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Summary &mdash; Chitinase activities were investigated by native and denaturing SDS-PAGE in tomato roots during sym-
biosis with the arbuscular mycorrhizal (AM) fungus Glomus mosseae, in a pathogenic interaction with Phytophthora
nicotianae var parasitica and in pathogen-infected roots pre-inoculated with G mosseae for 2 weeks. Several native
acidic chitinase isoforms were found in control roots. One additional isoform was detected in G mosseae-colonized

roots, while a different one was found in pathogen-infected roots, as well as stronger expression of constitutive iso-
forms. All the chitinase isoforms were found in tomato roots pre-inoculated with G mosseae and post-infected with the
pathogen. Four basic isoforms were present in all extracts, but they only showed enhanced activities in pathogen-
infected roots. Chitinases from AM roots renatured more quickly and easily than those from non-mycorrhizal roots, after
denaturing under non-reducing conditions, even when mycorrhizal plants were post-infected with the pathogen.

tomato / Glomus mosseae / Phytophthora nicotianae var parasitica / chitinase bioprotection

Résumé &mdash; Induction de nouvelles isoformes de chitinase dans les interactions des racines de tomate avec
Glomus mosseae et/ou Phytophthora nicotianae var parasitica. Les activités chitinases de racines de tomate en
symbiose avec le champignon mycorhizogène Glomus mosseae, dans une interaction pathogène avec Phytophthora
nicotianae var parasitica et dans des racines colonisées par G mosseae depuis deux semaines et post-infectées par le
pathogène ont été étudiées en gels d’électrophorèse natifs (Page) et dénaturants (SDS-Page). En conditions natives,
les racines témoins ont révélé plusieurs isoformes acides de chitinase. Une isoforme additionnelle a été détectée dans
les racines colonisées par G mosseae, tandis qu’une isoforme additionnelle différente et une plus forte expression des
isoformes constitutives ont été observées dans les racines infectées par le pathogène. Quand les racines étaient
mycorhizées puis infectées par le pathogène, l’ensemble des isoformes induites par les deux champignons a été
détecté. Sur les quatre isoformes basiques présentes dans tous les extraits, seules les activités des racines infectées
par le pathogène étaient stimulées. Après dénaturation en conditions non réductrices, les isoformes de chitinase des
racines mycorhizées se sont renaturées plus rapidement et plus facilement que celles des racines non mycorhizées et
cela même lorsque les plantes mycorhizées ont été ultérieurement infectées par le pathogène.
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INTRODUCTION

Arbuscular mycorrhizal (AM) associations have
been shown to be effective in the biological con-
trol of soil-borne plant pathogens (Linderman,
1994). Investigations of mechanisms related to
increased resistance to pathogens in mycorrhizal
plants indicate that these are probably complex.
Indeed, enhanced mineral nutrition, stress allevi-
ation, microbial changes in the rhizosphere, com-
petition with the pathogen for nutrients and infec-
tion sites, modifications in root system morpholo-
gy, anatomical changes such as increased lignifi-
cation of root endodermal cells, and biochemical
alterations in plant tissues are the most frequent-
ly evoked mechanisms (Hooker et al, 1994;
Linderman, 1994). Qualitative and quantitative
alterations in protein expression have been
reported in various AM associations (Dumas et
al, 1989; Pacovsky, 1989; Wyss et al, 1990;
Arines et al, 1993, 1994a; Schellenbaum et al,
1993; Dumas-Gaudot et al, 1994b), but only
weak, very local or transient induction of plant
defence mechanisms seems to occur in AM sym-
biosis (Gianinazzi-Pearson et al, 1994).
When plants respond to attack by pathogenic

microorganisms, a range of reactions are trig-
gered, including the expression of a large num-
ber of genes encoding proteins related to
defence. Among these, chitinases can be strong-
ly induced in response to pathogen infections.
These enzymes often act synergically with &beta;-1,3-
glucanases, playing an important role in defence
responses against fungal infection (Boller, 1993).
Chitinases are able to partially degrade fungal
cell walls by hydrolyzing chitin, a linear

homopolymer of &beta;-1,4 linked N-acetylglu-
cosamine residues, which is one of the major cell
wall components of most fungi (Wessels and
Siestma, 1981). Chitinases exist as a family of
proteins differing in their biochemical characteris-
tics, primary structures and subcellular localiza-
tion. They can be differentially regulated, proba-
bly playing different roles (Collinge et al, 1993;
Graham and Sticklen, 1994). Furthermore,
although their precise function in symbiotic inter-
actions is still unclear, stimulation of plant chiti-
nase activities has been reported in several root
symbioses such as soya bean nodules (Staehelin
et al, 1992), ectomycorrhiza (Albrecht et al, 1993)
and arbuscular mycorrhiza (Spanu et al, 1989;
Dumas-Gaudot et al, 1992 a, b, 1994a; Volpin et
al, 1994).

In an attempt to evaluate changes in some
hydrolytic activities associated with mycorrhiza-

induced resistance of tomato roots to

Phytophthora nicotianae var parasitica, several
experiments have been carried out to investigate
chitinase isoforms expressed during symbiosis
with Glomus mosseae, infection by P n var para-
sitica and during induced resistance to the
pathogen in mycorrhizal roots.

MATERIALS AND METHODS

Chemicals

All chemicals for electrophoresis, analytical grade
mixed bed resin AG 501-X8 (20-50 mesh), prestained
protein molecular mass markers, and Coomassie
Brilliant Blue R 250 were from Bio-Rad (Ivry-sur-Seine,
France). All other compounds were from Sigma
Chemical Co (Saint-Quentin-Fallavier, France). Glycol
chitin was synthesized as previously described (Trudel
and Asselin, 1989).

Plant and fungal material

A soil (Epoisses)-based mycorrhizal inoculum of
Glomus mosseae (Nicol and Gerd) Gerdemann and
Trappe (BEG12) containing fungal propagules and
chopped mycorrhizal Allium porrum L roots was used.
The root pathogen Phytophthora nicotianae var para-
sitica isolate 201 (kindly provided by P Bonnet, INRA,
Antibes, France) was grown in 9 cm petri dishes on a
malt-agar (2%/1 %, w/v) medium, at 25 °C in darkness
for 3 weeks. Inoculum was prepared by washing the
growing mycelia with sterile water (15 mL/dish) and the
mycelial suspension obtained was used to inoculate
tomato plants by directly watering the root system
(7 mL/plant).
Tomato seeds (Lycopersicon esculentum cv

Earlymech) were surface sterilized with 3.5% (w/v) cal-
cium hypochlorite and germinated in sterile vermiculite
at 22 °C under light for 10 days. Control plants were
transplanted into a mixture of &gamma;-irradiated soil from

Epoisses (pH 7.4, 26 ppm available Olsen P) and cal-
cined montmorillonite clay (Oil Dry US-special type III-

R, IMC Imcore) (1:1, v/v) (one plant/400 mL mixture).
For mycorrhizal experiments, seedlings were trans-
planted into a mixture of the G mosseae-soil inoculum
and calcined clay (1:1, v/v). Half of the plants from
both control and mycorrhizal treatments were inoculat-
ed with P n v parasitica 2 weeks after transplanting as
described earlier. Such a delayed inoculation time with
the pathogen was chosen because bioprotection by
mycorrhizal fungi occurs mainly when they have pre-
colonized plants before the pathogen attack

(Linderman, 1994; Cordier et al, 1996). Experiments
were repeated three times.

All plants were grown in a controlled environment
room (23 °C /18 °C day/night, 60% relative humidity,
16 h photoperiod at 300 &mu;mol m-2 s-1). They were



watered daily with deionized water and weekly with 50
mL/pot of Long Ashton nutrient solution (Hewitt, 1966)
at normal phosphorus concentration for control plants
and at one-tenth phosphorus strength for mycorrhiza-
inoculated ones in order to get similar physiological
and nutritional status in mycorrhizal and non-mycor-
rhizal plants. Tomato roots were harvested 4 weeks
after transplanting, carefully washed in running tap
water, rinsed in deionized water and weighed. They
were then immediately frozen in liquid nitrogen, and
stored at -65 °C until protein extraction.

Quantification of arbuscular mycorrhizal
colonization and pathogenic infection

At harvest, samples from root systems were stained as
described by Phillips and Hayman (1970). Mycorrhizal
colonization was expressed by the percent of colo-
nized cortex in the root system (M%), according to
Trouvelot et al (1986). The spread of P n v parasitica
was visually estimated as the percentage of necrotic
lesions of the root system as described by Cordier et al
(1996).

Protein extraction, electrophoresis
and enzymatic assay

Frozen roots were ground at 4 °C in an ice-chilled mor-
tar with liquid nitrogen and the resulting powder sus-
pended in 100 mM Macllvaine (citric acid/Na2HPO4)
extracting buffer, pH 6.8 (1:1, w/v). Crude

homogenates were centrifuged at 15 000 x g for 30
min at 4 °C and the supernatant fractions were kept
frozen at -20 °C. P n v parasitica mycelium extracted
in the same buffer was included to test chitinase activi-
ties of the pathogen, either as crude extracts or after
the supernatant had been lyophilized and the resulting
powder dissolved in a minimal amount of Mcllvaine
buffer. All extracts were analyzed by 15% (w/v) poly-
acrylamide gel electrophoresis (PAGE) under native
conditions at pH 8.9 according to Davis (1964) and at
pH 4.3 as described by Reisfeld et al (1962).
Denaturing gels with sodium dodecyl sulphate (SDS-
PAGE) were used as described by Trudel and Asselin
(1989). For Davis and SDS-PAGE, 0.01% (v/v) of gly-
col chitin (chitinase substrate) was embedded in the
gels, while when using the Reisfeld system, glycol
chitin was added in a 7.5% (w/v) polyacrylamide over-
lay gel. Transfer of proteins to the overlay gel was
done by blotting for 4 h according to Audy et al (1988).
SDS-PAGE separations were carried out under

both reducing and non-reducing conditions, and differ-
ent methods were used to restore enzymatic activities.
Samples were denatured under reducing conditions by
boiling 5 min in the denaturing buffer (Trudel and
Asselin, 1989) containing 5% (v/v) 2-mercaptoethanol.
Renaturation of chitinase activities after SDS-PAGE
was carried out by a 20 min wash at 37 °C in 200 mL
of 100 mM Tris-HCl buffer (pH 8.0) containing 1% (v/v)

purified triton X-100 and 1 mM thioglycolate or 1 mM

cysteine, followed by a 45 min incubation at 37 °C in
buffered triton X-100 (J Grenier, personal communica-
tion). For non-reducing conditions, samples were simi-
larly boiled, omitting 2-mercaptoethanol, according to
Trudel and Asselin (1989). After electrophoresis, renat-
uration was done by a 20 min wash in 200 mL of 50
mM sodium acetate (pH 5.0) with 1 % (v/v) purified tri-
ton X-100, followed by incubation at 37 °C in buffered
triton X-100 solution. Several incubation times ranging
from 1 to 18 h were tested.

All electrophoreses were repeated at least three
times. Chitinase activities on gels were revealed by flu-
orescent staining using calcofluor white M2R (0.01%,
w/v) in 500 mM Tris-HCl (pH 8.9) and visualized after
destaining under ultraviolet (365 nm) light. Gels were
photographed using one orange filter and Polaroid 665
film. Gels were also stained with Coomassie blue R-

250 followed by aqueous silver nitrate as specified by
Trudel and Asselin (1989).

RESULTS

The common aspect of uninoculated tomato
roots is shown in figure 1A. The root system
appeared more developed in G mosseae-inocu-
lated roots (fig 1 C). Necrotic lesions were obvi-
ous on roots infected with P n v parasitica
(arrows on fig 1B). The percentage of root length
with necrosis reached 19%. When tomato plants
were pre-inoculated for 2 weeks with G mosseae
and post-infected with Phytophthora for 2 weeks
(fig 1 D), the root system was clearly less affected
by the pathogenic attack, and the frequency of
necrotic lesions was significantly reduced by
more than 50% as compared to non-mycorrhizal
Phytophthora-infected ones. These results are in
agreement with those from Cordier et al (1996).

In the Davis electrophoretic system for sepa-
rating acidic or neutral proteins, crude extracts



from control tomato roots showed three main
bands and three other faint bands, corresponding
to constitutively expressed chitinase isoforms (fig
2, lanes C). The two lower main bands are cer-
tainly true acidic/neutral isoforms while the upper
one could be a basic isoform also separated in
the Davis system. The other faint additional
bands were more or less expressed in different
experiments and their intensity could be related
to stress situations. One additional chitinase iso-

form was observed in extracts from G mosseae-
colonized tomato roots (fig 2, left panel, lane Gm,
arrow on the left) where the level of AM coloniza-
tion of roots reached 30%. The additional chiti-

nase isoform was only very weak in extracts of
roots with lower colonization (M = 19%) (fig 2,
right panel, lane Gm). In P n v parasitica-infected
roots the second main and the three faint consti-

tutive tomato isoforms were strongly stimulated
and one additional chitinase isoform, which could
not be observed in control roots, was also detect-
ed (fig 2, lane Pht, arrow on the right). No lytic
bands with similar mobilities occurred in crude

(E) or lyophilized (LE) extracts from living myceli-
um of P n v parasitica. All the bands correspond-
ing to chitinase activities induced by both fungi
were detected in root extracts from mycorrhizal

tomato post-infected with P n v parasitica,
although the mycorrhiza-related isoform activity
appeared to decrease (fig 2, lanes Gm + Pht).

Basic chitinase isoforms were analyzed using
the Reisfeld gel electrophoretic system. Four
main constitutive basic isoforms were observed

and no qualitative differences were detected
between the different treatments (fig 3). Stronger
signals for chitinase activities were visualized in

extracts from P n v parasitica-infected tomato
roots (fig 3, lane Pht). Similar increases were not
found in extracts from AM roots post-infected
with P n v parasitica (fig 3, lane Gm + Pht). A
crude extract from the pathogenic fungus (fig 3,
Fungus lane) did not show clear basic chitinase
activity corresponding to those observed in any
of the root extracts.

When chitinase activities were analyzed by
SDS-PAGE under non-reducing conditions, only
root chitinase isoforms from mycorrhizal roots
were renatured within short incubation times (fig
4, panel A). Three well-defined lytic bands with
apparent molecular masses (MW) ranging from
28 to 35 kDa appeared after only 1 h incubation,
even when plants had been post-infected with
the pathogen (fig 4, panel A, lanes Gm and Gm +
Pht). Some of these bands were faintly observed
in P n v parasitica-infected roots but only after a
longer renaturation time (8 h) (fig 4, panel B, lane
Pht). Additional bands with chitinase activities



displaying lower MW were detected in all root
extracts with the longer renaturation time, but
considerably stronger in those from

Phytophthora-infected plants. No similar chiti-
nase activity was found in crude extracts of the

fungal pathogen (fig 4, panels A and B, lanes
Fungus Pht). After SDS-PAGE under non-reduc-
ing conditions, the chitinase activities from myc-
orrhizal roots were slightly reduced by the
pathogen attack (fig 4, panels A and B, lane Gm
+ Pht). When denaturation was carried out under
reducing conditions (fig 4, panels C and D), three

chitinase activities corresponding to isoforms with
molecular masses ranging from 28 to 35 kDa
were observed in all root samples, but not in
extracts of the fungal pathogen (fig 4, panels C
and D, lanes Fungus Pht). These results confirm
recent data showing better renaturation of some
plant chitinases under reducing conditions when
either thioglycolate or cysteine are added to the
renaturing buffer (Asselin et al, unpublished
results). Moreover, this process allows determi-
nations of protein molecular masses. There was
no difference in isozyme banding between



uninoculated and inoculated tomato roots using
thioglycolate or cysteine, although stronger sig-
nals were detected in extracts from P n v parasiti-
ca-infected roots in both cases. The determined

molecular masses were similar to those estimat-

ed by the non-reducing procedure, ranging from
28 to 35 kDa, which is usual for plant chitinases
(Collinge et al, 1993; Graham and Sticklen,
1994).

DISCUSSION

As has been described before for other AM fungi-
plant-pathogen interactions, previous coloniza-
tion of the root system by G mosseae exerted a
protective effect on tomato plants against P n v
parasitica. This protection was reflected in a

reduction of the necrotic lesions in the root sys-
tem, as well as a lower decrease in the root size
in comparison to non-mycorrhizal plants infected
with P n v parasitica.

The induction of plant chitinases and &beta;-1,3-glu-
canases after the inoculation of tomato leaves

with pathogenic fungi and viruses, or treatments
with chemicals has been widely reported (Pegg
and Young, 1982; Granell et al, 1987; Joosten
and de Witt, 1989; Garcia-Breijo et al, 1990; van
Kan et al, 1992; Wubben et al, 1992; Joosten et
al, 1995). From these reports, in pathogen or
chemically treated tomato leaves, four chitinases
were identified: two acidic extracellular chitinases

with MW of 26 and 27 kDa and two basic intra-

cellular ones with MW of 30 and 32 kDa.

Recently, the existence of an additional 20 kDa
protein with chitinase activity has been reported
(Joosten et al, 1995). Very few reports, however,
deal with tomato root/fungal interactions

(Benhamou et al, 1989, 1990), and these are lim-
ited to ultrastructural enzyme localization during
Fusarium oxysporum infections.

Our study evidences for the first time the pres-
ence of several molecular forms of chitinases in

tomato roots by means of PAGE associated with
a specific test for chitinase activity, as described
before for chitinase isoform detection on tobacco
leaves (Trudel et al, 1989; Pan et al, 1991).
Since proteins with pl around 7 to 5 can be sepa-
rated in both acidic and basic PAGE systems,
some isoforms could have been detected in both

systems. Analysis by 2D-PAGE would solve this
question and is actually in progress. The higher
number of chitinase isoforms found in tomato

roots, in comparison to those described for
leaves (Joosten et al, 1995), can be attributed to

a differential expression of chitinase genes in the
various plant organs (leaves/roots/floral parts), as
has been reported for tobacco (Trudel et al,
1989) and for other hydrolytic enzymes (Coté et
al, 1991; El Ouakfaoui and Asselin, 1992). In the
present study, control root extracts from tomato
showed three major acidic chitinase isoforms,
and several additional ones. These additional
isoforms were, however, strongly stimulated after
fungal infection with the pathogen P n v parasiti-
ca, which is in agreement with data on regulation
of chitinase expression during plant development
and as a consequence of pathogenic infections
(Collinge et al, 1993). With regard to basic chiti-
nases, although no additional isoforms were
induced by P n v parasitica, a strong stimulation
of the constitutive ones was detected. Increases
in chitinase activities after inoculation with P par-
asitica var nicotianae has been also reported in
tobacco plants, where the infection caused a
marked and parallel induction of chitinases and
&beta;-1,3-glucanases, and an increase in the relative
concentrations of mRNA encoding both enzymes
(Meins and Ahl, 1989).

Transient activation of chitinases has been

reported in several AM symbioses (Spanu et al,
1989; Lambais and Medhy, 1993; Vierheilig et al,
1994, 1995; Volpin et al, 1994), and this has
been interpreted as a non-specific defence
response to AM fungi, which is then specifically
repressed. Our results demonstrate the induction
of one additional acidic chitinase isoform in toma-

to roots colonized by G mosseae that differs from
the isoforms overexpressed in plants infected by
the pathogenic fungus P n v parasitica; this con-
firms the differential induction of root chitinase

isoforms after symbiotic or pathogenic fungal
infection previously observed in plants such as
tobacco (Dumas-Gaudot et al, 1992a) and pea
(Dassi et al, 1996). Since none of the isoforms
were found in extracts of either fungus alone
(present work for P n v parasitica and Slezack et
al, 1996 for G mosseae), it seems likely that they
represent a differential reaction of the host plant
to symbiotic and pathogenic interactions. It is

noteworthy that the chitinase isoforms from
extracts of mycorrhizal roots of tomato showed a
better and quicker renaturation, after denatura-
tion under non-reducing conditions, than those
from control or pathogen-infected roots; this
could be related to a different oxidative status of

the mycorrhizal root cells (Arines et al, 1994b).
Mycorrhizal fungi do not appear to be sensitive

to plant chitinases (Arlorio et al, 1992). These
enzymes do not come into direct contact with the

intracellular structures of AM fungi and do not



bind to external hyphae, except when fungal cell
wall soluble polysaccharides and proteins are
eliminated by heat treatment (Spanu et al, 1989).
In addition, overexpression of chitinase genes in
transgenic Nicotiana does not affect the estab-
lishment and functioning of mycorrhizas, while
such plants show an increased resistance to
pathogens (Gianinazzi-Pearson et al, 1994;
Vierheilig et al, 1995). The exact role and func-
tion of mycorrhiza-induced chitinase isoforms are
still unclear (Dumas-Gaudot et al, 1996). It is

possible to postulate that their induction may play
some sort of role in bioprotection against soil-
borne pathogens. Phytophthora species are
oomycetes, whose main cell wall component is &beta;-
1,3-glucan, and which are usually believed to be
devoid of chitin (Barnicki-Garcia, 1968); conse-
quently, an antifungal role for chitinases appears
unlikely. However, since further studies have
reported the presence of glucosamine-containing
polysaccharides in Phytophthora species
(Bartnicki-García and Wang, 1983), we cannot
rule out an active role for chitinases. Moreover, it

seems reasonable to consider a synergistic effect
with other hydrolytic enzymes, as in several

plant-pathogen interactions it has been reported
a coordinate induction of chitinases and &beta;-1,3-
glucanases (Mauch et al, 1988a), and their syn-
ergistic activity in the degradation of fungal cell
walls (Mauch et al, 1988b). Consequently, it can

be hypothesized that the activity of this induced
chitinase isoform in arbuscular mycorrhizae could
help the plants to respond to invading pathogenic
fungi either directly by its hydrolytic activity (alone
or in synergy with other enzymes), or by releas-
ing elicitors that quickly trigger the mechanisms
involved in defence reactions.
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