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Abstract. Most methods for modeling species distributions from occurrence records
require additional data representing the range of environmental conditions in the modeled
region. These data, called background or pseudo-absence data, are usually drawn at random
from the entire region, whereas occurrence collection is often spatially biased toward easily
accessed areas. Since the spatial bias generally results in environmental bias, the difference
between occurrence collection and background sampling may lead to inaccurate models. To
correct the estimation, we propose choosing background data with the same bias as occurrence
data. We investigate theoretical and practical implications of this approach. Accurate
information about spatial bias is usually lacking, so explicit biased sampling of background
sites may not be possible. However, it is likely that an entire target group of species observed
by similar methods will share similar bias. We therefore explore the use of all occurrences
within a target group as biased background data. We compare model performance using
target-group background and randomly sampled background on a comprehensive collection
of data for 226 species from diverse regions of the world. We find that target-group
background improves average performance for all the modeling methods we consider, with the
choice of background data having as large an effect on predictive performance as the choice of
modeling method. The performance improvement due to target-group background is greatest
when there is strong bias in the target-group presence records. Our approach applies to
regression-based modeling methods that have been adapted for use with occurrence data, such
as generalized linear or additive models and boosted regression trees, and to Maxent, a
probability density estimation method. We argue that increased awareness of the implications
of spatial bias in surveys, and possible modeling remedies, will substantially improve
predictions of species distributions.

Key words: background data; presence-only distribution models; niche modeling; pseudo-absence;
sample selection bias; species distribution modeling; target group.

INTRODUCTION

Species distribution modeling (SDM) is an important

tool for both conservation planning and theoretical

research on ecological and evolutionary processes

(Loiselle et al. 2003, Kozak et al. 2008). Given sufficient

resources, SDM can be based on data gathered

according to rigorously defined sampling designs, where

both presence and absence of species is recorded at an

environmentally and spatially representative selection of

sites (Cawsey et al. 2002). However, for most areas of

the world and most species, resources are too limited to

gather large sets of data including both presences and

absences, and furthermore, many species have been

extirpated from much of their original range. For these

reasons, SDM relies heavily on presence-only data such

as occurrence records from museums and herbaria

(Ponder et al. 2001, Graham et al. 2004, Suarez and

Tsutsui 2004). These occurrence data often exhibit

strong spatial bias in survey effort (Dennis and Thomas

2000, Reddy and Dávalos 2003, Schulman et al. 2007),

meaning simply that some sites are more likely to be

surveyed than others; such bias is typically spatially

autocorrelated, but this paper allows for arbitrary

spatial bias. This bias, referred to as sample selection

bias or survey bias, can severely impact model quality;

however, the effect of such bias has received little

attention in the SDM literature. We present a theoretical

analysis of sample selection bias for several presence-

only SDM methods. We also describe a general
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approach for coping with biased occurrence data, and

empirically test its efficacy.

The range of model types for fitting presence-only

data has expanded rapidly over the last decade. In

ecology, the most common methods for these data were

originally those that fitted envelopes or measured point-

to-point similarities in environmental coordinates (Bus-

by 1991, Carpenter et al. 1993). These methods use only

occurrence data, ignoring the set of environmental

conditions available to species in the region. More

recent methods achieve better discrimination by model-

ing suitability relative to the available environment.

Information on the available environment is provided

by a sample of points from the study region. We refer to

these points as background or pseudo-absence data.

Examples of specialized programs include Hirzel’s

ecological niche factor analysis (‘‘ENFA’’ or ‘‘Biomap-

per’’; Hirzel et al. 2002) and Stockwell and Peterson’s

genetic algorithm for rule-set prediction (‘‘GARP’’;

Stockwell and Peters 1999, Peterson and Kluza 2003).

More generally, a broad range of logistic regression

methods can be adapted to this situation, either in an

approximation (modeling presences against background

rather than against absences) or with more rigorous

statistical procedures that correct for the possibility of

true presences appearing in the background data

(Keating and Cherry 2004; Ward et al., in press).

Because the regression-related methods and other newer

initiatives show generally higher predictive performance

than other approaches (e.g., Elith et al. 2006, Hernandez

et al. 2006), we focus here on a subset of more successful,

widely used methods: boosted regression trees (BRT;

Leathwick et al. 2006, De’ath 2007), maximum entropy

(Maxent; Phillips et al. 2006), multivariate adaptive

regression splines (MARS; Leathwick et al. 2005), and

generalized additive models (GAM; Yee and Mitchell

1991, Ferrier et al. 2002).

These methods all require information about the

range of environmental conditions in the modeled

region, given by background samples. Some modelers

think of the background samples as implied absences:

partly because the word ‘‘pseudo-absences’’ gives that

impression. However, the intention in providing a

background sample is not to pretend that the species is

absent at the selected sites, but to provide a sample of

the set of conditions available to it in the region. The

critical step in selection of background data is to develop

a clear understanding of the factors shaping the

geographic distribution of presence records. Two key

elements are the actual distribution of the species and

the distribution of survey effort. Potentially, the latter

can be spatially biased, i.e., there may be sample

selection bias. Most SDMs are fitted in environmental

space without consideration of geographic space, so the

importance of spatial bias is that it often causes

environmental bias in the data. If a spatially biased

sample proportionately covered the full range of

environments in the region, then it would cause no

problem in a model based on environmental data.

However, this is usually not the case. If the bias is not

accounted for, a fitted model might be closer to a model

of survey effort than to a model of the true distribution

of the species. For example, a species with a broad

geographic distribution might only have been recorded

in incidental surveys close to towns and beside roads.

Background samples are commonly chosen uniformly at

random from the study region; this characterizes the

range of environments in the region well, but fails to

indicate sample selection bias. If the roadsides and

towns are not a random sample of the environment,

applying any of the above modeling techniques to these

data will produce a model that best describes the

differences in the distribution of the presence sites

compared to the background data. For example, if roads

in this region happen to follow ridges, and if towns

happen to be associated with the most fertile soils, then a

model will find that ridges and fertile soils are positively

correlated with the distribution of the species, whereas in

reality they best describe the distribution of roads and

towns, and hence survey effort.

The most straightforward approach to address this

problem would be to manipulate the occurrence data in

order to remove the bias, for example by discarding or

down-weighting records in over-sampled regions (e.g.,

the de-biasing averages approach of Dudı́k et al. [2005])

or by surveying under-represented regions. However,

such manipulations are hampered by incomplete infor-

mation about the distribution of survey effort. In

addition, the paucity of presence records for many

species of interest makes discarding records unpalatable,

and resources may not be available to conduct new

surveys. The data may also be biased in a way that

cannot be ‘‘fixed’’ by collecting new data: if many

forested areas have been cleared, new surveys will not

provide presence records of forest-dependent species in

cleared areas. In the same way, less arid, more fertile

areas are more likely to have been transformed by

human activity, so new surveys would result in

occurrence data that are biased toward arid or infertile

areas. In these cases, the sample selection bias is an

inherent part of the realized, current distribution of the

species.

An alternative approach is to manipulate the back-

ground data. While some studies explore this idea (e.g.,

Zaniewski et al. 2002, Engler et al. 2004, Lütolf et al.

2006), the ecological literature lacks a coherent theoret-

ical exploration, and the proposed solutions seem to

represent different and probably incompatible reason-

ing. The approach we propose is to design the selection

of background data so they reflect the same sample

selection bias as the occurrence data. This aims to

achieve the same environmental bias in both data sets.

For example, if presence data are only taken from easily

surveyed portions of the study region, then background

data should be taken from the same areas (Ferrier et al.

2002). The hope is that a model based on biased

STEVEN J. PHILLIPS ET AL.182 Ecological Applications
Vol. 19, No. 1



presence data and background data with the same bias

will not focus on the sample selection bias, but will focus

on any differentiation between the distribution of the

occurrences and that of the background. In other words,

if the species occupies particular habitats within the

sampled space, the model will highlight these habitats,

rather than just areas that are more heavily sampled.

This has been justified theoretically for Maxent (Dudı́k

et al. 2005; summarized here inMaxent models for biased

samples). In the regression case, we could find no clear

treatment of how to understand and interpret models

using presence–pseudo-absence data, particularly with

varying biases in the underlying data, so we present that

here. We first investigate how to interpret models

produced with random background, using the theory

of use–availability sampling in habitat-selection studies

(Keating and Cherry 2004). We extend the analysis to

biased data, and show that under reasonable conditions,

models created using background data with the same

sample selection bias as the presence data can be

interpreted in the same way as models produced with

completely unbiased data.

It can be difficult to create background data with the

same bias as presence data since we seldom know the

sample selection distribution exactly. As an alternative,

if presence records are derived from natural history

collections, records for a broad set of species could be

used to estimate survey effort. The set of species should

be chosen so as to represent the specimen collection or

observation activities of collectors of the target species.

In general, the groups should contain species that are all

collected or observed using the same methods or

equipment; such groups of species are called target

groups (Ponder et al. 2001, Anderson 2003). Broad

biological groups (birds, vascular plants, and so on) are

likely to be suitable. The sites for all records from all

species in the target group then make up the full set of

available information on survey effort and can be used

as background data; we call such a set of sites target-

group background.

To measure the effectiveness of target-group back-

ground, we compared it to random background using

several modeling methods and the same data set as a

recent comprehensive comparison of modeling methods

(Elith et al. 2006). The data set covers 226 species from

diverse regions of the world, with a wide range of sample

sizes (2 to 5822, with a median of 57). The regions

exhibit varying amounts of sample selection bias, with

Ontario, Canada showing the most striking bias, toward

the more populous south. A crucial aspect of this data

set is that it contains independent, well-structured

presence–absence test data. The test data were collected

independently of the training data, using rigorous

surveys in which the species’ presence or absence was

recorded at a collection of test sites. This allows us to

evaluate model performance in a way that is largely

unaffected by sample selection bias since the predictive

performance of the models is evaluated on this test data,

rather than the presence-only training data. We focus on

average performance across broad groups of species

rather than detailed expert evaluation of individual

species models, and compare several of the better-

performing methods from the study of Elith et al. (2006).

This allows us to determine how sample selection bias

impacts performance of presence-only species distribu-

tion models on typical data sets, and whether target-

group background can effectively counteract sample

selection bias on such data sets. Whilst the effect of

background sample selection has been mentioned in

relation to individual modeling methods (e.g., Lütolf et

al. 2006, Elith and Leathwick 2007, Phillips and Dudı́k

2008), this paper focuses on the general problem and on

its relevance across a range of species, environments,

and modeling methods.

The dangers of sample selection bias: an example

When presence–absence data are available, there are a

number of modeling methods that are known to be

resilient to sample selection bias (Zadrozny 2004).

However, bias can have a powerful effect on models

derived from presence-background data; to demonstrate

this dichotomy, we briefly consider a synthetic species in

Ontario, Canada, and use the continuous environmental

variables described in Elith et al. (2006). The probability

of presence for the species (Fig. 1) is defined to be 1 for

any location which is within the middle 40% of the range

of all environmental variables. For each variable outside

of the middle 40% of its range, the probability of

presence is multiplied by a factor ranging linearly from

0.7 (at the extremes of the variable’s range) to 1.0 (at the

30th and 70th percentiles). The particular constants used

here were chosen for illustrative purposes only, to create

a synthetic species with a broad preference for mid-

range conditions in all variables.

Occurrence data are often biased toward human

population centers and roads (Reddy and Dávalos

2003). Therefore, roughly following the human popula-

tion and road density of Ontario, we modeled sample

selection bias with a sampling distribution that is

uniform in the southern 25% of Ontario, uniform with

b times lower intensity in the northern 50% of the

province, and a linear transition of sampling intensity in

between; we varied b between 1 (unbiased sampling) and

100 (strongly biased sampling). Several predictor vari-

ables for Ontario have a strong north–south trend, so

this spatial bias will translate into a bias in predictor

space. Samples were generated by repeatedly picking a

site according to this sampling distribution and then

randomly labeling the site either as a presence (with

probability equal to the species’ probability of presence

there) or absence (with the remaining probability).

Sampling continued until there were exactly 200

presences. Thus a full data set for each value of b

contained 200 presences and a variable number of

absences, depending on how many were selected in

creating the set of 200 presences. Two boosted
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regression tree models (see Modeling methods) were then

created: one with the set of presences and absences, and

a second with the 200 presences together with 10 000

background samples chosen uniformly at random from

the region, and weighted so that presence and back-

ground have equal weight, as in Elith et al. (2006). We

used 10 000 samples as this is large enough to accurately

represent the range of environmental conditions in the

study region; more background samples do not improve

model performance (Phillips and Dudı́k 2008).

The presence–absence models are highly correlated

with true probability of presence, even under severe

sample selection bias (b ¼ 100). This happens because

BRT is a ‘‘local’’ learner (Zadrozny 2004), so the model

generated with biased training data converges asymp-

totically to the unbiased model (for large sample sizes)

as long as two conditions hold: sampling probability is

non-zero in the whole region, and sampling is condi-

tionally independent of species presence given the

environmental conditions. In contrast, for the pres-

ence-only models, correlation with true probability of

presence quickly drops as sample selection bias increases

(Fig. 1). For b ¼ 50, the presence–absence model is

visibly similar to true probability of presence, while the

presence-only model appears only weakly related (Fig.

2). We note that the strong sample selection bias

depicted in Fig. 2 may actually be very moderate

compared to true occurrence data, where sampling

intensity can vary by a factor of tens of thousands

(Schulman et al. 2007: Fig. 4).

FIG. 1. Effect of sample selection bias on predictive accuracy for an artificial species in Ontario, Canada. (a) Probability of
presence for the species, with darker shades indicating higher probabilities. (b) Correlation between model output and true
probability of presence, measured across the whole region (y-axis), for various degrees of sample selection bias. Bias was introduced
by sampling uniformly in the southern 25% of the region and uniformly b times lower in the northern 50% of the region, with a
linear transition in between; the x-axis shows values of b. Models were made using boosted regression trees with no interactions,
fitted using fivefold cross-validation.

FIG. 2. Predicted probability of presence modeled from (a) biased presence-only data and (b) biased presence–absence data.
Both models were generated using boosted single-node regression trees, fitted with fivefold cross-validation. Black and white dots
show sampled locations used for model building. Sampling intensity in the southern 25% of the region was 50 times higher than in
the northern 50% of the region, with a linear transition in between. The presence-only model is strongly influenced by the bias,
whereas the presence–absence model is not: compare with the true probability of presence in Fig. 1.
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MODELS AND ANALYSIS

Preliminaries

In the analyses that follow, we consider an area with a

total of N sites. For each site t, there are v known

covariates (measured environmental variables) denoted

by x¼ (x1, . . . , xv). An observation (t, y) records whether

at a particular time the species is present (y ¼ 1) or

absent (y¼ 0) at the site t. This treatment allows for the

possibility that a species is present at a given site during

one observation and absent in the next, as may happen

for vagile species. The probability that the species is

present at a site t, denoted P(y¼ 1 j t), may therefore lie

somewhere between 0 and 1. Formally, observations are

taken from a distribution over a sample space consisting

of pairs (t, y), where t is a site and y is the response

variable. We will use P to denote probability under

spatially unbiased sampling from this sample space, i.e.,

each site has equal probability (1/N) of being sampled.

For example, the prevalence of the species, denoted

P(y ¼ 1), is the fraction of sites at which the species is

present (for perfectly detectable non-vagile species), or

the probability of observing the species at a randomly

chosen site (for perfectly detectable vagile species).

A collection of observations is unbiased in environ-

mental space if it samples each combination of

environmental covariates proportionately to the amount

of the study area that has those covariate values.

Therefore, observations that are spatially unbiased are

also environmentally unbiased, though the converse is

not always true.

Modeling methods

The modeling methods considered here use two

distinct approaches for presence-only modeling. The

first approach is derived from regression techniques,

which are normally applied to presence–absence mod-

eling. These methods estimate probability of presence

from training data consisting of presences and absences

for a given species. They have been adapted for use with

presence-only data by treating the background data as if

it were absence data. They are all logistic methods,

modeling probability of presence as P(y ¼ 1 j x) ¼
exp[ f(x)]/(1 þ exp[ f(x)]) for some function f of the

environmental variables, and they differ mainly in the

form of the function f. We used the following presence–

absence methods:

1) Generalized additive models (GAM) use nonpara-

metric, data-defined smoothers to fit nonlinear functions

(Hastie and Tibshirani 1990, Yee and Mitchell 1991).

2) Multivariate adaptive regression splines (MARS)

provide an alternative regression-based technique for

fitting nonlinear responses. MARS uses piecewise linear

fits rather than smooth functions and a fitting procedure

that makes it much faster to implement than GAM

(Friedman 1991, Elith and Leathwick 2007).

3) Boosted regression trees (BRT), also known as

stochastic gradient boosting (Friedman 2001, Leathwick

et al. 2006), use a form of forward stage-wise regression

to construct a sum of regression trees. Each stage

consists of a gradient-descent step, in which a regression

tree is fitted to the derivatives of the loss function. Cross-

validation is used to avoid overfitting by halting model

growth based on predictive accuracy on withheld

portions of the data.

The second approach is probability density estimation,

where the presence data are assumed to be drawn from

some probability distribution over the study region. The

task is to estimate that distribution. This approach is

represented here by a single method, called Maxent

(Phillips et al. 2006, Dudı́k et al. 2007), described in

Maxent models with unbiased samples. Whenever we

present examples, we use either BRT or Maxent, since

these are the two methods out of those considered here

that performed best in the comparison of methods by

Elith et al. (2006). The settings used for BRT have been

improved over those used previously and we use a recent

version of Maxent (version 3.0) with default settings. For

both methods, therefore, the statistical performance we

report for random background is improved over that

presented by Elith et al. (2006).

Presence–absence models with random background

Before we analyze the use of presence–absence models

(such as BRT, GAM, and MARS) on presence–

background data under bias, we must first understand

the use of these methods on unbiased data. Using

unbiased presence data and random background gives a

sample model known in habitat-selection studies as a use–

availability sampling design (Keating and Cherry 2004)

and defined as follows. The full set of training data

consists of a set of samples, each obtained either by

randomly choosing a sample with y¼ 1 to get a presence

sample (a fraction p of the whole set), or randomly

choosing a sample from the full set of N sites to get a

background sample (the remaining fraction, 1� p). This

sampling model suffers from two complications. First, the

set of background samples typically includes both sites

with y¼ 1 and sites with y¼ 0, a problem referred to as

contaminated controls (Lancaster and Imbens 1996).

Second, the sampling intensity (probability that a given

data point will be chosen as a sample) may differ between

presence and background samples, which makes it a case-

control sampling design. The relative sampling intensity is

determined by the parameter p. Our goal in this section is

to understand the effect of these two complications, and

in particular, to determine exactly what quantity is being

estimated when a model is fitted to use–availability data.

For mathematical simplicity in our analyses, we use

two steps to model the process by which each training

sample is derived. The first step is a random decision

about whether the current sample will be presence

(probability p) or background (probability 1 � p). The

second step is a random draw either from the population

of presences or from the full set of available sites,

according to the outcome of the first step.
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We will use PUA to denote probability under this

sampling model. PUA is formally defined as a joint

probabilitymodel over triples (t, y, s) where s is an auxiliary

variable representing sampling stratum: s¼ 1 for presence

samples and s ¼ 0 for background samples. Therefore,

PUA(s¼ 1)¼ p and PUA(s¼0)¼ 1� p, and by definition,

PUAðxjs ¼ 1Þ ¼ Pðxjy ¼ 1Þ

and

PUAðxjs ¼ 0Þ ¼ PðxÞ: ð1Þ

When a presence–absence model is applied to use–

availability data, the response variable being modeled is

s, not y, so we obtain an estimate of PUA(s¼1 j x), i.e., the
probability that a site will be chosen as a presence sample

rather than a background sample, conditioned on the

environmental variables. It is crucial to note that this is not

the same as P(y ¼ 1 j x), the probability of occurrence

conditioned on the environmental variables. Indeed, if we

define

r ¼ ð1� pÞ
p

Pðy ¼ 1Þ

then we obtain the following relationship, similar to Eq. 11

of Keating and Cherry (2004), but without their large-

sample assumption:

PUAðs ¼ 1jxÞ ¼ 1

1þ r=Pðy ¼ 1jxÞ : ð2Þ

This relationship is proved as follows:

PUAðs ¼ 1jxÞ
¼ PUAðxjs ¼ 1ÞPUAðs ¼ 1Þ=PUAðxÞ ½Bayes’ rule�

¼ ½PUAðxjs ¼ 1ÞPUAðs ¼ 1Þ�
½PUAðxjs ¼ 1ÞPUAðs ¼ 1Þ þ PUAðxjs ¼ 0ÞPUAðs ¼ 0Þ�

½since s ¼ 0 or 1�

¼ pPUAðxjs ¼ 1Þ
pPUAðxjs ¼ 1Þ þ ð1� pÞPUAðxjs ¼ 0Þ

½definition of p�

¼ 1=ð1þ aÞ ½dividing through by pPUAðxjs ¼ 1Þ�

where a satisfies

a ¼ ð1� pÞ
p
� PUAðxjs ¼ 0Þ
PUAðxjs ¼ 1Þ

¼ ð1� pÞ
p
� PðxÞ
Pðxjy ¼ 1Þ ½by Eq: 1�

¼ ð1� pÞ
p
� Pðy ¼ 1Þ
Pðy ¼ 1jxÞ ½Bayes’ rule�

¼ r

Pðy ¼ 1jxÞ :

This has strong implications for interpretation of any

model fitted to presence–background data using a

presence–absence method, as the quantity being ap-

proximated is not equal to, or even proportional to,

probability of presence. Despite these problems, this

sampling model and the resulting estimate of PUA(s ¼
1 j x) have been extensively used in SDM (Ferrier et al.

2002, Zaniewski et al. 2002, Elith et al. 2006). Using an

estimate of PUA(s ¼ 1 j x) for species modeling is

reasonable as long as care is taken in the interpretation

of model values. While PUA(s¼ 1 j x) is not proportional
to probability of presence, it is a monotone increasing

function of probability of presence, i.e., it correctly

ranks probability of presence. In particular, this means

that any binary prediction made by thresholding P(y ¼
1 j x) (i.e., predicting presence only for sites with P(y ¼
1 j x) above some threshold) can be obtained by thresh-

olding PUA(s ¼ 1 j x), and vice versa, although the

required thresholds will differ. When measuring model

performance, measures that depend only on ranking of

test data (such as the area under the receiver operating

characteristic curve) might therefore be insensitive to the

distinction between modeling PUA(s ¼ 1 j x) or P(y ¼
1 j x), although the two approaches will likely yield

different models.

In habitat-selection studies using resource selection

functions, the emphasis is on deriving P(y ¼ 1 j x) from
PUA(s ¼ 1 j x) by inverting Eq. 2. If P(y ¼ 1 j x) is

assumed to be an exponential function, then PUA(s ¼
1 j x) is logistic. A logistic model fitted to PUA(s ¼ 1 j x)
can thus be used to infer parameters of an exponential

model for P(y ¼ 1 j x) (Boyce et al. 2002, Manly et al.

2002). However, this approach is controversial in the

habitat-selection literature (Keating and Cherry 2004).

An alternative way of estimating P(y ¼ 1 j x) from

presence-only data involves using the expectation–

maximization (EM) algorithm to iteratively infer prob-

ability of occurrence for the background sites (estima-

tion) and feed the results back into maximum likelihood

parameter estimation (maximization; Ward et al., in

press). Whilst this approach has strong theoretical

justification, it requires knowledge of P(y ¼ 1), and the

implementation is not yet widely available, so we do not

use it here. In summary, modeling PUA(s ¼ 1 j x) is the

best currently available way to apply presence–absence

models to presence-only data, and is therefore the

approach we take here.

Presence–absence models with biased background

We have argued that sample selection bias is

widespread in species occurrence data. We would

therefore like to be able to correct for this bias. As in

the unbiased case we cannot estimate P(y¼1 j x) without
further knowledge of the prevalence P(y ¼ 1). Instead,

we prove under a mild assumption that if the

background data have the same bias as the occurrence

data, the resulting model is monotonically related to P(y

¼ 1 j x), as in the unbiased case. We therefore assume
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that both background and presence samples are selected
nonuniformly using the same sample selection distribu-

tion. A practical example could be that presence records
are collected by driving along roads while stopping at
random sites and walking up to 100 m from the road to

record sightings of the species. This sample selection is
biased toward roadsides, which in turn are likely to be
biased away from gullies or particular rough terrain. To

generate background data with the same bias, we
randomly select sites within a distance of 100 m from
any road (note that these might coincide with presence

points). For this example, the sample selection distribu-
tion is uniform over sites whose distance from the road
is at most 100 m and zero elsewhere.

We introduce an additional auxiliary variable b to
represent potentially biased selection of samples: sam-
ples are now drawn from a distribution over triples (t, y,
b), and only samples with b ¼ 1 are used for model

training. Analogously to the unbiased case, a presence–
absence model fitted to a biased use–availability sample
gives an estimate of PUA(s¼ 1 j x, b¼ 1). The derivation

of Eq. 2 is still valid if we condition all probabilities on b
¼ 1, so Eq. 2 generalizes to

PUAðs ¼ 1jx; b ¼ 1Þ ¼ 1

1þ r 0=Pðy ¼ 1jx; b ¼ 1Þ ð3Þ

where

r 0 ¼ ð1� pÞ
p

Pðy ¼ 1jb ¼ 1Þ

which is a constant independent of x.

In many cases we can make the assumption that P(y¼
1 j x, b ¼ 1) ¼ P(y ¼ 1 j x), i.e., that sampling effort and
presence of the species are conditionally independent

given x. Under this assumption, the right-hand side of
Eq. 3 simplifies to 1/[1 þ r0P(y ¼ 1 j x)]. Thus, the
function we are fitting, PUA(s ¼ 1 j x, b ¼ 1), is
monotonically related to what we are truly interested

in, P(y ¼ 1 j x). A simple case for which the conditional
independence assumption is true is when all variables
that affect presence of the species are included among

the covariates. Similarly, we obtain conditional inde-
pendence if all variables that affect sample selection are
included among the covariates (Zadrozny 2004). In

general, though, conditional independence may not
hold. For example, a pioneer plant species that is
correlated with disturbance may be more common than

climatic conditions would suggest near roads and towns,
exactly where sample selection bias is higher. Unless
disturbance level is used as a predictor variable, the
conditional independence assumption would be incor-

rect.

Maxent models with unbiased samples

Maxent is a general technique for estimating a
probability distribution from incomplete information
(Jaynes 1957). It has been applied to species distribution

modeling by assuming that the presence data have been

drawn from some probability distribution p over the

study region, and using the presence records for a
species to determine a set of constraints that are likely to

be satisfied by p (Phillips et al. 2006, Dudı́k et al. 2007).
Maxent then produces as output the distribution of
maximum entropy among all distributions satisfying

those constraints; note that the distribution is over sites
in the study region, not over environmental conditions.

The constraints require that the expected value of each
environmental variable (or some functions thereof,

referred to as features) under this estimated distribution
closely match its empirical average. Maximizing entropy
is desirable, as doing otherwise would be equivalent to

imposing additional (unfounded) constraints on the
output distribution. Maximizing entropy also has the

useful property that it results in a distribution with a
simple mathematical description: under the Maxent

distribution, the probability of a site is an exponential
function of the features.

The Maxent distribution can be related to conditional
probability of presence as follows. The probability p(t) is
the probability of the site t conditioned on the species

being present, i.e., the conditional probability P(t j y ¼
1). We define

f ðxÞ ¼ Pðxjy ¼ 1Þ
NPðxÞ

i.e., f(x) is the average of p(t) over sites with x(t) ¼ x.

This gives

Pðy ¼ 1jxÞ ¼ Pðy ¼ 1Þ
PðxÞ Pðxjy ¼ 1Þ ½Bayes’ rule�

¼ Nf ðxÞPðy ¼ 1Þ ½definition of f �:

The function f (x) is therefore proportional to prob-

ability of presence, and the exponential function
describing the Maxent distribution is an estimate of

f (x). Note, however, that with presence-only data we
typically do not know the constant of proportionality

P(y¼1), i.e., the prevalence of the species, since P(y¼1)
is not estimable from presence-only data alone (Ward et
al., in press).

Maxent models for biased samples

Maxent has been available now for five years as a
stand-alone program that enables the spatial modeling

of presence-only data. Because such data are often
biased, the authors have worked on methods for dealing

with sample bias, one of which, called FactorBiasOut,
we briefly describe here (for technical details, see Dudı́k
et al. [2005]). To describe the impact of sample selection

bias on density estimation, we introduce the notation
p1p2 for the site-wise product of two probability

distributions normalized over the study region, i.e.,
p1p2(t)¼ p1(t)p2(t)/Rt0 p1(t

0)p2(t
0). As opposed to the case

of unbiased estimation, we now assume that the
presence sites for a species are biased by a sample
selection distribution r, in other words, the presence
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sites are recorded by observers who pick locations

randomly according to r, rather than uniformly at
random (in the notation of Presence–absence models

with biased background, r(t)¼P(t j b¼ 1)). The presence
sites are therefore samples from the distribution rp
rather than from the true species distribution p.
The FactorBiasOut method estimates rp, then factors

out the bias r. It does this by outputting the distribution
that minimizes the relative entropy RE(rq ||r) among
all choices of the probability distribution q, subject to

the constraints mentioned in Maxent models with
unbiased samples, with the constraints now applying to

rq, since that is the distribution from which we have
samples. Relative entropy, also known as Kullback-

Liebler (KL) divergence, measures how different two
probability distributions are. It makes sense to seek to

minimize the difference from r, since a null model
would have the species distribution being uniform, so

the presence data would simply be drawn from r.
In the special case that there is no sample selection

bias, i.e., r is the uniform distribution, FactorBiasOut is
just the standard Maxent, since minimizing entropy

relative to the uniform distribution is the same as
maximizing entropy. Under reasonable conditions, the

output of FactorBiasOut converges, with increasing
sample size, to the distribution qr that minimizes

RE(rp ||rq) among the class of Gibbs (i.e., exponential)
distributions. This generalizes the result for the unbiased

case, that the output of Maxent converges to the Gibbs
distribution that minimizes RE(p || q) (Dudı́k et al.
2007). In other words, the output of FactorBiasOut

converges to a distribution that is close, in a strict sense
and as in the unbiased case, to the true distribution p, so
bias has been removed from the prediction.
As described so far, the FactorBiasOut method

requires knowledge of the sampling distribution r.
However, it is enough to have a set S of independent

samples from r. We can use S as background data for
fitting a Maxent distribution and then apply the

resulting model to obtain a distribution over the entire
study area. For large jSj, the resulting distribution

converges to the same distribution qr. To summarize, we
have shown that, as with the regression models, using

background data with the same sample selection bias as
the occurrence data yields a Maxent model with

theoretical properties that are analogous to the unbiased
case.

EXPERIMENTAL METHODS

Data sources

We used data for 226 species from six regions of the

world: the Australian Wet Tropics (AWT), Ontario,
Canada (CAN), northeast New South Wales, Australia

(NSW), New Zealand (NZ), South America (SA), and
Switzerland (SWI). The species represent a range of

geographic distributions, habitat specialization, and
biological groups/life forms. Similarly, there is a wide

range in the amount of training data per species (2–5822

occurrence records, median 57). In the independent

evaluation data, the presence or absence of each species

is described at between 102 and 19 120 sites. There are

11–13 environmental data layers per region, and the

layers are typical of what is used for SDM. Environ-

mental data varied in functional relevance to the species

and spatial resolution. Data for three regions (NSW,

NZ, SWI) had more direct links to species’ ecology at

the local scale than the climate-dominated variables

from AWT, CAN, and SA (Elith et al. 2006, Guisan et

al. 2007). Layers from AWT, NSW, NZ, and SWI had

grid cell sizes of around 100 m and those from CAN and

SA were 1 km. More details on the species and

environmental data layers can be found in Elith et al.

(2006).

Background treatments

Two sets of background data were used. First, we

used 10 000 sites selected uniformly at random from

each region (as in Elith et al. [2006], and referred to as

random background). Second, and uniquely for this

study, for each of the 226 species we generated a set of

background data consisting of the presence localities for

all species in the same target group (referred to as target-

group background). The target groups were birds or

herpetofauna for AWT; birds for CAN, plants, birds,

mammals or reptiles for NSW; and plants for NZ, SA,

and SWI (Table 1).

Evaluation statistics

The modeled distributions were evaluated for predic-

tive performance using the independent presence–

absence sites described above. We used the area under

the receiver operating-characteristic curve (AUC) to

assess the agreement between the presence–absence sites

and the model predictions (Fielding and Bell 1997). The

AUC is the probability that the model correctly ranks a

random presence site vs. a random absence site, i.e., the

probability that it scores the presence site higher than

the absence site. It is thus dependent only on the ranking

of test data by the model. It provides an indication of

the usefulness of a model for prioritizing areas in terms

of their relative importance as habitat for a particular

species. AUC ranges from 0 to 1, where a score of 1

indicates perfect discrimination, a score of 0.5 implies

random predictive discrimination, and values less than

0.5 indicate performance worse than random.

When we are working with presence-only data, we can

define the AUC of a model on a set of presence sites

relative to random background as the probability that

the model scores a random presence site higher than a

random site from the study area. The resulting AUC

measures the model’s ability to distinguish test sites from

random, but the value of the AUC is harder to interpret

than in the presence–absence case. While a score of 0.5

still indicates discrimination that is no better than

random, the maximum value attainable is typically less

than 1 (Wiley et al. 2003, Phillips et al. 2006).
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The correlation, COR, between a prediction and 0–1

observations in the presence–absence test data set is

known as the point biserial correlation, and can be

calculated as a Pearson correlation coefficient (Zheng

and Agresti 2000). It differs from AUC in that, rather

than depending only on rank, it measures the degree to

which prediction varies linearly with the observation.

Because it depends on the prediction values rather than

simply on their order, it is likely to be sensitive to the

effect of varying relative sampling intensity in the

training data (Eq. 2).

To assess whether there is a monotone relationship

between two variables, we use Spearman’s rank corre-

lation coefficient (q), which is a nonparametric measure

of correlation. We use q rather than Pearson’s product-

moment correlation (r) to avoid two assumptions

required by the latter: that the relationship between

the two variables is linear, and that the data are drawn

from normal distributions.

Measuring bias

In order to measure the effect of bias on predictions, it

is useful to be able to measure the amount of bias in a set

of presence-only samples. Specifically, we would like to

measure the amount of bias for each target group. We

do this by estimating how well we can discriminate

target-group sites from the background, by using

Maxent to make a model of target-group sites and

using the AUC of the target-group sites vs. background

as a measure of discrimination. We refer to this value as

AUCTG. If AUCTG is high, it means that the environ-

mental variables can be used to distinguish the spatial

distribution of target-group presences from random

background, and therefore target-group presences sam-

ple environmental space in very different proportions

from the proportions present in the study area, i.e., the

target-group presences are biased both in environmental

and geographic space. We therefore use AUCTG as an

estimate of sample selection bias for the target group,

but with the following two reservations. First, spatial

bias will only be picked up by AUCTG if it results in bias

in environmental space, i.e., if some environmental

conditions are more strongly represented in the target-

group presence data than we would expect based on the

proportion of sites with those conditions. Any spatial

bias that is independent of the environmental variables

will not be picked up by AUCTG. However, such spatial

bias is less problematic than the bias measured by

AUCTG, since a species distribution model cannot use it

to distinguish presences from background. Second, the

target group may truly occupy only part of the

environmental space represented in the study area, in

which case AUCTG may be higher than 0.5 even if there

is no sample selection bias, i.e., even if the presence

records were gathered with uniform survey effort across

the study area. For these reasons, AUCTG should be

interpreted carefully only as an estimate of bias. Note

also that the use of Maxent models here is not essential;

any of the methods used in this paper would have

sufficed.

Once we have an estimate of bias in the training data,

it is possible to measure how well this bias estimate

predicts sampling effort in the evaluation data. A simple

systematic design for evaluation data would uniformly

sample the study region, and therefore have no bias.

However, bias may arise, for example if the evaluation

data derive from a survey of only part of the region,

such as all uncleared, forested areas. If the sample

selection and evaluation biases are similar, we might

expect it would help us in constructing better-perform-

ing models. We measure the similarity of the biases using

the value AUCeval, defined as the AUC of the Maxent

model of training group sites, with the AUC evaluated

using test sites (both presences and absences) vs. random

background. A high value of AUCeval indicates that

environmental conditions at the test sites are very similar

to those at the training sites, and different from most of

the study region. The amount of bias varied consider-

ably between regions and target groups (Table 1), with

the strongest bias and the highest value of AUCeval

occurring in Canada (Fig. 3). AWT-plant training data

TABLE 1. Target groups and measures of training and testing bias.

Target group Region No. species AUCTG AUCeval

AWT-bird Australian wet tropics 20 0.8337 0.7887
AWT-plant Australian wet tropics 20 0.841 0.5649
CAN Ontario, Canada 20 0.9473 0.9216
NSW-bird New South Wales 10 0.8789 0.877
NSW-mammal New South Wales 7 0.9341 0.8402
NSW-plant New South Wales 29 0.7054 0.6303
NSW-reptile New South Wales 8 0.9219 0.8539
NZ New Zealand 52 0.7443 0.7619
SA South America 30 0.7502 0.7667
SWI Switzerland 30 0.8564 0.8256

Notes: For each target group, AUCTG is the area under the receiver operating characteristic curve (AUC) of training presence
sites vs. random background for a Maxent model trained on all presence sites for the target group. AUCeval is the AUC of the same
model evaluated using the set of test sites for that target group vs. random background. A high value of AUCTG indicates that the
training sites are highly biased and that sample-selection bias can be predicted well as a function of environmental conditions. A
high value of AUCeval indicates that the test sites and training sites have similar strong biases.
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were least effective at predicting test sites (AUCeval ¼
0.5649).

RESULTS

The average AUC and COR values improved for all

methods when using target-group background (Table 2).

The improvement in each statistic was highly significant

for all methods (P , 0.001, two-tailed Wilcoxon signed

rank test, paired by species). According to an analysis of

variance, the three factors affecting AUC and COR

(species, background, and algorithm) are all highly

significant (P , 1 3 10�14, F test), with the strongest

effect being for species. The effect of background is

slightly greater than that of algorithm for both AUC

and COR (Table 3). With target-group background, the

best methods achieved average AUC values above 0.7 in

all regions (Fig. 4). The improvement in AUC scores

depended strongly on the estimated amount of bias in

training data for the target group (Fig. 5) and with the

degree to which the distribution of training data can be

used to predict test sites (Fig. 6). For all four methods,

there was a strong monotone dependence of improve-

ment in AUC on both estimates of bias as measured by

Spearman’s rank correlation coefficient (Table 4), with a

high level of statistical significance in all cases.

Using target-group background has a visually marked

effect on some predictions. The greatest improvement in

AUC was for a Canadian species, the Golden-crowned

Kinglet, a generalist species that is widely distributed

across Ontario and that favors old conifer stands. For

this species, the AUC rose from 0.3379 to 0.8412 for

Maxent and from 0.2920 to 0.8648 for BRT; the

predictions with and without target-group background

are very different (Fig. 7). The model with target-group

background is much more widespread, excluding mostly

the southernmost tip of Ontario, which is the only part

of the province that is predominantly deciduous. The

map produced with target-group background is much

closer visually to maps of breeding evidence and relative

abundance for this species (Cadman et al. 2008),

differing mainly by strongly predicting the far northeast

of the province, where there is little current evidence of

breeding.

DISCUSSION

For all the algorithms we consider here, using target-

group background gave a substantial improvement in

model performance, measured by both AUC and COR

(Table 2). To evaluate the extent of the improvement, we

would like to know how it compares with the differences

between modeling methods. Elith et al. (2006) found

that presence-only modeling methods fell into three

distinct groups. The lower group consisted largely of

methods that do not use background data, such as

BIOCLIM (Busby 1991). The middle group contained

traditional regression-based methods such as GAM and

MARS among others, while the top group included

Maxent and BRT. The improvement due to target-

group background (Table 2) is similar to the difference

between groups in Elith et al. (2006). In fact, an analysis

of variance shows the effect of background type as being

larger than the effect of modeling method (Table 3). We

conclude that appropriate choice of background data

affects model performance for the four methods

presented here as much as the choice of modeling

method. Since all tested methods benefit from appro-

priate background, we recommend both well-informed

selection of method and careful choice of background

samples.

The improvement varied considerably between target

groups, with the largest gains seen for target groups with

the most biased training data (Fig. 5). This addresses an

anomaly from Elith et al. (2006), where BIOCLIM was

one of the worst methods in all regions except Canada,

where it was one of the best. With target-group

TABLE 2. Area under the receiver operating characteristic
curve (AUC) and correlation between predictions and 0–1
test data (COR) for the methods considered; values shown
are averages over all 226 species.

Model

Random background Target-group background

AUC COR AUC COR

BRT 0.7275 0.2130 0.7544 0.2435
Maxent 0.7276 0.2100 0.7569 0.2446
MARS 0.6964 0.1787 0.7260 0.2145
GAM 0.6993 0.1765 0.7368 0.2196

Notes: For random-background models, background data
were chosen uniformly at random from the study area. For
target-group background, background data are the sites with
presence records for any species from the same target group.
Models are boosted regression trees (BRT), maximum entropy
(Maxent), multivariate adaptive regression splines (MARS),
and generalized additive models (GAM).

FIG. 3. Bias in the Canada training data used in Elith et al.
(2006). Training sites for all species combined are shown as
black dots and exhibit a strong bias toward the south of the
region. Test sites exhibit a very similar pattern of bias (not
shown). The region is shaded to indicate strength of prediction
of a maximum entropy (Maxent) model trained on these
training sites, with dark shades indicating stronger prediction.
Note that the bias is stronger than the bias shown for the
artificial species in Fig. 2.

STEVEN J. PHILLIPS ET AL.190 Ecological Applications
Vol. 19, No. 1



background, all the methods considered in this paper

perform better than BIOCLIM in all regions. This

confirms that the previous anomalous results in Canada

were due to a strong bias in the occurrence data

impacting the performance of any method that used

background data. With target-group background, per-

formance of the methods that use background data is

now consistent across regions (Fig. 4; compare with Fig.

5 of Elith et al. [2006]).

The effect of target-group background varies species

by species, and one might expect that it would be

systematically affected by characteristics of a species

distribution, in particular the species’ prevalence in the

study area. We investigated this question, measuring the

prevalence of a species as the fraction of test sites in

which the species is present. However, we found no clear

patterns. For BRT, the improvement in AUC is slightly

larger for generalist species (those with high prevalence),

while the improvement in COR is slightly larger for

specialists (with low prevalence). In contrast, for

Maxent, the improvement in AUC was unaffected by

prevalence, while COR values improved more for

generalists. Details are omitted, since the results were

inconclusive.

Note that target-group background substantially

improved predictions in Switzerland (Fig. 5), and the

improvement is statistically significant for all methods

(P , 0.001, two-tailed Wilcoxon signed rank test, paired

by species). This is initially surprising, since the

presence-only training data set is extensive and of high

quality. However, the sites only sample a subset of the

country (forested areas) and therefore they do not

represent areas that could support forest but are not

currently forested. This means that use of random

pseudo-absences misled the models to some extent. The

only region where target-group background reduced

TABLE 3. Coefficients for an analysis of variance for AUC and COR evaluated on independent presence–absence test data for
models of 226 species.

Measure

Algorithm Background Effect SE

BRT GAM MARS Maxent Random Target group Species Algorithm Background

AUC 0.0128 �0.0101 �0.0169 0.0141 �0.0154 0.0154 0.0228 0.0030 0.0021
COR 0.0157 �0.0146 �0.0160 0.0149 �0.0180 0.0180 0.0241 0.0032 0.0023

Note: Factors were species (per-species effects not shown), algorithm used to make the model (BRT, GAM, MARS, or Maxent),
and background data used for the model (random or target group).

FIG. 4. Performance using target-group background of methods in each of the modeled regions, measured using area under the
receiver operating characteristic curve (AUC) on independent presence–absence test data.
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average performance was South America, for BRT and

Maxent, but the decrease is small and not statistically

significant (P . 0.65 for BRT, P . 0.84 for Maxent,

two-tailed Wilcoxon signed rank test, paired by species).

When using random background, all the modeling

methods we consider will make predictions that are

biased toward areas that have been more intensively

sampled. In comparison, target-group background

removes some of this bias, spreading predictions into

unsampled areas with similar environmental conditions

to sampled areas where the species is present. The test

sites for most of our target groups exhibit similar spatial

FIG. 5. Plot of improvement in AUC on independent presence–absence test data when using target-group background instead
of random background. Models were created using four methods (boosted regression trees [BRT], maximum entropy [Maxent],
multivariate adaptive regression splines [MARS], and generalized additive models [GAM]), and minimum, mean, and maximum
improvement in AUC across methods are shown for each target group (endpoints of bars are minimum and maximum values). The
x-axis is a measure of the amount of bias in training data for the target group. It is obtained by training a Maxent model using all
presence sites for the target group, and measuring the AUC of the training sites relative to random background. The abbreviations
are: AWT, Australian Wet Tropics; CAN, Canada; NSW, New South Wales; NZ, New Zealand; SA, South America; SWI,
Switzerland.

FIG. 6. Scatter plot of improvement in AUC on independent presence–absence test data when using target-group background
instead of random background. The x-axis is a measure of how well target-group background predicts the distribution of test sites,
namely, the AUC of a Maxent model trained on all presence sites for the target group and tested using all test sites for that group
versus random background sites. Models were created using four methods (GAM, MARS, BRT, Maxent), and minimum, mean,
and maximum improvement in AUC across methods are shown for each target group.
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distributions to the training sites, and therefore target-

group background will cause prediction strength (i.e.,
model output values) to decrease at test sites relative to

less-sampled areas, compared with random background.
Thus, it is crucial that our test data are presence–absence

data, so that we are measuring discrimination at test
sites, rather than comparing them to random back-

ground. If the test data were presence-only, environ-
mental bias in conditions at test sites would strongly

influence test results. For example, the Maxent models
trained with target-group background have much lower

AUC (0.7168) than models trained with random
background (0.8201) if the AUC in both cases is

measured using presences at test sites relative to random
background, rather than relative to absences at test sites.

The use of presence-only evaluation data may explain
why Lütolf et al. (2006) found that an approach similar

to target-group background decreased GLM model
performance.

One concern with using target-group background is
that we are focusing only on parts of geographic (and

thus environmental) space that contain presence sam-
ples. Predictions to unsampled areas could therefore be

less reliable. This effect is not evident in our statistical
results: the average AUC for the groups NSW-plant and

AWT-plant, whose test sites are not well predicted by
the distribution of training sites, barely changes when

using target-group background (Fig. 6). Nevertheless,
predictions into unsampled areas, especially those with

conditions outside the range observed in sampled areas,
should be treated with strong caution. We also note that

a critical assumption of the target-group approach is
that the data for all species in the group were collected

using the same methods, so that the target-group
occurrences represent an estimate of sampling effort

that is applicable for each member of the group. The set
of species in the target group should be chosen with this

in mind.

The evaluation data we have used here measure model

performance according to the ability to predict the

realized distribution of a species, as represented by

presence–absence data at test sites. We note that many

applications of species distribution models depend on

predicting potential distributions, rather than realized

distributions (Peterson et al. 1999). A species may have

failed to disperse due to geographic barriers, or be

excluded from an area due to competition. In the current

evaluation, prediction into such areas would be penal-

ized; however we note that it is usually not possible, with

either occurrence or presence–absence data, to test

ability to predict potential distribution. It is possible

that some of the species considered here are absent from

significant portions of their potential distribution, so our

conclusions refer to the ability of models to predict

realized distributions. We note also that the present

study concerns the ability to derive accurate models in a

single geographic area under fixed climatic conditions.

Therefore, our conclusions do not necessarily apply to

uses of species distribution models involving extrapola-

FIG. 7. Maxent predictions in Ontario, Canada for the Golden-crowned Kinglet, a widely distributed generalist species, created
(a) without and (b) with use of target-group background. Dark shades indicate stronger prediction, while white or black dots are
presence sites used in training. Without target-group background, the prediction is similar to the model of sampling effort (Fig. 3).
Target-group background results in stronger prediction in less-sampled areas, reducing dependency of sampling effort.

TABLE 4. Spearman rank correlations of improvement in AUC
when using target-group background instead of random
background.

Model

Correlation with
training bias

Correlation with
test bias

Spearman’s q P Spearman’s q P

Maxent 0.87 0.002 0.81 0.008
GAM 0.90 ,0.001 0.93 ,0.001
BRT 0.75 0.017 0.87 0.002
MARS 0.84 0.004 0.95 ,0.001

Notes: The improvement is correlated against the degree of
bias in the training data for each target group (‘‘training bias’’)
and a measure of how well the training data for each target
group predict the test sites (‘‘test bias’’). In each case, we give
Spearman’s rank correlation coefficient (q) and the two-sided P
value for the null hypotheses that q¼ 0.
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tion, i.e., producing a model using one set of environ-

mental variables and then applying it to another set with

the same names, but describing conditions for a different

time or geographic area. Examples of such extrapola-

tions involve future climate conditions (Thomas et al.

2004) or areas at risk for species invasions (Thuiller et al.

2005).

Alternate explanations

We have assumed so far that the improvement in

performance due to target-group background is due to

properly accounting for sample selection bias in the

training data. Here we consider other explanations for

the performance improvement.

Factoring in the test site bias.—When modeling a

species distribution, we may be more interested in model

performance under some conditions than others, in

particular, under conditions that are broadly suitable for

the species or target group. For example, if we want a

model to predict the specific niche of a montane species

within an alpine area, in a broad region that includes a

lot of lowland, we should make sure that all different

montane conditions are represented in the evaluation

data. However, if we were to include a number of

lowland sites in proportion to lowland area, our

evaluation statistics would not tell us much about the

quality of prediction in the alpine area, since a high

AUC value can be obtained by simply ranking montane

areas higher than lowlands. In general, evaluation data

should be chosen in a way that is relevant to the required

output and use of the models, and so may focus on

restricted areas.

In the case that evaluation data are biased toward

areas representing only a subset of environmental

conditions, we expect better performance if training

data have the same bias, so that model development is

focused on the environmental conditions that will be

examined during model evaluation. This can be done

formally, for example by transductive learning where

unlabeled test data are used to reweight training data

(Huang et al. 2007). It is possible, therefore, that the

reason that target-group background improves model

performance is that it focuses training on the most

important areas of the region, which are also the areas

with the most test data.

For presence-only modeling, training sites for a target

group will be drawn from broadly suitable areas for the

group. The distributions of target-group sites and test

sites may therefore be similar, in which case using target-

group background brings the spatial distribution of the

full complement of training data (presences plus

background) closer to that of the test data. To see

formally why this is advantageous, consider the case of

Maxent. Assume the true species distribution is p and

the sampling distribution is r. When using FactorBias-

Out, the output converges to the distribution q�r , which
minimizes RE(rp ||rq) among Gibbs distributions q

(see Maxent models for biased samples). We can expect

that q�r is close to q*, the distribution that minimizes

RE(p || q), but it is not always true that q�r ¼ q* (Dudı́k

et al. 2005). To obtain the best test results, we would like

the Maxent distribution to approximate p with respect

to the distribution of test data, i.e., we should find q�test

that minimizes RE(rtestp ||rtestq) as a function of q. If r
¼ rtest, this is exactly what FactorBiasOut does, and

what target-group background approximates. Other-

wise, we must rely on the assumption that q�r and q�test

are similar.

For the presence–absence methods, the reasoning is

similar. If test sites are chosen according to the

distribution rtest, then we are evaluating how well our

predictions model probability of occurrence under rtest,

i.e., Prtest
(y ¼ 1 j x). From Presence–absence models with

biased background, we know that presence–absence

methods applied to presence-only data and background

data with the same bias are approximating a monotonic

function of Pr(y¼1 j x). Therefore, the best we can hope

for is r ¼ rtest; otherwise we must rely on the

assumption that Pr(y ¼ 1 j x) and Prtest
(y ¼ 1 j x) are

similar.

Testing on similar conditions to those encountered

during training has the potential to increase estimates of

model performance, in addition to the improvement

given by properly accounting for sample selection bias in

the training data. Indeed, this seems to be the case for

the regression-based methods (BRT, GAM, and

MARS): note the higher correlation of performance

with test bias than with training bias in Table 4. In

contrast, for Maxent the correlation decreases some-

what, and we conclude that for this data set, properly

dealing with training bias is a sufficient explanation of

the performance improvement for Maxent given by

target-group background.

Target-group data suggest true absences.—In some

situations, target-group sites without records for a

particular species can be interpreted as true absences.

For example, in presence-only data collections, includ-

ing some of those used here, many sites are research

stations or other well-known sites that have been visited

multiple times and have multiple recorded species

constituting an inventory of species present there.

Therefore, species that are not recorded at such sites

are likely to be absent. If most target-group sites are well

inventoried, then absence records can be derived by

selecting sites that have a record from the target group

but not for the species being modeled.

On the other hand, a lot of herbarium and museum

records are there because a collector has noticed a

species in an odd place (e.g., it might be considered a

range expansion), because the collector has a primary

interest in that species, or because the species is rare and

all occurrences are recorded. In such cases, the collector

will not be recording all species from the target group.

In all experiments, we used all target-group records as

background. We call this approach overlapping back-

ground, because the background data include presences
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of the modeled species (as it belongs to the target group).

However, if target-group sites where the modeled species

was not observed are true absences, then we expect

better results if we treat them as such. To test this

hypothesis, we removed the sites where the modeled

species was recorded from the target-group background,

resulting in what we call nonoverlapping background.

This removes the problem of contaminated controls (see

Presence–absence models with random background ) and

results in a case-control sampling model. If the selection

of survey sites is biased according to a distribution r,
then it results in a case-control sampling model for Pr(y

¼1 j x), which may be assumed to be equal to P(y¼1 j x)
(but see Presence–absence models with biased back-

ground ). A presence–absence model fitted using non-

overlapping background data can then be used to index

probability of occurrence; if the species prevalence under

r is known, then a case-control adjustment can be made

in order to estimate probability of occurrence (Keating

and Cherry 2004).

We tried this alternative approach (without a case-

control adjustment, as species prevalence cannot be

derived from our data set) for the presence–absence

methods in our study (Table 5). We observed very little

difference in performance between the two background

formulations. The biggest difference is a slight improve-

ment in performance for GAM with overlapping

background. Thus, for our data set at least, there is no

benefit to interpreting missing records from target-group

sites as true absences.

Related approaches

A related option is to use target-group background

data to directly model survey effort (Zaniewski et al.

2002). The surveyed sites are modeled against a random

background sample from the region. The resulting

model of survey effort can be used to make a weighted

selection of background data, with higher probability

sites being selected most often, for use in species

distribution modeling. The advantage is that a large

amount of biased background data can be produced,

even if the target-group background data are limited.

The danger is that the extra step of modeling introduces

an extra source of error on top of the variability in

model output caused by varying survey effort. The

present study arose from a comparison of this method

(which we term modeled target-group background)

against target-group background and random back-

ground, using a subset of the species modeled by Elith et

al. (2006). The preliminary results (not shown here)

suggested that target-group background clearly outper-

forms modeled target-group background. The size of the

improvement of target-group background over random

background suggested that a larger study was warrant-

ed, resulting in the present paper.

Another approach for explicitly modeling survey

effort is to include it as a level in a hierarchical Bayesian

framework (e.g., Gelfand et al. 2006). One advantage of

this approach is that the model gives explicit estimates of

uncertainty in the predictions; in contrast, for the

models we have considered here, uncertainty estimates

are typically obtained by bootstrapping (generating

separate models for random subsets of the training

data, in order to derive pointwise variance in predic-

tions). To our knowledge the hierarchical Bayesian

approach has only been applied to presence–absence

data, rather than the presence-only data that are the

focus of this study, so it cannot be directly compared

with the target-group background approach.

Given presence records for only one species and no

information on collection effort, a simple option is to

define areas within the region where it is broadly

possible that the species could occur. For example, if

modeling a tree species in a landscape with substantial

amounts of clearing for agriculture, spatial records of

clearing (e.g., from remotely sensed data) could be used

to define areas to be excluded from the set available for

background data selection. Doing so would counteract a

sample selection bias toward environmental conditions

that are less suitable for agriculture, as long as the

cleared areas correspond temporally with the species

presence records. This is a special case of the biased

background sampling approach we have described here,

where the sampling intensity is zero in cleared areas, and

uniform in other areas. An alternative approach to

correct for this bias is to include land use as a predictor

variable.

Engler et al. (2004) used a single species approach to

generate weighted background points for input to

GAM. They used an ecological niche factor analysis

(ENFA) to create ‘‘ENFA-weighted’’ background

points by choosing points that were within the study

region but unlikely to have the species (i.e., ENFA value

less than 0.3). They compared this approach to random

background, and found that it improved performance

according to three out of four of their evaluation

measures. This approach has the aim of having

background data biased in favor of areas where the

species is thought to be absent. In principle, this moves

the sampling design away from a use–availability design

and toward being a case-control design. However, the

method of Engler et al. (2004) does not address the issue

of bias in the occurrence data, and the extra step of

modeling in the generation of background data may

TABLE 5. Performance of presence–absence methods using
target-group background when presences for the modeled
species are included in the background (overlap) or excluded
(interspersed).

Model

Overlap background Interspersed background

AUC COR AUC COR

BRT 0.7544 0.2435 0.7544 0.2442
GAM 0.7368 0.2196 0.7315 0.2092
MARS 0.7260 0.2145 0.7222 0.2102
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introduce spatial and environmental bias in the controls

and makes models difficult to interpret.

CONCLUSIONS

While the problem of sample selection bias has

received much attention in other fields (e.g., the Nobel

prize-winning econometrics work of Heckman [1979]), it

has not been adequately addressed for species distribu-

tion modeling. Sample selection bias is a serious

problem for species distribution models derived from

presence-only data, such as occurrence records in

natural history museums and herbaria. It has a much

greater impact on such models than it does on models

derived from presence–absence data. When the sampling

distribution is known, we have shown how sample

selection bias can be addressed by using background

data with the same bias as the occurrence data; our

analysis holds for most of the commonly-used presence-

only modeling methods. Sample selection bias has been

previously explicitly considered only for some individual

modeling methods (Argaéz et al. 2005, Dudı́k et al. 2005,

Schulman et al. 2007).

When the sampling distribution is not known, it can

be approximated by combining occurrence records for a

target group of species that are all collected or observed

using the same methods. We evaluated this approach on

a diverse set of 226 species and four modeling methods.

For both statistical measures of model performance that

we used, target-group background improved predictive

performance for all modeling methods, with the amount

of improvement being comparable to the difference

between the best and the worst of the four modeling

methods. We conclude that the choice of background

data is as important as the choice of modeling method

when modeling species distributions using presence-only

data.
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