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High-throughput spatiotemporal 
monitoring of single-cell secretions via 
plasmonic microwell arrays

Saeid Ansaryan1, Yen-Cheng Liu1, Xiaokang Li2,3, 
Augoustina Maria Economou    1, Christiane Sigrid Eberhardt    4,5,6, 
Camilla Jandus3,6 & Hatice Altug    1 

Methods for the analysis of cell secretions at the single-cell level only provide 
semiquantitative endpoint readouts. Here we describe a microwell array for 
the real-time spatiotemporal monitoring of extracellular secretions from 
hundreds of single cells in parallel. The microwell array incorporates a gold 
substrate with arrays of nanometric holes functionalized with receptors 
for a specific analyte, and is illuminated with light spectrally overlapping 
with the device’s spectrum of extraordinary optical transmission. Spectral 
shifts in surface plasmon resonance resulting from analyte–receptor 
bindings around a secreting cell are recorded by a camera as variations in 
the intensity of the transmitted light while machine-learning-assisted cell 
tracking eliminates the influence of cell movements. We used the microwell 
array to characterize the antibody-secretion profiles of hybridoma cells 
and of a rare subset of antibody-secreting cells sorted from human donor 
peripheral blood mononuclear cells. High-throughput measurements of 
spatiotemporal secretory profiles at the single-cell level will aid the study of 
the physiological mechanisms governing protein secretion.

Cellular communications mediated by protein secretion are respon-
sible for a plethora of important physiological functions, such as 
growth and proliferation1, metabolic regulation2, immune response3 
and even different cell-death modalities4–6. For example, in the case 
of the immune system, the activation efficiency and specificity of the 
response can be controlled by the temporal and spatial characteris-
tics of the released soluble factors, such as duration and frequency 
in time, as well as direction and distribution in extracellular space7–10. 
Another important consideration is the inherent heterogeneity of 
the protein secretions (collectively referred to as ‘secretome’11) on a 
cell-to-cell basis in terms of their spatial and temporal distribution as 
well as function. Secretomic heterogeneity has been observed both 

within phenotypically homogeneous cell populations12,13 and between 
distinct populations of healthy and pathological cells14,15. Consequently, 
understanding the inner workings of cellular secretion is decisive in 
investigating processes in cell biology16, in exploring the evolution of 
dynamic diseases such as cancer17,18, and in developing new pharma-
cological therapies19.

However, the comprehensive study of the cellular secretome 
cannot be achieved without quantitative and real-time analysis at the 
single-cell level. Such methods should entail a high spatial resolution to 
differentiate individual cells and spatially visualize the distribution of 
the secreted proteins, and should also have a high temporal resolution 
to identify rapid or minute alterations in secretion20. Furthermore, a 
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individual cell. Our computational pipeline allows for accurate visuali-
zation, quantification and prolonged analysis of secreted products in 
the extracellular space for hundreds of individual cells.

We first validated the system by tracking the immunoglobulin G 
(IgG) secretion of genetically identical engineered hybridoma cells 
(as a well-characterized model cell line) at the single-cell level for the 
remarkably long observation times of over 12 h, and with a temporal 
resolution of minutes. We were able to extract the spatial distribution 
of the secreted products around the cells over the surface and observed 
various secretory patterns. Additionally, we investigated how protein 
transport is affected during cell division by mapping the spatiotem-
poral changes in secretion for mitotic cells. Next, we analysed the 
spatiotemporal distribution of the total content release of cancer cells 
following different cell-death pathways and obtained distinct signa-
tures, providing insights into their underlying mechanisms. Finally, we 
demonstrated the broad applicability of the system for the analysis of 
primary human samples by studying the secretion of peripheral blood 
mononuclear cells (PBMCs). The capability to extract the temporal 
and spatial profile of the released factors through spatiotemporal 
maps could facilitate the study of cell-signalling mechanisms. The 
system is compatible with both adherent and suspended cells, and can 
be adapted to detect different types of secreted molecule, including 
(but not limited to) exosomes, cytokines and antibodies. Therefore, it 
represents a powerful and versatile analytical tool for supporting the 
discovery of previously uncharacterized or unknown cell-to-cell secre-
tory variations in both homogeneous and heterogeneous populations.

Results and Discussion
Working principle of the plasmonic microwell array system
Figure 1a–c schematically illustrates the working principle of the sys-
tem. The plasmonic single-cell microwell array consists of four main 
parts: a plasmonic gold nanohole array substrate, a polydimethylsi-
loxane (PDMS) micromesh for single-cell compartmentalization, a 
light-emitting diode (LED) as the illumination source and an sCMOS 
camera (Fig. 1a). We exploit plasmon excitation at a normal incidence on 
nanohole arrays through a grating coupling mechanism to implement 
sensing with a robust and easy-to-maintain collinear optical scheme. 
This enables us to leverage a conventional inverted microscope and 
double-purpose its existing parts (LED, camera, objective) for both 
optical and plasmonic imaging. By illuminating the nanohole arrays 
with a narrowband light source that spectrally overlaps with part 
of the EOT spectrum, the resonance shifts resulting from analyte–
receptor bindings around a secreting cell are manifested as spatially 
resolved intensity variations of the transmitted light and recorded 
as images by the camera (Fig. 1a,b). The sCMOS camera along with 
a medium power magnification objective enables us to have a large 
FOV of 1.1 mm × 0.65 mm while collecting the intensity variation of 
every single pixel. Furthermore, the fast image acquisition and stage 
movement, which last for tens of milliseconds, allow us to implement 
automated sample scanning and acquire images from hundreds of 
positions with sub-minute temporal resolution (see Supplementary 
Discussion 1 for details on temporal resolution). By collecting these 
time-lapse plasmonic intensity images at each position (Fig. 1a), we 
process the corresponding intensity changes over time (Fig. 1b) and 
extract the binding event sensogram (Fig. 1c) over the entire chip sur-
face. Remarkably, we observe that the efficiency of light transmission 
(within a narrow band of the EOT spectrum) through an optically thick 
gold film (~120 nm) is strong enough to perform optical imaging of the 
cells when the film is perforated with nanohole arrays. In contrast, a 
uniform gold film without nanostructures acts as a mirror and allows 
almost no light transmission. We used this feature to concurrently 
monitor the morphological changes of the cells while detecting their 
secretion profiles through plasmonics.

For single-cell manipulation, we incorporated an easy-to-handle 
PDMS micromesh to form arrays of open-top microwells on the 

large number of cells should be investigated simultaneously for suffi-
cient statistical significance while discriminating stochastic biological 
noise21. Conventional methods such as enzyme-linked immunospot 
(ELISpot) and intracellular cytokine staining (ICS) can detect protein 
production from single cells with high throughput. However, they 
provide endpoint results that hinder them from extracting kinetic 
information owing to the lack of sufficient temporal resolution22. ICS 
fails to distinguish between produced and actually secreted proteins 
to the external medium and damages cell viability, precluding the use 
of cells for downstream analysis23. ELISpot can capture secreted factors 
from live cells in the extracellular space, but its spatial resolution is 
insufficient to resolve secretion direction and distribution24. Continu-
ous advances in microfluidics made in the past decade have empowered 
the capture, compartmentalization and processing of single cells to 
profile their secretory properties22,25–27. Relevant high-throughput 
systems include microengraving28,29, droplet-based screening assays30,31 
and chamber-based barcoding chips12, which minimize the assay vol-
ume required to obtain a detectable concentration of the target mol-
ecules. However, these systems usually rely on fluorescent label-based 
detection methods, which inherently reduce the spatial and temporal 
resolution owing to multistep labelling and washing processes in the 
formation of antigen–antibody immunocomplexes.

Label-free optical detection methods hold great promise for bio-
sensing and single-cell studies32–34. In particular, the surface plasmon 
resonance (SPR) principle has been widely adopted and commercial-
ized for the real-time quantification of biomolecule interactions both in 
biosensing and bioimaging configurations32,35. However, conventional 
SPR sensors typically require a precisely aligned prism-coupling con-
figuration for the excitation of plasmons, hindering system integration 
due to the bulky optics35. For the implementation of SPR imaging, 
oblique angle light incidence to prism compromises the quality of 
the obtained images and the spatial resolution due to optical aber-
rations33,36. Recent advances in nanotechnology have facilitated the 
miniaturization of nanophotonic detection systems37,38, providing 
outstanding sensitivity by supporting strong light–matter interac-
tions39,40. However, they have been used so far with a limited capacity 
for single-cell secretion analysis. The ultrasensitive and highly specific 
detection of cytokine secretion at the single-cell level was shown by 
measuring resonance-wavelength shifts with high-resolution spec-
troscopy. Despite its performance, the small field of view due to the 
narrow slit in spectroscopy and the low throughput hamper the extrac-
tion of the spatial distribution of secretions around single cells over 
extended areas. Alternatively, photonic-crystal resonant imaging was 
implemented to map the secretion of signalling proteins from single 
cells and to model cell-adsorption kinetics41. Nevertheless, the amount 
of secretion was not quantified, the duration of the experiment was 
only up to 2 h, and the throughput improvement was low, with a few 
tens of cells.

In this work, we introduce a label-free nanoplasmonic imaging sys-
tem that enables the spatiotemporal mapping of single-cell secretions 
in a microwell-array format. The biosensor comprises gold nanohole 
arrays that support a highly sensitive extraordinary optical trans-
mission (EOT) spectrum for detection and a two-dimensional (2D) 
array of polymeric microwells that allows the deterministic loading 
of many individual cells. To achieve high-throughput analysis, we 
directly measure the intensity variations resulting from the changes in 
the EOT spectrum upon the binding of secreted analytes on the sensor 
surface as a function of time over a large field of view (FOV) using a sci-
entific complementary metal-oxide-semiconductor (sCMOS) camera 
and without requiring spectroscopy. This label-free readout method, 
which generates time-resolved and large-area intensity images from 
millions of pixels, is augmented with unsupervised image-processing 
techniques and a machine-learning algorithm to construct ‘spati-
otemporal secretion maps’ in four dimensions (x, y, intensity, time) 
while simultaneously tracking the motility and morphology of each 
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plasmonic substrate and employed compartmentalization of a large 
number of single cells in an array format. Figure 1d shows the inte-
grated plasmonic single-cell microwell array with 20 × 20 microwells 
of 200 μm diameter on the gold nanohole array substrate.

We accomplish deterministic single-cell seeding using a pie-
zoelectric liquid dispenser (see Supplementary Discussion 2 and 
Methods for more details), bypassing random cell seeding on the 
basis of Poisson loading. The dispenser is coupled with advanced 
image processing for real-time and high-accuracy single-cell isola-
tion and loading. Figure 1e shows the microwell array after seeding 
the single cells. Figure 1f displays the zoomed view of the microwell 
array, highlighting that for each well containing a single cell, there is 

a corresponding reference well (50% reference occupancy) for back-
ground correction. It should be noted that the design of the microwell 
array (for example, substrate size, well diameter, well periodicity 
and reference occupancy) and the image acquisition settings (for 
example, exposure/stabilization time, FOV and stage control) affect 
the device characteristics including throughput and temporal resolu-
tion. Depending on cell size, required area for the distribution of the 
secreted products in the extracellular space and cell movement, such 
characteristics can be optimized to address the need of the biological 
question (Supplementary Discussion 1).

Figure 1g shows scanning electron microscopy (SEM) of a hybri-
doma cell on the gold nanohole array substrate. Nanohole arrays with 
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Fig. 1 | Plasmonic single-cell microwell array system. a,b, Schematic of the 
working principle of the plasmonic single-cell microwell array showing all four 
main elements: LED, PDMS micromesh, gold nanohole array substrate and 
sCMOS camera. Gold nanohole arrays are functionalized with desired receptors 
against a specific analyte secreted by the cells into the extracellular space. By 
illuminating the gold nanohole array substrate with the LED, for a secreting cell, 
the interactions between the analytes and receptors alter the refractive index on 
the close vicinity of the surface and consequently, the resonance peak redshifts. 
The sCMOS camera collects time-lapse images with a sub-minute temporal 
resolution to translate the spectral shifts into the intensity changes in the 
camera’s pixels over time. c, A 1D binding event sensogram at each camera pixel 
is obtained by measuring the intensity changes in real time. High-efficiency light 

transmission through the patterned gold surface provides high-contrast  
optical images enabling simultaneous analysis of secretion and morphology 
of the cell. d, Photograph of the integrated plasmonic gold nanohole array 
substrate with the PDMS micromesh featuring 20 × 20 arrays of microwells.  
e, Image of the plasmonic single-cell microwell array after deterministic loading 
of the individual cells using the piezoelectric liquid dispenser. f, Representative 
image of the single-cell microwell array showing the sensing wells containing 
individual cells and empty reference wells used for noise reduction. g, SEM image 
of a hybridoma cell on the nanohole array substrate. Nanoholes are patterned 
throughout the substrate, allowing secretion monitoring regardless of cell 
location. The inset shows nanoholes with a diameter of 200 nm and periodicity 
of 600 nm.
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a diameter of 200 nm and periodicity of 600 nm are fabricated on a 
4-inch wafer using a deep ultraviolet (DUV) photolithography process, 
and the wafer is diced to produce 1 cm × 1 cm plasmonic substrates. This 
configuration featuring nanoholes over the entire substrate effectively 
makes every point on the surface a sensing element and gives the flex-
ibility to visualize the spatial distribution of extracellular secretion and 
morphological behaviours of the individual cells irrespective of their 
positions. We evaluated the optical uniformity of the nanoholes by 
characterizing the spectral peak position and full-width-half-maximum 
(FWHM) of the EOT resonances across the entire wafer. Our results show 
a high-level uniformity and robustness for the fabrication, with the 
resonance peak position (at 860.7 nm in water) and FWHM (22.6 nm) 
varying less than 2.1 nm and 0.8 nm over different wafers, respectively 
(Supplementary Fig. 3c).

4D spatiotemporal secretion analysis
We first apply the system to engineered hybridoma cells (anti-mouse 
CD45.1) as a well-characterized model cell line to demonstrate a 
quantitative analysis of secretion kinetics with spatial and temporal 
information. Hybridomas are vastly used to produce monoclonal IgG 
antibodies, with a wide range of diagnostic and therapeutic applica-
tions42,43.

Figure 2a shows optical images of a subset of the single-cell micro-
well array after loading the hybridomas. We performed time-lapse 
optical imaging of the microwell array with a 10 min time interval for 
12 h. Using a machine-learning random forest algorithm, the morphol-
ogy and migratory behaviour of the cells were monitored and their 
boundaries in each time frame were extracted and used for subsequent 
image processing. To specifically detect the IgGs secreted by the cells, 
we immobilized protein A/G on the surface, which is a common choice 
for antibody purification44 providing cumulative properties of both 
protein A and G to selectively capture the total IgGs. The function-
alization process and its uniformity are discussed in Methods and in 
Supplementary Discussions 3 and 4.

The system can image the entire microwell and the area surround-
ing each cell as a function of time with high temporal resolution. We 
took advantage of this feature to introduce a four-dimensional (4D) spa-
tiotemporal secretion map (x, y, intensity, time) for single cells (Fig. 2b).  
This was generated using machine-learning-assisted image process-
ing to show intensity changes for the sCMOS pixels resulting from 
the spectral shifts due to the binding interactions on the plasmonic 
substrate. It also enabled exclusion of cells from the 4D secretion map 
to only exhibit variations in the intensity of the transmitted light due 
to the binding of secreted IgGs to the surface without the interference 
of the cell mass. Zoomed-in views of the 4D secretion maps along with 
optical images of three representative single hybridomas at selected 
time points are displayed in Fig. 2c–e (see Supplementary Videos 1–6).

Secretion maps (the second rows in Fig. 2c,d) show the distribu-
tion pattern of the produced IgGs in the extracellular space over the 
surface as a function of time. To facilitate comparison of secretory 
patterns among different cells, we also included contour plots which 
are constructed from the secretion maps by extracting the distribution 
of the secreted products at discrete levels of intensity (the third rows 
in Fig. 2c,d). In Fig. 2d, secretion followed a spatial pattern resembling 
a C shape for almost 6 h and developed a symmetric O shape at the 
end of the observation period. On the other hand, a relatively sym-
metric secretion was seen for the cells shown in Fig. 2c,e. Using the 
cell tracking algorithm, we analysed the migration trajectory for the 
three representative cells in Fig. 2c–e (Supplementary Figs. 6a–c). Since 
the mean squared displacements were quite negligible (0.95, 1.85 and 
1.12 μm2 for Fig. 2c–e, respectively), cell motility could not have altered 
the analysis of the secretion maps for the tested hybridoma cells. For 
other types of cell that are highly motile, the compatibility of our plas-
monic substrates with microfluidic integration provides an advantage 
for incorporation of a cell entrapment unit to partially immobilize the 

cells during spatiotemporal secretion monitoring45. The capability of 
the system to visualize secretion distribution outside of the cells could 
benefit the study of cell signalling in which communication can be 
controlled by the spatial profile of the released factors. For example, a 
multidirectional secretion by the immune cells promotes inflammation 
in the immune responses, whereas a directional secretion of cytokines 
toward their target cells facilitates specific communications7,10.

To extract a wide range of kinetic information and secretion 
dynamics, we processed the 4D secretion maps in two ways. First, we 
calculated the total intensity change (TIC) in each well by summing 
the absolute intensity changes of all the pixels at each time frame  
(Fig. 2f–h). TIC curves are associated with the amount of IgGs secreted 
by the cells as a function of time. Second, we calculated the secretion 
area as the number of non-zero pixels in each secretion map frame 
multiplied by the physical area of each pixel (Fig. 2i–k). Secretion area 
curves provide information about the spatial extent of the secreted 
IgGs adsorbed to the sensor surface around a given cell as a function 
of time. The x axis of the TIC and secretion area curves is the running 
time of the experiment, which lasted for 12 h, and the starting point of 
each curve is the onset of secretion.

In Fig. 2f–h, the secretion rates of the single cells were extracted by 
fitting linear equations to the linear parts of the curves and calculating 
the slope of the fits (see Methods). The experimental maximum TIC 
values related to the maximum amount of secretion for the cells are 
indicated by the grey dashed lines. TIC curves are used to define three 
types of secretion profile: linear, half sigmoid and combined. The linear 
profile refers to the cells whose secretion curves follow a linear pattern 
(type I) (Fig. 2f). The half sigmoid one refers to the cells whose secretion 
curves eventually reach a plateau after experiencing the first increase 
(type II) (Fig. 2g). Some of the secreting cells exhibited a combination of 
these two profiles by showing a further rise in the secretion curves after 
the plateau time (type III) (Fig. 2h). Similar to the TIC curves, from the 
secretion area curves (Fig. 2i–k) we also extracted the adsorption rates 
of the IgGs to the substrate using linear curve fitting and calculated the 
slopes for the linear part of the curves. The experimental maximum 
secretion area values are also indicated by the grey dashed lines.

Statistical analysis of secretion heterogeneity
To investigate the secretory behaviour of a large number of cells, 
we analysed a population of 160 single clonal hybridomas. As a con-
trol, we monitored the secretion of protein transport inhibited (PTI) 
hybridoma cells, which are treated with brefeldin A and monensin to 
prevent protein transport into the extracellular space. The results of 
both sets of experiments are presented in Fig. 3. Figure 3a,b show the 
TIC and secretion area curves for untreated secreting hybridomas 
with respect to their secretion type, as detailed previously. Figure 3c,d 
show the respective curves for the population of PTI hybridoma cells. 
Only a few PTI hybridomas exceptionally secreted IgGs by following a 
type I secretory behaviour. The substantial decrease in the number of 
secreting cells after receiving the inhibitory treatment indicates that 
the observed signals rely on the classical secretory pathway. The total 
number of secreting cells from the test and control cell populations 
is summarized in Fig. 3e, where linear secretion (type I) dominates in 
both populations. To evaluate the specificity of the system, we included 
two control experiments: hybridoma cells in the absence of protein 
A/G on the surface and human K562 lymphoblasts, secreting a wide 
range of other biomolecules (Supplementary Fig. 7a,b), on the protein 
A/G functionalized surface. As shown in Supplementary Fig. 7c,d, no 
notable increase in the TIC and secretion area curves is observed for 
these two controls (see Supplementary Discussion 5 and Methods for 
more details).

To validate the results obtained by the system, ELISpot assays 
were used to compare the percentage of secreting and non-secreting 
(NS) cells for both populations (Fig. 3f and Supplementary Fig. 8). We 
confirmed that 50.5% and 7% of the hybridoma and PTI hybridoma 
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Fig. 2 | 4D spatiotemporal secretion map allows for the identification of 
distinct secretion profiles in hybridoma cells. a, Time-lapse optical images of 
the single-cell microwell array are used to track the cells’ positions and monitor 
their morphological changes using a machine-learning random forest algorithm. 
b, 4D spatiotemporal secretion maps of the cells in the microwell array over  
time. The map shows variations in the intensity of the camera pixels due to the 
spectral redshifts originating from IgGs binding on the sensor surface.  
c–e, Three representative secretion profiles for the hybridoma cells along with 
their corresponding optical images show a gradual increase in both intensity and 
area covered by the secretion over selected time points. I, bright-field optical 
images; II, spatiotemporal secretion maps; III, secretion contour plots. In the 
optical images, the cell boundary is displayed by the yellow lines around the 

cell, using the cell tracking algorithm in the machine-learning protocol. f–h, TIC 
curves indicating the amount of IgGs secreted over time for the cells shown in c,d 
and e, respectively. Linear curve fitting is used to extract the secretion rate (the 
slope), and the maximum amounts of secretions (Max) are denoted by the grey 
dashed lines. f shows a linear increase in secretion during 12 h (type I), while the 
secretion in g reaches a plateau after some hours and forms a half sigmoid (type 
II). h is a combination of these two secretion profiles as it shows another rise after 
the plateau (type III). i–k, Secretion area curves presenting the area occupied by 
the adsorbed IgGs on the sensor surface over time for the cells shown in c,d and 
e, respectively. The adsorption rates (indicated by the slope) and the maximum 
secretion areas (given by Max) are calculated in a similar way as the TIC curves. 
The × sign on the curves refers to the onset of apoptosis.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-023-01017-1

cells, respectively, secreted IgGs, which is consistent with the results 
obtained by the plasmonic single-cell microwell array. Figure 3e illus-
trates the advantages of the single-cell-analysis system for discerning 
the secretion heterogeneity in both populations (24.2% type I, 6.8% 
type II and 16.6% type III for the untreated hybridomas and 4.9% type 
I for the PTI ones).

To further compare the secretion profiles between the untreated 
and PTI hybridoma cells, the maximum experimental TIC and secretion 
area values for all the secreting cells in both populations are shown in 

one-dimensional (1D) scatterplots in Fig. 3g,h. The large standard devia-
tion of the parameters for the untreated hybridomas demonstrated 
the heterogeneity of secretion in terms of maximum secretion and 
areal coverage (see Supplementary Table 1). As expected, the average 
maximum TIC of untreated hybridomas was higher than that of PTI 
cells, given the secretory pathway blockade in the latter. Notably, the 
secretions of PTI hybridomas covered more area on average than those 
of the untreated ones. We illustrated the capability for simultaneous 
monitoring of secretory and morphological changes by investigating 
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curve represents a single cell, and ‘×’ shows the apoptosis onsets. e, Comparison 
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hybridomas. f, ELISpot results for both untreated and PTI cells, which agree with 
the total secretion percentage obtained by the plasmonic single-cell microwell 
array. Error bars represent s.d. between two replicates for each column as shown 
in Supplementary Fig. 8. g, A 1D scatterplot comparing the maximum TIC for 
both populations, illustrating a wider distribution (see Supplementary Table 1 
for details) in the amount of secreted IgGs for the untreated cells. h, Maximum 
secretion areas for both populations emphasizing higher heterogeneity for the 
untreated one with a slightly lower average value (see Supplementary Table 1 for 

details). i, A 2D scatterplot showing the onset of secretion vs duration. It reveals 
that PTI cells secreted for shorter times and mainly within the first hours of the 
experiment before the secretory pathway got blocked completely. j,k, Secretion 
and adsorption rates of IgGs for the three types of cell behaviour in both 
populations. The large s.d.s with similar mean values (see Supplementary Table 1 
for details) for the different secretion types in untreated hybridomas indicate the 
diversity of the cell behaviours, which can only be uncovered by monitoring the 
cells at single-cell resolution and extracting their kinetics. In total, 160 and 168 
single-cell measurements were performed for the untreated and PTI-hybridoma 
populations, respectively. The error bars in g, h, j and k represent the mean ± s.d. 
of secreting cells from these populations, with n = 58 (32, 9 and 17 in the T1, T2 and 
T3 groups, respectively) for untreated hybridoma cells and n = 5 (only in the  
T1 group) for PTI-hybridoma cells.
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the correlation between cell size and the obtained maximum values for 
TIC and secretion area. Since the cell morphology changed over time, 
we used the cell size at the onset of secretions to standardize analysis 
for all the secreting cells. Supplementary Fig. 9 indicates that no strong 
correlation was observed for this specific cell line. This capability could 
be useful for studying morphology-induced cell secretion variations, 
for instance, in mesenchymal and endothelial cells where changes in 
cell shape can regulate cytokine production46,47.

We then evaluated the link between the onset and duration of 
secretion (see Methods) for both untreated and PTI cell populations 
(Fig. 3i). PTI hybridomas secreted for a shorter duration during the 
first hours of the experiments before the inhibitory treatment reached 
its full efficacy. On the other hand, secretion in untreated hybridomas 
could last for up to 12 h. Here, it should be mentioned that we chose to 
capture the images every 10 min due to the long secretion duration 
of these cells. This microwell array configuration can achieve about 
a 1 min temporal resolution for screening 400 wells at 50% reference 
occupancy (Supplementary Fig. 1c). Due to the inherent trade-off 
between temporal resolution and throughput in microwell arrays, the 
design can be optimized further to improve such aspects. One example 
of secretion monitoring from an independent experiment with a denser 
microwell array (100 μm well diameter and 6.7% reference occupancy) 
is presented in Supplementary Fig. 10 (see Supplementary Videos 7 
and 8), where the images were captured every 2 min and performance 
similar to that of the current design was achieved.

The distribution of the secretion rates for both populations is 
shown in Fig. 3j. As type III secretion has two linear parts, we reported 
separate secretion rates for each one. The PTI cells showed a higher 
mean value than the untreated cells. Similarly, the distribution of 
adsorption rates (Fig. 3k) showed higher values for the PTI cells com-
pared with the untreated ones. An important observation to be made 
from Fig. 3j,k is that the large variations among the three types of 
secretions (Supplementary Table 1) hint at the heterogeneity of secre-
tion in the hybridoma population. An ensemble averaging technique 
would only report the average secretion and adsorption rates that are 
approximately the same for all the three types, thereby leading to the 
false assumption that all hybridomas secrete in the same manner. The 
system demonstrates that population averages cannot capture the 
population states accurately and, in fact, obscure the true diversity of 
biological mechanisms such as secretion patterns among cells.

IgG secretion and cell division
To show the applicability of the system for fundamental studies on cell 
biology, we studied single-cell secretion profiles during cell division 
when the secretory pathway undergoes several functional changes48,49. 
To understand how the secretory behaviour of a mother cell is inherited 
by the daughters and how protein secretion depends on the cell cycle, 
several studies have attempted to map the secretion of mother and 
daughter cells during division50–53. However, such studies analyse the 
secretion at a specific phase of division by inducing cell cycle arrest, 
which could disrupt cell function and alter secretory behaviour54. 
Additionally, they have been performed with bulk cell precision that 
can mask both the relevant variations in secretion and functionally 
rare events.

We used the system to monitor the secretion dynamics of mother 
and daughter cells, owing to its ability to perform long-term and unin-
terrupted analysis of secretory and morphological behaviours. We 
revealed two distinct secretion profiles before and after cell division. 
Figure 4a shows the 4D secretion map for a hybridoma cell at selected 
time points in which the mother cell did not secrete before mitosis (Sup-
plementary Videos 9 and 10) while both daughters started secreting 
IgGs right after mitosis (Supplementary Videos 11 and 12). Figure 4b  
presents the TIC curves for the mother and daughter cells, illustrat-
ing type I secretion after mitosis with 452,768 a.u. h−1 secretion rate.  
Figure 4c shows the secretion area curves with 754.2 μm2 h−1 adsorption 

rate of IgGs for the daughters. The cell tracking algorithm in our 
image-processing pipeline allows precise detection of the cell bor-
ders during mitosis and their exclusion from the subsequent analyses 
to eliminate temporary changes in the local refractive index and con-
sequently, the intensity due to cell movement (shown as grey boxes 
in the curves).

In contrast, the 4D secretion map in Fig. 4d indicates secretion 
for both the mother (Supplementary Videos 13 and 14) and daughter 
cells (Supplementary Videos 15 and 16). According to the TIC curves 
(Fig. 4e), the mother cell underwent type II secretion (secretion rate of 
112,209 a.u. h−1), while the daughters experienced type I secretion (at 
270,405 a.u. h−1 secretion rate). Importantly, the plateau reached by 
the mother cell before mitosis is consistent with the downregulation 
of protein transport during mitosis48. Secretion area curves for both 
mother and daughters are shown in Fig. 4f, revealing adsorption rates 
of 351.2 μm2 h−1 and 392.6 μm2 h−1, respectively. As expected, the secre-
tion and adsorption rates as well as the maximum TICs (266,655 a.u. for 
the mother and 1,061,615 a.u. for the daughters) and secretion areas 
(739.7 μm2 for the mother and 1,842.8 μm2 for the daughters) were 
higher for the two daughter cells than for the mother cell.

Visualization of content release during cell death
Cell death, a critical stage in cells’ lifespan, results in the release of bio-
molecules that significantly influence the cellular surroundings. The 
released contents differ by modalities of death and have been shown 
to provoke distinct immune responses6. For instance, it is generally 
accepted that cells undergoing necroptosis, a caspase-independent 
programmed cell death, are more immunogenic than apoptotic ones 
due to the release of proinflammatory factors into the extracellular 
space generating so-called ‘find-me’ and/or ‘eat-me’ signals for the 
immune cells6,55. In this regard, by monitoring the released contents 
during cell death with a high spatiotemporal resolution, the system 
can provide insights into the underlying mechanisms of cell death. 
Especially, the label-free feature of the system enables capture of 
the signature of the total content release during cell death instead of 
monitoring one specific target with fluorescence imaging. To show this 
capability, we examined the behaviour of K562 cells, a myelogenous 
leukaemia cell line, during apoptosis and necroptosis, which are two 
important types of programmed cell death.

As shown by fluorescence imaging (Supplementary Figs. 11 and 12), 
the K562 cells experienced both apoptosis and necroptosis following 
established treatment protocols (see Methods for details). Next, we 
used the system with unfunctionalized plasmonic substrates to cap-
ture the spatiotemporal signature of each death type resulting from 
the binding of all the released contents to the gold nanohole arrays. 
Due to the rapid dynamics of release, especially during necroptosis, 
we performed the experiments with a 2 min time interval for 18 h.  
Figure 5a shows representative spatiotemporal release maps at selected 
time points for an apoptotic cell (Supplementary Videos 17 and 18). 
The optical images (first row in Fig. 5a) indicate the morphological 
characteristics of apoptosis including membrane blebbing and apop-
totic bodies formation. The corresponding release maps and contour 
plots (second and third rows in Fig. 5a) show a local content release 
in the vicinity of the dying cell with a symmetric distribution. This 
observation agrees with the fact that apoptosis is usually considered 
as immunologically silent56.

Figure 5b,c show spatiotemporal analysis along with optical 
images for two representative necroptotic cells at selected time points 
(Supplementary Videos 19–22). Cell swelling followed by membrane 
rupture and cellular collapse, as morphological characteristics of 
necroptosis, can be verified by the optical images. In sharp contrast 
to the apoptotic cell, the spatiotemporal release maps and contour 
plots indicate a very rapid release of massive cell content (within 
~10 min) upon membrane permeabilization that spreads over a large 
area around the cells. This bursting behaviour in necroptosis, which 
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ejects biomolecules to longer distances, might mediate long-distance 
communication between dying and immune cells and increase the 
immunogenicity of necroptosis.

To quantify the differences between apoptosis and necroptosis 
release patterns, we extracted the TIC and release area curves. We 
observed that necroptotic cells presented themselves in two different 
ways. The cell shown in Fig. 5b exhibited strong variations in intensity 
(Fig. 5e) and release area (Fig. 5h) only at the time of the burst (~14:30 
time point) due to cell membrane disintegration. Its corresponding 
spatiotemporal release maps and contour plots indicate that the burst 
followed an asymmetric pattern, probably due to the non-uniform 
pore formation on the membrane. The bursting behaviour of the cell 
shown in Fig. 5c also indicated an asymmetric release pattern initially. 
Interestingly, it experienced a resting period of around 40 min after 
the burst (~7:50 time point), followed by a gradual release of biomol-
ecules that lasted around 7 h (Fig. 5f). This correlates well with recent 
studies showing that necroptotic cells keep synthesizing cytokines 
and chemokines after losing membrane integrity57,58. The release 
maps and contour plots (Fig. 5c) together with the corresponding TIC  
(Fig. 5f) and release area curves (Fig. 5i) highlight that the gradual 
release might affect the close vicinity of the cell in a symmetric pattern. 
The differences in the duration and areal coverage between burst and 
gradual release during necroptosis hint that these two ways of release 
may relate to or even instigate different immune responses in the cell 
vicinity and distant sites where they are sensed by the immune cells. It 
should also be noted that the apoptotic cell shown in Fig. 5a had notably 
less content release with smaller areal coverage compared with the 
necroptotic ones (Fig. 5d,g).

To evaluate the abovementioned behaviours for a larger popula-
tion of single cells, we analysed 191 and 186 cells for apoptosis and 
necroptosis, respectively. Figure 5j compares the maximum TIC values 

associated with the amount of the released products for the two popu-
lations, indicating a ~40-fold intensity change for the necroptotic ones. 
Similarly, the maximum areal coverage of the necroptotic cells was 
six times higher than that of their apoptotic counterparts (Fig. 5k). To 
obtain more details about the release kinetics, we extracted the release 
rates and durations from the TIC curves. Of note, the high variability 
of the mentioned curves for the apoptotic cells (Fig. 5d,g) limits the 
extraction of such parameters.

For the necroptotic cells, the duration of the burst (6.8 min on aver-
age, Fig. 5l) was around 48 times shorter than that of gradual release 
(325.8 min on average, Fig. 5l). The release rate of the burst was 250 
times faster than that of the gradual one (Fig. 5m). Consequently, this 
massive content release within a short time during the burst period 
might be attributed to the involvement of necroptosis at the onset 
of certain cancer types to trigger proper immune responses. On the 
other hand, the slow and local release during the gradual period for a 
long time could be used as a long-term signal for cell debris clearance.

IgG secretion in human PBMCs
Successful single-cell analysis of a large number of hybridomas, which 
revealed different secretion profiles and provided insights into secre-
tion kinetics, suggested that we can apply the system to study clinical 
samples. For this purpose, we investigated a population of human 
PBMCs to analyse antibody-secreting cells (ASCs). These cells circulate 
in the peripheral blood in response to infection or vaccination and 
then migrate to the bone marrow. They are called long-lived plasma 
cells and maintain the secretion of antibodies59. Due to their rarity and 
functional diversity60, monitoring them at single-cell resolution can 
provide valuable insight into their roles in various immune scenarios.

Given the low number of circulating ASCs in the peripheral 
blood, we stimulated ex vivo memory B cells from PBMCs, which then 
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differentiated into ASCs61 (Fig. 6a). ASCs express the B cell marker 
CD19, and high levels of CD27 and CD38. We used these markers to sort 
the ASCs, which are 6.5% of the total population (Fig. 5b and Supple-
mentary Fig. 13). Flow cytometry is limited to providing information 
about the cells that can potentially secrete IgGs. In other words, the 
obtained result does not necessarily correspond to the percentage 
of the cells that are actually secreting. For a more complete charac-
terization, we analysed the sorted cells by ELISpot and our system. 
Their representative results after 6 h of monitoring are presented in 
Fig. 6c and d, respectively (Extended Data Fig. 1 and Supplementary 

Videos 23 and 24). ELISpot results indicated that only 11.5% of the 
sorted ASCs actually secreted IgGs (Fig. 6e). In line with these results, 
our system showed a 9.9% secretion frequency from a population of 
111 sorted ASCs (Fig. 6f). We also subjected the plasmonic single-cell 
microwell array to a second PBMC sample from another healthy donor 
(Extended Data Figs. 2 and 3 and Supplementary Videos 25 and 26) 
with a lower frequency of the secreting cells (6.5 % of the ASCs based 
on ELISpot and 5% with single-cell microwell array), illustrating the 
capability of our system to capture a few secreting cells in hundreds  
of ASCs.
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Fig. 6 | IgG secretion monitoring in ex vivo stimulated PBMCs. a, Schematic 
of PBMCs stimulation and staining followed by flow cytometric analysis for ASC 
enrichment. b, Summary of the cell sorting assay indicating that a small fraction 
(6.5%) of the ex vivo stimulated PBMCs were memory B cells differentiated into 
ASCs. c, A representative ELISpot result for the sorted cells. d, A representative 
4D spatiotemporal secretion map for an ASC obtained by the plasmonic single-
cell microwell array system showing secretion kinetics and morphological 
changes at the single-cell resolution. e,f, Secretion percentage in a population 
of ASCs analysed by ELISpot (e) and the single-cell microwell array system (f). 
With the plasmonic microwell array, 9.9% of the cells are found to be secreting, 
consistent with the results obtained by the ELISpot assay (11.5%). Error bars 
represent the s.d. between two replicates for each column (Extended Data  

Fig. 1). g,h, TIC (g) and secretion area curves (h) showing different secretion type 
ASCs in the population after monitoring them for 6 h. Each curve describes the 
changes for a single cell, and ‘×’ denotes the apoptosis onsets. i,j, 1D scatterplots 
indicating maximum TIC (i) and area covered by the secretion (j). The large s.d.s 
indicate the heterogeneous nature of the population (see Supplementary  
Table 2 for details). k,l, Secretion (k) and adsorption rates (l) of IgGs for the 
three types of ASC in the population, illustrating wide distributions for the types 
I and II ASCs. In total, 111 single-cell measurements were performed from the 
sorted PBMC population. The error bars in i, j, k and l represent the mean ± s.d. 
of secreting cells from this population, with n = 11 (6, 4 and 1 in the T1, T2 and T3 
groups, respectively).
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The spatial distribution of the secreted IgG molecules for these 
cells can also be investigated using the secretion maps and contour 
plots. For instance, in Fig. 6d, the secretion adopted an asymmetric 
C-shape pattern around the cell during the first 3 h and became more 
uniform by the end of the observation time. To gain additional insights 
into the spatiotemporal secretory behaviour of ASCs, we show TIC and 
secretion area curves in Fig. 6g,h. We observed that this cell population 
also has the three distinct secretion profiles, with 5.4%, 3.6% and 0.9% 
for types I, II and III, respectively. Figure 6i,j show the maximum TICs 
and secretion areas for the three types of secreting cell. In addition, 
we extracted the secretion kinetics by calculating the secretion and 
adsorption rates from Fig. 6g,h through linear curve fitting (results are 
given in Fig. 6k,l, respectively). The large standard deviations (see Sup-
plementary Table 2 for more details) in all four plots indicate that the 
population is highly heterogeneous. The comprehensive information 
on secretion dynamics endowed by the plasmonic single-cell micro-
well array enables a multiparametric analysis for a patient-derived 
sample—an advantage over conventional methods. For applications 
where the frequency of the target cells is very low, such as monitoring 
antigen-specific ASCs62, combining FACS-based enrichment with our 
system could be more powerful than using either one of them alone as 
they complement each other.

Outlook
By simultaneously visualizing the spatiotemporal distribution of 
released factors and monitoring cell morphology and motility over a 
long observation time at a temporal resolution of minutes from hun-
dreds of individual cells, the label-free plasmonic single-cell microwell 
array can provide new insights into biological processes. The biosen-
sor substrate can be adapted to detect different secretions, including 
cytokines, extracellular vesicles and antibodies. It is important to con-
sider that secretion rates of such secretory species can vary largely. To 
illustrate the generality of the system for other biomolecules and to 
investigate its applicability to detect targets with lower secretion rates 
and smaller molecular weights compared to IgG63, we evaluated EL-4 
cells to detect Interleukin-2 (IL-2), a key cytokine for the homoeostasis 
and differentiation of T lymphocytes64 (see Supplementary Discussion 
6 and Extended Data Fig. 4). To increase the sensitivity of the system 
and consequently its ability to identify a wider range of biomolecules, 
optical resonance characteristics could be further optimized by engi-
neering the nanostructure design. However, low-cost and wafer-scale 
fabrication of the substrates should be taken into account to maintain 
high-throughput screening.

Another aspect is the multiplexed detection of several secreted 
biomolecules simultaneously, which is essential for a more com-
prehensive analysis of cellular communication. However, this will 
require the implementation of functionalization methods enabling 
the immobilization of the corresponding receptors at spatially district 
locations on the substrate. The open-top configuration of the micro-
wells used in this system enables convenient access for introducing 
various treatments during the experiments, for investigating their 
impacts on individual cell secretions, morphology and motility, and 
ultimately for retrieving the cells of interest via standard micromanipu-
lators for downstream analyses. Furthermore, the capability to deter-
ministically load a specific number of cells in each microwell, either 
similar or different cell types, along with machine-learning-assisted 
cell tracking can allow one to investigate secretion-mediated 
cell-signalling mechanisms. This could significantly facilitate the 
study of secretomes for which cell–cell contact is crucial, as in can-
cer–immune-cell interactions. The versatility and performance of the 
system and its compatibility with both adherent and non-adherent 
cells suggest that it can pave the way towards gaining a comprehen-
sive understanding of single-cell secretory behaviours for applica-
tions ranging from basic research to drug discovery and personalized  
cell therapy.

Methods
Materials
PEGylated alkanethiols HS-C6-EG3OH, HS-C11-EG4OCH2COOH 
and HS-C11-EG3-biotin were obtained from Prochimia Surfaces.  
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimid-hydrochlorid 
(EDC, 25952-53-8), anhydrous sodium acetate (127-09-3), MES hydrat 
(1266615-59-1), ethanolamin (141-43-5), Ethylenediaminetetraacetic 
acid (EDTA, 60-00-4), bovine serum albumin (BSA, 9048-46-8), 
Toll-like receptor 7/8 agonist (R848, 144875-48-9), BM Condimed 
H1 (11088947001) and shikonin (54-952-43-1) were purchased from 
Sigma-Aldrich. Roswell Park Memorial Institute 1640 Medium (RPMI, 
61870036), Dulbecco’s modified Eagle medium (DMEM, 41966029 
and 218850025), fetal bovine serum (FBS, 10270106), phosphate 
buffered saline (PBS, 10010023), penicillin-streptomycin (15140122), 
N-Acetyl-l-cystein (NAC, 616-91-1), Pierce recombinant protein A/G 
(21186), N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES, 
15630056), Trypan blue solution (15250061), β-mercaptoethanol 
(21985023), AlexaFluor700 anti-human CD38 (56-0389-42), PE-eF610 
anti-human CD27 (61-0279-42), Vivid Green Live/dead fixable stain kit 
(L34970), cell stimulation cocktail (00-4970-93), protein transport 
inhibitor cocktail (00-4980-93), cell viability imaging kit (R37609), 
CellEvent Caspase-3/7 Green Detection reagent (C10723) and eth-
idium homodimer-1 (E1169) were obtained from Thermo Fisher. 
Sulfo-N-hydroxysuccinimide (sulfo-NHS, 106627-54-7) and recombi-
nant human TNF alpha protein (ab9642) were purchased from Abcam. 
SM-164 was obtained from LubioScience (HY-15989). Mouse and human 
IgG ELISpot kits (3825-2A and 3850-2H) and biotinylated mouse IL-2 
antibody (3441-6-250) were purchased from Mabtech. FITC anti-human 
CD16 (302005), FITC anti-human CD14 (301803), FITC anti-human CD3 
(300405), Brillant Violet 711 anti-human CD19 (302245) and LEGEND-
plex kits (N.741044 and N.740795) were purchased from Biolegend. 
Recombinant human IL-2 was obtained from Peprotech (200-02).

Optical setup
We employed an inverted microscope (Nikon Ti-E) as the main optical 
platform for label-free cell secretion analysis, which is equipped with 
a customized microscope cell incubator (Life Imaging Services). For 
plasmonic intensity imaging measurements, we used a collimated 
near-infrared LED (Thorlabs, M850L3-C5) controlled by an LED driver 
(Thorlabs, LEDD1B) to achieve a narrowband illumination. To obtain 
maximal imaging quality at near-infrared spectrum, we took advan-
tage of an sCMOS camera (Photometrics IRIS-15) with a quantum effi-
ciency of >35% at 850 nm for EOT intensity acquisition. Besides, this 
camera had an active array of 5,056 × 2,960 pixels with a pixel size of 
4.25 μm × 4.25 μm, which provided a large FOV (~1.1 mm × 0.65 mm) 
when combined with a medium power ×20 objective used for imaging. 
The microscope stage was controlled by software (Nikon Advanced 
Research) that enabled scanning different FOVs for high-throughput 
imaging.

Fabrication of the plasmonic nanohole array substrates
To manufacture the gold nanohole array substrates, we took advantage 
of DUV lithography that provides wafer-scale and low-cost fabrication 
of the sensor chips on a transparent 4-inch fused silica substrate. In 
brief, after RCA cleaning of a 4-inch fused silica wafer, thin layers of 
Ti (10 nm) and Au (120 nm) were deposited on the wafer by e-beam 
evaporation (Alliance Concept EVA 760). Ti is not only used as the adhe-
sion layer, but it also quenches the unwanted plasmonic modes at the 
interface of the Au and the wafer. Thus, the EOT signals are mainly cre-
ated between the medium and the Au layer and are used to monitor the 
binding of secretory species to the gold surface. Then, we spin coated 
a layer of photoresist on the wafer and patterned an array of periodic 
nanoholes on the surface using a DUV stepper (ASML PAS5500/300). 
Next, we developed the pattern and transferred it onto the gold surface 
by ion beam etching (Oxford Instruments PlasmaLab 300). Finally, a 
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resist removal step was done by oxygen plasma. In addition to the DUV 
lithography process, alternative wafer-scale nanofabrication methods 
such as nanoimprint lithography65 and interference lithography66 can 
be well-suited to low-cost manufacturing of nanohole arrays.

Preparation of the plasmonic nanohole array substrates
After coating the wafer with photoresist as a protection layer, we diced 
it into 1 cm × 1 cm chips. Next, we removed the photoresist by immers-
ing the chips in the resist stripper for 20 min in a 70 °C ultrasonic bath 
(twice), followed by an oxygen plasma treatment. Lastly, an RCA clean-
ing was performed to ensure removal of all polymer residues.

Surface functionalization for IgG detection
We first cleaned the substrate by sequential washing with acetone, iso-
propanol and milli-Q water, followed by a 20 min UV treatment. Then a 
self-assembled monolayer (SAM) was formed on the surface by immers-
ing the clean chip in COOH/OH-functional PEGylated alkanethiols at 
a 1:4 ratio and 2 mM final concentration of [-SH] in absolute ethanol 
overnight at room temperature. Next, the chip was washed with etha-
nol (three times, each for 5 min) to remove the unbound thiols, rinsed 
with milli-Q water and dried with pressurized nitrogen. After that, we 
activated the carboxylic group by immersing the chip in a cross-linking 
solution comprising EDC (200 mM) and sulfo-NHS (50 mM) in MES 
buffer for 20 min at room temperature. Upon activation, such groups 
are ready to bind to protein A/G and stabilize the biorecognition layer. 
Next, the chip was incubated in protein A/G (50 μg ml−1) solution diluted 
in acetate buffer for 2 h at room temperature on a thermomixer. The 
unreacted COOHs were deactivated by immersing the substrate in 1 M 
ethanolamine solution for 5 min at room temperature. We used 1% BSA 
to block the excess protein-binding sites for 1 h at room temperature. 
Finally, after rinsing the substrate with milli-Q water, it was ready for 
measurement. For the control experiment with hybridoma cells in the 
absence of protein A/G, the PEG functionalized substrate was incubated 
in 1% BSA for 1 h at room temperature, rinsed with milli-Q water and 
dried with pressurized nitrogen to be ready for measurement.

Surface functionalization for IL-2 detection
After cleaning the substrate as explained above, the SAM layer was 
formed by immersing the substrate in biotin/OH-functional PEGylated 
alkanethiols at a ratio of 1:9 and 2 mM final concentration in absolute 
ethanol overnight at room temperature. Next, the substrate was washed 
with ethanol (three times, each for 5 min) to remove the unbound 
thiols, rinsed with milli-Q water and dried with pressurized nitrogen. 
After that, the substrate was treated with 50 μg ml−1 streptavidin solu-
tion diluted in PBS for 3 h at room temperature on a thermomixer. 
The substrate was then washed with PBS (three times, each for 5 min) 
to remove the unbound streptavidin and incubated in biotinylated 
mouse IL-2 antibody (50 μg ml−1) solution diluted in PBS for 2 h at 
room temperature on a thermomixer. After washing the substrate 
with PBS (three times, each for 5 min), 1% BSA solution was added to 
block the excess protein-binding sites for 1 h at room temperature. 
Finally, the substrate was rinsed with milli-Q water to be ready for  
measurement.

SPR instrument and measurements
SPR measurements were performed using a commercial multipara-
metric SPR machine (MP-SPR Navi 210A VASA, Bionavis). The real-time 
sensograms were obtained by angular scanning (60°–75°) with a laser 
source at 670 nm wavelength and scan speed of 1.5 s. The measure-
ments were done with a continuous buffer flow (PBS, 10 μl min−1) at 
room temperature. SPR sensors (purchased from Bionavis) were made 
of glass with 50 nm gold and 10 nm chromium coating as the adhe-
sion layer. The sensor cleaning and SAM layer formation were done as 
explained for the plasmonic substrates. The rest of the functionaliza-
tion steps were carried out in real time.

Cell culture
Clonal mouse hybridoma cells (anti-CD45.1), mouse EL-4 cells (TIB-
39, kindly provided by Dr Anne Wilson from the University of Laus-
anne) and K562 cells (CCL-243, obtained from ATCC) were cultured 
in high-glucose DMEM supplemented with 10% FBS, 10 mM HEPES, 
100 U ml−1 penicillin and 100 μg ml−1 streptomycin at 37 °C and 5% 
CO2. The medium was refreshed, and the cells were split every 2–3 d.

Before each experiment, the viability of the cells was assessed 
using trypan blue staining to ensure that the cells were in good con-
dition. For analysing the secretion of hybridoma and K562 cells, we 
modified the culture medium by using low-glucose DMEM and 300 μM 
NAC to reduce oxidative stress on the single cells and 1% BM Condimed 
(instead of 10% FBS) to reduce the non-specific products introduced 
by FBS while maintaining the cells’ viability. In the control experiments 
with hybridoma cells, to block the secretory pathway, a protein trans-
port inhibitor cocktail (1x) containing brefeldin A and monensin was 
added to the medium. For analysing the mouse EL-4 cells, a stimulation 
cocktail (1x) was also added to the abovementioned medium. A viability 
kit was used according to the manufacturer’s protocol to evaluate the 
cells’ viability.

Cell-death induction
To induce apoptosis and necroptosis, we followed the established pro-
tocols67–69. In brief, after spotting the K562 cells in the PDMS microwells, 
they were incubated in the cell culture medium (as described in the 
previous sections) supplemented with 50 ng ml−1 human TNF-α and 
100 nM sm-164 for apoptosis induction. Necroptosis was triggered by 
treating the cells with 10 μM shikonin.

Fluorescence imaging of different cell death types
To monitor apoptosis and necroptosis with fluorescence label-
ling, we incubated the treated cells (as described in the previ-
ous sections) with 5 μM CellEvent Caspase-3/7 Green Detection 
reagent and 1.6 μM ethidium homodimer-1, and captured the fluo-
rescence images every 10 min. Apoptotic cells were expected to 
emit green fluorescence upon caspase-3/7 activation and red fluo-
rescence after membrane permeabilization and binding of ethid-
ium homodimer-1 to DNA. The necroptotic cells were expected to 
show only red fluorescence after membrane disintegration without  
caspase-3/7 signals.

Generating the single-cell array on PDMS micromesh
We prepared an array of microwell structures by attaching a PDMS 
micromesh to the gold nanohole array chips to seed the single cells. 
The PDMS structures were fabricated on the basis of the standard 
photo-/soft-lithography procedure. Each microwell had a diameter 
of 200 μm and a height of 50 μm, generating a unit volume of 1.5 nl. 
We cleaned the PDMS device by sonication in 70% ethanol and dried it 
using pressurized nitrogen before cell seeding.

Single cells were isolated and dispensed into the microwell by 
employing the state-of-the-art cellenONE X1 technology (SCIENION). 
This technology uses a combination of a piezoelectric liquid dispenser 
and advanced image processing to enable deterministic dispensing of 
a large quantity of single cells. Each microwell was first prefilled with 
cell culture medium supplemented with 1% v/v glycerol to prevent 
liquid evaporation during the subsequent procedure. A suspension 
of the cells was centrifuged at 410 × g for 5 min and washed twice with 
serum-free media to remove the secreted materials. We adjusted the 
cell density to 2–3 × 105 cells per ml and subsequently pipetted 50 μl 
of the suspension into a 384-well plate (the standard format for the 
dispenser). The piezoelectric voltage and pulse duration were set at 
65 V and 48 μs, forming a droplet of 300 pl with cell culture media. 
Then, 10 μl of cell suspension was loaded into the dispensing noz-
zle, resulting in the seeding of single cells into microwells in a highly  
precise manner.
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Preparation and sorting of PBMCs
Venous blood was drawn from healthy donors at the Swiss Transfusion 
Center of Geneva, Switzerland, under its ethical approval. The volun-
teers were asked to read an information sheet for blood donation and 
to complete an online medical questionnaire on the day of donation. 
After the questionnaire was finalized, a PDF file was generated for 
printing and signed to give approval for blood donation.

Memory B cell stimulation was performed as detailed elsewhere61. 
Briefly, cryopreserved PBMCs from a blood donor were thawed and 
stimulated with R848 (1 μg ml−1) and human interleukin-2 (10 ng ml−1) 
in RPMI containing 10% FBS, 10 mM HEPES, 100 U ml−1 penicillin, 
100 μg ml−1 streptomycin and 50 mM β-mercaptoethanol. The cells 
were incubated (37 °C and 5% CO2) for 5 d, collected and washed with 
PBS. Next, the cells were live/dead stained with Vivid Green (1/5,000 in 
PBS) for 20 min at 4 °C. After washing the cells with PBS and removing 
the supernatant, the cells were stained in sorting buffer (PBS, 50 μM 
EDTA and 0.2% BSA) using a panel of fluorescent antibodies designed 
for isolation of antibody-secreting cells including FITC anti-human 
CD16 (1:200), FITC anti-human CD14 (3:500), FITC anti-human CD3 
(1:100), Brillant Violet 711 anti-human CD19 (1:200), Alexa Fluor 700 
anti-human CD38 (1:50) and PE-eF610 anti-human CD27 (1:50) for 
20 min at room temperature. Finally, the cells were washed with PBS, 
resuspended in sorting buffer and sorted using FACSAria II instrument 
(BD Biosciences) at 4 °C. After sorting, the cells were incubated at 37 °C 
for 3 h in the mentioned medium for full recovery and in preparation 
for the secretion analysis using the single-cell plasmonic microwell 
array and ELISpot assay.

ELISpot assays for mouse hybridomas and human ASCs
We first activated the polyvinylidene fluoride or polyvinylidene 
difluoride (PVDF) plates using 15 μl per well of 35% ethanol for 20 s 
and then washed the wells five times with milli-Q water. Following 
the manufacturer’s recommended protocol, the plates were treated 
with 100 μl of the 15 μg ml−1 capture antibodies (anti-IgG antibody for 
mouse IgG and MT91/145 antibody for human IgG) at 4 °C overnight. 
Next, we washed the wells five times with BPS, and for blocking, we 
incubated them with the medium used for culturing the cells for 1 h 
at room temperature. After that, the cells (mouse hybridomas and 
human ASCs) were counted and seeded in the wells in duplicate. For 
the control wells, the secretory pathway was blocked by adding the 
protein transport inhibitor cocktail (1×). After incubation at 37 °C in a 
humidified incubator (12 h for mouse hybridomas and 6 h for human 
PBMCs), we removed the cells and washed the plate with PBS (five 
times). Of the 1 μg ml−1 detection antibodies (anti-IgG-biotin for mouse 
IgG and MT78/145-biotin for human IgG), 100 μl was added to each 
well for 2 h at room temperature, followed by washing with PBS (five 
times). Then, streptavidin-ALP (for mouse IgG) and streptavidin-HRP 
(for human IgG) were diluted in PBS (1:1,000) and added to the wells 
(100 μl) for 1 h at room temperature. To develop the spots, we washed 
the plates with PBS (five times) and added 100 μl per well of the sub-
strate solutions (BCIP/NBT for mouse IgG and TMB for human IgG). 
When the spots emerged, we stopped the development by washing 
the plates with deionized water. Finally, the spots were counted using 
Bioreader-6000-E (BIO-SYS).

Cytokine quantification for EL-4 and K562 cells
A panel of cytokines was quantified for the EL-4 and K562 cells using 
LEGENDplex kits according to the manufacturer’s recommendation. In 
brief, 2 × 104 EL-4 cells in 500 μl medium were treated with a stimulation 
cocktail containing phorbol 12-myristate 13-acetate (PMA) and ionomy-
cin (1×) for 15 h. A group of non-stimulated cells was used as a control. 
For the K562 cells, 104 cells were cultured in 500 μl medium for 24 h 
without any stimulation. Then, the cell supernatants were collected 
and incubated with antibody-conjugated beads. Next, the beads were 
washed, and the biotinylated detection antibodies were added to form 

the sandwich immunocomplex. Finally, streptavidin-phycoerythrin 
was added and the fluorescence intensity was measured using a Gallios 
flow cytometer (Beckman Coulter). Data analysis was done using the 
LEGENDplex software (v8.0).

Machine-learning-assisted image processing
The 4D spatiotemporal secretion maps with cell tracking were gener-
ated using an in-house code, written and executed in a MATLAB live 
script that combines conventional MATLAB code and formatted text.

The raw images showed subfields of the single-cell microwell 
array, which contain individual cells and the empty reference wells. A 
time lapse of these images (in.tif or.tiff image file formats) was loaded 
and sorted as variables in the MATLAB workspace. The raw inputs were 
cropped (350 × 350 pixels) to analyse each specific cell-spotted sensing 
microwell and its empty counterpart.

Cell tracking
Cropped but otherwise unprocessed images of the cell-spotted sensing 
microwells were semantically segmented into ‘cell’ and ‘background’ 
using ilastik70, an interactive machine-learning toolkit for bioimaging, 
in headless mode. A random set of approximately 100 images from both 
different reference and cell-spotted sensing microwells (including 
cells that underwent mitosis) in different time instances were used to 
manually train the algorithm using the pixel classification workflow of 
the toolkit. ilastik was used to select and compute six features for each 
pixel (Gaussian, Laplacian of Gaussian, Gaussian gradient magnitude, 
difference of Gaussians, dtructure tensor eigenvalues and Hessian of 
Gaussian eigenvalues), with seven kernel radiuses for Gaussian (0.3 
pixel, 0.7 pixel, 1.0 pixel, 1.6 pixels, 3.5 pixels, 5.0 pixels and 10.0 pixels) 
and six kernel radiuses (0.7 pixel, 1.0 pixel, 1.6 pixels, 3.5 pixels, 5.0 
pixels and 10.0 pixels) for the other features, yielding a vector of 37 
values for each pixel. For training, subsets of the pixels were labelled as 
‘cell’ or ‘background’ by a human. The identity of the remaining pixels 
was predicted using a random forest classifier with 100 trees. After 
training and batch processing of images, the classifier outputted a 
respective probability map with pixel values ranging from 0 (‘cell’) to 
1 (‘background’). The probability map images were smoothed with an 
arithmetic mean filter and binarized using Otsu’s method, thus obtain-
ing a binary ‘cell’-‘background’ mask for each frame in the time lapse. To 
identify (and exclude from subsequent analysis) all the spatiotemporal 
positions occupied by the motile cell, a cumulative binary mask was 
built such that each image was the union of the frames preceding it.

Analysis of spatiotemporal secretion profile
The secretion profile of single cells was extracted through the creation 
of new vectors for both the microwell images (reference and sensing) 
and the cumulative binary masks. The new vectors corresponded to 
the pixel-wise absolute difference between the first image and all sub-
sequent images of the time lapse, as ΔI(t + 1) = |I(t + 1) − I(1)|, where I and 
t are pixel intensity and time, respectively. The ‘difference images’ of 
the microwells were smoothed using a Gaussian kernel with standard 
deviation σ = 1.5.

Background and baseline drift correction took place by selecting a 
small region of interest (ROI) in the first ‘difference image’ of the refer-
ence microwells and propagating it along the time lapse. The average 
grey-level intensity for each reference ‘difference image’ was calculated 
using μ_signal + 3σ_signal, where μ is the average grey-level intensity 
of the ROI and σ is the known standard deviation. The resulting value 
was pixel-wise subtracted from the corresponding cell-spotted sensing 
microwell ‘difference image’.

These preliminary secretion maps were further refined by using 
the circular Hough transform to identify the border of the microwell 
and exclude the area outside of it. Additionally, a so-called ‘secretion 
ROI’ was selected by a human in the sensing microwell ‘difference 
images’ to reduce noise due to edge artefacts and intensity differences 
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within the microwell but far from (and therefore unrelated to) the 
cell. An iterative K-means clustering algorithm was optionally used 
to remove the intensity difference clusters, which were small and far 
away from the centroid of the cell. Finally, the secretion maps were 
multiplied by the ‘difference image’ of the cumulative mask to com-
pletely remove the intensity changes occurring due to the presence 
and movement of the cell.

Secretion analysis
Two metrics were developed to quantify the secretion profile of single 
cells in real time. The first metric is termed absolute intensity change 
(TIC), which was calculated as the total intensity of the non-zero pixels 
in each secretion map frame. The second metric is the secretion area, 
defined as the area occupied by the binding of secreted materials to 
the capture probes on the functionalized chip surface, which was cal-
culated by multiplying the number of non-zero pixels in the secretion 
map by the physical area of each pixel.

Kinetics modelling
The onset of secretion was defined as the first instance when the TIC of 
the background-corrected ‘difference image’ was greater than zero. To 
extract kinetic information from the TIC and secretion area curves, we 
used linear curve fitting to calculate the secretion and absorption rates. 
We fitted linear equations to the curves for the time interval between 
the onset of secretion and the point when the signals reached 80% of the 
maximum experimental values. It should be noted that for the secreting 
cells type III and necroptotic cells with burst and gradual release, two 
equations were fitted to the linear parts. For this purpose, the plateau 
duration was defined as the time interval between the time point when 
the signals did not increase in three successive time frames and the 
moment when the signals experienced a further rise in three successive 
time frames. By doing so, we obtained two intervals for the fitting: from 
the onset of secretion to the point when the signals reached 80% of the 
average of the plateau, and from the end of the plateau to the moment 
when the signals reached 80% of the maximum experimental value. The 
coefficients of determination were greater than 0.9 when employing 
least-squares regression analyses to find the best fits.

Duration of the secretion was defined as the time interval when the 
linear fitting was valid for the TIC curves. For the secreting cells type 
III, the sum of both time intervals for the linear parts was considered 
as the duration of secretion.

Statistics
Data were analysed using MATLAB 2019, Microsoft Excel 2019, Graph-
Pad Prism, ilastik (v1.3.2), FlowJo (v10.8.0) and ImageJ (v1.53f51). The 
imaging data were collected using NIS-Elements Advanced Research. 
The data analysis for cytokine quantification using the LEGENDplex 
kits was conducted by the LEGENDplex software (v8.0). For analysing 
the populations, data were expressed as means ± s.d. Sample sizes 
are listed in each section along with the corresponding experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within 
the paper and its Supplementary Information. The raw and analysed 
datasets generated during the study are too large to be publicly shared, 
yet they are available for research purposes from the corresponding 
author on reasonable request.

Code availability
The custom MATLAB codes used for the spatiotemporal analyses are 
available from the corresponding author on reasonable request.
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Extended Data Fig. 1 | ELISpot assay for human IgG detection in antibody-
secreting cells. a and b, Two repetitions of IgG detection using ELISpot for 
memory B cells from PBMCs that were ex vivo differentiated into antibody-

secreting cells. A population of 100 cells was incubated in each well for six hours. 
11 cells in (a) and 12 cells in (b) were found secreting. c and d, IgG detection in PTI 
antibody-secreting cells as a control experiment. No secreting cell was observed.
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Extended Data Fig. 2 | Flow cytometric analysis of human PBMCs. a, Excluding 
cell debris and selecting lymphocytes in the population based on forward and 
side scatters. b and c, Excluding doublets and selecting singlets based on  
forward and side scatters, respectively. d, Live cells (Zombie negative) were  
gated on CD3/14/16 (negative) to exclude the monocytes, T and natural killer 

cells. e, Gating the obtained population on CD19 (positive) to reach the B cells. 
f, Within the B cells, antibody-secreting cells were identified as CD27/38 (high) 
cells. Arrows show the gating strategy for detecting the potentially antibody-
secreting cells.
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Extended Data Fig. 3 | IgG secretion in ex vivo stimulated PBMCs.  
a, Summary of the cell sorting assay indicating a small fraction (2.3%) of the  
ex vivo stimulated PBMCs were memory B cells differentiated into ASCs.  
b, A representative ELISpot result for the sorted cells that allows counting the 
number of secreting cells. c, A representative 4D spatiotemporal secretion 
map for an ASC obtained by the plasmonic single-cell microwell array platform 
showing secretion kinetics and morphological changes at single-cell resolution. 
d and e, Secretion percentage in a population of ASCs analyzed by ELISpot and 
the single-cell microwell array platform, respectively. Error bars represent the 
standard deviation between two replicates for each column. f and g, TIC and 

secretion area curves illustrating different secretion types in the population 
after monitoring them for six hours (TI: type I, TII: type II, and TIII: type III). Each 
curve describes the changes for a single cell, and × shows the apoptosis onsets.  
h and i, One-dimensional scatter plots indicating maximum TIC and area 
covered by the secretion. j and k, Secretion and adsorption rates of IgGs for the 
three types of ASCs in the population. In total, 100 single-cell measurements 
were performed from the sorted PBMC population. The error bars in h, i, j and k 
represent the mean ± s.d. of secreting cells from this population, with n = 5  
(2, 2 and 1 in the T1, T2 and T3 groups, respectively).
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Extended Data Fig. 4 | Spatiotemporal analysis of IL-2 secretion from mouse 
EL-4 cells. a and b, Characterization of secreted cytokines by the EL-4 cells using 
LEGENDplex™ kit. (b) zooms in to show the result for the cytokines with a lower 
level of secretion compared with IL-2. Error bars represent the standard deviation 
between two replicates for each column. c, A 4D spatiotemporal secretion map 
for a representative secreting EL-4 cell obtained by the plasmonic single-cell 
microwell array platform illustrating the secretion kinetics and morphological 

changes. (I) are the time-lapse optical images, (II) are the spatiotemporal 
secretion maps, and (III) are the secretion contour plots. d and e, TIC and 
secretion area curves indicating the amount of IgGs secreted over time and 
the area covered by the secretion, respectively. Linear curve fitting is used to 
extract the secretion and adsorption rates (the slopes). The maximum amount 
of secretion and area covered by the secretion (Max) are defined with the gray 
dashed lines.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection NIS-Elements Advanced Research (Nikon's software version 5.01).

Data analysis Custom-written Matlab script (version R2019), open-source ilastik (version 1.3.2), GraphPad Prism (version 9.2), Microsoft Excel 2019, FlowJo 
(version 10.8.0), and ImageJ (version 1.53f51). The data analysis for cytokine quantification using the LEGENDplex kits was conducted via 
LEGENDplex software (version 8.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For each experiment, either with cell lines or human peripheral blood mononuclear cells (PBMCs), the exact number of cells is indicated in the 
paper. Because a goal of this study was to increase the throughput from a few tens of cells to hundreds of cells, we used the full potential of 
the system to have the maximum number of cells. No sample-size calculation was performed.

Data exclusions No data were excluded.

Replication The experiments for cytokine quantification and ELISpot assays were performed in duplicate, and the results were reproducible. Data of all 
replicates are included in the paper. The experiments with hybridoma cells for antibody detection were performed in duplicate, with 
reproducible results (yet only the result for one of the experiments is shown).

Randomization No randomization was used because the study was focused on demonstrating the sensor performance rather than evaluating and comparing 
clinical samples.

Blinding No blinding was performed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Pierce recombinant protein A/G (Cat# 21186, 50μg/mL), AlexaFluor700 anti-human CD38 (Cat# 56-0389-42, 1:50), and PE-eF610 

anti-human CD27(Cat# 61-0279-42, 1:50) were obtained from Thermo Fisher Scientific. FITC anti-human CD16 (Cat# 302005, 1:200), 
FITC anti-human CD14 (Cat# 301803, 3:500), FITC anti-human CD3 (Cat# 300405, 1:100), and Brillant Violet 711 anti-human CD19 
(Cat# 302245, 1:200) were purchased from Biolegend. Biotinylated mouse IL-2 antibody (Cat# 3441-6-250, 50μg/mL), anti-human IgG 
(Cat# 3850-3-250, 15 μg/mL), biotinylated anti-human IgG (Cat# 3850-6-250, 1μg/mL), anti mouse IgG (kit Cat# 3825-2A, 15 μg/mL), 
and Biotinylated anti-mouse IgG (kit Cat# 3825-2A, 1μg/mL) were purchased from Mabtech.

Validation All antibodies were validated by the manufacturers and used according to the manufacturers' protocols. For experiments with the 
single-cell microwell array, SPR characterization was performed (Supplementary information).

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Clonal mouse hybridoma cells (anti-CD45.1) and mouse EL-4 cells (TIB-39) were kindly provided by Dr. Anne Wilson from the 
University of Lausanne. K562 cells (CCL-243) were obtained from ATCC.

Authentication In addition to the flow cytometry analyses done by Dr. Wilson, ELISpot assays were used to check the secretory behaviours of 
the cells.
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Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cells lines were used.

Human research participants
Policy information about studies involving human research participants

Population characteristics PBMCs derived from anonymised buffy coats obtained from healthy blood donors from the transfusion center at the 
University hospitals of Geneva who met the local criteria for blood donation. No additional information on population  
characteristics was available. 

Recruitment Samples were obtained from the local donor blood bank, for which participants volunteered, and the selection of the Buffy 
coat was random.

Ethics oversight The Swiss Transfusion Center of Geneva, Switzerland.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Sample preparations for flow-cytometry analysis are detailed in Methods.

Instrument FACSAria II instrument (BD Biosciences) 

Software FlowJo (version 10.8.0)

Cell population abundance The abundance of antibody-secreting cells was 6.5% and 2.3% in the two donor samples used in this study.

Gating strategy First, we excluded cell debris and selected lymphocytes in the population based on forward and side scatters. Then, we 
excluded doublets and selected singlets based on forward and side scatters, respectively. Live cells (Zombie negative) were 
gated on CD3/14/16 (negative) to exclude the monocytes, T cells and natural killer cells.  Next, we gated the obtained 
population on CD19 (positive) to reach the B cells. Within the B cells, antibody-secreting cells were identified as CD27/38 
(high) cells. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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