> UNIVERSITE

g DE GENEVE Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Article scientifique 2006 Published version

This is the published version of the publication, made available in accordance with the publisher’s policy.

Wanner, Gerhard

How to cite

WANNER, Gerhard. Dahlquist’s classical papers on stability theory. In: BIT, 2006, vol. 46, n° 3, p.
671-683. doi: 10.1007/s10543-006-0072-1

This publication URL:  https://archive-ouverte.unige.ch/unige:12066
Publication DOI: 10.1007/s10543-006-0072-1

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.


https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:12066
https://doi.org/10.1007/s10543-006-0072-1

BIT Numerical Mathematics (2006) 46: 671-683
DOI: 10.1007/s10543-006-0072-1
Published online: 9 September 2006 — (© Springer 2006

DAHLQUIST’S CLASSICAL PAPERS ON
STABILITY THEORY*

G. WANNER"**
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In memory of Germund Dahlquist (1925-2005).

Abstract.

This text, which is based on the author’s talk in honour of G. Dahlquist at the
SciCade05 meeting in Nagoya, describes the two classical papers from 1956 and 1963
of Dahlquist and their enormous impact on the research of decades to come; it also
allows the author to present a personal testimony of his never ending admiration for
the scientific and personal qualities of this great man.

AMS subject classification (2000): 65F05, 65F07.
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1 Introduction.

“You know, I am a multistep man ... and don’t tell any-
body, but the first program I wrote for the first Swedish
computer was a Runge-Kutta code ...”

(G. Dahlquist 1982, after 10 glasses of wine)

“Mr. Dahlquist, when is the spring coming?”
“Tomorrow, at two o’clock.”
(Weather forecast, Stockholm 1955)

The strong Fenno-Swedish tradition in complex and functional analysis gave
Dahlquist during his studies the great intellectual strength, which then allowed
him, after obtaining a job at the Swedish Board for Computing Machinery and
working with the first Swedish computer (see citations), to become one of the
revolutioneers of modern Numerical Analysis.

* Received January 10, 2006. Accepted May 29, 2006. Communicated by Gustaf Soderlind.
** This work was partially supported by a grant from Swiss National Science Foundation.
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2 The first Dahlquist barrier (1956, 1959).

“This work must certainly be considered as one of the

great classics in numerical analysis”
(A. Bjorck, C.-E. Froberg 1985)

“And slowly came up these rho and sigm a polynomials
L (G. Dahlquist, private communication 1979)

This first of Dahlquist’s great papers [4] has been published before the birth
of BIT. We therefore find it appropriate to reproduce in facsimile some parts
in more detail. The paper starts right away with the definition of the general
formula

CONVERGENCE AND STABILITY
IN THE NUMERICAL INTEGRATION OF ORDINARY
DIFFERENTIAL EQUATIONS

GERMUND DAHLQUIST
1. Introduction and summary
1.1. Statement of the problem. Consider & class of difference equations

(L1) &a¥nik + GpmrYnsror T oo+ 0ln = BBifusx + ..o + Bofi)s

and gives a careful numerical analysis of the highest-order explicit two-step
method, which, of course, every one who has seen the method definition and
the order conditions, derives first:

1.2. A numerical example. Apply the formula
Ynsz = — 45’14-1 + 3y, + h{'l.fn-i-l + 2fn)

Apparently, the numerical solution is of no use and, curiously, the solution be-
comes better with the use of a wrong initial value (cases II):

Case I Case IIa Casz IIh

n (numerical solation) {numerical solution) £;" with six correct dec.
| Uy 10% - error Y 10% « error 10% - error

0| 1,000000 0 | 1,000000 ol1
1 1,106171 0| 1,105168 3 | 1,10516781 3
2 1,221384 19 | 1,221395 8 | 1,221396 7
3 1,349907 —48 | 1,349852 7 | 1,340847 12
4 1,491532 203 | 1,491787 38 | 1,491808 17
& 1,650001 — 1280 | 1,648797 —76 | 1,648698 23
6 ; 1,815963 6156 | 1,821623 496 | 1,822088 31
7 2,042538 —28785 | 2,015902 —2149 | 2,013713 40
5 i 2089871 135670 | 2215192 10349 | 2,225491 30
9 ' 3,007662 — 638059 | 2,507999 48306 | 2459541 62
10 | —0,284254 3,002536 | 2,490202 228080 | 2,718205 77
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Stability analysis.

“The main result is rather negative (Thm. 4), but there
are new formulas of this general class which are at least
comparable.” (G. Dahlquist 1956)

The disappointing behaviour of the above formula is then explained by the “para-
sitic” root —5 of the p-polynomial

o(2) = o l% + oy C¥ 1 + ... + &,
o) = Btk + Bral* 2+ ... + By

Only stable methods, i.e., methods whose roots of p are inside the unit circle,
with simple roots allowed on the boundary, are of interest. But then comes the
great deception in Theorems 4a and 4b:

Taeorem 4a. The degree p of a stable operator of order k can never
exceed k+2, If an operator is stable, then the condition that R(z) is an odd
function is necessary and sufficient for the degree to be equal to b+ 2.
All roots of R(z) are then located on the imaginary axis. If k is odd, the
degree of o stable operator cannot exceed k+1.

TaEOREM 4b. If an operator of even order k is stable, then the conditions

(2.22) & = =0, B =i

are necessary and sufficient en order that it should be of maximum degree
k+2. All roots of o(C) then have unit modulus.

Dahlquist’s proof.

“Although there exist many different proofs for the the-
orem the original published proof still appears very ele-
gant, ...” (R. Jeltsch, O. Nevanlinna 1985)

Since polynomials with roots in the negative half plane are easier to handle (they
necessarily have all coefficients of the same sign) than polynomials with roots in
the unit circle, we define new polynomials R(z) and S(z) with the greek-roman
transformation

E=@E+Diz-1), z2=(C+/[C-1),
k
R(z) = (3z - D)e(l) = ,2,: a2,
:_

&
8(2) = (3z — 1))*a(2) s}é}‘ b2l
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for which the conditions of order p become

In these notations the relation (2.15) transforms into

2+ 1 9\ p-ki1
17 B@) - 8@ g ~ = 0 (;) (o),
£

(2.18) R() (log :—__1)‘1— S@) ~ - C G)H )

However, the Laurent series of

e N
lo ) = - — —(2»+1)
(log=27) =5 = S ko

has all coefficients pg,+1 > 0, which Dahlquist proves with a beautiful applica-
tion of Cauchy’s formula

1 z 4+ I\
= — — \ 2% { lo )dz
Havia %isz(gz—l
a
1
] v + -1
= — — \ ¥ (2% + log? )
27555 ( i gl—a:

I
—
8
v
—
B
[ 5]
+
3
g
[ -]

. a\
/

1

Hence, because the coefficients of R(z) all have the same sign, too, the only
liberty for eliminating the highest terms in the Laurent expansion of (2.18) is
essentially the choice of the polynomial S(z). We have the positive result, that
for each polynomial R(z) we can have order k by suitably adjusting S(z) in
(2.18), and unfortunately also the negative result, that not much more is possible.
Happily, the referee at that time did not refuse the paper, by saying that Adams’
methods had existed for one hundred years and that apparently no significant
practical progress seemed possible.

The theory was perfect from the beginning (see citation), became famous
mainly through the book by Henrici [12], and even the latest textbooks, for
example [10], cannot do much more than reproduce it with the same theorems
and the same notations — just, perhaps, adding a picture (see above). Vari-
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ous generalizations have been published since then, in particular Reimer’s order
barrier for multi derivative multistep methods [18].

The next great paper of Dahlquist [5] extended the theory into various direc-
tions, in particular to second order equations; its contents and their consequences
are described in [9] in this issue.

Finally, the theory contained the germs for what some years later became the
second great adventure, to which we will turn now.

3 The second Dahlquist barrier (1963).

Around 1960, things became completely different and
everyone became aware that the world was full of stiff
problems. (G. Dahlquist in Aiken 1985)

“certainly one of the most influential papers ever pub-
lished in BIT” (A. Bjorck, C.-E. Froberg 1985)

Abstract.

A SPECIAL STABILITY PROBLEM FOR LINEAR
MULTISTEP METHODS*

The trapezoidal formula has the smallest truncation error among all linear

GERMUND G. DAHLQUIST

multistep methods with a certain stability property. For this method error bounds
are derived which are valid under rather general conditions. In order to make sure
that the error remains bounded as ¢ —» oo, even though the product of the Lip-
schitz constant and the step-size is quite large, one needs nat to assume much more
than that the integral curve is uniformly asymptotically stable in the sense of

Liapunov.

I didn’t like all these “strong”, “perfect”, “absolute”,
“generalized”, “super”, “hyper”, “complete” and so on
in mathematical definitions, I wanted something neutral;
and having been impressed by David Young’s “prop-
erty A”, I chose the term “A-stable”.

(G. Dahlquist, private communication, 1979)

Stiff equations with large Lipschitz constants require the famous definition of

A-stable methods:

DEFINITION. A k-step method is called A-stable, if all solutions of (1.2)
tend lo zero, as n — oo, when the method is applied with fized positive h
to any differential equation of the form,

where g 18 a complex constant with negative real part.

dxfdt = g, (1.8)
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and the stability analysis now involves both polynomials p and ¢ and we have
an even more disappointing result:

TurorEm 2.2. The order, p, of an A-stable linear multistep method can-
not exceed 2. The smallest error constant, c* =4, is obtained for the trape-
zoidal rule, k=1, with the generating polynomials (2.2).

This famous theorem became known as the “second Dahlquist barrier” and Swe-
den became the expert country for stiff problems:

“Talking on stiff differential equations in Sweden, is like
carrying coals to Newcastle ...”

(W. L. Miranker, Géteborg 1975)

In order to give an impression of the enormous impact of this theory, we repro-
duce in Figure 3.1 (left) a slide from a talk of the author given around 1980.
A third “avalanche” then concerned the so-called G-stability of Dahlquist (1975)

(Figure 3.1, right), which is explained in more detail in Butcher’s paper [3] in
this issue.

STABIL\TATS THEORIEN
FUR STEVFE DIFFERENTIALELE ICHWGAS
INHALTL

A-dehle —
Al)-rhehile
No]- shable
A,-hable
A - ~rable
AN- Freble
Au— SIUHI
algebraically hable
B? ,,h,\,[.‘js-m;-;ld. B-convergent
BN-sthable
BS-shable
RsT-shable.  Cofubie
Carcle contrackve

baix G o debine
- ""‘""‘“wno
A, suitele wors.
wberwally L= heble gj y cesath depesed o ciorn
nuthpl ors ; ;.f"

nr'ﬂ": 'ui‘

THe TWRD DALEUAST - AMaLAM HG
Second avalanche. Third avalanche.

Figure 3.1: The second and the third Dahlquist avalanche (slides of the author, pre-
sented around 1980).
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Proofs of Dahlquist’s theorem.

“I searched for a long time, finally Professor Lax showed
me the Riesz—Herglotz theorem and I knew that I had

my theorem ...
(G. Dahlquist, private comm. 1979)

analytic functions. Following a suggestion of Professor P. D. Lax (oral
communication), we shall use a variant of Riesz—Herglotz’ theorem, cf.

Here, fortunately, Dahlquist left something over to do for later generations. The
nicest results were not found by people who stared at the p and o polynomials,
but who were looking for something completely different, i.e., tried to solve the

Three conjectures: Ehle’s conjecture [7] (1968) concerned the A-stability
of Padé approximations to the exponential function, the stability functions of
most implicit Runge-Kutta methods. After having proved that the diagonal and
the first two subdiagonal entries were A-stable, he conjectured that all other
approximations were not A-stable:

are L-acceptable. Furthermore, evidence is given to suggest that these are the only
L-acceptable Padé approximations to the exponential.

Nogrsett’s conjecture [17] (1975) concerned the points where their stability do-
main crosses the imaginary axis:

Conjecture. Let A}'(g) be the different approximations of the Padé table of
order m +n. Let ut consider the B-polynomial for these functions as a polynomial
in z=7"* of degree # in z. Then this polynomial has exactly { nonzero positive
zeros z;, + =1(1)f and n—{ zeros z; with z; =0, 1 =/ +4+1(1)n when

2f 41
=n— =1.
m=n {2{_'_2, =1

The Daniel-Moore conjecture [6] (1970) concerned the A-stability of multistep
methods using higher derivatives and reduced to the second Dahlquist barrier
for J =0:

order (L + 1X2J + 2). It is conjectured here that no A-stable method of the
form of Eq. 5-6 can be of order greater than 2J+ 2 and that, of those
A-stable methods of order 2J -+ 2, the smallest error constant is exhibited
by the Hermite method of Eq. 5-7.

The Daniel-Moore conjecture was ‘disproved’ by Genin (1974) [8] by giving A-
stable methods of ‘order’ 2 + min(l,k) — 1 and everybody thought that the
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conjecture was wrong. The following discovery of Jeltsch (1976) [14] was then
a big surprise:

NOTE ON A-STABILITY OF
MULTISTEP MULTIDERIVATIVE METHODS
ROLF JELTSCH

Abstract.

Daniel and Moore [4] conjectured that an A4 -stable multistep method using higher
derivatives cannot have an error order exceeding 2I. We confirm partly this con-

equivalent with the one commonly used. In all these methods proposed
by Genin in the proof of Theorem 10 the stability polynomial gy({), given
by (1.2), has £=1 as a root with multiplicity m =min {{,£}. It is easy to

Ngrsett’s conjecture was then the first to be cleared up — negatively: the Padé
fraction Ry ¢ was a counter-example. However, this paper showed the way to go:
make a careful study of the roots of the, now so-called, E-polynomial and their
relations with the position of the poles of R(z), which were clearly interrelated.

4 Order stars.

7

g,
7
il ///// ///

Figure 4.1: Order stars for some Padé fractions of the exponential function.
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Trying to understand this relation led to the idea to look at the level curves of
|R(z)| — not compared to the constant 1 — but compared to the exponential func-
tion |e#|. In this way the order stars were born [19, 20]. Apparently, G. Dahlquist
liked them much:

N S

1

.

LoNG L vE THE oRDER stars!!

Figure 4.1 indicates how these stars prove Ehle’s Theorem, which itself extended
a result of Birkhoff and Varga [2] (1965), of the A-stability for k < j < k + 2
(first row), as well as the inverse result, which was Ehle’s conjecture (second
row).

Multistep methods. Take as an example the BDF2 method
3 1 _
S5Ynt+1 — 2Yn + 5Yn—1 = hfni1
for which the stability analysis leads to

Y =Xy, p=hx = (E-p-20+Li=0.

We obtain an algebraic equation for ¢ which leads to two roots 1 2(p) = 2i37 11;22“
and have the order star on the corresponding Riemann surface.

€)1 > e

R S

We have that

e Implicit stage (numerical work) = leads to Pole of (;
e Order (precision) = star shape on principal sheet;
e A-stability = order star away from imaginary axis.
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This transforms numeric properties (left) to geometric properties (right). Order 3
is mot possible:

BDF3 method :
i1 = 3Yn + 2Yn—1— $Yn—2

= hfn+1

(3 -6 -3+ 36—} 0.

Error constant. In order to prove the second part of Dahlquist’s theorem
(and of the Daniel-Moore conjecture), concerning the smallest error constant,
we compare the stability function of our method —not to the exponential function
— but to the trapezoidal rule (resp. the diagonal Padé methods):

G| > | 22|

T T T T[T T T T T T

Jeltsch—Nevanlinna theorem. The above idea can be extended to any pair
of two methods and we arrive at another surprising result concerning scaled
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stability domains (“scaled” in the sense to possess the same number of explicit
stages per step unit, see [15, 16])

Sfcal Z SQscal and Sfcal gZ S;cal .

Proof.

Stabilized explicit methods. Real progress, however, is possible, if more
information about the position of the eigenvalues of the Jacobian is available.
If these eigenvalues are known to be on the real axis, such as in the case of
discretized parabolic problems, spectacular progress is possible with the so-called
Runge-Kutta—Chebyshev methods. These methods go back, for order 1, to 1960
(see references in [11], 2nd edn. p. 31f) and have been developed for order 2
independently by van der Houwen, Sommeijer and Verwer in Amsterdam, and
V.I. Lebedev and A. Medovikov in Moscow. A combination of both approaches
led to the ROCK4 algorithm of order 4 of Abdulle [1], which, for n = 20, possesses
the following stability polynomial and domain

X N A T

An excellent description of all these methods is given in the book of Hundsdorfer
and Verwer [13], Chap. V.

5 Epilogue.

The enthusiasm of all these discoveries had once led the author to present a little
story “The Garden of A-stability” in four acts, which Dahlquist remembered
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20 GTM  Uet Ry

A S At L
ooitppt) — 2
o ( T oT iﬁv "J‘M'f o5 A L v
o fdly . ¢ :
pr ,a,i")-'(i M-!-?r [,f.’ i ; %H{ %
: A T e i = r}_:n.f B 4] _f_‘l ) ." ‘a: ._ .,I‘ _‘_,;\ (4
xifig)'?ff:?”fi(ﬁt aag_’J* Ax O
o 3 ¢ \'A."’ Tai : ?— e L ‘9') Here 4 5’!’("/"“”
) _,,_I’ diaof A Lbih | I‘ f]?j j' }I’ 1 { JgT + ] Jf/‘{n#ﬁ..
bt fore. Yha el iFars Casnik -t = . e ,_,'}ﬂ.’ W?L/;f

Figure 5.1: From a letter of G. Dahlquist, (30 Sept. 1991).

e

- /r ,t;':; il s = _::r, u] - /2‘ e s 4 '
1. The garden in 1963. 2. It becomes famous.
_ md I B

o %Tr_;.rf"!_?'ﬁ_;{ e _=$
LG % S e A

3. Later; No midnight sun shining. =~ 4. Midnight sun is shining again.

Figure 5.2: The Garden of A-stability during one and a half decade (slides of the author,
presented in Stockholm, May 1979).
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still 12 years later (see facsimile in Figure 5.1). This encourages the author to
terminate this exposition with a reproduction of these slides in Figure 5.2.

This surprising result states that for every couple of explicit methods with
comparable numerical work there exists always a problem for which one method
is more stable than the other and vice-versa.
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