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Abstract
Genomics drives the current progress in molecular biology, generating unprecedented volumes of
data. The scientific value of these sequences depends on the ability to evaluate their completeness
using a biologically meaningful approach. Here, we describe the use of the BUSCO tool suite to
assess the completeness of genomes, gene sets, and transcriptomes, using their gene content as a
complementary method to common technical metrics. The chapter introduces the concept of universal
single copy genes, which underlies the BUSCO methodology, covers the basic requirements to set up
the tool, and provides guidelines to properly design the analyses, run the assessments, and interpret
and utilize the results.
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1. Completeness assessment
The ever-increasing volumes of sequencing data play a crucial role in advancing biological research.
However, comprehensive and unbiased genomic analyses rely on the quality and completeness of
such resources. This makes thorough quality control of sequencing data “products” such as genomes,
genes, or transcriptomes ever more important. The assembly of reads from high-throughput
sequencing technologies is a challenging procedure both theoretically and practically, especially for
large genomes. Fast and accurate quality assessment of the resulting assemblies allows researchers to
iteratively tweak workflows and parameters to achieve the best results. However, such evaluations are
often complicated, and pose challenges for the scalability of methods, as well as for the interpretation
and presentation of results.
When assessing the quality and completeness of an assembly, different complementary metrics can be
used. A first step for identifying potential problems in sequencing data that are likely to hamper the



quality of the assembly, is by analyzing the k-mer distributions of reads from which the researcher can
estimate sequencing bias, coverage depth, repeat content and heterozygosity of the sample. Tools such
as GenomeScope [1] and KmerGenie [2] provide an easy solution for obtaining various statistics from
the k-mer distributions of short reads. With a first draft assembly in hand, one can compare its size
with the expected genome size estimated with experimental procedures such as by flow cytometry, or
with computational methods by analyzing the k-mer distributions. Metrics such as fragment
(contig/scaffold) length distributions and contig/scaffold N50, which reflect the contiguity of the
assembly, are informative measures but can also be misleading. N50 value indicates that half the
genome is assembled on contigs/scaffolds of length N50 or longer. Novel metrics that provide more
realistic estimates of genome fragmentation have been proposed, for example, REAPR [3] provides a
“corrected” N50 metric based on the identification of assembly errors. By calculating the fraction of
reads that map onto the assembly, one can measure how well the original reads are represented in the
genome, and the analysis of read depth can be used to identify assembly “artifacts” such as duplicated
or collapsed regions.
Although the above-mentioned technical statistics are essential to estimate the overall completeness of
an assembly, including intergenic regions, such measures ignore biological aspects and the important
question of genomic data quality in terms of completeness of gene content. This is a crucial
consideration that also affects data interpretation and helps to guide improved assembly and
annotation strategies. In cases where extensive transcriptomic resources (EST, RNA-seq) for the
species of interest are available, one could assess the comprehensiveness of the gene set by aligning
transcripts to the assembly to obtain the proportion of mapping transcripts. However, aligning spliced
transcripts to corresponding genomic loci can be problematic, and results highly depend on the tools
and parameters used for mapping.
An attractive alternative, which complements the strategies described above, is to quantify the
completeness of genomic data sets in terms of the expected gene content based on evolutionary
principles. OrthoDB’s sets of Benchmarking Universal Single-Copy Orthologs, BUSCO
(http://busco.ezlab.org/) , provide a rich source of data to assess the quality and completeness of
genome assemblies, gene annotations and transcriptomes. BUSCO quality assessment facilitates
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informative comparisons, for example of newly sequenced draft genome assemblies to those of model
species, or can be used to quantify iterative improvements to assemblies or annotations [4, 5].
BUSCO has rapidly become well-established as an essential genomics tool, using up-to-date data
from many species present in OrthoDB, and with broader utilities than the once popular, but
discontinued, Core Eukaryotic Genes Mapping Approach (CEGMA) [6].

2. Universal single copy genes
Protein coding genes that make up the BUSCO data sets are evolving under “single-copy control” [7],
and are selected from OrthoDB [8] orthologous groups that contain genes present as single-copy
orthologs in at least 90% of the species included in the group (Fig. 1). While allowing for rare gene
duplications or losses, this establishes an evolutionarily informed expectation that these genes should
be found as single-copy orthologs in any newly-sequenced genome or gene set from that group.
Therefore, if there are many BUSCO genes from the appropriate clade that cannot be identified in a
genome assembly or annotated gene set, it is possible that the sequencing and/or assembly and/or
annotation approaches have failed to fully capture the complete expected gene content. Lineage
assessments are available for vertebrates, arthropods, fungi, nematodes, plants, protists (see
Subheading 3.2 and Table 1) and prokaryotes.
BUSCO uses sequence profiles embedded in lineage-specific datasets to assess the orthology status of
predicted genes in the species under analysis. These consensus sequences are derived from Hidden
Markov Model (HMM) profiles built from multiple sequence alignments of orthologs selected from
OrthoDB, and capture the conserved alignable amino acids across the species set, reducing any
potential species bias that would result from pairwise alignments towards original sequences. Current
available lineages have been selected based on their taxonomic range and coverage in terms of the
numbers of available sequenced and annotated genomes. As more and more species are sequenced
and included in OrthoDB, we are going to update BUSCO assessment datasets and provide sets for
new lineages.



Fig. 1. BUSCO genes are selected among groups of orthologs matching specific evolutionary
expectations. A BUSCO group has to encompass at least 90% of the species within its corresponding
lineage, therefore showing a high universality, and be maintained as single-copy in at least 90% of the
species to fulfill the low duplicability requirement. To illustrate this, the proportions of orthologous
groups in mouse (Mus musculus), fly (Drosophila melanogaster), and yeast (Saccharomyces
cerevisiae) are depicted according to the presence of orthologs in the other species within their
respective lineage (pie charts: vertebrata, arthropoda, fungi) and the proportion of single-copy
predominance in universal groups. The BUSCO sampling space is restricted to those passing both
90% thresholds. Adapted from [7].



3. The BUSCO software
BUSCO assessment procedure (Fig. 2) is implemented as a python 3 (https://www.python.org/)
package built upon several third party tools, each performing one step of the global analysis to
characterize BUSCO orthologs. The kind of input sequence (a genome assembly, an annotated gene
set, or a transcriptome assembly) defines which of these steps need to be executed, namely (i) locate
candidate regions using local alignment against amino acid consensus sequences, (ii) extract gene
models from these regions based on block profiles, and (iii) score the candidate genes against the
profile Hidden Markov Model (HMM) of their corresponding BUSCO genes. The tools are pipelined
within three assessment modes offered to the user. The methods and examples presented hereafter are
based on the version 3.0.x of the BUSCO open source software.

3.1. Setup
The BUSCO sources are hosted on https://gitlab.com/ezlab/busco/ where they can be downloaded or
cloned using a git client. A mock input (sample_data/target.fa), an example lineage
(sample_data/example), and the corresponding BUSCO genome evaluation results are available at the
root of the repository and can be used to test and validate the installation of each component required
to run a complete analysis.

3.1.1. BUSCO python package
The python package needs to be installed by calling the script setup.py. All python 3 versions are
supported. In the main folder, one of the following commands has to be executed:

sudo python setup.py install # system wide installationpython setup.py install --user # current user only
The user is encouraged to pay attention to which version is used when calling setup.py, to ensure that
the same version will be used when running the analysis.

https://www.python.org/
https://gitlab.com/ezlab/busco/


3.1.2. Configuration file
BUSCO uses the configparser class from the python standard library to manage its configuration in a
dedicated file organized in sections. The first section contains all parameters controlling the BUSCO
run, while additional sections locate executables which are part of external tools. Below is an extract
of the file config.ini.default, a self-documented default configuration present in the config/ folder,
which can be copied and adapted by the user for their own need.

[busco]debug = Truegzip = False[tblastn] # section describing the “tblastn” executablepath = /usr/bin/ # do not append the executable to the path
The path to the configuration file has to be declared in the $BUSCO_CONFIG_FILE environment
variable or placed to the default location inside the BUSCO directory: config/config.ini.

3.1.3. Third party software
Each of the following tools has to be installed prior to running BUSCO in an assessment mode that
requires it. The path to each executable has to be declared in the configuration file. It is recommended
that the user makes sure that each of the software packages work independently before attempting to
run any assessments with BUSCO. The minimal version that is required is mentioned for each tool,
and the user can obtain information about future version compatibility on the BUSCO website and on
the web pages of each tool.

A) TBLASTN
The genome and transcriptome modes require a translated BLAST search (TBLASTN) [9]. BUSCO
uses the NCBI implementation available in the BLAST+ suite from version 2.2.x (see Note 1). It can
be downloaded from https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/, and release notes are
available on https://www.ncbi.nlm.nih.gov/books/NBK131777/. Two executables have to be declared
in the configuration file: makeblastdb and tblastn.

https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
https://www.ncbi.nlm.nih.gov/books/NBK131777/


B) AUGUSTUS gene predictor
AUGUSTUS, a tool for predicting genes in eukaryotic genomic sequences [10], is needed by the
genome assessment mode. BUSCO supports versions 3.2.1 or higher and the software can be obtained
from http://bioinf.uni-greifswald.de/augustus/. As it includes multiple PERL scripts
(https://www.perl.org/), the user should refer to the AUGUSTUS documentation for its PERL
requirements. The executables that have to be declared in the configuration file are augustus,
etraining, gff2gbSmallDNA.pl, new_species.pl, and optimize_augustus.pl. These entries are not
sufficient and additional environment variables have to be set as follows:

export PATH=/path/augustus-3.x.x/bin:$PATHexport PATH=/path/augustus-3.x.x/scripts:$PATHexport AUGUSTUS_CONFIG_PATH=/path/augustus-3.x.x/config/
(see Note 2)

AUGUSTUS makes its predictions based on parameters that are species-specific. It comes with
predefined values corresponding to well annotated species. While BUSCO preselects automatically
the most appropriate species to be used for each analysis, it is worth mentioning that these are listed in
$AUGUSTUS_CONFIG_PATH/species/ and it is possible for the user to indicate a different species
(see Subheading 4.2).

C) HMMER
To evaluate amino acid sequences using profile HMMs, all modes of BUSCO require HMMER,
version 3.1b2 or higher [11], which can be obtained on http://hmmer.org/. The unique executable that
has to be declared in the configuration file is hmmsearch.

3.2. BUSCO Datasets
Analyses are based on features describing BUSCO genes that were carefully selected (Fig. 1). They
are organized in datasets corresponding to specific lineages [5]. The version 3 of BUSCO comes with
28 eukaryotic datasets (Table 1) representing major groups, which can be downloaded on the BUSCO
website along with 16 prokaryotic sets. They are identified by a name and a version, e.g.

http://bioinf.uni-greifswald.de/augustus/
https://www.perl.org/
http://hmmer.org/


“eukaryota”_“odb9”. Each BUSCO gene, with its unique identifier, e.g. EOG090C01CE (see Note 3),
is represented by different parameters found in different files. The content of a standard BUSCO
dataset is the following:

- hmms/: contains one profile HMM file for each BUSCO gene. Required by HMMER.
- info/: contains the list of species used to create the set and additional information.
- prfl/: contains one block profile file for each BUSCO gene. Required by AUGUSTUS.
- ancestral: a FASTA file for each BUSCO gene, which contains a consensus of the extant

sequences. Required by TBLASTN.
- ancestral_variants: a FASTA file for each BUSCO gene, which contains a consensus and

variants of the extant sequences. Required by TBLASTN.
- dataset.cfg: configuration and information about the dataset, including the default species

used by AUGUSTUS among those provided with the tool, which corresponds to the most
appropriate for the majority of species within the lineage, e.g. “fly” for the Insecta dataset.

- scores_cutoff: minimal HMMER scores to reach for each gene to be considered as
orthologous to BUSCO genes and classified as found.

- lengths_cutoff: minimal length values for BUSCO gene matches to be called complete.

3.3. Running BUSCO
3.3.1. Genome

When the input to be evaluated is a genome assembly, i.e. nucleotide sequences in the forms of
contigs, scaffolds, or chromosomes, the genome mode has to be selected (Fig. 2A). It runs two phases
composed of three steps each. In the beginning of the first phase, TBLASTN is run taking BUSCO
amino acid consensus sequences as queries and the input genomic sequences as database. The goal is
to identify the subset of sequences in this genome that are most likely to contain matches for each
BUSCO gene. Second, AUGUSTUS is run to delineate precise gene structures on these regions, from
which a protein sequence is extracted. Finally, HMMER is run to assign a score to the candidate



amino acid sequence before the BUSCO algorithm proceeds to a preliminary classification. The
second phase of BUSCO genome mode involves a retraining step, which produces a better set of
parameters for AUGUSTUS, inferred from the single copy BUSCO genes found to be complete
during the first phase. The rest of the run focuses on finding the missing BUSCO genes with a
TBLASTN step based on additional variants of the amino acid consensus, followed by an
AUGUSTUS step using the retrained parameters, and a new HMMER run to obtain a final
classification.
The BUSCO genome mode is run as follows:

python busco_folder/scripts/run_BUSCO.py-i SEQUENCE_FILE.fna -o OUTPUT_NAME-l lineages/NAME_OF_LINEAGE -m geno
Every BUSCO mode displays a printed score on the stdout and produces a comprehensive output
folder named run_OUTPUT_NAME. The following files and folders are found in a BUSCO genome
run output:

- short_summary_OUTPUT_NAME.txt: a text file that contains the final BUSCO score and a
summary of the parameters that were used.
# The lineage dataset is: NAME_OF_LINEAGE# BUSCO was run in mode: genomeC:80.0%[S:80.0%,D:0.0%],F:0.0%,M:20.0%,n:108 Complete BUSCOs (C)8 Complete and single-copy BUSCOs (S)0 Complete and duplicated BUSCOs (D)0 Fragmented BUSCOs (F)2 Missing BUSCOs (M)10 Total BUSCO groups searched

- full_table_OUTPUT_NAME.tsv: The detailed list of all BUSCO genes and their predicted
status in the genome.
# Busco id Status Contig Start End Score LengthEOG09000001 Complete sample 3018 3142 320 193EOG09000002 Complete sample 3164 4762 872 443

- missing_buscos_list_OUTPUT_NAME.tsv: the list of missing BUSCO gene identifiers.
- blast_output/: contains the raw output of the two TBLASTN runs and the corresponding



coordinates as defined by BUSCO to represent candidate regions.
- augustus_output/: contains a log file dedicated to AUGUSTUS, the list of single copy genes

that were used to retrain AUGUSTUS, and in the subfolder predicted_genes/, one gene model
for each candidate region evaluated, named after the BUSCO block profile used, e.g.
EOG09000001.out.1. In the subfolder extracted_proteins/, there are one nucleotide and one
amino acid sequence for each gene model, e.g. EOG09000001.fna.1 and
EOG09000001.faa.1. Note that the two previously mentioned subfolders represent all
candidates, including those that were not retained as positive matches in the end of the
analysis, therefore containing irrelevant material that is not listed in the final full table file.
Consequently, the user should be cautious when considering their content as meaningful
biological sequences and refer to the coordinates and identifiers in the full table file. The
retraining parameters produced by BUSCO to be used by the second AUGUSTUS run are
stored in the subfolder retraining_parameters/ (see Note 4). Finally, several intermediate files
produced during the analysis in GenBank and General Feature Format (GFF) can be found in
the remaining folders.

- hmmer_output/: contains a tabular format of each HMMER output, one for each candidate
protein evaluated, named after the BUSCO profile HMM used, e.g. EOG09000001.out.1.
These represent all candidates that were and were not retained as positive matches in the end
of the analysis.

- single_copy_busco_sequences/: contains the nucleotide and amino acid sequences of all
BUSCO genes that were found complete and not duplicated during the first phase of the
BUSCO genome analysis. They are the genes used to train custom AUGUSTUS gene models.
To access the genes that were found in the second phase, or found duplicated and fragmented
during both phases, the user will have to manually extract the sequences from the other
folders, according to the coordinates and identifiers in the full table file.

3.3.2. Annotated gene set
When the input to be evaluated is an annotated gene set in the form of amino acid sequences, the



protein mode has to be selected (Fig. 2B). It consists of a single assessment of every sequence against
every BUSCO profile HMM followed by the classification. Annotated gene sets usually contain
protein isoforms that are relevant and therefore kept in the final result. However, in order to properly
evaluate the amount of BUSCO gene duplications (which can be technical artifacts or true
duplications), isoforms should be removed before any BUSCO assessment.
The BUSCO protein mode is run as follows:

python busco_folder/scripts/run_BUSCO.py-i SEQUENCE_FILE.faa -o OUTPUT_NAME-l lineages/NAME_OF_LINEAGE -m prot
The BUSCO protein run output folder contains a short_summary_OUTPUT_NAME.txt and a
missing_buscos_list_OUTPUT_NAME.tsv file identical to those of the genome mode. The
full_table_OUTPUT_NAME.txt file is slightly different, having the identifier of the sequence and no
start and end coordinates.

# Busco id Status Sequence Score LengthEOG09000001 Complete sample1 320 193EOG09000002 Complete sample2 872 443
The folder hmmer_output/ contains a tabular format of each HMMER output, one for each BUSCO
profile HMM that has been searched, e.g. EOG09000001.out.1.

3.3.3. Transcriptome
The last mode available has to be selected when the input is a transcriptome assembly (Fig. 2C) in the
form of nucleotide sequences representing individual transcripts. A TBLASTN run taking BUSCO
amino acid consensus sequences as queries and the input transcripts as database is conducted to obtain
a subset of sequences harboring potential matches to each BUSCO gene. A six frame translation is
done on these transcripts and HMMER is run to assign a score to the candidate amino acid sequences
before the BUSCO algorithm proceeds to the final classification. As for protein isoforms, alternate
transcripts should be removed from the input before running BUSCO in order to obtain a meaningful
duplication score.
The BUSCO transcriptome mode is run as follows:



python busco_folder/scripts/run_BUSCO.py-i SEQUENCE_FILE.fna -o OUTPUT_NAME-l lineages/NAME_OF_LINEAGE -m tran
The BUSCO transcriptome run output folder contains a short_summary_OUTPUT_NAME.txt and a
missing_buscos_list_OUTPUT_NAME.tsv file identical to those of the two previously described
modes. The full_table_OUTPUT_NAME.txt file contains the identifier of the transcript and is similar
to that of the protein mode. The folders blast_output/ and hmmer_output/ have the same content as
their equivalents in the genome mode. The folder translated_proteins/ contains the six-frame
translated version of every transcript having a match to a BUSCO amino acid consensus during the
TBLASTN analysis, including discarded candidates and transcripts included in the final classification.

3.3.4. Optional arguments
The BUSCO script possesses several options that allow the user to either act on the assessment
outcome by fine tuning parameters, or control the usability of the tool, affecting the structure of the
outputs or the resources and time consumption. While the first category will be evoked later in the
chapter, it is worth highlighting useful options belonging to the second category. The full list of
parameters can be printed by calling the help option:

python busco_folder/scripts/run_BUSCO.py -h
In addition to the command line, most of the parameters can be defined in the configuration file to
become the default value at each run. For example:

python busco_folder/scripts/run_BUSCO.py --cpu 8
is equivalent to having in the configuration file:

[busco]cpu = 8
Note that the parameters provided through the command line will always override the entry in the
configuration file. A few parameters are restricted to the file, an important one being the debug mode
that every BUSCO user should know.

[busco];debug = True # to enable, uncomment by removing the ;



Since BUSCO makes thousands of calls to external commands such as augustus or tblastn, it may be
useful for the user to be able to track each of these calls and run them manually (see Note 5).
Therefore, the debug mode prints all commands and parameters that are called during the run.

DEBUG ['/usr/bin/tblastn', '-db', '/tmp/test_db']
Once all issues related to external commands are fixed, or if the analysis was killed accidentally, the
run can be started again from the beginning using the --force option to rewrite over existing files, or
preserving the output of each step that was successfully completed using the --restart option. Finally,
as each analysis generates a large amount of small files, some storage systems may be affected when
multiple runs are conducted and kept during a project. The --tarzip option solves this issue by
archiving all subfolders in the output that are likely to contain a high number of elements (i.e.
AUGUSTUS and HMMER outputs).

Fig. 2. Description of the BUSCO workflow for the three types of sequence input, genome (A), gene
set (B) and transcriptome (C). The same dataset is used in all modes, although not all information



embedded is utilized in each situation. The genome mode includes two phases in which the three main
steps are run, with the second pass only targeting the missing and fragmented BUSCO genes using
additional consensus sequences and retrained AUGUSTUS parameters.



4. Understanding BUSCO
4.1. Choice of the dataset

Once the tool is properly set up, the first decision that has to be made is which dataset should be used
among those available (Table 1, see Note 6). The primary goal of the BUSCO tool is to allow
evaluation, comparison and reevaluation of assemblies and annotations. A good rule of thumb is to
select the most specific lineage the species belongs to, as it will provide the best resolution possible
for the evaluation. For instance, when working with insects, the user should choose the dataset
belonging to the class Insecta, unless the organism belongs to the order Diptera or Hymenoptera for
which an order-specific dataset exists [12]. While it is always incorrect to use any dataset issued from
a lineage to which the species does not belong, two reasons could lead the user to select a more
generic dataset, representing a higher taxonomic level. First, the time required by most steps during a
BUSCO analysis increases linearly with the number of genes included in the dataset, which tends to
increase in lower taxonomic levels. Moreover, species belonging to certain lineages such as
Mammalia have a complex gene structure [13], which can drastically increase the run time per gene
compared to a generic set such as Metazoa. Therefore, the user has to balance the resolution needed vs
the runtime. Second, BUSCO is often used to compare an assembly or an annotation to previously
published material of related species or a previous version of the same project. In this situation, it is
recommended to plan in advance the comparative aspect of the project to select a dataset that
encompasses all species involved. For example, while BUSCO provides an avian dataset, a
comparative genomics study that mixes birds and other amniotes will prefer the Tetrapoda dataset for
evaluating all species involved.

4.2. Choice of the parameters
BUSCO offers multiple ways to fine tune several aspects of the analysis. In particular, AUGUSTUS is
a tool that provides many options and BUSCO can pass any parameter to this tool in the genome



mode using the option --augustus_parameters. However, the golden rule when using BUSCO is not to
change default parameters unless there is a biological or experimental reason to do so. The user
should keep in mind that their goal is not to improve the BUSCO score per se, but to improve the
overall quality of their assembly and annotation, which also relies on remaining comparable with the
rest of the BUSCO user community. One biological justification for editing a parameter is that of a
different codon usage (the AUGUSTUS parameter translation_table), for example in ciliates [14], as
keeping the default parameter would impair the evaluation of the assembled genome. However, if the
goal is not to evaluate and compare, but to recover as many BUSCO gene sequences as possible for
downstream analyses (see Subheading 6), it becomes relevant to explore the palette of parameters
offered by BUSCO. The default species passed to AUGUSTUS can be specified with the --species
option and the Expect value used with TBLASTN can be modified using the --evalue option. By
default, BUSCO considers only the three best contigs matching a BUSCO gene during the TBLASTN
step for the subsequent analyses to minimize the computing time. While this is an efficient tradeoff
between performance and BUSCO gene recall for most use cases, the user can increase this limit up to
20 using the --limit option to try recovering a few extra BUSCO gene sequences.

4.3. Interpretation of the results
BUSCO produces a report for each of the three modes of assessment using the same scoring scheme.
Expected BUSCO genes can fall into different categories: C:complete [S:single-copy,
D:duplicated], F:fragmented, and M:missing. These are reported as absolute numbers as well as
percentage of the total BUSCO genes (n:) included in the dataset. To judge whether a score is
satisfying, the user will have to consider the type of sequence first. A very good genome assembly
should contains all BUSCO genes that were not lost during the evolution of the species, which cannot
be precisely defined. Model organisms, which have good reference genomes, often reach a score
above 95% complete (BUSCO 3.0.2: Mus musculus; GRCm38.p6; mammalia_odb9;
C:95.2%[S:90.9%,D:4.3%],F:2.4%,M:2.4%,n:4104 - Drosophila melanogaster; Drosophila
melanogaster Release 6 plus ISO1 MT; diptera_odb9;



C:98.7%[S:98.2%,D:0.5%],F:0.8%,M:0.5%,n:2799 - Saccharomyces cerevisiae; Saccharomyces
cerevisiae S288C; saccharomycetales_odb9; C:98.3%[S:97.7%,D:0.6%],F:0.7%,M:1.0%,n:1711).
Non-model genome projects commonly report BUSCO scores ranging from 50% up to 95% complete,
depending on the challenge posed by the species’ biology (e.g. genome size, amount of repetitive
elements) and its taxonomic position [15–18]. The score of an annotated gene set may reach a value
lower than its genomic equivalent, since an annotation pipeline might miss BUSCO genes present in
the assembly as it aims at predicting thousands of genes with broad parameters, while the BUSCO
software targets very specific sequences with tailored parameters. Consequently, the user should
assess both the assembly and the annotation result to judge whether the gene prediction strategy is
appropriate or can be improved in light of the expected gene content in the genome (see Subheading
6.1). It is important to mention that the user should never complete the annotated gene set with the
BUSCO genes recovered by the genome mode prior to assessing it, as it would bias the evaluation of
true annotation efficiency. Finally, a good transcriptome score can be much lower than its genomic
counterpart, as not all BUSCO genes are necessarily expressed together, especially in a single tissue
or condition [19].
The duplication of a few BUSCO genes in a genome is compatible with a biological reality, as their
evolution under single copy may be relaxed in some sublineages and the fact that we allowed
duplications in up to 10% of the species when defining BUSCO markers [7]. However, a high
duplication rate in a genome could denote a potential assembly of different haplotypes, a recent whole
genome duplication [20], or technical artifacts that will have to be investigated. As mentioned earlier,
the duplication rate of transcriptomes and annotated gene sets unfiltered for isoforms may be
considerably higher. In some situation, the user will want to filter these out to decrease the duplication
rate down to values expected in a genome. A high rate of fragmented BUSCO genes indicates issues
in the sequencing and assembly process or the inability of the annotation pipeline to fully capture the
complexity of some gene models. Turning fragmented BUSCO genes into complete is a good
indicator of a significant improvement of the quality of an assembly, especially when supported by
changes in other metrics such as N50.
To define the presence, absence and fragmentation status of each BUSCO gene, the classifier applies



to all results a score and a length threshold based on the distribution of these metrics in the species
used to produce the datasets. This implies that in limited cases, it may be possible that a gene which is
an outliers in terms of length or score will be classified as fragmented or missing while it is in fact
present and complete. An advanced user may be able to spot such situations when manually
investigating the outputs. However, much care should be taken when reinterpreting the results, as
close homologs are sometimes difficult to distinguish from actual BUSCO genes (see Note 7) and
remain the most likely explanation in such situations. Finally, no adjusted scores should be reported
alone in a publication, for the sake of like-for-like comparisons within the community of users.

5. Plotting the results
It is common to represent BUSCO scores side-by-side using bar plots to illustrate different milestones
of an assembly and annotation project, or different species as part of a comparative study. To
encourage the use of a standard and distinctive layout in publications, while allowing a certain degree
of customization, BUSCO includes a dedicated script to produce a figure and its source code that can
be edited by the user. It requires only the short summary files of each BUSCO run that should appear
on the plot to be grouped in a single folder, the working directory, in which the outputs will be
generated.

python busco_folder/scripts/generate_plot.py -wd PATH
The language underlying the figure creation is R [21] and its popular library ggplot2 [22]. If these are
available on the system running BUSCO, an image file will be produced automatically by calling the
R script and written in the working directory. Otherwise, the user can specify the --no_r option to
ignore this step and find a R code file in the working directory on which they have full control and
freedom to edit and run anywhere. Fig. 3 is an example of the resulting default plot.



Fig. 3. Illustration of the BUSCO default side-by-side representation of assessment scores as
produced by the plotting script. Three hypothetical species evaluated with 100 BUSCO gene profiles
are depicted with various degrees of completeness and duplication.



6. Beyond completeness assessment
Although BUSCO’s main function is to perform genomics data quality control, it is worth mentioning
that one can take advantage of the pipeline for performing other common operations in genomics,
such as for building training sets for gene predictors, identifying reliable markers for large-scale
phylogenomics studies, and selecting high-quality reference species for comparative genomics
analyses. These aspects are presented in great detail in the publication entitled “BUSCO Applications
from Quality Assessments to Gene Prediction and Phylogenomics” [5].

6.1. A few words on gene predictor training
Running BUSCO provides to the user high-quality gene model training data that can greatly improve
genome annotation procedures. Gene prediction remains a challenging procedure, especially in the
absence of supporting evidence such as native transcripts or homologs from close species. To achieve
the best results, gene prediction tools such as AUGUSTUS [10], SNAP [23], GENEID [24] and
GeneMark [25], need to optimize their parameter configurations for each specific genome. BUSCO
genes can be used as initial sets of high-quality gene models for such optimization. For example,
using BUSCO-trained parameters for gene prediction resulted in improvements in the quality of the
resulting gene model annotations over using available pre-trained parameters from other species [5].
Since BUSCO employs AUGUSTUS for gene prediction, the pipeline automatically provides
AUGUSTUS-ready parameters trained on BUSCO genes identified as complete single copy (see Note
4). Moreover, BUSCO provides the --long option to enable the optimization mode when retraining
AUGUSTUS, which can further improve the obtained retraining parameters, with a cost in terms of
time consumption that depends on the complexity of the organism gene models. Other gene predictors
like SNAP can be trained as well, by using as input the GFF and GenBank-formatted gene models
generated by BUSCO.



7. Notes
1. Inconsistencies when using multi-threading on TBLASTN 2.4.x and higher have been

reported multiple times. If the user faces such issue, a rollback to version 2.2.x or 2.3.x is a
safe option. If this is not possible, BUSCO supports the option blast_single_core=True in the
configuration file to ignore multithreading (--cpu) for blast steps only.

2. BUSCO needs to write in the $AUGUSTUS_CONFIG_PATH/species/ folder. Therefore, an
unprivileged user on a shared environment will encounter the following error: Cannot write to
AUGUSTUS config path. This can be solved by copying the entire
$AUGUSTUS_CONFIG_PATH folder to a location where the user has write permission and
redeclaring the environment variable to target this location.

export AUGUSTUS_CONFIG_PATH=/new/location/
3. The BUSCO orthologous groups identifiers EOGxxxxxxxx cannot be shared or compared

between different datasets and versions. The orthology delineation method uses a
representation of the relationship between genes that is unique to each lineage as it arises
from all duplication and speciation events underlying the evolution of the lineage. Therefore,
a genomic sequence suitable to be a BUSCO gene in one dataset may not have the same
orthology relationships to the sequences with different evolutionary distances that are
considered to define BUSCO genes in other datasets.

4. To reuse the retraining parameters as a custom species with AUGUSTUS, independently from
BUSCO, the user needs to move the folder retraining_parameters/ back to the
$AUGUSTUS_CONFIG_PATH/species/ folder of their AUGUSTUS install and rename it to
its original name, which can be deduced from its content. If the folder contains the file
BUSCO_OUTPUT_NAME_xxx_parameters.cfg, the correct name to be used for naming the
folder and identify the species within AUGUSTUS is BUSCO_OUTPUT_NAME_xxx.

5. BUSCO removes all temporary files at the end of the analysis. To run manually a command
that accesses temporary files, the user will have to kill the run before it reaches the end.

6. Producing a BUSCO dataset is not a trivial task. Genes have to be sampled from orthologous



groups that are suitable in terms of phyletic profile (Fig. 1) and containing a sufficient number
of species to properly represent the lineage in question. For this reason, and to encourage
users to take advantage of existing datasets to produce comparable results, no detailed
procedure for creating custom datasets is available. This remains achievable by an advanced
user having access to a good sample of orthologs from their lineage of interest.

7. When close homologs to BUSCO genes are present in the sequence that is analyzed, the
BUSCO classifier will give a better score to the true copies and therefore be able to discard
the other sequences. However, if the actual BUSCO is missing, close homologs may
sometimes reach a sufficient score to be considered as positive matches to a BUSCO gene
that is in fact not present.
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Tables
Table 1. Detailed list of every BUSCO eukaryotic datasets available with BUSCO v3. The taxonomic
ranks match the NCBI taxonomy browser classification
(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi).

Name Taxonomic rank Number of genes Consensus of nOrthoDB species
eukaryota_odb9 Domain 303 65
metazoa_odb9 Kingdom 978 65
nematoda_odb9 Phylum 982 8
arthropoda_odb9 Phylum 1,066 60
insecta_odb9 Class 1,658 42
endopterygota_odb9 2,442 35
diptera_odb9 Order 2,799 25
hymenoptera_odb9 Order 4,415 25
vertebrata_odb9 2,586 65
actinopterygii_odb9 Superclass 4,584 20
tetrapoda_odb9 3,950 55
aves_odb9 Class 4,915 40
mammalia_odb9 Class 4,104 50
euarchontoglires_odb9 Superorder 6,192 25
laurasiatheria_odb9 Superorder 6,253 25
fungi_odb9 Kingdom 290 85
microsporidia_odb9 Phylum 518 14
dikarya_odb9 Subkingdom 1,312 75
ascomycota_odb9 Phylum 1,315 75
saccharomyceta_odb9 1,759 70
pezizomycotina_odb9 Subphylum 3,156 50
sordariomyceta_odb9 3,725 30
eurotiomycetes_odb9 Class 4,046 25
saccharomycetales_odb9 Order 1,711 30
basidiomycota_odb9 Phylum 1,335 25
embryophyta_odb9 1,440 20
alveolata_stramenophiles_ensembl 234 24
protists_ensembl 215 33

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
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