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Abstract 

A diffractometer-independent definition of the 
azimuthal angle qJ of a Bragg reflection is proposed. 
After completion of intensity measurement, instru- 
ment-dependent and partly redundant quantities such 
as orientation matrix and setting angles may be 
replaced by q, values without loss of information. 
Data-treatment software, such as absorption- and 
anisotropic-extinction-correction programs, become 
instrument independent and completely general. For- 
mulae are given to compute ~O for equatorial and 
non-equatorial diffraction geometries. 

Introduction 

The geometry ofa  Bragg reflection in X-ray or neutron 
diffraction is not completely characterized by the 
lattice constants of the crystal and the Miller indices 
hkl of the reflecting plane. The calculation of absorp- 
tion and TDS corrections and the refinement of 
anisotropic extinction corrections require informa- 
tion on the azimuthal angle qJ of rotation of the crystal 
about the reciprocal-space vector r*kt. For each reflec- 
tion hkl, this angle must be defined with respect to 
an orientation q, = 0 of the crystal. To our knowledge 
all commercial manufacturers of four-circle diffrac- 
tometers define the zero position at the bisecting 
position to = 0 of the instrument. This definition has 
several disadvantages. As soon as the crystal is taken 
off the diffractometer and the orientation matrix is 
lost, values of qJ with respect to the bisecting position 
become meaningless. The calculation of transmission 
factors provides an illustration. The shape of the 
crystal is described by the indices h, k, I and distances 
d of its faces with respect to a lattice-based coordinate 
system. These data are then transformed into a diffrac- 
tometer-fixed coordinate system using the orientation 
matrix. This matrix cannot be recomputed from qJ 
angles, or even from the setting angles 20, to, X and 
q~ if automatic realignments of the crystal have occur- 
red during data collection which are not recorded on 
the reflection data file. In addition, both the setting 
angles and the orientation matrix depend on the 
manufacturer 's choice of the senses of rotation of the 

circles and on the diffractometer-fixed coordinate sys- 
tem. Absorption-correction programs using this kind 
of machine-dependent information are thus suscep- 
tible to errors and need to be adapted to, and tested 
for, the locally used instrument; major modifications 
may be required for data obtained with two-circle 
instruments (Weissenberg geometry) and area 
detectors. 

All these difficulties disappear if the zero position 
of qJ is defined with respect to the crystal lattice. The 
geometry of a Bragg reflection is then completely 
specified by four values, namely h, k, l and qJ. No 
additional information about the instrument used for 
the measurements need be retained in a crystallo- 
graphic data file (Brown, 1983, 1985, 1988), or taken 
into account during data treatment and structure 
refinement. In particular, absorption-correction pro- 
grams become generally applicable and easy to use. 
The advantage of an instrument-independent 
definition of qJ was clearly emphasized by Busing & 
Levy (1967), but as far as we know their advice has 
not been heeded by manufacturers and software 
developers. In this paper, we demonstrate a simple 
and easily implemented method of defining the zero 
position of ~. 

Definition of the zero position of 

In the following, we distinguish between physical 
vectors such as direct- and reciprocal-lattice vectors 
r,~w and rhkl*, and algebraic vectors representing phy- 
sical vectors in a given coordinate system. Algebraic 
vectors are assumed to be column vectors; row vectors 
are identified by the symbol T for transposed. In the 
lattice base, a direct-space vector r~,w = ua + vb + we 
is represented by the algebraic vector u r =  (u, v, w); 
a reciprocal-space vector r*kt = ha* + kb* + lc* is rep- 
resented by h r =  (h, k, l). In a unitary base, we use 
the same symbol for a physical vector and the corre- 
sponding algebraic vector. 

Fig. 1 shows the geometry of a Bragg reflection 
from the plane (hkl). All vectors shown are unit 
vectors: p and d represent the primary and diffracted 
beams, respectively; f is the normal to the reflecting 
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plane; g is perpendicular to the plane containing 
(p, d, f); e lies in the intersection of these two planes; 
e, f and g define a right-handed coordinate system, 
i.e. e x f . g = + l .  The vector q lies in the plane (hkl) 
and is the reference direction defining the zero posi- 
tion of 4': for @ -- O, q coincides with g. The @ rotation 
about f is defined to be positive if the crystal has been 
turned from this position counterclockwise when view- 
ing the plane along - f ,  in agreement with standard 
mathematical usage. Thus, g x q . f  = +sin qJ. e, f, g are 
related to d and p by 

e =  - ( d + p ) / ( 2  cos 0); 

f = r*,/IIr~*k, II = Ar*k,/(2 sin 0) 

= ( d - p ) / ( 2  sin 0); 

g = (d x p)/sin 20. 

(1) 

4' is calculated from e, g and q by using the scalar 
products cos 0 = q . g ,  sin 4'=q.e. If all vectors are 
defined in a unitary coordinate system, this may be 
put in a concise form by defining a vector O, 

07" = (sin 4', 0, cos 0) = q. (e, f, g), (2) 

where (e, f, g) is represented by a 3 x 3 matrix. The 
reference vector q is represented by the direct-space 
vector r.,vw normalized to unit length, q -- r.,w/IIr,,owll, 
and defined to be orthogonal to f so that f. q = h TU = O. 
We propose the convention 

u T=(k-l,l-h,h-k), except for h = k = l ;  
(3) 

= (h,/T, 0), for h = k = l .  

In the calculation of absorption corrections or the 
refinement of  anisotropic extinction, one requires the 
components of d and p for the reflection h at azimuth 
~. These may be obtained from f, q and 4' by the 
equations 

g = q  cos ~b- (f×q) sin 4'; 

e = q  sin q,+ ( fx  q) cos 4'; 

d = - e  cos 0 + f sin 0; 
(4) 

p = - e  cos 0 - f sin 0. 

dC+  
hkl e 

7 

Fig. 1. Definition of the azimuthal angle ~. 

Equatorial geometry 
(1) Calculation of 4' 

Consider a four-circle equatorial-plane diffrac- 
tometer with circles 20, to, g and ~o. There will be an 
instrument-defined right-handed laboratory-fixed 
unitary coordinate system denoted by x, y, z. The 
orientation matrix UB (Busing & Levy, 1967) trans- 
forms the coordinates h, k, l of a reciprocal-space 
vector represented by the vector h into coordinates 
in the laboratory-fixed coordinate system: 

f= UBh/IlUnhll. (5) 

Likewise the 0 = 0 reference vector u defined by (3) 
transforms to q in the laboratory-fixed coordinate 
system by the relationship 

qT = uT(UB)-I/IIuT(UB)-III. (6) 

The rotations engendered by the movement of the 
circles will be represented by matrices whose forms 
depend on the choice of the laboratory-fixed system 
of  axes, and on the instrument-defined senses of  rota- 
tions. For the 20, X and q~ circles, these matrices are 
denoted by 20 ,  X and ~ ,  respectively. Owing to the 
geometry of diffraction, it is helpful to make a conven- 
tional separation for the movement of to. We define 
to as the angle between the normal to the X circle 
and the incident-beam direction, the sense of rotation 
being the same as 20; the bisecting position is thus 
at to = 0. The deviation of to from the bisecting posi- 
tion is symbolized by A t o = t o - 0 .  The rotation 
matrices corresponding to to and Ato are f l  and A, 
respectively. The orientation of the crystal at zero 
setting angles is represented in Fig. 2 by the vectors 
e, f, g and q of  a lattice plane (hkl) which is to be 
rotated into reflecting position at an azimuthal angle 
4'. The orientation of the crystal at setting angles w, 
Ato, X and ~o different from zero is obtained by multi- 
plying e, f, g and q with the rotation matrices 11, zl,, 
X and ~ .  The position of the detector at the angle 20 
is obtained with the matrix 20 .  All these matrices 
represent active rotations. 

0,~ g q ~ f  0. o7 

t y p e l ~ o r  ~ ~ ] / type I ...... ce 
type lI: source ~ \ l ]  type lI: detector 

Fig. 2. Four-circle diffractometer at zero setting angles; definition 
of type-I and type-I I diffractometers, and of the laboratory-fixed 
coordinate system. 



D. SCHWARZENBACH AND H. D. FLACK 603 

The reflecting position of the crystal as shown in 
Fig. 1 may be attained in two steps: (i) ~o, A" and Ato 
rotations turn e, f, g into an orientation with e pointing 
towards the primary beam and f in the equatorial 
plane pointing towards the position the detector 
would occupy at 2 0 = + r r / 2 ;  (ii) an additional to 
rotation of the crystal by 0 to satisfy Bragg's law, 
with the reflected beam being measured after rotation 
of the detector by 20. After the ~0, X, Ato rotations, 
the components of e, f, g with respect to the labora- 
tory-fixed system of axes x, y, z are identical for all 
planes (hkl) and angles ~b. They depend only on the 
definition of x, y, z, and may be represented by the 
matrix W. The components with respect to x, y, z of 
e, f, g prior to rotation are easily computed from the 
setting angles for the reflection: 

AX~(e,  f, g) = W, (e, f, g) = ~ T x T A r w .  (7) 

To obtain ~, for this setting, we use (2) with algebraic 
vectors: 

~ r  = qT(e, f, g) = q r~TXTATW, (8) 

and inserting (6) for qT, we obtain 

qjT = u r ( U B ) - ' q ) T x T A r w / I l u ~ ( U B ) - '  II. (9) 

(2) Unit-cell transformations 

It may arise that data collected in one unit cell 
need transforming into another. This section estab- 
lishes the transformation properties of ~. Fig. 3 shows 
the relevant vectors in the reflecting plane; subscripts 
n and o refer to the new and old cells respectively. 
All physical vectors are represented in the lattice base. 
Clearly, ~n = ~o + A~, where A~ is the angle to turn 
the old reference vector qo into the new one q,,. A~ 
is given by the vector and scalar products sin A~b = 
Ilqo x q ,  II, cos  A~, = q o . q n .  Let the cell transformation 
be specified as a change in Miller indices, h, = Tho. 
The direct-space reference vectors q, and qo are 
obtained by normalization from the coordinate vec- 
tors u, and uo, defined by (3) in terms of h, and ho 
in the new and old lattice bases respectively. In the 
new lattice base Uo becomes o, = (TT)-~Uo. The com- 
ponents of the algebraic vector product v,, = on × u,, 
are the reciprocal-space coordinates of a vector pro- 
portional to q,, x q,. Defining G,, and G* to be the 
metrics of direct and reciprocal space of the new cell, 

• e 

Fig. 3. Vectors needed for unit-cell transformations. 

one therefore obtains 

/tO 7- = (sin zaO, 0, cos AO) 
T = s(v. G . v . ,  0, o [ G . u . )  (10) 

T T s -2 (On Gno.)(u .  Gnu.).  

In a Fortran program using the function ATAN2, 
it is unnecessary to evaluate the normalization 
factor s. 

(3) Dealing with manufacturer's design 

The information content of output files from 
diffractometers currently available is diverse. Some 
examples are listed below. 

Case (a). For each reflection, the setting angles 20, 
to, X and ~o are output, and the orientation matix UB 
is output each time it is changed. The ~ of each 
reflection is easily calculated from (9). Fig. 2 shows 
two of the most common definitions of the laboratory- 
fixed system of axes and sense of rotation of the 20 
and to circles. We call a dittractometer type I if 20 
and to turn clockwise, and type II if 20 and to turn 
anticlockwise when viewed along -z .  z is along the 
20/to axis normal to the equatorial plane, x is anti- 
parallel (type I) or parallel (type II) to the primary 
beam, and y lies in the equatorial plane and points 
towards the detector when 20 is set to +rr /2 .  The 
matrix W of (9) is 

W = 1 for type I, 

0 [10 
W =  0 1 for type II. 

0 0 - 

(11) 

Case (b). 20, to, X and ~ are output, but only the 
UB matrix at the end of data collection is available. 
The calculation of ~ through (3), (6) and (9) depends 
on knowing UB: if UB has changed during data 
collection due to automatic realignment, the calcula- 
tion of ~ for all reflections prior to the last reorienta- 
tion will be inaccurate. 

Case (c). For each reflection, only the azimuthal 
angle with respect to the bisecting position as zero is 
available. An obvious strategy for the calculation of 

is to use UB to calculate the ~ angle of the bisecting 
position and then apply ~,= ~ t b i s e c t i n g " { - I ] /  . . . .  f a c t  . . . .  • 

There are two potential sources of error in such a 
procedure. Firstly, one has to be sure of the sense of 
rotation of ~b adopted by the manufacturer. Secondly, 
there are two bisecting positions, Ato = 0, at go, ~0o 
and at rr - Xo, rr + ~Oo whose $ angles differ by rr. One 
of these has been chosen by the manufacturer for the 
definition of $ = 0. On most instruments, measure- 
ments are usually carried out limiting the movement 
of the ¢ box to below the equatorial plane of the X 
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circle and this criterion is used to define ~'/bisecting ~--" 0. 
If the reflections of  a crystal mounted  permanent ly  
on a suppor t  were measured on both a type I and a 
type II instrument  in this s tandard bisecting position, 
the respective qJ angles would differ by 7r. Since the 
reflecting posit ion is at tained by aligning g with +z 
on type I, and with - z  on type II instruments,  
g(bisecting) at zero setting angles lies in the plane 
(f, z), point ing towards the upper  hemisphere  for type 
I, and towards the lower hemisphere for type II; the 
vector e(bisecting) lies in the equatorial  plane. The 
components  of  these vectors can therefore be com- 
puted directly from the components  f~, f2,f3 of f: 

er(bisect ing)  = +[f2(1 _f~)-~/2, - f l ( l  _f~)-t/2, 0]; 

gr(bisect ing)  = +[-f~f3(1 -f3z) -1/2, 

-f2f3 ( 1 -f32) - ' /2, ( 1 - f32)'/2]; 

+ for type I, - for type II. (12) 

A safe procedure  is to reproduce the manufac turer ' s  
algorithm for the calculation of setting angles at 
azimuth ~b with respect to the bisecting posit ion from 
h, k, 1 and UB, and then to calculate 6 from (9). 

Case (d). One commercial  system allows [UB[ to 
be negative and thus the lattice base to be lef t -handed 
without warning or indication. To correct this situ- 
ation, all h, k, l should be changed into h, k, I. With 
our choice of  u given in (3), u,  = -Uo = o, ,  v, --- 0 and 
Aq, = 0 from (10). qJ is thus invariant under  this trans- 
formation.  

Non-equatorial geometry 

Fig. 4 shows a non-equator ia l  reflection on a type I 
instrument  as may be encountered in Weissenberg 
geometry or on an area detector. The direction of  the 
diffracted beam d is defined by the equatorial  angle 
20' and the elevation angle u. Spherical t r igonometry  
gives for the Bragg angle 

cos 20 = cos 20' cos u. (13) 

The components  of  d and p in Fig. 4 are 

d r = [q:cos u cos 20', cos 1, sin 20', sin ~,], 

pT = [wl ,  0, 0], (14) 

the upper  sign corresponding to type-I and the lower 
sign to type-II  instruments.  We denote by e', f', g' 

detec tor~  z 
., 

source 

Fig. 4. Geometry of a non-equatorial reflection for a typed 
instrument. 

the positions of the vectors e, f, g of Fig. 2 after 
rotations by ~, X and to (not Ato): ( e ' , f ' , g ' ) =  
l~XO(e, f, g). Applicat ion of (1) gives 

e 'T -- [+(1 + c o s  v cos 20') ,  
- c o s  v sin 20', - s i n  v]/2 cos 0; 

f , r  ___ [+(1 - c o s  u cos 20') ,  (15) 
cos u sin 20', sin u] /2  sin 0; 

g,T = [0, q:sin ~,, +COS u sin 20 ' ] / s in  20. 

At zero setting angles, we get for both types of  diffrac- 
tometer  

(e, f, g) = tP  TXTII r (e', f', g') 
(16) 

= tp rXTA r o r ( e  ', f', g') 

where 0 represents an to rotation by 0. o r ( e  ', f', g') 
corresponds to the matrix W of (7) and reduces to 
(11) for v -- 0. The reference vector q is obta ined from 
(3) and (6) with the or ientat ion matrix UB, as for the 
equatorial  geometry.  For the Weissenberg geometry,  
UB may be calculated from the indices and setting 
angles to of  two zero-layer reflections. 

Concluding remarks 

We have shown that the ~ angle of  a Bragg reflection 
hkl defined with respect to the crystal lattice can be 
obtained from the orientat ion matrix UB and the 
setting angles 20, to, X and ~. For a reflection 
measured at the bisecting position, it may also be 
obtained from the UB matrix alone using (12). The 
expressions used to calculate ~ depend on the instru- 
ment used for the experiment:  the rotation matrices 
2 0 ,  l~, A, X and (I) depend on the senses of  rotation 
of  the axes, and UB depends  on the laboratory-fixed 
coordinate  system chosen by the manufacturer .  It 
would therefore be most efficient to calculate ~ at 
data-collect ion time, since all the necessary informa- 
tion is then readily available and the addi t ional  com- 
puting expense is minimal.  Reflection-data output  
files could be shortened since setting angles are redun- 
dant  information;  they may easily be recomputed  
from h, k, l and ~, if UB is known and have no 
significance if UB is lost. In addit ion,  reflection-data 
files of some commercial  diffractometers currently 
available are incomplete  and lead to inaccurate  or 
ambiguous calculations of  ~b. 

It is our  firm opinion that all diffractometer soft- 
ware should be designed, or if possible redesigned,  
to use only a crystal-based azimuth as described here. 
As existing commercial  diffractometer software does 
not carry out this calculation, an optimal strategy is 
to compute  ~ in an instrument-specific program 
immediate ly  after complet ion of  the diffraction 
experiment  while the necessary orientat ion informa- 
tion is still available to the experimenter.  In order  to 
minimize error and loss of  information,  this program 
should have direct access to the computer  controll ing 
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the diffractometer and should output the data in a 
standardized instrument-independent format. Pro- 
grams (Flack & Blanc, 1989) using the Standard Crys- 
tallographic File Structure (Brown, 1983, 1985, 1988) 
have been written to implement this technique for the 
three types of commercial four-circle diffractometers 
available to us. 
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