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Abstract. Most methods for modeling species distributions from occurrence records
require additional data representing the range of environmental conditions in the modeled
region. These data, called background or pseudo-absence data, are usually drawn at random
from the entire region, whereas occurrence collection is often spatially biased toward easily
accessed areas. Since the spatial bias generally results in environmental bias, the difference
between occurrence collection and background sampling may lead to inaccurate models. To
correct the estimation, we propose choosing background data with the same bias as occurrence
data. We investigate theoretical and practical implications of this approach. Accurate
information about spatial bias is usually lacking, so explicit biased sampling of background
sites may not be possible. However, it is likely that an entire target group of species observed
by similar methods will share similar bias. We therefore explore the use of all occurrences
within a target group as biased background data. We compare model performance using
target-group background and randomly sampled background on a comprehensive collection
of data for 226 species from diverse regions of the world. We find that target-group
background improves average performance for all the modeling methods we consider, with the
choice of background data having as large an effect on predictive performance as the choice of
modeling method. The performance improvement due to target-group background is greatest
when there is strong bias in the target-group presence records. Our approach applies to
regression-based modeling methods that have been adapted for use with occurrence data, such
as generalized linear or additive models and boosted regression trees, and to Maxent, a
probability density estimation method. We argue that increased awareness of the implications
of spatial bias in surveys, and possible modeling remedies, will substantially improve
predictions of species distributions.

Key words: background data; presence-only distribution models, niche modeling; pseudo-absence;
sample selection bias; species distribution modeling; target group.
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INTRODUCTION

Species distribution modeling (SDM) is an important
tool for both conservation planning and theoretical
research on ecological and evolutionary processes
(Loiselle et al. 2003, Kozak et al. 2008). Given sufficient
resources, SDM can be based on data gathered
according to rigorously defined sampling designs, where
both presence and absence of species is recorded at an
environmentally and spatially representative selection of
sites (Cawsey et al. 2002). However, for most areas of
the world and most species, resources are too limited to
gather large sets of data including both presences and
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absences, and furthermore, many species have been
extirpated from much of their original range. For these
reasons, SDM relies heavily on presence-only data such
as occurrence records from museums and herbaria
(Ponder et al. 2001, Graham et al. 2004, Suarez and
Tsutsui 2004). These occurrence data often exhibit
strong spatial bias in survey effort (Dennis and Thomas
2000, Reddy and Davalos 2003, Schulman et al. 2007),
meaning simply that some sites are more likely to be
surveyed than others; such bias is typically spatially
autocorrelated, but this paper allows for arbitrary
spatial bias. This bias, referred to as sample selection
bias or survey bias, can severely impact model quality;
however, the effect of such bias has received little
attention in the SDM literature. We present a theoretical
analysis of sample selection bias for several presence-
only SDM methods. We also describe a general
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approach for coping with biased occurrence data, and
empirically test its efficacy.

The range of model types for fitting presence-only
data has expanded rapidly over the last decade. In
ecology, the most common methods for these data were
originally those that fitted envelopes or measured point-
to-point similarities in environmental coordinates (Bus-
by 1991, Carpenter et al. 1993). These methods use only
occurrence data, ignoring the set of environmental
conditions available to species in the region. More
recent methods achieve better discrimination by model-
ing suitability relative to the available environment.
Information on the available environment is provided
by a sample of points from the study region. We refer to
these points as background or pseudo-absence data.
Examples of specialized programs include Hirzel’s
ecological niche factor analysis (“ENFA” or “Biomap-
per”; Hirzel et al. 2002) and Stockwell and Peterson’s
genetic algorithm for rule-set prediction (“GARP”;
Stockwell and Peters 1999, Peterson and Kluza 2003).
More generally, a broad range of logistic regression
methods can be adapted to this situation, either in an
approximation (modeling presences against background
rather than against absences) or with more rigorous
statistical procedures that correct for the possibility of
true presences appearing in the background data
(Keating and Cherry 2004; Ward et al., in press).
Because the regression-related methods and other newer
initiatives show generally higher predictive performance
than other approaches (e.g., Elith et al. 2006, Hernandez
et al. 2006), we focus here on a subset of more successful,
widely used methods: boosted regression trees (BRT;
Leathwick et al. 2006, De’ath 2007), maximum entropy
(Maxent; Phillips et al. 2006), multivariate adaptive
regression splines (MARS; Leathwick et al. 2005), and
generalized additive models (GAM; Yee and Mitchell
1991, Ferrier et al. 2002).

These methods all require information about the
range of environmental conditions in the modeled
region, given by background samples. Some modelers
think of the background samples as implied absences:
partly because the word “pseudo-absences” gives that
impression. However, the intention in providing a
background sample is not to pretend that the species is
absent at the selected sites, but to provide a sample of
the set of conditions available to it in the region. The
critical step in selection of background data is to develop
a clear understanding of the factors shaping the
geographic distribution of presence records. Two key
elements are the actual distribution of the species and
the distribution of survey effort. Potentially, the latter
can be spatially biased, i.e., there may be sample
selection bias. Most SDMs are fitted in environmental
space without consideration of geographic space, so the
importance of spatial bias is that it often causes
environmental bias in the data. If a spatially biased
sample proportionately covered the full range of
environments in the region, then it would cause no
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problem in a model based on environmental data.
However, this is usually not the case. If the bias is not
accounted for, a fitted model might be closer to a model
of survey effort than to a model of the true distribution
of the species. For example, a species with a broad
geographic distribution might only have been recorded
in incidental surveys close to towns and beside roads.
Background samples are commonly chosen uniformly at
random from the study region; this characterizes the
range of environments in the region well, but fails to
indicate sample selection bias. If the roadsides and
towns are not a random sample of the environment,
applying any of the above modeling techniques to these
data will produce a model that best describes the
differences in the distribution of the presence sites
compared to the background data. For example, if roads
in this region happen to follow ridges, and if towns
happen to be associated with the most fertile soils, then a
model will find that ridges and fertile soils are positively
correlated with the distribution of the species, whereas in
reality they best describe the distribution of roads and
towns, and hence survey effort.

The most straightforward approach to address this
problem would be to manipulate the occurrence data in
order to remove the bias, for example by discarding or
down-weighting records in over-sampled regions (e.g.,
the de-biasing averages approach of Dudik et al. [2005])
or by surveying under-represented regions. However,
such manipulations are hampered by incomplete infor-
mation about the distribution of survey effort. In
addition, the paucity of presence records for many
species of interest makes discarding records unpalatable,
and resources may not be available to conduct new
surveys. The data may also be biased in a way that
cannot be “fixed” by collecting new data: if many
forested areas have been cleared, new surveys will not
provide presence records of forest-dependent species in
cleared areas. In the same way, less arid, more fertile
areas are more likely to have been transformed by
human activity, so new surveys would result in
occurrence data that are biased toward arid or infertile
areas. In these cases, the sample selection bias is an
inherent part of the realized, current distribution of the
species.

An alternative approach is to manipulate the back-
ground data. While some studies explore this idea (e.g.,
Zaniewski et al. 2002, Engler et al. 2004, Liitolf et al.
2006), the ecological literature lacks a coherent theoret-
ical exploration, and the proposed solutions seem to
represent different and probably incompatible reason-
ing. The approach we propose is to design the selection
of background data so they reflect the same sample
selection bias as the occurrence data. This aims to
achieve the same environmental bias in both data sets.
For example, if presence data are only taken from easily
surveyed portions of the study region, then background
data should be taken from the same areas (Ferrier et al.
2002). The hope is that a model based on biased
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presence data and background data with the same bias
will not focus on the sample selection bias, but will focus
on any differentiation between the distribution of the
occurrences and that of the background. In other words,
if the species occupies particular habitats within the
sampled space, the model will highlight these habitats,
rather than just areas that are more heavily sampled.
This has been justified theoretically for Maxent (Dudik
et al. 2005; summarized here in Maxent models for biased
samples). In the regression case, we could find no clear
treatment of how to understand and interpret models
using presence—pseudo-absence data, particularly with
varying biases in the underlying data, so we present that
here. We first investigate how to interpret models
produced with random background, using the theory
of use—availability sampling in habitat-selection studies
(Keating and Cherry 2004). We extend the analysis to
biased data, and show that under reasonable conditions,
models created using background data with the same
sample selection bias as the presence data can be
interpreted in the same way as models produced with
completely unbiased data.

It can be difficult to create background data with the
same bias as presence data since we seldom know the
sample selection distribution exactly. As an alternative,
if presence records are derived from natural history
collections, records for a broad set of species could be
used to estimate survey effort. The set of species should
be chosen so as to represent the specimen collection or
observation activities of collectors of the target species.
In general, the groups should contain species that are all
collected or observed using the same methods or
equipment; such groups of species are called target
groups (Ponder et al. 2001, Anderson 2003). Broad
biological groups (birds, vascular plants, and so on) are
likely to be suitable. The sites for all records from all
species in the target group then make up the full set of
available information on survey effort and can be used
as background data; we call such a set of sites target-
group background.

To measure the effectiveness of target-group back-
ground, we compared it to random background using
several modeling methods and the same data set as a
recent comprehensive comparison of modeling methods
(Elith et al. 2006). The data set covers 226 species from
diverse regions of the world, with a wide range of sample
sizes (2 to 5822, with a median of 57). The regions
exhibit varying amounts of sample selection bias, with
Ontario, Canada showing the most striking bias, toward
the more populous south. A crucial aspect of this data
set is that it contains independent, well-structured
presence—absence test data. The test data were collected
independently of the training data, using rigorous
surveys in which the species’ presence or absence was
recorded at a collection of test sites. This allows us to
evaluate model performance in a way that is largely
unaffected by sample selection bias since the predictive
performance of the models is evaluated on this test data,
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rather than the presence-only training data. We focus on
average performance across broad groups of species
rather than detailed expert evaluation of individual
species models, and compare several of the better-
performing methods from the study of Elith et al. (2006).
This allows us to determine how sample selection bias
impacts performance of presence-only species distribu-
tion models on typical data sets, and whether target-
group background can effectively counteract sample
selection bias on such data sets. Whilst the effect of
background sample selection has been mentioned in
relation to individual modeling methods (e.g., Liitolf et
al. 2006, Elith and Leathwick 2007, Phillips and Dudik
2008), this paper focuses on the general problem and on
its relevance across a range of species, environments,
and modeling methods.

The dangers of sample selection bias: an example

When presence—absence data are available, there are a
number of modeling methods that are known to be
resilient to sample selection bias (Zadrozny 2004).
However, bias can have a powerful effect on models
derived from presence-background data; to demonstrate
this dichotomy, we briefly consider a synthetic species in
Ontario, Canada, and use the continuous environmental
variables described in Elith et al. (2006). The probability
of presence for the species (Fig. 1) is defined to be 1 for
any location which is within the middle 40% of the range
of all environmental variables. For each variable outside
of the middle 40% of its range, the probability of
presence is multiplied by a factor ranging linearly from
0.7 (at the extremes of the variable’s range) to 1.0 (at the
30th and 70th percentiles). The particular constants used
here were chosen for illustrative purposes only, to create
a synthetic species with a broad preference for mid-
range conditions in all variables.

Occurrence data are often biased toward human
population centers and roads (Reddy and Davalos
2003). Therefore, roughly following the human popula-
tion and road density of Ontario, we modeled sample
selection bias with a sampling distribution that is
uniform in the southern 25% of Ontario, uniform with
b times lower intensity in the northern 50% of the
province, and a linear transition of sampling intensity in
between; we varied b between 1 (unbiased sampling) and
100 (strongly biased sampling). Several predictor vari-
ables for Ontario have a strong north-south trend, so
this spatial bias will translate into a bias in predictor
space. Samples were generated by repeatedly picking a
site according to this sampling distribution and then
randomly labeling the site either as a presence (with
probability equal to the species’ probability of presence
there) or absence (with the remaining probability).
Sampling continued until there were exactly 200
presences. Thus a full data set for each value of b
contained 200 presences and a variable number of
absences, depending on how many were selected in
creating the set of 200 presences. Two boosted
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Fic. 1. Effect of sample selection bias on predictive accuracy for an artificial species in Ontario, Canada. (a) Probability of
presence for the species, with darker shades indicating higher probabilities. (b) Correlation between model output and true
probability of presence, measured across the whole region (y-axis), for various degrees of sample selection bias. Bias was introduced
by sampling uniformly in the southern 25% of the region and uniformly b times lower in the northern 50% of the region, with a
linear transition in between; the x-axis shows values of 5. Models were made using boosted regression trees with no interactions,

fitted using fivefold cross-validation.

regression tree models (see Modeling methods) were then
created: one with the set of presences and absences, and
a second with the 200 presences together with 10000
background samples chosen uniformly at random from
the region, and weighted so that presence and back-
ground have equal weight, as in Elith et al. (2006). We
used 10000 samples as this is large enough to accurately
represent the range of environmental conditions in the
study region; more background samples do not improve
model performance (Phillips and Dudik 2008).

The presence—absence models are highly correlated
with true probability of presence, even under severe
sample selection bias (b = 100). This happens because
BRT is a “local” learner (Zadrozny 2004), so the model
generated with biased training data converges asymp-

totically to the unbiased model (for large sample sizes)
as long as two conditions hold: sampling probability is
non-zero in the whole region, and sampling is condi-
tionally independent of species presence given the
environmental conditions. In contrast, for the pres-
ence-only models, correlation with true probability of
presence quickly drops as sample selection bias increases
(Fig. 1). For b = 50, the presence—absence model is
visibly similar to true probability of presence, while the
presence-only model appears only weakly related (Fig.
2). We note that the strong sample selection bias
depicted in Fig. 2 may actually be very moderate
compared to true occurrence data, where sampling
intensity can vary by a factor of tens of thousands
(Schulman et al. 2007: Fig. 4).

FiG. 2. Predicted probability of presence modeled from (a) biased presence-only data and (b) biased presence—absence data.
Both models were generated using boosted single-node regression trees, fitted with fivefold cross-validation. Black and white dots
show sampled locations used for model building. Sampling intensity in the southern 25% of the region was 50 times higher than in
the northern 50% of the region, with a linear transition in between. The presence-only model is strongly influenced by the bias,
whereas the presence-absence model is not: compare with the true probability of presence in Fig. 1.
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MODELS AND ANALYSIS
Preliminaries

In the analyses that follow, we consider an area with a
total of N sites. For each site ¢, there are v known
covariates (measured environmental variables) denoted
by x=(xy, ..., x,). An observation (¢, y) records whether
at a particular time the species is present (y = 1) or
absent (y =0) at the site z. This treatment allows for the
possibility that a species is present at a given site during
one observation and absent in the next, as may happen
for vagile species. The probability that the species is
present at a site 7, denoted P(y =1]¢), may therefore lie
somewhere between 0 and 1. Formally, observations are
taken from a distribution over a sample space consisting
of pairs (¢, y), where ¢ is a site and y is the response
variable. We will use P to denote probability under
spatially unbiased sampling from this sample space, i.e.,
each site has equal probability (1/N) of being sampled.
For example, the prevalence of the species, denoted
P(y = 1), is the fraction of sites at which the species is
present (for perfectly detectable non-vagile species), or
the probability of observing the species at a randomly
chosen site (for perfectly detectable vagile species).

A collection of observations is unbiased in environ-
mental space if it samples each combination of
environmental covariates proportionately to the amount
of the study area that has those covariate values.
Therefore, observations that are spatially unbiased are
also environmentally unbiased, though the converse is
not always true.

Modeling methods

The modeling methods considered here use two
distinct approaches for presence-only modeling. The
first approach is derived from regression techniques,
which are normally applied to presence—absence mod-
eling. These methods estimate probability of presence
from training data consisting of presences and absences
for a given species. They have been adapted for use with
presence-only data by treating the background data as if
it were absence data. They are all logistic methods,
modeling probability of presence as P(y = 1|x) =
explf(x)]/(1 + exp[f(x)]) for some function f of the
environmental variables, and they differ mainly in the
form of the function f. We used the following presence—
absence methods:

1) Generalized additive models (GAM) use nonpara-
metric, data-defined smoothers to fit nonlinear functions
(Hastie and Tibshirani 1990, Yee and Mitchell 1991).

2) Multivariate adaptive regression splines (MARS)
provide an alternative regression-based technique for
fitting nonlinear responses. MARS uses piecewise linear
fits rather than smooth functions and a fitting procedure
that makes it much faster to implement than GAM
(Friedman 1991, Elith and Leathwick 2007).

3) Boosted regression trees (BRT), also known as
stochastic gradient boosting (Friedman 2001, Leathwick
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et al. 2006), use a form of forward stage-wise regression
to construct a sum of regression trees. Each stage
consists of a gradient-descent step, in which a regression
tree is fitted to the derivatives of the loss function. Cross-
validation is used to avoid overfitting by halting model
growth based on predictive accuracy on withheld
portions of the data.

The second approach is probability density estimation,
where the presence data are assumed to be drawn from
some probability distribution over the study region. The
task is to estimate that distribution. This approach is
represented here by a single method, called Maxent
(Phillips et al. 2006, Dudik et al. 2007), described in
Maxent models with unbiased samples. Whenever we
present examples, we use either BRT or Maxent, since
these are the two methods out of those considered here
that performed best in the comparison of methods by
Elith et al. (2006). The settings used for BRT have been
improved over those used previously and we use a recent
version of Maxent (version 3.0) with default settings. For
both methods, therefore, the statistical performance we
report for random background is improved over that
presented by Elith et al. (2006).

Presence—absence models with random background

Before we analyze the use of presence—absence models
(such as BRT, GAM, and MARS) on presence—
background data under bias, we must first understand
the use of these methods on unbiased data. Using
unbiased presence data and random background gives a
sample model known in habitat-selection studies as a use—
availability sampling design (Keating and Cherry 2004)
and defined as follows. The full set of training data
consists of a set of samples, each obtained either by
randomly choosing a sample with y =1 to get a presence
sample (a fraction p of the whole set), or randomly
choosing a sample from the full set of N sites to get a
background sample (the remaining fraction, 1 — p). This
sampling model suffers from two complications. First, the
set of background samples typically includes both sites
with y =1 and sites with y =0, a problem referred to as
contaminated controls (Lancaster and Imbens 1996).
Second, the sampling intensity (probability that a given
data point will be chosen as a sample) may differ between
presence and background samples, which makes it a case-
control sampling design. The relative sampling intensity is
determined by the parameter p. Our goal in this section is
to understand the effect of these two complications, and
in particular, to determine exactly what quantity is being
estimated when a model is fitted to use—availability data.

For mathematical simplicity in our analyses, we use
two steps to model the process by which each training
sample is derived. The first step is a random decision
about whether the current sample will be presence
(probability p) or background (probability 1 — p). The
second step is a random draw either from the population
of presences or from the full set of available sites,
according to the outcome of the first step.
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We will use Pya to denote probability under this
sampling model. Py is formally defined as a joint
probability model over triples (¢, y, s) where s is an auxiliary
variable representing sampling stratum: s =1 for presence
samples and s = 0 for background samples. Therefore,
Pua(s=1)=p and Pya(s=0)=1— p, and by definition,

PUA(X|X = 1) = P(X|y = 1)
and
Pua(x]s = 0) = P(x). (1)

When a presence—absence model is applied to use—
availability data, the response variable being modeled is
s, not y, so we obtain an estimate of Pya(s=1]x), i.e., the
probability that a site will be chosen as a presence sample
rather than a background sample, conditioned on the
environmental variables. It is crucial to note that this is not
the same as P(y = 1|x), the probability of occurrence
conditioned on the environmental variables. Indeed, if we
define

P(y=1)

then we obtain the following relationship, similar to Eq. 11
of Keating and Cherry (2004), but without their large-
sample assumption:

1
P =1x)=—— | 2
vals =10 = TG = 1l @
This relationship is proved as follows:

PUA(S = I‘X)

= Pua(X|s = 1)Pua(s = 1)/Pua(x) [Bayes’ rule]

[PUA(X|S = I)PUA(S = 1)]
[PUA(X‘S = I)PUA(S = 1) +PUA(X|S = O)PUA(S = 0)]
[since s =0 or 1]

_ pPua(x]s = 1)
pPua(x[s = 1) + (1 — p)Pua(x]s = 0)
[definition of p]

=1/(1+a)

where a satisfies

(1-p) Pua(x|s=0)
D Pua(x|s=1)

[dividing through by pPuya(x|s = 1)]

a =

_a ;p) 'P(xTy(X:) . by Eq. 1]
= (=p) PO=1) [Bayes’ rule]
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This has strong implications for interpretation of any
model fitted to presence—background data using a
presence—absence method, as the quantity being ap-
proximated is not equal to, or even proportional to,
probability of presence. Despite these problems, this
sampling model and the resulting estimate of Pya(s =
1|x) have been extensively used in SDM (Ferrier et al.
2002, Zaniewski et al. 2002, Elith et al. 2006). Using an
estimate of Pya(s = 1|x) for species modeling is
reasonable as long as care is taken in the interpretation
of model values. While Pya(s=1]x) is not proportional
to probability of presence, it is a monotone increasing
function of probability of presence, i.e., it correctly
ranks probability of presence. In particular, this means
that any binary prediction made by thresholding P(y =
1]x) (i.e., predicting presence only for sites with P(y =
1|x) above some threshold) can be obtained by thresh-
olding Pya(s = 1]|x), and vice versa, although the
required thresholds will differ. When measuring model
performance, measures that depend only on ranking of
test data (such as the area under the receiver operating
characteristic curve) might therefore be insensitive to the
distinction between modeling Pya(s = 1]x) or P(y =
1|x), although the two approaches will likely yield
different models.

In habitat-selection studies using resource selection
functions, the emphasis is on deriving P(y = 1|x) from
Pua(s = 1|x) by inverting Eq. 2. If P(y = 1|x) is
assumed to be an exponential function, then Pya(s =
1]x) is logistic. A logistic model fitted to Pya(s = 1]x)
can thus be used to infer parameters of an exponential
model for P(y = 1|x) (Boyce et al. 2002, Manly et al.
2002). However, this approach is controversial in the
habitat-selection literature (Keating and Cherry 2004).
An alternative way of estimating P(y = 1|x) from
presence-only data involves using the expectation—
maximization (EM) algorithm to iteratively infer prob-
ability of occurrence for the background sites (estima-
tion) and feed the results back into maximum likelihood
parameter estimation (maximization; Ward et al., in
press). Whilst this approach has strong theoretical
justification, it requires knowledge of P(y = 1), and the
implementation is not yet widely available, so we do not
use it here. In summary, modeling Pya(s = 1|x) is the
best currently available way to apply presence—absence
models to presence-only data, and is therefore the
approach we take here.

Presence—absence models with biased background

We have argued that sample selection bias is
widespread in species occurrence data. We would
therefore like to be able to correct for this bias. As in
the unbiased case we cannot estimate P(y =1 | x) without
further knowledge of the prevalence P(y = 1). Instead,
we prove under a mild assumption that if the
background data have the same bias as the occurrence
data, the resulting model is monotonically related to P(y
= 1|x), as in the unbiased case. We therefore assume
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that both background and presence samples are selected
nonuniformly using the same sample selection distribu-
tion. A practical example could be that presence records
are collected by driving along roads while stopping at
random sites and walking up to 100 m from the road to
record sightings of the species. This sample selection is
biased toward roadsides, which in turn are likely to be
biased away from gullies or particular rough terrain. To
generate background data with the same bias, we
randomly select sites within a distance of 100 m from
any road (note that these might coincide with presence
points). For this example, the sample selection distribu-
tion is uniform over sites whose distance from the road
is at most 100 m and zero elsewhere.

We introduce an additional auxiliary variable b to
represent potentially biased selection of samples: sam-
ples are now drawn from a distribution over triples (z, y,
b), and only samples with » = 1 are used for model
training. Analogously to the unbiased case, a presence—
absence model fitted to a biased use—availability sample
gives an estimate of Pya(s=1]|x, b=1). The derivation
of Eq. 2 is still valid if we condition all probabilities on »
=1, so Eq. 2 generalizes to

1
1+ /P(y=1[x,b=1)

PUA(SZ 1|X,b= l) (3)

where

which is a constant independent of x.

In many cases we can make the assumption that P(y =
1|x, b=1)= P(y = 1|x), i.e., that sampling effort and
presence of the species are conditionally independent
given x. Under this assumption, the right-hand side of
Eq. 3 simplifies to 1/[l + r"P(y = 1|x)]. Thus, the
function we are fitting, Pua(s = 1|x, b = 1), is
monotonically related to what we are truly interested
in, P(y = 1|x). A simple case for which the conditional
independence assumption is true is when all variables
that affect presence of the species are included among
the covariates. Similarly, we obtain conditional inde-
pendence if all variables that affect sample selection are
included among the covariates (Zadrozny 2004). In
general, though, conditional independence may not
hold. For example, a pioneer plant species that is
correlated with disturbance may be more common than
climatic conditions would suggest near roads and towns,
exactly where sample selection bias is higher. Unless
disturbance level is used as a predictor variable, the
conditional independence assumption would be incor-
rect.

Maxent models with unbiased samples

Maxent is a general technique for estimating a
probability distribution from incomplete information
(Jaynes 1957). It has been applied to species distribution
modeling by assuming that the presence data have been
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drawn from some probability distribution m over the
study region, and using the presence records for a
species to determine a set of constraints that are likely to
be satisfied by = (Phillips et al. 2006, Dudik et al. 2007).
Maxent then produces as output the distribution of
maximum entropy among all distributions satisfying
those constraints; note that the distribution is over sites
in the study region, not over environmental conditions.
The constraints require that the expected value of each
environmental variable (or some functions thereof,
referred to as features) under this estimated distribution
closely match its empirical average. Maximizing entropy
is desirable, as doing otherwise would be equivalent to
imposing additional (unfounded) constraints on the
output distribution. Maximizing entropy also has the
useful property that it results in a distribution with a
simple mathematical description: under the Maxent
distribution, the probability of a site is an exponential
function of the features.

The Maxent distribution can be related to conditional
probability of presence as follows. The probability n(z) is
the probability of the site ¢ conditioned on the species
being present, i.e., the conditional probability P(¢|y =
1). We define

Pxly=1)

fix) = NP(x)

i.e., f(x) is the average of n(z) over sites with x(¢) = x.
This gives

Phy=1)
WP(XD’ =1)

=Nf(x)P(y=1)

The function f(x) is therefore proportional to prob-
ability of presence, and the exponential function
describing the Maxent distribution is an estimate of
f(x). Note, however, that with presence-only data we
typically do not know the constant of proportionality
P(y=1),1.e., the prevalence of the species, since P(y=1)
is not estimable from presence-only data alone (Ward et
al., in press).

P(y=1|x) = [Bayes’ rule]

[definition of f].

Maxent models for biased samples

Maxent has been available now for five years as a
stand-alone program that enables the spatial modeling
of presence-only data. Because such data are often
biased, the authors have worked on methods for dealing
with sample bias, one of which, called FactorBiasOut,
we briefly describe here (for technical details, see Dudik
et al. [2005]). To describe the impact of sample selection
bias on density estimation, we introduce the notation
pip> for the site-wise product of two probability
distributions normalized over the study region, i.e.,
P1p2A0) =pi(Opa(D)/Zy p1(1)pat'). As opposed to the case
of unbiased estimation, we now assume that the
presence sites for a species are biased by a sample
selection distribution o, in other words, the presence
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sites are recorded by observers who pick locations
randomly according to o, rather than uniformly at
random (in the notation of Presence—absence models
with biased background, o(t) = P(t| b= 1)). The presence
sites are therefore samples from the distribution on
rather than from the true species distribution .

The FactorBiasOut method estimates on, then factors
out the bias o. It does this by outputting the distribution
that minimizes the relative entropy RE(o¢ || o) among
all choices of the probability distribution ¢, subject to
the constraints mentioned in Maxent models with
unbiased samples, with the constraints now applying to
oq, since that is the distribution from which we have
samples. Relative entropy, also known as Kullback-
Liebler (KL) divergence, measures how different two
probability distributions are. It makes sense to seek to
minimize the difference from o, since a null model
would have the species distribution being uniform, so
the presence data would simply be drawn from .

In the special case that there is no sample selection
bias, i.e., o is the uniform distribution, FactorBiasOut is
just the standard Maxent, since minimizing entropy
relative to the uniform distribution is the same as
maximizing entropy. Under reasonable conditions, the
output of FactorBiasOut converges, with increasing
sample size, to the distribution ¢, that minimizes
RE(om || og) among the class of Gibbs (i.e., exponential)
distributions. This generalizes the result for the unbiased
case, that the output of Maxent converges to the Gibbs
distribution that minimizes RE(n|¢) (Dudik et al.
2007). In other words, the output of FactorBiasOut
converges to a distribution that is close, in a strict sense
and as in the unbiased case, to the true distribution m, so
bias has been removed from the prediction.

As described so far, the FactorBiasOut method
requires knowledge of the sampling distribution o©.
However, it is enough to have a set S of independent
samples from c. We can use S as background data for
fitting a Maxent distribution and then apply the
resulting model to obtain a distribution over the entire
study area. For large |S|, the resulting distribution
converges to the same distribution ¢,. To summarize, we
have shown that, as with the regression models, using
background data with the same sample selection bias as
the occurrence data yields a Maxent model with
theoretical properties that are analogous to the unbiased
case.

EXPERIMENTAL METHODS
Data sources

We used data for 226 species from six regions of the
world: the Australian Wet Tropics (AWT), Ontario,
Canada (CAN), northeast New South Wales, Australia
(NSW), New Zealand (NZ), South America (SA), and
Switzerland (SWI). The species represent a range of
geographic distributions, habitat specialization, and
biological groups/life forms. Similarly, there is a wide
range in the amount of training data per species (2-5822
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occurrence records, median 57). In the independent
evaluation data, the presence or absence of each species
is described at between 102 and 19 120 sites. There are
11-13 environmental data layers per region, and the
layers are typical of what is used for SDM. Environ-
mental data varied in functional relevance to the species
and spatial resolution. Data for three regions (NSW,
NZ, SWI) had more direct links to species’ ecology at
the local scale than the climate-dominated variables
from AWT, CAN, and SA (Elith et al. 2006, Guisan et
al. 2007). Layers from AWT, NSW, NZ, and SWI had
grid cell sizes of around 100 m and those from CAN and
SA were 1 km. More details on the species and
environmental data layers can be found in Elith et al.
(2006).

Background treatments

Two sets of background data were used. First, we
used 10000 sites selected uniformly at random from
each region (as in Elith et al. [2006], and referred to as
random background). Second, and uniquely for this
study, for each of the 226 species we generated a set of
background data consisting of the presence localities for
all species in the same target group (referred to as target-
group background). The target groups were birds or
herpetofauna for AWT; birds for CAN, plants, birds,
mammals or reptiles for NSW; and plants for NZ, SA,
and SWI (Table 1).

Evaluation statistics

The modeled distributions were evaluated for predic-
tive performance using the independent presence—
absence sites described above. We used the area under
the receiver operating-characteristic curve (AUC) to
assess the agreement between the presence—absence sites
and the model predictions (Fielding and Bell 1997). The
AUC is the probability that the model correctly ranks a
random presence site vs. a random absence site, i.e., the
probability that it scores the presence site higher than
the absence site. It is thus dependent only on the ranking
of test data by the model. It provides an indication of
the usefulness of a model for prioritizing areas in terms
of their relative importance as habitat for a particular
species. AUC ranges from 0 to 1, where a score of 1
indicates perfect discrimination, a score of 0.5 implies
random predictive discrimination, and values less than
0.5 indicate performance worse than random.

When we are working with presence-only data, we can
define the AUC of a model on a set of presence sites
relative to random background as the probability that
the model scores a random presence site higher than a
random site from the study area. The resulting AUC
measures the model’s ability to distinguish test sites from
random, but the value of the AUC is harder to interpret
than in the presence—absence case. While a score of 0.5
still indicates discrimination that is no better than
random, the maximum value attainable is typically less
than 1 (Wiley et al. 2003, Phillips et al. 2006).
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TaBLE 1. Target groups and measures of training and testing bias.

Target group Region No. species AUCrg AUCya1
AWT-bird Australian wet tropics 20 0.8337 0.7887
AWT-plant Australian wet tropics 20 0.841 0.5649
CAN Ontario, Canada 20 0.9473 0.9216
NSW-bird New South Wales 10 0.8789 0.877
NSW-mammal New South Wales 7 0.9341 0.8402
NSW-plant New South Wales 29 0.7054 0.6303
NSW-reptile New South Wales 8 0.9219 0.8539
NZ New Zealand 52 0.7443 0.7619
SA South America 30 0.7502 0.7667
SWI Switzerland 30 0.8564 0.8256

Notes: For each target group, AUCrg is the area under the receiver operating characteristic curve (AUC) of training presence
sites vs. random background for a Maxent model trained on all presence sites for the target group. AUC,,, is the AUC of the same
model evaluated using the set of test sites for that target group vs. random background. A high value of AUCrg indicates that the
training sites are highly biased and that sample-selection bias can be predicted well as a function of environmental conditions. A
high value of AUC,,, indicates that the test sites and training sites have similar strong biases.

The correlation, COR, between a prediction and 0-1
observations in the presence—absence test data set is
known as the point biserial correlation, and can be
calculated as a Pearson correlation coefficient (Zheng
and Agresti 2000). It differs from AUC in that, rather
than depending only on rank, it measures the degree to
which prediction varies linearly with the observation.
Because it depends on the prediction values rather than
simply on their order, it is likely to be sensitive to the
effect of varying relative sampling intensity in the
training data (Eq. 2).

To assess whether there is a monotone relationship
between two variables, we use Spearman’s rank corre-
lation coefficient (p), which is a nonparametric measure
of correlation. We use p rather than Pearson’s product-
moment correlation (r) to avoid two assumptions
required by the latter: that the relationship between
the two variables is linear, and that the data are drawn
from normal distributions.

Measuring bias

In order to measure the effect of bias on predictions, it
is useful to be able to measure the amount of bias in a set
of presence-only samples. Specifically, we would like to
measure the amount of bias for each target group. We
do this by estimating how well we can discriminate
target-group sites from the background, by using
Maxent to make a model of target-group sites and
using the AUC of the target-group sites vs. background
as a measure of discrimination. We refer to this value as
AUCrg. If AUCqg is high, it means that the environ-
mental variables can be used to distinguish the spatial
distribution of target-group presences from random
background, and therefore target-group presences sam-
ple environmental space in very different proportions
from the proportions present in the study area, i.e., the
target-group presences are biased both in environmental
and geographic space. We therefore use AUCyg as an
estimate of sample selection bias for the target group,
but with the following two reservations. First, spatial
bias will only be picked up by AUCrg if it results in bias

in environmental space, i.e., if some environmental
conditions are more strongly represented in the target-
group presence data than we would expect based on the
proportion of sites with those conditions. Any spatial
bias that is independent of the environmental variables
will not be picked up by AUCtg. However, such spatial
bias is less problematic than the bias measured by
AUC+g, since a species distribution model cannot use it
to distinguish presences from background. Second, the
target group may truly occupy only part of the
environmental space represented in the study area, in
which case AUCtg may be higher than 0.5 even if there
is no sample selection bias, i.e., even if the presence
records were gathered with uniform survey effort across
the study area. For these reasons, AUCtg should be
interpreted carefully only as an estimate of bias. Note
also that the use of Maxent models here is not essential;
any of the methods used in this paper would have
sufficed.

Once we have an estimate of bias in the training data,
it is possible to measure how well this bias estimate
predicts sampling effort in the evaluation data. A simple
systematic design for evaluation data would uniformly
sample the study region, and therefore have no bias.
However, bias may arise, for example if the evaluation
data derive from a survey of only part of the region,
such as all uncleared, forested areas. If the sample
selection and evaluation biases are similar, we might
expect it would help us in constructing better-perform-
ing models. We measure the similarity of the biases using
the value AUC,,,, defined as the AUC of the Maxent
model of training group sites, with the AUC evaluated
using test sites (both presences and absences) vs. random
background. A high value of AUC,,, indicates that
environmental conditions at the test sites are very similar
to those at the training sites, and different from most of
the study region. The amount of bias varied consider-
ably between regions and target groups (Table 1), with
the strongest bias and the highest value of AUC.,
occurring in Canada (Fig. 3). AWT-plant training data
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Fic. 3. Bias in the Canada training data used in Elith et al.
(2006). Training sites for all species combined are shown as
black dots and exhibit a strong bias toward the south of the
region. Test sites exhibit a very similar pattern of bias (not
shown). The region is shaded to indicate strength of prediction
of a maximum entropy (Maxent) model trained on these
training sites, with dark shades indicating stronger prediction.
Note that the bias is stronger than the bias shown for the
artificial species in Fig. 2.

were least effective at predicting test sites (AUCeya =
0.5649).

REsuULTS

The average AUC and COR values improved for all
methods when using target-group background (Table 2).
The improvement in each statistic was highly significant
for all methods (P < 0.001, two-tailed Wilcoxon signed
rank test, paired by species). According to an analysis of
variance, the three factors affecting AUC and COR
(species, background, and algorithm) are all highly
significant (P < 1 X 107'%, F test), with the strongest
effect being for species. The effect of background is
slightly greater than that of algorithm for both AUC
and COR (Table 3). With target-group background, the
best methods achieved average AUC values above 0.7 in
all regions (Fig. 4). The improvement in AUC scores
depended strongly on the estimated amount of bias in
training data for the target group (Fig. 5) and with the
degree to which the distribution of training data can be
used to predict test sites (Fig. 6). For all four methods,
there was a strong monotone dependence of improve-
ment in AUC on both estimates of bias as measured by
Spearman’s rank correlation coefficient (Table 4), with a
high level of statistical significance in all cases.

Using target-group background has a visually marked
effect on some predictions. The greatest improvement in
AUC was for a Canadian species, the Golden-crowned
Kinglet, a generalist species that is widely distributed
across Ontario and that favors old conifer stands. For
this species, the AUC rose from 0.3379 to 0.8412 for
Maxent and from 0.2920 to 0.8648 for BRT; the
predictions with and without target-group background
are very different (Fig. 7). The model with target-group

Ecological Applications
Vol. 19, No. 1

background is much more widespread, excluding mostly
the southernmost tip of Ontario, which is the only part
of the province that is predominantly deciduous. The
map produced with target-group background is much
closer visually to maps of breeding evidence and relative
abundance for this species (Cadman et al. 2008),
differing mainly by strongly predicting the far northeast
of the province, where there is little current evidence of
breeding.

Discussion

For all the algorithms we consider here, using target-
group background gave a substantial improvement in
model performance, measured by both AUC and COR
(Table 2). To evaluate the extent of the improvement, we
would like to know how it compares with the differences
between modeling methods. Elith et al. (2006) found
that presence-only modeling methods fell into three
distinct groups. The lower group consisted largely of
methods that do not use background data, such as
BIOCLIM (Busby 1991). The middle group contained
traditional regression-based methods such as GAM and
MARS among others, while the top group included
Maxent and BRT. The improvement due to target-
group background (Table 2) is similar to the difference
between groups in Elith et al. (2006). In fact, an analysis
of variance shows the effect of background type as being
larger than the effect of modeling method (Table 3). We
conclude that appropriate choice of background data
affects model performance for the four methods
presented here as much as the choice of modeling
method. Since all tested methods benefit from appro-
priate background, we recommend both well-informed
selection of method and careful choice of background
samples.

The improvement varied considerably between target
groups, with the largest gains seen for target groups with
the most biased training data (Fig. 5). This addresses an
anomaly from Elith et al. (2006), where BIOCLIM was
one of the worst methods in all regions except Canada,
where it was one of the best. With target-group

TaBLE 2. Area under the receiver operating characteristic
curve (AUC) and correlation between predictions and 0-1
test data (COR) for the methods considered; values shown
are averages over all 226 species.

Random background  Target-group background

Model AUC COR AUC COR
BRT 0.7275 0.2130 0.7544 0.2435
Maxent  0.7276 0.2100 0.7569 0.2446
MARS 0.6964 0.1787 0.7260 0.2145
GAM 0.6993 0.1765 0.7368 0.2196

Notes: For random-background models, background data
were chosen uniformly at random from the study area. For
target-group background, background data are the sites with
presence records for any species from the same target group.
Models are boosted regression trees (BRT), maximum entropy
(Maxent), multivariate adaptive regression splines (MARS),
and generalized additive models (GAM).
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TasLE 3. Coefficients for an analysis of variance for AUC and COR evaluated on independent presence—absence test data for
models of 226 species.

Algorithm Background Effect SE
Measure BRT GAM MARS Maxent Random  Target group Species  Algorithm Background
AUC 0.0128 —0.0101 —0.0169 0.0141 —0.0154 0.0154 0.0228 0.0030 0.0021
COR 0.0157  —0.0146  —0.0160 0.0149 —0.0180 0.0180 0.0241 0.0032 0.0023

Note: Factors were species (per-species effects not shown), algorithm used to make the model (BRT, GAM, MARS, or Maxent),
and background data used for the model (random or target group).

background, all the methods considered in this paper
perform better than BIOCLIM in all regions. This
confirms that the previous anomalous results in Canada
were due to a strong bias in the occurrence data
impacting the performance of any method that used
background data. With target-group background, per-
formance of the methods that use background data is
now consistent across regions (Fig. 4; compare with Fig.
5 of Elith et al. [2006]).

The effect of target-group background varies species
by species, and one might expect that it would be
systematically affected by characteristics of a species
distribution, in particular the species’ prevalence in the
study area. We investigated this question, measuring the
prevalence of a species as the fraction of test sites in
which the species is present. However, we found no clear
patterns. For BRT, the improvement in AUC is slightly
larger for generalist species (those with high prevalence),

while the improvement in COR is slightly larger for
specialists (with low prevalence). In contrast, for
Maxent, the improvement in AUC was unaffected by
prevalence, while COR values improved more for
generalists. Details are omitted, since the results were
inconclusive.

Note that target-group background substantially
improved predictions in Switzerland (Fig. 5), and the
improvement is statistically significant for all methods
(P < 0.001, two-tailed Wilcoxon signed rank test, paired
by species). This is initially surprising, since the
presence-only training data set is extensive and of high
quality. However, the sites only sample a subset of the
country (forested areas) and therefore they do not
represent areas that could support forest but are not
currently forested. This means that use of random
pseudo-absences misled the models to some extent. The
only region where target-group background reduced
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average performance was South America, for BRT and
Maxent, but the decrease is small and not statistically
significant (P > 0.65 for BRT, P > 0.84 for Maxent,
two-tailed Wilcoxon signed rank test, paired by species).

When using random background, all the modeling
methods we consider will make predictions that are

biased toward areas that have been more intensively
sampled. In comparison, target-group background
removes some of this bias, spreading predictions into
unsampled areas with similar environmental conditions
to sampled areas where the species is present. The test
sites for most of our target groups exhibit similar spatial
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F1G. 6. Scatter plot of improvement in AUC on independent presence—absence test data when using target-group background

instead of random background. The x-axis is a measure of how well target-group background predicts the distribution of test sites,
namely, the AUC of a Maxent model trained on all presence sites for the target group and tested using all test sites for that group
versus random background sites. Models were created using four methods (GAM, MARS, BRT, Maxent), and minimum, mean,
and maximum improvement in AUC across methods are shown for each target group.
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distributions to the training sites, and therefore target-
group background will cause prediction strength (i.e.,
model output values) to decrease at test sites relative to
less-sampled areas, compared with random background.
Thus, it is crucial that our test data are presence—absence
data, so that we are measuring discrimination at test
sites, rather than comparing them to random back-
ground. If the test data were presence-only, environ-
mental bias in conditions at test sites would strongly
influence test results. For example, the Maxent models
trained with target-group background have much lower
AUC (0.7168) than models trained with random
background (0.8201) if the AUC in both cases is
measured using presences at test sites relative to random
background, rather than relative to absences at test sites.
The use of presence-only evaluation data may explain
why Liitolf et al. (2006) found that an approach similar
to target-group background decreased GLM model
performance.

One concern with using target-group background is
that we are focusing only on parts of geographic (and
thus environmental) space that contain presence sam-
ples. Predictions to unsampled areas could therefore be
less reliable. This effect is not evident in our statistical
results: the average AUC for the groups NSW-plant and
AWT-plant, whose test sites are not well predicted by
the distribution of training sites, barely changes when
using target-group background (Fig. 6). Nevertheless,
predictions into unsampled areas, especially those with
conditions outside the range observed in sampled areas,
should be treated with strong caution. We also note that
a critical assumption of the target-group approach is
that the data for all species in the group were collected
using the same methods, so that the target-group
occurrences represent an estimate of sampling effort
that is applicable for each member of the group. The set
of species in the target group should be chosen with this
in mind.
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TaBLE4. Spearman rank correlations of improvement in AUC
when using target-group background instead of random
background.

Correlation with Correlation with

training bias test bias
Model  Spearman’s p P Spearman’s p P
Maxent 0.87 0.002 0.81 0.008
GAM 0.90 <0.001 0.93 <0.001
BRT 0.75 0.017 0.87 0.002
MARS 0.84 0.004 0.95 <0.001

Notes: The improvement is correlated against the degree of
bias in the training data for each target group (“training bias”)
and a measure of how well the training data for each target
group predict the test sites (“test bias”). In each case, we give
Spearman’s rank correlation coefficient (p) and the two-sided P
value for the null hypotheses that p = 0.

The evaluation data we have used here measure model
performance according to the ability to predict the
realized distribution of a species, as represented by
presence—absence data at test sites. We note that many
applications of species distribution models depend on
predicting potential distributions, rather than realized
distributions (Peterson et al. 1999). A species may have
failed to disperse due to geographic barriers, or be
excluded from an area due to competition. In the current
evaluation, prediction into such areas would be penal-
ized; however we note that it is usually not possible, with
either occurrence or presence—absence data, to test
ability to predict potential distribution. It is possible
that some of the species considered here are absent from
significant portions of their potential distribution, so our
conclusions refer to the ability of models to predict
realized distributions. We note also that the present
study concerns the ability to derive accurate models in a
single geographic area under fixed climatic conditions.
Therefore, our conclusions do not necessarily apply to
uses of species distribution models involving extrapola-

FiG. 7.

Maxent predictions in Ontario, Canada for the Golden-crowned Kinglet, a widely distributed generalist species, created
(a) without and (b) with use of target-group background. Dark shades indicate stronger prediction, while white or black dots are
presence sites used in training. Without target-group background, the prediction is similar to the model of sampling effort (Fig. 3).
Target-group background results in stronger prediction in less-sampled areas, reducing dependency of sampling effort.
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tion, i.e., producing a model using one set of environ-
mental variables and then applying it to another set with
the same names, but describing conditions for a different
time or geographic area. Examples of such extrapola-
tions involve future climate conditions (Thomas et al.
2004) or areas at risk for species invasions (Thuiller et al.
2005).

Alternate explanations

We have assumed so far that the improvement in
performance due to target-group background is due to
properly accounting for sample selection bias in the
training data. Here we consider other explanations for
the performance improvement.

Factoring in the test site bias—When modeling a
species distribution, we may be more interested in model
performance under some conditions than others, in
particular, under conditions that are broadly suitable for
the species or target group. For example, if we want a
model to predict the specific niche of a montane species
within an alpine area, in a broad region that includes a
lot of lowland, we should make sure that all different
montane conditions are represented in the evaluation
data. However, if we were to include a number of
lowland sites in proportion to lowland area, our
evaluation statistics would not tell us much about the
quality of prediction in the alpine area, since a high
AUC value can be obtained by simply ranking montane
areas higher than lowlands. In general, evaluation data
should be chosen in a way that is relevant to the required
output and use of the models, and so may focus on
restricted areas.

In the case that evaluation data are biased toward
areas representing only a subset of environmental
conditions, we expect better performance if training
data have the same bias, so that model development is
focused on the environmental conditions that will be
examined during model evaluation. This can be done
formally, for example by transductive learning where
unlabeled test data are used to reweight training data
(Huang et al. 2007). It is possible, therefore, that the
reason that target-group background improves model
performance is that it focuses training on the most
important areas of the region, which are also the areas
with the most test data.

For presence-only modeling, training sites for a target
group will be drawn from broadly suitable areas for the
group. The distributions of target-group sites and test
sites may therefore be similar, in which case using target-
group background brings the spatial distribution of the
full complement of training data (presences plus
background) closer to that of the test data. To see
formally why this is advantageous, consider the case of
Maxent. Assume the true species distribution is © and
the sampling distribution is . When using FactorBias-
Out, the output converges to the distribution ¢*, which
minimizes RE(omn|| 6g) among Gibbs distributions ¢
(see Maxent models for biased samples). We can expect
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that ¢* is close to ¢*, the distribution that minimizes
RE(n|| ¢), but it is not always true that ¢* = ¢* (Dudik
et al. 2005). To obtain the best test results, we would like
the Maxent distribution to approximate © with respect
to the distribution of test data, i.e., we should find ¢
that minimizes RE(G T || Oesq) as a function of ¢. If &
= Oest» this is exactly what FactorBiasOut does, and
what target-group background approximates. Other-
wise, we must rely on the assumption that ¢ and ¢,
are similar.

For the presence—absence methods, the reasoning is
similar. If test sites are chosen according to the
distribution o, then we are evaluating how well our
predictions model probability of occurrence under Gy,
i.e., Ps. (v = 1|x). From Presence—absence models with
biased background, we know that presence—absence
methods applied to presence-only data and background
data with the same bias are approximating a monotonic
function of Ps(y = 1] x). Therefore, the best we can hope
for is 6 = O otherwise we must rely on the
assumption that Ps(y = 1|x) and Ps (y = 1|x) are
similar.

Testing on similar conditions to those encountered
during training has the potential to increase estimates of
model performance, in addition to the improvement
given by properly accounting for sample selection bias in
the training data. Indeed, this seems to be the case for
the regression-based methods (BRT, GAM, and
MARS): note the higher correlation of performance
with test bias than with training bias in Table 4. In
contrast, for Maxent the correlation decreases some-
what, and we conclude that for this data set, properly
dealing with training bias is a sufficient explanation of
the performance improvement for Maxent given by
target-group background.

Target-group data suggest true absences—In some
situations, target-group sites without records for a
particular species can be interpreted as true absences.
For example, in presence-only data collections, includ-
ing some of those used here, many sites are research
stations or other well-known sites that have been visited
multiple times and have multiple recorded species
constituting an inventory of species present there.
Therefore, species that are not recorded at such sites
are likely to be absent. If most target-group sites are well
inventoried, then absence records can be derived by
selecting sites that have a record from the target group
but not for the species being modeled.

On the other hand, a lot of herbarium and museum
records are there because a collector has noticed a
species in an odd place (e.g., it might be considered a
range expansion), because the collector has a primary
interest in that species, or because the species is rare and
all occurrences are recorded. In such cases, the collector
will not be recording all species from the target group.

In all experiments, we used all target-group records as
background. We call this approach overlapping back-
ground, because the background data include presences
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of the modeled species (as it belongs to the target group).
However, if target-group sites where the modeled species
was not observed are true absences, then we expect
better results if we treat them as such. To test this
hypothesis, we removed the sites where the modeled
species was recorded from the target-group background,
resulting in what we call nonoverlapping background.
This removes the problem of contaminated controls (see
Presence—absence models with random background) and
results in a case-control sampling model. If the selection
of survey sites is biased according to a distribution o,
then it results in a case-control sampling model for P(y
= 1] x), which may be assumed to be equal to P(y=1]x)
(but see Presence—absence models with biased back-
ground). A presence—absence model fitted using non-
overlapping background data can then be used to index
probability of occurrence; if the species prevalence under
o is known, then a case-control adjustment can be made
in order to estimate probability of occurrence (Keating
and Cherry 2004).

We tried this alternative approach (without a case-
control adjustment, as species prevalence cannot be
derived from our data set) for the presence—absence
methods in our study (Table 5). We observed very little
difference in performance between the two background
formulations. The biggest difference is a slight improve-
ment in performance for GAM with overlapping
background. Thus, for our data set at least, there is no
benefit to interpreting missing records from target-group
sites as true absences.

Related approaches

A related option is to use target-group background
data to directly model survey effort (Zaniewski et al.
2002). The surveyed sites are modeled against a random
background sample from the region. The resulting
model of survey effort can be used to make a weighted
selection of background data, with higher probability
sites being selected most often, for use in species
distribution modeling. The advantage is that a large
amount of biased background data can be produced,
even if the target-group background data are limited.
The danger is that the extra step of modeling introduces
an extra source of error on top of the variability in
model output caused by varying survey effort. The
present study arose from a comparison of this method
(which we term modeled target-group background)
against target-group background and random back-
ground, using a subset of the species modeled by Elith et
al. (2006). The preliminary results (not shown here)
suggested that target-group background clearly outper-
forms modeled target-group background. The size of the
improvement of target-group background over random
background suggested that a larger study was warrant-
ed, resulting in the present paper.

Another approach for explicitly modeling survey
effort is to include it as a level in a hierarchical Bayesian
framework (e.g., Gelfand et al. 2006). One advantage of
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TaBLE 5. Performance of presence—absence methods using
target-group background when presences for the modeled
species are included in the background (overlap) or excluded
(interspersed).

Overlap background Interspersed background

Model AUC COR AUC COR
BRT 0.7544 0.2435 0.7544 0.2442
GAM 0.7368 0.2196 0.7315 0.2092
MARS 0.7260 0.2145 0.7222 0.2102

this approach is that the model gives explicit estimates of
uncertainty in the predictions; in contrast, for the
models we have considered here, uncertainty estimates
are typically obtained by bootstrapping (generating
separate models for random subsets of the training
data, in order to derive pointwise variance in predic-
tions). To our knowledge the hierarchical Bayesian
approach has only been applied to presence—absence
data, rather than the presence-only data that are the
focus of this study, so it cannot be directly compared
with the target-group background approach.

Given presence records for only one species and no
information on collection effort, a simple option is to
define areas within the region where it is broadly
possible that the species could occur. For example, if
modeling a tree species in a landscape with substantial
amounts of clearing for agriculture, spatial records of
clearing (e.g., from remotely sensed data) could be used
to define areas to be excluded from the set available for
background data selection. Doing so would counteract a
sample selection bias toward environmental conditions
that are less suitable for agriculture, as long as the
cleared areas correspond temporally with the species
presence records. This is a special case of the biased
background sampling approach we have described here,
where the sampling intensity is zero in cleared areas, and
uniform in other areas. An alternative approach to
correct for this bias is to include land use as a predictor
variable.

Engler et al. (2004) used a single species approach to
generate weighted background points for input to
GAM. They used an ecological niche factor analysis
(ENFA) to create “ENFA-weighted” background
points by choosing points that were within the study
region but unlikely to have the species (i.e., ENFA value
less than 0.3). They compared this approach to random
background, and found that it improved performance
according to three out of four of their evaluation
measures. This approach has the aim of having
background data biased in favor of areas where the
species is thought to be absent. In principle, this moves
the sampling design away from a use—availability design
and toward being a case-control design. However, the
method of Engler et al. (2004) does not address the issue
of bias in the occurrence data, and the extra step of
modeling in the generation of background data may
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introduce spatial and environmental bias in the controls
and makes models difficult to interpret.

CONCLUSIONS

While the problem of sample selection bias has
received much attention in other fields (e.g., the Nobel
prize-winning econometrics work of Heckman [1979]), it
has not been adequately addressed for species distribu-
tion modeling. Sample selection bias is a serious
problem for species distribution models derived from
presence-only data, such as occurrence records in
natural history museums and herbaria. It has a much
greater impact on such models than it does on models
derived from presence—absence data. When the sampling
distribution is known, we have shown how sample
selection bias can be addressed by using background
data with the same bias as the occurrence data; our
analysis holds for most of the commonly-used presence-
only modeling methods. Sample selection bias has been
previously explicitly considered only for some individual
modeling methods (Argaéz et al. 2005, Dudik et al. 2005,
Schulman et al. 2007).

When the sampling distribution is not known, it can
be approximated by combining occurrence records for a
target group of species that are all collected or observed
using the same methods. We evaluated this approach on
a diverse set of 226 species and four modeling methods.
For both statistical measures of model performance that
we used, target-group background improved predictive
performance for all modeling methods, with the amount
of improvement being comparable to the difference
between the best and the worst of the four modeling
methods. We conclude that the choice of background
data is as important as the choice of modeling method
when modeling species distributions using presence-only
data.
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