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The central and biodynamic role of gut 
microbiota in critically ill patients
Hannah Wozniak1*, Tal Sarah Beckmann2, Lorin Fröhlich1, Tania Soccorsi1, Christophe Le Terrier1,3, 
Aude de Watteville1, Jacques Schrenzel4 and Claudia‑Paula Heidegger1 

Abstract 

Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communica‑
tion with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen 
as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely 
dysbiosis, with a severe reduction in “health‑promoting” commensal intestinal bacteria (such as Firmicutes or Bacte‑
roidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically 
ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important 
effects, including changes in gut integrity and in the production of metabolites such as short‑chain fatty acids and 
trimethylamine N‑oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, 
highlighting the concept of the gut–organ axis. Thus, dysbiosis will affect other organs and could have an impact on 
the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The pre‑
cise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging 
research area that offers exciting opportunities for disease prevention, management and therapy, particularly in criti‑
cal care where multi‑organ failure is often the focus. This narrative review provides an overview of the normal compo‑
sition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care 
setting, and highlights the concept of the gut–organ axis.
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Background: why focus on the gut microbiota 
in intensive care patients?
The digestive tract contains a considerable number of 
microorganisms that are in constant communication and 
symbiosis with their host. They play a major role both in 
health and in the pathogenesis of many diseases such as 
inflammatory, cardiovascular or metabolic diseases when 
dysbiosis occurs [1–3], i.e. when the composition of the 
gut microbiota is altered.

Critically ill patients are often instable with multi-organ 
damage. They undergo a major state of stress mediated 
by endocrine, immunological, neuronal and inflamma-
tory mechanisms [4]. In addition, the gut microbiota is 
under tremendous pressure due to various factors such 
as medications, critical illness or the discontinuation of 
the normal diet [5]. More recently, the gut microbiota 
is more considered as a dynamic organ and its failure, 
reflected by dysbiosis, as an organ failure, associated with 
poor outcomes [5–8]. It is therefore urgent to understand 
the mechanisms of its evolution and its involvement in 
critical illnesses.

Actual evidence on the gut microbiota comes either 
from animal models or from human studies. Murine 
models have different gut physiology from that of large 
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mammalian models. This must be taken into account 
when extrapolating results from murine models to 
humans [9–11]. However, these data allow us to better 
understand the gut microbiota and its dynamic changes.

Our aim is to provide an overview of the normal com-
position of the gut microbiota, its functions, the concept 
of the gut–organ axis, the mechanisms leading to dysbio-
sis and its consequences in the intensive care units (ICU).

Normal composition of the gut microbiota and its 
evolution in intensive care
Normal composition of the gut microbiota
While there is currently no definition of a “normal” 
microbiota [12, 13], many factors, such as diet, age or life-
style habits, influence its composition [3, 13–16]. In the 
colon, the phyla Firmicutes and Bacteroidetes compose 
90% of the gut microbiota (60–75% and 30–40%, respec-
tively), followed by the phyla Actinobacteria, Proteo-
bacteria and Verrucomicrobia [16–18]. The Firmicutes 
phylum contains predominantly Gram-positive obligate 
or facultative anaerobic bacteria and includes, for exam-
ple, Lactobacillus spp., Clostridium spp. or Enterococ-
cus spp. [5, 16, 17]. The Bacteroidetes phylum contains 
less genera and predominantly Gram-negative anaero-
bic bacteria, such as Bacteroides spp. or Prevotella spp. 
[5, 16]. The majority of the normal gut microbiota con-
sists of obligate anaerobic bacteria. The latter play a role 
in inhibiting the growth of other potentially pathogenic 
bacteria (referred to as pathobionts), mostly composed of 
aerobic bacteria or facultative anaerobic bacteria such as 
Escherichia coli [19].

Functions of the gut microbiota
The intestinal microbiota has many functions. First, 
anaerobic bacteria degrade food polysaccharides, that 
are fermented into various metabolites including short-
chain fatty acids (SCFAs) such as butyrate, acetate and 
propionate, which are necessary substrates for enterocyte 
function [20]. It also plays a role in the defence against 
infections of the digestive tract by a competitive effect 
between commensal and pathogenic bacteria and in 
building the local immune defence. In addition, the gut 
microbiota is closely linked to all our organs and con-
tributes to their normal functioning [21, 22]. This last 
point, which led to the concept of gut–organ axis, will be 
detailed below.

Assessment of the gut microbiota
Gut microbiota can be examined using various meth-
ods, the two most commonly used in clinical practice are 
described below.

16S ribosomal RNA (rRNA) profiling (metataxonom-
ics) [23] provides a taxonomic overview of the bacteria 

present in a sample and, among others, gives information 
on microbial richness and diversity [5]. This is a simple, 
fast and low-cost technique. Limitations include that 
it gives no information on gene functions and that two 
organisms with the same 16S rRNA gene sequence could 
be misclassified [23–25].

A more complete microbial composition can be 
assessed through unbiased sequencing of all DNA (shot-
gun metagenomics) present in a sample [23]. This higher 
resolution approach, although more expensive, allows the 
identification of bacteria up to species level and provides 
information on microbial richness, diversity and gene 
functions [23, 24, 26]. These approaches can be further 
informed by integrating them with proteins (metaprot-
eomics) and small molecules (metabolomics) profiling.

Finally, these methods produce complex results whose 
interpretation must be related to a specific research ques-
tion [27].

Critical illnesses and the gut microbiota
Critical diseases are associated with a loss of commensal 
intestinal bacteria such as Firmicutes or Bacteroidetes 
and an increase in potentially pathogenic bacteria (patho-
bionts) such as Proteobacteria [12, 28]. This dysbiosis is 
determined both by the decrease in diversity and by the 
change in the ratio of pathogenic bacteria to the detri-
ment of “health-promoting” commensal bacteria (Fig. 1). 
In some cases, an overgrowth (> 50% relative abundance) 
of potentially pathogenic genera such as Enterococcus 
spp., Clostridium difficile, Staphylococcus spp., can be 
highlighted [28]. Several indexes exist to identify and 
define dysbiosis [29]. These changes in microbiota and 
intestinal homeostasis may occur within the first 48  h 
following a critical illness and seem to vary according 
to the patient’s age [12, 30, 31]. A study of 115 critically 
ill patients comparing the microbiota on ICU admission 
with that at discharge showed a decrease in Firmicutes 
and Bacteroidetes phyla, a significant increase in Proteo-
bacteria and an increase in taxa with pathogenic bacteria 
such as Enterobacter spp. and Staphylococcus spp. [12]. 
Another study of mechanically ventilated ICU patients 
found that the proportion of Bacteroidetes and Firmi-
cutes varies from patient to patient during their stay. This 
last study also suggested that the Bacteroidetes/Firmi-
cutes ratio could be a predictor of mortality [7]. Intestinal 
dysbiosis has been shown to be associated with patient 
susceptibility to nosocomial infections, sepsis, organ fail-
ure and even COVID-19 disease severity [32–37].

Intestinal dysbiosis: how does it work?
Colonic mucus changes
The intestinal wall is covered with hydrophobic mucus, 
which is continuously produced by the goblet cells of the 
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mucosa. This mucus protects the enterocytes and colono-
cytes from digestive enzymes and acts as a barrier against 
the passage of bacteria and toxins into the bloodstream 
[28, 32]. In critically ill patients with splanchnic hypop-
erfusion, mucus production and mucus hydrophobicity 
decrease, leading to enterocytes injury that promotes cell 
apoptosis and pathogen translocation [28, 38]. This leads 
to reduced absorption of nutrients and reduced produc-
tion of SCFAs and favours diarrhoea [28].

Intestinal integrity changes and the role of short‑chain 
fatty acids (SCFAs)
The vast majority of knowledge about SCFAs comes 
from in vitro bench work on human or mice faeces and 
conclusions from interventional studies with prebiotics 
[39–42]. The intestinal anaerobic microbiota ferments 
dietary fibres and produces metabolites such as SCFAs, 
which help maintain the integrity of the gut barrier and 
promote the host’s immune response [43]. SCFAs are the 
primary source of energy for the colonic epithelium and 
contribute to maintaining functional intercellular junc-
tions. Mostly studied in rodent models, they also play a 
role in intestinal immunity by controlling the production 
of T-helper cells, regulatory T cells (Treg), antibodies and 

cytokines with mainly anti-inflammatory effects [44–46]. 
SCFAs have also been shown to induce cytoprotective 
proteins in epithelial cells that help maintain cell viabil-
ity under stress conditions [32, 47]. Critically ill patients 
exhibit dysbiosis with a reduction in anaerobic bacteria 
leading to a decrease in SCFAs concentration, which has 
been associated with cellular apoptosis, malabsorption, 
diarrhoea and bacterial translocation [44, 48–50].

Changes in trimethylamine N‑oxide (TMAO) production
TMAO is an important metabolite produced jointly by 
the intestinal microbiota and the liver [51]. First, tri-
methylamine (TMA) is produced by the gut microbiota 
from choline, lecithin and carnitine which are found in 
food precursors such as meat, fish and eggs [52]. Second, 
TMA is absorbed and translocated to the liver through 
portal circulation [51], where TMAO is converted from 
TMA directly [52]. As the production of TMAO depends 
on the diversity and composition of the gut microbiota, 
TMAO levels can change with dysbiosis, resulting often 
in higher levels [52, 53]. A study in humans showed that 
broad-spectrum antibiotics suppressed the production 
of TMAO, which reappeared after the discontinuation of 
the antibiotics [54], supporting the importance of the gut 

Fig. 1 Gut microbiota and dysbiosis in critical illness



Page 4 of 12Wozniak et al. Critical Care          (2022) 26:250 

microbiota in TMAO production. High levels of TMAO 
have been recognized to be associated with heart failure, 
atherosclerosis and thrombosis formation [52, 55–59].

Immune mucosal changes
The gut microbiota plays a crucial role in the develop-
ment of the immune system and is in constant commu-
nication with it [60]. On the one hand, the microbiota 
promotes the immune system and adapts it to certain 
conditions; on the other hand, it is tolerated by this adap-
tive immunity. This occurs through the involvement and 
recognition of microbe-associated molecular patterns via 
the toll-like receptor system [61] and through the release 
of pro-inflammatory cytokines [62], mucus secretion and 
the formation of SCFAs that activate Treg [20, 63]. This 
barrier plays an important role in preventing coloniza-
tion by pathogens and appears to be compromised by 
antibiotic administration [64].

In order to control its relationship with the microbi-
ota, the immune system limits the contact between the 
microbiota and epithelial cells, thus limiting the possible 
translocation of bacteria. This “mucosal firewall” consists 
of epithelial cells, IgA secretion, antimicrobial peptides 
and immune cells [65, 66]. Alteration of the microbiota 
can lead to dysregulation of the immune system, includ-
ing a decrease in IgA and T cell levels, favouring bacterial 
infection [5, 67].

Intestinal dysbiosis in critically ill patients: 
pathophysiological concepts
Multiple environmental changes take place during criti-
cal illness, during which there is selective pressure due 
to splanchnic hypoperfusion in the context of shock, 
inflammation, impaired immunity, change in diet, medi-
cations and decreased intestinal motility [27, 33, 68]. All 
these conditions could contribute to the development of 
intestinal dysbiosis.

Factors favouring dysbiosis in an intensive care setting
Several factors influence the change in microbiota and 
its virulence. First, during critical illness, transit time is 
prolonged, leading to a reduction in bacterial excretion, 
which is known to be associated with bacterial over-
growth [6, 69]. The slowing down of intestinal transit 
time may be due to electrolyte fluctuations and the fre-
quent use of sedatives and opiates in the ICU [6].

Second, many drugs commonly administered in the 
ICU can affect the composition of the gut microbiota, 
such as antibiotics but also non-steroidal anti-inflam-
matory drugs, beta-blockers, amines, or proton pump 
inhibitors [70–73]. A possible explanation for this last 
drug family is that the gut pH exerts selection pressures 
on bacteria, which cannot all grow in the same acidic 

environment [74, 75]. The dysbiosis induced by proton 
pump inhibitor has been associated with an increased 
risk of Clostridium difficile infection [71, 76, 77].

The effects of antibiotics on microbiota depend on 
many factors, including the class of antibiotic therapy 
and its route of elimination. In general, antibiotics alter 
the commensal flora and its diversity and could select 
and/or promote the growth of resistant microorganisms 
[5, 78].

Finally, another important factor is the change in nutri-
tion patterns. Critically ill patients are often starving and 
are fed with enteral nutrition (EN) or parenteral nutri-
tion (PN). Little is known about the effects of EN and 
PN on the human gut microbiota. However, a study in 
children in ICU confirmed the findings of murine mod-
els, that exclusive PN was associated with significant dys-
biosis [79, 80]. In contrast, an in  vitro study on human 
faecal samples has shown that EN promotes the growth 
of commensal microbiota, with intraindividual differ-
ences depending on the enteral formula [81]. Nutritional 
therapy seems to have significant impacts on the gut 
microbiota. NE appears to be a protective factor for the 
gut microbiota, whereas periods of starvation or total PN 
should be avoided as they may affect the integrity of the 
gut microbiota [28, 82–84].

When the normal gut flora becomes pathogenic
It is assumed that bacteria are able to sense their envi-
ronment including the density and diversity of other 
bacteria [32]. In fact, depending on the intestinal lumen 
environment, intestinal bacteria either continue colo-
nizing or become pathogenic. Many bacteria express 
virulence genes through a system called quorum sens-
ing [32]. This system causes the bacteria’s virulence genes 
to be expressed only when a certain bacterial density is 
reached that can overwhelm the host, and only when a 
negative environmental change is perceived, such as 
nutrient deficiency or specific treatment with opiates 
[6, 32, 85]. Indeed, a study showed that in patients with 
long ICU stays, “normal” microbiota was replaced by 
ultra-low-diversity communities of resistant pathogens 
whose virulence varied depending on the local environ-
ment, such as exposure to opiates [85]. Another study has 
shown that during acute stress associated with intestinal 
ischaemia/reperfusion, the production of dynorphin, a 
natural human opioid, was increased. In this study, expo-
sure of Pseudomonas aeruginosa to dynorphin activated 
the quorum sensing system, which enables bacteria to 
recognize stress in the host, become pathogenic and take 
advantage of the host weaknesses [86].

Furthermore, the electrolytes levels also seem to influ-
ence gut microbiota. For example, local phosphate lev-
els have been suggested to influence gut microbiota 
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virulence [87, 88]. In this context, a study on mice mod-
els has shown that Pseudomonas aeruginosa and other 
pathogens can develop a lethal phenotype in the case of 
hypophosphatemia [87–89].

The main factors that influence the microbiota in criti-
cal illness are as follows: the critical illness itself, the host 
status, the drugs and the nutrition administered [27].

Sepsis and microbiota
Numerous ICU patients have severe infections. Although 
the specific mechanisms are not yet fully identified, the 
gut microbiota appears to play a role in the pathophysiol-
ogy of sepsis [90, 91]. This is partly due to the fact that 
critically ill patients often receive a wide range of medi-
cations, which affect gut microbiota diversity [90], and 
partly because of the patients’ precarious condition, 
which can lead to hypoxic lesions, inflammation, disrup-
tion of epithelial integrity, dysmotility, changes in intra-
luminal pH or impaired immune function in the gut [92]. 
There are some characteristic patterns of gut microbiota 
associated with sepsis. In a multicentre study, the micro-
biota of ICU patients with sepsis showed an increased 
abundance of microbes closely associated with inflamma-
tion, such as Parabacteroides, Fusobacterium and Biloph-
ila species [93]. Other studies showed that the gut loses 
important bacterial genera, including Faecalibacterium 
spp., Prevotella spp., Blautia spp. and Ruminococcaceae 
spp. [7, 85, 94], which are known to produce SCFAs [20]. 
Furthermore, it has been shown that certain antibiotic-
resistant species prevalent in sepsis, such as Enterococcus 
spp. or Clostridia spp., are associated with unfavourable 
outcomes [85, 93, 95]. The gut microbiota is thought to 
influence sepsis not only through bacterial translocation 
[14, 96] and through the prevention of colonization by 
multi-resistant pathogens [64], but also by regulating the 
immune system [97, 98]. Laboratory data show greater 
bacterial spread, higher levels of inflammation and organ 
failure, and higher mortality in germ-free mice during 
sepsis compared to healthy mice, likely due to a less pro-
nounced immunomodulatory response [97].

Modulation of the gut microbiota
Prebiotics, probiotics, synbiotics and faecal microbiota 
transplantation (FMT) are the most studied specific 
treatments for modulating gut microbiota.

Prebiotics are defined as undigested food substrates, 
such as fibres, inulin or oligosaccharides, that are used 
by the commensal gut microbiota after ingestion and 
provide health benefits [99]. A few studies on prebiot-
ics showed that administration of fibre in ICU patients 
could improve dysbiosis, increase SCFAs production 
and reduce hospital length of stay [100, 101], while other 
studies showed contrasting results [102, 103].

Probiotics are living microorganisms that help main-
tain the balance of gut microbiota and improve the health 
of the host. Synbiotics is the concomitant administration 
of prebiotics and probiotics [99]. Previous studies have 
shown a possible effect of probiotics in reducing the inci-
dence of ventilator-associated pneumonia (VAP) [104, 
105]. However, subsequent randomized controlled trials 
(RCTs) yielded conflicting results [106, 107]. The results 
of these studies cannot be generalized because the pro-
biotics used and their dosage varied from study to study, 
which is a recurrent problem in studies comparing pro-
biotics. Other studies using other genera, species, strains 
or doses are expected to clarify this issue [107]. Although 
the use of probiotics is an attractive microbiota-targeted 
therapy, they are not without risk, particularly in ICU 
patients, where Lactobacillus bacteraemia has been 
described following probiotic administration [108].

Recently, there has been increasing interest on FMT, 
which consists of transplanting an autologous or donor 
stool through colonoscopy, oral capsules or enteral feed-
ing tube to restore a healthy microbiota. FMT has for 
example been proposed as an alternative treatment for 
severe or recurrent Clostridium difficile colitis [109, 110]. 
In the ICU, there are case reports in septic patients with 
multiple organ failures and suspected dysbiosis high-
lighting successful FMT in these patients [111, 112]. The 
physiopathological hypotheses are that FMT increases 
SCFA-producing bacteria, which could help restore the 
systemic immune response and allow the clearance of the 
sepsis pathogen [113]. However, FMT is not without risk 
in ICU patients and is still an experimental treatment.

As knowledge about gut microbiota keeps growing at 
an impressive rate, we can anticipate further definitions 
of the value and use of specific treatments modulating 
gut microbiota.

Interaction of the gut microbiota with key organs: 
the concept of the gut–organ axis
As gut microbiota interacts with other organs, the con-
cept of gut–organ axis is explored in this section. Fig-
ure 2 illustrates the different gut–organ axes and provides 
examples of diseases associated with an alteration of the 
gut microbiota.

Gut–brain axis
Gut–brain axis is an important, constant bidirectional 
communication system [114–116], taking place via 
immunological, endocrine, neural and metabolic path-
ways [117].

Immune signalling is mediated by cytokines (IL-1, 
IL-6), that are produced in the gut, travel through the 
bloodstream and cross the blood–brain barrier [118, 
119]. These cytokines then influence one of the most 
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powerful activators of the stress system, the hypotha-
lamic–pituitary–adrenal axis [118, 119].

The gut microbiota has been shown to interact with 
the brain via neurotransmitters and the vagus nerve. 
The neurotransmitters produced and consumed by the 
gut include dopamine, norepinephrine, GABA and sero-
tonin [120]. Some bacteria have been shown to express 
more neurotransmitters, such as Lactobacillus rhamno-
sus, which is associated with neurological GABA secre-
tion. Interestingly, the vagus nerve appears to recognize 
metabolites of the gut microbiota and responds through 
a cholinergic pathway that appears to reduce intestinal 
inflammation and intestinal permeability, thus modulat-
ing the gut microbiota [120–122]. Recent studies also 
suggested that alterations of these neurotransmitters by 
the microbiota have an impact on the onset and develop-
ment of neurological diseases such as ischaemic stroke or 
neuroimmune diseases [123]. The vagus nerve also seems 
to be activated by SCFAs [124–126].

Metabolic components also serve as communication 
pathways between the brain and the gut microbiota. 
For example, it has been shown that colonization with 

Bifidobacterium infantis leads to higher plasma trypto-
phan levels and secondarily to higher central serotonin 
levels [127, 128].

The gut–brain interaction has been demonstrated in 
neurocritically ill patients. Indeed, their gut microbiota 
appears different from that of healthy subjects and dys-
biosis increases with ICU length of stay [129]. Further-
more, an increased abundance of Enterobacteriales and 
Enterobacteriaceae in the first week after ICU admis-
sion was associated with 180-day mortality in these 
patients [129]. Another well-studied clinical example is 
acute ischaemic stroke, which leads to intestinal ischae-
mia and dysbiosis, which in turn exacerbate cerebral 
infarction by enhancing systemic inflammation [130, 
131]. In addition, dysbiosis is associated with poor out-
comes following acute ischaemic stroke as it interacts 
with the brain through all of the above mechanisms [56, 
132, 133].

Different stroke dysbiosis indexes are being explored 
to characterize gut microbiota in these patients and 
correlate them with patient outcomes [134].

Fig. 2 Gut–organ axis
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Gut–lung axis
The gut microbiota constantly interacts with the lung 
microbiota [135]. In fact, the lung microbiota has been 
shown to change when a newborn’s diet is altered [136].

Since the microbiota is known to have an effect on 
local immunity, it is thought to play a role in pulmonary 
immunity as well. The immune response of the lungs can 
probably be modulated in the following way. Besides por-
tal circulation, drainage of the gastrointestinal tract also 
occurs via lymph nodes, which drain into the thoracic 
duct and then into the subclavian vein. The first capillary 
bed that then filters the chyle is the pulmonary capillary 
bed [6].

SCFAs seem to play a role in immunity by reduc-
ing lung inflammation through induction of Treg [137]. 
Furthermore, dysbiosis with an increased ratio of Fir-
micutes/Bacteroidetes species is also associated with 
increased IL-17 and IL-22 responses in the lung, which 
could lead to airway hyperreactivity [137].

In mice models, the gut microbiota appears to have a 
protective effect in severe lung infections, as several stud-
ies showed that germ-free mice had increased mortality 
after lung infection with Klebsiella pneumoniae, Strep-
tococcus pneumoniae or Pseudomonas aeruginosa [138, 
139]. One of the possible mechanisms is that the phago-
cytic capacity of macrophages decreases in germ-free 
mice [97].

The importance of the gut–lung axis and its therapeutic 
potential is also supported by a few interventional studies 
in humans. For example, some studies have shown that 
the use of probiotics could reduce the risk of VAP in the 
ICU [48, 140].

Gut–heart axis
Gut microbiota and the cardiovascular (CV) system also 
interact bidirectionally [141].

Dysbiosis has recently been associated with CV risk 
factors and diseases such as atherosclerosis, obesity, dia-
betes, hypertension or coronary artery disease [142]. On 
the one hand, CV diseases lead to dysbiosis, while on 
the other hand, the gut microbiota affects the CV sys-
tem through various metabolites, including TMAO and 
SCFAs [142].

High TMAO levels have been shown to be associated 
with CV disease [143, 144] and with an increased risk of 
serious CV events (e.g. death, myocardial infarction and 
stroke) and heart failure [54, 145–147]. The gut micro-
biota has also been shown to influence platelet hyper-
responsiveness and blood clot formation through the 
production of TMAO [56].

SCFAs may play a role in blood pressure regulation by 
influencing renin secretion via the G-protein-coupled 
receptor pathway [148], and different studies suggest a 

link between gut microbiota and hypertension [148, 149]. 
Moreover, dysbiosis is associated with lower butyrate 
production, leading to increased intestinal permeability 
and systemic inflammation, promoting atherosclerosis 
and heart failure [141].

Patients with heart failure also experience relative 
splanchnic hypoperfusion, leading to oedema of the 
intestinal wall and impaired function and permeability 
of the intestinal epithelium, which could lead to dysbio-
sis [150, 151]. This dysbiosis is thought to be associated 
with increased inflammation, which can exacerbate acute 
heart failure [150].

In CV surgery patients, a small longitudinal study has 
shown marked changes in gut microbiota in patients 
admitted to the ICU, with more complications in patients 
with the most pronounced dysbiosis [30].

In summary, an imbalance of the gut microbiota 
metabolites seems to contribute to the development or 
exacerbation of CV diseases. This has led to new research 
and clinical opportunities, with a focus on the use of 
TMAO as a potential biomarker.

Gut–kidney axis
So far, several mechanisms have been identified (e.g. 
SCFAs, TMAO) that could explain how the gut micro-
biota interacts with the kidney, but knowledge in humans 
and in critical care situations remains scarce [152]. First, 
regarding the SCFAs mechanism, Andrade-Oliveira et al. 
[153] showed that mice treated with acetate-producing 
bacteria had better outcomes after acute kidney injury 
(AKI) by regulating inflammation. Second, high levels of 
TMAO have been recognized as a risk factor for chronic 
kidney disease (CKD). In murine models, dysbiosis can 
lead to an increase in circulating TMAO, which in turn 
can cause kidney interstitial fibrosis [154]. TMAO levels 
have also been shown to be higher in patients with CKD 
compared to healthy subjects and associated with poor 
prognosis [155].

Intestinal bacteria are known to affect dendritic cell 
activity on intestinal T cells as well as on peripheral Treg 
differentiation. It has been shown that the amount of 
CD4 T-helper cells producing pro-inflammatory IL-17 is 
higher in patients with autoimmune kidney disease [156].

Increased inflammation also affects kidney function. 
In sepsis and subsequent dysbiosis, there is an increased 
intestinal permeability and silent translocation of bac-
teria and toxins into the bloodstream. This increases 
inflammation and promotes the switch to renal aerobic 
glycolysis, leading to a decrease in ATP stores and ulti-
mately to mitochondrial and cellular damage in the kid-
ney [157].

Finally, urea works both ways. On the one hand, it 
accumulates in AKI and promotes intestinal damage 
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[157]. On the other hand, dysbiosis produces more ure-
mic toxins that can lead to tubular dysfunction [156].

Gut–liver axis
Bidirectional interactions between gut microbiota and 
the liver occur through continuous exchange via the por-
tal circulation as well as the biliary enterohepatic cycle 
[158].

Via the portal circulation, the liver is directly exposed 
to molecules absorbed through the intestinal mucosa. 
A study [159] indicated an inverse correlation between 
SCFA levels and the severity of portal hypertension, 
the degree of endotoxemia and systemic inflammation, 
emphasizing the role of gut microbiota in gut–liver inter-
actions and in the progression of liver pathologies such 
as cirrhosis [160]. The gut–liver interaction was also con-
firmed in another study [161] which demonstrated a neg-
ative correlation between the abundance of endogenous 
bacteria and inflammatory markers in patients with alco-
hol use disorders.

Moreover, non-alcoholic fatty liver disease and its 
severity have also been associated with TMAO levels [53, 
59]. TMAO may affect triglycerides levels in the liver and 
influence their metabolism [162].

The biliary enterohepatic cycle is another central pro-
tagonist allowing the liver to communicate with the gut 
by releasing bile acids (BAs) and other bioactive media-
tors through the biliary tract. Furthermore, almost 5% 
of the BAs are metabolized into secondary BAs which 
exert direct control on microbiota by inhibiting microbial 
overgrowth [163]. Indeed, dysbiosis is thought to lead to 
an imbalance between primary and secondary BAs which 
causes an additional metabolic burden on the liver.

The role of the microbiota has led to the development 
of a cirrhosis–dysbiosis ratio (CDR) to classify the sever-
ity of dysbiosis in cirrhotic patients, as reported by Bajaj 
et al. [160, 164]. The latter pointed out that low CDR (i.e. 
more severe dysbiosis) was associated with decompen-
sated cirrhosis, organ failure and death [160].

Gut–liver interplays are of interest in the ICU, espe-
cially in the context of liver transplantation and hepatic 
encephalopathy (HE). Liver transplantation seems to 
improve dysbiosis in cirrhotic patients and establish bet-
ter cognitive status [165]. Moreover, a phase I RCT high-
lighted that FMT in cirrhotic patients with HE could 
improve dysbiosis and cognitive state [166].

Conclusion
The gut microbiota is in constant communication with 
key organs of our organism and strongly influences them. 
According to the latest evidence, gut microbiota could 
be considered as an organ and its failure, manifested by 
dysbiosis, as an organ failure, which is possibly associated 

with poor clinical outcomes. The exact roles and contri-
butions of the gut microbiota and its interactions with 
the various organs are an intense and challenging area of 
research, and much remains to be discovered. Another 
aspect that should not be neglected is that the compo-
sition of the gut microbiota is influenced by genetic and 
non-genetic factors such as lifestyle, diet, but also by dis-
eases and their treatments. Further research on the gut 
microbiota is needed to better understand these pro-
cesses, and to offer new opportunities for disease preven-
tion, management and therapy, especially in critical care 
where multi-organ failure is often the focus.
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