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Original Research Article

What do we see when we look
at networks: Visual network
analysis, relational ambiguity,
and force-directed layouts

Tommaso Venturini1 , Mathieu Jacomy2 and
Pablo Jensen3,4

Abstract

It is increasingly common in natural and social sciences to rely on network visualizations to explore relational datasets

and illustrate findings. Such practices have been around long enough to prove that scholars find it useful to project

networks in a two-dimensional space and to use their visual qualities as proxies for their topological features. Yet these

practices remain based on intuition, and the foundations and limits of this type of exploration are still implicit. To fill this

lack of formalization, this paper offers explicit documentation for the kind of visual network analysis encouraged by force-

directed layouts. Using the example of a network of Jazz performers, band and record labels extracted from Wikipedia,

the paper provides guidelines on how to make networks readable and how to interpret their visual features. It discusses

how the inherent ambiguity of network visualizations can be exploited for exploratory data analysis. Acknowledging that

vagueness is a feature of many relational datasets in the humanities and social sciences, the paper contends that visual

ambiguity, if properly interpreted, can be an asset for the analysis. Finally, we propose two attempts to distinguish the

ambiguity inherited from the represented phenomenon from the distortions coming from fitting a multidimensional

object in a two-dimensional space. We discuss why these attempts are only partially successful, and we propose further

steps towards a metric of spatialization quality.
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Introduction

Networks are not only mathematical but also visual

objects. If network computation has existed since the

18th century, the last decades have seen the rise of net-

work visualization as a tool of scientific investigation

(Correa and Ma, 2011; Freeman, 2000). This visual

renaissance is particularly noticeable in digital human-

ities and social sciences—where the increasing avail-

ability of relational datasets has fueled the interest in

graph charts—but it has also touched other disciplines

such as ecology, neuroscience, and genetics. In general,

it has become common to illustrate social relations,

economic fluxes, linguistic co-occurrences, protein

interactions, neuronal connections, and many other

relational phenomena as points-and-lines charts.
The function of such charts, however, is often

unclear. While network visualizations are regularly

exhibited as tangible evidence of findings, they are gen-
erally left out of the actual demonstration, which relies
instead on calculations and metrics. Network charts are
embraced for their insights but also distrusted because
of their ambiguity. Unlike a bar chart or a scatter plot,
a points-and-lines chart is not straightforwardly shaped
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by its rules of construction. Instead, its form depends
on the relationships between its elements in ways that
cannot be easily recognized, outside trivially simple
networks such as trees, stars, or grids. Graphs are mul-
tidimensional mathematical objects and visualization
squeezes them in a two-dimensional space, flattening
their complexity. No wonder that scientists are wary
of graph charts. And no wonder that most literature
on network visualization (see, for instance, the works
of the community of the Symposium on Graph Drawing
and Network Visualization) has been focused on reduc-
ing visual ambiguity by tweaking points-and-lines
charts (Dunne and Shneiderman, 2009; Shneiderman
and Dunne, 2013), transforming the data (Epasto and
Perozzi, 2019; Nick et al., 2013), or dismissing this type
of visualization altogether (Aris and Shneiderman,
2007; Henry et al., 2012; von Landesberger et al., 2001).

This paper proposes an alternative approach: instead
of trying to overcome the ambiguity of points-and-lines
charts, it considers it positively. Not as a burden but as
an asset. The same ambiguity that makes network charts
unfit for hypothesis confirmation, we contend, makes
them invaluable for exploratory data analysis. This is
particularly true for medium-sized networks—graphs
of hundreds or thousands of nodes often found in
social and biological phenomena. Alongside the metrics
and models typically employed by network science and
social network analysis, there exists a practice of visual
network analysis (VNA), which allows to explore the
richness of relational datasets and exploit their inherent
ambiguity (Decuypere, 2020). This practice is wide-
spread but remains mistrusted because of lack of docu-
mentation (Jokubauskaite, 2018). The working
hypothesis of this paper is that, by making explicit the
heuristic bases of VNA and investigating its way of

dealing with relational ambiguity, we can build trust in
this practice and make it even more useful as a technique
for exploratory data analysis.

To address this hypothesis, this paper offers an
account of VNA practices and an explicit discussion
of its foundations. Because this technique is yet unset-
tled, we will alternate theoretical and practical consid-
erations and unfold our argument through examples,
using the software Gephi (http://gephi.org; Bastian
et al., 2009, but see Cherven, 2015 or Khokhar, 2015
for a more how-to introduction to Gephi). (1) We start
by reviewing the standards of points-and-lines charts
and retracing the history of force-directed layouts. (2)
We propose a complete example of visual network
analysis. (3) We situate VNA by discussing the kind
of information that it delivers and the way in which it
preserves ambiguity. (4) We conclude by sketching a
formal analysis of force-directed layouts.

Spatialization through force-directed

layouts

The heuristic value of network visualizations was first
noticed in the second half of the 20th century by the
early school of social networks analysis or SNA (Scott,
1991; Wasserman and Faust, 1994). Jacob Moreno,
founder of this approach, explicitly affirmed that “the
expression of an individual position can be better visu-
alized through a sociogram than through a sociometric
equation” (Moreno, 1934: 103).

With sociograms such as those shown in Figure 1,
Moreno and his disciples set the standards of network
representation (Freeman, 2000, 2009). Their point-and-
line approach has been so successful that it has become
the de facto standard of network drawing. So much, in

Figure 1. Two Sociograms representing friendship among school pupils (Moreno, 1934, p. 37, 38).
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fact, that it now feels useless to specify that in these
charts the points represent the nodes and the lines rep-
resent the relationships connecting them, although this
choice is by no means evident. In matrices, for instance,
points indicate connections while nodes are rendered as
rows and columns. But standardization has gone fur-
ther. Even within the points-and-lines family, diversity
has been progressively reduced and today most net-
works visualizations abide by three unwritten principles
according to which nodes are (1) positioned according to
their connectivity; (2) sized proportionally to their
importance; and (3) colored or shaped by their category.
Together these principles constitute the foundations of
VNA, as discussed in the next section. For the moment,
let us consider the first one, which is the most specific to
this technique but also the most problematic.

The cornerstone of VNA is the use of “force-direct-
ed layouts” to draw networks in a two-dimensional
space (Di Battista et al., 1999). These algorithms may
be implemented according to different recipes but they
all rest on the same physical analogy: nodes are
charged with a repulsive force driving them apart,
while edges introduce an attractive force between the
nodes that they connect. Once launched, force-vectors
vary the position of nodes trying to balance the repul-
sion of nodes and the attractions of edges. At equilib-
rium, force-directed layouts produce a visually
meaningful disposition of nodes, where nodes that are
more directly or indirectly related tend to be closer.

This technique to visualize graphs has become so
common that we often fail to notice its accomplish-
ment. Force-directed layouts do not just project net-
works in space—they create a space that would not
exist without them. This is why this process is better
called “spatialization” rather than “visualization.”
Spatialization creates a space in which the

multidimensionality of networks can be flattened, in a
process of “graph embedding” (Yan et al., 2007) that
has applications even outside visualization.
Spatialization creates a space that retains key proper-
ties of a network.

To understand this feat, consider the plan of an
underground, rail, or bus system. Strictly speaking,
most of these plans are not geographical maps—they
are not drawn by setting up a system of axes first and
then placing the stations according to their coordinates.
In these charts, proximity represents connectivity
rather than spatial distance. Figure 2 shows the most
famous historical example of this design technique: the
1993 redesign by Harry Beck of the London tube map
(Hadlaw, 2003). Compared to geographic maps, this
type of representation is more focused on the informa-
tion needed by users (which lines should I take to go
from A to B and where should I change trains) while
remaining readable according to the visual conventions
of geographic maps—not a little advantage given the
huge efforts invested to build and spread the carto-
graphic conventions (Crampton, 2010; Krygier and
Wood, 2005; Robinson, 1952; Turnbull, 2000).

A similar advantage explains the appeal of force-
directed layouts: they allow reading networks as geo-
graphical maps, despite the fact that network space is a
consequence and not a condition of elements’ position-
ing. In a force-spatialized visualization there are no
axes and no coordinates, and yet the relative position-
ing of nodes is significant. One can compare distances,
gauge centers, and margins, estimate density and often
bring home interesting observations.

These insights, however, are not always easy to
obtain. The fact that network charts can be read
through an intuitive analogy with geographical maps
does not mean that their messages are easy to interpret.

Figure 2. London Underground map (a) before and (b) after Harry Beck redesign (The New York Times, 1933).
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Point-and-line charts resemble more topographic than
cadastral maps: their features are blurred and overlap-
ping as plains and chains of mountains rather than
clearly defined as administrative borders. Force-
directed visualizations are evocative rather than
descriptive and making sense of their uncertain pat-
terns is a matter of craft as much as of science. To
observe relational structures, one must know not only
where to look, but also how to make such structures
visible. This is why the next section discusses com-
binedly how to read networks and how to make their
visual ambiguity readable.

How to read networks and make them
legible

To exemplify VNA techniques, we were inspired by a
network of jazz musicians created by Gleiser and
Danon (2003). As observed by McAndrew et al.
(2014), “as a music form, jazz is inherently social”
and thus particularly propitious to network analysis
(cf. also Sonnett, 2016; Vlegels and Lievens, 2017).
Yet, the original jazz network contains only 1473
nodes and is limited to bands performing between
1912 and 1940. We thus produced an updated and
expanded jazz network (https://github.com/tommv/
ForceDirectedLayouts):

• We used Wikidata.org to extract from English
Wikipedia:
1. 6796 “humans” and 976 “bands” with

“genre¼ jazz”, together with their:
• “birth year” or “inception” date
• “citizenship” or “country of origin” (when

multiple, we kept the first one).
• “ethnic group”
• “gender.”

2. 53 jazz “subgenres” and 396 “record labels” asso-
ciated with these individuals and bands.
• We used the Hyphe web crawler (Jacomy et al.,

2016; Ooghe-Tabanou et al., 2018) to visit all
the Wikipedia pages and extract the hyperlinks
connecting them.

• From the resulting graph
• We removed all the edges that did not have an

individual or a band as one of their vertices.
• We kept only the largest connected component,

obtaining a network of 6381 nodes (5396 individ-
uals, 589 jazz bands, 346 record labels and 50
subgenres) and 85,826 edges.

In the next sections, we discuss the three main steps
of VNA which consist in (a) positioning nodes accord-
ing to their connections; (b) sizing them and their labels

according to their importance; and (c) coloring them
according to their categories. For the sake of clarity, we
present these steps sequentially but, in the practice of
VNA, it is often useful to move back and forth between
them. Our objective is not to provide rigid guidelines,
but to spell out a series of heuristic techniques that are
generally applied intuitively.

Positioning nodes

The first and most crucial step of VNA is always the
application of a force-directed layout and the observa-
tion of its results. While in spatialized networks closer
nodes tend to be more directly or indirectly associated,
no strict correlation should be assumed between the
geometric distance and the mathematical distance (cf.
Exploring the topological ambiguity of networks and
Toward a measure of spatialization quality sections).
As a consequence, VNA is less concerned with the
distance between nodes than with their general group-
ing. In a continuum that goes from a set of discon-
nected nodes (a “stable”) to a fully connected clique,
the structure of a network is revealed by the lumps
and the hollows created by the uneven distribution of
relations. Since force-directed layouts represent both
stables and cliques as circles filled with nodes equally
spaced, everything that departs from this disposition
indicates the existence of some relational structure.
When analyzing a spatialized network, therefore, we
should look for shapes that are not circular—which
indicate polarization—and differences in the visual
density of nodes—which indicate clustering.

Don’t be too quickly discouraged, however, if your
network looks like an amorphous tangle (a “hairball”,
Dianati, 2016; Nocaj et al., 2015). Legibility depends
crucially on the spatialization algorithm and its set-
tings. Although all force-directed algorithms rely on
similar systems of forces, they differ for the way in
which they handle computational challenges (e.g., the
optimization of calculations) and visual problems (e.g.,
the balance between compactness and legibility). What
appears as a homogenous distribution can sometimes
derive from unfortunate layout choices.

Figure 3 shows that the clustering of our jazz net-
work is less discernible when spatialized with
Früchterman and Reingold (1991) layout (Figure 3
(a)) than with ForceAtlas2 (Figure 3(b)). Clusters are
even more visible if the “LinLog mode”1 of FA2 is
activated and “gravity”2 is set to zero (Figure 3(c)).
While there are reasons to believe that this may be a
quasi-optimal configuration (see Toward a measure of
spatialization quality 4 and Jacomy et al., 2014),
some graphs may be more legible when spatialized
with different algorithms and settings. More than a
“catch-all configuration,” a trial-and-error adjustment
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of spatialization settings is the key to make relational

structures visible.

Sizing nodes and labels

After having positioned the nodes to reveal clustering,

we still have to make sense of what we see. To do so,

VNA draws on two other visual variables (Bertin,

1967): size and color. The degree (number of edges
connected to a node) or the in-degree (number of
incoming edges, as in see Figure 4(a)) are classic choices
for sizing nodes, as they straightforwardly translate
network visibility. Being entirely relational, the degree
can be computed for any network. Yet, when available,
other variables could be equally interesting. For
instance, we can size the nodes of our networks

Figure 3. The “jazz network” spatialized (a) with the algorithm proposed by Fruchterman and Reingold (1991), (b) with ForceAtlas2
(with default parameters) and (c) with ForceAtlas2 with tweaked parameters for LinLog mode and gravity. This and all images created
for this paper are available at: https://github.com/tommv/ForceDirectedLayouts.

Figure 4. The “jazz network” with nodes and labels sized according to (a) in-degree of the nodes; (b) number of page views of the
related pages in the English Wikipedia. Nodes are spatialized with the same layout as in Figure 3(c) (ForceAtlas2, LinLog mode,
gravity¼ 0).

Venturini et al. 5
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according to the number of views received in 2017 by

each Wikipedia page (Figure 4(b)). Notice that in

Figure 4, we have varied not only the size of the

nodes, but also of their label (and deleted the smallest

labels). This foregrounding operation is crucial, as

inspecting hundreds or thousands of nodes is clearly

not an option.
Observing the labels of the most visible nodes, we

can start to make sense of the shape of our network.

Comparing the two images in Figure 4, we notice for

example that nodes with high in-degrees tend to be on

the left, while nodes with high pageviews are on the

right. Also, high in-degree nodes are famous jazzmen

(the top-five being Dizzy Gillespie, Duke Ellington,

Miles Davis, Benny Goodman, and John Coltrane),

while high pageviews nodes are pop-culture celebrities

(top-five: George Michael, Alicia Keys, Barbara

Streisand, Liza Minelli, and Bing Crosby). This sug-

gests the existence of a left-right polarization corre-

sponding to a more or less pure jazz lineage. This

left-right separation, however, is not the most impor-

tant in our network, which appears to stretch vertically

more than horizontally.

Coloring nodes

To investigate the vertical polarization, we use a third

visual variable: color. Noticing at the bottom names

such as Louis Armstrong, Duke Ellington, and Bing

Crosby and at the top Chick Corea, Weather Report,

and Frank Zappa, we hypothesize that the vertical

polarization is connected to time. To investigate this

hypothesis, we color the nodes of our networks

according to their date of birth for individuals and of

inception for bands. While the separation is not com-

plete,3 Figure 5(a) seems to confirm our hypothesis that

the vertical polarization corresponds to time.
Figure 5(b) and (c) is dedicated respectively to

nationalities and ethnic groups and confirms that the

horizontal polarization is connected to “jazz purity”

(non-American actors tend to be on the right, while

most African American are on the left). Of course,

not all variables will turn out to be connected to

visual structures. Figure 5(d), for example, shows

how men and women are mixed in our network, pro-

ducing no relational fracture.
Using a force-directed spatialization to determine

the position of nodes and size and color to project

variables on the layout, we identified two sources of

polarization: primarily time, stretching the network

vertically, and secondarily “genre purity,” stretching

it horizontally. These, however, are not axes. Force-

vector algorithms are not dimensionality reduction

techniques like correspondence analysis (de Nooy,

2003; ter Braak, 1986) and polarization may not be

coherent across different clusters: the same variable

might spread left-to-right in one cluster and top-

down in another (Boullier et al., 2016).

Naming poles and clusters

In VNA, clusters are defined as regions where many

nodes flock together, surrounded by emptier areas

(the “structural holes” of Burt, 1995). In our network,

the only easily identifiable cluster is the one at the top

right, which contains the Scandinavian musicians of the

Figure 5. The “jazz network” with nodes colored according to: (a) the year of their birth or inception (from green for earliest dates
to magenta for most recent); (b) their nationality (red for US, gray for all other countries, white for not available); (c) their ethnic
groups (red for African American, gray for other ethnic groups, white for not available); and (d) their gender (red for women, gray for
men, white for not available or others).
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Trondheim Jazz Orchestra. The other clusters are more

difficult to identify and highlighting them requires

using two advanced techniques.
The first is performed in a tool called Graph Recipes

(tools.medialab.sciences-po.fr/graph-recipes) through a

script (https://github.com/tommv/ForceDirectedLayouts)

that transforms a network chart in a density heatmap

where denser zones are highlighted by darker back-

grounds (Figure 6). The second characterizes the different

areas of the heatmap through a set of “qualifying nodes”

(in our example, jazz subgenres and record labels) and a

“double spatialization.” We spatialize the network with

only bands and individuals and freeze the position of

these nodes. We then add the subgenres and record

labels and run the spatialization again but only on qual-

ifying nodes.4 The qualifying nodes can then be used as

labels for the clusters in which they end up being located.

Qualitative interpretation of the position of nodes

and clusters

After finalizing our visualization, we can make sense of

its overall structure and of the position of its key

nodes5—it is an advantage of VNA that it allows

observing both global patterns and local configurations

(Venturini, 2012). In Figure 6(b), we observe (from the

bottom to the top) the development of the jazz musical

language: from Dixieland and Swing to Bebop, Hard

Bop, Post-Bop and finally to Free jazz and

Improvisation. From this backbone of Afro-American

jazz, deviations (Cool Jazz and West Coast Jazz) and

contaminations with other genres (Bossa Nova, Latin
Jazz and Jazz Fusion) branch to the right of the chart.

Figure 7 zooms on some of the clusters of Figure 6.
The exploration above illustrates how to analyze a

network by combining three visual operations: (1) the

tweaking of a force-directed layout to highlight clusters

and structural holes; (2) the sizing of nodes and labels
to makes sense of the different regions of the chart; and

(3) the coloring of nodes to understand the forces struc-

turing the networks. It also introduces the advanced

techniques of density heatmaps and qualifying nodes.
For the sake of simplicity, we presented this sequence

as linear and orderly, as if we knew from the beginning

how to stack its operations and set its parameters. Of
course, this was not the case and our actual inquiry

entailed many trials and errors, and a lot of backs

and forth between different visual variables and their
parameterization. This type of iteration is very

common in VNA, which cannot be carried out without

a continuous switch between data and visualization,

selecting and filtering, zooming and panning.

Exploring the topological ambiguity of

networks

Beside illustrating the key techniques of VNA, the jazz
example has shown the way in which this approach

Figure 6. The “jazz network” with (a) the labels of the most salient node of each type (gray for individual, green for bands, blue for
subgenres and red for record labels) and (b) the identification on the structure of the network in terms of the evolution of the jazz
musical language.

Venturini et al. 7
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allows addressing, rather than reducing, relational
ambiguity. Exploring node density, for example,
serves a similar purpose to community detection algo-
rithms: to distinguish highly connected node groups.
Yet, the regions highlighted by VNA have vague out-
lines and large overlaps and are therefore much more
like jazz subgenres than the well-defined partitions pro-
duced by a community algorithm. Similarly, VNA
highlights the key positions of some artists and ensem-
bles, without imposing the kind of strict ranking that
would have emerged from a centrality metric.

As most statistical indicators, graph metrics discard
much of the complexity of the empirical phenomena
and focus on the few dimensions that can be precisely
quantified (Desrosi�eres, 1993). This reduction to

exactitude can be a drawback in the exploratory stage
of investigation, when the definition of the research
questions is still underway and the mastery of the
research corpus is still tentative. As long as the separa-
tion between “information” and “noise” (or “measure”
and “errors”, if you prefer) remains unclear, efforts to
clean up the picture risk to cut observation along precise
but fallacious lines. In early stages, researchers should
respect the inherent ambiguity of their subjects rather
than imposing a premature and artificial ordering. In
the words of John Tukey, the father of exploratory
data analysis:

“Far better an approximate answer to the right ques-

tion, which is often vague, than an exact answer to the

Figure 7. Mosaic providing a zoom on the different regions of the “jazz network.” (a) The bottom of the chart corresponds to the
’30s and ’40s and is marked by Decca and Capitol Records. The region of Dixieland and swing is split in two parallel clusters (also in
Gleiser and Danon, 2003): to the right, the “white big bands” around Tommy Dorsey, Glenn Miller and Benny Goodman; to the left the
“black big bands” around Louis Armstrong, Count Basie and Duke Ellington. Ella Fitzgerald and Billie Holiday are at the center because of
their numerous collaborations. (b) Moving up toward bebop, new labels emerge such as Verve and Columbia. Very close to the node
representing Bebop, we find Dizzy Gillespie and Charlie Parker, among the most influential artists of this style, and Sarah Vaughan who
collaborated with both. In a bridging position are Woody Herman and Clark Terry, whose long careers spanned between Swing and
Bebop. (c) Moving upward, the increasing dispersion of nodes illustrates the diversification of jazz in the ’50s. On the left, Bebop
evolves into Hard bop, thanks to Blue Note records and musicians such as Charles Mingus, Sonny Rollins, Thelonious Monk and Art Blakey,
who is also at the origin of the Jazz Messengers ensemble, which creates a little cape on the left of the map. On the right, West Coast
and Cool Jazz flirt with Latin music, originating Bossa Nova and Latin Jazz, popularized by Stan Getz and Quincy Jones. John Coltrane and
Miles Davis occupy the center of this region, and of the whole graph, for their crucial role in bridging all these experiences. (d) In the
’60s, contaminations turn toward rock and funk music originating Jazz Fusion, with musicians like Chick Corea, Herbie Hancock, John
Scofield and Pat Metheny, as theWeather Report. At about the same time, through artists such as Joe Henderson andMichael Brecker, Hard
Bop develops into Post-Bop thanks to musicians such as Wayne Shorter and Elvin Jones. (e) In the ’70s and ’80s, radical improvisation
conquers the avant-garde of Free Jazz and Free Improvisation. Initiated by musicians such as Sun Ra, Cecil Taylor, Archie Shepp and Ornette
Coleman, this style is developed by Anthony Braxton, John Zorn, Evan Parker and others. This genre seems to be supported particularly by
European record labels such as JMTand ECM. This last record label is also the bridge that connects the cluster of the Scandinavian jazz
to the rest of the maps.
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wrong question, which can always be made precise.”

Data analysis must progress by approximate answers,

at best, since its knowledge of what the problem really

is will at best be approximate. It would be a mistake

not to face up to this fact, for by denying it, we would

deny ourselves the use of a great body of approximate

knowledge. (Tukey, 1962: 14, original emphasis)

Maintaining margins of ambiguity is particularly
important in human and social sciences. Because of
the complex nature of their objects, many researchers
in these fields cannot bear the degree of exactitude
implied by confirmatory statistics. If many human
and social scientists are wary of quantitative tools, it
is because their precision is at odds with the messiness
of human phenomena. Johanna Drucker (2011) argues,
for example, that standard statistical charts convey a
purity that is unrealistic for most social categories, see
Figure 8 for an example.

This is one of the reasons why network visualiza-
tions are increasingly popular as ways to explore com-
plex subjects: their visual ambiguity mirrors some of
the empirical ambiguity of the phenomena they repre-
sent. The community structure of networks is, for
instance, notoriously ambiguous. As argued by
Calatayud et al. (2019), for some empirical networks,
the “solution landscape” of community detection “is
degenerate” because “small changes in an algorithm
parameter or a network due to noise can drastically
change the best solution” (see also Peixoto, 2019,
2020). In other words, for many networks, very differ-
ent partitions are equally valid. In this situation, an
ambiguous visualization may be more correct than a

precise mathematical partitioning. Where community-
detection algorithms tend to generate clear-cut and
(generally) non-overlapping partitions, force-directed
layouts reveal zones of different relational density but
with blurred and uncertain borders. VNA is capable of
preserving the inherent vagueness of concepts such as
clusters, centers, fringes, and bridges. Network metrics
(and network models) are great tools to test for rela-
tional hypotheses, but network maps can be more
appropriate when the problem is to explore uncertain
phenomena. Not despite their ambiguity, but thanks to
it. Because they are problematic, graph visualizations
incite researchers to problematize their observations
and encourage an enquiring attitude (Dewey, 1938).

The need to preserve some of the inherent ambiguity
of relational phenomena, explains why “legibility” is
not necessarily the gold standard of network visualiza-
tions—at least not in the way legibility has been defined
in the early years of “graph drawing.” When graphs
were limited to a few dozens of nodes and edges,
researchers could read networks as functional dia-
grams, such as flowcharts or trees (Lima, 2014), that
is to say by following the paths connecting their com-
ponents. This diagrammatic approach, however,
becomes untenable for the medium and large networks
increasingly made available by digital traceability and
the kind of “social big data” that constitutes the object
of this journal.

Originally introduced for diagrammatic purposes
like “minimizing edge crossings” or “reflecting inherent
symmetry” (Früchterman and Reingold, 1991;
Purchase, 2002; Purchase et al., 1996), force-directed
layouts have outlived their origins. Nowadays, they

Figure 8. A classic statistical chart of gender distribution in different populations (left) and its redesign to retain some of the
ambiguity of the original phenomenon (right) (original images and captions from Drucker, 2011).
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are no longer used to follow paths in small networks,

but rather to explore large relational datasets and eye-

ball relational structures such as clustering, centrality, or

betweenness. We call this second perspective topological

as its objective is to provide an overview of topological

structures (see Grandjean and Jacomy, 2019).
While diagrammatic and topological perspectives

coexist in practice, the two approaches come from dif-

ferent traditions—algorithmics for graph drawing and

information design for network visualization—and

serve different needs. A diagrammatic stance suits

small networks, whose configuration is simple enough

to be qualitatively appreciated, while a topological atti-

tude is more appropriate for larger networks, where pat-

tern detection and exploratory data analysis (Behrens

and Chong-Ho, 2003; Tukey, 1977) are preferred. This

explains why, in the last few years, the attention of

scholars has gradually shifted from the diagrammatic

to topological approach. Diagrams, favored in the

early years of network visualization, are becoming obso-

lete when confronted with the growing size of relational

datasets (Henry et al., 2012). Reviewing an assessment

of spatialization algorithms by Purchase et al. (1996),

Gibson et al. (2013) note for instance:

The type of tasks she [Helen Purchase] asked her users

to complete . . .were finding shortest paths, identifying

nodes to remove in order to disconnect the graph and

identifying edges to remove in order to disconnect the

graph . . . It is unclear as to if this type of accurate, pre-

cise measurements are typical analysis tasks for graphs

with hundreds or thousands of nodes . . . If those kinds

of tasks become infeasible due to the volume of nodes

and edges then the better layouts should support the

user for a different set of tasks . . . to support users in

tasks concerned with overview, structure, exploration,

patterns and outliers. (pp. 27, 28)

Although both perspectives coexist in the literature,

the topological visualization is underdiscussed. For

instance, Dunne and Shneiderman (2009) “Netviz

Nirvana” only comprises one topological criterion

(the last one): “(1) Every node is visible; (2) For

every node you can count its degree; (3) For every

edge you can follow it from source to destination; (4)

Clusters and outliers are identifiable” (see also Brandes

et al., 2006b; Brandes and Wagner, 2004; Hansen et al.,

2012). The topological perspective has been mentioned

multiple times but has rarely been addressed directly

until recently (see for instance Soni et al., 2018).

Toward a measure of spatialization quality

Effective in practice, visual network analysis remains

conceptually underdeveloped. As observed by

Bernhard Rieder and Theo R€ohle: “tools such as

Gephi have made network analysis accessible to

broad audiences that happily produce network dia-

grams without having acquired a robust understanding

of the concepts and techniques the software mobilizes”

(Rieder and R€ohle, 2017). To master VNA, it is crucial

to appreciate not only its strengths, but also its biases,

many of which come from the difficulty to separate the

“positive ambiguity” inherited from the represented

phenomenon from the distortions coming from fitting

a multidimensional mathematical object in the two

dimensions of a computer screen (or piece of paper).
Figure 9 illustrates the problem. While a clique of

three nodes can be drawn as an equilateral triangle in a

way that is directly justifiable by its relational proper-

ties, a clique of four cannot. Since in a clique all nodes

are equally connected, they should all be at the same

distance from each other, which is impossible for more

than three nodes (unless, of course, if all nodes are

positioned one on the top of the other). In Figure 9

Figure 9. (a) An exact network spatialization and (b) a necessarily skewed network spatialization.
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(b), A-B and A-D are equally connected but are repre-

sented at different distances. Gauging the distortion of

force-driven layouts, however, is far from easy, as we

will illustrate discussing the failure of two complemen-

tary attempts to assess the layout quality and some

possible directions for future research.

First attempt: Assessing layout quality without

assuming clusters

An obvious solution to assess how a given layout

respects network relations would be to compare the

Euclidean distance between nodes with their relational

distance. Unfortunately, not only in graph mathemat-

ics offers several different measures of relational dis-

tances exist (making it difficult to choose one for

comparison), but our exploration suggests that none

of them captures the arrangement of force-directed

spatialization.
In Figure 10, we compare the Euclidean distance

between pairs of nodes in the jazz network as spatial-

ized by ForceAtlas2 (LinLog and gravity¼ 0) with two

relational distances: the length of the shortest path (geo-

desic distance) and the mean commuting time. This last

quantity is defined as the average number of steps that

a random walker, starting from one node, takes to

reach the other and then go back to the starting node

(Fouss et al., 2007).
The Euclidean distance is somewhat correlated with

the geodesic one as expected, but the variability is con-

siderable (Figure 10(a)). There is almost no correlation

with the mean commuting time (Figure 10(b)), as

random walkers can drift far away even from a neigh-

boring node, especially when nodes’ degrees are high.

While How to read networks and make them legible

section proved the efficacy of ForceAtlas2 in generat-

ing a layout that corresponded to notions of jazz

history, this efficacy is not captured by the correlation

between Euclidean and relational distances. This

should not come as a surprise. As discussed above,

force-directed layouts are not meant to observe the

connections between pairs of nodes (as in a diagram-

matic perspective), but to provide a general overview of

the topological structures of a network. We will move

in this direction in our next attempt at assessing layout

quality.

Second attempt: Assessing layout quality through

clustering

To move from individual nodes to topological features,

our second attempt at assessing layout quality consid-

ers the correspondence between structural and visual

clustering. In Figure 11, the same two graphs—our

jazz network and the Karate club network6—are par-

titioned according to k-means geometric clustering and

to Louvain modularity (Blondel et al., 2008) and. The

first algorithm is based on proximity in the Euclidean

space generated by ForceAtlas2, the second on the rela-

tional structure of the network. The comparison reveals

some correspondence, but also several discrepancies

(for instance, comparing the two figures at the top of

Figure 11 reveals that the geometric k-means clustering

tend to generate clusters with similar sizes in terms of

nodes, while this is not the case for the relational clus-

tering detected by Louvain modularity).
Figure 12 proposes a more systematic comparison

between Louvain modularity and k-means, focusing on

the same two networks and four different layouts:

ForceAtlas2 linlog mode gravity¼ 0; default

ForceAtlas2; default Früchterman & Reingold; a

random layout. For each graph, we compute the

Jaccard similarity between the clusters identified

by modularity and those identified by k-means in

Figure 10. Scatter plots showing the poor correlation between the binned Euclidean distances between pair of nodes (jazz network,
spatialized with ForceAtlas2, LinLog, gravity¼ 0) and both the shortest path and the mean commuting time (respective R2: 0.167 and
0.0025). The dots represent the mean relational distances between pairs of nodes at a given Euclidean distance. The error bars
represent the standard deviation.
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different layouts.7 A richer comparison is available in
the supplementary materials and at: https://github.
com/tommv/ForceDirectedLayouts. The random

layout is added for control, as similarity is expected

to be minimal for it.
Again, the results are mixed: the correspondence

between modularity and k-means clustering is rather

good in highly clustered networks, such as the karate

club, but unsatisfactory for networks that are more

structurally ambiguous and that exhibit polarization

rather than clustering, such as the jazz network. Once

more this should not come as a surprise. If, as we

argued, the value of force-directed layouts lies in their

capacity to conserve ambiguity, then such value can

only be poorly captured by a measure that takes for

granted the existence of a clear-cut and non-

overlapping clustering.

The case for a measure of spatialization quality

The difficulty to find a convincing measure of the spa-

tialization quality should not lead us to conclude that

force-directed layouts cannot be used or trusted. In

fact, two reasons suggest that these layouts may be

very efficient at the job of translating network struc-

tures visually. The first is the pervasiveness of spatial-

ization techniques. Not only have they been used for

three decades with no major modifications, but they

have also extended to other areas. Indeed, dimension-

ality reduction algorithms in multivariate variable dis-

tribution, such as t-SNE (van der Maaten and Hinton,

2008) and UMAP (McInnes et al., 2018), are implicitly

building networks and spatializing them. The way they

minimize entropy by gradient descent bears a striking

resemblance to force-directed layouts. Both are itera-

tive relaxation techniques converging to an approxi-

mate equilibrium and both are meant to optimize a

function, which is explicit for gradient descent and

Figure 12. Similarity between the clusters identified by Louvain modularity for each network and the clusters identified by k-means
in different layouts. Higher bars indicate a greater correspondence between the Euclidean and network clustering.

Figure 11. Clusters identified by k-means (left: a and c) and
Louvain modularity maximization modularity (right: b and d) on
the jazz network (top: a and b) and the karate club network
(bottom: c and d).
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implicit for force-directed layouts (roughly correspond-
ing to the energy of the system). The increasing success
of t-SNE and UMAP suggests that the mathematical
community has not found better than these quite sim-
ilar techniques to produce interpretable visual objects.

The second reason is Andreas Noack’s work on the
LinLog algorithm. In his thesis, Noack (2007a, 2007b)
proposes a layout quality metric called “normalized
atedge length,” corresponding to the total geometric
length of the edges in a spatialized graph divided by
the total geometric distance between all nodes and by
the graph density. The smaller is the value of this
metric, the more the layout has succeeded in represent-
ing relational communities as compact and separated
visual clusters—for the numerator decreases when con-
nected nodes are close (thus shortening the edges), and
the denominator increases when disconnected nodes
are far (thus increasing the overall distance). While
the normalized atedge length does not set an optimum
expectation level and does not quantify the amount of
bias due to dimensionality reduction, it can be used to
compare layouts. This comparison allowed Noack to
prove that the best results are obtained by employing a
linear force of attraction (i.e., linearly proportional to
the distance of nodes) and a logarithmic force of repul-
sion, as in the “LinLog algorithm,” often considered as
the empirical gold standard of spatialization quality.

In a later paper, Noack (2009) also demonstrated,
for a very simple network, how the normalized atedge
length is mathematically equivalent to the modularity
as defined by Newman (2006). This result provides evi-
dence that the LinLog algorithm may be close to the
optimum in the task of translating mathematical com-
munities into a visual clustering. It also suggests that
the problem of minimizing “normalized atedge length”
is probably NP-complete, as is the problem of maxi-
mizing modularity (Brandes et al., 2006a). This indi-
cates that it may be hard to outperform the iterative
convergence of force-directed layouts by using a deter-
ministic approach.

Searching for a spatialization quality metric is a case
of “experimenter’s regress” (Collins, 1975), a situation
where we face a dependency loop between theory and
empirical evidence. We are not entirely sure that
Noack’s “normalized atedge length” is the metric that
should be minimized, and we have no definitive proof
that the LinLog is the best approach to minimize it. All
we know is that the “normalized atedge length” is a
reasonable definition of spatialization quality and
that, among the existing layouts, LinLog is the one
that delivers the best results according to it.

To provide a solid mathematical ground for visual
network analysis, we need a quality metric independent
of current algorithms. Such a metric would allow eval-
uating the overall quality of a given algorithm on a

given network and, possibly, indicating which individ-
ual nodes and edges are visually rendered in the least
satisfactory way. Besides quantifying the distortions of
two-dimensional fitting, the measure would help under-
stand what a good spatialization is and which type of
information is conveyed by force-directed layout.

Conclusion

This paper starts from the empirical observation that
scholars in a variety of disciplines in social and natural
sciences are increasingly relying on network visualiza-
tions to eyeball their relational datasets and to convey
their findings. The growing popularity of these charts
suggests that, far from being merely decorative, points-
and-lines visualizations have a distinctive heuristic
force. Their use constitutes a fully-fledged form of net-
work analysis, though one that differs from the metrics
and models typically used in social network analysis
and network science. This visual analysis, however,
has so far remained a sort of “trick of the trade,”
whose virtues (but also whose limits) are seldom
acknowledged or explicitly discussed. This lack of doc-
umentation explains the mistrust that many scholars
still maintain against network visualizations.

In this paper, we investigated this evocative power of
network visualizations and we tried to make explicit
the method behind the practices of visual network anal-
ysis. We did so by retracing the history of force-
directed layouts and discussing the way in which they
produce a space in which the mathematical structures
are translated in visual patterns. Balancing the attrac-
tion of edges and the repulsion of nodes, force-directed
algorithms generate a two-dimensional representation
of networks in which clusters tend to appear as denser
gatherings of nodes; structural holes tend to look like
sparser zones; central nodes move towards middle posi-
tions; and bridges are positioned somewhat between
different regions. We call this type of visualization
topological, as its objective is to turn relational struc-
tures into visual patterns.

The value of this topological visualization, we
argued, has been disregarded by both network visuali-
zation and network analysis. On the one hand, in net-
work visualization, force-directed layouts have been
undervalued because their results have been judged
from a diagrammatic perspective in which charts are
used to identify paths between nodes rather than to
grasp more general relational patterns. On the other
hand, in network analysis, VNA has been discounted
because of its inherent ambiguity and the impossibility
to define with precision the meaning of proximity in a
spatialized network. In this paper, we argued that this
elusiveness is not a good reason to dismiss points-and-
lines charts. Instead, the ambiguity of points-and-lines
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charts should be tamed by separating the distortion
coming from the projection of a multidimensional
object in a two-dimensional space, from the blurriness
inherent to relational phenomena that should not be
evacuated, but rather cherished and investigated.

Distinguishing a good ambiguity from a bad one,
however, is not an easy task and in the last section
we discussed a few mathematical reasons why this is
the case. Originally introduced to minimize edge cross-
ing, force-directed layout turned out to have unexpect-
ed and not fully understood hermeneutic capacities. In
the absence of a clear understanding of the outcome
emerging from the iterative interaction of attraction
and repulsion forces, it is difficult yet crucial to
design precise tests to assess the quality force-directed
layout. Waiting for a precise measure of spatialization
quality, however, VNA can still be productively used as
a tool for exploratory data analysis. In this paper we
described and exemplified a series of techniques that we
developed to this objective, hoping to help researchers
to be more mindful in the use of network charts and to
build trust in a form of analysis that is widely used, but
insufficiently investigated.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iDs

Tommaso Venturini https://orcid.org/0000-0003-0004-

5308
Mathieu Jacomy https://orcid.org/0000-0002-6417-6895
Pablo Jensen https://orcid.org/0000-0001-9912-2849

Supplemental material

Supplemental material for this article is available online.

Notes

1. The “LinLog mode” parameter tweaks the way in which

distance is factored in the computation of attraction and

repulsion forces. In default ForceAtlas2, both forces are

linearly proportional to the distance (with inverted pro-

portionality for attraction). However, using a repulsion

force logarithmically proportional to distance (i.e., the

LinLog mode) renders clusters more visible.
2. “Gravity” is a generic force that pulls all nodes toward the

center. While it avoids disconnected nodes to drift away

from the rest of the network, such a gravitational force

interferes with the attraction-repulsion balance of force-

directed layouts (an excessive gravity packs all the nodes

in the center).
3. Part of the mixing is due to the fact that, while the incep-

tion date corresponds directly to the moment in which

bands started to be active on the jazz scene, this is not

the case for the birth date, which is obviously offsets by

several years. However, as our dataset spans over almost

150 years (the earliest date being 1870 and the latest 2014)

the distribution of the two timescale remains consistent in

the network and does not require correction.
4. A last detail: although the Wikipedia pages related to the

subgenres and record labels have hyperlinks connecting

them, we removed these edges from our network, so that

the qualifying nodes are only positioned according to their

connections to the primary nodes (and not between

themselves).
5. We thank Emiliano Neri, whose jazz expertise was instru-

mental in this analysis.
6. The karate club is a famous network illustrating the alli-

ances and opposition between the 34 members of a martial

arts club as described by Wayne Zachary (1977) in a paper

on “An Information Flow Model for Conflict and Fission

in Small Groups.”
7. Our comparison algorithm can be unpacked as follows:

1. For a given network and a given partition of the nodes

in k different classes C.
2. We build the set S of all pairs of nodes (Ni, Nj) where

the classes C(Ni) and C(Nj) are the same: C(Ni)¼C(Nj)

(ie. the set of the node pairs that define the clusters).
3. To compare the two partitions a and b of the same

network, we computer the Jaccard index of sets Sa

and Sb as the number of common pairs (Ni, Nj), over

the number of pairs that are in either or both sets.

The Jaccard index has a value of 0 if the partitions have no

nodes in common, and a value of 1 if they are exactly the

same. Comparing the pairs of nodes has the benefit of not

requiring matching each cluster of partition a with a cluster of

partition b, which cannot always be done in a meaningful way

(see the appendix for a more detailed comparison).
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