword 

Introduction “How could you describe yourself?” Description 

Hobbies “What do you like to do outside of work?” Hobbies 

Personal info/ 

Emotion triggering 

“Why do you think we should hire you?” 

“What is your greater weakness?” 

“What do you consider to be your strength?” 

“How do you handle stress and pressure?” 

Suitability 

Weakness 

Strength 

Stress 

Previous work 
experience 

“What is your greatest professional achievement?” 

“Tell me about a challenge or conflict you have faced at work 
and how you dealt with it?” 

Prof_Ach 

Challenge 

Current work 
requirements 

“What type of work environment do you prefer?” 

“What are your salary requirements?” 

Work_env 

Salary 

Future expectations “Where and how do you see yourself in five years from now?” Yourself_5 

 

Figure 5.3 summarizes the steps of our research protocol.  

 



 85 

 
Figure 5.3 The flow of our research protocol 

5.2.2 Participants 

Forty individuals participated in our study. They represented a broad range of ages (20 to 65 years old) and 

two ethnicities (Asians and Europeans). Table 5.2 provides a detailed description of our sample’s 

demographic data. Although gender and ethnicity were not balanced, we examined possible differences in 

the way of communication and interaction, acknowledging only high statistical differences. We assured 

that participants had no previous experience with robots, digital humans or any similar technology. Based 

on the requirements of the University’s Institutional Review Board, a consent form followed by a detailed 

explanation of the experiment was signed by each participant before each experiment. Each participant 

received a small compensation for contributing and helping to our research.  

Table 5.2 Demographic data of the study sample 

Participants’ characteristics Total Number (Percentage %) 
Role Student 19 (48%) 
 Employee 19 (48%) 
 Retiring 2 (4%) 
Gender Female 13 (33%) 
 Male 27 (67%) 
Ethnicity European 8 (20%) 

 Asian 32 (80%) 
Age 20 – 30  29 (72%) 
 31 – 40  7 (18%) 
 >40 4 (10%) 
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5.2.3 Data acquisition and analysis  

EEG recordings and analysis 

EEG signals were recorded and amplified using a NuAmps amplifier 

(https://compumedicsneuroscan.com/applications/eeg/). Given our research interest, we examined specific 

brain areas, so we used in total 23 channels. These channels were attached on a Quick-cap according to 10-

20 system over the locations Fp, F, FC, T, CP, P, O. Specifically, electrodes were placed over the positions 

Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7, T8, TP7, TP8, CP3, CPz, CP4, P3, Pz, P4, O1, Oz, O2, 

covering the Prefrontal (PF), Frontal (F), CentroParietal (CP), Parietal (P), Temporal (T) and Occipital (O) 

cortexes. For this part of the experiment, we used 6 ROIs. Two more reference electrodes were attached to 

the earlobes. A ground electrode was also placed on the Cz position. For the data acquisition, Curry 8 X 

was used, electrode impedances were kept lower than 2 kΩs and the sample rate was 1kHz.  

 
Figure 5.4 Example of the visual manual inspection conducted in EEGLab. 

The pre-processing steps were performed in Matlab, partially with the help of the EEGLAB graphic user 

interface [233]. We applied a high-pass filter with a cut-off frequency at 1 Hz to remove low-frequency 

signals and a notch filter centered on 50 Hz to eliminate the industrial noise. Both filters were Butterworth 

digital filters of 3rd order. Then, an Independent Component Analysis (ICA) was performed to reveal and 

reject artifactual resources, like eye blinks, muscle artifacts, bad electrode placements, linear trends, and 

high frequency noise. A further visual manual inspection was conducted to reject short data segments that 

were contaminated with noise, as shown in Figure 5.4. The final filtered signal was selected as an input to 

the synchronization analysis algorithm. This final signal for each interaction of each participant had a 
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minimum duration of 20 seconds, as it has been proven that this time interval is sufficient for the extraction 

of the synchronization degree [234]. 

The synchronization analysis of the EEG data was performed on the entire EEG activity. It aims at the 

extraction of the activity for the five frequency bands (delta, theta, alpha, beta, gamma) for each electrode 

and its relative energy contribution. For that purpose, we used wavelets which are mathematic oscillatory 

tools fitting the time-frequency analysis of non-stationary data [235]. The first step was the selection of the 

appropriate mother wavelet, which specified the basic shape of the wavelet. Then, the entire wavelet family 

was subjected to scaling and translation to extract both frequency and time-dependent components 

respectively. As mother wavelet, the family of 5th bi-orthogonal wavelets was selected due to its 

resemblance with the common EEG waveforms as well as its mathematical properties (symmetry, semi-

orthogonaliry, maximum time-frequency resolution, and smoothness) [234, 235]. Therefore, phase 

distortion and discontinuity effects are avoided [235, 236]. The epochs of our EEG continuous data were 

divided into windows of 128 ms duration. The first 150 windows were further analyzed. The Orthogonal 

Discrete Wavelet Transform (ODWT) was then used to compute the wavelet coefficients through iterative 

time-frequency decomposition. Minutely, the wavelet coefficient’s amplitude evaluated the similarity 

degree between the wavelet and the actual signal, whereas its sign specified the type of the correlation 

(positive or negative). The discrete version of the wavelet transform was preferred instead of the continuous 

one, so as to discard redundant information; whereas the orthogonal basis facilitated the perfect 

reconstruction of the initial brain data. The decomposition scheme, of j = 1…5 levels, engaged recursive 

low pass filtering to extract the activity of each frequency band with optimal resolution. The above 

computations were implemented through Matlab functions. The window length was the minimum one that 

contained at least one coefficient from each frequent band.  

For each time window and each electrode, the wavelet coefficients were computed through Eq. (1) based 

on the decomposition scheme for the five frequency bands. Given that there were multiple coefficients for 

the decomposition levels (k = 1…K), these coefficients were first squared and then summed to provide the 

energy of each frequency band (Ej).  

 

𝐸! = ∑ |𝐶𝑘"|, 𝑗 = 1…5#
$%&         (1) 

 

where j shows the decomposition level, Ck corresponds to the wavelet coefficient and Ej is the energy value 

for each brain rhythm. Then, we calculated the total energy (Etot) of the signal by simply summing all the 

energies for each frequency band:  
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𝐸'(' = ∑ 𝐸!)
!%&  (2) 

 

In the end, we computed the relative energy for each frequency band by simply dividing its absolute energy 

value (Ej) with the total EEG energy (Etot) [234]. These relative energies depicted the total energy 

contribution of a specific rhythmic activity to the energy of the whole EEG. In other words, these numbers 

present the ratio of each frequency band’s energy to the total energy and thus, they are positive and equal 

to one.  

In the majority of cognitive neuroscience studies, researchers use Fast-Fourier Transform (FFT) or morlet 

wavelets to examine the frequeny components of an EEG signal. However, this work employed the family 

of bi-orthogonal wavelets of 5th order since this was a suitable choice when dealing with EEG/ERP data for 

the reasons described above, as also indicated by Frantzidis et al. [235]. Moreover, the ODWT offers 

excellent time-frequency resolution in comparison with the FFT.   

Motion Captures and analysis  

For the recording of the motion and the body skeleton, we used Kinect V2 by Microsoft. Since Kinect V2 

provides information of x,y, and z positions of 25 joints which are shown in figure 5.5, we can readily 

detect key body joints for sitting posture (since participants were seated all the time). The analysis of these 

motion data was conducted mainly by the IMI at the NTU. 

 

Figure 5.5 The 25 points examined with Kinect 

We divided the skeleton into five parts to understand motion in different body part movements as a part of 

processing shown in Table 5.3. 
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Motion data was used for two purposes: emotion recognition based on movement and examination of 

movement changes between the interactions. Emotion recognition will allow us to compare the results with 

the outcome of the questionnaire. The method proposed by Tomasz Sapiński [237] was used, which is a 

different representation of affective movements, based on a sequence of joint positions and orientations. 

The focus was on seven affective states: neutral, sadness, surprise, fear, disgust, anger, and happiness. The 

algorithm utilizes a sequential model of affective movement based on low-level features, which are 

positions and orientation of joints within the skeleton provided by Kinect v2. A more detailed description 

of this methodology can be found in [238]. 

Table 5.3 The five body parts we examined and the points used for each one 

Torso Right Arm Left Arm Right Leg Left Leg 

Neck ElbowR ElbowL KneeR KneeL 

SpineShoulder WristR WristL AnkleR AnkleL 

SpineBase HandR HandL FootR FootL 

ShoulderR 

    
ShoulderL 

HipR 

HipL 

 
Secondly, we were interested in the difference of movement among the three cases. Thus, the average 

difference in degrees of each body part mentioned in Table 4 was calculated. Using information of x,y and 

z positions of 25 joints for each frame during interactions, we computed the standard deviation along the 

specified axis for each joint through all the frames with respect to first point,as per equation (3). 

For each joint: 

 {(xi,yi,zi) : i = 1,…n} is a collection of points of movement and (x,y,z) the starting point for given joint, 

where (x,y,z)=   !
"
∑ (𝑥# 	, 𝑦# 	, 𝑧#)"
#$! . Then,  

𝜎% = ∑ ((()(!)"+(,),!)"+(-)-!)"	
#
!$%

"
    (3) 

 𝜎 = √𝜎% gives the standard deviation in Euclidean distance of all points from the centroid (starting 

point). 
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EMG recordings and analysis 

To verify the features extracted from the motion captures, but also to examine the motion from another 

perspective, we decided to use EMG for selected muscles of the upper body. We used a Myon Aktos 

wireless EMG system (https://www.myon.ch/aktos) with eight sensors, a sampling rate of 2000Hz, for four 

preselected muscles (trapezius, biceps, upper abdominal muscles, and abductor of the thumb), as shown in 

Figure 5.6. After a thorough discussion with a group of doctors from “Arogi Euromedica” Physical 

Rehabilitation Center in Thessaloniki, Greece we concluded on four muscles that can provide us with 

substantial information on humans’ reaction and behavior during an interaction.  

In detail, we start from the trapezius muscle, which is in the upper part of the back and it is responsible for 

the elevation of the scapula. In other words, this muscle can give us data regarding the lifting of the 

shoulders that can act as a stress indicator. Secondly, we chose the biceps muscle, which is responsible for 

the flexion of the arm. As the biceps is one of the main muscles of the arm, we can monitor any possible 

movement done by the arm. The third muscle is the thenar muscles, which are responsible for the 

movements of the thumb, like flexion. However, these muscles can reveal any possible small movement 

done with the hand or fingers. Usually, we move the thumb first when we intend to proceed with a fingers’ 

movement. The fourth and last muscles are the upper abdominal muscles so that we could monitor any 

flexion or rotation of the trunk, as well as any alteration in the breathing patterns. Moreover, we can monitor 

if the participant was sitting in a tight, uncomfortable position during any time of the experiment having 

one more indicator for stress or the sense of not being comfortable. Figure 5.6 shows an example of a 

participant with the EMG electrodes and the exact position of the muscles. 

EMG signal acquisition and processing were conducted through EMG and Motion Tools Software by 

Cometa [239] with the sampling frequency of 2KHz. So, firstly, we applied a Butterworth high pass filter 

at 20Hz to exclude the noise caused by the motor units’ firing rate [240] and a low pass filter at 500Hz for 

high. Then, we run a frequency analysis to find the mean frequency (Fmean) for each muscle of each body 

side. We lastly computed the Root Mean Square (RMS) which quantifies the electric signal as it indicates 

the physiological activity during contraction [241]. RMS provides information on the muscle activation 

intensity. RMS and Fmean are the most commonly used variables for the analysis of an EMG signal [241–

243].  
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Figure 5.6 LEFT: The four muscles’ positions where we put the EMG electrodes. We used 4 electrodes for each side of the body.  

RIGHT: An example of a participant wearing the physiological equipment (EEG and EMG) while interacting with Nadine. The 

three positions of EMG electrodes that are obvious are highlighted. 

Audio recordings and analysis  

For the recording of the sessions, we used an easy-to-use portable recorder called Zoom H1 Handy recorder. 

The audio was saved in a  .wav format, 24-bit, with a sampling rate of 96kHz. The participants were 

recorded in a sitting position.  We recorded both parts of the experiment, which means we have 240 

recordings for the 40 participants. However, audio data were mainly analyzed and used for the first part 

regarding the job interview in the three different types of interaction. The duration of each recording varied 

for each interaction and each participant from around 2 – 6 minutes.  

Given the background of our participants, each style of communication was slightly different. We used 

Praat software [179] and Matlab. The pre-processing analysis of the signal was conducted in Matlab to 

clean the possible noise and then, the filtered signal was imported to Praat for further analysis. We annotated 

the data based on the questions and the thematic areas and we examined each question/answer separately. 

For each question, we worked with segments of 40.000 samples each. We examined several time-related 

conversational features and prosodic/acoustic ones, as shown in Table 5.4. The rationale behind the 
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selection of these voice features was based on already established associations with human emotions, like 

frequency, timing, and volume [244] and on already efficiently used vocal features [3, 33, 34]. 

Table 5.4 Acoustic/Prosodic and Conversational Features used. Yellow: time-related features, Grey: Frequency-related features 

and Volume, Blue: Acoustic features 

Acoustic / Prosodic Features Conversational Features 

Human Agent Human Agent 

Duration of each 

answer 
T 

 

Voice breaks VB  

Total duration of 

each interaction 
TD Response time Rt 

Pause duration PD Speechrate (nsyll/sec) Sr 

Fundamental Frequency F0 

Minimum Fundamental Frequency F0min 

Maximun Fundamental Frequency F0max 

Formants F1, F2 

Intensity I 

Pulses Pl 

Jitter J 

Shimmer S 

Harmonicity (Harmonics-to-noise ratio) HNR 

 

In Figure 5.7 we see an example of a female participant sample, interacting with Nadine, as well as a sample 

of Nadine replying to her. The yellow line represents the intensity in dB, the blue one the fundamental 

frequency in Hz, and consequently the outcome of the pitch. The red dots are the different formants, based 

on the F0 and the blow vertical lines illustrate the pulses. 
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Figure 5.7 LEFT: Audio sample of a female participant interacting with the social robot Nadine in Praat software. RIGHT: 

Sample of Nadine’s voice while replying to the participant’s answer. Up: the voice signal with the voice breaks. Down: the 

spectrogram where the yellow line indicates the intensity of the voice in dB, the blue line the fundamental frequency in Hz, and 

the red line-dots the several formants. 

 Emotion recognition through audio  

To complement our research on humans’ emotional states, we also conducted an emotion recognition based 

on the audio signal. Inspired by the work of Trigeorgis et al. [245], we built a Machine Learning model that 

could detect emotions from the participants’ voices. Same voice segments as before were used. For our 

training purposes, we used an already trained dataset, called RAVDESS [246], which includes 1500 audio 

files from 24 different actors, 12 males and 12 females. Convolution Neural Network, which has been 

tackled by the use of Long Short-Term Memory (LSTM), was used for classification purposes. Lastly, for 

feature extraction python library LibROSA [247] was used. The model detected emotions with more than 

70% accuracy. We examined 8 different emotions i.e boredom, calm, happiness, anger, fear, disgust and 

surprise. 

ML Classification analysis  

To complement the above and to highlight the differences in the vocal behavior, we developed an ML 

model that can recognize the nature of the interlocutor a human speaks with, taking as input the human 

vocal behavior. We kept the separation of our data in three classes, according to the nature of the 

interlocutor. Our goal is to separate the three classes and predict the class of new samples.  However, our 

dataset was imbalanced, due to the number of questions asked in each interaction.  

Participants’ reactions to the job interview questions were recorded and labeled according to the nature of 

the interlocutor. The audio recordings were divided into shorterm windows of 100ms and for each, a total 
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of 34 distinct features were extracted. Additional statistical features, like standard deviation and average 

values, were added to calculate changes over time or other differences and thus in total, we have 136 distinct 

features per sample. To facilitate our work, we used the “pyAudioAnalysis” library in python to extract the 

audio features [248]. Audio acoustic features both from time and frequency domain were used. Having 

verified that all features follow a Gaussian distribution, data were standardized.  

Subsequently, multiple dimensionality reduction methods were compared to find the one that suits best our 

needs. We tested 5 distinct methods, namely Principal Component Analysis (PCA), Singular Value 

Decomposition (SVD), Linear Discriminant Analysis (LDA), Isomap Embedding (ISO), and Locally 

Linear Embedding (LLE). After each reduction, a Support Vector Machine Classifier (SVM) with Radial 

Basis Function (RBF) kernel was fitted to the data. Results were acquired via the Stratified 10-Fold Cross 

Validation (CV) to compare the dimensionality reduction methods. PCA, SVD, and LDA performed 

significantly better than the other methods, as shown in Table 5.5. Finally, LDA was selected since it 

outperformed all other methods. 

Table 5.5. Scores of dimensionality reduction methods 

n_components 20 40 60 80 100 
PCA 0.531 0.576 0.618 0.633 0.640 
SVD 0.538 0.569 0.624 0.637 0.637 

LDA (n=2) 0.803 0.803 0.803 0.803 0.803 

Note: Score is F1-macro of the test dataset 

Having assured the performance of the dimensionality reduction, we tested different models to find the one 

that will better fit to our data and will perform the best classification. We tested several models as shown 

in table 5.6. A 10-Fold Stratified Cross Validation (CV) was employed for the comparison of these models. 

The K-Nearest Neighbors (KNN) Classifier outperformed all other classifiers tested. KNN represents the 

numbers of neighbors/samples (K) that participate in the voting of classifying a new point. To fine tune this 

parameter, different values were tested from the range of 5-60 and we found that K=15 is the optimal value. 

Finally, a comparison of the three dimensionality methods of table 5.5 was repeated using the selected 

classifier, which verified that LDA is the best method for our task. To wit, results for PCA and SVD 

flunctuated around 0.60 (60%) F1-score compared to 0.82 (82%) F1-score of LDA.  

As a model metric, accuracy is one of the most interpretable, straightforward metrics, but it is dangerously 

misleading when used on an imbalanced dataset. Thus, the macro F1-score was used to compare and 

evaluate the different models. F1 score is a function of Precision and Recall. Precision is the ratio of 

correctly classified samples per class to the total classified samples per class [249]. Thus a value of precision 

is calculated for each class. Then weighted precision is calculated, which is the average precision between 
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classes that takes class imbalance into account. Recall is the ratio of correctly classified samples per class 

to the total number of samples per class [249]. As before, only weighted recall is shown in this work. Thus, 

the F1 score is the harmonic mean of precision and recall. Weighted F1 score is the weighted average F1 

score of each class. In our case, the F1 score is used to show the results instead of accuracy since our dataset 

is imbalanced, along with precision and recall. 

Table 5.6 Comparison of the different models 

 Accuracy Precision 
weighted 

Recall 
weighted 

F1 score 
weighted 

SVC linear 0.801 0.806 0.801 0.8 

SVC poly 0.777 0.793 0.777 0.773 

SVC sigmoid 0.718 0.726 0.718 0.718 

SVC rbf 0.808 0.813 0.808 0.807 

Decision Tree Classifier (maximum 
depth = 2) 0.805 0.825 0.805 0.807 

AdaBoost (with DTC and maximum 
depth = 10) 0.784 0.789 0.784 0.783 

MLP Classifier (single layer of 10 
neurons) 0.806 0.812 0.806 0.805 

Gaussian Naive Bayes Classifier 0.808 0.813 0.808 0.806 

Nearest Neighbor Classifier (k = 15) 0.820 0.827 0.820 0.820 

 

Psychometric data  

To complement the collected physiological data, we used also two types of questionnaires to assess the 

human attitude towards robots and emotions as well as perception during the interactions.  

The first questionnaire is the valid Negative Attitudes Towards Robots scale (NARS), firstly introduced by 

Nomura et al [218]. This questionnaire, or its subscales, have already been used successfully by several 

studies to assess humans’ attitude towards robots. Participants had to reply to its questions before the onset 

of the experiment, thus before their interaction with Nadine.  

In the meantime we used a reliable, valid questionnaire, including closed-ended Likert-scale questions, to 

assess humans’ emotions, mood states, and the overall experience of the interactions. The emotion scale 

was based on the Positive and Negative Affect Schedule with two scales: one measuring positive affect and 
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the other measuring negative. The emotions were based on the emotions scale PANAS X [250]. The 

questionnaire was given to the participants before as well as after the experiment so that we could define 

any possible differences in their state or their expectations.  

Statistical analysis  

The statistical analysis for all modalities was conducted in SPSS. We controlled the internal consistency, 

and we assured the normality of our data (Kolmogorov-Smirnov and Shapiro-Wilk tests), which led us to 

a parametric repeated measures ANOVA. However, some modalities suggested us a different type of 

ANOVA as between-group variables, like gender and ethnicity, had an interaction with our data. In such 

cases, we used a mixed ANOVA and we controlled also the equality of variances through Levene’s test. A 

Greenhouse-Geisser correction was applied when violations of the sphericity assumption were noticed. The 

statistically significant results of the ANOVAs were followed up by the Bonferroni post hoc tests. 

Pearson correlation and simple linear regression were also used to examine correlations and linear 

relationships among our data.  

5.2.4 Human reactions and behaviors during H-H and H-NH Interactions  

The first part of our experiment aims to use human’s complete behavior to reveal the humans’ needs towards 

human-nonhuman communication and to find emotional and behavioral patterns that can enhance the field 

of HRI. Our results will also allow us to examine the effects of a robot-mediated job interview, concluding 

with a bifold assessment: if nonhuman agents are really in the position of offering more meritocratic 

interviews and if humans would indeed prefer such a case. 

Voice and body reactions 

Brain activity measured by EEG 

As described in the chapter of Methodology, we calculated the relative energy for each frequency band 

through ODWT. Results are shown in Table 5.7 and Figure 5.8. Table 1 depicts the mean values along with 

the standard deviations (SD) and the statistically significant differences between the interactions. Minutely, 

we can see that in Prefrontal cortex no difference is significant between the three conditions: : F(2, 64) = 

0.282, p = 0.755, η2 = 0.01 for delta, F (2, 64) = 1.949, p = 0.151, η2 = 0.057 for theta, F (2, 64) = 0.625, p 

= 0.539, η2 = 0.019 for alpha, F (2, 64) = 1.027, p = 0.364, η2 = 0.031 for beta, and F (1.421, 45.459) = 

2.096, p = 0.131, η2 = 0.061 for gamma. For the last comparison, the Greenhouse-Geisser correction was 
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applied due to a violation of the sphericity hypothesis. However, we can see that delta and theta bands are 

the highest in all conditions.  

Table 5.7 Differences in the brain states of each brain area among interactions 

Brain areas Brain states H-H 

M(SD) 

 

M(SD) 

H-NA 

M(SD) 

H-VH 

M(SD) 

Prefrontal delta 0.225 (0.052) 0.231 (0.062) 0.232 (0.046) 

 theta 0.282 (0.036) 0.285 (0.032) 0.296 (0.030) 

 alpha 0.182 (0.028) 0.175 (0.026) 0.179 (0.021) 

 beta 0.177 (0.026) 0.181 (0.034) 0.172 (0.026) 

 gamma 0.123 (0.013) 0.128 (0.028) 0.119 (0.016) 

Frontal delta 0.211 (0.045) 0.189 (0.047) 0.215 (0.047) 

 theta 0.216 (0.034)c 0.270 (0.030)a,b 0.297 (0.038)b 

 alpha 0.234 (0.029)c 0.176 (0.021)a 0.181 (0.020)a,b 

 beta 0.204 (0.026)c,b 0.211 (0.032)a,c 0.187 (0.031)b 

 gamma 0.125 (0.016)c 0.155 (0.024)a 0.120 (0.024)c,b 

CentroParietal delta 0.206 (0.051) 0.219 (0.055) 0.217 (0.045) 

 theta 0.277 (0.038) 0.291 (0.036) 0.293 (0.035) 

 alpha 0.195 (0.033) 0.186 (0.025) 0.187 (0.025) 

 beta 0.186 (0.029) 0.184 (0.034) 0.181 (0.028) 

 gamma 0.122 (0.019) 0.121 (0.024) 0.120 (0.026) 

Parietal delta 0.215 (0.048) 0.215 (0.041) 0.214 (0.045) 

 theta 0.286 (0.032)c 0.186 (0.032)b,a 0.193 (0.038)a 

 alpha 0.198 (0.031)c 0.290 (0.027)b,a 0.302 (0.023)a 

 beta 0.181 (0.021) 0.182 (0.029) 0.176 (0.023) 

 gamma 0.114 (0.020)c 0.127 (0.027)b,a 0.115 (0.022)a 

Temporal delta 0.192 (0.041) 0.198 (0.048) 0.197 (0.051) 

 theta 0.250 (0.033)c 0.200 (0.030)b,a 0.204 (0.032)a 

 alpha 0.199 (0.028)c 0.285 (0.021)b,a 0.294 (0.022)a 

 beta 0.234 (0.021)c 0.187 (0.033)b,a 0.181 (0.029)a 

 gamma 0.125 (0.015) 0.130 (0.021) 0.123 (0.023) 

Occipital delta 0.194 (0.046)c 0.219 (0.050)b,a 0.220 (0.051)a 

 theta 0.224 (0.045)c 0.183 (0.033)b,a 0.188 (0.044)a 

 alpha 0.167 (0.037)c 0.289 (0.025)b,a 0.302 (0.023)a 

 beta 0.262 (0.042)c 0.181 (0.022)b,a 0.170 (0.021)a 

 gamma 0.160 (0.029)c 0.128 (0.030)b,a 0.119 (0.025)a 
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Note: Means in the same row with different letters are significantly different from one another based on post hoc t-

tests with the Bonferroni correction (p<0.05). The absence of letters signifies no statistical significance. 

In the Frontal cortex, we found a statistically significant difference in both theta and alpha band for the H-

H and H-nonhuman (NH) interaction. To wit, theta state is dominant in H-NA and H-VH interaction with 

a significant difference from H-H whereas alpha state is dominant in H-H with a significant difference from 

the other two conditions (F (2, 64) =5.597, p =0.006, η2 = 0.149 and (F (2,64) = 17.147, p <0.001, η2 = 

0.461 respectively). Gamma band is also significant higher during H-NA interactions compared to H-H and 

H-VH (F (1.46,46.76) =12.925, p<0.001, η2 = 0.288) and delta band during H-NA and H-H (F (2, 64) 

=2.769, p =0.003, η2 = 0.144 and (F (2,64) = 3.121, p=0.004, η2 =0.120, respectively).  

For the CentroParietal cortex, there were no significant differences between the conditions in any of the 

brain state. F (2, 64) = 0.980, p = 0.381, η2 = 0.030 for delta, F (2, 64) = 2.146, p = 0.125, η2 = 0.063 for 

theta, F (2, 64) = 0.939, p = 0.396, η2 = 0.029 for alpha, F (2, 64) = 0.330, p = 0.720, η2 = 0.010 for beta, 

and F (1.667, 53.347) = 0.207, p = 0.814, η2 = 0.006 for gamma. For this last comparison, the Greenhouse-

Geisser correction was applied due to a violation of the sphericity hypothesis.  

Regarding the Parietal cortex, alpha band found to be significant higher in both nonhuman interactions with 

a significant difference compared to H-H interaction (p<0.001) where theta state has the dominant role 

(p<0.001) (F (2,64) = 28.209, p<0.001, η2 =0.548 and F (2,64) = 18.632, p<0.001, η2 = 0.446 respectively). 

Gamma state (F (2, 64) = 3.493, p = 0.036, η2 = 0.098) was also higher during H-NA interaction, significant 

different from the two other conditions (p =0.005). ANOVAs exhibited no significant results for delta (F 

(2, 64) = 0.003, p = 0.997, η2 = 0.000) and beta (F (2, 64) = 1.094, p = 0.341, η2 = 0.033) frequency bands.  

In the Temporal cortex, theta band found to be significant higher during H-H interaction compared to H-

NA and H-VH (p<0.001) where alpha band is the one significant higher (F (2, 64) = 5.493, p = 0.003, η2 = 

0.298 and F (2,64) = 26.129, p<0.001, η2 =0.601 respectively). The high value of η2 confirms the 

significance. The beta band also presented a significant difference (F (2,64) = 22.131, p<0.001, η2 =0.677) 

during H-H with significance from H-NA (p=0.002) and H-VH (p<0.001) with also a high value of η2. 
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Figure 5.8 Relative energies for the five brain states in the six brain areas for the three interactions 

Lastly, in the occipital cortex, the alpha band, higher in both H-NA and H-VH, presented a highly 

significant difference with the H-H (p<0.001), where the beta state found to be the dominant one with a 

high significant difference from the other two conditions as well (p<0.001) (F (1.59, 50.887) = 157.755, 

p<0.001, η2= 0.831 and F (2,64) = 202.523, p < 0.001, η2 = 0.864 respectively). Theta state found also to 

be higher in H-H interaction (F (2, 64) = 19.059, p <0.001, η2= 0.373), significantly different from H-NA 

and H-VH (p<0.001). A small difference was also found in the delta band (F (2, 64) = 4.635, p = 0.013, η2= 

0.109). The histograms of Figure 5.8 clearly illustrate these results with the relevant SDs. 

 

 

Table 5.8  Brain states per interaction 
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 H-H 
M(SD) 

H-NA 
M(SD) 

H-VH 
M(SD) 

delta 0.211 (0.043)a,c,d 0.192 (0.035)a,d 0.196 (0.037)a,d 

theta 0.268 (0.042)b 0.236 (0.035)b,c 0.245 (0.023)b,c 

alpha 0.189 (0.021)c,a,d 0.263 (0.048)c,b 0.261 (0.034)c,b 

beta 0.193 (0.025)d,a,c 0.178 (0.026)d,a 0.178 (0.023)d,a 

gamma 0.129 (0.019)e 0.132 (0.022)e 0.119 (0.021)e 

Note: Means in the same column with different letters are significantly different from one another based on post hoc 

t-tests with the Bonferroni correction (p<0.05).  

We also calculated the mean relative energy in each interaction, shown in Table 5.8. For the H-H 

interaction, the repeated measures ANOVA showed a significant difference between the brain states (F 

(2.606, 88.610) = 70.944, p<0.001, η2= 0.676), with the dominant state to be the theta one (Er = 0.268 ± 

0.042) and the second higher the beta. During H-NA interaction, we also found a significant difference in 

the mean energy of the brain states (F (2.845,93.873) = 84.203, p<0.001, η2 = 0.718) with the alpha band 

to be the dominant and theta the second one, with a significant difference between them. The same results 

were found for the H-VH interaction. In both H-NH interactions, beta and gamma states were significantly 

lower than the others with no difference between them. In general, we can see that for both nonhuman 

interactions, the alpha state prevails whereas during H-H interaction we noticed mainly the theta rhythm. 

Figure 5.9 illustrates the differences in brain states per interaction.  

 

Figure 5.9 Differences in brain states per interaction. 



 101 

Motion data 

Regarding our motion data, extracted from the Kinect, we firstly examined how our body movements 

change based on the nature of our interlocutor. Thus, we calculated the degree of movement’s range for 

each joint to investigate how much each predefined body point was moved, as shown in Figure 5.10. To 

wit, movement’s range shows us how each body joint has moved during the interaction or, in other words, 

how much its starting point has moved.  

Movement does not change in the same way for each interaction. We can see that during H-H, the upper 

body follows smoother changes that present no significant differences between them. Consequently, there 

is no difference between the two sides, neither between the upper and the lower part except the hip 

movement but there is a significant difference among all the body points (F (3.78, 139.89) = 12.070, p 

<0.001, η2=0.246). Regarding H-NA and H-VH interactions, there is also a significant difference among 

all body points with F (4.33, 160) = 25.153, p <0.001, η2=0.405, and F (3.21, 118.7) = 27.996, p<0.001, 

η2=0.431 respectively. We can see that the left side of the upper body shows a significantly bigger range of 

movement for both interactions. Same for the lower body compared to the upper one. 

 

 

Figure 5.10 Changes in movements’ range during the three interactions. The three different colored shades divide the three basic 

body structures (red – body trunk, green – upper body, blue – lower body) 

From the comparison of each body part among the three interactions, we found that there is no statistical 

significance in the left side of the human body among the interactions. However, for the right side of all the 
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body parts, the difference is significant only between H-H and H-VH, except the parts of the shoulder and 

elbow where there is also a difference between H-H and H-NA.  

Table 5.9 presents in detail the differences and the statistical significances in the range of movement 

between the three cases.  

Table 5.9 Differences in the range of movement between the conditions H-NA, H-VH and HH 

 
H-NA 

M (SD) 

H-VH 

M (SD) 

H-H 

M (SD) 

Spine Base 1.151 (0.138)a,b 1.118 (0.082)a 1.173 (0.123)b 

Spine Shoulder 1.124 (0.117)b,c 1.048 (0.073)a 1.115 (0.116)b 

Neck 1.090 (0.128)a,b 1.055 (0.072)a 1.118 (0.114)b 

Head 1.061 (0.129)b,c 0.982 (0.087)a 1.058 (0.121)b 

Shoulder L 1.159 (0.111) 1.099 (0.084) 1.123 (0.118) 

Shoulder R 1.108 (0.114)a 1.029 (0.063)a 1.137 (0.114)b 

Elbow L 1.177 (0.117) 1.139 (0.090) 1.142 (0.115) 

Elbow R 1.114 (0.124)b,c 1.036 (0.057)a 1.155 (0.117)b 

Wrist L 1.141 (0.131) 1.116 (0.081) 1.149 (0.126) 

Wrist R 1.064 (0.139)a,b 1.022 (0.084)a 1.108 (0.125)b 

Hand L 1.123 (0.142) 1.105 (0.082) 1.151 (0.142) 

Hand R 1.035 (0.155)a,b 1.012 (0.108)a 1.090 (0.136)b 

Thumb L 1.115 (0.142) 1.094 (0.083) 1.148 (0.143) 

Thumb R 1.027 (0.157)a,b 1.006 (0.109)a 1.080 (0.138)b 

Hip L 1.253 (0.125)a,b 1.195 (0.080)a 1.223 (0.117)b 

Hip R 1.236 (0.124)b,c 1.160 (0.084)a 1.231 (0.112)b 

Knee L 1.145 (0.169) 1.111 (0.134) 1.182 (0.169) 

Knee R 1.068 (0.162)a,b 1.049 (0.091)a 1.115 (0.160)b 

Ankle L 1.186 (0.189) 1.202 (0.129) 1.230 (0.192) 

Ankle R 1.133 (0.165)a,b 1.077 (0.140)a 1.152 (0.161)b 

Foot L 1.142 (0.204) 1.171 (0.143) 1.193 (0.202) 

Foot R 1.087 (0.174) 1.044 (0.160) 1.104 (0.167) 

Note: Means in the same row with different letters are significantly different from one another based on post hoc t-

tests with the Bonferroni correction (p<0.05). The absence of letters signifies no statistical significance. Values are 

measured in degrees.Emotion recognition  
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Except the range of movement, we also conducted an emotion recognition, which gave us the percentages 

of the seven discreet emotions that can verify or contradict the results of the questionnaire. Statistical 

significance is shown in the results of Figure 5.11 with the use of the asterisks.  

Emotions during H-H interaction have always a statistical significance compared to the other two 

conditions. Happiness and fear are the two dominant emotions during H-H but also surprise presents a 

higher level. H-NA interaction is described mainly by a neutral emotional situation but also by fear and 

anger. Fear has no statistically significant difference between H-H and H-NA conditions. H-VH interaction 

presents an equal neutral emotional state to H-NA, but we also found the lowest level of positive emotions.  

 

Figure 5.11 Percentages of emotions extracted from the body movement captured by Kinect in the three interactions. 

Muscles’ activity measured by EMG 

We first conducted a frequency analysis to calculate the mean value of each of the four predefined muscles, 

for both sides. Results are depicted in Table 5.10, along with their statistical significance. We noticed a 

higher activity of the muscles in the right side, especially during the interaction with the nonhuman agents. 

During H-H interaction, our repeated measures ANOVA exhibited a significant difference among all 

muscles (F (4.5, 170.8) = 27.745, p<0.001, η2=0.413) but only the muscle of the shoulder (trapezoid) had a 

difference between the two sides (p=0.003). During H-NA and H-VH interactions, the difference was 

significant among all muscles except from the thenar one (F (5.19, 192.13) = 33.432, p < 0.001, η2= 0.575 

and F (5.16, 185.81) = 35.522, p< 0.001, η2= 0.588, respectively) but all of them presented a difference 

between the two body sides. We also noticed that the difference between the two body sides is smoother 

during the H-H interaction.  
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Moreover, we examined possible differences in each muscle between the interactions. We found differences 

mainly between H-H and H-NA, and mainly for the right side. No differences were found between H-NA 

and H-VH.  

The activation of muscles can be also shown in Figure 5.12 which illustrates an example of a spectrogram 

extracted from the wavelet analysis. We can see the firing of the muscles for both body sides in each 

interaction. The spectrogram confirms the results of Table 5.10 with the higher firing in the muscles of H-

NH interactions. Specifically, we can see the bigger activation of the trapezius muscle in H-VH, thenar 

muscles in H-NA and H-VH, and abdominal in H-VH. We can also notice the slightly higher firing of the 

Biceps muscle in H-VH interaction.   

Table 5.10 Mean Values (SD) for the mean frequency (Fmean) and the root mean square (RMS) for both sides of the four 

muscles per interaction. Bic: Biceps, Tra: Trapezius, The: Thenar and Abs: Abdominal 

 Fmean (Hz) 

M (SD) 

RMS (uV) 

M (SD) 

H-NA H-VH H-H H-NA H-VH H-H 

BicL 100.3 (19.7) 100.3 (21.6) 95.7 (12.1) 19.2 (3.2)a 17.1 (2.1)a,b 14.4 (3.1)b 

BicR 132.6 (22.9)a 125.0 (13.3)a,b 92.8 (11.3)c 24.4 (4.2)a 23.3 (3.5)a,b 21.2 (3.8)b 

TraL 30.7 (9.2)a 30.5 (8.2)a,b 18.6 (2.3)b 24.4 (5.0)a 22.5 (7.7)a,b 19.0 (7.1)b 

TraR 72.0 (3.6)a 78.3 (7.3)a,b 55.8 (19.7)c 35.3 (4.6)a 33.3 (5.2)a,b 29.0 (4.1)b 

TheL 59.8 (10.1)a 53.3 (3.6)a,b 41.5 (5.1)c 32.8 (11.1) 32.5 (11.3) 30.7 (9.2) 

TheR 60.0 (9.1)a 52.5 (1.4)a,b 45.5 (6.7)b 53.0 (8.9)a 51.3 (9.2)a,b 42.5 (9.6)b 
AbsL 12.8 (3.2) 14.8 (4.6) 11.6 (2.1) 16.7 (3.6)a 15.3 (3.9)a,b 14.1 (4.3)b 
AbsR 35.7 (6.3)a 39.7 (10.3)a,b 12.1 (4.1)b 15.5 (3.5) 14.6 (4.3) 14.3 (5.6) 

Note: Means in the same row with different letters are significantly different from one another based on post hoc t-

tests with the Bonferroni correction (p<0.05). The absence of letters signifies no statistical significance. Values are 

measured in Hz. 
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H-H 

H-NA 
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Figure 5.12 Example of a participant’s spectrogram extracted from the wavelet analysis for the four muscles on each side and 

each interaction. 

Lastly, we calculated the value of root mean square (RMS), which gives us information about the muscles’ 

intensity, as also shown in Table 5.10. We noticed again a higher intensity in the right side for all muscles 

and all interactions, except the abdominal where no significant difference was found. Specifically, in H-H, 

a significant difference among all muscles (F (2.583, 95.555) = 35.144, p<.001, η2 =0.487) was found and 

for both sides (p<0.001 for all muscles), except the abdominals. The same result we received for both H-

NA and H-VH (F (2.251, 83.282) = 58.520, p<0.001, η2 =0.613 and F (3.648, 134,979) = 95.573, p<0.001, 

η2 =0.721 respectively). For all comparisons, a Greenhouse-Geisser correction was applied due to violations 

of the sphericity assumption. A higher intensity was found for the muscle of thenar for all interactions, 

whereas lower intensity for the abdominals, with similar values among interactions. Differences were 

significant mainly between H-H and H-NA, as for Fmean.    

Audio signal  

From the audio signal, we extracted features as shown in Table 3 above, separated in time – related features, 

frequency – related features where we include the Intensity, and acoustic ones. We examined also each 

question separately to evaluate their selection and the overall job interview process. Moreover, wherever 

possible, we explored the reactions of the nonhuman agents, to facilitate and validate the comparison 

between the interactions.  

• Time – related features  

H-VH 
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Time – related prosodic and conversational features include the duration of each answer, the total duration 

of each interaction, the pause duration, voice breaks, response time and speechrate. Table 5.11 depicts the 

results for each interaction with their descriptive statistics.  

Specifically, firstly we examined the duration of each response. That means strictly the time starting when 

participants began to reply to the question until their last word. Expressions of hesitation or uncertainty at 

the beginning of a response were taken into account. The longest average time for an answer was noted 

during H-H interaction with a significant difference among the three interactions (F (2,54) = 44.100, p = 

<0.001, η2 = 0.620). Post hoc comparisons indicated that there is a significant difference both between H-

H and H-N and, H-H and H-VH.  

The total duration of each interaction includes the welcome and the goodbye of the agent. H-VH interaction 

presented the longest total duration of all interactions and was found significantly different from H-H and 

H-N with p=0.018 and p <0.001 respectively. In general, a significant difference among the three 

interactions was found (F (2, 54) = 7.805, p=0.001, η2 = 0.224).  

Pause duration refers to the average value of all the pauses done during the speech of the participant. We 

noticed the lower average value during H-H interaction. A significant difference for the three interactions 

was found (F (2,54) = 4.699, p = 0.013, η2 =0.148) but the post hoc comparisons showed small differences 

between the pair of groups for the three cases.  

In Praat software, voice breaks are described as “the number of distances between consecutive pulses” 

[179].  H-H presents the highest value and there is a significant difference among the three interactions, (F 

(1.3, 35.9) = 31.863, p < 0.001, η2 = 0.541). Post hoc comparisons verified the high significance.  

Response time refers to the time participants needed to answer a question. Specifically, it starts directly 

after the end of the agent’s sentence until the first sign of response.  The lower value was found for H-H 

whereas in H-N and H-VH the value was significantly higher (F (2,54) = 49.411, p <0.001, η2 = .0662). 

Pairwise analysis showed a difference between H-H and H-N and H-H and H-VH (p <.001 for both). This 

feature was also examined in the speech of nonhuman agents. The comparison between humans’ responses 

in H-H and the responses of the agents (Nadine, Nicole) showed a significant difference with F (2,54) = 

53.828 and p <0.001. 

Lastly, we examined the speech rate, as the number of syllables per second. The feature presented a 

significant difference among the interactions (F (2,54) = 11.230, p <.0001, η2 = 0.294) and the post-hoc 

comparisons specified them between H-H and H-N as well as between H-N and H-VH. As before, we 

conducted the comparison between humans’ and agents’ responses and we found a significant difference 

among the interactions, F (2,54) = 10.422, p <0.001 and η2 = 0.278. Post hoc comparisons showed that VH 
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showed significant differences with both other interactions which means that Nicole had a faster speech 

rate compared to human participants, as well as to Nadine.  

Table 5.11 Summary of the descriptive statistics for the significant acoustic/prosodic and conversational time-related features for 

the three interactions and the comparison of human/agents 

Features Interactions Mean SD p  Agents Mean SD p 

Time (sec) H-H 15.754 4.159 
<0.001 

    

H-N 10.464 4.501 

H-VH 10.396 4.046 

Total 

Duration 

(min) 

H-H 3.563 0.920 
=0.001 H-N 3.347 1.121 

H-VH 4.006 1.081 

Pause 

Duration 

(sec) 

H-H 0.229 0.059 = 

0.013 H-N 0.272 0.116 

H-VH 0.279 0.124 

Voice 

Breaks 

H-H 30 8 
<0.001 H-N 20 9 

H-VH 19 8 

Response 

Time (sec) 

H-H 1.147 0.353 
<0.001 

   
<0.001 H-N 2.018 0.545 ΝΑ 1.960 0.599 

H-VH 2.082 0.765 VH 2.174 0.388 

Speechrate 

(nsyll/sec) 

H-H 3.570 0.352 
<0.001 

   
<0.001 H-N 3.260 0.412  NA 3.737 0.651 

H-VH 3.467 0.507  VH 4.474 0.840 

 

• Frequency – related features and Intensity  

As frequency-related features, we extracted the fundamental frequency (F0), the minimum and the maximal 

value of it (Fmin, Fmax), the first two formants (F1, F2), and the intensity (I). Table 5.12 presents the results 

of all the interactions and their descriptive statistics. All features were also extracted from the voice of 

nonhuman agents.  

F0 represents the main frequency used for the transmission of speech and can be related to pitch. Although 

the frequency is directly related to gender, we took the average value to compare the three interactions. 

There is a significant difference among the three interaction (F (2, 52) = 33.953, p <0.001, η2 = 0.566), 

specifically between H-H and H-VH (p = 0.035) and marginally between H-H and H-N (p = 0.045). As we 
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expected, we found an interaction between the average value and the variable of the gender (F (2.52) = 

30.685, p < 0.001, η2 = 0.541). The average value for the women’s voice is 180.651 ± 3.724 Hz whereas 

for the men’s is 128.997 ± 2.150 Hz and thus, the difference between them is 52.655 Hz (p <0.001). There 

was also a difference of 12.404 Hz between the two ethnicities, but it seems that there is no significance for 

it. Furthermore, we conducted the comparison between humans’ and agents’ reactions, and we saw that the 

average value of Nadine’s voice was equal to the women’s voice but the one of Nicole was significantly 

higher. The difference between them and the average human value was significant (F (2,54) = 115.623, p 

<0.001, η2 =0.811) with a significance between every pair of interactions.  

Given that the differences in frequencies are expected, as the anatomy between women and men is different, 

we were interested mainly in the changes during the procedure and among the interactions. That is, to assess 

how and if we adapt to each thematic area and to see if we are affected by our interlocutor. To complete 

this, we examined the minimum and the maximum of the F0 range to see the extent of our pitch. It is of 

interest that the minimum frequency is almost the same for the three interactions and both genders. There 

is no significant difference among the interactions but there is one between humans and agents (F (2,54) = 

67.593, p <0.001, η2 = 0.715). Contrariwise, the maximum value of F0 (Fmax) found to be significant 

among the interactions (F (2,54) = 12.845, p <0.001, η2 = 0.322) and post hoc comparisons showed 

differences between all pairs with p< .001. The difference between the genders was also found to be 

significant (p <.001). Finally, we found a significant difference between the agents and the human (F (2,54) 

= 27.747, p <0.001, η2 = 0.593).  

Likewise, we examined the first two formants F1 and F2. Formants are frequency peaks in the spectrum of 

the acoustic resonance of the human vocal tract [251]. Regarding the F1, there is a significant difference 

among the three interactions (F (2,54) = 4.283, p = 0.019, η2 = 0.137), and as the post hoc tests indicated, 

this difference is between H-H and H-VH (p =0.021). No significant difference was reported between 

humans and agents.  F2 depends on the shape of the mouth and the oral cavity and thus, unlike F1, there 

was a significant difference between male and female participants (p = 0.024). There is a significant 

difference among all interactions (F (1.26, 34.18) = 5.854, p = 0.015, η2 = 0.178), specifically between H-

H and H-VH (p = 0.003). Both agents presented similar values and the comparison with the humans’ values 

showed a significance (F (2,54) = 12.583, p < 0.001, η2 =0.318) between H and N (p <0.001) and, H and 

VH (p =0.002).  

The last frequency-related feature is the one of the intensity, or in other words, volume.  There was a great 

statistical significance among the three cases (F (2,54) = 113.454, p <0.001, η2 =0.808), which was 

confirmed by the post hoc tests: H-H and H-N (p <0.001), H-H and H-VH (p <0.001) and, H-N and H-VH 

(p<0.001). For the human-agent comparison, we also got a significance difference (F (2,54) = 39.607, p 
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<0.001, η2 = 0.595), specifically for H and N (p <0.001) and for H and VH (p <0.001) which means that 

both agents tended to speak a bit louder than the humans.  

Table 5.12 Summary of the descriptive statistics for the frequency-related features for the three interactions and for the comparison 

human/agents. Nonsignificant values are displayed in grey 

Features Interactions Mean SD p 

 

Agents Mean SD p 

F0 (Hz) 

H-H 137.710 18.176 

<0.001 

   

<0.001 H-N 144.316 29.600 ΝΑ 180.151 10.553 

H-VH 144.456 28.817 VH 193.689 10.915 

Fmin 
(Hz) 

H-H 103.719 11.339 

=0.331 

   

<0.001 H-N 106.306 21.134 ΝΑ 132.119 16.132 

H-VH 102.131 14.737 VH 147.156 13.397 

Fmax 
(Hz) 

H-H 187.537 30.494 

<0.001 

   

<0.001 H-N 212.710 44.942 ΝΑ 224.033 15.979 

H-VH 220.310 49.212 VH 239.566 32.425 

F1 (Hz) 

H-H 586.832 37.287 

=0.019 

   

=0.521 H-N 602.247 27.488 ΝΑ 594.287 45.120 

H-VH 606.503 24.368 VH 587.325 46.833 

F2 (Hz) 

H-H 1785.901 78.427 

=0.015 

   

<0.001 H-N 1742.359 81.141 ΝΑ 1883.986 81.597 

H-VH 1726.560 65.451 VH 1889.870 83.645 

I (dB) 

H-H 39.623 1.834 

<0.001 

   

<0.001 H-N 43.695 3.368 NA 45.861 3.023 

H-VH 47.550 4.079 VH 45.238 3.407 

 

• Acoustic features  

Lastly, as acoustic features, we extracted the jitter, shimmer, Harmonics-to-Noise Ratio (HNR), and pulses. 

Jitter and shimmer have successfully been used in describing vocal characteristics. Table 5.13 summarizes 

the results for the three interactions and their descriptive statistics.  

Jitter (J) refers to frequency perturbation which can imply irregularities in the duration of the signal [252]. 

We found no significant difference among interactions. However, we found a significant difference between 

Nadine, Nicole, and the humans (F (2.54) = 39.069, p <0.001, η2 = .0591) and pairwise comparisons 

specified it between every pair of interactions. The lower the value of the J, the better. We see that the J of 
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agents is lower compared to humans’ response. This is normal, as the human factor and human emotions 

can affect the human voice compared to the programmed voice of the robot and the avatar.   

Shimmer, on the other hand, refers to amplitude perturbations. The difference among the three interactions 

was significant (F (2,54) = 30.310, p <0.001, η2 = 0.529) and post hoc analysis indicated the difference 

between H-H and H-N (p <0.001) as well as H-H and H-VH (p <0.001). Although the acoustic features we 

have chosen are dependent on the human anatomy, we also measured the shimmer for the two agents so 

that we can conduct the comparisons. The difference between them was found to be significant (p <0.001) 

as well as their difference with the humans (F (2,54) = 69.719, p <0.001, η2 = 0.721). Although jitter and 

shimmer are normally measured in a steady voice for each vowel separately, we used the average for the 

whole voice duration to serve better our purposes.  

Table 5.13 Summary of the descriptive statistics for the acoustic features for the three interactions and the comparison of 

human/agents. Nonsignificant values are displayed in grey. 

Features Interactions Mean SD p 

 

Agents Mean SD p 

Jitter 
(%) 

H-H 1.001% 0.081% 
=0.541 

   
<0.001 H-N 1.002% 0.093% ΝΑ 0.676% 0.023% 

H-VH 0.903% 0.101% VH 0.488% 0.021% 

Shimmer 
(%) 

H-H 13.78% 1.04% 
<0.001  

   
<0.001 H-N 11.84% 2.00% ΝΑ 17.772% 1.016% 

H-VH 12.28% 1.58% VH 15.775% 1.390% 

HNR 
H-H 8.314 0.812 

<0.001 

 

   
<0.001 H-N 9.583 1.692 ΝΑ 6.423 0.770 

H-VH 9.475 1.503 VH 8.150 1.097 

Pulses 
H-H 110 13 

=0.438 
   

<0.001 H-N 114 23 NA 157 17 

H-VH 113 22 VH 167 19 

HNR describes the degree of acoustic periodicity, which means that portrays the relationship of two 

components: the periodic component and the noise [253]. It is usually used to diagnose voice pathological 

disorders but, in our case, it can be used to demonstrate any kind of perturbation. It is also mentioned that 

gender and age can affect its value [253]. We found a significant difference among all interactions (F (2,54) 

= 29.466, p <0.001, η2 = 0.522) and post hoc comparisons specified the difference between H-H and H-N 

and, H-H and H-VH (p <.001). The comparison between humans and agents gave us also significant results 

(F (2,54) = 35.772, p <0.001 and η2 = 0.570) with post hoc analysis to indicate that the differences are 

between H and both N and VH. We can see that Nicole’s value is similar to the human’s one.  
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Lastly, the pulse implies the rhythm of the speech. We found no noteworthy differences among the 

interactions, not even for the questions. The difference between humans and agents was clearly significant 

(F (2,54) = 100.597, p <0.001, η2 = 0.788), and our post hoc analysis showed us the exact differences 

between H and NA (p <0.001) and between H and VH  (p <0.001). 

 

Figure 5.13 Comparison of the features between humans’ and agents’ responses. Only the features with a significant difference 

are presented. 

Figure 5.13 depicts the features that presented a significance between humans and agents.  

To conclude, we notice that participants changed their reactions based on the nature of the questions but 

apparently, their interlocutor also affected their choices. During H-H interaction, the questions regarding 

the work environment and the salary elicited the maximum level of participants’ responses, meaning that 

standard, formal questions provoke more stress while interacting with another human. On the contrary, 

more personal questions, like weakness and hobbies brought out the minimum values of human vocal 

reactions. HRI followed the same pattern with professional achievements and suitability to draw out more 

intense human reactions and the imagination of someone’s self in five years (yourself_5) the least. The full 

description of the questions is shown in Table 1. However, H-VH interaction acted differently with the 

question of weakness to have the highest values of voice features and the one of the work environment to 

have low values.  
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Emotion recognition  

The results from the emotion recognition are in line with the emotions extracted from the body movements. 

As we see in Figure 5.14, the dominant emotion during H-NH interaction is sadness. Surprisingly, 

participants felt calmer and less fear while interacting with the digital human. They presented the same 

degree of fear while both H-NA and H-H, with no significant difference between them. But they seemed 

happier while interacting with another human. 

 

Figure 5.14 Emotions extracted from the voice signal for the three interactions. Significant differences are shown with an 

asterisk. Y axis represents the amount of time each emotion was recognized as dominant in each interaction. 

ML model  

Taking full advantage of our voice signal, we also developed a pipeline that successfully separates our data 

into 3 clusters, proving that from voice data we can actually distinguish whether somebody is talking to a 

Human, a Robot, or a Virtual Human. The pipeline consists of the LDA dimensionality reduction method 

and the KNN classifier, as described in the methodology. The former transforms the data to a latent space 

where they are more easily separable, and the latter finds the best function to fit over the data. The final 

results of our model are depicted in the matrix of Figure 5.15. 

For more details on the performance of the final model, we generated a confusion matrix. More specifically, 

a confusion matrix gives insights regarding the type of errors being made by the classifier. To generate the 

confusion matrix we used 10-Fold CV. On each iteration, we normalized all correct and incorrect 

predictions per class. Subsequently, all values were averaged. Finally, an averaged confusion matrix was 

produced. 

* *

*
*

* *

*
*
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Figure 5.15  Confusion matrix 

Lastly, Figure 5.16 shows an approximation of the decision regions of the KNN classifier over the whole 

dataset. The decision region helps the understanding of how the classifier has decided to divide the input 

feature space by class label. 

 
Figure 5.16  Results from the KNN classification (decision boundaries) of the two LDA voice features in the three classes 

(Human, Robot, Virtual Human (Avatar) ) with K = 15. 

To find the optimal K for the KNN classifier, a 10-Fold CV was employed. The value of K=15 delivered 

the most satisfying results. The results of the final model are shown below:  
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§ Precision: 0.818 ± 0.044 

§ Recall: 0.822 ± 0.043 

§ F1-score: 0.816 ± 0.044 

Psychometric data 

Lastly, our results were completed by the subjective psychological reports of our participants via the 

questionnaire. A clear pattern of differences between positive and negative emotions emerges in all three 

conditions. Positive emotions are the strongest, negative emotions are the least strong, and surprise is in 

between, for each condition. Table 5.14 summarizes the results for all the emotions and the post hoc tests 

using the Bonferroni correction. 

Table 5.14 Differences in the strength of Emotions per conditions H-NA, H-VH and H-H 

 
H-NA 

M (SD) 

H-VH 

M (SD) 

H-H 

M (SD) 

Interested 3.80 (0.88)a 3.00 (1.06)b 3.82 (0.84)a 
Confident 3.75  (0.78)a 3.70 (0.97)a 4.08 (0.76)a 
Active 3.38  (0.87)a 2.92 (0.86)b 3.90  (0.93)a 
Inspired  3.35  (1.03)a 2.60  (0.98)b,c 3.18  (0.87)b 
Concentrated 3.20  (1.02)a 3.00  (1.01)b,c 3.62  (0.95)a,b 
Surprised 2.98  (1.14)b 2.18  (1.17)c,d 1.92  (0.94)c 
Nervous 2.25  (1.01)c 1.88  (0.94)d,e 1.92  (0.94)c 
Tired 2.10  (1.17)c, d 1.82  (0.96)e 1.60  (0.87)c,d 
Shy 1.82  (0.78)c, d 1.38  (0.67)e, f 2.08  (1.12)c,d 
Upset 1.72  (1.15)c, d 1.38  (0.70)e, f 1.22  (0.62)d,e 
Afraid 1.55  (0.71)d 1.42  (0.64)e, f 1.38  (0.67)c,d,e 
Ashamed 1.42  (0.59)d 1.32  (0.62)e, f 1.45  (0.75)c,d,e 
Sad  1.42  (0.75)d 1.18  (0.45)f 1.12  (0.40)d,e 
Rejected 1.38  (0.70)d 1.60  (1.01)d,f 1.25  (0.54)d,e 

Note: Means in the same row with different letters are significantly different from one another based on post hoc t-

tests with the Bonferroni correction (p<.05). The absence of letters signifies no statistical significance.  

Examining each emotion separately in each condition, we found that there were no differences between the 

three conditions in Afraid, F(2, 78) = 1.266, p = 0.889, η2 = 0.03, Nervous, F (2, 78) = 2.939, p = 0.059, η2 

= 0.07, Ashamed, F(1.475, 57.540) = 0.745, p = 0.441, η2 =0.02, Rejected, F(1.742, 67.922) = 2.991, p = 

0.064, η2 =0.07, and in Calm, F(1.699, 66.263) = 0.987, p = 0.367, η2 =0.02. Note that for the comparisons 
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in Nervous, Ashamed, Rejected and Calm, a Greenhouse-Geisser correction was applied due to violations 

of the sphericity assumption.  

However, Repeated measures ANOVAs exhibited that there were differences between the three conditions 

in Sad, F(1.433, 55.884) = 5.521, p = 0.013, η2 = 0.12, Upset, F(1.370, 53.418) = 8.087, p = 0.003, η2 = 

0.17, Tired, F(1.75, 68.07) = 5.106, p = 0.011, η2 = 0.12,  Shy, F(2, 78)  = 10.926, p < 00.001, η2 = 0.22, in 

Surprised, F(2, 78) = 14.381, p < 0.001, η2 = 0.27, in Interested, F(2, 78) = 15.959, p<0.001, η2 =0.29, 

Active, F (2, 78) = 13.857, p < 0.001, η2 =0.26, in Inspired, F(2, 78) = 10.074, p < 0.001, η2 =0.20, 

Confident, F(2, 78) = 5.540, p = 0.007, η2 =0.12, Concentrated, F(2, 78) = 6.130, p = 0.003, η2 =0.14. Note 

that for the comparisons in Sad, Upset and Tired, a Greenhouse-Geisser correction was applied due to 

violations of the sphericity assumption.  

Figure 5.17 shows the dominant emotions during H-NA and H-H, respectively, that presented statistically 

significant differences with the other two conditions. We see that participants are significantly more 

surprised during H-NA interaction as well as sad and upset. We have categorized the emotion of surprise 

under the negative emotions but, given its subjective nature, we could also accept that it could work as a 

positive one. Remarkably, users were found to be more inspired during H-NA interaction and their interest 

was equal with the one in H-H but apparently, the process of interacting with nonhuman agents was more 

tiring. We could also mention that the level of nervousness was noted higher during H-NA interaction, 

without significant difference from the other two conditions though. On the other hand, while interacting 

with another human, participants were found to feel more confident, concentrated, and active but in the 

meantime shyer.  

 

 

Figure 5.17 The dominant emotions in H-NA and H-H respectively that presented statistically significant differences with the 

other conditions. 

Lastly, we examined the differences in the perception of the participants towards the agents. Repeated 

measures ANOVAs exhibited that there were differences between the three conditions in Sociable, F(2, 78) 
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= 32.564, p < 0.001, η2 = 0.46,  Friendly, F(2, 78) = 22.05, p <0.001, η2 = 0.36, and Hostile, F(1.687, 

65.796) = 14.761, p < 0.001, η2 = 0.28. We should note that for the comparisons in Hostile, a Greenhouse-

Geisser correction was applied due to violations of the sphericity assumption.  

Table 5.15 and Figure 5.18  summarize the comparison of the scores and the post hoc tests using the 

Bonferroni correction. 

Table 5.15 Differences in the human perception towards the agents between the conditions H-NA, H-VH, and H-H 

 NA 
M (SD) 

VH 
M (SD) 

H 
M (SD) 

Sociable 3.38 (0.92)a 2.62 (1.00)b 4.22 (0.77)c 

Friendly 3.78 (0.80)a 3.08 (0.92)b 4.18 (0.93)c 
Hostile 1.72 (0.75)a 1.90 (1.03)a 1.20 (0.40)b 

Note: Means in the same row with different letters are significantly different from one another based on post hoc t-

tests with the Bonferroni correction (p<.05) 

 

Figure 5.18 The scores of participants’ perception towards all the agents. 

Reactions’ correlations  

We conducted a Pearson correlation among all features and all modalities for each interaction. Firstly, we 

examined each modality with itself. Thus, for H-H, regarding the body movement, we found high positive 

correlations between all body joints with the upper body (spine base, neck, head) (Pearson’s coefficient r > 

.700). However, no correlation was found between the muscles measured through the EMG, except from 

the two sides of the thenar (r=0.533). Regarding voice features, a high correlation between the F0 and the 

PL (r=0.781), among all Fs (r >0.688) and between Fmin and Response time (r=0.688). Combining all the 

data, we found an interesting negative correlation between the upper body joints and the gamma band of 

the PF brain area.  The same band was found also to have a positive correlation with the frequency of the 
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voice. Then, the alpha band of the CP and P areas was found to have a low correlation with the left side of 

the upper body. Correlations between body joints and brain areas are summarized in Table 5.16. Moreover, 

as expected, the body joints of the torso (spine, neck, and head) were found to have a high correlation with 

all muscles.  Lastly, an interesting negative correlation was found between the intensity of the voice and 

the body joints of the arm (r >0.700) as well as with the biceps muscle (r =-0.721), indicating that the 

volume of the voice is related to arm movements.  

During H-NA, we found higher positive correlations between the body joints compared to the H-H (r equal 

to up to .954) but between muscles, we had only a positive correlation between the two sides of the thenar 

(r=0.562). Higher correlations were also found between the body joints of the upper body and all muscles, 

as shown in Table 5.17. PL is positively correlated with F0 (r =0.858) and VB with total duration (r=0.681). 

Voice frequency was found to be correlated with the alpha band of the CP area as well as the beta band of 

the P and PF areas.  In this interaction, we found a medium correlation between almost all body joints 

(mainly the upper body) with the frontal alpha band and the upper body joints with the temporal alpha band.  

Table 5.16  Pearson Correlation Coefficient r between body joints, voice frequency, and brain states, for H-H and H-NA 

interactions.  * Correlation is significant at 0.05 level, ** Correlation is significant at 0.01 level (2-tailed) 

 H-H  H-NA 

 Pre-g CP-a P-a T-a  Pre-b Fro-a CP-a P-b T-a Occ-a 
F0 0.653** -0.087 0.059 -0.101  -0.515** 0.089 0.590** 0.697***  0.066 -0.184 

Neck -0.544* 0.296 0.321 0.358  0.321 0.626** 0.411 0.382 0.613** 0.557* 
Head -0.546* 0.296 0.204 0.211  0.187 0.552* 0.320 0.260 0.507* 0.502* 

Spine Base -0.547* 0.337 0.379* 0.372  0.407 0.635** 0.407 0.371 0.578* 0.520* 

Shoulder L -0.620** 0.282 0.270 0.285  0.199 0.628** 0.374 0.302 0.552* 0.514* 

Elbow L -0.544* 0.512* 0.502* 0.507*  0.341 0.665** 0.276 0.291 0.638** 0.577* 

Wrist L -0.391* 0.521* 0.506* 0.560*  0.311 0.658** 0.199 0.253 0.668** 0.635** 

Hand L -0.369 0.534* 0.516* 0.563*  0.289 0.668** 0.243 0.287 0.690** 0.670** 

Shoulder R -0.663** 0.141 0.179 0.161  0.103 0.613** 0.319 0.364 0.533* 0.514* 

Elbow R -0.580** 0.186 0.161 0.413  0.170 0.631** 0.366 0.255 0.579** 0.477* 

Wrist R 0.532** 0.460 0.281 0.219  0.232 0.568* 0.210 0.175 0.558* 0.321 
Note: Pre-g: Prefrontal gamma, Fro-a: Frontal a, CP-a: CentroParietal a: P-a: Parietal a, P-b: Parietal beta, Occ-a: 

Occipital alpha 

Lastly, for the H-VH, we found a correlation between the two sides of the abdominal muscles (r=0.533) 

and of the thenar muscles (r=0.683). Total duration is again correlated with VB (r = 0.560) but lower than 

in H-NA and PL with the F0 (r=0.750). Correlations between the body joints of the Kinect data were found 

lower compared to H-NA, as well as between the upper and the lower body. The correlations between the 

muscles and the body joints of the upper body were also lower. Some muscles (Abs and Thenar) were found 

also to be correlated with the lower body (Knee, Ankle and Foot) with r up to 0.761.  
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Table 5.17  Pearson Correlation Coefficient r between upper body joints and muscles, for all interactions * Correlation is 

significant at 0.05 level, ** Correlation is significant at 0.01 level (2-tailed) 

 H-H 
 Biceps R Biceps L Trapez R Trapez L Thenar R Thenar L Abs R Abs L 
Spine Base 0.764** 0.789** 0.756** 0.772** 0.531** 0.598** 0.778** 0.771** 
Neck 0.864** 0.907** 0.888** 0.885** 0.654** 0.664** 0.893** 0.906** 

Head 0.886** 0.889** 0.965** 0.961** 0.689** 0.650** 0.831** 0.794** 

 H-NA 
Spine Base 0.913** 0.835** 0.892** 0.863** 0.602** 0.654** 0.879** 0.834** 

Neck 0.921** 0.945** 0.925** 0.947** 0.713** 0.744** 0.948** 0.946** 

Head 0.885** 0.927** 0.965** 0.967** 0.767** 0.752** 0.821** 0.807** 

 H-VH 
Spine Base 0.602** 0.609** 0.500* 0.609** 0.469** 0.519** 0.702** 0.635** 

Neck 0.827** 0.804** 0.798** 0.804** 0.278 0.088 0.869** 0.765** 

Head 0.745** 0.839** 0.921** 0.839** 0.223 0.213 0.665** 0.579* 

 

Role of gender and ethnicity 

Although our data were not balanced, we controlled possible interactions with gender or ethnicity and 

finally, we evaluated only differences with high statistical significance. The value of partial eta also helped 

us to assess the role of the sample size. Thus, throughout our modalities, we found some very interesting 

differences in some features regarding both gender and ethnicity.  

 

Figure 5.19 The significant differences found in features in function of the gender and/or ethnicity. 1 = H – H Interaction, 2 = H 

– N Interaction, 3 = H – VH Interaction 
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Figure 5.19 illustrates such differences for the audio modality. First of all, Asian participants tended to 

respond faster while interacting with nonhuman agents compared to Europeans. However, the latter tend to 

speak more. This is something we also observed during the experiments. In general, there were features 

where we found no significant difference during our statistical analysis but during the experiments, our 

observations gave us a different feeling. For example, Asian participants seemed to make longer pauses 

while speaking compared to the European ones whereas the latter seemed to speak louder. Equally, the 

difference in intensity between the two ethnicities was not significant but during the experiments, we had 

the impression that Europeans were speaking louder which may be a result of their higher expressivity.  

Regarding frequency, we got, as expected, a difference between genders. However, the Fmin presented no 

difference. Shimmer and HNR were also influenced by gender, with female participants showing a lower 

value of S and a higher of HNR, which is also in line with the study of Yumoto who found an association 

between HNR and hoarseness; the lower the value of HNR, the higher the level of hoarseness [254]. Women 

are usually expected to present less hoarseness in their voice, compared to men. Lastly, although for pulses 

we found no significant differences among the interactions, gender and ethnicity gave us different results. 

Europeans had more pulses than Asians in their voice and women more than men.  

Regarding our Kinect data, no significant difference has been noticed. However, of interest is that in our 

gender analysis, although we found nothing significant between the three interactions, we noticed that the 

value of each body part between females and males is the same during H-NA interaction whereas there is 

always a difference during the other two interactions.  

 

Figure 5.20  Mixed ANOVA with ethnicity as the between-subject variable for Biceps and Trapezius for the three interactions. 1. 

H-H interaction, 2. H-NA interaction and 3. H-VH interaction. 

Gender and ethnicity analysis for EMG data gave us no further significant results except the muscle of the 

arm, the Biceps. Ethnicity was found to have an interaction with this muscle (F(2,74) = 4.108, p=0.020, η2= 

0.100) between H-H and H-NA (p=0.003) as well as H-NA and H-VH (p<0.001). Moreover, we noticed 

that in general, for all muscles except the abdominals, the human responses during H-NA had always 
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approximately the same value between males and females, as well as Asians and Europeans. Figure 5.20 

confirms this via an example of Biceps and Trapezius from the ethnicity analysis.  

5.2.5 Discussion 

In this study, we performed an in-depth analysis and comparison between the natural human-human 

interaction and the human-computer and human-robot ones. Our goal was to find and bridge the gap 

between human and nonhuman interactions, extracting humans’ features that can help us understand human 

behavioral and emotional processes. The features can act as a tool for a more successful and fluid 

collaboration between humans and robots or other kinds of similar technology (i.e digital humans). What 

is mainly missing from the up-to-date state-of-the-art is the direct comparison of any kind of nonhuman 

interaction with the original human-human communication and the clarification of human behavioral 

patterns in the context of both natural and technological frameworks. Towards this direction, our results 

allowed us to answer adequately our third research question: How do humans’ voice and body react when 

interacting socially with humans compared to nonhuman agents?  

Human reactions 

Brain activity 

Regarding brain activity, we estimated the relative energy of each brain state in five brain areas. In the 

Prefrontal area, the theta state was found to be higher for all interactions, with no difference between them.  

In the Frontal area, the energy of the theta state was found to be significantly higher during H-NH 

interaction, indicating the cognitive load [37]. Increase in theta activity is also associated with the initial 

learning improvement [39]. Our result is in line with previous works [201] that pointed frontal theta 

oscillations when interacting with a humanoid, which is also extended to the digital humans in our case. 

Moreover, increase in the fronto-central theta waves has also been related to detecting prosodic emotional 

changes [189] and thus, theta band is associated with the perception of emotions through vocal expressions 

[190]. In this area, we also noticed high energy of the delta frequency band during H-H and H-NA. In 

general, delta oscillations play an important role in cognitive processes like attention, memory, and decision 

making and they are focused on frontal, central, and parietal areas, as well as occipital if they are related to 

emotional processes [191]. Specifically, they have been associated with arousal in posterior brain areas and 

with valence in anterior brain areas, as well as with surprise [39]. Moreover, delta activity in frontal areas 

has also been linked to the perception of face recognition related to emotional expressions [192]. The fact 

that we noticed this energy during H-H and H-NA makes us think that the physical presence of these agents 
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(human and robot) facilitates the perception of face recognition. Lastly, gamma band was higher only during 

H-NA. Unpleasant stimuli can trigger effects in gamma range and higher frequencies have also been found 

to be a reliable indicator of arousal [39]. 

In the Parietal area, as expected, we found high energy of alpha waves during H-NH interaction which is 

in line with our previous studies working in HRI or VR as described before. Since our experiment doesn’t 

involve VR but interactions with nonhuman agents, we may assume that it can also be used as an indicator 

of an H-NH interaction. However, further investigation is needed for the clarification of alpha oscillations’ 

role in this field. Alpha oscillations in the Temporal area are also in line with our previous studies, probably 

indicating the effort of participants to decipher the voice of the nonhuman agents.  

Lastly, in the Occipital area, as we expected, we found high energy of alpha waves during H-NH, which 

indicates the engagement level of visual attention mechanisms. During H-NH interaction, the brain is in 

process of a smaller repertoire of non-familiar faces and objects, compared to the H-H one, where we 

noticed increased beta waves. Higher beta activation can be elicited by dynamic emotional face expressions 

[190]. Moreover, during H-NH interactions, a medium level of delta band energy was noticed, which can 

be associated with emotional processes and specifically arousal.  

Motion data  

Regarding the motion data, combining the results derived from the Kinect and the EMG, we interestingly 

noticed that in general, the left side of the body had a bigger range of movement as well as the lower part, 

but the right side had higher intensity and activity of muscles for all interactions. Our results led us to 

assume that most of our participants were right-handed. We conclude that the left side is more relaxed and 

thus, the range of the motion can be bigger. Specifically, when comparing H-H with H-NH interactions, the 

differences in motion between the two sides are smaller but the range of movement is bigger. The latter can 

be considered as spreading of movement and based on the Laban Movement Analysis (LMA), it reveals a 

happy emotion [35]. However, we should note that during H-NA the range of movement was bigger 

compared to H-VH, revealing that participants were more motivated to move in front of a robot than of a 

digital human. During H-NH interactions, muscles presented higher activity with significantly higher mean 

frequency compared to H-H, and higher intensity with higher RMS but no significant difference was found 

between H-NA and H-VH. Specifically for the biceps muscles, we found high Fmean, which means that 

the muscle was often used, executing movements like supination of the arm or elbow flexion, but with low 

intensity. In other words, small, sharp movements were executed. This kind of movements can be associated 

with the emotion of anger [35]. The trapezius muscle follows, which means shoulder and upper back were 

used, but a medium level of intensity. Given the nature of the movements, i.e elevation of the shoulder, this 

outcome could signify a lack of comfort. Regarding the thenar muscles, we found lower Fmean but high 
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levels of RMS, which can be translated as longer movements with higher intensity, like the clenching of 

the fingers. We will consider this movement compressed and confined and thus, we will relate this 

movement to the fear [35]. Lastly, results from the abdominal muscles were inconclusive as only the RMS 

value was found to be slightly significantly higher during H-NA, meaning that participants either were 

breathing a bit faster or/and they did more intense movements with their trunk.  

Vocal behavior  

Participants’ vocal behavior gave us also interesting results. First of all, we noticed that participants spent 

more time on their answers when interacting with another human. Moreover, we noticed that the pause 

duration is lower during H-H, but the number of voice breaks is higher. The response time during H-H was 

significantly lower, which indicates a better flow in the discussion. For this feature, we noticed that the 

human response was correlated to the agent’s response and we started wondering if our responses are 

influenced by our interlocutors. To confirm this assumption, we conducted a Pearson correlation for this 

feature, as shown in Figure 5.21, and we found that the higher the response time of the interviewer the 

higher the value of the participant as well.   

 

 

Figure 5.21  Response time between the participant and the agent. Pearson r correlation coefficient is equal to 0.744 and 0.740 

from left to right. 

The same result we noticed for the speech rate but not with such a strong correlation. The highest value of 

Sr was detected during H-H which means that we tend to speak faster with other people.  

Of interest is the change in the frequency while interacting with agents. Τo facilitate our purpose, we used 

the average value of frequency, men and women included. We take into account that both nonhuman agents 

are females and human agent as well. However, the significant outcome is that frequency is lower when we 

speak with people and higher when we speak with nonhuman agents. So, we cannot claim that mimicry 

plays a role for this feature. We also noticed that the lower values of F presented no significant difference, 

but the maximum values do. Moreover, participants tended to speak louder when interacting with Nadine 
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or Nicole. That could be a sign of stress, but it can also be linked with the fact that participants felt a higher 

level of shyness interacting with the human. Shyness can decrease the volume. Apparently, the nature of 

the agent also played a role In the human responses as e.g participants spoke slower and softer to Nadine 

compared to Nicole.  

Lastly, we examined acoustic features to find any perturbations in the voice. Although jitter gave us no 

significant differences, shimmer was found higher during H-H interaction. HNR is considered a sensitive 

index of vocal function. In our study, the highest value of HNR was found for the H-N interaction whereas 

the lowest one for H-H. As we mentioned before, HNR is related to hoarseness [254] so we can conclude 

that participants tend to present some hoarseness while interacting with the human.  

In summary, when interacting with nonhuman agents compared to another human in a context of a job 

interview, we tend to give shorter answers with longer pauses and to speak slower. The frequency and the 

intensity of the voice are higher. Perturbations in amplitude are less and the value of HNR is bigger. 

Increased levels of frequency combined with slower speechrate and high volume are associated with 

nervousness and agitation [33]. Moreover, high levels of volume with high frequency are also related to 

fear [34]. In general, differences in vocal behavior were obvious among the three interactions and that was 

verified by our classification model.  

Psychological data  

Lastly, we combined the results from the questionnaire with the emotion recognition from the audio and 

the movement. The questionnaire is the only subjective measure we have in our study, and it was very 

compelling to have the opportunity to see how participants evaluated themselves compared to how their 

body and brain actually reacted. Thus, participants claimed to be more interesting and inspired during H-H 

and H-NA interactions but in the meantime shier. During H-H interaction, happiness, confidence, and 

concentration were the dominant emotions whereas during H-NH were mostly negative ones, such as 

agitation and surprise. The digital human received a medium score for almost all the emotions. On the other 

hand, voice and motion showed us mainly negative emotions during H-NH interactions, with sadness, fear 

and even neutral to be the dominant ones. Happiness is always present during H-H interaction, and voice 

showed us that during H-VH interaction participants felt calmer. H-VH interaction seemed to be more 

familiar to participants, compared to the H-NA one, as they were found less shy, less fearful, and calmer 

but also with less interest and inspiration.  

Summary 

Summing up, brain results showed us that participants tended to deal more with their emotions during H-

NH interactions, and especially during H-NA. Interaction with the nonhuman agents seemed to make them 
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more concentrated, with a higher cognitive load.   They used to speak louder and slower, with a higher 

frequency, longer pauses, and shorter answers. The nature of the agent affected their vocal behavior. 

Movements had a narrow range but with a big difference between the two body sides and they were more 

intense, especially during H-NA. In general, the left side presented larger movements but the right-side had 

higher activation.  H-NH interactions provoked mainly negative emotions in participants but the interaction 

with Nadine also triggered interest and inspiration. Figure 5.22 summarizes these results.  

 

Figure 5.22 Summary of the human reactions per interaction for each modality 

To complement the above, we also examined possible correlations among all human reactions. The 

frequency of the voice and specific body joints was found to be correlated with brain bands and all the 

examined muscles were found to be correlated with the movements of the head, neck, and low part of the 

spine. Specifically, during H-H interaction, the voice frequency and the upper right body side correlated 

positively and negatively, respectively, with the gamma band of the Prefrontal area. As we have mentioned 

before, the gamma range is triggered by unpleasant or arousing stimuli [38]. The negative correlation could 

verify the dominance of positive emotions during H-H. However, the upper left body part is positively 

correlated with the alpha band of the CP, P, and T areas. During H-NA, all upper body joints are positively 

correlated with the alpha band of F, T and Occ areas. The alpha rhythm becomes coherently engaged in 

transforming perception to action [192] and thus, this relationship could indicate the concentration and the 

effort of the participant to proceed with an action. Comparing these two interactions, we verify that during 
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H-H, the participants felt more familiar and natural and there was a direct activation of the body language. 

Surprisingly, during H-VH, we found no strong correlations regarding brain activity.  

The high positive correlation between the muscles and the head, neck, and spine seems to be affected by 

the nature of the agent. Correlation is higher during H-NA, which we could explain as increased 

nervousness. During H-VH, the arm seems to be more independent, which can confirm the emotion of calm 

extracted from the audio signals.  

Role of gender and ethnicity 

To complete the answer to our third research question, we need also to reply to the subquestion: Do gender 

or ethnicity affect human behavior when interacting with a nonhuman agent? Although our sample was not 

balanced, we examined possible differences due to gender or ethnicity and with the help of the partial eta 

squared which indicated the role of the sample’s size, we kept results only with high statistical significance. 

However, our results didn’t give us a lot of insight. Regarding gender, the main differences concern vocal 

behavior. We noticed that both genders had similar minimum frequency but women presented a higher 

maximum one, letting us wonder if women have a broader voice frequency range. Moreover, female 

participants presented lower value of shimmer and higher value of HNR, which is in line with the fact of 

hoarseness we mentioned above. Lastly, Europeans had more pulses than Asians in their voice and women 

more than men. Ethnicity control showed us also differences in vocal behavior but also slightly in 

movement. Asian participants tended to respond faster whereas Europeans to speak more. Moreover, the 

latter used more their arms when they were interacting with another human but less when interacting with 

the virtual human. All participants had similar reactions during H-NA interaction.  

General Conclusion  

Summing up, this study aimed to provide insights regarding human brain activity, motion, vocal behavior 

and emotional states from a direct comparison between a natural human-human interaction and an 

interaction with a social robot or an avatar. The scenario was the same for all interactions and it concerns 

the first phase of a typical job interview. Given the proliferation of the use of non-human agents in 

professional contexts, such as that of a job interview, we believe that our outcome can help the development 

and adaptation of technological systems, like job interview systems, as well as future applications of human-

robot and human-computer interaction in general. We argue that studying human reactions can provide an 

understanding and meaningful implications for future research in this direction. This is supported by the 

fact that 72% of the participants admitted to being less nervous discussing with the social robot or the digital 
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human, thus demonstrating the advantages of adapting non-human agents to better match the human 

behavior and the human needs, facilitating a more natural interaction. 

5.3  Potential and Acceptance of Social Robots 

5.3.1 Experimental design 

The second part of our study included only the human-robot interaction but under different predefined 

scenarios: 

• Job Interviewer (as in part 1) 

• Customer guide in a shop with electronics, where participants look for a new cellphone. Nadine 

discussed with them, asking questions regarding possible characteristics participants would like to 

have and at the end, she proposed a model. 

• Teacher, where Nadine gave a short lesson regarding climate change. She explained the term of 

climate change and the current situation, interacting with the participants by asking several 

questions on the topic.  

• Companion, where participants were able to interact freely with Nadine on a topic of their choice. 

She was following the flow of the chosen subject.  Non-native English speakers had the opportunity 

to try speaking in their native language ( French, German, Chinese, Hindi) 

The purpose of this part is to examine how people react towards robots, how a robot can affect their 

reactions and what would be the ideal role for them to support. In the first three roles the scenario was 

predefined whereas in the companion mode participants were interacting freely with the robot. Figure 5.23 

shows an example of a participant, interacting with Nadine under the role of customer guide.  
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Figure 5.23 Example of a participant interacting with Nadine in the role of the customer guide. The participant wants to buy a 

cellphone and Nadine asks for several characteristics in order to decide which one would be the ideal cellphone for him, 

according also to his budget. 

5.3.2 Data acquisition and analysis 

In this part of the experiment, we used only EEG, motion data, and the two questionnaires to reach our goal.  

EEG recordings and analysis 

EEG was recorded and amplified as in part 1 of the experiment.  

The analysis of the EEG data and the processing of the signal were carried in MATLAB. All data were 

carefully checked for artifacts, like eye blinks or head/body movements. Fast Fourier Transform was 

applied and then the power spectra were calculated. We examined 5 ROIs including both hemispheres: 

Prefrontal (Fp), Frontal (F), Parietal (P), Temporal (T) and Occipital (O), as ahown in Figure 5.24, for four 

brain states: theta (3-7 Hz), alpha (8-12), beta (13-30 Hz) and low gamma (30-42 Hz). 

 
Figure 5.24 The five Regions of Interest (ROIs) used for both parts of the experiment. 23 electrodes were selected according the 

needs of our research. 

Motion data  

The analysis of the motion data was done exactly as described in 5.2.3.2, regarding emotion recognition.  
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Psychometric data  

To measure participants’ attitudes towards robots in general, before their interactions with Nadine the social 

robot, we used a slightly adapted version of the NARS questionnaire [255]. 

Moreover, as in part 1, we used a questionnaire based on the Positive and Negative Affect Schedule [250].  

5.3.2 Human perception in HRI under different roles  

The second part of our study targets the understanding of human expectations and acceptance of socially 

intelligent robots. Thus, we urged participants to interact with Nadine under four different scenarios, for 

four different roles. 

Participant’s reactions and preference over four predefined robot roles 

Brain activity  

The main purpose of the EEG use in this experiment was to examine how the brain reacts when interacting 

with a robot under several roles. Consequently, we can assess human perception towards robots, revealing 

humans’ true emotional states and attitudes, and finally decide which role, under the existing technology, 

is more preferable and more productive.  

As we mentioned, we have focused on five brain areas. Thus, starting from the Prefrontal area, we noticed 

a dominance of theta rhythm for the role of the interviewer whereas for the three other roles an alpha state 

was maintained. However, there was an increase in the frequency from one role to another (teacher, 

customer guide and, companion accordingly), which may act as a factor of familiarity. The Prefrontal cortex 

is completely associated with personality traits, planning of social behaviors, and decision making. Theta 

state in prefrontal area has recently been associated with spatial working memory [256]. Working memory 

refers to a temporarily processing of information to cope with complex tasks. So, it is not surprising that a 

theta state was presented under the interview phase as the users had to reply to answers retrieving several 

kinds of information. The alpha rhythm shows a strong engagement of the decision making and behavior 

mechanisms. The theta state corresponding to the interview phase (7.5 ± 1.2 Hz) presents high statistical 

significance towards the other roles (p <0.01). Among the other roles were alpha state was found, only the 

teacher (9.7 ± 1.2 Hz) and the companion (11 ± 1.7 Hz) presented a statistical significance (p<0.05) which 

may mean that the increase in the frequency does reveal a factor of familiarity as the users experienced the 

four roles in a raw.  
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In the Frontal cortex, we noticed the existence of frontal theta oscillations for the role of the interviewer 

(7.2 ± 1.1 Hz), with a high significant difference from the others (p<.001), revealing that the task was 

demanding [230] and participants had to put a higher cognitive effort to get focused and interacting with 

Nadine. We remind that Nadine as an interviewer was the first role that participants had the experience 

with, thus the first contact with the robot. Subsequently, for the second role of the teacher, we noticed the 

alpha rhythm (12  ±  2.5 Hz) which can be associated with the concentration of the participants. The role 

of the teacher presented a significant difference (p<0.05) with all the other roles as well.  For the rest two 

roles, a low beta state was apparent (14 ± 3.3 Hz for customer guide and 14.3 ± 1.7 Hz for companion) 

which means that participants had no stress during these interactions and they were mentally alert [251, 

257].  

 

(a) Interviewer 

 

(b) Teacher 

 

(c) Customer guide 

 

(d) Companion 
Figure 5.25 The three channels recorded in occipital area showing the dominant brain state for each role in the power spectrum. 

Nadine’s roles are shown in the order they were presented in participants. In the case (a) we found a very low alpha state (7.7 ± 
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1.1 Hz), whereas for the rest three roles we noticed a clear alpha state with an increase of the frequency for each role. Case (d) 

concluded with an average value of 11 ± 2.3 Hz. 

Regarding the Parietal cortex, alpha rhythm was dominant for the roles of the interviewer (11.8 ± 1.6 Hz), 

teacher (12.5 ± 1.8 Hz), and companion (10.2 ± 1 Hz), with the latter to present a significant difference 

from the other two (p =0.003). This result is in line with all our previous outcomes. Alpha rhythm in the 

parietal cortex is also associated with emotional engagement and this explains the presence of this rhythm 

for the role of the companion. However, for the roles of the customer guide (13.4 ± 2 Hz), we found a beta 

state. 

 

Figure 5.26 The average frequency in the five brain areas for the four roles of Nadine. Statistical significance is shown where 

existed ( * for p<0.05 and ** for p<0.001 that we consider as high significance).  

In the Temporal lobe, we found a general beta rhythm with an increase in the frequency in each role. This 

could reveal that participants had no real difficulty following Nadine’s speech. However, the role of the 

interviewer presented a lower value (13.1 ±  2.9 Hz) and has a highly significant difference (p<0.001) with 

all the other roles. This means that participants faced the biggest difficulty in deciphering the robot’s voice 

while being interviewed, which may be explained by the fact that this role was the first to interact with and 

participants had no prior robot experience. The more they interacted with the robot, the more familiar they 

became with it, in terms of audio processing. For the companion role, we noticed a value of 17 ± 2.9 Hz.  
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Lastly, in our previous study, we found that the human brain can understand the difference between a human 

and a robot, even if the robot shares the same physical appearance as the human. In that case, while looking 

in a humanoid robot the occipital area of the brain is synchronized in an alpha state whereas while we 

interact with a human, beta state is dominant. In our experiment, we verified this finding by having the 

alpha rhythm in all the roles. The continuous increase in the alpha state reveals that the more we interact 

with a robot, the more familiar we become with its appearance. All the roles presented a significant 

difference between them, except the last two, customer guide and companion. Figure 5.25 presents an 

example of the EEG activity in this area.  

Figure 5.26  presents the average value of frequency for each role in each brain area. Statistical significance 

is also shown.  

Kinect data  

We extracted seven discreet emotions through the Kinect recordings of body movements. We examined the 

25 body points as described above, divided in 5 body parts and we classified these movements in positive 

and negative emotions. Figure 5.27 depicts this classification. 

 

Figure 5.27 Discreet emotions extracted from body skeleton movements through Kinect V2. 

Sadness was the most prominent emotion during the role of customer guide, followed closely by the role 

of interviewer. Apparently, the customer guide elicited high scores in almost all emotions. Companion had 

the highest rate of happiness, followed by the customer guide and the teacher. The surprise was also the 

most prominent during the companion and the customer guide roles and the least during the teacher role. 

Fear was evoked mostly during the interviewer. Anger was presented highly during the teacher role, letting 
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us wonder if the scenario of the interaction (global warming) played a role. Finally, participants were most 

disgusted by the interviewer role and the least by the companion role.  

Psychological data  

The questionnaire complemented the above providing information regarding the emotions of participants 

during their interactions and their preference towards the 4 roles.  

We noticed no high levels of negative emotions throughout the process. We examined three negative 

(nervous, shy, and tired) and three positive (interested, inspired, confident) emotions/states. For the positive 

emotions, a significant difference was found among the roles for each emotion ( (F (2,432) = 9.789, p < 

0.01) for interest, (F (2,432) = 7.463, p < 0.01) for inspiration and F(2,432) = 8.332,  p < 0.008 for 

confident).  Specifically, participants were found to be significantly more interested and confident than 

inspired (p < 0.001). This pattern was the same for all roles. Furthermore, the interviewer and the customer 

guide roles were not statistically significantly different (p = 0.513), but the two had higher scores on positive 

emotions compared to both teacher and companion roles (p < 0.05 for all differences). Lastly, there was no 

statistically significant difference between the teacher and the companion role (p = 0.267).  

Regarding the negative emotions a significant difference was also found in each emotion for the four roles 

(F (2,432) = 4.821, p = 0.023) for interest, F (2,432) = 5.908, p = 0.001) for inspiration and F(2,432) = 

5.261, p = 0.002 for confident). Specifically, there was no statistically significant difference between 

nervous and tired (p = 0.797), while both of them were higher than shy (p < 0.05 for both). These differences 

were the same across all roles. The role associated with the highest negative emotions was the interviewer, 

followed by the teacher. However, no significant difference was found between them (p = 0.119). In total, 

the role of  the interviewer presented significantly higher values than both customer guide and companion 

(p < 0.05 for both). The teacher role was not statistically significantly different from the companion role (p 

= 0.075), but was significantly higher than the customer guide (p = 0.032). Lastly, customer guide and 

companion roles did not differ (p = 0.71).  

Summing up, positive emotions were presented at higher levels than negative ones. In general, participants 

felt more interested and confident than they felt inspired. Based on the questionnaire, the role of the 

interviewer concentrated the higher positive level and the teacher the highest negative one. However, the 

overall intensity of negative emotions was very low. Shyness was the less presented emotion whereas 

nervousness and tiredness were the most common ones. In regard to these emotions, interviewer was again 

the role with the highest levels, followed by the teacher, and lastly companion and customer guide. Figure 

5.28 summarizes both positive and negative emotions for the four roles of Nadine.  
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Figure 5.28 Positive (a) and Negative (b) emotional states as described by our participants for the four roles of Nadine. 
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Figure 5.29 Results from our questionnaire regarding the preference of the four roles. (a): the percentages for the best supported 

role. (b): the percentages of the most preferred role according to the 40 participants. 

Figure 5.29 presents the preference of the participants, as they declared it in the questionnaire. The interest 

of participants was more triggered by the role of companion, but they found that a robot is more friendly as 

a customer guide. We tend to believe that this is a result of the immediacy and the purity of this role, as 

everything is very precise and consequently quick. However, the role of the teacher was voted as the more 

sociable one.  

5.3.3.2 Overall attitude towards robots 

The NARS questionnaire is commonly used to examine the general attitude of participants towards robots. 

Our participants answered the questions on a Likert-type scale ranging from 1 (not at all) to 5 (extremely). 

The answers were coded, and averages were calculated. Three of the items were reverse coded to fit with 

the general direction of the answers (higher scores indicating more negative attitudes). Table 5.18 presents 

the questions used as well as the average scores. The average attitude towards robots was found relatively 

neutral (2.3). The participants gave higher scores for questions that referred to the idea of robots’ 

dominance, e.g robots dominating humans in the future, being developed in human beings, or humans 

relying on robots. People also showed anxiety towards a possible need to use robots in their jobs. On the 

contrary, people expressed lower negative emotions when it came to standing in front of a robot or talking 

to one. They showed positive attitudes about being relaxed while talking to robots or having emotional 

connections with them.  
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Table 5.18 Average scores for the NARS questionnaire. Questions marked with a  * are inverted. 

Question Score 

I would feel uneasy if I was given a job where I had to use robots 2.52 
I would feel nervous operating a robot in front of other people 2.17 

The word "robot" means nothing to me 2.39 

I would hate the idea that robots or artificial intelligence were making judgements about things 2.52 

I would feel very nervous just standing in front of a robot 1.91 
I would feel paranoid talking with a robot 2.04 
I would feel uneasy if robots really had emotions 2.48 
Something bad might happen if robots developed into living beings 2.74 

I feel that if I depend on robots too much, something bad might happen 2.48 
I am concerned that robots would be a bad influence on children 2.22 
I feel that in the future society will be dominated by robots 2.57 
I would feel relaxed talking with robots* 2.04 
If robots had emotions, I would be able to make friends with them* 1.96 

I feel comforted being with robots that have emotions* 2.09 

Total 2.3 

 

5.3.3 Discussion  

In this study, participants were urged to interact with the humanoid social robot Nadine under four 

predefined roles: interviewer, teacher, customer guide, and companion. Behavioral and emotional reactions 

based on brain activity, body movements, and questionnaires were examined. Moreover, for a more 

complete assessment of our results, participants’ general attitudes towards robots was also measured 

through a NARS questionnaire.  

Firstly, the NARS results indicated that the participants had a relatively neutral attitude towards robots 

before the interaction. Their concern was mostly on robots’ development and possible dominance over 

people in the future. However, they approached positively potential social or emotional interactions with 

robots. 

The questionnaire revealed the emotional states of the participants throughout the procedure. Participants 

seemed to be most emotional about the role of the interviewer. The ambivalence of having high levels of 

both positive and negative emotions can be attributed to the fact that this role was the first to be presented 

but also to the stressful nature of an interview process by definition. Results could stem from the excitement 

and the surprise of the first experience. On the other hand, the teacher role seemed to be the least enjoyable 
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as participants reported the lowest level of positive emotions and high levels of negative ones. That 

indicated that such a context should be revised and improved. Customer guide and companion presented 

the same and lowest level of negative emotions but the former had higher positive ones. Thus, it seems that 

customer guide was the most enjoyable role, probably due to the usefulness and the practicality of the 

interaction, which is in line with previous studies indicating a willingness of people to interact with robots 

in that context [99, 138, 140]. The companion mode seemed to have a more neutral effect as participants 

experienced no unpleasant emotions but no positive either.  

The recording of brain activity and body movements validated the above. EEG data were collected from 

five brain areas: prefrontal, frontal, parietal, temporal, and occipital. For all the areas except for the parietal, 

a pattern of increasing frequencies throughout the experience was noticed, indicating an effect of 

familiarity. In the prefrontal area, the interviewer role elicited a theta rhythm, which has been linked to 

spatial working memory [256]. Therefore, we can assume that participants engaged their working memory 

during the interview phase to retrieve the proper information to answer the questions. The alpha rhythm 

presented in the other roles shows a strong engagement of the decision making and behavior mechanisms. 

Regarding the frontal area, theta oscillations were detected for the role of the interviewer which indicated 

that the task was demanding [230]  and participants had to put a higher cognitive effort to get focused and 

interact with Nadine. Other studies have also noticed frontal theta oscillation during a first human-robot 

interaction [201]. Subsequently, for the second role of the teacher, alpha rhythm was detected and this 

rhythm can be associated with the participants’ concentration. Frontal alpha rhythm is related to the origin 

of the top-down perceptual process and thus it reveals that the brain constructs the perception based on an 

existing,  already registered, experience [258]. For the remaining two roles, a beta state was observed, which 

suggests that participants were not stressed but mentally active. 

Regarding the parietal area, alpha rhythm was noticed for the roles of the interviewer and companion. This 

finding is in line with all our previous studies indicating that participants were unintentionally focused on 

stimuli they are not familiar with. As we mentioned before, alpha rhythm in the parietal cortex is also 

associated with emotional engagement and this explains its presence in this area for the role of the 

companion. For the roles of the teacher and the customer guide, a beta state was detected.  

In the temporal lobe, a beta rhythm with an increase in the frequency for each role was detected. The 

temporal lobe is associated with auditory processing [230] and the beta rhythm shows that participants had 

no difficulties in following Nadine’s speech. However, the role of the interviewer showed the lowest value 

of the beta state. This means that the participants faced the biggest difficulty in deciphering robot’s voice 

while being interviewed, which may be explained by the fact that this role was the first one, and participants 



 138 

had no prior robot experience. The more they interacted with the robot, the more familiar they became with 

it, in terms of audio processing [259].  

Lastly, the results in the occipital lobe verified our previous findings regarding human-robot interaction. 

The interaction with the humanoid robot elicited alpha oscillations in this area (low alpha state for the role 

of interviewer).  

Body movement results can be put up against the questionnaire and EEG activity, to verify the emotion of 

the participants in regard to the different roles.  First, during the role of interviewer high levels of fear, 

anger, and sadness were presented amongst the participants. This is in line with the high negative emotions 

extracted by the questionnaire and the frontal theta oscillations found in brain activity, indicating that this 

role was unpleasant for the participants. Kinect data also showed relatively low levels of happiness and 

surprise, indicating that the questionnaire’s positive emotions can be attributed to the excitement about the 

initial interaction with the robot. Moreover, the negative assessment of the teacher role based on the 

questionnaire was confirmed by the Kinect results. They indicated very low levels of happiness and 

surprise, along with very high levels of anger. Furthermore, the customer guide role was confirmed as 

eliciting high levels of positive emotions, such as happiness and surprise, along with, unexpectedly, high 

levels of anger. Finally, the role of companion actually showed the highest levels of positive emotions on 

the Kinect data, and an absence of negative emotions. Thus, we can assume that the companion role elicited 

positive emotions, that either they couldn’t be detected by the questionnaire or the participants didn’t admit 

them.  

Summing up, the roles can be summarized as follows:  

• The interviewer role was the one that elicited the most intensive reactions, both in terms of emotions 

and neural activity. This can be partially explained by the fact that his role was presented first and 

participants were unfamiliar with Nadine. The low alpha state in the occipital area can verify the 

latter. The questionnaire revealed high levels of interest and inspiration. Aside from this, the role 

seemed to be dominantly unpleasant for the participants and required a lot of cognitive activity, as 

in every normal job interview procedure. EEG results were in line with that, as they verified the 

emotional engagement with the existence of the alpha state in the parietal lobe. Moreover, 

prefrontal and frontal theta oscillations were dominant only for this role. However, participants 

voted that Nadine had the friendliest reactions under this role.  
• The teacher role was the one with the most negative reactions. Kinect data and questionnaire 

revealed only negative emotions and tiredness. EEG data though showed a higher level of 

concentration as alpha waves in the frontal area appeared only for this role. Our results suggest that 

this role needs revision and improvement.	
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• The customer guide role was the one that elicited the best emotional response, in terms of the most 

positive and the least negative emotions. It did not require heavy cognitive activity, the 

questionnaire revealed a high confidence level, and participants showed no signs of stress as a low 

beta state was dominant in the frontal area. The customer guide was voted by the participants as 

the most preferred and suitable role for Nadine. 	

• Lastly, the companion role had mixed results. Body movements showed positive emotions that 

were not supported or captured by the questionnaire. Kinect data showed high levels of surprise 

and happiness though. EEG verified the latter, as this role engaged more alpha activity in the 

parietal lobe, associated with perception and emotional engagement. Moreover, a low beta state in 

the frontal area confirms the absence of stress and anxiety. 	

5.4 General Discussion 

In this study, we conducted a multi-disciplinary, in-depth analysis of human responses derived from 

different kinds of social interactions: human-human, human-robot, and human-virtual human. Our research 

goal was bifold: to explore and compare human physiological, behavioral and emotional states and to 

examine the potential of social robots to execute different roles. We found that the human brain, body, and 

vocal responses changes based on the nature of the interlocutor and emotions are affected too. Different 

roles can also influence human acceptance towards robots, leading us to believe that nonhuman agents 

cannot penetrate all the domains of everyday human life.  

Having gathered the results from both parts of our experiments, we can answer our fourth and last research 

question: Can changes in agents' up-to-date technology and design be related to smoother, more pleasant, 

and efficient human-nonhuman interactions? Based on our findings and the statements of the up-to-date 

literature, we do believe that the design of nonhuman agents and the technology behind them can affect 

human perception and behavior. The choice of an agent should always fit the general context of the 

interaction as apparently the acceptance and the preference are directly affected by the context and the 

environment.  

Except their emotional states, our participants were asked to evaluate the performance of the agents. Not 

surprisingly, the human agent was voted as the most sociable and friendly, but Nadine followed. With all 

our physiological results, we expected to find Nicole in the second position. However, participants stated 

that the lack of eye gaze in the digital human played a crucial role, as it has already been mentioned in the 

literature [62]. Another limiting factor is the physical presence. No matter the negative emotions found, 

participants seemed to be more positive and motivated to interact with Nadine, which means that social 
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robots are very promising in a context of social interaction. Body reactions showed nervousness but also a 

bigger range of movement and calmer voice when interacting with Nadine, compared to Nicole. Thus, when 

interacting with a social robot, human behavior resembles more the one from H-H interaction. However, 

depending on the context of the interaction, digital humans may provide humans with a comfort that a robot 

cannot. The latter needs to be considered before designing or choosing a nonhuman agent. In general, 

humans surely need more time to become more familiar with this technology, but the latter also needs to 

meet more the human needs.  Our participants reported that they had to change the content of their 

responses, according to the nature of their interlocutor, as they felt that the communication could not be 

equal. This was verified by the fact that emotions also were changed according to the nature of the agent.  

Can different roles of a robot change the perception and preference of the participants? As we clearly 

showed, a different role can change completely the perception and the preference of a human towards a 

robot. We noticed that multiple exposures to robot interactions affects human physiological and 

psychological responses. It is though sure that culture play also a role in this perception as external stimuli 

are different and humans are not receptive in the same way.  

This work1234 contributes to the existing SoA with the following conclusions:  

§ The role of agents’ behavior. 

Nowadays, research and reviews show us that the need is focused on designing social agents in a more 

human-like way behaviorwise and not in terms of appearance. Our study complements the above, as we 
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concluded that it is the reactions of the agents that trigger the different human responses and not the 

appearance alone, as both our nonhuman agents reach a high level of human likeness. This complements 

the outcome of several studies that have examined the importance of the appearance and humanization [5, 

32, 50, 52, 55, 56, 152, 213, 219]. We verified that it is important to orient the research towards humans, 

extracting humans’ features, revealing human needs, and integrating them into the technology. Thus, we 

believe that the up-to-date technology should be more oriented towards the integration of human behavioral 

features that will elicit better cognitive and emotional responses and ensure a higher level of engagement 

through a new more naturalistic communication channel. Lastly, our model laid the groundwork for 

building a system that can classify the human voice based on the nature of the interlocutor and can guide 

engineers and designers to more human-like robots.  

§ The role of mimicry. 

Moreover, this work verified the role of mimicry during social interactions, especially when the interlocutor 

is physically present, as described also in [17, 45]. As we saw, participants tended to use more their body 

when interacting with the human agent and their vocal behavior was close enough to the one of the agent. 

The interaction with Nadine also affected their reactions and participants stated that the eye gaze and the 

direction of the body played a role, as stated also in [73], compared to the digital human who was virtually 

present. However, the context of our interactions didn’t allow us to find clear signs of emotional mimicry. 

Mimicry up to now has been studied mainly through facial expressions, thus facial EMG, or through 

questionnaires. We provided a different perspective via a multidisciplinary approach recording the whole 

body.  

§ Social signals input  

The multidisciplinary approach of our study allowed us to report several human behavioral and 

physiological patterns during H-H and H-NH interactions, which weren’t part of the literature yet. Audio 

data gave us different patterns of vocal behavior among the three interactions for the majority of the features 

measured. This was verified by our ML classification model that proved that the human voice clearly 

changes based on the nature of the interlocutor (human, robot, or avatar). EMG and Kinect data gave us 

significant information regarding the body reactions and their involvement in a social context. Moreover, 

physiological brain patterns, that were not reported before, were registered via our work.  
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6. CHAPTER  6 

 

CONCLUSION 

 

 

 
 

“Will robots inherit the earth? Yes, but they will be our children”  

- Marvin Minsky, American cognitive and computer scientist 
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Conclusion 

6.1 Discussion  

Our work was concentrated on finding answers regarding human perception and behavior towards social 

interactions of different contexts, detecting and possibly covering the gap between human and nonhuman 

interactions. We examined technological environments, like Virtual reality and different kinds of nonhuman 

social agents, based on the up-to-date technology, aiming to delve deeper into the features and the nature 

of the natural H-H interaction and the continuously growing H-NH one. We used a multidisciplinary 

approach to cover limitations of previous studies and we explored how the design of an environment or an 

appearance and the physical presence of an agent can affect human perception, imagination, concentration, 

expectations, and emotions. We found common physiological and behavioral human patterns among all our 

studies that gave us insights on differences between humans and nonhumans agents as well as between the 

nonhuman themselves.  

Regarding brain activity, we noticed frontal theta oscillations during any nonhuman interaction and 

exposure to a VE. Based on that, we concluded that people tend to unintentionally be more concentrated on 

an environment or an interaction they are not familiar with. However, we noticed that this can change after 

multiple exposures to a social robot. Similarly, alpha state was dominant in the parietal area for all 

interactions, leading us to the assumption that parietal alpha can act as an indicator of a technological-based 

interaction. We also found a dominant alpha state in the occipital area for all interactions, indicating the 

level of engagement of visual attention mechanisms. Moreover, temporal alpha oscillations were present 

during HRI and frontal delta oscillations during both H-H and HR Interactions. The latter appears due to 

the physical presence of the robot and the human, compared to the virtual human. 

Regarding behavioral patterns, differences were obvious in voice and body movements. When interacting 

with a nonhuman agent, we tend to give shorter answers with longer pauses and to speak slower and louder. 

Frequency is higher, perturbations in amplitude are less and the value of HNR is bigger, showing that there 

is less hoarseness in the voice. The movements of the arm are smaller and sharper related to anger, there 

are more frequent head movements and shoulder elevations revealing discomfort, fingers present long and 

intense movements related to fear and the overall range of movement is narrower. Moreover, the differences 

in motion between the two body parts are bigger.  

Emotional states between interactions were also different. In general, during H-H interaction participants 

declared happier, more confident but also shyer whereas during H-NH they felt mainly agitated and 
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surprised. It has already been stated that anxiety is the most common emotion in HRI, combined with a 

general emotional constraint [21, 32, 50, 218]. Voice and motion showed even sadness and fear. Brain 

activity revealed that participants tended to deal more with their emotions during H-NH interactions, and 

especially during H-NA. Moreover, it showed us that they were more concentrated, dealing most of the 

time with a higher cognitive load. This was also verified by the correlation of the upper body with the alpha 

band in several brain areas, like the Frontal, Temporal and Occipital, which is linked with the top-down 

procedure meaning with the transition from perception to action. However, a preference over the social 

robot was noted, verified also by a bigger range of motion during this interaction related to the emotion of 

happiness and an emotional arousal found by brain activity. Inspiration and interest were apparent while 

interacting with the social robot whereas audio data indicated a feeling of calm during interaction with the 

virtual human. That led us to conclude that the choice of a nonhuman agent should depend on the need of 

the tasks and the targeted users.  

However, we noticed that the differences in humans’ reactions between the interactions were obvious, as 

verified also by our classification model, showing that there is still a need for improvement to reach a level 

of desired human comfort. We verified the role of eye gaze and facial expressions already mentioned in the 

literature [62] but we noticed that the physical presence of an agent is also crucial for its acceptance.  We 

confirmed brain patterns already discovered regarding VR, like the alpha state in the parietal area [194], 

and regarding HRI, like frontal theta oscillations [201] but we also discovered new patterns that haven’t 

been mentioned before. It has already been stated that people tend to spend more time in the conversation 

with another human [17, 18] and we verified that during H-NH participants gave shorter answers and were 

less talkative. Moreover, we found a lot of differences between the human and the nonhuman vocal 

reactions, which indicates that further work should be done to better humanize the voice of nonhuman 

agents. Some features like response time and speechrate, are positively correlated which means that the 

more humanized a voice reaction of a nonhuman agent will be, the more natural the humans will speak. 

However, here we are wondering to what extent a social agent or a robot need to be human-like to fulfill 

the humans’ need and expectations and to be socially accepted. It is worth mentioning that, although 

negative emotions were found during H-NH interactions, interest, inspiration, and motivation were also 

apparent and 72% of our participants in our last study confirmed feeling less nervous while discussing with 

the social robot or the virtual human. Thus, we believe that humans like the, unfamiliar yet, interaction with 

the nonhuman agents but to feel physically and emotionally comfortable with them a lot of work is still 

required. There are also studies proving that nonhuman agents can be more successful and efficient 

compared to humans under specific tasks [75, 76]  However, the potential is big and promising. To 

complement the latter, we also verified the finding of Urgen et al. that the human brain cannot differentiate 

actions between robots and humans [201], showing that the difference is only at a visual perception level.  
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Lastly, regarding the VR environment, we concluded that the experience of the users is related to the level 

of presence they can feel. Moreover, presence is not related to the interaction into the VE but to the VR 

itself. The design of the VE, however, plays a role in the concentration of users, as realistic environments 

make the latter more conscious of the external environment. Thus, we believe that VR, for the time being, 

and under the existing technology, has the potential to become a useful, efficient, and reliable tool that can 

more adequately host a social agent.   

6.2 Contributions 

Facing the challenges for humanizing social agents and deciphering human complex social behavior, we 

proposed a multidisciplinary, in-depth analysis of human physiological, behavioral, and emotional reactions 

in different technological nonhuman interactions. We first examined the role of VR in human perception, 

indicating its efficacy in an educational context. We then continued with the study of human perception in 

human-humanoid interaction, examining its effects on cognitive and emotional states. We concluded with 

a complete, thorough study of humans’ reactions in human-robot, human-avatar and human-human 

interaction, trying to shed some light on the thoughts and concerns of the use but also the humanization of 

social nonhuman agents. The study is accompanied by a thorough literature review and the extracted data 

have been analysed in detail and validated with statistical analysis as well as have been used for modeling 

aspects of human behavior.  

This work contributes to the broad domain of Human – Robot Interaction, giving insights into fields like 

computer science, neuroscience, and psychology. We can mention four main contributions :  

• A new dataset of human reactions.  

First of all, our work provides a novel multimodal dataset of human reactions extracted from H-H and H-

NH interactions, including participants of different ages, gender, and ethnicities. To the best of our 

knowledge, no such dataset has been recorded before, including multidisciplinary human physiological and 

psychological information. This dataset complements the already used dataset mentioned in Table 2.2 of 

Chapter 2 and can be used as a guide for HCI and HRI future research. The audio data that have already 

been modeled via ML techniques can directly be used for further research as emotion recognition.  

• Simultaneous recordings of physiological and psychological human data.  

One of our study’s innovations is that it brings together a range of methods (EEG, EMG, motion capture, 

audio analysis, and psychometrics) that have been commonly used in HCI and HRI but in isolation. Thus, 

it allows us to direct analyse, compare and correlate and provide a comprehensive picture of the brain and 
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behavior of an individual who interacts with a human and nonhuman agent. We introduce a novel approach 

to study human-computer and human-human interaction and our work paves the way for future studies in 

other domains.  New findings regarding brain activity and human behavioral patterns during nonhuman 

interactions can be added to the literature. 

• A voice model that can categorize the human voice based on the nature of the interlocutor.  

We provide a human voice model, derived from our audio data classification, able to differentiate the human 

voice based on the nature of the social interaction. Our results can potentially contribute to the design of 

nonhuman agents, as the direct comparison between humans’ reactions and between humans and 

nonhumans made the needs clearer.  

• A transparent view of the robots’ potential and acceptance. 

Lastly, the NARS questionnaire along with the robot testing under different roles provide a clear picture of 

human perception towards robots and replies to Figure 2.4. We complement and confirm aspects of the 

table regarding psychological and physical parameters. Moreover, we practically examined the domain of 

robotic psychology, theoretically presented by Stock et al. [21], verifying that human behavioral patterns 

are clearly differentiated between H-H and H-NH interaction. We also noticed that a lot of patterns are also 

different between human-avatar and human-robot interactions.  

Overall, this work complement existing reviews examining the human perception towards robots or virtual 

humans as well as H-H interaction [47, 50]. Our system can be used as a base for further research to expand 

more the human side of the HRI and to support the social acceptance of nonhuman agents. 

6.3 Limitations and future research  

Despite the multidisciplinarity and the novel approach of our system, our work presents some limitations. 

First of all, the technology and the nonhuman agents used are based on the up-to-date state-of-the-art that 

continuously changes as the humans’ needs and expectations advance. Thus, new research is constantly 

required to support this ever-increasing evolution. Moreover, given the nature of our study ( physiological 

recordings,  like EEG), it was difficult to find motivated female participants to contribute. Thus, our sample 

was not always balanced. Given also that most of the experiments took place in Singapore our ethnicity 

variable was not always balanced. To define how human’s reactions are affected by culture or gender, a 

more diverse sample is required in future research.  

Our model differentiates human reactions based on the nature of the interlocutor into the interaction but it 

is based only on the human voice. Moreover, due to the irregularities caused by the pandemic COVID-19, 
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we didn’t have the opportunity to validate this model in a new sample of participants. Further research is 

required to expand this kind of model to more modalities, like movements or brain activity, that could 

clarify the patterns of human behavior and contribute better to the future design of nonhuman agents.  

Lastly, our VR environment was based on an educational context and the concept of the last experiment 

was based on a job interview. We assume that humans’ reactions have been affected by the specific 

scenarios and it would be interesting to expand this research in different contexts, allowing broader 

documentation of human responses.  
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7. APPENDIX A  

PRELIMINARY RESEARCH PERFORMED FOR OTHER 

EUROPEAN RESEARCH PROJECTS                 

APPENDIX A 

The work of this thesis was supported by several European projects. Albeit not completely relevant, each 

of these projects broadened the topic of this research, made the work more varied and diverse, and ensured 

further knowledge and techniques. Each section presents a brief description of the project and includes a 

section with the contribution related to the work presented in this thesis.  

A1. NOTRE: Preliminary work on EEG and HR recordings and analysis  

NOTRE project was a Horizon 2020 Twinning Programme aiming to develop a network that will strengthen 

and enhance the research and innovation potential of the newly established Social Computing Research 

Center (SCRC) at the Cyprus University of Technology. The ultimate goal was the stimulation of scientific 

excellence and innovation capacity in the area of Social Computing. Towards this goal, we worked closely 

with the GET Lab at the Cyprus University of Technology and created a VR platform for training purposes 

in the educational sector. Specifically, a VE, presenting students in a school under drug use, offering the 

experience from different perspectives and simulating the effects of possible drug use, was used to examine 

the overall user experience and the emotional states as well as the level of presence achieved. Figure 8.1 

shows the different VEs used.  

For the evaluation of the user’s emotional and physiological situation a wireless EEG device EMOTIV 

Epoc+ was used, combined with a smartwatch for the recording of the HR and a questionnaire. For the VR, 

an Oculus Rift device was used. The detailed methodology of the experiment is described in [260].  

For the analysis of the brain signal, EEGLab was used, a MATLAB toolbox. Figure 8.2 shows an example 

of a dominant frequency of two perspectives. Statistical analysis of EEG and HR was conducted in SPSS 

with Krusk-Wallis and Mann-Whitney tests.  
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Figure 7.1 The VE as seen from the different perspectives. Top: Teacher’s perspective, Middle: Student drug user’s perspective, 

Bottom: Healthy students’ character perspective 

 

  

Figure 7.2 Dominant brain frequency for healthy student (Left) and teacher (Right) perspectives. The diagram was constructed 

after ICA was applied. 

A1.1 Conclusion and Contribution   

Our involvement in this project provided us with significant knowledge about:  
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• Design and conduction of experiments 

• EEG and HR analysis  

• The efficiency of VR systems for training purposes  

A2. MINGEI: Face and Body reconstruction  

MINGEI is a European Horizon 2020 project aiming at the representation and the preservation of tangible 

and intangible aspects of cultural Heritage Crafts. Specifically, there are three pilots, namely glass, mastic, 

and silk weaving, targeting to represent the knowledge that needs to be transmitted from master to 

apprentice. Towards this direction, during this projects partners work to capture the motion and the tool 

usage of HC practitioners and collect significant information from the Living Human Treasures and archive 

documentaries to preserve and illustrate skill and tool manipulation. The representation will be done in VEs 

as well as via a mobile application and thus, the existence of VHs is crucial as guides and masters.  

For that, MIRALab started working on face and body reconstruction that could give realistic avatars looking 

alike exactly to the real persons. Thus, an image-based full body and face 3D scanner was used as shown 

in Figure 8.3. The setup of the cameras was adapted to the needs of the task. We took images for both face 

and full body. From these images, we proceeded to face and body reconstruction, as shown in Figure 8.4, 

with the Agisoft Metashape software[261].  

 

Figure 7.3 Image of the scanner in face position 
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Figure 7.4 Face and Body reconstruction  

After the reconstruction, we adjusted the topology of the face to a standard head, as shown in figure 8.5 and 

then, we blended the textures and the morphology on one mesh. Then the blendshapes were generated. This 

procedure was made with the Visage Technologies software [262].  

 

Figure 7.5 Face wrapping 

A2.1 Conclusion and Contribution  

Although this project is slightly irrelevant with the main research of this thesis, it gave us a strong insight 

into the reconstruction of realistic virtual humans.   
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