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FULLY NONCOMMUTATIVE DISCRETE LIOUVILLE

EQUATION

R.M. KASHAEV

Abstract. A fully noncommutative version of the discrete Liouville equation

is suggested, based on a class of representations of mapping class groups of
punctured surfaces arising from certain set-theoretical solutions of the Penta-

gon equation.

1. Introduction

The discrete Liouville equation [2] has the form

(1.1) χm,n−1χm,n+1 = (1 + χm−1,n)(1 + χm+1,n),

where the “discrete space-time” is represented by the integer lattice Z2 and the
dynamical field χm,n is a strictly positive real function on this lattice. To see
that this is a discretized version of the Liouville equation, we take a small positive
parameter ε as the lattice spacing of the discretized space-time, and consider the
combination

φε(x, t) = − log(ε2χm,n)

in the limit, where ε → 0, m,n → ∞ in such a way that the products x = mε,
and t = nε are kept fixed. If a solution χm,n of the discrete Liouville equation is
such that such a limit exists, then the limiting value φ0(x, t) solves the Liouville
equation

(1.2)
∂2φ

∂t2
− ∂2φ

∂x2
= −2eφ.

The analytically continued version of it with imaginary time variable t→ it is the
equation

(1.3)
∂2φ

∂z∂z̄
=

1

2
eφ, z = x+ it,

which describes surfaces of constant negative curvature. Indeed, if p : H → Σ is a
universal covering map for a hyperbolic surface Σ, where H is the upper half plane
with the standard Poincaré metric ds2, and σ : U → H, U ⊂ Σ, a local section of p,
then, the pull-back metric σ∗ds2 in conformal form eφ|dz|2, z being a local complex
coordinate on U , gives a solution φ of the Liouville equation (1.3) on U .

In this paper, using the connection of the discrete Liouville equation with the
mapping class dynamics in Teichmüller space [1, 5], we describe a fully noncommu-
tative version of the discrete Liouville equation. The construction is based on the
combinatorial settings of the quantum Teichmüller theory [3, 4] and the quantum
theory of the discrete Liouville equation [2] (see also [5] for a review).
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2 R.M. KASHAEV

2. Discrete Liouville equation and Teichmüller space

The key instrument in our construction will be the realization of the discrete Li-
ouville equation as a mapping class group dynamics in Teichmüller space. Following
the paper [5], we describe this result in the case of an infinite strip.

Consider a strip with marked points on its boundary as pair of topological spaces
S = (R × I,Z × ∂I), where I = [0, 1] is the unit interval in R. Elements of the
subset Z× ∂I are marked points, and in the sequel they will be denoted as

Ak = (k, 0), Bk = (k, 1), k ∈ Z.

Additionally, we choose the triangulation of S shown in this picture

Bi−1

Ai−1

Bi

Ai

Bi+1

Ai+1

and we associate real positive variables {fk}k∈Z with its internal edges such that
f2i−1 is associated with the edge AiBi and f2i with the edge Ai+1Bi. These vari-
ables will be identified with the shear coordinates in the corresponding Teichmüller
space of hyperbolic structures in S as follows.

Orientation preserving realizations of the strip S as an ideal geodesic strip in the
hyperbolic plane H bijectively correspond to orientation preserving embeddings of
the marked points into the boundary of the hyperbolic plane, g : Z × ∂I → ∂H,
considered up to overall PSL2R transformations. In the upper half-space model of
H, we can assume that

g(Z× ∂I) ⊂ R ⊂ ∂H, g(Ai) < g(Ai+1) < g(Bj+1) < g(Bj), ∀i, j ∈ Z,

and define

f2i−1 = [g(Bi), g(Ai+1), g(Ai), g(Bi−1)],

f2i = [g(Bi), g(Bi+1), g(Ai+1), g(Ai)], i ∈ Z,

where

[z1, z2, z3, z4] ≡ −(z1 − z2)(z2 − z3)−1(z3 − z4)(z4 − z1)−1

is a cross-ratio of four numbers.
The mapping class group of S is given by all orientation preserving selfhomeo-

morphisms preserving the set of marked points, not necessarily point-wise. We are
interested in the mapping class [f ] which fixes the bottom marked points Z × {0}
point-wise and cyclically permutes the top marked points Z× {1}:

Ai 7→ Ai, Bi 7→ Bi+1, i ∈ Z.

It is represented by the explicit linear map

f : R× I → R× I, f(x, t) = (x+ t, t).

The non-quantum version of the result of [1], adapted to the case of our infinite
strip, can be stated as the following theorem.

Theorem 1 ([1, 5]). The discrete dynamical system on the Teichmüller space of the
strip S, corresponding to the mapping class [f ], is described by the discrete Liouville
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equation (1.1) on the sublattice m + n = 1 (mod 2) with the evolution step being
identified with the translation along a “light-cone”:

χm,n 7→ χ′m,n = χm−1,n+1.

Indeed, under a flip, the shear coordinates transform according to the formulae
[3]:

(2.4) a′ = a/(1 + 1/e), d′ = d/(1 + 1/e), b′ = b(1 + e), c′ = c(1 + e), e′ = 1/e,

where the variables are shown in Figure 1, and all other variables staying unchanged.
We remark that this transformation law still applies even if some of the sides of
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Figure 1. A flip transformation corresponding to equations (2.4).

the quadrilateral are a part of the boundary. The only modification is that there
is no coordinate associated to a boundary edge, and thus there is nothing to be
transformed on this edge.

From Figure 2 and the transformation law (2.4) it follows that the mapping class
[f ] acts in the Teichmüller space according to the following formulae

(2.5) f2j 7→ f ′2j = 1/f2j−1, f2j+1 7→ f ′2j+1 = f2j(1 + f2j−1)(1 + f2j+1).

If we identify the variables {fk}k∈Z with the initial data for the discrete Liouville
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Figure 2. The action of the mapping class [f ] on the triangulated
strip: it is identical on the bottom boundary and a shift to the right
by one spacing on the top boundary.
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equation (1.1) on the sublattice m + n = 1 (mod 2) along the zig-zag line n ∈
{−1, 0} according to the formulae

fm =

{
χm,0 if m = 1 (mod 2);

1/χm,−1 otherwise,

then, the transformation formulae (2.5) exactly correspond to the light-cone evolu-
tion:

χm,n 7→ χ′m,n = χm−1,n+1

for the time instants n ∈ {−1, 0}.

3. Mapping class group representations

3.1. Groupoid of decorated ideal triangulations. Let Σ be an oriented surface
with a set of punctures P . We assume that it admits ideal triangulations. Fix an
index set J of cardinality equal to that of the set of triangles in ideal triangulations
of Σ. In particular, for a surface of finite type Σ = Σg,s of genus g and s punctures,
we have |J | = 2(2g− 2 + s). We will denote by J ! the set of all bijections of the set
J .

Definition 1. A decorated ideal triangulation of Σ is an ideal triangulation τ ,
where all triangles are provided with a marked corner, and a bijective map

τ̄ : J 3 j 7→ τ̄j ∈ T (τ)

is fixed. Here T (τ) is the set of all triangles of τ .

Graphically, the marked corner of a triangle τ̄j is indicated by an asterisk and
the index j is put inside the triangle. The set of all decorated ideal triangulations
of Σ is denoted by ∆Σ.

Recall that if a group G freely acts on a set X then there is an associated
groupoid defined as follows. The objects are the G-orbits in X, while morphisms
are G-orbits in X×X with respect to the diagonal action. Denote by [x] the object
represented by the element x ∈ X and [x, y] the morphism represented by the pair
of elements (x, y) ∈ X×X. Two morphisms [x, y] and [u, v], are composable if and
only if [y] = [u] and their composition is [x, y][u, v] = [x, gv], where g ∈ G is the
unique element sending u to y. The inverse and the identity morphisms are given
respectively by [x, y]−1 = [y, x] and id[x] = [x, x]. In what follows, products of the
form [x1, x2][x2, x3] · · · [xn−1, xn] will be written as [x1, x2, x3, . . . , xn−1, xn].

Remarking that the mapping class groupMΣ of Σ freely acts on ∆Σ, denote by
GΣ the corresponding groupoid, called the groupoid of decorated ideal triangulations.
It admits a presentation with three types of generators and four types of relations.

The generators are of the form [τ, τσ], [τ, ρiτ ], and [τ, ωijτ ], where τσ is obtained
from τ by replacing the ordering map τ̄ by the map τ̄ ◦ σ, where σ ∈ J ! is a
permutation of the set J , ρiτ is obtained from τ by changing the marked corner
of the triangle τ̄i as in Figure 3, and ωijτ is obtained from τ by applying the
flip transformation in the quadrilateral composed of the triangles τ̄i and τ̄j as in
Figure 4.
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Figure 3. Transformation ρi.
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Figure 4. Transformation ωij .

There are two sets of relations satisfied by these generators. The first set is as
follows:

[τ, τα, (τα)β ] = [τ, ταβ ], α, β ∈ J !,(3.6)

[τ, ρiτ, ρiρiτ, ρiρiρiτ ] = id[τ ],(3.7)

[τ, ωijτ, ωikωijτ, ωjkωikωijτ ] = [τ, ωjkτ, ωijωjkτ ],(3.8)

[τ, ωijτ, ρiωijτ, ωjiρiωijτ ] = [τ, τ (ij), ρjτ
(ij), ρiρjτ

(ij)].(3.9)

The first two relations are evident, while the other two are shown graphically in
Figures 5, 6.
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Figure 5. Pentagon relation (3.8).
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The following commutation relations fulfill the remaining second set of relations:

[τ, ρiτ, (ρiτ)σ] = [τ, τσ, ρσ−1(i)τ
σ],(3.10)

[τ, ωijτ, (ωijτ)σ] = [τ, τσ, ωσ−1(i)σ−1(i)τ
σ],(3.11)

[τ, ρjτ, ρiρjτ ] = [τ, ρiτ, ρjρiτ ],(3.12)

[τ, ρiτ, ωjkρiτ ] = [τ, ωjkτ, ρiωjkτ ], i 6∈ {j, k},(3.13)

[τ, ωijτ, ωklωijτ ] = [τ, ωklτ, ωijωklτ ], {i, j} ∩ {k, l} = ∅.(3.14)

3.2. Semisymmetric T -matrices. Let C = (C,⊗, s) be a symmetric (strict) monoidal
category. A T -matrix in C is a pair (V, T ), where V is an object of C and T ∈
End(V ⊗ V ) satisfies the the following Pentagon identity in End(V ⊗3):

T12T13T23 = T23T12.

A semisymmetric T -matrix in C, is a triple (V, T,A), where (V, T ) is a T -matrix in
C and A ∈ End(V ) is such that

A3 = idV , T (A⊗ idV )sV,V T = A⊗A.

In what follows, we will call the element A of a semisymmetric T -matrix the rotation
operator. The importance of semisymmetric T -matrices comes from the following
theorem.

Theorem 2. Let (V, T,A) be a semisymmetric T -matrix. Then there exists a
unique homomorphism of groupoids from the groupoid of decorated ideal triangula-
tions GΣ into the automorphism group Aut(V ⊗J) such that

[τ, τσ] 7→ Pσ, [τ, ρiτ ] 7→ Ai, [τ, ωijτ ] 7→ Tij .

3.3. Set-theoretical semisymmetric T -matrices. A semisymmetric T -matrix
is called set-theoretical if the underlying category is the category of sets with the
monoidal structure given by the cartesian product. In this case, the map T : V 2 →
V 2 corresponds to two binary operations V 2 → V

(x, y)T = (xy, x ∗ y)

satisfying the equations

(xy)z = x(yz), x ∗ (yz) = (x ∗ y)((xy) ∗ z), (x ∗ y) ∗ ((xy) ∗ z) = y ∗ z.

Here we use the unusual convention that the maps act from right to left. Let us
denote also

(x)A = x̂, (x)A2 = x̌.

A group G is called group with addition if it is provided with an associative
and commutative binary operation called addition with respect to which the group
multiplication is distributive.

One can show that no finite group can be a group with addition. The set of
positive real numbers R>0 is naturally a group with addition as well as its subgroup
of positive rationals Q>0. The group of integers Z is also a group with addition
where the addition is the maximum operation max(m,n). An example of a non
Abelian group with addition is given by the group of upper-triangular real two-by-
two matrices with positive reals on the diagonal. The addition here is given by the
usual matrix addition.
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Proposition 1. Let G be a group with addition and c ∈ G a central element (for
example, the identity element 1). Then there exists a set-theoretical semisymmetric
T matrix with the underlying set G2 and the following structural operations

xy = (x1, x2)(y1, y2) = (x1y1, x1y2 + x2),

x ∗ y =
(
(1 + y2x

−1
2 x1)−1y1, (1 + y2x

−1
2 x1)−1y2x

−1
2

)
,

x̂ = ̂(x1, x2) = (cx−1
1 x2, x

−1
1 ).

The ratio coordinates in the Teichmüller space introduced in [4] correspond to
the positive real numbers R>0 considered as a group with addition.

4. Fully noncommutative discrete Liouville equation

Following Section 2, we apply Theorem 2 to realize the discrete dynamical system
corresponding to the mapping class [f ] of the infinite strip S = (R× I,Z×∂I). We
choose the following decorated ideal triangulation:

∗

∗

∗

∗

∗

∗
2i− 1 2i + 1

2i− 2 2i

where we use the index set J = Z. Realization of the mapping class [f ] through a
T -matrix (V, T ) is obtained from the following commutative diagram:

∗

∗

∗

∗

∗

∗
2i− 1 2i + 1

2i− 2 2i

[f ]−−−−→
∗

∗

∗

∗

∗

∗
2i− 3 2i− 1

2i− 2 2i∥∥∥ y∏
i∈Z T2i−1,2i

∗

∗

∗

∗

∗

∗
2i− 1 2i + 1

2i− 2 2i

(...,2i−1,2i+1,...)←−−−−−−−−−−−
∗

∗

∗

∗

∗

∗
2i− 3 2i− 1

2i− 2 2i

Notice that in this case the rotation operator is not used and the dynamical system
can be defined for any T -matrix. In particular, for a set-theoretical T -matrix (X,T ),
we can color our triangulation with an element g of the the set XJ :

∗

∗

∗

∗

∗

∗
xi−1 xi

yi−1 yi

where xi = g(2i+ 1) and yi = g(2i). Then the associated mapping class dynamics
in is described by the equations

xi,t+1 = xi−1,tyi,t, yi,t+1 = xi−1,t ∗ yi,t, i, t ∈ Z.

4.1. Liouville dynamics in groups with addition. Let G be a group with
addition. Associated to Proposition 1 evolution equation of Liouville type is given
by four G-valued fields:

xi,m,n, yi,m,n, i ∈ {1, 2}, m, n ∈ Z
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satisfying four equations

x1,m,n+1 = x1,m−1,ny1,m,n, y2,m,n+1x2,m,n+1 = y2,m,n,

wm,n ≡ y2,m,n+1y
−1
2,m−1,ny2,m−1,n−1y

−1
2,m,n = x−1

1,m−1,n+1x1,m,n+2x
−1
1,m,n+1x1,m−1,n,

wm,n + y2,m,n+1x1,m−1,n = 1

Suppose our group with addition G is embedded into a ring R. Then, defining a
new field

ηm,n = y2,m,ny
−1
2,m−1,n−1,

we rewrite our evolution system in the form

χm+1,n+1 = (1 + χm+1,n)χ̄−1
m,n−1(1 + χ̄m,n)

where we use the notation

χm,n ≡ (η−1
m,n+1ηm,n − 1)−1, χ̄m,n ≡ (ηm,nη

−1
m,n+1 − 1)−1.

In the the case of a commutative ring, we obviously have χ̄m,n = χm,n and we
recover the discrete Liouville equation (1.1) in a slightly differently parameterized
space-time lattice.
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