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FACULTÉ DES SCIENCES
Professeure Ruth DURRER

Theoretical and Observational
Aspects of Relativistic Cosmology

THÈSE
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Abstract

Durant ma thèse j’ai travaillé sur des aspects théoriques et observationnels de la
cosmologie relativiste. D’un point de vue théorique, j’ai considéré deux possibles
solutions au problème de l’énergie sombre: les effets des inhomogénéités induits, par
rétroaction, sur des échelles cosmologiques, et l’introduction d’un champ scalaire qui
peut expliquer l’accélération de l’expansion de l’univers. Du côté observationnel, j’ai
étudié la distribution des galaxies en fonction des quantités réellement observables
et considérant tous les effets relativistes au premier ordre dans la théorie des pertur-
bations. J’ai analysé avec quelle précision de futures expériences pourront estimer
les paramètres cosmologiques et j’ai calculé la contribution des différents effets à la
distribution des galaxies.
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Résumé

La cosmologie est la science qui étudie l’univers dans son ensemble. Elle pose ses
fondations sur la théorie de la Relativité Générale pour décrire la force de gravitation
et sur le Modèle Standard des particules pour la matière. Ces deux théories ont été
confirmées par différentes expériences et observations et sont, sans doute, les plus
importantes conquêtes de la physique théorique du XXe siècle. Cependant, quelques
observations cosmologiques ne concordent pas avec les prédictions théoriques. Afin
de développer un modèle cosmologique consistant avec toutes les observations il est
nécessaire de modifier, ou d’étendre, au moins une de ces théories. À ce jour, toutes
les observations convergent vers le modèle ΛCDM, qui décrit un univers homogène et
isotrope, sans courbure, avec une constante cosmologique Λ et de la matière sombre
(Cold Dark Matter). Le besoin d’introduire la matière sombre, notamment un type
de matière non-relativiste insensible à la force électromagnétique, s’est présenté déjà
en 1933 lorsque Zwicky [1] a mesuré la vitesse des galaxies de l’Amas de Coma, et
montré que la matière lumineuse n’était pas suffisante pour justifier ces vitesses. En
1998, deux collaborations ont mesuré la distance lumineuse avec des supernovae [2,
3, 4], et montré que l’univers n’est pas seulement en expansion, mais également
que l’expansion est en train d’accélérer. Cet effet répulsif de la gravité ne peux
pas être expliqué par de la matière ordinaire. La solution la plus simple consiste à
introduire une constante cosmologique, Λ, dans les équations d’Einstein. Ce terme
est compatible avec les symétries de la Relativité Générale et il est équivalent à
un type de matière satisfaisant ρ = −p. Grâce à cette pression négative de la
constante cosmologique, la force gravitationnelle agit de façon répulsive et produit
une accélération.

Si d’un point de vue observationnel, l’introduction de la constante cosmologique
est bien motivée, elle est complètement énigmatique du point de vue théorique. En
effet, la valeur mesurée est plus petite de plusieurs ordres de magnitude que ce qu’on
attendrait näıvement de la contribution des fluctuations quantiques du vide. Après
la mesure de la distance lumineuse des supernovae, différents modèles ont été con-
sidérés pour expliquer l’accélération de l’expansion de l’univers. Généralement, ces
modèles n’essaient pas d’expliquer pour quelle raison la valeur mesurée est si petite.
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L’espoir est que des effets quantiques puissent annuler la contribution de l’énergie du
vide. Dans cette perspective, il faut trouver un autre mécanisme physique qui puisse
produire la récente accélération. Les différentes tentatives peuvent être classifiées en
trois catégories. La première possibilité consiste à introduire un nouveau degré de
liberté, généralement décrit par un champ scalaire avec une pression négative, qui
produit la récente accélération de l’univers. On parle dans ce cas d’énergie sombre
(Dark Energy). Une autre approche étudie la possibilité de modifier la théorie de la
Relativité Générale à grandes échelles. Une force gravitationnelle plus faible à des
échelles cosmologiques peut induire une accélération de l’expansion de l’univers. La
troisième idée, plus conservatrice, est fondée sur le fait que l’univers est homogène
en moyenne, mais qu’il est fortement perturbé à petites échelles. Ces perturbations
peuvent reproduire, par rétroaction (Back-Reaction), une (apparente) accélération
sur des échelles cosmologiques. Cet effet peut se produire parce que les équations
d’Einstein ne sont pas linéaires et elles ne commutent donc pas avec la moyenne.

Dans ma thèse, j’ai pris en considération surtout cette dernière idée. J’ai con-
sidéré [5] un modèle avec une symétrie plane et une distribution inhomogène de
matière non-relativiste le long d’une direction. Clairement, ce modèle n’est pas
réaliste, mais grâce à ses symétries il possède des solutions aux équations d’Einstein.
J’ai étudié comment les perturbations peuvent modifier la propagation de la lumière
et donc la distance lumineuse dans un régime complètement relativiste. J’ai trouvé
que la distance est perturbée autour de la valeur de fond, mais elle ne manifeste pas
d’effet global qui peut être confondu avec l’énergie sombre. À cause de l’absence de
pression dans la matière non-relativiste, tous les profils de densité réalistes forment
des singularités. Pour cette raison, je me suis limité à des petites amplitudes initiales
des perturbations. Pour éliminer cette limitation j’ai réétudié [6] ce modèle utilisant
un nouveau code numérique relativiste [7] qui peut traiter correctement la distri-
bution de matière, évitant la formation des singularités. Ces projets m’ont permis
de conclure que, si les résultats de ce modèle peuvent être généralisés, les effets de
rétroaction (Back-Reaction) ne sont pas suffisants pour expliquer l’accélération de
l’expansion de l’univers. Cependant, ces effets sont certainement présents et on doit
les prendre attentivement en considération. Ces dernières années, les fluctuations
de la distance lumineuse au premier ordre dans la théorie des perturbations autour
d’une métrique de fond homogène et isotrope (FLRW) ont été calculées [8, 9, 10],
montrant que les fluctuations sont deux ordres de grandeur plus grands que ce qu’on
aurait pu imaginer näıvement. Des calculs au deuxième ordre [11] ont aussi montré
des fluctuations de même amplitude. Dans ma thèse, j’ai dérivé la contribution aux
fluctuations de la distance lumineuse induites par des perturbations vectorielles et
tensorielles [12]. J’ai appliqué ce formalisme à un spectre primordial de perturba-
tions tensorielles et montré que l’effet sur la distance est beaucoup plus petit que
celui induit par les perturbations scalaires. Ceci s’explique par le fait que les per-
turbations tensorielles décroissent quand elles entrent dans l’horizon, tandis que les
perturbations scalaires grandissent. Puisque l’effet des perturbations tensorielles au
première ordre est si petit, on s’attend à ce que la plus grande contribution vienne
des perturbations tensorielles au deuxième ordre générées à partir des perturbations
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scalaires au premier ordre. Ce résultat peut être pertinent dans les récentes analyses
des fluctuations de la distance lumineuse au deuxième ordre [13, 14].

Dans un autre projet [15], j’ai étudié le comportement et la quantification d’une
théorie, le champ de Pais-Uhlenbeck [16], avec deux dérivées temporelles dans le
lagrangien. Contrairement à ce que l’on puisse penser näıvement, on a montré
que cette théorie peut être quantifiée en éliminant, du spectre des états physiques,
les instabilités liées au théorème d’Ostrogorsky. On a introduit le champ de Pais-
Uhlenbeck comme champ de Stückelberg pour restaurer l’invariance de jauge dans
l’action d’un champ vectoriel sans masse avec un terme cinétique non-standard.
Cela m’a permis d’identifier la composante longitudinale du champ vectoriel avec le
champ de Pais-Uhlenbeck. De plus, interpréter le champ de Pais-Uhlenbeck comme
un champ de Stückelberg m’a permis de considérer le champ de Pais-Uhlenbeck
comme le médiateur de l’interaction de jauge. Cette interaction naturelle amène une
dynamique pour le champ de Pais-Uhlenbeck indépendamment des champs scalaires
ou fermioniques aux quels il est couplé. Grâce à cette propriété, on peut être sûr que
les problèmes d’instabilité ne sont pas réintroduits par l’interaction, une fois qu’ils
ont été éliminés de la théorie libre. J’ai aussi vu que le champ de Pais-Uhlenbeck
peut avoir une importance cosmologique. En effet, il induit une constante cos-
mologique effective dont la valeur est liée à l’échelle énergétique de l’inflation. En
étudiant l’influence des perturbations du champ de Pais-Uhlenbeck sur les observ-
ables cosmologiques, on a la possibilité de distinguer ce modèle d’énergie sombre de
la constante cosmologique.

Après les incroyables succès obtenus par les observations du fond diffus cos-
mologique (CMB), plusieurs expériences destinées à mesurer la distribution des
structures à grandes échelles vont nous fournir la possibilité d’étudier la nature
de l’énergie sombre dans les années qui viennent. On est en train de s’approcher
de l’ère de la cosmologie de précision. Une précision de l’ordre du pour-cent sur les
paramètres cosmologiques nous permettra de distinguer les différents modèles. Afin
d’obtenir cette précision, il faudra non seulement dessiner des expérience meilleures,
mais également développer un formalisme théorique fondé sur les quantités vraiment
observables et des instruments numériques pour calculer et comparer les prédictions
théoriques avec les observations.

Récemment, un nouveau formalisme pour décrire la distribution des galaxies
en fonction des quantités réellement observables, comme la direction angulaire et
le redshift (décalage vers le rouge), a été développé [17, 18]. Pour calculer les ob-
servables de la structure à grande échelle, j’ai donc développé un code numérique
classgal [19], à partir d’un code de Boltzmann, class [20], écrit surtout pour cal-
culer les anisotropies du fond diffus cosmologique. Grâce à classgal j’ai analysé
avec quelle précision de futures expériences pourront estimer les paramètres cos-
mologiques. En particulier j’ai montré que cette méthode, qui utilise uniquement
des quantités réellement observables, est compétitive par rapport à la méthode tra-
ditionnellement utilisée. De plus, la méthode traditionnelle néglige des effets, qui
pouvaient être négligés pour des experiences à petites échelles, mais qui pourront être
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significatifs en future. J’ai également calculé la contribution des différents termes à
la distribution des galaxies, et montré que le terme qui décrit l’effet de lentille gravi-
tationnelle faible devient important pour des expériences qui vont jusqu’à des grands
redshifts. Cette constatation nous permettra d’utiliser les expériences futures pour
tester des modèles de gravité modifiée qui prévoient souvent une différence entre les
deux potentiels de Bardeen. Puisque la contribution du terme qui décrit l’effet de
lentille gravitationnelle faible devient important indépendamment de la résolution de
l’expérience, je pense qu’il est possible d’appliquer cette idée aux présents catalogues
de radiogalaxies.
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1
Introduction

Cosmology is the science which studies the universe as a whole, describing its dy-
namical evolution. In the history of the humanity, different civilizations had been
interested and amazed by the perfection and periodicity of the events on the celestial
sphere. They had a good knowledge about the motion of the planets and the stars,
but their explanations were completely based on mythology and religion. The first
attempts to explain the astronomical observations with a rational approach (even if
yet not scientific) are attributed to the ancient Greeks. Aristotle’s geocentric model
has been adopted and used for many centuries until the Copernican revolution1 in
16th century. Modern cosmology has been developed starting from the first decades
of 20th century. In 1915 Einstein published [21] the theory of General Relativity
which describes the gravity geometrically and determines how the geometry is cou-
pled to the energy density. Only two years later, he applied his theory of gravity
to the whole universe2. He was convinced that the universe were static and so he
introduced in his equations the famous cosmological constant [23] to find a static
solution. The same year de Sitter [24] proposed an alternative solution to Einstein’s
field equations describing an universe without matter. A few years later, Friedmann
found the first cosmological solution [25] to Einstein’s field equations, describing an
expanding homogenous and isotropic universe. The Friedmann prediction had been
experimentally confirmed first [26] by Lemâıtre3 in 1927 and then [33] by Hubble in

1We often forget that, already in the ancient Greece, Aristarchus developed a heliocentric model.
2At that time there was a controversy, the so called Great Debate or Shapley–Curtis Debate,

about the size of our universe and the nature of galaxies, until Hubble, in 1925, measured [22] the
distance to Andromeda prooving that it was an independent galaxy.

3The first redshift measurements had been performed [27] by Slipher in 1913. He interpreted
them as radial velocities through the Doppler effect. Wirtz [28] in 1922 noticed that the recession
velocities of nebulae could be described as a dispersion motion with respect to our position. Then,
in 1924 [29] he gave the first cosmological interpretation of the redshift measurements trying to fit
the predicted redshift of de Sitter’s model [24]. Lemâıtre was unaware of the Friedmann results, and
he re-derived his dynamical solutions to Einstein’s field equations. By using the Slipher redshift [30]
and the Hubble distance measurements [31] he confirmed his prediction for a linear relation between
the radial velocities and the distances of galaxies. He was the first one who suggested and supported
with observational data the concept of the expanding universe. Interesting details about the history
of the discovering of the expanding universe can be found in [32].
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1929. In 1932, a decade after Friedmann’s publication [25], Einstein and de Sitter
accepted the idea of the expanding universe and they wrote a two-page paper [34]
describing the so-called Einstein-de Sitter model which has been adopted as cosmo-
logical model until the end of 20th century. During the same decades also particle
physics had been revolutionized by the rising of quantum mechanics which will lead
in the second half of the century to the Standard Model of particle physics.

Modern cosmology is based on the two following pillars: the theory of General
Relativity, to describe the gravitational force, and the Standard Model of particle
physics for the matter sector. These two pillars are independently very solid, having
passed many different experimental tests. Nevertheless some cosmological observa-
tions do not agree with their theoretical predictions. The first puzzling problem
had been revealed by Zwicky already in 1933. By measuring the amount of visible
matter in the Coma galaxy cluster and applying the virial theorem, he observed that
the visible matter was not enough to explain4 the measured galaxy velocities [1, 35].
This discrepancy between the theoretical predictions and the observations had forced
cosmologists to modify (or extend) at least one of the two pillars on which is based
the modern cosmology. On the gravitational side, different theories5 of Modified
Gravity on galactic scales had been developed to fit the observed galaxy rotation
curves [39]. On the matter sector, without modifying gravity, it is necessary to
postulate the existence of a new kind of matter, the so called Dark Matter, which
does not interact electromagnetically6. This idea had been proposed already by
Zwicky. Later, independent and complementary, cosmological observations support
the evidences in favor of the existence of Dark Matter to explain the anisotropies in
the Cosmic Microwave Background (CMB), the Big Bang nucleosynthesis (BBN),
the growth of structures, the light deflection or the cluster collisions. At the same
time, not all of them can be explained with the proposed theories of Modified Grav-
ity. Nowadays Dark Matter is considered as the most convincing explanation. A
second, and probably more serious, problem arised from the measurements [2, 3, 4]
of the distance-redshift relation for type Ia Supernovae (SNIa) in 1998 and which
was awarded with the Nobel Prize7 in 2011. These observations, together with the
cosmological principle8 assumption, lead to an accelerating expansion of the uni-
verse. Since then, cosmologists are trying to find a physical understanding for the

4His calculations were Newtonian, but at these scales General Relativity reduces with a good
precision to Newtonian gravity.

5See for example Modified Newtonian Dynamics (MoND) [36, 37] or the relativistic generaliza-
tion Tensor–Vector–Scalar gravity (TeVeS) [38].

6In the standard paradigm of thermal decoupling, Dark Matter particles are described as cold
relics of the early universe. In this picture, these species freeze-out once their interaction is no
longer competitive with the Hubble expansion. The amount of Dark Matter is then determined
by the strength of the interaction. Interestingly, the current measured density of Dark Matter
can be explained by a cold relic with an interaction at the weak scale. This supports the idea of
Weak Interacting Massive Particles (WIMP) as candidate for Dark Matter and it is often called
WIMP-miracle.

7http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/
8The cosmological principle is a generalization of the Copernican principle and it postulates

that the universe is (statistically) spatially homogeneous and isotropic.

http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/
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unexpected acceleration of the expansion of the universe. The proposed solutions
can be divided in three categories. A first approach consists in modifying the matter
sector by postulating the existence of Dark Energy, i.e. a new kind of matter which
interacts only gravitationally and with a negative pressure. This last condition is
necessary to obtain accelerating solutions to Friedmann’s equations. A second ap-
proach aims to modify gravity on cosmological scales, indeed a weaker gravitational
force on large scales could explain the observed acceleration of the expansion of
the universe. Since the Einstein equations relate the gravity and the matter sec-
tors, some Dark Energy models could be considered as well as theories of Modified
Gravity and vice versa. The simplest solution, which fits to very good accuracy
the different cosmological observations, is the introduction (or re-introduction) of
the cosmological constant9. Even if the cosmological constant agrees well with var-
ious cosmological probes, it is very puzzling from the theoretical point of view. As
already noticed by Einstein, the cosmological constant can be added to the field
equations respecting all the symmetries of General Relativity. It is actually a term
expected from a low energy effective field theory approach. So the real problem is
not the presence of this term, but its very small value. Indeed the bare value of
the cosmological constant induced by quantum vacuum energy fluctuations is many
orders of magnitude larger than the measured one. In other words the cosmological
constant leads to a fine tuning problem10. The third approach questions the validity
and the interpretation of the cosmological principle. There are indeed very strong
constraints on the spatial isotropy, but the homogeneity is always only assumed11.
It has been shown that inhomogenous models can fit the supernova data. Generi-
cally they predict that the Earth is surrounded by an underdense region of the size
of the Hubble scale and they are often ruled out by a second cosmological probe.
Another approach that enters in the same category is based on the consideration
that the our universe is spatial homogenous and isotropic in a statistical sense only.
This means that homogeneity and isotropy are recovered through an averaging pro-
cedure. Because Einstein’s equations are non-linear, they do not commute with the
averaging procedure. The so-called Back-Reaction is the idea that a correct analysis
might explain the supernova data without the need of the cosmological constant.
Interesting this idea solves the coincidence problem, i.e. the fact that the acceler-
ation of the expansion happened only very recently. Indeed Back-Reaction relates
naturally the growth of structures with the acceleration of the expansion of the uni-
verse. Even if it seems unlikely that Back-Reaction can replace the cosmological
constant, it describes an effect that we need to consider carefully when interpreting
the data from future surveys to enter the so-called precision era of cosmology, where

9The cosmological constant can be considered as a modification of gravity or as a new field, i.e.
Dark Energy, in the matter sector.

10The naive expectation for the bare contribution of vacuum quantum fluctuations to the cos-
mological constant ranges between 1076 GeV4 for a cutoff at Planck scale to 1010 GeV4 for a
much more conservative cutoff at the electroweak scale, while the measured value in cosmological
observations is ρΛ = Λ/(8πG) ∼ 10−47 GeV4.

11To be able to test the spatial homogeneity we should observe an isotropic universe from a
second point in space.
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the cosmological parameters will be constrained within the percent level.

In the last decade, different probes converged towards the concordance model
of cosmology, which is characterized by few parameters only. This model astonish-
ingly agrees with the cosmological observations and it starts to play the role of the
standard model of cosmology, also known as ΛCDM model. Unfortunately it does
not enlighten12 us about the underlying physics. At the same time cosmology has
become a data driven science. In particular, future surveys will allow us to search
for violations of the standard cosmological model. The missions planed for the next
decade13 will be focused on Large Scale Structures (LSS). In this scenario cosmol-
ogists will have access to an impressive large amount of data. This will permit to
release some assumption and to proceed in a model independent way. This is nec-
essary to rule out many different theories and to constrain the available parameter
space.

In my thesis I have been working on different theoretical and observational as-
pects of relativistic cosmology. In a first series of papers [5, 6, 12] I have studied how
inhomogeneities affect light propagation in the universe. These works are motived
by the Back-Reaction idea to explain the distance-redshift relation measured with
supernovae. I have considered both a toy model, for which we know an exact rela-
tivistic solution to Einstein’s equations, and linear perturbations on a homogenous
and isotropic FLRW metric.

In a second series of papers [19, 41] I have worked on Large Scale Structure
observables, developing a numerical code classgal, which allows to compute them
to first order including all the relativistic corrections. I have then performed a Fisher
matrix forecast to analyze how future surveys, like Euclid, can constrain cosmological
parameters. I have also studied the contributions of the different terms to the Large
Scale Structure observables, to understand which configuration can enhance some
particular effect.

In a third more theoretical project [15] I have studied a higher derivative the-
ory, the Pais-Uhlenbeck field [16], as a Dark Energy candidate by showing that we
can consistently quantize it, such that the interactions with charged scalars and
fermions do not spoil the stability of the theory. I have argued that such a degree
of freedom can only be excited by gravitational effects during the inflationary era in
the early universe and may play the role of Dark Energy in the form of an effective
cosmological constant whose value is linked to the inflation scale.

12This is not, of course, a necessary requirement for a (effective) physical theory. If future surveys
will be consistent with a Dark Energy equation of state parameter wDE = −1 we will be stuck to
a pure cosmological constant.

13After the first detection of B-mode CMB polarization [40], there will probably be many ex-
periments which will open, if this detection will be confirmed, a new, exciting and perhaps unique
window on very high energy physics.
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1.1 Distance-redshift relation

The distance-redshift relation is a fundamental observable in cosmology. Historically
it has been the first observable, measured by Lemâıtre [26] in 1927 and two years later
by Hubble [33], that showed the expansion of the universe and discarded the cosmo-
logical constant introduced by Einstein to find a static solution to his equations. It
led also to another revolutionary discovery in cosmology, when two collaborations
observed the acceleration of the expansion of the universe in 1998 [2, 3, 4] suggesting
to reintroduce the cosmological constant14.

In cosmology there are different notions of observable distances, which coincide
in a Euclidian space, but not in an expanding universe. Probably the most intuitive
definition is the angular diameter distance. Indeed if we know the physical size s
of an object in the sky and we measure the angle α under which we see it, we can
define the angular diameter distance as

dA =
s

α
for α� 1 . (1.1)

To be able to measure it, it is necessary to know some standard rulers in the universe.
The Baryonic Acoustic Oscillations (BAO) that we observe in Large Scale Structure
(LSS) are a good candidate. They are the imprint on the galaxy distribution of the
acoustic oscillations in the plasma before its decoupling from CMB photons. They
are the LSS-equivalent to the acoustic peaks in the CMB anisotropies. Nevertheless
they do not describe exactly the same physical scale, whereas the first peak of the
CMB angular power spectrum is determined by the sound horizon at the photon de-
coupling, the BAO are characterized by the size of the horizon at the drag epoch15.
The knowledge of the physical scale of BAO determines the angular diameter dis-
tance measuring the separation angle in the galaxy correlation function [42].

Another definition of distance is based on the idea of standard candles instead
of standard rulers. Indeed if we know the intrinsic luminosity L of an object, by
measuring the flux F , we can infer the luminosity distance

dL =

√
L

4πF
. (1.2)

The best known candidates for standard candles are type Ia supernovae. This type
of supernovae are generated by a binary systems where one of the stars is a white
dwarf. This implies that type Ia supernovae depend only weakly on the previous
configuration of the system and they can be considered standard candles16. These

14The cosmological constant introduced by Einstein had the opposite sign with respect to the
current observed value.

15The drag epoch is defined as the era when baryon perturbations can start growing. This
happens only when photon pressure can no longer support the gravitational instability of baryon
perturbations. Because of the low baryon density, the drag epoch takes place after the photon
decoupling leading to a slightly larger BAO scale compared to the CMB anisotropy scale.

16To be more precise they should be considered as standardizable candles. The correction to
apply is described by the Phillips relation [43], which relates the peak luminosity to the luminosity
time evolution.
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two definitions of observable distances are not independent, they are indeed related
via the Etherington’s reciprocity relation [44]

dL = (1 + z)2 dA (1.3)

where z is the redshift of the source. It holds17 not only in General Relativity, but
in any metric theory of gravity under the assumptions of the conservation of photon
number and that photons travel along null geodesic. For this reason we can combine
luminosity and angular diameter distances to get rid of possible systematics in the
observations.

In a FLRW universe the luminosity distance

dL (z) =
1 + z√
|ΩK |H0

χ

[√
|ΩK |H0

∫ z

0

dz′

H (z′)

]
(1.4)

where χ (r) =


sin (r) for K > 0,
r for K = 0,

sinh (r) for K < 0,
(1.5)

is directly related to the Hubble parameter

H (z) = H0

√
ΩR (1 + z)4 + ΩM (1 + z)3 + ΩΛ + ΩK (1 + z)2. (1.6)

The measurement of the luminosity distance reveals the dynamics of the universe
and its matter content. In this way it has been possible to measure the acceleration18

of the expansion of the universe. This result implicitly assumes that the universe
is correctly described by a FLRW metric. It is important to study how robust is
this assumption and how the conclusions could depend on it. Moreover almost all
the evidences in favor of Dark Energy rely on the distance-redshift relation valid
in a FLRW metric [47]. Only recently some independent measurements [48] of the
Hubble parameter have been provided. An exact treatment requires the knowledge
of the metric, as a solution to Einstein’s equations, and the ability of tracking photon
geodesics in this metric. Then to determine the distance, one has to solve the Sachs
focusing equation [49, 50]

d2dA
ds2

= −
(
|σ|2 +R

)
dA . (1.7)

Here s is an affine parameter along the photon geodesic,

R =
1

2
Rµνn

µnν = 4πGTµνn
µnν , (1.8)

and σ is the complex shear of the light bundle defined in Eq. (2.29). In practice
we need to make some approximation. In my thesis I have been exploring different
approximations and assumptions.

17Tests on the Etherington’s reciprocity relation have been discussed in [45].
18There are different meanings and definitions of the acceleration of the expansion of the universe,

see Ref. [46] for details.
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In the first paper [5], reproduced in Chapter 2, we have considered a universe
filled with ’walls’ of pressure-less dust separated by under dense regions. Since Ein-
stein’s equations for this plane symmetric universe can be solved exactly, we could
study how the inhomogeneities affect the light propagation in a non-perturbative
regime in a full relativistic framework. The aim of the project was to consider this
plane symmetric universe as a toy model, and study if in this scenario we can ob-
serve a Back-Reaction effect from small scales, where there is a considerable density
contrast, back to large distances to mimic the measured distance-redshift relation.
We have considered various density profiles, with the only constraint that they do
not form singularity before the present time. Indeed, since this plane symmetric
universe is filled with pressure-less dust, any realistic initial density profile will lead
to singularities at some point. In particular, we have studied some cases in which
the dust forms singularities just after the present time, such that the photons really
travel across over densities in a non-perturbative regime. We have found that the
luminosity distance fluctuates around the unperturbed value. These fluctuations are
at the level of few percent. It is clear that they do not lead to a global effect that
could mimic the observed distance-redshift relation. The fluctuations are mainly
determined by the metric perturbations at the source position, while the integrated
effects seem to average out along the line of sight and hence to be negligible.
In the same paper we have also solved the inverse problem. Namely, given the
observed distance-redshift relation, we have determined the density profile which
reproduces it. It is not surprising that it possible to solve the inverse problem, since
the considered toy model has an additional degree of freedom necessary to describe
the inhomogenous matter distribution. To fit the observed supernova data is indis-
pensable to live at the center of a void of the Hubble size. Because the additional
free parameter has been adapted such that the model fits the data, a second inde-
pendent observable should be able to distinguish this model from a FLRW universe.
Indeed, we have computed the redshift drift, i.e. the rate of change of the redshift
of a co-moving source per unit of observer time. Comparing, then, the redshift drift
for this toy model and ΛCDM we noticed that they are very different.

In a following project [6], we have revisited the same problem. The aim was
to go beyond to the pressure-less dust assumption which led to the formation of
singularities. The singularities are a consequence of shell-crossing caustics, which
can not be treated in the fluid approximation. In the previous work we had to choose
small initial fluctuation amplitudes to avoid the formation of singularities before the
present time. In [6] we were interested in understanding the consequences of this
limitation, due to the fluid approximation, on the final results. This problem can
be resolved by using N-body simulations that avoid the caustic formation. This was
also a good opportunity to test the agreement between the exact solution and a novel
general relativistic N-body scheme which was recently presented in [7]. As shown
in detail in Chapter 3, the N-body scheme agrees too high precision with the exact
solution before the formation of singularities in the fluid approximation scheme.
We understand this good agreement from the fact that, while the synchronous co-
moving gauge breaks down when shell-crossing occurs, the metric perturbations in
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longitudinal gauge remain small. We then have analyzed, in the N-body scheme,
the distance-redshift relation for large initial fluctuation amplitudes. We have found
larger fluctuations around the unperturbed distance, but again we did not see a
global effect that can mimic the supernova data. This result also shows that once
shell-crossing happens, the luminosity distance is in general not single valued, as
already pointed out in [51]. We have then considered the effect on photons traveling
at the center of the void, parallel to the walls. The lack of matter along the photon
path leads to a continuous defocussing of the light beam, at the same time this is
partially compensated by the presence of a non-zero shear (generated by the Weyl
tensor). In this case we have found an increase of the distance-redshift relation, but
not enough to mimic the ΛCDM model. So in these two projects we have concluded
that, if we can generalize the results of this toy model, the inhomogeneities do affect
the distance-redshift relation, but they can not be mistaken for Dark Energy. In
other words, the Back-Reaction does affect the precision of the future measurements,
but it can not explain, by itself, the acceleration of the universe.

As we have seen the luminosity distance is modified by the metric perturbations.
In the last years the angular and redshift fluctuations of the luminosity distance [8,
9, 10] have been studied in linear perturbation theory on FLWR background metric.
Naively we expect these fluctuations to be of the order of the metric perturbation,
i.e. about 10−5, while it has been shown in [9] that they are 2 orders of magnitude
larger, i.e. about 10−3. In [11] the contribution of about 10−3 for some terms at
second order19 in perturbation theory has been computed. Considering that the
second order contribution is as large as the first order, we may wonder if perturbation
theory can be trusted. On the other hand we know that the considered toy models
show only small modifications to the distance-redshift relation. In [12], reproduced
in Chapter 4, we have derived the vector and tensor contributions to the luminosity
distance in terms of gauge-invariant quantities. The study of these contributions
is interesting for different reasons. First of all, as recent observations [40] indicate,
gravitational waves are produced during inflation with a relatively high amplitude.
We also know that binary systems source gravitational waves which may affect the
luminosity distance. Moreover vector and tensor perturbations are produced at
second order by scalar perturbations at linear order. In particular, since the second
order effects seem to be as larger as the linear one they can play a role and they
have to be considered for completeness. Later, our results have been shown to
agree with the vector and tensor contributions at second order computed in [13].
After deriving these linear contributions, we have expanded them in spin weighted
spherical harmonics and computed the redshift dependent angular power spectrum
c` (z, z′) defined through

〈∆L (z,n) ∆L (z′,n′)〉 =
1

4π

∑
`

(2`+ 1) c`(z, z
′)P` (n · n′) , (1.9)

where ∆L (z,n) relative difference in the luminosity distance and 〈.〉 denotes the

19More recently two different groups have independently derived the full expression for the
luminosity distance at second order [13, 14].
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statistical average. For tensor perturbations we have applied this formalism to a
primordial scale-invariant power spectrum. Naively one may think that the tensor
angular power spectrum is suppressed with respect to the scalar one by the tensor-
to-scalar ratio of the primordial fluctuations generated during inflation. We have,
instead, found that the tensor contributions are suppressed by about 8 orders of
magnitude more. This is due to the fact that tensor perturbations decay once they
enter the horizon, while the scalar perturbations start growing. Since the first order
signal is so small we may expect that the second order contributions, sourced by
linear scalar perturbations, dominate. Hence, the vector and tensor contributions
might play a role at second order in perturbation theory.

1.2 Large Scale Structure Observables

From the unexpected observation of the acceleration of the expansion of the uni-
verse in 1998, it has become clear that cosmology turned into a data driven science,
challenging cosmologists to develop theoretical and numerical tools to fully profit
of these datasets. This process allows, on one hand, to determine the cosmological
parameters with higher and higher precision, and on the other hand, to test for
deviations from the standard cosmological model. The quantity and the quality of
current and future data will permit to analyze them in a model independent way.
This approach has been successfully adopted to handle the CMB anisotropy data,
measured by different and independent experiments, until the astonishing agreement
between observations and theoretical predictions, based on the standard cosmolog-
ical model, reached by the last Planck release [52]. To reach this amazing result
it has been necessary to develop a theoretical formalism [53] based on observable
quantities and numerical tools [20, 54, 55, 56] to compute, efficiently and accurately,
the theoretical predictions. The aim for the next decades is to repeat the same steps
for Large Scale Structures observables, i.e. for the galaxy distribution. LSS contain
in principle much more information than CMB anisotropies, because the galaxy
distribution is 3-dimensional while the CMB information comes mainly from the 2-
dimensional last scattering surface. On the other hand, this is a much harder effort
to handle. The difficulties arise from different effects, including the galaxy bias, i.e.
the fact that we predict fluctuations of a continuous density field, i.e. Dark Matter
distribution, but we observe a discrete galaxy distribution, i.e. a biased tracer of
the underling smooth density field. Moreover, on small scales density perturbations
become non-linear and perturbation theory fails. Since the non-linear regime con-
tains a wealth of cosmological information, different attempts have been performed
to describe, at least, the middle non-linear regime [57, 58, 59, 60]. This will be a
fundamental and necessary step to really profit of LSS datasets from future surveys.

The traditional LSS analysis is performed computing the 3-dimensional matter
power spectrum P (k). This approach has some evident advantages: it can be easily
measured in galaxy catalogs since it only depends on a single variable and the differ-
ent k Fourier modes are independent in linear perturbation theory. Nevertheless it
is not an observable quantity. One needs to assume a fiducial set of cosmological pa-
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rameters to convert the observable 2-point correlation function in the 3-dimensional
matter power spectrum P (k). If iteratively repeated this approach can determine
the best fit of the cosmological parameters, but it is much more difficult to correctly
estimate the errors. An underestimation of errors can lead to wrong conclusions
discarding valuable models. Recently a novel approach based only on observable
quantities, namely the redshift and the angles under which we observe the galaxies
on the sky, has been presented [17, 18]. In this approach the fundamental quantity
is the so-called galaxy number count

∆ (n, z) ≡ N (n, z)− 〈N〉 (z)

〈N〉 (z)
(1.10)

as a function of the observed number of galaxies N in direction n and at redshift
z. To correctly compute the galaxy number counts one needs to consider many
different effects like the fact that observations are made on our past light-cone, that
the measured redshifts are perturbed by the motion of the galaxies, that light is
deflected and the volume distorted by the perturbed geometry. In the past, these
effects could be neglected, but this may no longer be the case for future surveys which
go deeper in redshift and cover a larger fraction of the sky. A careful treatment leads
to

∆(n, z) = Dg + Φ + Ψ +
1

H [Φ′ + ∂r(V · n)]

+

(H′
H2

+
2

rSH

)(
Ψ + V · n +

∫ rS

0

dr(Φ′ + Ψ′)

)
+

1

rS

∫ rS

0

dr

[
2− rS − r

r
∆Ω

]
(Φ + Ψ). (1.11)

Hence the galaxy number counts not only describe the matter density, but also
the redshift space distortions (RSD), the lensing and the gravitational potential (or
relativistic) terms. In other words the galaxy number counts contain, at least po-
tentially, information about the large scale matter distribution, the cosmic velocity
field and the geometry. All these quantities are related through the Einstein equa-
tions, so by measuring them, we can test General Relativity and the cosmological
standard model against different theories of Modified Gravity, which usually predict
a different lensing potential. Since the galaxy number counts depend sensitively and
in several different ways on dark energy, on the matter and baryon densities, bias,
and so on, their measurements provide a new estimation of cosmological parameters,
without the need of assuming a fiducial cosmology.

As the galaxy number counts (1.11) are defined, for each redshift, on the unit
sphere, it is convenient to expand them in multipoles,

∆ (n, z) =
∑
`m

a`m (z)Y`m (n) (1.12)

with redshift dependent coefficients

a`m (z) =

∫
dΩnY

∗
`m (n) ∆ (n, z) . (1.13)
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We can then define the redshift dependent angular power spectrum

C` (z1, z2) = 〈a`m (z1) a∗`m (z2)〉 (1.14)

and the redshift dependent angular correlation function

ξ (θ, z1, z2) =
∑
`

2`+ 1

4π
C` (z1, z2)P` (cos (θ)) , (1.15)

where P` are the Legendre polynomials. Comparing the theoretical predicted an-
gular power spectrum, which contains all the statistical information for Gaussian
perturbations, with the LSS data we can extract from them the information needed
to estimate the cosmological parameters. This comparison requires to scan the pa-
rameter space, computing and comparing the predictions with observations many
times to find the best fit for the cosmological parameters. To achieve this require-
ment it is necessary to develop numerical codes which compute, accurately and
efficiently, the LSS observables. We have decided to implement class [20], a pub-
lic Boltzmann code oriented on computing very efficiently the CMB angular power
spectrum, to compute the LSS observables including all the relativistic corrections
derived in [17, 18] and described in Eq. (1.11). This code is called classgal and
publicly available20, all the details about classgal can be found in Ref. [19], which is
reproduced in Chapter 5. Since any survey can only determine the redshift of galax-
ies with finite accuracy, we can not compare directly the measurements with the
theoretical redshift dependent angular power spectrum C` (z1, z2) defined through
Eq. (1.14). We need, indeed, to convolve the theoretical predicted angular power
spectra with a window (or selection) function. By introducing the window functions,
we split the redshift range of the survey in many redshift bins. Depending on the
redshifts z1 and z2 of the sources, they can belong to the same redshift bin or to two
different bins. Splitting the full survey in Nbins, the full information is arranged in a
symmetric matrix

(
Cij
`

)
with Nbins (Nbins + 1) independent angular power spectra.

This is also the final output of our code classgal. Observationally we need to mea-
sure Nbins autocorrelated21 angular power spectra, which are affected by shot-noise,
because we sample a smooth field with a discrete set of galaxies. In order to have
larger amplitudes of the angular power spectra we should consider narrow redshift
bins, this avoids to smear out the signal by large window functions. On the other
hand too narrow redshift bins lead to a signal which is completely dominated by
shot-noise which scales as the inverse of the number of galaxies per redshift bin. As
we have shown in [19], the optimal configuration determined by the spectroscopic22

redshift resolution can not be reached because shot-noise starts to dominate earlier.

20http://cosmology.unige.ch/tools/. The main features of classgal have been merged with
the main code class starting from version 2.1 publicly available at http://class-code.net.

21With autocorrelation we mean the correlation between galaxies in the same redshift bin. In
case of correlation between galaxies in different redshift bins we refer to cross-correlation.

22The situation is different for photometric surveys. At their redshift resolutions shot-noise is
almost negligible for current or future surveys.

http://cosmology.unige.ch/tools/
http://class-code.net
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In the past, data from galaxy surveys have been analyzed considering only the
matter power spectrum, corrected by the Kaiser formula [61] to describe the redshift
space distortions, considering the other effects as negligible. This approximation
has worked well, but for future surveys, like Euclid which observes larger scales and
deeper in redshift, it may be not good enough. In [19] we have quantified the errors
made in the angular power spectrum by neglecting the contributions of the different
terms. These errors in the power spectra can induce a bias limiting the accuracy
in the cosmological parameter estimation. In particular, as we have shown in [41],
the lensing becomes a detectable signal for deep surveys. Therefore, by correctly
considering the lensing contribution, we can not only estimate the cosmological
parameters with a better precision, but we have an important cosmological probe to
test for deviations from General Relativity. We have pointed out that a measure of
the lensing potential would require only a deep survey independently of its redshift
resolution. Indeed, the lensing signal becomes important at high redshift because it
is coherently integrated along the line of sight smearing out the redshift information
of the sources. We think that one may apply this idea to radio galaxy catalogs,
which have a very poor redshift resolution but cover a deep redshift range.

In order to estimate the contribution of the different effects described in Eq. (1.11),
we determine the parametrical order of all contributions by writing them in terms
of metric perturbations through the Einstein equations

Dg ∼
(
k

H

)2

Φ , V · n ∼ k

HΦ , (1.16)

and considering the contribution of the derivatives as23

∂r ∼ k, ∆Ω ∼
(
k

H

)2

. (1.17)

At sub-Hubble scales (k � H) the leading terms are:

Dg ∼
(
k

H

)2

Φ (density),

1

H∂r (V · n) ∼
(
k

H

)2

Φ (redshift-space distortion),∫ rS

0

dr
rS − r
rSr

∆Ω (Φ + Ψ) ∼ 2

∫ rS

0

dr
rS − r
rSr

(
k

H

)2

Φ (lensing).

23To estimate the parametric order of the angular Laplacian ∆Ω we re-express the definition (1.1)
of angular distance as

dA =

√
dA

dΩ
.

Then the solid angle Ω can be approximated as

Ω ∼ λ2

d2
A

∼
(H
k

)2

,

where λ characterizes the size of the observed object in the sky at the angular diameter distance
dA, which goes roughly like H−1.
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It is therefore not surprising that the lensing contribution becomes important for
some configurations, since it appears at the same parametrical order as the den-
sity and the redshift space distortion terms. The other terms, i.e. gravitational
potential (or relativistic) contributions, have a smaller power in the parametric ex-
pansion in k/H and they can become important only at larger scales. Indeed, since
these terms are purely relativistic24 contributions, they become naturally relevant
at super-Hubble scales (k � H) where Newtonian gravity fails. However cosmolog-
ical observations at very large scales are strongly affected by cosmic variance which
induces a large theoretical uncertainty. This suggests that their contribution to LSS
observables is weaker than all the other terms. In all the configurations analyzed
in our work their contribution was always negligible. Nevertheless there are some
novel methods [62] that can enhance their effects. It might be possible that the grav-
itational potential (or relativistic) terms are completely negligible in the standard
analysis to estimate the cosmological parameters, but at the same time a different
analysis could lead to their detection.

This model independent approach is based on several 2-dimensional redshift
dependent angular power spectra. An important question that we have studied
in [41], and that had been already addressed in [63], is if one can recover the whole
3-dimensional information. We have performed a Fisher matrix analysis constraining
some pairs of ΛCDM cosmological parameters marginalizing over the remaining ones,
for an Euclid-like and a DES-like galaxy surveys. We have paid particular attention
in translating a non-linear cutoff in real space to a sharp cutoff in the multipole
space depending on the bin correlations. We have then shown that considering
only autocorrelated redshift dependent angular power spectra we can not recover
the information of the traditional 3-dimensional analysis based on the matter power
spectrum P (k) in redshift space. This is not surprising, one needs to consider the
cross-correlations between different redshift bins to have access to the information
along the radial direction. Indeed we have found that including cross-correlations
we can recover the full information of the traditional 3-dimensional analysis. In
particular our results show that for a spectroscopic surveys the same information
is reached roughly when the size of the redshift bins is given by the non-linear
cutoff in the analysis. So the minimal number of redshift bins will depend on the
redshift range of the survey, requiring more and more redshift bins for a survey which
goes deep in redshift. Hence, performing a Markov Chain Monte Carlo (MCMC)
analysis to estimate the cosmological parameters will be numerically very expansive,
because the number of redshift dependent angular power spectra scales like N2

bins.
If we consider photometric surveys the 3-dimensional information is recovered when
the width of the redshift bins roughly coincides with the photometric resolution. In
this case the number of power spectra permits an accurate numerical analysis.

This analysis has shown that an approach only based on observable quantities is
competitive with the traditional method based on the 3-dimensional matter power
spectrum P (k). On top of that, this novel approach fully describes all the relativistic

24Obviously also the lensing is a general relativistic contribution and the redshift space distortions
are as well (special) relativistic contributions.
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terms. In particular, the lensing potential may be detected in galaxy surveys. This
work, including the code classgal, also helps to determine optimal observational
specifications for future surveys.

1.3 Pais Uhlenbeck field as Dark Energy candi-

date

Since 1998, the efforts of many cosmologists have been focused on trying to explain
the underlying physics which leads to the acceleration of the expansion of the uni-
verse. Up to now all cosmological probes are consistent with the simplest model
based on a cosmological constant. A crucial step [64] will be to constrain as precise
as possible the Dark Energy equation of state. Different surveys have been designed
to optimize this measurement. As long as wDE will be consistent with −1 without
any time dependence, it will be impossible to distinguish between a cosmological
constant and a Dark Energy model. Generically Dark Energy models replace the
cosmological constant with a dynamical degree of freedom described by a scalar
field. They do not attempt to solve the original cosmological constant problem.
The (speculative) attitude is to hope that quantum gravity effects will lead to a
cancellation of the vacuum energy. With this hope, it seems more natural to obtain
directly a vanishing renormalized cosmological constant, instead of the small, but
finite, observed value. In this framework, these models try to explain with physi-
cal mechanisms the observed acceleration. Through their dynamical evolution they
often claim to resolve the coincidence problem25. Among the Dark Energy models,
physicists have considered also theory with higher (than first order) derivatives in
the Lagrangian like f (R) [68, 69] or galileon theories [70, 71, 72, 73]. According to
the Ostrogradski theorem [74, 75] these theories do not have an energy functional
bounded from below and they are expected to develop instabilities. Generically,
such theories are characterized by the presence of ghosts, i.e. fields whose kinetic
term has the wrong sign. The ghost appears as a new degree of freedom in the equa-
tion of motion with higher than second order time derivatives. The aforementioned
f (R) and galileon theories do not exhibit the Ostrogradski instability, indeed their
higher derivative Lagrangians, thanks to their specific form, reduce to only second
order equations of motion.

The puzzling and unsolved Dark Energy problem, after many failed attempts in
the last decade, may force us to carefully reconsider theories that at first sight might
look dangerous. Higher derivative theories have been considered in the past [76] since
they allow to absorb the divergences which arise by quantizing General Relativity,
leading to renormalizable theories of quantum gravity26. In this framework we have

25Tracker solutions for quintessence models have been found [65]. But it is important to stress
that they solve only apparently the coincidence problem, because they require a strong fine-tuning
of the parameters of the Lagrangian. K-essence models [66] do not generically require a fine-tuning
of the parameters, but they lead to superluminal propagation and violate causality [67].

26In this approach the price to pay for the renormalization of quantum gravity is to introduce
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considered the (degenerate) Pais-Uhlenbeck field described by the action

S =

∫
d4x (�φ)2 , (1.18)

where� = ∂µ∂
µ is the d’Alembertian operator, which induces the equation of motion

�2φ = 0, (1.19)

solved by

φ =

∫
d3k

(2π)3/2

1

(2k)3/2

[
(ak + ibkkt)e

i(~k·~x−kt) + (a∗k − ib∗kkt)e−i(
~k·~x−kt)

]
. (1.20)

It is not surprising that it does not exhibit any instability. Indeed free theories
have an unitarity evolution even if the ghost mode, induced by the Ostrogradski
instability, is present. The Hamiltonian is unbounded from below, but as long as
the system is free and energy is conserved the system evolves in closed orbits in phase
space. Classically the instability appears only once we introduce an interaction with
other fields. Through the interaction the coupled system can extract an infinite
amount of energy from the unbounded one. Nevertheless the details are controlled
by the explicit form of the interaction. To consistently quantize this theory we
have made used of the presence of another symmetry. Looking at the equation of
motion (1.19) it is clear that the field φ can be shifted by an arbitrary harmonic
function. This implies that the ak mode in Eq. (1.20) can be gauged away. We
quantize the system by promoting ak, bk to operators ak, bk. The relevance of the
mentioned symmetry becomes evident writing the Hamiltonian function

H =

∫
d3x : H0 :=

∫
d3k k

[
b†kbk −

1

2

(
a†kbk + b†kak

)]
. (1.21)

Gauging away the ak mode, the energy spectrum of physical states is bounded
from below. We can fix the gauge by eliminating the ghost state from the physical
spectrum and quantize only the physical mode or we can impose an additional
subsidiary condition à la Gupta-Bleuler to define the physical Hilbert space. The
quantization of the free theory does not guarantee that the ghost is not reintroduced
once we include interactions with other fields. This is actually the fundamental
problem for higher derivative theories.

In our work we have shown that the Pais-Uhlenbeck field can be identified with
a Stückelberg field to restore the U(1) gauge invariance of an action for a massless
vector field with a modified kinetic term

S =

∫
d4x

[
−1

4
FµνF

µν +
1

2
ξ (∂µA

µ)2

]
. (1.22)

massive ghosts spoiling unitarity of the theory. Nevertheless it has been claimed [77] that the
massive ghosts could disappear in the asymptotic states due to quantum corrections, restoring
unitary.
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Once the residual gauge is fixed, this action propagates 3 degrees of freedom, namely
2 traverse modes and a longitudinal mode associated to ∂µA

µ. By restoring the U(1)
gauge invariance, the longitudinal vector mode becomes a scalar mode described
by the Pais-Uhlenbeck field. Motivated by the introduction of the Pais-Uhlenbeck
field as Stückelberg field, we interpret the Pais-Uhlenbeck field as gauge field which
mediates the interaction. We have considered both charged scalars and fermions
whose interaction is mediated by the Pais-Uhlenbeck field as gauge field. We have
shown that the equation of motion for the Pais-Uhlenbeck field is sourced by the
current of the charged fields, which is conserved thanks to the U(1) global symmetry
of the considered theory. This implies that the dynamics of the Pais-Uhlenbeck field
is not affected by the charged scalars or fermions to which it couples, and moreover
that once the ghost mode is eliminated from the spectrum of physical states of the
free theory it is not reintroduced by this interaction.

From the equation of motion (1.19) we notice that �φ satisfies the Klein-Gordon
equation for a massless scalar field. It is well-known that a massless scalar field in
an expanding universe is frozen on super-Hubble scale. This leads to an energy-
momentum tensor given by

Tµν =
1

2
(�φ)2 gµν (1.23)

which plays the role of an effective cosmological constant with the value Λ =
4πG (�φ)2. Since it behaves like a massless scalar field, we argue that it can be
generated during the inflationary phase with a scale-invariant power spectrum de-
termined by P�φ ' H4

I . The value of the effective cosmological constant induced
by the Pais-Uhlenbeck field is set by the energy scale of inflation and to agree with
observations it requires an inflationary scenario about 1 TeV, which corresponds
to the electroweak scale27. As shown in [78] this interesting feature is shared28 by
all the Dark Energy models with scalar fields produced during inflation provided
that their mass does not exceed the Hubble parameter today. These scalar fields,
including the Pais-Uhlenbeck one, have to be generated from a non-standard mech-
anism. Indeed a standard scalar field is diluted by the very rapid expansion during
inflation. Even if at the background level the Pais-Uhlenbeck field behaves like an
effective cosmological constant, its dynamical evolution can have an imprint on cos-
mological probes. By studying its cosmological perturbations we have a mechanism
to discriminate between this Dark Energy model and a pure cosmological constant.

27Recent B-mode polarization detection [40] would indicate a much higher inflationary energy
scale, namely about 1016 GeV which interestingly coincides with the Grand Unification Theory
(GUT) scale. If this first detection will be confirmed by independent experiments and any other
non-primordial source of B-mode will be excluded, this will rule out the Pais-Uhlenbeck field as
Dark Energy candidate.

28B-mode polarization detection [40], if confirmed, rules out all Dark Energy models described
by massless scalar fields sourced during inflation.
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We study the distance–redshift relation in a universe filled with ’walls’ of pressure-
less dust separated by under dense regions. We show that as long as the density
contrast of the walls is small, or the diameter of the under dense regions is much
smaller than the Hubble scale, the distance–redshift relation remains close to what
is obtained in a Friedmann universe. However, when arbitrary density contrasts are
allowed, every prescribed distance–redshift relation can be reproduced with such
models.

2.1 Introduction

Since more than a decade, cosmology research is facing the dark energy problem:
the present Universe seems to be in an accelerating phase. This conclusion was first
drawn from measurements of the distance–redshift relation from type Ia Supernovae
(SNIa) [2, 4, 79, 80, 81, 82] and is confirmed by many other datasets, from the cosmic
microwave background [83] to baryon acoustic oscillations and other aspects of large
scale structure. Until very recently the measurements inferring the existence of dark
energy rely mainly on the distance–redshift relation which is valid in a Friedmann
Universe [47]. New independent measurements of, e.g. the expansion rate H(z) are
now being performed see e.g. [48]. Hence this situation is changing, so that we
shall soon know both, dA(z) and H(z) with good accuracy. The general opinion is
that fluctuations on large scales are small so that they can be treated with linear
perturbation theory and linear perturbations average out in the mean over many
directions and large scales, and therefore fluctuations are not relevant for the deter-
mination of quantities like dA(z) and H(z). This expectation has been confirmed
by perturbative calculations. Within linear perturbation theory, the fluctuations of
the distance–redshift relation for redshift z > 0.2 is on the level of a few percent [9].

However, perturbations on smaller scales can become very large, density fluctu-
ations e.g. in galaxies are δρ/ρ ∼ ρgal/ρm ∼ 108. Since the relation between metric
perturbations, or more precisely the Christoffel symbols, and density fluctuations
is non-linear, it is not evident that large amplitude, non-linear, small scale density
fluctuations cannot add up to affect the distance–redshift relation on large scales.

To study the real problem one would need to analyse light rays passing through
a realistic Universe with high density fluctuations. So far, this has been done only
within Newtonian N-body simulations, see e.g. [84, 85]. However, it is well known
that Newtonian gravity misses the terms which are relevant for the back reaction
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problem [86], hence a full, non-linear relativistic treatment is needed. Since this is
very difficult, so far mainly toy models which mimic reality to a certain extent have
been studied.

The present work inscribes in this framework. Instead of considering spheri-
cally symmetric solutions of general relativity (GR), the so called Lemâıtre [87]-
Tolman [88]-Bondi (LTB) models, for recent reviews see [89, 90], we study a Universe
containing high density walls. We shall consider infinitely extended parallel walls.
The considered model is a sub-case of the Szekeres solution [91]. Light propagation
in general Szekeres model has been studied recently [92, 93]. This is of course a
gross over-simplification, but we know that galaxies tend to be aligned in filaments
and photons coming to us from a far away supernova, might experience a geometry
similar to the one of such a symmetric wall universe. The weakest point of our toy
model is that all the walls are parallel while we expect a typical photon to traverse
filaments which are aligned in different directions. We shall take this into account
to some extent by studying photons coming in from different directions with respect
to the walls.

Such walls have been studied in the past [94], but only perturbatively. Since we
know that the effects are small within linear perturbation theory, we cannot trust
higher order perturbation theory if it predicts large deviations from the Friedmann
distance-redshift relation. For this reasons we analyse exact, fully relativistic wall-
universes in this work.

In the next section we present the wall metric and the Einstein equations. We
also study the conditions on the parameters which have to be satisfied so that no
singularity apart from the Big Bang is present in the backward light cone of the
observer. In section 2.3 we present the results for the distance-redshift relation
for ’realistic’ walls and for a wall universe which mimics the observed relation. In
section 2.4 we conclude.

2.2 Wall Universes

In this section we study universes containing only pressure-less matter (dust) and
which are symmetric under translations and rotations in a plane which we call the
y-plane. They have the same number of symmetries as LTB models and can be
solved analytically, see [95]. The metric is of the form

ds2 = −dt2 + a2(t, x)dx2 + b2(t, x)(dy2
1 + dy2

2) . (2.1)

Note that the only difference to the LTB geometry is that our symmetrical 2d
manifolds are planes, dy2

1 + dy2
2 = dr2 + r2dφ2 while those of LTB are spheres,

dΩ2 = dθ2 + sin2 θdφ2. We denote the spatial coordinates by x = (x, y1, y2) in order
to reserve the letter z for the redshift. In the following a prime denotes a derivative
w.r.t. x while a dot denotes derivative w.r.t. t. The Einstein equations for this



2.2. Wall Universes 21

geometry and for pure dust matter yield [91, 95, 96]

∂t

(
b′

a

)
≡ ∂tE = 0 , (2.2)

ḃ2 −
(
b′

a

)2

= 2
M(x)

b
, (2.3)

M ′ = 4πGρb2b′ = 4πGρb2aE(x) . (2.4)

In Eq. (2.2) we have introduced the time-independent function

E(x) = b′/a (2.5)

and Eq. (2.3) defines M(x) which is also time-independent. In LTB models M/G
can be interpreted as mass density (Note that in the LTB case a term b/(2G) has to
be added to M which is a consequence of the curvature of the 2-sphere. For more
details see [96].), and (M ′/G)r2dr is the mass in a shell of thickness dr. However as
the mass in an infinite plane is not well defined, this interpretation is not meaningful
in the planar case. In our case it is therefore not unreasonable that M may become
negative even though a, b and ρ are supposed to be positive at all times.

From the matter conservation equation we also obtain ∂t(ρb
2a) = 0, which, on

the other hand, is a consequence of Eq. (2.4).

2.2.1 The solutions

Eq. (2.3) can we rewritten as

ḃ2 =
2M(x)

b
+ E(x)2 , (2.6)

with parametric solutions [91, 95]

for E 6= 0 : b =
M

E2
(cosh η − 1) =

2M

E2
sinh2(η/2) , (2.7)

t =
M

E3
(sinh η − η) + tB(x), for M > 0 ; (2.8)

b = −M
E2

(cosh η + 1) = −2M

E2

(
sinh2(η/2) + 1

)
, (2.9)

t = −M
E3

(sinh η + η) + tB(x), for M < 0 ; (2.10)

b = |E|(t− tB(x)) for M = 0 ; (2.11)

for E = 0 : b =

(
3

2

√
2M(t− tB(x))

)2/3

, for M > 0 , (2.12)

b = b0 = const. , for M = 0 . (2.13)
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Note that for E = 0 Eq. (2.6) implies that M ≥ 0. This equation also implies

b ≥ −2M

E2

at all times, in all cases.
The function tB(x) is arbitrary; it is called the ’bang time’. For M ≥ 0, at t = tB,

i.e η = 0, we have b = 0 which represents the Big Bang singularity. Positions with
M < 0 have no Big Bang singularity but a ’bounce’ at t = tB. We shall simplify
below to the case tB ≡ 0, i.e., uniform bang time. Note that we have chosen
expanding solutions. From these we can obtain the collapsing solutions simply by
changing the sign of t. Since in the Einstein equations only ḃ2 appears they are
invariant under t→ −t.

Of course the {t =const.} hypersurfaces are not parallel to the {η =const.}
hypersurfaces, but their position depends on x. For fixed position x, Eqs. (2.7,2.8)
and (2.12) correspond to Friedmann solutions with curvature K = −E2 ≤ 0 and
M = 4πGρb3/3. Note that unlike in the Friedmann case, wall solutions with M < 0
need not be unphysical.

The parametric representation with η is chosen in order to express the solutions
in terms of elementary functions, but it is of course not necessary. For example, for
M > 0, setting

τ(t, x) = −E2

(
t

6M

)2/3

and

S(τ) = (−3τ)−1 sinh2

(
1

2
[sinh−id]−1

(
6 (−τ)3/2

))
we obtain

b(t, x) = −M
E2

6τS(τ) .

Note that in the definition of S, [sinh−id]−1 denotes the inverse of the function in
brackets, and id is the identity function, id(x) = x. One can check that S solves the
differential equation [97]

4

3
(S + τS ′)

2
+ 3τ − 1

S
= 0, (2.14)

with initial condition S(0) =
(

3
4

)1/3
. Note that this is the only regular solution, i.e

solution with S ′(0) 6=∞. This expression will be useful in Section 2.3.3.
The function a(x, η) can be obtained from Eq. (2.5). For example for M > 0 we

find

a = E−1

(
∂b

∂x

)
t

for E 6= 0 : a =
2

E

(
M

E2

)′
sinh2

(η
2

)
−coth

(η
2

) [
t′B+

(
M

E3

)′
(sinh η−η)

]
,(2.15)

for E = 0 : a =
(t− tB)2/3

M1/361/3

[
M−1/3M

′

E
+

9(t− tB)2/3E ′

5× 61/3

]
. (2.16)
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(The suffix t in ∂b/∂x indicates that we have to interpret b as function of (t, x), not
(x, η), in this derivative.) Even if E = 0, Eq. (2.4) implies that 0 < M ′/E <∞, so
that the r.h.s. of Eq. (2.16) is well defined. Below, we shall choose the x-coordinate
such that M ′/E =constant.

Note that M(x) and E(x) can pass through zero so that in general different
solutions from above have to be glued together at the boundary of their validity.
We have checked that this gluing process can be performed in a smooth way and does
not induce singularities in the scale factor b. However, for M → 0 the scale factor
a→∞. Nevertheless, we believe this to be a coordinate singularity, since, as we have
checked, both, the Kretschmann scalar, K ≡ RαβµνR

αβµν and the scalar curvature
remain finite for M → 0. In our examples below we shall have M > 0 throughout
and therefore we do not encounter this problem. However, when computing a from
Eq. (2.5), one has to be careful to use the result (2.15) and take the limit E → 0
for fixed t, hence also η → 0. One cannot use (2.12) and (2.5), since for E = 0 we
have M ′ = 0 so that Eq. (2.5) is identically satisfied and cannot be used to obtain
a(t, x).

2.2.2 Singularities

Singularities can occur when a, b or ρ become either infinite or zero. To have no
singularities (apart from the Big Bang) which occurs at t = tB, hence b = 0, in the
past light cone of every possible observer we might be interested in, we must demand
that all singularities lie in the future. In more precise models, when one specifies
the observer location, one can relax this condition to the one that no singularity lies
within the background lightcone of the specific observer.

In general, the question of singularities depends on the choice of the functions
M(x) and E(x). From our solutions it is clear that b behaves monotonically as a
function of time for fixed x. This is to be expected since no clustering goes on in
the directions y1 and y2 described by this scale factor. Since we are interested in an
expanding b, a singularity is present when the the scale factor a of the x-direction
tends to zero. From Eq. (2.15) we infer that for tB ≡ 0, a = 0 implies

2

E

(M/E2)′

(M/E3)′
=

cosh(η/2)

sinh3(η/2)
(sinh η − η) ≥ 4/3 .

It is easy to verify that the right hand side is an even positive function with minimum
4/3 at η = 0. Hence there is a singularity at some finite value of η if the l.h.s. ever
becomes larger than 4/3 or, equivalently, if

E ′

E

M/E3

(M/E3)′
=

cosh(η/2)

2 sinh3(η/2)
(sinh η − η)− 1 > −1/3

for some value of x.
We now consider a simple ansatz motivated by the perturbative analysis pre-

sented in Ref. [95]. We choose

M(x) =
2

9t20
(1 + εh(x)) (2.17)
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and

4πGρb2a =
M ′

E
=

2

3
t−2
0 = const. (2.18)

so that

E = ε
h′

3
. (2.19)

In full generality M ′/E = f(x) could be an arbitrary positive function of x. But
we can always make a coordinate transformation to x̃(x) determined by

dx

dx̃
=

1

6πGρb2at20
,

so that with respect to the new coordinate M ′/E =constant. Hence we just fix
the coordinate x (up to a constant shift) by this choice. In addition, we have
chosen uniform bang time, tB(x) ≡ 0. This is a true restriction. With this we have
reduced the three free functions of x to one, h(x) which defines the density profile.
Furthermore, we have introduced the parameter ε such that for ε = 0 we reproduce
the matter dominated Friedmann solution. We may also require |h(x)| ≤ 1 so that
ε indicates the amplitude of the perturbations. We do this in one of the examples
below.

The above requirement for a singularity at some time t 6= 0 now reduces to
MM ′′ < M ′2/3. (Strictly our derivation applies only for M ′ 6= 0. For M ′ ∝
E = 0, one sees directly from Eq. (2.16) that M ′′ ∝ E ′ < 0 is the necessary and
sufficient condition for a = 0 at some time t > tB.) We have found that most
interesting mass profiles satisfy this condition for some values of x and therefore
have singularities at some time in some places. This is not surprising but actually
expected from gravitational collapse. However, when over densities become very high
and we approach the collapse, pressure forces and heating become important and
our simple pressure-less dust model for matter no longer holds. In order to be able
to stay within the present framework, we therefore demand that such singularities
be in the future and not in the past for the density profiles under consideration.

Let us consider as a first example

h(x) = cos(kx) .

Then the condition for the existence of a singularity (at t 6= 0) becomes

−
(
ε cos(kx) + ε2 cos2(kx)

)
< (ε2/3) sin2(kx) ,

which is always satisfied for some values of x, irrespective of k and ε. A similar
behavior is expected whenever h is not a convex function, but a function representing
several under- and over-densities cannot be convex.

However, this is not so important for our considerations. As we have said, the
requirement of singularities to be absent is mainly a technical one and it is actually
sufficient not to have a singularity in the past.
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Using the above expression for a (for M > 0) and the ansatz (2.17,2.19) for M
and E, we find that a = 0 is equivalent to

(1 + εh)h′′

εh′2 − 3(1 + εh)h′′
=
−1

3

1

1− εh′2

3(1+εh)h′′

=
1

2

cosh(η/2)

sinh3(η/2)
(sinh η − η)− 1 > −1

3
. (2.20)

Interestingly, in extremal positions of h, with h′ = 0, the l.h.s. of the above expres-
sion is exactly −1/3. This comes from the fact that for this case η = 0 ∀ t and
we have to replace the condition that there is no singularity before some given time
t0 by a(t) > 0 for t < t0 using expression (2.16) for a(t). If h′′′ = 0 when h′ = 0
(as in our example) one can show that in the positions where h has a maximum,
hence h′ = 0 and h′′ < 0, 1 + εh > 0, singularities occur first. Furthermore, when
1 + εh > 0 and h′′ < 0, the denominator of the l.h.s. of Eq. (2.20) is larger than 1
and hence the l.h.s. becomes larger than −1/3. Therefore, there exists a finite value
ηs(x) where Eq. (2.20) is satisfied and a(x, ηs(x)) = 0. If, on the contrary, 1+εh > 0
and h′′ > 0 the l.h.s. of Eq. (2.20) is smaller than −1/3. For positions in the vicinity
of an extremum this implies that if the extremum is a minimum of h, the position
x does not encounter a singularity in the future while positions close to maxima do.

Let us study in more detail the request that the second singularity (not the big
bang one) lies in the future, t > t0. Using the expression (2.8) for t, we can rewrite
the condition a(x, ηs) = 0 as

(1 + εh)h′′

εh′2 − 3(1 + εh)h′′
=

9

4

cosh(ηs/2)

sinh3(ηs/2)

t20t(x, ηs)ε
3h′3

(1 + εh)
− 1 .

The condition t(x, ηs) > t0, for h′ < 0 which we shall consider hence ηs < 0 for
t(x, ηs) > 0, then becomes

(1 + εh)

ε3h′3

[
1 +

(1 + εh)h′′

εh′2 − 3(1 + εh)h′′

]
4

9t30
<

cosh(ηs/2)

sinh3(ηs/2)
.

This equation for ηs(x) can only be solved numerically. However, often we realize
that the l.h.s. is smallest at small |h′| i.e. for small values of |E(x)|. Hence singu-
larities will develop first in positions with small |h′|. This requires also small |ηs| so
that we may develop the scale factor a and t in ηs. The above inequality then leads
to power law relations and inserting the above expression for E = (3/2)M ′t20 yields
the constraint

1 +
(3t20)7/331/322/3

80

(
6M ′′M1/3 − M ′2

M2/3

)
> 0 ,

1− 1

20
(t0k)2/3

(
6ε cos(kx) (1 + ε cos(kx))1/3 +

ε2 (sin (kx))2

(1 + ε cos (kx))2/3

)
> 0.(2.21)

The first inequality is general while for the second inequality we have chosen h =
cos(kx). In Fig. 2.1 we plot the constraint for this case together with the condition to
use the limiting solution for E = 0, (2.16), (which is not necessary for our analysis)
in the ε–λ plane, where λ denotes the wavelength of the perturbation λ = 2π/k.
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Figure 2.1: The region above the blue line has singularities in the future only. While
the red line describes the condition to use the limiting solution for E = 0, (2.16).
This can be used when tE3/M � 1, where with ”�” we mean at least two orders
of magnitude smaller. The two black lines describe the physical parameters ε =
9.5× 10−6 and λ = 80 Mpc. The green line is the Hubble scale H−1

0 . With physical
parameters we mean an amplitude as determined by WMAP [98] observations and
a wavelength agrees with the size of the largest observed voids [99] which is about
40-90 Mpc. More precisely we find ε requiring that at early time there is only a
single density fluctuation in each Hubble distance. This leads, at first order, to
δ = 8π2ε/15, and the matter density fluctuation at early times, δ ∼= 5× 10−5 can be
inferred from WMAP observations. For more details see [94].

2.3 The distance redshift relation in a wall uni-

verse

2.3.1 Generalities

Redshift

We now consider a photon emitted from a source at some position and time (ts,xs)
arriving in our telescope at position and time (t0,x0). We denote the matter 4-
velocity field, hence the 4-velocity of source and observer by u(t,x) and the photon
4-velocity by n. The redshift of the source, z is then given by

1 + z =
g(n, u)|s
g(n, u)|0

. (2.22)
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We consider a co-moving source and observer, hence u = ∂t and normalize the affine
parameter of the photon, s, such that n0(s0) = 1. The redshift then reduces to

1 + z = n0|s (2.23)

for our geometry with g00 = −1 and g0i = 0. From the geodesic equation for the
photon we infer that its momenta in y1- and y2-direction are simply redshifted so
that

J1 ≡ b2n1 = b2dy1

ds
= const. and J2 ≡ b2n2 = b2dy2

ds
= const. (2.24)

hence

(nx)2 =

(
n0

a

)2

− 1

a2b2

(
J2

1 + J2
2

)
. (2.25)

From the geodesic equation for n0 we can now derive the evolution of the redshift:

dz

ds
= −dn

0

ds
= (1 + z)2 ḃ

′

b′
+
J2

1 + J2
2

b2

(
ḃ

b
− ḃ′

b′

)
. (2.26)

Here we have used a = b′/E to eliminate the scale factor a. Note also that the prime
and the dot in the above equation denote partial derivatives while d/ds is a total
derivative along the path of the photon.

Distance

The evolution of the distance to the source is given by the Sachs focussing equa-
tion [49],

d2D

ds2
= −

(
|σ|2 +R

)
D . (2.27)

D is the angular diameter distance to the source, σ is the complex scalar shear of
the light bundle which we define below and

R =
1

2
Rµνn

µnν = 4πGTµνn
µnν = 4πG(1 + z)2(ρ+ P̄ ) . (2.28)

Here P̄ is the pressure in the direction of the photon. The important point is that
this quantity is non-negative for any energy momentum tensor which satisfies the
dominant energy condition ρ ≥ P̄ in all directions, hence also for a cosmological
constant where we have R ≡ 0. In terms of the affine parameter of the photon, the
growth of the angular diameter distance to the source is not accelerated. If the dom-
inant energy condition is satisfied D(s) is always a concave function. Furthermore,
clustering which leads to the production of non-vanishing shear is only increasing
the deceleration of D as function of the affine parameter s. But of course we do not
measure this function but D(z) which can behave very differently.

The complex shear of the light ray bundle is defined as follows (appendix 7.7.3.
in [50]): We consider two spatial orthonormal vectors e1 and e2 which are normal
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to both, u and n at the observer and are parallel transported along n, such that
∇nea = 0 for a = 1, 2. The vectors e1, e2 are a basis of the so called ’screen’. Note
that we do not require that u be parallel transported along n, hence e1, e2 are in
general not normal to u elsewhere than at the observer, where we have given their
initial conditions. The complex shear is defined by

σ =
1

2
g(ε,∇εn) , ε ≡ e1 + ie2. (2.29)

In order to compute the shear we must know n not only along the photon geodesic
itself but we must determine its derivatives in directions normal to n. We shall
directly use the transport equations [50]. For a vorticity free ray bundle (which is
the case here) with expansion rate θ ≡ 1

2
nµ;µ these are

θ̇ + θ2 + σ2
1 + σ2

2 = −R, (2.30)

σ̇1 + 2θσ1 = −Re (F) , (2.31)

σ̇2 + 2θσ2 = Im (F) , (2.32)

where σ1 = Re (σ), σ2 = Im (σ), and F = 1
2
Rαµβν ε̄

αε̄βnµnν . To determine the
shear σ we need to know the initial conditions for the differential equations (2.30)
to (2.32). It is possible to determine the behavior of the shear and the expansion
of the light near the vertex [100]. Choosing the affine parameter of the photon to
vanish at the observer position, s0 = 0, these are

σ(s) = −s
3
F̄0 +O

(
s2
)
, (2.33)

θ(s) =
1

s

(
1− 1

3
R0s

2

)
+O

(
s3
)
. (2.34)

F0 and R0 are the values of F and R at the observer position. The light bundle
expansion θ diverges at the observer position, but we can consider an initial condition
not exactly at the observer. This choice can affect the numerical precision. After
determining R, ε and F for a given geometry and photon direction, we can solve the
system (2.30) to (2.32) together with the Sachs focusing equation (2.27) numerically.

2.3.2 ’Realistic’ walls

We want to investigate whether the system of equations derived above for z(s) and
D(s) can lead to a distance-redshift relation close to the one observed. For wall
universes we consider,

R = 4πGρ(1 + z)2 =
2(1 + z)2

3t20b
2a

. (2.35)

For a chosen density contrast h(x) we can determine b(t, x) and a(t, x) and solve
the photon geodesic Eq. (2.26) for a given angle θ0 of the observed photon w.r.t. the
y-plane,

cos θ0 =

√
J2

1 + J2
2

b(x0, t0)n0(0)
. (2.36)
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We again set the initial value of the affine parameter to 0, hence x0 = x(0) etc.
We have investigated two choices for M(x). The first is simply

M(x) =
2

9t20
(1 + ε cos(kx))

which we have already discussed before. The results for this case are shown in
Fig. 2.2.
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Figure 2.2: We show the relative luminosity distance redshift relation ∆D(z)
DEdS(z)

=
D(z)−DEdS(z)

DEDS(z)
, for different models with luminosity distance D(z). The blue dotted

curve is for a Milne Universe, the red dashed curve is for ΛCDM universe with
ΩΛ = 0.7 and ΩM = 0.3. The remaining two lines are our wall universe. The black
solid line is in an under density while the purple dot-dashed line is in an over density.
In the top panel, we consider light propagating in the x-direction only. The bottom
panel is the same but for light propagating in the y-direction. The parameters for
the wall model are the physical ones, ε = 9.5× 10−6 and λ = 80 Mpc.

The result is quite striking: The deviation from the Einstein-de Sitter distance-
redshift relation is very small. On the level of a few percent in the most extreme case.
Much smaller than the deviation for an open (Milne) Universe or even for ΛCDM.
Hence voids and walls with the chosen parameters cannot simulate the observed
distance redshift relation. We have also studied different values of the parameters
(ε, k), but all cases which are such that there is no singularity before t0 lead to small
deviation from Einstein-de Sitter. Only for wavelengths of approximately Hubble
scale, k ∼ H0, where we can choose ε ∼ 10−3 do the deviations become relatively
large. But the density profile chosen here does not at all lead to a relation that
resembles the observations.



30 Chapter 2. Back Reaction from Walls

As a second profile we consider thin, highly concentrated over-dense walls with
an exponential profile:

h (x) =
λ√

2πσ2

∑
i

exp

(−(x− xi)2

2σ2

)
− 1, (2.37)

where λ = xi+1−xi. In the limit σ � λ the mean of h (x) vanishes and minxh (x) =
−1. Again, we choose ε such that there is no singularity before t0. The results for
this profile are shown in Fig. 2.3.
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Figure 2.3: We show the relative difference between the distances in ’realistic’ wall
models and in EdS universe for photons propagating in x-direction. The top panel
is obtained with ε = 10−9, λ = 40 Mpc and σ = 1 Mpc, while the bottom one with
ε = 5×10−8, λ = 15 Mpc and σ = 1 Mpc. In both cases the observer is at the center
of the void. We have checked that the order of magnitude does not change for an
observer in an over density. In the second case, we see that we obtain an effect of
the same order of magnitude as the swiss cheese universe discussed in [101].

We have obtained the following result in these two examples (and other profiles
which we do not present here explicitly): The modification ofD(z) never goes beyond
the case of the open universe. We do not obtain acceleration by a series of dense
walls. Even though we present here only two simple profiles, we think the conclusion
is valid beyond these cases: if a photon passes through many compensated under-
and over-densities in the integrated distance D(z) the effect is minute as long as the
time the photon spends inside a wall is much smaller than the time scale at which the
gravitational potential of the wall evolves. A perturbative (first order) calculation
gives a flavour of this effect. Indeed, at first order in the perturbed direction, the
difference between D(z) in our models and DEdS(z) of a matter dominated universe
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can be written as

DL (ze)−DEdS
L = (1 + ze) (ηo − ηe)

( ε
3

(h (ηo) + h (ηe))
)
− (1 + ze)

∫ ηo

ηe

2ε

3
h (η) dη

+ (1 + ze)

∫ ηo

ηe

dη

∫ η

ηe

dη′
ε

15
h′′ (η′) η′ − 1 + ze

He

∫ ηo

ηe

dη
ε

15
h′′ (η) η, (2.38)

where the subscripts e and o respectively mean that the conformal time is evaluated
at the source (emission) or at the observer and expresses the perturbation of the
energy density in under and over densities (see Appendix C for a derivation of the
linearized result). From this expression, valid in the linear regime only, and for a
periodic perturbation, it becomes clear that the deviation of DL(z) with respect
to DEdS

L depends on the amplitude ε of the perturbation and on the values of the
conformal time at the source and at the observer. In the case of periodic perturba-
tions, the contributions from photon path are mostly cancelled in the integral terms.
Of course in the full non-linear calculation there is no simple relation between the
matter over density h and the gravitational potential. In this case in principle the
full non-linear Einstein equation have to be solved and Eqs. (2.26) and (2.27) govern
DL(z).

Surprisingly, however, our non-linear simulations show that this result holds also
to some extent in the non-linear regime. Note that, even though our value of ε is
small, the over densities in the walls are large at late times, such that they develop
singularities soon after today and we are deeply in the non-linear regime. While we
do not have a proof that our conclusion holds in all cases, we have tested this also
with other periodic wall profiles.

In Fig. 2.4 we show the deviations of the expansion rates with respect to the
Hubble expansion in EdS universe. We note that the deviations in the unperturbed
directions are small. However, in the perturbed direction these deviations can be
large locally inside a wall, and they would be measurable by direct, local measure-
ments of H(z). However, they compensate when averaged over a wall thickness and
do not show up in integrated quantities like D(z).

2.3.3 Mimicking dark energy

Yoo et al. [97] have shown that in an LTB model every given distance–redshift
relation can be mimicked by a suitable choice of the density profile. The same is
true for a wall universe. For a given function D(z) we can find a density profile which
leads to exactly this distance–redshift relation for a photon coming in x-direction.
First of all, for such a photon the shear vanishes for symmetry reasons and R is
given by (2.35). To find the density profile, which is equivalent to finding M(x)
or M(z) ≡ M(x(z)) we have to solve the following coupled system of six ordinary
differential equations (in principle none of the other equations couples to (2.41) since
both, FM and Fβ do not depend on x explicitly), which is very similar to the system
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Figure 2.4: We show the relative differences between the expansion rates in the
thin, highly concentrated over-dense wall model and the Hubble expansion in EdS
universe. The top panels are obtained with ε = 10−9, λ = 40 Mpc and σ = 1 Mpc,
while the bottom ones with ε = 5 × 10−8, λ = 15 Mpc and σ = 1 Mpc. In both
cases the observer is at the center of the void. The left panels show the expansion
rates in the perturbed direction, while the right ones in the y-direction. The results
for the cosine profile not shown here are similar to the two top panels.

solved in Ref. [97]:

dM

ds
= FM (t, z,M, β, ζ) , (2.39)

dβ

ds
= Fβ (t, z,M, β, ζ) , (2.40)

dx

ds
=

FM (t, z,M, β, ζ)

β
, (2.41)

dt

ds
= 1 + z, (2.42)

dz

ds
=

ζ
dD
dz

, (2.43)

dζ

ds
= −4π (1 + z)2 ρD, (2.44)
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where we have defined

ζ =
dz

ds

dD

dz
and β =

dM
ds
dx
ds

= M ′ =
2

3t20
E . (2.45)

In Appendix 2.5.1 we give the derivation of this system and the detailed expressions
for FM and Fβ. There, we also explain the method used to specify the initial
conditions at the observer. All the constraints are fixed by requiring the system to
have no critical points. Note also that z(s) need not to be monotonic. If dz/ds = 0
at a value of s where ζ = dD/ds 6= 0, the derivative dD/dz is not well defined. This
is, however, not the case of a ΛCDM Universe which we want to mimic here. We
are then left with one initial condition, which we choose by requiring

H0 =
ȧ

a

∣∣∣∣
s0

=
ḃ

b

∣∣∣∣∣
s0

, (2.46)

i.e. the value of the Hubble rate at the observer today does not depend on direction.
In Fig. 2.5 we show M(x) as well as its derivative with respect to the x coordinate,
β (x), for the solution mimicking the ΛCDM expression for D(z), for ΩK = 0,
Ωm = 0.3 and ΩDE(z) = 0.7 =constant.

D(z) =
1

1 + z
χK

(∫ z

0

dz′

H(z′)

)
where (2.47)

χK(r) =
1√
K

sin(r
√
K) , and

H(z) = H0

(
Ωm(1 + z)3 + ΩK(1 + z)2 + Ωr(1 + z)4 + ΩDE(z)

)1/2

.

In Fig. 2.6, we show how the luminosity distance deviates when the observer
looks at photons coming in with different angles θ0. For θ0 = 90 degrees, we have
photons traveling in x-direction, in this case the luminosity distance is fitted to the
one of ΛCDM by solving the system of Eqs. (2.39-2.44) with the functions M(x) and
β(x) shown in Fig. 2.5. It is interesting to remark that a given angle of θ0 ∈ [0; 90]
degrees at the observer corresponds to an angle at the emission θe > θ0. This is a
consequence of the spacetime geometry induced by the walls: due to the clustering
in direction x, corresponding to θ = 90o, its expansion slows down in time.

In Fig. 2.7, we present the density profile corrected by the isotropic expansion
rate, (1 + z)−3ρ(z)/ρ0, ρ0 = ρ(z = 0), obtained for our model to mimic ΛCDM
luminosity distance. Finally, in Fig. 2.8, we plot the expansion rates in the lon-
gitudinal and transverse directions, Ha = ȧ/a and Hb = ḃ/b. It is interesting to
estimate roughly the features of the under density needed to fit ΛCDM luminosity
distance. For example, if one considers the highest redshift for which we have data
from supernovae, at around z ∼ 1.7. This roughly corresponds to a size ∼ H−1

0 . (Of
course we have another data point from the CMB. The angular size of the acoustic
oscillations provides an excellent measure of the angular diameter distance to the
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Figure 2.5: We show the function M(x), top panel, and its derivative β(x), bottom
panel. In principle, there is a entire family of functions M(x) parametrized by the
initial value M(0) = M0 that we are free to choose (appendix A). Here, we present

the solutions corresponding to H0 = ȧ
a

∣∣
s0

= ḃ
b

∣∣∣
s0

.

last scattering surface, z ' 1090. But this is not very relevant in our context as the
Universe is to a good approximation matter dominated from z = 2 to z = 1090.) An
under density of the size of the order of the Hubble distance is necessary to mimic
ΛCDM with our walls. Moreover, we can also determine the ratio of the energy
density normalized at the observer to the energy density in an Einstein-de Sitter
model at z ∼ 1.7 which is about 4. At high redshift, z & 10 the anisotropy is very
small and the Universe is close to a Friedmann Universe with about 5 times the
matter density obtained from local estimates.

2.3.4 Redshift drift

In the previous section we have fixedM(x) to reproduce the distance redshift relation
of ΛCDM universe. Of course, having one free function to play with, namely M(x),
we expect to be able to fit one function, in our case D(z). If we now proceed to
another, independent observable, we shall most probably not fit it. We have done
this by looking at the redshift drift, defined as the rate of change of the redshift of
a co-moving source per unit of observer time. In a Friedmann Universe the redshift
drift is simply

dz

dt0
≡ lim

∆t0→0

z(ts + ∆ts)− z(ts)

∆t0
= H0(1 + z)−H(z) , (2.48)
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Figure 2.6: We show the relative differences between luminosity distances for pho-
tons traveling in the x-direction (perpendicular to the walls) and photons observed
with an angle θ0 (see Eq.(2.36)). From the top to the bottom, we respectively have
θ0 = 75, 60, 45, 30, 15, 5 degrees.
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Figure 2.7: We show the ratio of our density profile to the Einstein-de Sitter one
as a function of the cosmological redshift.

where H(z) = H(ts) and H0 denote the Hubble parameter at the source position at
time ts and at the observer at the moment t0. We have computed the correspond-
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Figure 2.8: We show the relative expansion rates in the transverse and longitudinal
directions as functions of the cosmological redshift. We use the following notation:
∆Ha,b = Ha,b − HF , where HF is the expansion rate in an Einstein-de Sitter uni-
verse, and Ha,b are the expansion rates in the longitudinal and transverse directions,
normalized to the their values at the observer.

ing function (for light rays in x-direction) from our solution M(x). The general
expression for the redshift drift of a wall Universe in x–direction is (see Appendix
2.5.2),

dz

dt0
= (1 + z)

∫ z

0

(
b̈′

ḃ′

)
(1 + z′)

−2
dz′

= − (1 + z)

∫ z

0

(
4πGρ− 2M

b3

)
a

ȧ
(1 + z′)

−2
dz′ . (2.49)

Since we do not require M0 = 0 as in LTB model, we can in principle have a positive
redshift drift at low redshift; but we do not obtain this for our best fit profile M(x)
with tB(x) ≡ 0. The result is compared with ΛCDM in Fig. 2.9.

Clearly the redshift drift for the two cosmologies are very different. We do have
a second function to play with, the bang time tB(x), so that we could probably fix
this observable. This has been done for LTB models in [102]. However, as it is
shown there, models which have both, the same redshift distance relation and the
same redshift drift as ΛCDM can be ruled out with a third observable, the kinematic
Sunyaev-Zel’dovich effect which comes from the recession velocity of clusters.
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Figure 2.9: We show the redshift drift for the wall Universe (black solid line) which
mimics the distance redshift relation of ΛCDM and compare it with the redshift
drift of the latter (red dashed line).

2.4 Conclusions

We have studied the effect of matter perturbations on the luminosity distance in a
model with planar symmetry described by the metric (2.1). Considering ’realistic’
walls we find that the effect from density inhomogeneities is very small, it nearly
averages out. It leads to fluctuations of the luminosity distance around the ’back-
ground’ distance, but not to a significant global shift. Our results (Fig. 2.3) show
that these fluctuations are due to matter inhomogeneities at the source and the
observer positions, without any relevant contribution from the integrated effects of
light propagation, like in the linear approach (2.38). Hence we can not mimic ac-
celeration with many dense walls which grow by gravitational instability. Since we
consider pressure-less matter only, the amplitude of density fluctuations is limited
by the presence of singularities. This is a limitation of the model.

After having shown that ’realistic’ wall models can not reproduce the observed
distance-redshift relation, we have determined the density profile which can mimic
it. We have fixed the free function of our model, M(x), to mimic the luminosity (or
angular) distance of the ΛCDM universe. We have shown that the observation of
the redshift drift can distinguish between this model and ΛCDM. Abandoning the
assumption of an uniform bang time we could arrange the second degree of freedom,
tB(x), to fit the redshift drift too. We have found that the redshift drift in our model
can be positive at low redshift, contrarily to the LTB model [103].
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With our solution M(x) we can fit ΛCDM distance for photons coming in x-
direction for positive x only. This preferred direction corresponds to the radial
incoming direction for LTB model. The deviation from ΛCDM for photons coming
from different angles is typically a few percent (see Fig. 2.6).
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2.5 Appendix

2.5.1 Derivation of the system of differential equations and
initial conditions

The system

Here we derive in more detail the system (2.39) to (2.44) and give the initial condi-
tions used for the solution.

Since we choose the photon affine parameter such that n0|0 = 1 we have

1 + z(s) = n0(s) =
dt

ds
.

Furthermore, the null condition for a light ray in x–direction implies(
dt

ds

)2

=

(
b′

E

)2(
dx

ds

)2

=

(
2b′

3t20M
′

)2(
dx

ds

)2

. (2.50)

The geodesic equation gives

dz

ds
=
d2t

ds2
= − ȧ

a
(1 + z)2 = − ḃ

′

b′
(1 + z)2 . (2.51)

Hence, when the expansion in x-direction changes into contraction, ȧ = 0, also
dz/ds passes through zero. However, this does not happen in our case which mim-
ics ΛCDM. Noting that geodesics in x-direction have no shear, the Sachs focusing
equation yields

d2z

ds2

dD

dz
+

(
dz

ds

)2
d2D

dz2
= −4πGρ (1 + z)2D, (2.52)

where we have used R = 4πG (1 + z)2 ρ. We can now rewrite these equations in
terms of the system (2.39) to (2.44). To find the functions FM and Fβ we first derive
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the following useful relations

τ̇ =
2

3t
τ, (2.53)

τ ′ = τ

(
2
dβ
ds
dM
ds

− 2

3

β

M

)
, (2.54)

b′ = − 8

9t40

τ

β
(S − 2τS ′)− 16

3t40
τ 2M

β2

dβ
ds
dM
ds

S ′, (2.55)

ḃ′ = − 16

27t40

τ

t

1

β

(
S − 3τS ′ − 2τ 2S ′′

)
− 32

9t40

M

β2

dβ
ds
dM
ds

τ 2

t
(2S ′ + τS ′′) . (2.56)

Here S ′ always indicates the derivative of S with respect to its argument τ while as
for all other functions of (t, x) the prime denotes the partial derivative w.r.t. x and
the dot the one w.r.t. t. The null condition for the light ray can be written as

dM

ds
A1 +

dβ

ds
B1 = ±1,

with

A1 = − 16

27t6O

τ

β3 (1 + z)
(S − 2τS ′) , (2.57)

B1 = − 32

9t6O

τ 2M

β4 (1 + z)
S ′. (2.58)

The geodesic equation takes the form

dM

ds
A2 +

dβ

ds
B2 = 0, (2.59)

where

A2 = − ζ
dD
dz

8

9t40

τ

β
(S − 2τS ′)− (1 + z)2 16

27t40

τ

t

1

β

(
S − 3τS ′ − 2τ 2S ′′

)
, (2.60)

B2 = − ζ
dD
dz

16

3t4O
τ 2M

β2
S ′ − (1 + z)2 32

9t40

M

β2

τ 2

t
(2S ′ + τS ′′) , (2.61)

with ζ = dD
ds

= dz
ds
dD
dz

. From this we infer

FM (t, z,M, β, ζ) = ± B2

A1B2 − A2B1

, (2.62)

Fβ (t, z,M, β, ζ) = ∓ A2

A1B2 − A2B1

. (2.63)

Since τ is a function of M , β and t, we now have expressed everything in terms of
our variables (t, z,M, β, ζ) and the given function D(z). Explicitly, FM and Fβ are
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given by

FM = ±3t2O
4
β

(
6M

t

)2/3
ζ
dD
dz

3t
2

S′

1+z
+ (1 + z) (2S ′ + τS ′′)

SS ′ + τSS ′′ − τS ′2 , (2.64)

Fβ = ± 1

18t2O

1

M

(
6M

t

)4/3
ζ
dD
dz

3t
2

(S−2τS′)
1+z

+ (1 + z) (S − τS ′ − 2τ 2S ′′)

SS ′ + τSS ′′ − τS ′2 . (2.65)

Initial conditions

Let us now turn to the initial conditions at s0 = 0. Without loss of generality we
can set x(0) = 0. Clearly also z(0) = 0. From definition (2.45) we have

ζ (0) =
dD

ds

∣∣∣∣
s=0

. (2.66)

Since this is an initial condition for the Sachs focusing equation, we have consistently
with our affine parameter normalization [100, 104],

ζ (0) = −1. (2.67)

From (2.43) we note that our system of coupled differential equations has a critical
point zcr defined by

dD

dz

∣∣∣∣
z=zcr

= 0. (2.68)

For our ΛCDM parameters zcr ≈ 1.6. To obtain a regular solution we must therefore
impose ζ (zcr) = 0. We remark that Eqs. (2.67) and (2.51) imply

ȧ

a
= H0, (2.69)

where we have used

dD

dz

∣∣∣∣
z=0

= H−1
0 .

Hence the rate expansion in x-direction coincides with the measured Hubble expan-
sion. In order to solve the system of five differential equations (Eq. (2.41) is an
independent equation, since the solution x (s) can also be inferred from Eq. (2.42)
via the null condition), five initial conditions are needed. However, we only have
two of them

z (0) = 0 ζ (0) = −1. (2.70)

We have two other constraints which we must satisfy at the critical point where
(2.68) holds. Denoting the affine parameter at the critical point by scr, we have

z (scr) = zcr ζ (scr) = 0. (2.71)
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These lead to two other initial conditions which can be determined using the shooting
method. One remaining constraint is needed and we fix it by requiring

ȧ

a

∣∣∣∣
0

=
ḃ

b

∣∣∣∣∣
0

= H0. (2.72)

This last condition fixes M(0) and makes sure that the Hubble rate measured today
is the same in any direction. We then numerically integrate the system from the
critical point to the observer by varying the three remaining conditions at the critical
point until the initial conditions (2.70) and (2.72) are satisfied. This matching is
obtained by using the three dimensional Newton-Raphson method. Once the desired
precision has been reached, the two remaining initial conditions β(0) and t(0) can
simply be read from the numerical data.

2.5.2 Derivation of the system of differential equations for
the redshift drift

The redshift drift for a LTB model has been derived in [103]. This approach can
also be applied to our model. The null condition for the light ray (in x-direction)
and the geodesic equation lead to

dz

dx
=
ḃ′

E
(1 + z) ,

dt

dx
= − b

′

E
. (2.73)

We consider two infinitesimally close geodesics at fixed comoving position x, param-
eterized by

{zc, tc} and {zc + δz, tc + δz} .

Since the geodesic {zc, tc} satisfies (2.73), it follows

dδz

dx
=

b̈′

E
(1 + z) δt+

ḃ′

E
δz,

dδt

dx
= − ḃ

′

E
δt.

Then, inserting (2.73) we obtain

dδz

dz
=

b̈′

ḃ′
δt+

δz

1 + z
, (2.74)

dδt

dz
= − δt

1 + z
. (2.75)

Integrating (2.75) we find

δt =
δt0

1 + z
.
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This solution together with (2.74) leads to

d

dz

(
δz

δt0

)
=

1

1 + z

(
b̈′

ḃ′
+
δz

δt0

)
.

This equation is solved by (2.49). Deriving the Einstein equation (2.3) twice (once
w.r.t. x and once w.r.t. t), we obtain

b̈′ =
2Mb′

b3
− M ′

b2
. (2.76)

With (2.2) and (2.4) this results in the second line of (2.49).

2.5.3 The linearized approach

We determine the luminosity distance within linear perturbation theory for small
deviations from a Friedmann–Lemâıtre background. Let us define

a(t, x) = ā(t) (1 + εf(t, x)) , (2.77)

b(t, x) = ā(t) (1 + εg(t, x)) , (2.78)

ρ(t, x) = ρ̄(t) (1 + εδ(t, x)) , (2.79)

where the unperturbed quantities ā (t), ρ̄ (t) satisfy the Einstein equations for a flat
matter dominated Friedmann universe (EdS). The perturbed quantities are deter-
mined by the Einstein equations at first order in ε,

−6t
4/3
0 g′′ + 4t1/3

(
ḟ + 2ġ

)
3t4/3

= 8πGρ̄δ, (2.80)

ġ′ = 0, (2.81)

t1/3 (2ġ + tg̈) = 0, (2.82)

t
4/3
0 g′′ − t1/3

(
2ḟ + 2ġ + t

(
f̈ + g̈

))
= 0. (2.83)

Neglecting the decaying mode and imposing that at the beginning the scale factors
in all three directions agree, we obtain [94],

g =
δO
3
, (2.84)

f =
3

10
δ′′Ot

4/3
O t2/3 +

δO
3
, (2.85)

where δO (x) = δ (t, x) + f (t, x) + 2g (t, x) is independent of time. This is a con-
sequence of energy conservation and can also be derived by combining (2.80) to
(2.83).

We are interested in finding the relation between δO and M,E in the perturbative
regime. Following [95] we expand the solution (2.7, 2.8) around η = 0 in terms of
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tB(x)
t
� 1 and E3t

M
� 1. Comparing the expanded solution with the linear one we

find

M =
2

9t20
(1 + εδO) , E =

εδ′O
3
. (2.86)

With the ansatz (2.17, 2.19) we can identify δO (x) with h (x) in the perturbative
regime.

The angular distance is determined by Sachs focusing equation (2.27). We note
that the shear term does not contribute to first order. Since light propagation is not
affected by a conformal transformation, it is convenient to work with the conformally
related geometry

ds2 = −dη2 + (1 + 2εf) dx2 + (1 + 2εg)
(
dy2

1 + dy2
2

)
. (2.87)

From this, we compute the Christoffel symbols (here we denote the derivative w.r.t.
the conformal time η by a dot)

Γ0
11
∼= εḟ , Γ0

22 = Γ0
33
∼= εġ,

Γ1
10
∼= εḟ , Γ1

11
∼= εf ′, Γ1

22 = Γ1
33
∼= −εg′,

Γ2
20 = Γ3

30
∼= εġ, Γ2

21 = Γ3
31
∼= εg′,

and the Ricci tensor

R00
∼= −ε

(
f̈ + 2g̈

)
,

R10
∼= −2εġ′,

R11
∼= ε

(
f̈ − 2g′′

)
,

R22 = R33
∼= ε (g̈ − g′′) .

At 0-order we are free to parametrize the affine parameter s such that n̄0 = 1 and
n̄i = δi1 (we are interested in the distance in x-direction). With this we obtain the
coefficient R

R = −ε (g̈ + g′′ + 2ġ′) .

Consistently with the parametrization of the affine parameter s such that n0 (s0) = 1,
the initial conditions are D (so) = 0 and D′ (so) = −1. After an integration by parts
we find the solution to Sachs focusing equation (2.27),

D (s) = (so − s) (1 + εg (so) + εg (s)) + 2

∫ s

so

ds′εg (s′) . (2.88)

With the above initial conditions for the Sachs focusing equation, we consider a thin
light bundle with the vertex at the observer position. Hence the solution (2.88) is
the angular diameter distance, see [100]. To determine the luminosity distance we
have to compute also the redshift, using the geodesic equation for n0,

1 + z =
gµνn

µuν |e
gµνnµuν |o

= n0
∣∣
e

= 1−
∫ se

so

ds εḟ , (2.89)
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where |e denotes the emission point, the source, and we denote the affine parameter
at the source by se. With the same geodesic equation we derive the relation between
the conformal time η and the affine parameter s, n0 = dη/ds,

ηo − ηe = so − se +

∫ se

so

ds

∫ s

so

ds′εḟ(s′). (2.90)

In terms of conformal time the luminosity distance then becomes

DL (ηe) = (ηo − ηe)
(

1 + εgo + εge − 2

∫ ηe

ηo

dη εḟ

)
+ 2

∫ ηe

ηo

dη εg−
∫ ηe

ηo

dη

∫ η

ηo

dη′εḟ .

(2.91)
All of this is valid in the conformal geometry, where the expansion of the Universe is
divided out. Taking into account the expansion of the universe, changes the relation
between the affine parameter and conformal time. The luminosity distance scales
as [9]

D̃L =
ā2 (ηo)

ā (ηe)
DL =

DL

ā (ηe)
= (1 + z̄e)DL.

Since conformal time is not an observable quantity, we rewrite the distance in term
of the observed redshift. We define the observed redshift as ze = z̄e + δze and we
compute the correction term. The same calculation as presented in Ref. [9] leads to(

d

dz
D̃L

)
δze =

(
(ηo − ηe) +H−1

e

)
δze, (2.92)

where

δze = − (1 + ze)

∫ ηe

ηo

dη εḟ . (2.93)

Subtracting (2.92) we obtain the distance–redshift relation

D̃L (ze) = (1 + ze) (ηo − ηe)
(

1 + εgo + εge −
∫ ηe

ηo

dη εḟ

)
(2.94)

+ (1 + ze)

(
2

∫ ηe

ηo

dη εg −
∫ ηe

ηo

dη

∫ η

ηo

dη′εḟ

)
+

1 + ze
He

∫ ηe

ηo

dη εḟ .

With

−
∫ ηe

ηo

dη

∫ η

ηo

dη′εḟ = (ηe − ηo)
∫ ηo

ηe

dη εḟ +

∫ ηo

ηe

dη

∫ η

ηe

dη′εḟ ,

we can rewrite the above expression in the form as

D̃L (ze) = (1 + ze) (ηo − ηe) (1 + εgo + εge) (2.95)

+ (1 + ze)

(
−2

∫ ηo

ηe

dη εg +

∫ ηo

ηe

dη

∫ η

ηe

dη′εḟ

)
− 1 + ze
He

∫ ηo

ηe

dη εḟ .
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Using the solutions (2.84, 2.85) we express the distance in terms of δO (η). Conformal
time is defined as

dη =
dt

ā (t)
⇒ η (t) = 3t1/3t

2/3
0 , setting η (0) = 0.

This leads to

g (η, x (η)) =
δO (x(η))

3
,

f (η, x (η)) =
1

30
δ′′O (x(η)) η2 +

δO (x(η))

3
,

ḟ (η, x (η)) =
1

15
δ′′O (x(η)) η,

and consequently to the following distance–redshift relation

DL (ze) = (1 + ze) (ηO − ηe)
(

1 +
ε

3
(δO (x(ηo)) + δO (x(ηe)))

)
− (1 + ze)

∫ ηo

ηe

2ε

3
δO (x(η)) dη + (1 + ze)

∫ ηo

ηe

dη

∫ η

ηe

dη′
ε

15
δ′′O (x(η′)) η′

− 1 + ze
He

∫ ηo

ηe

dη
ε

15
δ′′O (x(η)) η. (2.96)
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Distance measurements are usually thought to probe the ‘background’ metric of the
universe, but in reality the presence of perturbations will lead to deviations from
the result expected in an exactly homogeneous and isotropic universe. At least in
principle the presence of perturbations could even explain the observed distance–
redshift relation without the need for dark energy. In this paper we re-investigate a
toy model where perturbations are plane symmetric, and for which exact solutions
are known in the fluid limit. However, if perturbations are large, shell-crossing
occurs and the fluid approximation breaks down. This prevents the study of the
most interesting cases. Here we use a general-relativistic N -body simulation that
does not suffer from this problem and which allows us to go beyond previous works.
We show that even for very large plane-symmetric perturbations we are not able to
mimic the observed distance-redshift relation. We also discuss how the synchronous
comoving gauge breaks down when shell-crossing occurs, while metric perturbations
in the longitudinal gauge remain small. For this reason the longitudinal (Newtonian)
gauge appears superior for relativistic N -body simulations of large-scale structure
formation.

3.1 Introduction

The Physics Nobel Prize 2011 has been given “for the discovery of the accelerated
expansion of the Universe” [2, 3, 4, 79, 80, 81, 82]. Interpreting this finding within
the model of a Friedmann–Lemâıtre (FL) universe requires that the energy density of
the Universe is presently dominated by a component with strongly negative pressure,
p = wρ with w ∼ −1. The nature of this so-called Dark Energy (DE) remains largely
unexplained to date, and is considered as one of the grand challenges of cosmology.
In the cosmological standard model it is addressed by introducing a cosmological
constant Λ which is equivalent to a vacuum energy ρΛ = Λ/(8πG) and obeys the
equation of state pΛ = −ρΛ. However, the required value of this vacuum energy is
considered unnatural, as it is much smaller than all known fundamental scales in
particle physics and there is no established mechanism which protects it from large
quantum corrections. Therefore, although formally possible, this explanation of DE
remains unsatisfactory.

So far, the measurements pointing to the existence of DE rely mainly on the
distance–redshift relation which is valid in an FL universe [47]. Independent mea-
surements of, e.g. the expansion rate H(z) are underway, but at present they are
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still relatively weak, see, e.g., [48]. In the future however, for instance with the Eu-
clid satellite1 [105], it will be possible to measure H(z) and the luminosity distance
dL(z) independently to sufficient accuracy to test whether they obey the relation
predicted in an FL universe [106].

There are many ways to address the DE problem. Most of them can be classified
either as ‘Dark Energy’ or ‘Dark Gravity’ by specifying whether they modify the
right hand side of Einstein’s equation, by introducing a new contribution to the
energy momentum tensor, or its left hand side by modifying the laws of gravity,
making gravity weaker on large scales. For a review see, e.g. [107].

However, there is also the ‘coincidence problem’: why did DE start to become
important roughly at the time when non-linear structures have formed? This leads
to the question whether one might be completely misled by using the distance–
redshift relation of a homogeneous FL universe when actually the true Universe is
lumpy, inhomogeneous. If this were true, DE does not exist but is inferred from
an oversimplified, and hence inappropriate interpretation of the data. This would
certainly be the most conservative solution to the DE problem, requiring no new
physics at all (although it does not explain why vacuum energy is not large, as there
is no obvious reason why zero should be a preferred value).

One might argue that on large scales over- and underdensities compensate and
the distance–redshift relation is similar to the one in an FL universe. However,
since General Relativity is non-linear, the relation between metric and density per-
turbations is not so simple. Unfortunately, so far nobody has been able to address
this problem in full generality and most attempts rely either on approximations or
on toy models. The latter are fully relativistic solutions which, however, impose
symmetries which are not found in the observed Universe.

In the past some of us have considered plane symmetric dust universes to study
the effect of large overdensities on the distance–redshift relation, dL(z), and on
the Hubble parameter, H(z) [5]. We found that even though the Hubble parameter
becomes strongly fluctuating in these solutions, in its integral, dL(z), the fluctuations
average out and the deviations from the Einstein-de Sitter result are small. They
can become somewhat larger for a line of sight parallel to the plane of symmetry
along a sheet-like void, but they never exceed the luminosity distance for an empty
(Milne) universe which up to about z = 1 is still smaller than the observed distance
dL(z), which is well fitted by the cosmological Lambda-cold-dark-matter standard
model, ΛCDM, dominated by a cosmological constant.

The problem of the exact plane symmetric dust solution is the fact that we
have to choose relatively small initial density perturbations, otherwise we encounter
a singularity before the present time. This singularity is a consequence of shell-
crossing caustics which cannot be handled properly in a fluid approach and which
become relevant as soon as density perturbations are large, which is exactly where we
expect deviations of dL(z) from the FL relation to become relevant. This prompted
us to study the problem with a method which can handle shell crossings but is still
relativistic. This is what we attempt in this paper:

1http://www.euclid-ec.org
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We re-examine the wall-universe scenario with a new approach, using the novel
general relativistic N -body scheme which was recently presented in [7].

In section 3.2 we briefly summarize the key points of the two approaches, and
in section 3.3.1 we compare the relativistic N -body results with the exact solution
in the regime where both coexist. As soon as the evolution of dust leads to the
formation of caustics, the exact solution becomes singular due to the breakdown
of the fluid description and of the synchronous gauge. Nothing serious happens
though within the N -body scheme, which employs longitudinal gauge. It is therefore
possible to study the solutions in the highly non-linear regime beyond the formation
of caustics, as is presented in section 3.3.2. We also comment on the comparison with
traditional Newtonian N -body schemes in section 3.3.3. We present our conclusions
in section 3.4.

3.2 Relativistic and semi-relativistic wall universes

3.2.1 Description in synchronous comoving gauge

We consider a model where the Universe contains only dust and is invariant under
transformations (translations, rotations) of the two-dimensional Euclidean group.
In other words, two of the three space dimensions are homogeneous and isotropic.
Perturbations occur only in the form of plane-parallel sheets of over- and underdense
regions. By construction, all perturbations (linear or nonlinear) are confined to the
scalar sector. In synchronous gauge, the metric takes the form

ds2 = −dt2 + α2(t, x)dx2 + β2(t, x)
[
dy2

1 + dy2
2

]
. (3.1)

The Einstein equations for this geometry and for pure dust matter yield [5, 91,
95, 96, 108]

∂t

(
β′

α

)
≡ ∂tE = 0 , (3.2)

(∂tβ)2 −
(
β′

α

)2

= 2
M(x)

β
, (3.3)

M ′ = 4πGρβ2β′ = 4πGρβ2αE(x) . (3.4)

Here a prime denotes a derivative w.r.t. x. In Eq. (3.2) we have introduced the
time-independent function

E(x) = β′/α (3.5)

and Eq. (3.3) defines M(x) which is also time-independent. Here we have assumed
that matter is comoving. As long as the perfect fluid description is valid, this can
always be achieved by a suitable choice of coordinates [96]. We therefore call this
the synchronous comoving gauge. In Ref. [5] some of us have considered overdense
“walls” separated by underdense regions of different sizes. There we also present the
parametric solutions of Eqs. (3.2) to (3.4) for a given initial density profile. High
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overdensities turn the initial expansion of the fluid into contraction and rapidly lead
to a shell-crossing singularity. In Ref. [5] we had to choose the initial overdensities
such that no singularity was encountered up to the present time. In these Universes,
the directions normal to the collapse, i.e. parallel to the wall, (y1, y2) always expand.

3.2.2 Description in longitudinal gauge

The synchronous comoving gauge is useful as long as the dust can be described as
a perfect fluid, in which case the evolution equations reduce to a tractable set of
differential equations as we have seen above. However, the fluid description usu-
ally breaks down during nonlinear evolution due to the formation of caustics, i.e.
the convergence of world lines of different fluid elements in the same space-time
point. This problem can be avoided by employing a particle description of the dust,
which samples the full phase space. In general we do not try to work at the level
of the fundamental particles but instead use an N -body simulation that samples
the phase-space distribution by following the evolution of a relatively small set of
“representatives”.

In this approach, the equations become much more involved, and in general we
are not able to find exact solutions but have to resort to numerical simulations. N -
body simulations traditionally employ Newton’s laws of gravity rather than full Gen-
eral Relativity. There is, of course, at best an approximate correspondence between
Newtonian and relativistic cosmologies. On the formal level, this correspondence
has been elaborated in recent years [109, 110], leading to a deeper understanding of
the impressive success of Newtonian simulations within the cosmological standard
model. In general terms, this success rests upon the standard model assumptions
that gravitational fields are weak (on the relevant scales) and velocities are small.
Furthermore, the effect of a cosmological constant can be taken into account simply
by adjusting the background.

Scenarios which potentially violate one of these assumptions can not be tested
reliably with Newtonian simulations. Examples include various models of dynam-
ical DE or, to some extent, warm dark matter. Some of us have therefore started
to develop the numerical techniques for relativistic N -body simulations, which in-
corporate a truly dynamical spacetime [7]. Since we want to remain within the
cosmological context, we employ a weak-field approximation which is described in
detail in [7] and which is closely related to the approach of [109]. The equations are
solved in longitudinal gauge, in which metric perturbations indeed remain small on
the relevant scales. For the plane-symmetric setup studied in this paper, the metric
in longitudinal gauge reads

ds2 = a2(τ)
[
−
(
1 + 2Ψ(τ, x1)

)
dτ 2 +

(
1− 2Φ(τ, x1)

)
δijdx

idxj
]
. (3.6)

In the scheme implemented numerically, we assume that the gravitational potentials
Φ and Ψ are small, of order ε, but may fluctuate on small spatial scales. This is
taken into account by giving spatial derivatives a weight ε−1/2. We then include
all terms in Einstein’s equations up to order ε. In this scheme CDM velocities are
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of order ε1/2, while density fluctuations are large, of order ε0. This scheme is fully
relativistic up to the order described here. It just cannot handle large gravitational
potentials, but these are not observed on cosmologically interesting scales λ & 0.1
Mpc. Relativistic velocities v ∼ 1 can be accommodated within the scheme, but
since they do not arise, we simply truncate the stress-energy tensor and geodesic
equation for CDM particles at order v2 ∼ ε. More details are given in Ref. [7], where
also the explicit equations can be found.

Here we identify the spacetime directions perpendicular to the plane of symmetry,
(t, x) in Eq. (3.1), with the (τ, x1)-plane. Note, however, that the coordinates x and
x1 should not be identified. As long as the perfect fluid description of dust is
valid, the two metrics (3.1) and (3.6) are related by a gauge transformation which
eventually becomes nonlinear as matter perturbations grow, see section 3.2.3.

While the relativistic N -body approach does not have issues with shell crossing
as it samples the full phase space, it relies on the assumption that the metric per-
turbations remain small so that they can be treated perturbatively in a weak-field
limit. In section 3.3.2 we investigate whether this condition remains valid for the
wall universes studied here.

3.2.3 Transformations between the two gauges

At early times the Universe is close to Friedmann and we can write

α(t, x) = a(t) (1 + g(t, x)) , β(t, x) = a(t) (1 + h(t, x)) , (3.7)

where g and h denote small perturbations. In conformal time τ̃ defined by dτ̃ =
a−1dt we obtain

ds2 = a2(τ̃)
[
−dτ̃ 2 + (1 + 2g)dx2 + (1 + 2h)(dy2

1 + dy2
2)
]

(3.8)

To determine the initial Bardeen potentials corresponding to this perturbation, we
have to transform it to longitudinal gauge. We choose τ̃ = τ +T and x = x1 +L. In
order for this to transform from synchronous to longitudinal gauge we must require

glong = gsyn + LX ḡ ,

where X = (T, L, 0, 0) is the vector field inducing the gauge transformation, ḡ =
a2(−,+,+,+) is the background metric, glong and gsyn are the perturbed metric
in longitudinal respectively synchronous gauge. LX denotes the Lie derivative in
direction X. A brief calculation of the different terms yields

Ψ +HT + Ṫ = 0 , L̇− T ′ = 0 , (3.9)

−Φ +HT + L′ = g , −Φ +HT = h , (3.10)

hence L′ = g − h , T ′′ = ġ − ḣ . (3.11)

Here H = (da/dτ)a−1, and a dot denotes the derivative w.r.t. τ . Hence Φ and Ψ
are the solutions of

Φ′′ = −h′′ +H(ġ − ḣ) and (3.12)

Ψ′′ = H(ḣ− ġ) + ḧ− g̈ . (3.13)



54 Chapter 3. The DL(z) relation in plane symmetric universes

For our simulations, we choose initial density profiles which deviate from a con-
stant by the addition of a periodic plane-wave perturbation of small amplitude, see
Ref. [5]. We then determine the initial Bardeen potentials via Eqs. (3.12), (3.13).
Note that the assumption of a flat FL background in Eq. (3.6) puts a constraint on
the total matter density. This constraint finds its counterpart in Eqs. (3.12), (3.13)
by the requirement that they have appropriate periodic solutions. The perfect fluid
solutions in comoving synchronous gauge introduced above are more general, allow-
ing for arbitrary deviations from critical density. To study such general solutions
within the N -body framework would require to extend the simulations to handle
arbitrary background curvature.

At late times, the coordinate transformations are not simple linear gauge trans-
formations. Finally, at shell-crossing, the synchronous, comoving gauge breaks
down, while the longitudinal gauge is still well defined. In the fluid approxima-
tion, shell crossing corresponds to a real singularity in the density and therefore
also in the curvature. But since this singularity is sheet-like, the Christoffel symbols
only have a jump and the metric components have a kink at the singularity. Such
sheet-like singularities can be handled with the Israel junction method [111]. In the
N -body approach such singular sheets do not lead to a divergent density on the grid;
the finite lattice unit acts as a regulator. It should be noted that the singularity is
introduced by the fluid approximation in the first place, and will be regulated in a
similar fashion by fluid imperfection as soon as one considers a physical dark matter
model.

3.2.4 Observables

Comparing quantities which have been calculated in different gauges can be quite
subtle. The safest approach is to use observables, as they are uniquely defined
through a physical prescription, and therefore are gauge invariant by design. Two
common observables are redshifts and distances, which allow to construct the distance–
redshift relation. It was this relation that led to the discovery of the accelerated
expansion of the Universe.

To determine the redshift and the distance to a source at some position x∗, we
consider a photon emitted from the source at time t∗ arriving at the location of the
observer, today, (t0,x0). We denote the matter 4-velocity field, hence the 4-velocity
of source and observer by u(t,x) and the photon 4-velocity by n. The redshift of
the source, z, is simply given by

1 + z =
g(n, u)|∗
g(n, u)|0

. (3.14)

The evolution of the distance to the source is determined by the Sachs focussing
equation [49, 50],

d2dA
ds2

= −
(
|σ|2 +R

)
dA . (3.15)
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Here s is an affine parameter along the photon geodesic, and

R =
1

2
Rµνn

µnν = 4πGTµνn
µnν . (3.16)

The complex shear σ of the light bundle is defined by

σ =
1

2
g(ε,∇εn) , where ε ≡ e1 + ie2 . (3.17)

The spatial orthonormal vectors e1 and e2 which are normal to both u and n at the
observer are parallel transported along n, such that ∇nej = 0. They form a basis of
the so called ‘screen’. For the explicit expressions see Appendix 3.5.1.

The angular diameter distance dA to the source is defined as the solution of
Eq. (3.15) with final conditions

dA|0 = 0,
d dA
ds

∣∣∣∣
0

= g(n, u)|0. (3.18)

The luminosity distance is related to the angular diameter distance via Etherington’s
reciprocity relation [44]

dL(z) = (1 + z)2dA(z) .

In the discussion of the results below we plot the distance modulus µ(z) (the
log of the luminosity distance) and subtract the value one would obtain in the
homogeneous model,

µ(z)− µEdS(z) = 5 log10

(
dL(z)

dEdS
L (z)

)
, (3.19)

where dEdS
L is the luminosity distance in an Einstein-de Sitter Universe, i.e. in a

matter dominated FL Universe with vanishing curvature. We shall compare our
result to the distance in a Milne Universe, i.e. an empty FL Universe with negative
curvature and to the standard ΛCDM case. The expressions for the distances in
these universes are

dEdS
L (z) =

2

H0

(
1 + z −

√
1 + z

)
,

dMilne
L (z) =

1

H0

(
z +

z2

2

)
,

dΛCDM
L (z) =

1 + z

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

.

A second observable is given by the image distortion which is induced by the shear
alone. This distortion can be measured with the help of weak lensing observations.
It can be characterized by a complex quantity e whose absolute value measures the
ellipticity acquired by an infinitesimal light bundle with circular cross-section at the
observer when traced back along the photon path [104]. The phase angle of e, on
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the other hand, encodes the orientation of the principal axis of the elliptical cross
section with respect to the screen vectors. This complex quantity is obtained by
integrating the shear according to

de

ds
= 2σ

√
|e|2 + 4 , (3.20)

with final condition e|0 = 0.
We will plot the absolute value of e (in cases where it is not zero by symmetry)

as a function of observed redshift. The direct interpretation of this quantity is the
ellipticity of the observed image of a source with intrinsically circular shape, located
at the given redshift. If the ratio of the principle axes of the observed elliptical
image is r then |e| = |r− (1/r)|, so that r = 2 corresponds to |e| = 3/2. We will not
plot the phase angle of e, because it is already fully determined by the symmetry of
our setup.

3.3 Comparison and interpretation of the results

3.3.1 Exact relativistic and N-body solutions

In Fig. 3.1 we show the distance–redshift relation for a plane wave perturbation
initially described by a cosine-function with a comoving wavelength of 70 Mpc/h,
for an observer located at the center of the underdense region and a photon coming
in perpendicular to the plane of symmetry. We show both the exact solution for a
perfect dust fluid (blue dashed) and the relativistic N -body simulation (red solid).
The two distances agree extremely well over the entire redshift range which provides
an important check of the accuracy of the relativistic N -body approach.

Comparing the result to Milne (purple dotted line) or ΛCDM (green dot-dashed
curve), we find that for z & 0.2 the deviations from EdS are much too small to
mimic observations which are in good agreement with ΛCDM. They also have the
wrong shape. It is however possible that this changes when we allow for larger initial
perturbations that become non-linear and undergo shell-crossing before the present
time. This situation can only be modeled in the N -body approach, and we show
the result in Fig. 3.2, where we used an initial perturbation that is five times larger
than the one shown in Fig. 3.1. In this case the fluctuations are indeed larger by a
factor of about 2, but at high redshift (z & 0.3) they are still too small, and again
they have the wrong shape.

As discussed in more detail below, the most important contribution to the fluc-
tuations in the luminosity distance comes from the Doppler effect, i.e. the peculiar
velocity of the object emitting the light. This is visible in Fig. 3.1, where we also plot
the luminosity distance without this term (red dashed curve). Once shell-crossing
has occurred, there is no longer a single, well-defined velocity field at each point
in space. Instead we now have a velocity dispersion. As the Doppler effect is so
important, one might hope that taking into account velocity dispersion could help
yield a better fit to the ΛCDM curve. But as shown by the gray area in Fig. 3.2,
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Figure 3.1: (Color online) We plot the observed distance–redshift relation for a
plane symmetric setup with an initial plane-wave perturbation of comoving wave-
length λ = 70 Mpc/h. More precisely, we plot the distance modulus minus the one
of an Einstein-de Sitter background. We compare the perfect fluid description (blue,
dashed) with a relativistic N -body simulation with the same initial conditions (red,
solid). The observer sits at the center of an underdense region and the line of sight
is chosen perpendicular to the plane of symmetry. In this case, within the longitu-
dinal gauge employed in the N -body framework, the fluctuations of the distance are
dominated by the peculiar motion (Doppler) of the sources, which are assumed to
follow the bulk flow of CDM. To illustrate this, we also plot the luminosity distance
with the Doppler term subtracted (red, long-dashed). For a better assessment of the
size of the effects, we also indicate the distance–redshift relation for two well-known
FL models: the Milne universe (purple, dotted) and a ΛCDM model with ΩΛ = 2/3
(green, dot-dashed). The inset shows a zoom into the region z > 0.5 and has a
linear z-axis

which represents the velocity dispersion, this is not the case. Velocity dispersion is
mainly relevant at low redshift, z < 0.1, while the deviation from ΛCDM is most
significant at larger redshift.

We also see that the luminosity distance is in general not single valued (as pointed
out previously e.g. in [51]). It seems intriguing that the impact of the fluctuations
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Figure 3.2: (Color online) Same as Fig. 3.1, but with an initial perturbation am-
plitude which is five times larger. In this case the perfect fluid description breaks
down due to the formation of caustics before the end of the simulation. We therefore
only show the N -body result (orange, solid). In the regions where shell-crossing has
occurred, the phase space distribution of particles shows a considerable velocity dis-
persion (see Fig. 3.5). One may expect a similar dispersion for the sources: the gray
areas correspond to the possible observed scatter of the distance modulus induced
by the typical standard deviation of source velocities with respect to the bulk flow
(at 1σ).

on the distance is minimal around z = 1.25, cf. the inset of Figs. 3.1 and 3.2,
which happens to be also the redshift at which the angular diameter distance in the
Einstein-de Sitter model is maximal. However, in the longitudinal gauge, this can
be easily understood from the fact that the main effect (in these particular cases) is
caused by peculiar motions: a perturbation of the redshift (as caused by the Doppler
effect) changes our observable µ(z)−µEdS(z) at first order by δz×d ln dEdS

A /dz. This
expression becomes zero at the maximum of dEdS

A .

Instead of looking at photons that propagate in the direction perpendicular to
the plane of symmetry (i.e. ‘across’ the perturbations), we can also consider photons
that move along the symmetry directions, i.e. that follow a trough of the density
along the y-direction. In this case the lack of matter along the photon path leads
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Figure 3.3: (Color online) Same as Figs. 3.1 and 3.2, but with the line of sight
parallel to the plane of symmetry. In this case, the photon trajectory runs within
the center of an underdense sheet, and the peculiar motion of sources is zero by
construction also in longitudinal gauge. However, since the beam is continuously
defocussed due to the underdensity, a considerable deviation from the unperturbed
distance–redshift relation is accumulated. The deviation remains below the one for
the Milne universe and would be too small to account for DE.

to a continuous defocussing of the light beam which is only slightly counteracted by
the presence of a non-zero shear (generated through the Weyl tensor). However, as
shown in Fig. 3.3, this increase of the luminosity distance is still not sufficient to
mimic ΛCDM. In fact, the luminosity distance remains strictly smaller than the one
of the Milne Universe.

The non-zero complex shear generates an ellipticity for light bundles propagating
along the symmetry directions, and we plot the absolute value of the ellipticity as a
function of observed redshift in Fig. 3.4. As this is a cumulative effect, the ellipticity
can become very large at redshifts of order unity.
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Figure 3.4: (Color online) Image distortion, measured by the ellipticity |e| observed
for small circular sources with redshift z. We consider the same scenarios as in
Fig. 3.3. An ellipticity of |e| = 3/2 implies that one principle axis is twice as long
as the other.

3.3.2 Shell-crossing and singularities

The orange solid curve in Figs. 3.2 and 3.3 shows the distance-redshift relation
in the more extreme setup where shell-crossing occurs before today. This section
investigates in more detail what happens in this situation.

A caustic formally leads to a divergent stress-energy tensor. The divergence,
however, occurs in the form of a delta-function on a (2 + 1)-dimensional (timelike)
worldsheet and can in principle be handled with the Israel junction method [111].
The particle acceleration remains small everywhere but is discontinuous on the caus-
tic. In the N -body treatment, the discontinuity is smeared out by the finite spatial
dispersion of the N -body particles. This is similar to physical reality, but on the
scale of the N -body particles which are much larger than the true microscopic CDM
particles.

In the phase space representation at the present time given in Fig. 3.5 we see
that shell-crossing has happened by today in this setup (orange line) while it is
just about to happen in the setup with 5 times smaller initial density contrast (red
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Figure 3.5: (Color online) Phase space diagram at the end of the simulation for the
setup used for Fig. 3.1 (red curve) and Fig. 3.2 (orange curve). In the first case shell-
crossing does not occur and the velocity is single-valued everywhere. In the second
case on the other hand shell-crossing has occurred, and near the central overdensity
the velocity field is multi-valued. In this case there is a velocity dispersion that leads
to a dispersion also in the luminosity distance, see Fig. 3.2.

line). In Fig. 3.6 we show, in addition to the phase space, also the acceleration,
the matter density and the gravitational potential just before and just after shell
crossing happens. We can observe the jump in the acceleration (red-dashed) after
shell crossing occurs (right panel) which is induced by a kink in the gravitational
potential Ψ (purple dotted in the lower panel). The only quantity that becomes
large at shell crossing is the density.

The comoving synchronous gauge becomes singular at shell crossing, since the
fluid rest frame is no longer well-defined. It is remarkable that the longitudinal gauge
does not only remain finite, but the metric potentials stay small and safely in the
perturbative regime. Therefore, our relativistic N -body simulation in longitudinal
gauge is well adapted to describe non-linear structure formation.
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Figure 3.6: (Color online) Sketch of the situation shortly before and after shell
crossing. The upper panels show the phase space distribution (green, solid) and the
local acceleration, given by the gradient of Ψ (red, dashed). The lower panels show
the density (black, solid) and the potential Ψ itself (purple, dotted) – the potential
Φ is for all practical purposes indistinguishable from Ψ for the cases studied here.
On the left side, shell crossing has not yet occurred: the perfect fluid description
(zero velocity dispersion) is still valid and all quantities are regular and smooth. On
the right side, two caustics have formed as a result of shell crossing. The density on
the caustics diverges like a delta-function on a sheet. However, the potential itself
remains small everywhere. Its gradient, which corresponds to the acceleration, also
remains small, but it is discontinuous on the caustics. Only the second derivative of
Φ becomes large.

3.3.3 Interpretation in longitudinal gauge

When we compare the result of the relativistic N -body simulation with a Newtonian
N -body simulation for the scenario shown in Fig. 3.1, we find that the two agree
extremely well if we use the relativistic distance formula including the Doppler term
for both cases. The reason is that in longitudinal gauge the result is entirely domi-
nated by the contributions from peculiar velocities, see Fig. 3.1. The contributions
from the metric potentials are sub-dominant, and vector and tensor perturbations
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are absent in an exactly plane-symmetric universe. We do expect velocities which
are of order ε1/2 to dominate over the gravitational potentials which are of order ε
in our counting scheme.

This dominance of the Doppler contribution is however gauge- and situation-
dependent. In the synchronous co-moving gauge the particles are by definition at
rest with respect to the coordinate system. Also, if we look along a symmetric
direction y rather than in the transverse direction x, the velocities are zero also in
longitudinal gauge. In this case, perturbations of the distance modulus are entirely
governed by the gravitational potentials.

3.4 Conclusions

In this paper we have analyzed the distance–redshift relation for plane symmetric
universes. We have used general relativistic fluid solutions as well as relativistic
N -body simulations. The fluid approach suffers from singularities due to the forma-
tion of caustics and cannot be used for high overdensities: when particle trajectories
cross, the comoving synchronous coordinate system used for these exact solutions
breaks down. The N -body approach, which is a phase-space method, remains reg-
ular at all times. Furthermore, in this approach the gravitational potentials remain
small so that our approximation is consistent.

Both approaches give consistent results where they are both regular: wall in-
homogeneities, even though they do modify the distance–redshift relation, cannot
mimic Dark Energy. This is also true for high density fluctuations where the fluid ap-
proach breaks down, treated with our relativistic N -body code developed in Ref [7].
The excellent agreement with the exact relativistic solution in the scenarios without
shell crossing provides an important test for the accuracy of our code.

It is well known that inhomogeneous models can in principle reproduce any
given distance–redshift relation by carefully adjusting the matter distribution. Such
fine-tuned models typically violate the cosmological principle. In a model where
the Universe has a homogeneity scale well within the observed patch (which is the
only case where one can talk about the cosmological principle being respected), the
distance–redshift relation can still be affected by the lumpiness of matter. However,
fluctuations induced by peculiar motion are expected to average out when consid-
ering a large enough sample of observations. Defocussing of light beams, which
for realistic observations are biased towards travelling mostly through underdense
regions, does not seem to give a strong enough effect to be mistaken for Dark En-
ergy. In fact, we were not even able to reach the level of defocussing found in the
Milne model, even when considering light beams which travelled through essentially
depleted regions only.

If the results from this toy model can be generalized, we have to conclude that
structures in the Universe – over- and underdensities – cannot be responsible for
the observed acceleration and Dark Energy or Dark Gravity is needed to explain
it. Nevertheless, they certainly do affect the distance–redshift relation and therefore
they have to be taken into account when interpreting measurements precisely.
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3.5 Appendix

3.5.1 Computing the distance redshift relation

In this appendix we explain in more detail how we calculate the luminosity distance
in the N -body code. Details for the exact relativistic fluid solution can be found in
Ref. [5].

The relativistic N -body scheme we use has the advantage that the metric is
explicitly computed, and one can therefore directly integrate the null geodesic equa-
tion numerically to obtain the path of a photon in the perturbed geometry. The
difficulty, when constructing observables like the distance–redshift relation, is that
they are defined on the past light cone of an observer, whereas the simulation, on
the other hand, evolves forward in time. In the perturbed Universe, one does not
know exactly whether a point lies on the past light cone of an event until one has
actually found a photon path which connects the two. Naturally, one would do this
construction backwards in time, starting form the observer, but for this one needs
to save a part of the four-dimensional geometry with high resolution in space and
time. Although this is a possible way to go, we chose a different approach which
one may call a “shooting method”.

Somewhere close to the highest redshift which we want to plot in the distance–
redshift diagram, we choose an initial point located at spacetime coordinates which
would be connected to the observer event by a null ray in the unperturbed geometry.
This location can simply be read off from the distance–redshift relation obtained
in an exact FL universe. We then shoot a light ray directed at the observer by
integrating the null geodesic equation in the perturbed geometry, along with the
N -body simulation. When the simulation reaches the observer event, we usually
find that we have missed the observer by some small spacelike distance due to
the perturbations of the photon path. We then restart the simulation, correcting
the coordinates of the initial point by the amount by which we have missed the
observer. Rerunning the simulation will now bring the perturbed light ray almost
to the observer event, up to second-order perturbations. This procedure can be
iterated to close in on the observer event to arbitrary precision. For our purposes,
a single iteration was enough.

At the last iteration, we also save the change of the photon energy and some infor-
mation about the geometry, in particular the terms which enter the Sachs equation,
along the light ray with high resolution. Additionally, we also save the peculiar
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velocities of sources which lie on the path. Since baryonic physics are completely
neglected in our simple setup, we assume that observable sources have the same
distribution as CDM particles. With this set of data, once we have reached the end
of the simulation, we can integrate the Sachs equations backwards in time along
the line of sight given by the light ray. Eliminating the affine parameter s in the
equations in favor of the coordinate time τ , the angular distance evolves according
to

d̈A +
ṅ0

n0
ḋA +

(
|σ|2 +R

) dA

(n0)2 = 0 , (3.21)

where n0 = dτ/ds is the τ -component of the photon null vector which has to be
determined from the null geodesic equation,

ṅ0 +
(

Φ̇− Ψ̇ + 2∇nΨ + 2H
)
n0 = 0 , (3.22)

where n denotes the spatial direction of the photon vector. This equation takes
care of the path-dependent contribution to the redshift. The total redshift (the
ratio between photon energies measured in the rest frames of source and observer)
is given by Eq. (3.14), which yields

1 + z =

[
n0a

(
1 + Ψ− n · v + v2

2

)]∣∣∣
∗[

n0a
(
1 + Ψ− n · v + v2

2

)]∣∣
0

. (3.23)

Here, v is the peculiar velocity vector in the longitudinal gauge, n · v denotes its
projection on the photon direction, and the subscripts ∗ and 0 indicate that the
entire expression has to be evaluated at the source and observer event, respectively.
The last two equations have been truncated at our approximation order.

We finally need an evolution equation for the complex shear, see [49, 50]. For
the purpose of solving Eq. (3.21), it is useful to write it as

d

dτ

( σ
n0

)
+

(
ṅ0

n0
+ 2

ḋA
dA

)
σ

n0
+
F

(n0)2 = 0 , (3.24)

where F = 1
2
Cκλµνε

κnλεµnν is a contraction of the Weyl tensor with the complex
screen vector ε and the photon four velocity.

In order to solve this coupled system of differential equations, it is sufficient to
know four real-valued quantities along the line of sight (as a function of τ) which
can all be obtained from the knowledge of the metric and the photon direction:
ṅ0/n0, R/(n0)2, and F/(n0)2. The last quantity is complex in general and therefore
corresponds to two real-valued quantities. However, for the particular lines of sight
we chose to study in this work, owing to the symmetry of our setup, we can choose
the screen vectors such that F/(n0)2 remains real-valued. In particular, for the light
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ray perpendicular to the plane of symmetry, we find

R
(n0)2 = 4πGa2

[
− (1 + 2Ψ)T 0

0 + 2T 1
0 + T 1

1

]
,

F
(n0)2 = 0 , (3.25)

up to terms which are neglected in our approximation scheme. In this case, the shear
remains zero and the angular distance is entirely governed by convergence. For the
light ray parallel to the plane of symmetry, we can choose an orthogonal basis of the
screen where one basis vector remains orthogonal to the plane of symmetry, while
the other basis vector remains parallel to it. This is possible because the center of
the underdense region has an additional Z2 symmetry which guarantees that the ray
remains parallel to the plane of symmetry (even though this path is unstable under
small perturbations). Using such a basis, we find

R
(n0)2 = −4πGa2 (1 + 2Ψ)T 0

0 ,

F
(n0)2 =

(
1

2
+ 2Φ + Ψ

)
∆Φ +

(
1

2
+ Φ

)
∆Ψ . (3.26)

In all these explicit expressions we have used the symmetries of our setup to simplify
them. Note also that we assume T 1

0 is of order ε1/2 and T 1
1 is of order ε; components

with spatial indices 2, 3 vanish by symmetry. Using this information, the distance–
redshift relation is constructed by integrating Eqs. (3.21), (3.22), (3.24) backwards
in time. To this end, the final conditions are fixed at the observer as dA(τ0) = 0,
ḋA(τ0) = −a(1 + Ψ − n · v + v2/2)|0, σ(τ0) = 0, and n0(τ0) > 0 (arbitrary). The
solution for the ellipticity e in terms of the real-valued shear follows from Eq. (3.20):

e = 2 sinh

(
2

∫ τ∗

τ0

σ

n0
dτ

)
. (3.27)
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Vector and Tensor Contributions to the
Luminosity Distance

Enea Di Dio and Ruth Durrer

We compute the vector and tensor contributions to the luminosity distance fluctua-
tions in first order perturbation theory, and we expand them in spherical harmonics.
This work presents the formalism with a first application to a stochastic background
of primordial gravitational waves.

4.1 Introduction

The distance–redshift relation for far away objects plays an important role in cos-
mology. It has led Hubble, or rather Lemâıtre [32], to discover the expansion of the
Universe; and the distance–redshift relation to far away Supernovae type Ia is at
the origin of last year’s Nobel Prize in physics for the discovery of the accelerated
expansion of the Universe [2, 3, 4, 79, 81, 82].

A next step that has been initiated recently considers the angular and redshift
fluctuations of the luminosity distance, which may also contain important informa-
tion about our Universe [8, 9, 10]. One important unsolved problem is the question
how strongly the distance–redshift relation may be affected by the fact that the
actual Universe is not homogeneous and isotropic, but the matter distribution and
also the geometry have fluctuations. To first order in perturbation theory these
fluctuations can average out in the mean and are therefore expected to be small.

However, it has been found that they are significantly larger than the naively
expected value that would be of the order of the gravitational potential, namely,
∼ 10−5. An analysis in first order gave fluctuations of the order of 10−3, hence 100
times larger than the naive estimate [9]. Recently, Ben-Dayan et al. [11] have cal-
culated a second order contribution to the distance–redshift relation of the order of
∼ 10−3. Evidently, if the second order term is as large as the first order, this means
that perturbation theory cannot be trusted. On the other hand, fully nonlinear toy
models, which have been studied in the past, always gave relatively small modifica-
tions of the luminosity distance if the size of the fluctuations, spherical voids [112] or
parallel walls [5], is small compared to the Hubble scale. Hence the problem remains
open.

So far, the perturbative analyses of the distance–redshift relation have concen-
trated on scalar perturbations. In this work, we want to study the contributions
from vector and tensor perturbations on a Friedmann–Lemâıtre (FL) universe. This
is interesting for several reasons. First of all, tensor perturbations are generically



70
Chapter 4. Vector and Tensor Contributions to the Luminosity

Distance

produced during inflation, and hence their contribution has to be added for com-
pleteness. Second, a passing gravitational wave from some arbitrary source does
generate a tensor perturbation in the distance–redshift relation to any far away ob-
ject and could, at least in principle, be detected in this way. For single binary sources
we have found that this effect is very small [113]; however, a stochastic background
might lead to a detectable effect. Even though vector perturbations are usually not
generated during inflation (and if they are they decay during the subsequent radi-
ation dominated phase), they are relevant in many models with sources like, e.g.,
cosmic strings or primordial magnetic fields. A third important motivation to study
vector and tensor contributions comes from the fact that at second order in pertur-
bation theory, scalars also generate vector and tensor perturbations [114, 115]. In
a complete second order treatment these have to be included. With the formalism
developed in this work, such an inclusion is straight forward. We plan to report on
the result of these second order contributions in a forthcoming paper [116]. A similar
program is carried out in Refs. [117, 118]. There the authors discuss scalar, vector,
and tensor perturbations and split them into E and B modes. The treatment of
these papers is, however, more adapted to describe distortions of surveys and weak
lensing, but the convergence calculated there is related to our distance fluctuations.

The paper is organized as follows. In the next section we discuss the luminosity-
redshift relation perturbatively at first order. In Sec. 4.3 we apply these results to
tensor perturbations. We first derive the general first order expressions, which we
then expand in spherical harmonics. We also give a numerical example for the grav-
itational wave background from inflation. In Sec. 4.4 we treat vector perturbations
and in Sec. 4.5 we conclude. Some lengthy calculations and some details are deferred
to four Appendices.
Notation: We use the metric signature (−,+,+,+). We denote the derivative
w.r.t. the conformal time η with a dot.

4.2 The distance–redshift relation

For an arbitrary geometry, defined through the metric g, a distance measure D from
a source moving with 4-velocity uS = u(xS) and an observer moving with 4-velocity
uO = u(xO) can be obtained as a solution of the Sachs focusing equation [49]:

d2D

dλ2
= −

(
R+ |Σ|2

)
D. (4.1)

Here λ is the affine parameter of a lightlike geodesic xµ(λ) from the source to the
observer, xµ(λS) = xµS, xµ(λO) = xµO, and

R =
1

2
Rµνk

µkν with kµ =
dxµ

dλ
, (4.2)

kµ is the 4-velocity of the lightlike geodesic, and Σ is the complex shear of the
’screen’ defined below. The source and observer are made out of baryons; hence we
identify the 4-velocity field uµ(x) with the (baryonic and dark) matter velocity field.
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Considering a thin light bundle with vertex at the source, the luminosity distance
is given by

DL = (1 + z)D , (4.3)

where z denotes the source redshift, defined by

1 + z =
gµνk

µuν |S
gµνkµuν |O

=
ωS
ωO

. (4.4)

We are considering past light cones without caustics between the observer and
source positions. This is well justified as we are treating small perturbations on a
Friedmann background. See Ref. [119] for more details on the effect of caustics in
the past light cone.

The complex shear of the light ray bundle, Σ, is defined as follows [50]: Consider
two spatial orthonormal vectors e1 and e2, which are normal to both the 4-velocity
uO and k at the observer position and which are parallel transported along k, such
that ∇kea = 0 for a = 1, 2. The vectors e1, e2 are a basis of the so-called ’screen’.
Note that we do not require that u be parallel transported along k; hence e1, e2 are
in general not normal to u elsewhere than at the observer. The complex shear is
defined by

Σ =
1

2
g (ε,∇εk) = −1

2
g (∇εε, k) , with ε = e1 + ie2. (4.5)

We consider a light bundle with vertex at the source1. This leads to the following
initial conditions (more details are found in Appendix 4.6.1) for the Sachs focusing
equation (4.1)

D (λS) = 0, D′ (λS) = ωS = − gµνkµuµ|S . (4.6)

In a perturbed FL metric the Sachs focusing equation (4.1) reduces, at first order,
to

d2D

dλ2
= −RD. (4.7)

Since the complex scalar shear Σ vanishes for a conformally flat spacetime, |Σ|2
contributes only at second order. To first order in R, Eq. (4.7) with initial condi-
tions (4.6) is solved by

D(λO)

ωS
= (λO − λS)−

∫ λO

λS

dλ

∫ λ

λS

dλ′R (λ− λS)

= (λO − λS)−
∫ λO

λS

dλ(λ− λS)(λO − λ)R, (4.8)

where we have used the identity∫ ηO

ηS

dη

∫ η

ηS

dη′f (η′) =

∫ ηO

ηS

dη (ηO − η) f (η) (4.9)

1A light bundle with vertex at the observer yields the angular diameter distance, which is related
by a factor (1 + z)2 to the luminosity distance which we determine here.
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for the second equal sign.
Of course, in a perturbed FL universe R is not first order; it also has a zeroth

order contribution. But a perturbed FL universe is conformally related by the scale
factor a to a perturbed Minkowski spacetime and lightlike geodesics are invariant
under conformal transformations. Two conformally related metrics,

g̃µν = a2gµν

have the same lightlike geodesic curves, and only the affine parameter changes,
dλ̃ = a2dλ, such that k̃µ = a−2kµ. Also the (normalized) matter 4-velocity changes,
ũµ = a−1uµ so that the redshifts are related by

z̃ + 1 =
aO
aS

(δz + 1) , where
aO
aS
≡ z̄ + 1 (4.10)

is the background redshift, i.e., the redshift in an unperturbed Friedmann–Lemâıtre
universe, and δz is the source redshift according to definition (4.4) w.r.t. to the
perturbed Minkowski metric g, while z̃ is the one w.r.t. to the perturbed FL metric
g̃. We remark that z̃ is the true (observed) redshift. In what follows we shall
normalize the scale factor at the observer to one, aO = 1. The distance D is not
affected by a conformal factor, so that the effect of the expansion on the distance
simply leads to a rescaling [9]

D̃L = (1 + z̄)DL . (4.11)

We now compute the luminosity distance in a perturbed Minkowski spacetime,
DL, and then relate it to the one in a FL spacetime, D̃L, by the above rescaling. Let
(1, ni) be the 0-order term of the lightlike velocity vector kµ (in the nonexpanding
Minkowski spacetime). The lightlike condition implies |n|2 = 1. We normalize the
affine parameter λ such that ωS = k0

S = 1 at 0th order. To determine the redshift
δz, we have to solve the perturbed geodesic equation for µ = 0 only (in order to
determine k0

O to first order), since the peculiar velocities are already first order. The
Christoffel symbols of Minkowski space vanish, so that the geodesic equation for
µ = 0 to first order is simply

dk0

dλ
+ Γ0

00 + 2Γ0
i0n

i + Γ0
ijn

inj = 0. (4.12)

We normalize the affine parameter λ such that k0
S = 1, and Eq. (4.12) is solved by

k0
O = 1−

∫ λO

λS

dλ
(
Γ0

00 + 2Γ0
i0n

i + Γ0
ijn

inj
)
. (4.13)

The geodesic equation (4.12) will be useful also in order to express the distance D
in terms of the conformal time η instead of the affine parameter λ. For this we use

k0 =
dη

dλ
= 1−

∫ λ

λS

dλ′
(
Γ0

00 + 2Γ0
i0n

i + Γ0
ijn

inj
)
, (4.14)
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which, in first order, leads to

λO − λS = ηO − ηS +

∫ ηO

ηS

dη

∫ η

ηS

dη′
(
Γ0

00 + Γ0
i0n

i + Γ0
ijn

inj
)
. (4.15)

The conformal time and the background redshift are not observable. We want
to write the distance as a function of the true (observed) redshift z̃ = z̄ + δz̃, where
δz̃ ≡ (1 + z̄) δz according to Eq. (4.10). Following the approach presented in [9] we
compute

D̃L (ηS,n) = D̃L (η (z̄) ,n) ≡ D̃L (z̄,n) = D̃L (z̃,n)− d

dz̃
D̃L (z̃,n)

∣∣∣∣
z̃=z̄

δz̃, (4.16)

with

d

dz̃
D̃L (z̃,n)

∣∣∣∣
z̃=z̄

=
d

dz̄
D̃L (z̄,n) + first order

=
D̃L

1 + z̃
+H−1

S + first order, where HS =
ȧ

a

∣∣∣∣
S

. (4.17)

In other words, we evaluate the distance at the true (observed) redshift D̃L (z̃,n)
by using Eqs. (4.16, 4.17) in order to relate D̃L(z̃,n) to D̃L(ηS,n).

From Sec. 4.3 on, to simplify the notation, we denote the true (observed) redshift
with z instead of z̃. We shall not use z̃ anymore.

4.3 The distance–redshift relation from tensor per-

turbations

We first consider a perturbed Minkowski metric with tensor perturbations only,
defined by

ds2 = −dη2 + (δij + 2Hij) dx
idxj, (4.18)

where the tensor perturbations are divergence-free H i
j,i = 0, traceless H i

i = 0,
symmetric Hij = Hji, and spatial Hµ0 = 0. By definition, a spin-2 perturbation is
gauge–invariant. To use a notation consistent with the next section, we introduce the
gauge invariant shear on the {t = constant} hypersurfaces σij = Ḣij (see, e.g., [53,
120]).

4.3.1 The perturbation equations

From the Ricci tensor calculated in Appendix 4.6.2 we obtain

R = −1

2
ninj�Hij, where � = ∂µ∂µ. (4.19)
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Note that this is the Minkowski space d’Alembertian, without expansion. The
geodesic equation (4.13) for µ = 0 leads to (see Appendix 4.6.2 for details)

k0
O = 1−

∫ λO

λS

dλ σijn
inj. (4.20)

We consider the 4-velocity (uµ) = (1,0) because the spin-2 perturbations can not
source peculiar velocities at linear order, so that we obtain the redshift to first order

1 + δz =
1

k0
O

= 1 +

∫ λO

λS

dλ σijn
inj. (4.21)

With Eqs. (4.8, 4.11, 4.15) we find the luminosity distance in a perturbed FL universe
with ds̃2 = a2ds2, as a function of the background redshift

D̃L (z̄,n) = (1 + z̄) (ηO − ηS)

(
1 +

∫ ηO

ηS

dη σijn
inj

+

∫ ηO

ηS

dη
ηO − η
ηO − ηS

σijn
inj −

∫ ηO

ηS

dη
(η − ηS) (ηO − η)

ηO − ηS
R
)
.(4.22)

We have again used (4.9) to reduce the double integral. We finally express the
luminosity distance in terms of the true, observed redshift z. Using Eqs. (4.16,4.17),
we obtain

D̃L (z,n) = (1 + z) (ηO − ηS)

×
(

1− H−1
S

ηO − ηS

∫ ηO

ηS

dη σijn
inj

+

∫ ηO

ηS

dη
ηO − η
ηO − ηS

σijn
inj

−
∫ ηO

ηS

dη
(η − ηS) (ηO − η)

ηO − ηS
R
)
. (4.23)

The origin of the different terms in the redshift–distance relation is as follows: the
first line is the unperturbed expression for the luminosity distance in a FL universe
at the observed redshift z, the term on the second line derives from the redshift
correction, the one on the third line from the relation between the conformal time
η and the affine parameter λ, and the one on the last line from the Sachs focusing
equation. We can interpret this last term as a lensing effect. The first two terms
come from the perturbation of the redshift.

For a fluid with a vanishing anisotropic stress the redshift–distance relation be-
comes

D̃L (z,n) = (1 + z) (ηO − ηS)

×
(

1− H−1
S

ηO − ηS

∫ ηO

ηS

dη σijn
inj +

∫ ηO

ηS

dη
ηO − η
ηO − ηS

σijn
inj

+

∫ ηO

ηS

dη
(η − ηS) (ηO − η)

ηO − ηS
H ninjσij

)
, (4.24)
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where we used the Einstein equation [53, 120]

Ḧij + 2HḢij −∇2Hij = 0, (4.25)

and Eq. (4.19) to replace R. If the cosmic fluid is not ideal, but has anisotropic
stresses, these add to the right-hand side of Eq. (4.25) (see [53, 120]) and corre-
spondingly to the last line in Eq. (4.24), the lensing term.

4.3.2 Spherical harmonic analysis

We want to determine the power spectrum of the luminosity distance. In the un-
perturbed FL background the luminosity distance to the redshift z is given by

D̄L (z) = (1 + z) (ηO − ηS) . (4.26)

We define the relative difference in the luminosity distance as

∆L (z,n) =
D̃L (z,n)− D̄L (z)

D̄L (z)

=
1

ηO − ηS

∫ ηO

ηS

dη
[
−H−1

S + (ηO − η) +

+ (η − ηS) (ηO − η)H
]
σijn

inj . (4.27)

Note that we evaluate the unperturbed distance at the true, observable redshift.
We are interested in the angular power spectrum of this observable, c` (z, z′),

which depends on the redshift of the two sources and is defined by the two point
correlation function

〈∆L (z,n) ∆L (z′,n′)〉 =
1

4π

∑
`

(2`+ 1) c`(z, z
′)P` (n · n′) . (4.28)

In the distance–redshift relation (4.23) [and, in particular, in Eq. (4.24) for an
ideal fluid] we have several times the term ninjσij (η,x (η)) where x (η) = xO −
n (ηO − η). In terms of its Fourier transform this is

ninjσij (η,x (η)) =

∫
d3k

(2π)3 σ̂ij (η,k)ninje−ik·x(η). (4.29)

Without loss of generality we choose xO = 0. Setting

k = k̂ |k| = k̂k, µ = k̂ · n, ∆η = ηO − η, (4.30)

we obtain

ninjσij (η,x (η)) =

∫
d3k

(2π)3 σ̂ij (η,k)ninj eiµk∆η. (4.31)
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Writing the exponential in terms of spherical Bessel functions

eiµk∆η =
∞∑
l=0

(2`+ 1) i` j` (k∆η)P` (µ) , (4.32)

we find

ninjσij =

∫
d3k

(2π)3n
injσ̂ij

∞∑
`=0

(2`+ 1) i`j` (k∆η)P` (µ) . (4.33)

With respect to a helicity basis in Fourier space{
e(+), e(−), k̂

}
, e(±) =

1√
2

(e1 ± ie2) , (4.34)

such that

e(±) · n =

√
1− µ2

2
e±iφ, (4.35)

we have
σ̂ij ei ⊗ ej = σ̂+ e(+) ⊗ e(+) + σ̂− e(−) ⊗ e(−). (4.36)

We introduce the spherical harmonics with respect to some arbitrary z direction
given by a unit vector e as Y`m(n, e), since we shall use them w.r.t. different z axes.
The addition theorem of spherical harmonics is

P` (µ) =
4π

2`+ 1

∑
m

Y ∗`m

(
k̂, e
)
Y`m (n, e) . (4.37)

Using the following spherical harmonics definition

Y2,±2

(
n, k̂

)
=

√
15

8π
sin2 θe±2iφ =

√
15

2π

1− µ2

2
e±2iφ, (4.38)

we can rewrite Eq. (4.33) as

ninjσij =

∫
d3k

(2π)3

(
σ̂+Y22

(
n, k̂

)
+ σ̂−Y2−2

(
n, k̂

))
×
√

2π

15

∑
`,m

4πi`j` (k∆η)Y ∗`m

(
k̂, e
)
Y`m (n, e) . (4.39)

We now introduce the initial tensor power spectrum PH (k) through

〈Ĥ± (ηS,k) Ĥ±∗ (ηS′ ,k
′)〉 = (2π)3 δ(3) (k− k′)PH (k)Tk (ηS)Tk (ηS′) , (4.40)

where Tk (η) is the transfer function with the initial condition Tk(η)→(kη→0) 1. The
δ(3)(k− k′) is a consequence of stochastic homogeneity. For the shear we then have

〈σ̂± (ηS,k) σ̂±∗ (ηS′ ,k
′)〉 = (2π)3 δ(3) (k− k′)PH (k) Ṫk (ηS) Ṫk (ηS′) . (4.41)
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Next, we express the terms in the distance–redshift relation with the help of the
power spectrum of the integrand,

〈ninjσijn′ln′kσlk〉 =
1

4π

∑
`

(2`+ 1) c̄`(η, η
′)P` (n · n′) . (4.42)

A lengthy but straight forward calculation yields [53, 121]

c̄` =
1

π

(`+ 2)!

(`− 2)!

∫
dk k2PH(k)Ṫk(η)Ṫk(η

′)
j`(k∆η)

(k∆η)2

j`(k∆η′)

(k∆η′)2
. (4.43)

Using the Limber approximation (see Appendix 4.6.4) for the time integrals in
Eq. (4.24), and, in particular, Eqs. (4.130), (4.131) and (4.132), we can simplify the
time integrals, and we find the coefficients (under the ideal fluid assumption)

c`(z, z
′) ' 1

π

(`+ 2)!

(`− 2)!

I2
`

`4

1

∆ηS

1

∆ηS′

×
∫ ∞
k∗
dk PH(k)Ṫ 2(η`,k)

(
A+BH(η`,k) + CH2(η`,k)

)
, (4.44)

where we have introduced

∆ηS = ηO − ηS, ∆ηS′ = ηO − ηS′ , (4.45)

η`,k = ηO −
`

k
, I2

` =
1.58

`
, (4.46)

k∗ = max

{
`

∆ηS
,

`

∆ηS′

}
, (4.47)

and

A = H−1
S H−1

S′ +
`2

k2
− `

k

(
H−1
S +H−1

S′

)
, (4.48)

B = − `
k

(
H−1
S ∆ηS′ +H−1

S′ ∆ηS
)
− 2

`3

k3
+
`2

k2

(
∆ηS + ∆ηS′ +H−1

S +H−1
S′

)
,(4.49)

C =
`2

k2
∆ηS∆ηS′ −

`3

k3
(∆ηS + ∆ηS′) +

`4

k4
. (4.50)

More details can be found in Appendix 4.6.4.

4.3.3 Application

As an example, we consider a flat primordial tensor power spectrum as expected from
inflation PH (k) = α/k3. If r denotes the tensor to scalar ratio, the scalar amplitude
as measured by the Wilkinson Microwave Anisotropy Probe experiment [122] yields
α ' r × 10−9, such that the tensor power spectrum becomes

PH (k) ' r

k3
10−9. (4.51)
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Considering an ideal fluid, the transfer function Tk (η) is the solution of the differ-
ential equation (4.25),

T̈k (η) + 2HṪk (η) + k2Tk (η) = 0, (4.52)

with initial condition Tk(ηin) = 1 and Ṫk(ηin) = 0 for kηin � 1. In a matter (or
radiation) dominated universe this differential equation can be solved analytically
in terms of Bessel functions. The growing (not decaying) mode is given by

Tk (η) = (kη)1/2−q Y1/2−q (kη) , where a ∝ ηq, (4.53)

and Yν is the Bessel function of the second kind of order ν. At late times, when the
cosmological constant dominates, we cannot write the scale factor a (η) as a power
law and we have no analytic solution to (4.52). To determine the c` coefficients, we
have solved the differential Eq. (4.52) numerically.

The resulting power spectrum c`(z, z) for different source redshifts is shown in
Fig. 4.1.

0 20 40 60 80 100 120 140

10�14
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10�11

�
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Figure 4.1: We show the tensor power spectrum rescaled by `4 for the fluctuations
in the luminosity distance for different values of the source redshift (z = 0.5, dotted
pink line; z = 1, dot-dashed blue line; z = 2, dashed green line; z = 3, long-dashed
orange line; z = 4, solid red line). In the figure we have set r = 1.

Clearly, for sufficiently large `, c`(z, z) ∝ `−4. The simplest way to understand
this scaling is to note that once a mode enters the horizon, the tensor fluctuations
scale like

∫
σdη ∼ H ∝ ak/a ∝ (kη)−q, where ak = a(η = 1/k) denotes the value of

the scale factor at horizon entry. For modes that enter during the radiation era q = 1,
while for modes that enter during the matter era q = 2. Hence

∫
σdη ∝ H ∝ Hin/k

q

is acquiring a factor k−q with respect to the scale invariant initial spectrum. This

leads to a red spectrum, k3
(∫

σ
)2 ∝ k−2q and `2c`(z, z) ∝ `−2q. This spectrum turns
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from c` ∝ `−4 for scales that enter the horizon in the radiation era to c` ∝ `−6 for
scales that enter the horizon in the matter era. For z = 4 this happens roughly at
` ∼ 20. Of course, the transition is quite gradual.

Comparing Fig. 4.1 with the results from scalar perturbations [9], we see first
that the tensor contribution is much smaller, nearly 8 orders of magnitude. We

obtain `4c`(z) ∼ 5 × 10−13 for z = 4 and `
>∼ 40 while scalar perturbations yield

`2c`(z) ∼ 10−5 for z = 4 and `
>∼ 100. Furthermore, despite also being proportional

to the lensing term, it scales differently with `. This comes from the fact that the
scalar lensing term is determined by the spectrum of k2Ψ, where Ψ is the scale
invariant Bardeen potential, while for scales that enter during radiation dominated
expansion, σijn

inj is suppressed by a factor of 1/k.
Interestingly the tensor signal is not monotonic in redshift up to z ' 2. It has a

sharp minimum at z ' 1.65. To illustrate this, we also plot c`(z, z) as a function of
the source redshift for different values of ` in Fig. 4.2.

0 1 2 3 4
10�19

10�17

10�15

10�13

z

c �
�4

Figure 4.2: We show the tensor power spectrum rescaled by `4 for the fluctuations
in the luminosity distance as a function of the source redshift for different values `
(` = 60, dotted blue line; ` = 40, dot-dashed green line; ` = 20, dashed orange line;
` = 10, solid red line). Also here r = 1.

The signal drops to 0 at zc = 1.65. This comes from the fact that it is dominated
by two terms with opposite sign. To see this, we also show the contributions from
the three terms in the square bracket of (4.27) individually in Fig. 4.3.

If the source redshift is small, ηS ∼ ηO, the first term ∝ −H−1
S ∼ −ηS/2 dom-

inates, while for large redshifts, ηS � ηO, the second term ∝ (ηO − η) dominates.
If σijn

inj has a definite sign, the result inherits this sign for small redshifts and the
opposite sign for large redshifts. The sign changes happens around ηS = ηO/2 corre-
sponding to a redshift zc ∼ 3. This is not expected to be very precise; in particular,
we have neglected the time dependence of the transfer function in this argument.
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Figure 4.3: We show the contributions from the different terms of Eq. (4.27) to the
tensor power spectrum rescaled by `4 for the fluctuations in the luminosity distance
as a function of the source redshift for ` = 40. (First term: dotted red line; second
term: dot-dashed brown line; third term: dashed blue line; correlator of the first
and second term: solid green line). The third term is always subdominant. We plot
the correlator between the first and the second term (solid line) with the opposite
sign since it is negative. The second and the first terms have opposite signs, and
they cross at zc ' 1.65.

The more precise numerical evaluation gives zc ' 1.65. Interestingly this redshift is
close to the maximum of the angular diameter distance DA(z) = (ηO − ηS)/(1 + z).

The results shown in Figs. 4.1 to 4.3 have been calculated with the following
cosmological parameters: h = 0.7, H−1

O = 2997.9h−1Mpc, Ωmh
2 = 0.13, Ωrh

2 =
4.17× 10−5, and ΩΛ = 1− Ωm − Ωr.

4.4 The distance–redshift relation from vector per-

turbations

We now consider vector perturbations. As for tensor perturbations, we can divide
out the cosmic expansion for lightlike geodesics. Hence we can consider Minkowski
space with purely vector perturbations. The metric is then given by

ds2 = −dη2 − 2Bidx
idη + (δij +Hi,j +Hj,i) dx

idxj, (4.54)

where the perturbations are divergence-free, Bi
,i = H i

,i = 0. Using Bij = B(i,j)

and Hij = H(i,j), where ( ) denotes symmetrization, the shear on the constant time

hypersurface is given by [53, 120] σij = Bij+Ḣij or in 3-vector notation σi = Bi+Ḣi,
and σij = σ(i,j). This quantity is gauge invariant [53, 120].
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4.4.1 The perturbation equations

With the Ricci tensor calculated in Appendix 4.6.3 we obtain for vector perturba-
tions

R =
1

2

(
∇2
(
σin

i
)

+ σ̇ijn
inj
)
. (4.55)

To determine the redshift we first evaluate the geodesic solution (4.13) with the
Christoffel symbols derived in Appendix 4.6.3,

k0
O = 1−

∫ λO

λS

dλ σijn
inj. (4.56)

Vector perturbations can have a nonvanishing peculiar velocity term. We define the
observer 4-velocity (uµ) = (1, Bi + vi). The peculiar velocity vi defined in this way
is gauge invariant. It is the vorticity of the matter flow. We now obtain

1 + δz =
−1 + niv

i
S

−k0
O + niviO

= 1 + ni
(
viO − viS

)
+

∫ λO

λS

dλ σijn
inj. (4.57)

After a short calculation, using the results of Sec. 4.2, we find the luminosity distance

D̃L (z̄,n) = (1 + z̄) (ηO − ηS)

×
(

1 + niv
i
O − 2niv

i
S +

∫ ηO

ηS

dη σijn
inj

+

∫ ηO

ηS

dη
ηO − η
ηO − ηS

σijn
inj −

∫ ηO

ηS

dη
(η − ηS) (ηO − η)

ηO − ηS
R
)
. (4.58)

Since we are interested in expressing the luminosity distance as a function of the
true redshift, we have to evaluate Eq. (4.58) at z and subtract the correction term
defined through Eqs. (4.16) and (4.17),

D̃L (z,n) = (1 + z) (ηO − ηS)

×
(

1− H−1
S

ηO − ηS
niv

i
O − niviS

(
1− H−1

S

ηO − ηS

)
− H−1

S

ηO − ηS

∫ ηO

ηS

dη σijn
inj +

∫ ηO

ηS

dη
ηO − η
ηO − ηS

σijn
inj

−
∫ ηO

ηS

dη
(η − ηS) (ηO − η)

ηO − ηS
R
)
, (4.59)

∆L (z,n) = − H−1
S

ηO − ηS
niv

i
O − niviS

(
1− H−1

S

ηO − ηS

)
− H−1

S

ηO − ηS

∫ ηO

ηS

dη σijn
inj

+
1

ηO − ηS

∫ ηO

ηS

dη(ηO − η)σijn
inj

−
∫ ηO

ηS

dη
(η − ηS) (ηO − η)

ηO − ηS
R. (4.60)
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This expression depends only on the gauge-invariant quantities vi and σij as it
should. We note also that we did not assume any gravitational theory yet. In-
deed the procedure used so far is completely geometrical. If one is interested in
general relativity (GR), then the two gauge-invariant variables vi and σij are not
independent but related via Einstein’s equations [53, 120],

∇2σi = −16πGa2vi (ρ̄+ p̄) , (4.61)

where ρ̄ and p̄ are the background density and pressure, respectively.

4.4.2 Spherical harmonic analysis

As for the tensor perturbations, we are interested in the term ninjσij. The main
difference is that in the vector case we have σij = σ(i,j) in real space and σ̂ij =
−ik(i σ̂ j) in Fourier space. This leads to

nlnjσ̂lje
iµk∆η = −knjσ̂j

∂ eiµk∆η

∂ (k∆η)
. (4.62)

With this we can write Eq. (4.33) as

ninjσij = −
∫

d3k

(2π)3k n
jσ̂j

∞∑
`=0

(2`+ 1) i` j′` (k∆η)P` (µ) . (4.63)

With the helicity basis defined in Sec. 4.3, the addition theorem of the spherical
harmonics (4.37), and

Y1,±1

(
n, k̂

)
= ∓

√
3

8π
sin θ e±iφ = ∓

√
3

4π

√
1− µ2

2
e±iφ, (4.64)

we obtain

ninjσij =

∫
d3k

(2π)3k
(
Y1,1

(
n, k̂

)
σ̂+ − Y1,−1

(
n, k̂

)
σ̂−
)

× 4π

√
4π

3

∑
`,m

i` j′` (kr)Y ∗`m(k̂, e)Y`m(n, e). (4.65)

If we assume that vector perturbations have been generated at some time in the
past, we can define the vector power spectrum as for the tensor case as

〈σ̂± (ηS,k) σ̂±∗ (ηS′ ,k
′)〉 = (2π)3 δ(3) (k− k′)Pσ (k)Tk (ηS)Tk (ηS′) . (4.66)

If we do not want to consider the case of early generation, we simply have to replace
Pσ(k)Tk(ηS)Tk(ηS′) by a time-dependent power spectrum, Pσ(k, ηS, ηS′). The model
under consideration (e.g., cosmic strings) then has to be used to determine this
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time-dependent power spectrum. If, however, vector perturbations evolve freely, we
can then compute the shear power spectrum as for tensors,

〈ninjσijn′ln′kσlk〉 =
1

4π

∑
`

(2`+ 1) c̄`(η, η
′)P` (n · n′) , (4.67)

finding (see Appendix 4.6.3)

c̄` =
2` (`+ 1)

π (2`+ 1)2

∫
dk k4Pσ (k)Tk (η)Tk (η′)

×
[
j′`−1 (kr) j′`−1 (kr′) + j′`+1 (kr) j′`+1 (kr′)

]
. (4.68)

As mentioned above, in more realistic scenarios, where vector perturbations are
generated, e.g., via anisotropic stresses from topological defects or by second order
perturbations, we obtain a shear power spectrum of the form Pσ (k, η, η′), which
cannot be factorized into a random initial spectrum and a deterministic transfer
function.

In Appendix 4.6.3 we nevertheless, for sake of completeness, continue with ex-
pression (4.68) to derive the vector angular power spectrum for the luminosity dis-
tance fluctuations. We do not repeat the lengthy, complicated, and not very illumi-
nating formulas here.

4.5 Conclusions and outlook

In this paper we have calculated the angular power spectrum of the linear vector
and tensor fluctuations in the distance–redshift relation. For vector perturbations
we have simply derived the formulas and for tensor fluctuations we have applied
them to an initial spectrum of fluctuations from inflation. It is interesting to see
that the tensor-distance fluctuation spectrum is not simply suppressed by a factor r
as one might naively expect, but by about 8 orders of magnitude more. The reason
for this is mainly that tensor fluctuations decay once they enter the horizon, while,
on the contrary, scalar perturbations start growing. We therefore expect that the
tensor signal generated from scalar perturbations at second order dominates over
the small first order signal. The calculations of these second order contributions are
left to a future project [116].

We have also found that the tensor signal is not monotonically increasing with
redshift as we would expect it from a pure lensing signal. This is due to the fact that
the total signal is the sum of a redshift part, ∝ −δz/(z + 1), and a lensing part. At
redshift zc ' 1.65, which is close to the redshift where the angular diameter distance
DA = (ηO− ηS)/(1 + z) has a maximum, these terms cancel, and at higher redshifts
the redshift-term dominates.
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4.6 Appendix

4.6.1 Sachs focusing equation

Much of this work is based on the Sachs focusing equation [49]. It has been
shown [104] that the distance can be defined as

D =
√
|detD|, (4.69)

where D is the Jacobi matrix that satisfies the differential equation

d2D
dλ2

=

(
−R− Re (F ) −Im (F )

Im (F ) −R+ Re (F )

)
D, (4.70)

with F = 1
2
Rαµβν ε̄

αε̄βkµkν . The determinant of the Jacobi matrix D describes the
area of the thin light beam and its square root is therefore a distance, (4.69), if the
affine parameter λ is normalized such that ωS = 1. In general one can use the Sachs
focusing equation also with a different affine parameter normalization. Indeed from
the distance definition

D =

√
dAO
dΩS

(4.71)

and the solid angle aberration [49]

dΩ̃

dΩ
=

(
kµu

µ

kµũµ

)2

=
ω2

ω̃2
, (4.72)

we find, setting ω = 1,

D̃ =

√
dAO

dΩ̃S

= ω̃

√
dAO
dΩS

= ω̃D. (4.73)

Since we are considering a light beam with a vertex at the source position, the initial
conditions of the Sachs focusing equation are

D (λS) = 0,
dD (λ)

dλ

∣∣∣∣
λ=λS

= 1, (4.74)

if we normalize λ such that ωS = 1. The general initial conditions for an arbi-
trary affine parameter λ, are given by (4.6). Choosing ωS = 1 + z one obtains the
luminosity distance while ωS = (1 + z)−1 gives the angular diameter distance.

4.6.2 Details for tensor perturbations

Here we write down the nonvanishing Christoffel symbols and the Ricci tensor for
the metric (4.18),

Γ0
ij = η0l (Hil,j +Hlj,i −Hij,l) = Ḣij ⇒

∑
i

Γ0
ii = 0, (4.75)

Γij0 = ηik (Hk0,j +Hjk,0 −Hj0,k) = Ḣji, ⇒ Γii0 = 0, (4.76)

Γijl = ηik (Hjk,l +Hkl,j −Hjl,k) = Hji,l +Hil,j −Hjl,i, (4.77)

Γiij = Hij,i +Hii,j −Hij,i = Hii,j ⇒ Γiij = 0. (4.78)
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R00 = Ri0 = 0, (4.79)

Rij = Ḧij −Hij,ll = −�Hij. (4.80)

These components lead to

R =
1

2

(
R00 + 2Ri0n

i +Rijn
inj
)

= −1

2
ninj�Hij. (4.81)

4.6.3 Details for vector perturbations

Christoffel symbols and Ricci tensor

Here we write down the nonvanishing Christoffel symbols and the Ricci tensor for
the metric (4.54),

Γi00 = −Ḃi, (4.82)

Γij0 =
1

2
(∂η (Hi,j +Hj,i)−Bi,j +Bj,i) , (4.83)

Γii0 = Ḣi,i ⇒ Γii0 = 0, (4.84)

Γ0
ij =

1

2

(
Bj,i +Bi,j + Ḣi,j + Ḣj,i

)
= σij, (4.85)

Γ0
ii = Bi,i + Ḣi,i ⇒

∑
i

Γ0
ii = 0, (4.86)

Γiij = Hi,ij ⇒ Γiij = 0, (4.87)

Γijk = Hi,jk, (4.88)

Γiik = Hi,ik ⇒ Γiik = 0, (4.89)

R00 = 0, (4.90)

Ri0 =
1

2

(
Bi,jj + Ḣi,jj

)
=

1

2
∇2σi, (4.91)

Rij =
1

2

(
Ḃj,i + Ḃi,j + Ḧi,j + Ḧj,i

)
= σ̇ij. (4.92)

With these Ricci tensor components we can easily compute

R =
1

2

(
R00 + 2Ri0n

i +Rijn
inj
)

=
1

2

(
∇2σin

i + σ̇ijn
inj
)
. (4.93)

The c` coefficients

We first derive in detail Eq. (4.68). We use the relation

Y1,±1(n, k̂) =

√
4π

3

1∑
m′=−1

Y1m′(n, e) ∓1Y
∗

1m′(k̂, e) . (4.94)
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Here ∓1Y
∗

1m′(k̂, e) is the vector spherical harmonic. The general addition theorem
for spin weighted spherical harmonics used in Eq. (4.94) above can be found, e.g.,
in [53]. Applying this to Eq. (4.65), we obtain

ninjσij =
(4π)2

3

∑
`m

i`
1∑

m′=−1

Y1m′(n)Y`m(n)

×
∫

d3k

(2π)3kj
′
`(k∆η)Y ∗`m(k̂)

(
σ̂+
−1Y

∗
1m′(k̂)− σ̂− 1Y

∗
1m′(k̂)

)
. (4.95)

Here we omit the arbitrary unit vector e in the notation, and we have introduced
the helicity basis,

σ̂i = σ̂+e
(+)
i + σ̂−e

(−)
i

defined in Eq. (4.34). In the special case with n = e we obtain

eiejσij =
4π√

3

∑
`

i`
√

2`+ 1

×
∫

d3k

(2π)3kj
′
` (k∆η)Y ∗`0(k̂)

(
σ̂+
−1Y

∗
10(k̂)− σ̂− 1Y

∗
10(k̂)

)
, (4.96)

where we have used

Y`m (e, e) =

√
2`+ 1

4π
δm0, (4.97)

and Eq. (4.94) for n = e which yields,

Y1,±1(e, k̂) =

√
4π

3

1∑
m′=−1

Y1m′(e, e) ∓1Y
∗

1m′(k̂, e) = ∓1Y
∗

10(k̂, e). (4.98)

Since the two point correlation function (4.67) depends on the angle n · n′ only we
can set n′ = e without loss of generality. With this we find

〈ninjσijeiejσij〉 =
8

3
√

3

∑
`,m

∑
˜̀

i`−
˜̀
√

2˜̀+ 1 Y`m (n)
1∑

m′=−1

Y1m′ (n)

×
∫
dk k4j′`(k∆η)j′˜̀(k∆η′)Pσ (k)Tk(η)Tk(η

′)

×
∫
dΩk̂ fm′(k̂)Y ∗`m(k̂)Y˜̀0(k̂), (4.99)

where we have introduced

fm′(k̂) = −1Y
∗

1m′(k̂) −1Y10(k̂) + 1Y
∗

1m′(k̂) 1Y10(k̂). (4.100)



4.6. Appendix 87

Since the spherical harmonics form an orthogonal basis on S2, we can expand the
product of two of them again in terms of spherical harmonics using the Clebsch–
Gordan coefficients [123]. In the case of Eq. (4.99) we use

Y ∗`m(k̂)Y˜̀0(k̂)=
`+`′∑

L=|`−`′|

√√√√(2`+ 1)
(

2˜̀+ 1
)

4π (2L+ 1)
〈`, 0, ˜̀, 0|L, 0〉〈`,m, ˜̀, 0|L,m〉Y ∗Lm(k̂).

(4.101)
The dependence of the spherical harmonics on the azimuthal angle φ,

Y ∗Lm ∝ e−imφ and ±1Y
∗

1m′ ∝ e−im
′φ (4.102)

implies that the integral over angles in Eq. (4.99) only contributes for m′ = −m.
Therefore also m ∈ {−1, 0, 1}. Since fm′(k̂) contains only terms that either do
not depend on θ or that are quadratic in sin (θ) and cos(θ) the only nonvanishing
contributions are L = 0 or L = 2. Analogous to Eq. (4.101) we write

Y`,m (n)Y1,−m (n)=
∑
n

√
3 (2`+ 1)

4π(2n+ 1)
〈`, 0, 1, 0|n, 0〉〈`,m, 1,−m|n, 0〉Yn0 (n) . (4.103)

The addition theorem for the spherical harmonics implies

Pn (n · e) =

√
4π

2n+ 1
Yn0 (n) . (4.104)

Using these identities we can rewrite the correlation function (4.99) as

〈ninjσijeiejσij〉 =
∑
n

∑
L=0,2

∑
`,˜̀

1∑
m=−1

i`−
˜̀

3π3/2
(2`+ 1)

(
2˜̀+ 1

)
(2L+ 1)−1/2

×〈`, 0, ˜̀, 0|L, 0〉〈`,m, ˜̀, 0|L,m〉〈`, 0, 1, 0|n, 0〉〈`,m, 1,−m|n, 0〉

×
∫
dkk4j′`(k∆η)j′˜̀(k∆η′)Pσ(k)Tk(η)Tk(η

′)BLmPn (n · e) , (4.105)

where we have introduced

BLm =

∫
dΩk̂ f−m(k̂)Y ∗Lm(k̂). (4.106)

The nonvanishing coefficients are given by

B00 =
1√
π
, B2,±1 =

1

2

√
3

5π
, B2,0 = − 1√

5π
. (4.107)

Computing the sum of the Clebsch–Gordan coefficients, we find

〈ninjσijeiejσij〉 =
∑
`

`(`+ 1)

2π(2`+ 1)
P` (n · e)

×
∫
dk k4Pσ(k)Tk(η)Tk(η

′)
[
j′`−1(k∆η)j′`−1(k∆η′)+j′`+1(k∆η)j′`+1(k∆η′)

]
.(4.108)
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Using this result for the c̄`’s defined in Eq. (4.67), we obtain directly Eq. (4.68).

Now we compute the full c` coefficient defined in (4.28). We use the Limber
approximation (Appendix 4.6.4) to do the time integrals

∫
dηTk(η)j′`−1(k(ηO − η)).

We start with the Doppler terms, the first line of Eq. (4.60), which contribute to
the dipole term only

cD
1 =

4π

3

H−1
S

∆ηS

H−1
S′

∆ηS′
< |~vO|2 > . (4.109)

This dipole is the same as the one from the scalar analysis [9]. We cannot, of
course, decide which part of the observer velocity comes from scalar perturbations
and which part from vector perturbations. Since this dipole term is highly nonlinear,
we neglect it in the subsequent analysis and consider only ` ≥ 2. We now determine
the other terms. From the peculiar velocity of the source we obtain

c
(1)
` =

2` (`+ 1)

π (2`+ 1)2

(
1− H

−1
S

∆ηS

)(
1− H

−1
S′

∆ηS′

)
×
∫
dk k2Pv (k)T vk (ηS)T vk (ηS′)

∑
˜̀=`−1,`+1

j˜̀(k∆ηS) j˜̀(k∆ηS′) ,(4.110)

where we have introduced the velocity power spectrum defined by

〈v̂± (ηS,k) v̂±∗ (ηS′ ,k
′)〉 = (2π)3 δ(3) (k− k′)Pv (k)T vk (ηS)T vk (ηS′) (4.111)

and v̂± is the peculiar velocity in terms of the helicity basis defined in Eq. (4.34).

The second line of the redshift–distance relation (4.60) leads to

c
(2)
`
∼= ` (1 + `)

2π (1 + 2`)2

H−1
S

∆ηS

H−1
S′

∆ηS′

∫
dk k2Pσ (k)

×
∑

˜̀=`−1,`+1

[
I2

˜̀−1
T 2
k

(
η˜̀−1,k

)
Θ
(
η˜̀−1,k − ηS

)
Θ
(
η˜̀−1,k − ηS′

)
+

(
˜̀+ 1

˜̀

)2

I2
˜̀T

2
k

(
η˜̀,k

)
Θ
(
η˜̀,k − ηS

)
Θ
(
η˜̀,k − ηS′

)
−

˜̀+ 1
˜̀

I˜̀−1I˜̀Tk
(
η˜̀−1,k

)
Tk
(
η˜̀,k

) (
Θ
(
η˜̀,k − ηS

)
Θ
(
η˜̀−1,k − ηS′

)
+ Θ

(
η˜̀−1,k − ηS

)
Θ
(
η˜̀,k − ηS′

))]
. (4.112)
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Analogously the third line yields
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The fourth line is composed of the two terms that contribute toR given in Eq. (4.55).
Denoting them with superscripts (41), (42), and their correlation with (412) we
obtain
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Next, we compute the cross terms between the different lines of the distance–redshift
relation (4.60). We start with the second and third lines,
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The second and fourth lines yield
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and, the third and fourth lines give
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Ṫk
(
η˜̀,k

)
Θ
(
η˜̀−1,k−ηS

)
Θ
(
η˜̀,k−ηS′

)
−
(

˜̀2−1
)(
η˜̀−1,k−ηS′

)
I˜̀−1I˜̀Ṫk
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To determine the correlation between the peculiar velocities and the shear on
the constant time hypersurface σij we need to specify the gravitation theory. We
choose GR by using the Einstein’s equations (4.61). Correlating the term for the
peculiar velocity of the source vS with the others, we find
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4.6.4 Limber approximation

In this work we have used the Limber approximation [124] repeatedly. It approxi-
mates the integral of the product of a spherical Bessel function and a slowly varying
function (e.g., a power law) by∫ x2

x1

dxf (x) j` (x) ∼= I`f (`) Θ (x2 − `) Θ (`− x1) (4.126)

for x2 > x1,where Θ denotes the Heaviside function defined by

Θ (x) =

{
0, x ≤ 0
1, x > 0

, (4.127)

and I2
` = 1.58/` describes the area under the first peak of the spherical Bessel

function j` (x). This rather crude approximation considers the contribution under
the first peak only, and it usually gives an overestimation, but never by more than
a factor of 2 [9]. Of course, if the function f varies heavily in the region of the first
peak, `− 1 < x < `+ 1, the approximation cannot be used.
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∫ ηO
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I` (η`,k − ηS) Ṫ (η`,k) Θ (η`,k − ηS) . (4.135)

We have used the following propriety of the spherical Bessel functions [123]:

j′` (k∆η) = j`−1 (k∆η)− `+ 1

k∆η
j` (k∆η) . (4.136)
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Enea Di Dio, Francesco Montanari, Julien Lesgourgues and Ruth Durrer

We present accurate and efficient computations of large scale structure observables,
obtained with a modified version of the class code which is made publicly available.
This code includes all relativistic corrections and computes both the power spectrum
C`(z1, z2) and the corresponding correlation function ξ(θ, z1, z2) of the matter den-
sity and the galaxy number fluctuations in linear perturbation theory. For Gaussian
initial perturbations, these quantities contain the full information encoded in the
large scale matter distribution at the level of linear perturbation theory. We illus-
trate the usefulness of our code for cosmological parameter estimation through a
few simple examples.

5.1 Introduction

Since many years now, cosmology is a data driven science. This became espe-
cially evident with the discovery of the apparent acceleration of the expansion of
the universe, which was found by observations and still remains very puzzling on
the theoretical side. The most blatant success story of cosmology, however, re-
mains the agreement between predictions and observations of the cosmic microwave
background (CMB) anisotropies, see [53, 98, 122], which is confirmed with the new
Planck results [52, 125].

We now want to profit also in an optimal way from actual and future galaxy
catalogs which contain information on the large scale matter distribution, termed
large scale structure (LSS). Contrary to the CMB which is two dimensional, coming
mainly from the surface of last scattering, galaxy catalogs are three dimensional
and therefore contain potentially more, richer information. On the other hand,
galaxy formation is a complicated non-linear process, and it is not clear how much
cosmological information about the underlying matter distribution and about gravi-
tational clustering can be inferred from the galaxy distribution. This is the problem
of biasing which we do not address in this paper. Here we simply assume that on
large enough scales, biasing is linear and local, an hypothesis which might turn out
to be too simple [126].

When observing galaxies, we measure their redshift z and their angular position
−n = (sin θ cosφ, sin θ sinφ, cos θ). Note that n is the photon direction, so from the
source to the observer. Hence we see a galaxy in direction −n. This observed three-
dimensional data does not only contain information on the galaxy position, but also
on the cosmic velocity field (redshift space distortions) and on perturbations of the
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geometry, e.g., lensing effects. Therefore, by making optimal use of galaxy catalogs,
we can learn not only about the large scale matter distribution but also about the
velocity field and the geometry. Since Einstein’s equations relate these quantities,
this allows us to test general relativity or more generally the ΛCDM hypothesis, and
to estimate cosmological parameters.

In this paper we present a new version of the Cosmic Linear Anisotropy Solving
System (class) code1 [20, 127], incorporating several correction terms already pre-
sented in the theoretical works of Ref. [17, 18, 128, 129, 130]. This code is called
classgal and is made publicly available on a dedicated website2. The parts that
concern the CMB have not been changed with respect to the main class distribu-
tion. Several new features of classgal will be merged with the main code in future
class versions.

In the next section, we describe the equations solved by classgal and the initial
input and final output. In section 5.3, we discuss the relevance of the different
contributions to the observed power spectrum. In section 5.4, we present some
forecasts for parameter estimation with future catalogs, in order to illustrate the
usefulness of our code. The topic of this section is worked out in more detail in
an accompanying publication [41]. In Section 5.5, we conclude with an outlook to
future possibilities using our code. The detailed description of the modifications of
the class code as well as some derivations are deferred to two appendices.

5.2 CLASSgal, a code for LSS

When we observe galaxies at a given redshift z and direction −n, we cannot infer
their position x. First of all, even in an unperturbed Friedman universe where
x = −r(z)n, the radial comoving distance r(z) depends on cosmological parameters.
For small redshifts z � 1, we have simply r(z) = zH−1

0 , where H0 denotes the
present value of the Hubble parameter (the H0 dependence can be removed by
measuring distances in units of h−1Mpc, where H0 = 100h km s−1Mpc−1). For
redshifts of order unity and larger, this approximation is no longer sufficient, and
one has to take into account the full time dependence of the Hubble parameter H(z):

r(z) =

∫ z

0

dz′

H(z′)
. (5.1)

Normalizing the scale factor a to unity today, a0 = 1, one has

H2(z) = H2
0

(
a−3Ωm + a−2ΩK + ΩΛ

)
, (5.2)

1http://class-code.net
2http://cosmology.unige.ch/tools/

http://class-code.net
http://cosmology.unige.ch/tools/
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where

Ωm =
8πGρm(t0)

3H2
0

is the matter density parameter, (5.3)

ΩK =
−K
H2

0

is the curvature parameter, (5.4)

and

ΩΛ =
Λ

3H2
0

is the cosmological constant parameter. (5.5)

For a more complicated dark energy model, the expression involving ΩΛ has to be
modified correspondingly.

Note that both x and r(z) are comoving distances. Hence, even in an unper-
turbed Friedmann universe, the three dimensional correlation function

ξ(|y − x|, t) =
〈ρ(x, t)ρ(y, t)〉

ρ̄(t)2
− 1 (5.6)

depends on cosmological parameters, and so does its Fourier transform, the power
spectrum P (k, t).

But this is not all. The observed redshifts are perturbed by peculiar motions
and by fluctuations of the geometry. The first is manifest e.g. in the well known
redshift space distortions [61, 106, 131, 132], while the latter is known e.g. through
the effect of lensing on number counts [133, 134].

The gauge invariant expression for the perturbation of galaxy number counts,
valid in a flat Friedmann universe, at first order in relativistic perturbation theory
and ignoring bias, has been derived in Refs. [17, 18, 128, 129]. The result of [17] for
the perturbation of number counts in direction n and at redshift z reads:

∆(n, z) = Dg + Φ + Ψ +
1

H [Φ′ + ∂r(V · n)]

+

(H′
H2

+
2

rSH

)(
Ψ + V · n +

∫ rS

0

dr(Φ′ + Ψ′)

)
+

1

rS

∫ rS

0

dr

[
2− rS − r

r
∆Ω

]
(Φ + Ψ). (5.7)

Here Ψ and Φ are the Bardeen potentials or, equivalently, the temporal and spatial
metric perturbations in the longitudinal gauge. The gauge-invariant quantities Dg

and V coincide respectively with the density fluctuations in the spatially flat gauge
and the peculiar velocity in the longitudinal gauge. H(z) = H(z)a is the comoving
Hubble parameter and ∆Ω denotes the angular Laplacian. Primes denote derivatives
with respect to conformal time τ , to reflect the notations used in class (while
Ref. [17] used t for conformal time and dots for conformal time derivatives). In the
first two lines, all perturbations are evaluated at the coordinates (τ(z),−rS(z)n)
corresponding to the unperturbed position of an object seen at a redshift z in the
direction −n. Inside the integral, metric perturbations are evaluated at conformal
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time (τ0− r), where τ0 is the conformal age of the universe, and at comoving radius
r.

Eq. (5.7) is valid only for vanishing spatial curvature K = 0. In the remainder
of this paper, as well as in the present version of the code classgal we restrict
ourselves to this case.

Note that in longitudinal gauge, the second parenthesis of the second line of
Eq. (5.7) is simply −δz(1 + z)−1, see Ref. [17] for the general expression. When
writing this line, we neglect a possible evolution of the number of counts, i.e. we
assume that a3n̄S is constant, where n̄S denotes the background number density.
Allowing for evolution, one should add in the first parenthesis of the second line of
Eq. (5.7) the term [18]

d ln(a3n̄S)

HdτS
= −(1 + z)

d

dz
ln

(
n̄S

(1 + z)3

)
≡ fevo(z) .

For z . 1.5 evolution can be parametrized, e.g., using the Schechter luminosity
function [135, 136]. However, since fevo(z) is very uncertain, we have set it to zero
by default and simply allow the user to define his/her preferred evolution function
fevo(z), see Appendix 5.6.1 for more details.

Furthermore, as it stands, Eq. (5.7) gives the perturbation of the total number
density. In practice, however, we cannot observe all galaxies, but only those with a
flux which is larger than a certain limit, usually given in terms of a limiting mag-
nitude m∗ related to a limiting flux F∗ by m = −2.5 log10 F+ const. (the constant
depends on the units in which we measure the flux). If the fluctuation of the source
number density depends on luminosity, the number count at a fixed observed flux
F is given by

∆(n, z, F ) = ∆(n, z) +
∂ ln n̄S
∂ lnLS

∣∣∣∣
L̄S

× δLS
L̄S

= ∆(n, z) + 2
∂ ln n̄S
∂ lnLS

∣∣∣∣
L̄S

×
[(

1

rSH
−1

)(
Ψ+

∫ rS

0

dr(Φ′ + Ψ′)+V · n
)

+
1

2rS

∫ rS

0

dr

[
2− rS − r

r
∆Ω

]
(Φ + Ψ) − Φ

]
. (5.8)

up to some local monopole and dipole terms that we neglect for consistency. Here
L̄S is the background luminosity corresponding to a flux F . In the second equality,
we made use of the fact that the fractional fluctuation in the luminosity at fixed
flux is given by twice the fractional fluctuation in the luminosity distance which
is computed e.g. in [9]. In Appendix 5.6.2 we show that the result of Ref. [9] is
equivalent to the big bracket of Eq. (5.8).

Denoting the sources in direction −n at redshift z with magnitude m < m∗,
i.e., flux F > F∗ by N(n, z,m < m∗)dzdΩ0 , and its fractional perturbation by
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Dg(L > L̄∗), we then obtain for its fluctuation, see [18]

∆(N)(n, z,m∗) = Dg(L > L̄∗) + (1 + 5s)Φ + Ψ +
1

H [Φ′ + ∂r(V · n)] +(H′
H2

+
2− 5s

rSH
+ 5s− fNevo

)(
Ψ + V · n +

∫ rS

0

dr(Φ′ + Ψ′)

)
+

2− 5s

2rS

∫ rS

0

dr

[
2− rS − r

r
∆Ω

]
(Φ + Ψ) . (5.9)

with

fNevo =
∂ ln

(
a3N̄(z, L > L̄∗)

)
H∂τS

.

Here we have introduced the dependence of the number density on the luminosity
via the logarithmic derivative,

s(z,m∗) ≡
∂ log10 N̄(z,m < m∗)

∂m∗
=

n̄S(z, L̄∗)

2.5N̄(z, LS > L̄∗)
, (5.10)

where

N̄(z, LS > L̄∗) ≡
ln 10

2.5

∫ m∗

−∞
n̄S(z,m)dm =

∫ ∞
F∗

n̄S(z, lnF )d lnF . (5.11)

Using this definition and the fact that at fixed z partial derivatives w.r.t. L are the
same as those w.r.t. F , one deduces:

∂ ln n̄S(z, lnLS)

∂ lnLS

∣∣∣∣
L̄∗

= −5

2
s(z,m∗) ,

which has been used to pass from Eqs. (5.7, 5.8) to (5.9). If the number density
is independent of luminosity, s vanishes, and if we can neglect evolution, fevo = 0.
Then Eq. (5.9) reduces to Eq. (5.7). In the present version of the classgal code,
the user can introduce a constant value for s(z,m∗), depending on the limiting
magnitude of the catalog she/he wants to analyze. The default value is s = 0.

Note that the dominant contribution to the redshift space distortions, the last
term on the first line of (5.7), does not dependent on luminosity nor evolution, while
the lensing term (third line of (5.7)) is affected by the luminosity dependence. This
is the so called magnification bias.

In the code, instead of Dg, it is more convenient to use another gauge-invariant
quantity D that coincides with the density fluctuations in comoving gauge. For
non-relativistic matter it is related to Dg through [53]

Dg = D − 3

(H
k
V + Φ

)
. (5.12)

Without mentioning it, Dg, D and V are always the corresponding quantities for
matter (i.e. baryons, cold dark matter and possibly non-relativistic neutrinos) for
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which we set wm = pm/ρm = 0. We never use the perturbed Einstein equations in
these expressions, so that it is easy to change the code when one wants to consider
a different dark energy model which may itself have perturbations, or models which
modify gravity.

For the case of ΛCDM, the Einstein equations in the matter and Λ dominated
era are simply [53]

4πGa2ρtotDtot =
3

2
H2 Ωm

Ωm + ΩΛa3
D = −k2Φ , and Φ = Ψ . (5.13)

The matter density perturbation D in comoving gauge is related to the total density
fluctuation it via δρm/ρtot|com ≡ Dtot = Ωm

Ωm+ΩΛa3D.
We can expand Eq. (5.7) or (5.9) in spherical harmonics with redshift dependent

amplitudes,

∆(n, z) =
∑
`m

a`m(z)Y`m(n), with a`m(z) =

∫
dΩnY

∗
`m(n)∆(n, z). (5.14)

The star indicates complex conjugation. Denoting the angular power spectrum by

C`(z1, z2) = 〈a`m(z1)a∗`m(z2)〉 (5.15)

a short calculation gives [17]

C`(z1, z2) = 4π

∫
dk

k
P(k)∆` (z1, k) ∆` (z2, k) (5.16)

where P(k) is the primordial power spectrum, and

∆`(z, k) = j`(kr(z))

[
bD(τ(z), k) +

(H′
H2

+
2− 5s

r(z)H + 5s− fNevo + 1

)
Ψ(τ(z), k)

+ (−2 + 5s) Φ(τ(z), k) +H−1Φ′(τ(z), k)

]
+

[
dj`
dx

(kr(z))

(H′
H2

+
2− 5s

r(z)H+ 5s−fNevo

)
+
d2j`
dx2

(kr(z))
k

H−3j`(kr(z))
H
k

]
V (τ(z), k)

+

∫ r(z)

0

dr j`(kr)

[
(Φ(τ, k) + Ψ(τ, k))

(
2− 5s

2

) (̀
(`+ 1)

r(z)− r
r(z)r

+
2

r(z)

)
+ (Φ′(τ, k) + Ψ′(τ, k))

(H′
H2

+
2− 5s

r(z)H + 5s− fNevo

)
r(z)

]
. (5.17)

Here the j`(x)’s are the spherical Bessel functions, and all perturbations are the
real transfer functions relating the corresponding variables to the power spectrum
(we give more details about the definition of the primordial spectrum and of all the
transfer functions in Appendix 5.6.1). The times τ(z) = τ0 − r(z) and τ = τ0 − r
are conformal times of perturbations which we see at comoving distances r(z) and
r respectively. We have replaced Dg in Eq. (5.7) by D using the relation (5.12).
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We have added a linear scale-independent bias b between the matter and galaxy
density. The choice of adding galaxy bias to the density in the comoving gauge D
is justified by the assumption that both galaxies and dark matter follow the same
velocity field as they experience the same gravitational acceleration, and the linear
bias prescription is valid in their rest frame. In the numerical calculations of the
present paper we assume for simplicity b = 1, for a detailed discussion of galaxy bias
in General Relativity see [137].

The first term in the first line of Eq. (5.17) is the usual density term. The
third line collects all redshift space distortions terms and Doppler terms. The
usual redshift space distortion derived by Kaiser [61] is the term proportional to
[d2j`/dx

2]k/H, but sometimes, the subdominant term proportional to 2[dj`/dx]/(rH)
is also considered as part of the redshift space distortion. The first term on the fourth
line is the lensing term. Note that this term is parametrically of the same order as
the density and redshift space distortion terms, and therefore can become important
in certain situations. The other terms are sometimes called “relativistic corrections”.
This name is somewhat misleading, since redshift space distortions are also (spe-
cial) relativistic contributions, and of course the lensing term is also relativistic. We
shall therefore simply call them “gravitational potential terms”. They contain an
integrated Sachs Wolfe effect (term on the last line), and several contributions from
the potentials Φ and Ψ at redshift z.

In this equation, we have neglected terms evaluated at z = 0, at the observer po-
sition, which contribute only to the monopole. We have also neglected the term
induced by the observer velocity, which contributes only to the dipole. These
terms cannot be calculated reliably within linear perturbation theory. Neverthe-
less, C0(z1, z2) and C1(z1, z2) contain some interesting information on clustering,
to which these local contributions would only add an uninteresting z-independent
constant, see [41].

Equations (5.16, 5.17) are valid for a pair of infinitely thin shells located at
redshift z1 and z2. For realistic redshift bins of finite thickness described by a set
of window functions Wi(z), e.g. a Gaussian centered at some redshift zi, and a
given number density of galaxies per redshift interval dN/dz (the integral of the
product Wi(z)dN/dz being normalised to unity), one can substitute ∆`(z, k) with
the integral

∆i
`(k) =

∫
dz
dN

dz
Wi(z)∆`(z, k) , (5.18)

and define the power spectrum

Cij
` = 4π

∫
dk

k
P(k)∆i

`∆
j
`(k) . (5.19)

For i = j, this quantity represents the auto-correlation power spectrum of relativistic
density fluctuations observed in the shell around zi. For i 6= j, it represents the
cross-correlation power spectrum between two shells. When the window functions
are Dirac distributions, we recover the expression C`(zi, zj).
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Our code classgal calculates Cij
` for a given cosmological model and for a set

of window functions (that can be chosen to be Gaussian, Dirac or top-hat distri-
butions). We continue to use the notation C`(zi, zj) in the case of Dirac window
functions. We easily obtain angular correlation functions by summing up the C`’s,

ξ(θ, zi, zj) ≡ 〈∆(n, zi)∆(n′, zj)〉

=
1

4π

`max∑
`=0

(2`+ 1)C`(zi, zj)P`(cos θ)W` , (5.20)

where W` = exp [−`(`+ 1)/`2
s] is a Gaussian smoothing introduced for convenience,

which smoothes out sufficiently high multipoles to avoid unphysical small scales
oscillations in ξ(θ) which are an artifact coming from the finiteness of `max. For
`max ∼ 1000 it is sufficient to choose `s ∼ 600. P`(µ) is the Legendre polynomial of
degree ` and θ is the angle between n and n′, i.e., cos θ = n · n′. For the case of
thick shells,

ξ(θ)ij =
1

4π

`max∑
`=0

(2`+ 1)Cij
` P`(cos θ)W` . (5.21)

5.3 Power spectra and correlation functions

In this section we show how classgal can be used to estimate cosmological parame-
ters. Of course, a truly measured correlation function will always have finite redshift
and angular resolution, that can be described respectively by the shape and width
of the window function, and by an appropriate instrumental noise function growing
exponentially above a given ` or below a given angle. Furthermore, since we measure
density fluctuations with a discrete tracer, namely galaxies, we must add Poisson
noise to the error budget.

We first study the sensitivity of the different terms in the power spectrum to the
redshift resolution. Throughout this section we set s = fevo = 0 in Eq. (5.17). We
use a galaxy density distribution dN/dz inspired from the characteristics of a survey
like DES3,

dN

dz
∝
( z

0.55

)2

exp

[
−
( z

0.55

)2
]
. (5.22)

This assumption is convenient for the purpose of comparing our results with those of
Ref. [63]. As explained in the second section of Appendix 5.6.1, classgal allows the
user to pass any selection function dN/dz analytically or in the form of tabulated
values. For each redshift bin associated with a window function Wi(z), the product
Wi(z)dN/dz is normalized to unity.

Fig. 5.1(a) shows the auto-correlation power spectrum of a given redshift bin
i, defined in Eq. (5.19), for different types of window functions. In the case of a

3www.darkenergysurvey.org

www.darkenergysurvey.org
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Figure 5.1: Left panel: auto-correlation power spectrum, defined in Eq. (5.19),
for a redshift bin centered around z = 0.55 and three different choices of window
function: a Gaussian with half-width ∆z = 0.1 (solid, black), a tophat of half-width
∆z = 0.1 (dashed, blue), and a Dirac delta (dotted, purple). For the Gaussian
window function we also indicate the error σC` as a shaded band.
Right panel: errors in Eq. (5.19) when neglecting gradually gravitational potential
terms (dot-dashed, blue), lensing (dotted, purple) and velocity terms (Doppler and
z-space distortions, dashed, red). The r.m.s. variance σC`/C

full
` is also shown (solid,

black). Results are computed for a Gaussian bin centered around z̄ = 0.55 and with
half-width ∆z = 0.1.

Gaussian window (solid curve) we plot also the r.m.s. variance given by

σC` =

√
2

(2`+ 1)fsky

(
Cii
` +

1

ni

)
, (5.23)

where ni is the number of galaxies per steradian inside the bin, and we assume full
sky coverage, fsky = 1. We assumed the same value of ni as in the table presented
in Ref. [63], reflecting the characteristics of DES (see also footnote 6).

The Dirac delta case corresponds to a purely theoretical quantity. This signal
is reduced significantly after the integration with a tophat or Gaussian window
function. The tophat can be used if galaxy redshifts are known with spectroscopic
precision. If we use a redshift resolution of ∆z = 0.001, the signal is reduced
roughly by a factor of 2 with respect to the Dirac delta window function. If only
photometric redshift are available, then because of the relatively low z-resolution,
the sharp tophat has to be replaced by a Gaussian.

Fig. 5.1(b) shows the errors made when neglecting one or several terms in
Eq. (5.17), for a Gaussian bin centered around z̄ = 0.55 and with half-width
∆z = 0.1. We define

ε` =
∣∣∣1− Cpartial

` /C full
`

∣∣∣ , (5.24)

where C full
` is calculated with all the terms in Eq. (5.17), while in Cpartial

` we gradually
neglect the gravitational potential terms (G1-G5 in Eq. (5.44)), the lensing term
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(‘Len’ in Eq. (5.44)), and all velocity terms (redshift-space distortions and Doppler,
‘Red’ and ‘Dop’ in Eq. (5.44)). Similar comparisons have been presented in [17, 18]
with a lower `max and different choices of redshift and window functions. Note
that when we neglect a contribution, we remove the corresponding auto-correlation
as well as the correlations with other terms. Hence the difference ε` can become
negative if it is dominated by a negative correlation term. Spikes toward −∞ (in
log scale) arise when the difference changes sign.

For comparison, we also show the r.m.s. sample variance σC`/C
full
` (note that

this quantity can in principle be larger than 1). As expected, this variance is more
important for lower multipoles. After ` ≈ 300 it increases again because shot-noise
starts dominating the error.

As expected, gravitational potential terms (dot-dashed) are always subdominant
and most important on large scales. The lensing term (dotted) is nearly scale-
independent. For the chosen configuration, namely a Gaussian window function cen-
tered at z̄ = 0.55 and with half-width ∆z = 0.1, redshift-space distortions (dashed)
represent the most important corrections to the plain density term, and neglecting
these distortions introduces an error of the same order as the sample variance (solid)

on large scales. At `
>∼ 38, the difference ε` from redshift-space distortions changes

sign and then become comparable to the lensing corrections. We stress, however,
that we are not seeing here the non-linear Fingers-of-God effect, which is important
on much smaller scales.

In a companion paper [41], we also consider situations where the redshift space
distortion or the lensing term become significantly larger than the noise. There we
see that wide window functions significantly reduce redshift space distortions but
enhance the lensing term. Using single tracers, we have not yet found a configuration
which is such that the potential terms raise above the noise. However, since they
are largest on large scales, they are significantly affected by cosmic variance. A
multi-tracer analysis may be considered to reduce cosmic variance [138]. Recently,
it has also been shown that asymmetries in the correlation function between bright
and faint galaxies are useful to enhance the relativistic terms [62].

Using Eq. (5.21), we can also compute the angular correlation function. Fig. 5.2(a)
shows the auto-correlation in a redshift bin with either Gaussian, tophat or Dirac
window function. In the Dirac case, the result has been divided by 10 for easier
comparison using linear scales. In the Gaussian case, we also plot the r.m.s. sample
variance.

Observational data on the angular correlation function must be interpreted with
care since points at different angles are correlated. On the theoretical level, their
non-diagonal covariance matrix is given by [139]

Covθθ′ =
2

fsky

∑
`≥0

2`+ 1

(4π)2
P`(cos θ)P`(cos θ′)

(
C` +

1

n

)2

, (5.25)

and the error at a given angular scale can be estimated as

σξθ = (Covθθ)
1/2 . (5.26)
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Figure 5.2: Upper left: the angular auto-correlation function, Eq. (5.21), for a bin
centered at z̄ = 0.55 and for a Gaussian window function with ∆z = 0.1 (solid,
black), a tophat of half-width ∆z = 0.1 (dashed, blue), and a Dirac delta (dotted,
violet). For the Dirac delta case the correlation function has been divided by 10
for easier comparison. For the Gaussian window function we also indicate the er-
ror σξθ as a shaded band. The bumps visible near four degrees correspond to the
baryon acoustic feature. Upper right: the reduced covariance matrix of the angular
correlation function (given by Eq. (5.25) rescaled by σξθσξθ′ ). Bottom: the signal of
the different contributions relative to the r.m.s. variance of the full ξθ. Results are
computed for a Gaussian bin centered at z̄ = 0.55 and with half-width ∆z = 0.1.

In Fig. 5.2(b) we show the non-diagonal structure of the reduced covariance
matrix defined as Covθθ′/σξθσξθ′ , for a Gaussian window with half-width ∆z = 0.1
centered at z̄ = 0.55. Along the diagonal, the reduced covariance matrix is equal to

one by construction. Notice the small anti-correlations for |θ−θ′| >∼ 6o in dark blue.

Like for the power spectrum, we illustrate the impact of the different terms which
appear in Eq. (5.17) on the total correlation function. Results are computed for a
Gaussian bin centered around z̄ = 0.55 and with half-width ∆z = 0.1. Fig. 5.2(c)
shows the signal of different effects compared to the r.m.s. variance of the full cor-
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relation function: (
S

N

)
θ

=
ξ(θ)partial

σξθ
, (5.27)

where the nominator takes into account density, velocity terms (Doppler and z-
space distortions), lensing and potential effects as well as their cross-correlations
with previous terms, respectively. Therefore, e.g., the lensing curve considers not
only lensing-lensing correlations but also cross-correlations of lensing with velocity
and density terms. The curve corresponding to the total, observable, ξ(θ) is also
plotted. The denominator of Eq. (5.27) is given by Eq. (5.26), which is computed
considering the contribution of all the terms. Density and lensing curves as well as
the total correlation function exhibit a spike to −∞ (in log scale) at the angle for
which ξ(θ) crosses zero. Note that the zero of the full correlation function moves
from about 4.2o to 4.6o due to the presence of redshift space distortions. One also
sees clearly that on large scales, θ > 4.5o density and redshift space distortions are
anti-correlated while on small scales they are correlated.

The (S/N)θ curves show whether an effect gives a contribution larger than sam-
ple variance at a given scale, hence (S/N)θ > 1 suggests that in principle it the
corresponding contribution is observable if it can be isolated from the other terms.
The main contribution comes from density and redshift space distortions, consistent
with Fig. 5.1(b). Lensing is mainly important at small scales, where linear per-
turbation theory which is adopted here is not longer sufficient since angles θ . 1◦

correspond to comoving separations r . 25 Mpc/h. Potential terms have a signal-
to-noise which is nearly scale-independent. Therefore they are more relevant at large
separations where other effects decay. Nevertheless, due to cosmic variance (S/N)θ
of the potential terms never raises towards 1.

The code cambsources4 [18] allows to calculate C`(z1, z2) for not too narrow
smooth window functions and at not too large values of ` 5. Whenever possible, we
have checked that our results for the C`’s agree with the output of cambsources,
and that those for ξ(θ) agree with [106]. Our code classgal has been optimized also
for non-Gaussian window functions, narrower redshift bins and higher `. It includes
several extra options with respect to cambsources, that are described in section 5.2
of Appendix 5.6.1.

5.4 Example

As an example, we now determine the accuracy of Ωm obtained from a galaxy survey,
keeping all other parameters fixed, but varying the number of redshift bins NBins in

4http://camb.info/sources/
5The version of cambsources available at the time of this writing (October 2013) leads either

to instabilities or to prohibitive memory requirements in the limit of thin Gaussian shells and/or
large `.

http://camb.info/sources/
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which we split the data. The Fisher matrix is defined as

Fαβ =
∑
`

∂Cij
`

∂λα

∂Cpq
`

∂λβ
Cov−1

`,(ij),(pq), (5.28)

where the covariance matrix of a given survey with sky coverage fsky reads

Cov[`,`′][(ij),(pq)] = δ`,`′
Cobs,ip
` Cobs,jq

` + Cobs,iq
` Cobs,jp

`

fsky (2`+ 1)
, (5.29)

and the spectra Cobs,ij
` include a shot-noise contribution related to n(i), the number

of galaxies per steradian in the i-th redshift bin,

Cobs,ij
` = Cij

` +
δij
n(i)

. (5.30)

Since the spectra Cij
` form a symmetric matrix with NBins(NBins + 1)/2 indepen-

dent terms, the covariance matrix for each ` is of dimension [NBins(NBins + 1)/2]2.
We will also consider an approximate version of the covariance matrix in which
cross-correlation between bins are neglected: then the covariance matrix is only of
dimension [NBins]

2.
In Fig. 5.3 we show the Figure of Merit (FoM) for Ωm when all other parameters

are fixed, defined as the square root of the diagonal element of the Fisher matrix
corresponding to Ωm (see [41] for more details on this definition). We analyse how
the FoM depends on the number of bins considering a spectroscopic survey (like
DESspec) with a redshift range from z = 0.45 to z = 0.65. For comparison, we show
the same FoM for an analysis of the observational data based on the reconstruction
of the three-dimensional Fourier spectrum P (k, z̄i) instead of the angular power
spectra Cobs,ij

` , using the same number of redshift bins in both cases [41, 140].
Here we consider the same redshift binning strategy and the same shot-noise

terms as in Ref. [63]6. We also consider the same set of non-linearity wavenumbers,
kmax = (0.05, 0.1, 0.2)hMpc−1. We limit ` < `max such that scales orthogonal to
the line-of-sight and smaller than λmin = 2π/kmax (on which non-linearities are
important) are not considered. This condition is equivalent to [2π/`max]DA(z̄) =
a(z̄)[2π/kmax], giving `max = r(z̄)kmax in flat space. As shown in Fig. 5.3, more
redshift bins lead to better constraints on the parameter Ωm. Instead, the FoM of
the 3D Fourier spectrum analysis is almost independent of NBins. The approach
based on the angular power spectrum performs significantly better beyond a certain
value of NBins depending on kmax, that can be read off from the figure. Our results
cannot be immediately compared to those of [63] due to a different normalization of
the FoM (see [41]). However they are consistent with [63], since the FoM of the two
methods intersect each other at roughly the same value of NBins.

6 The shot noise is determined by the galaxy number density, assumed to be n = 3.14 ×
10−3h3Mpc−3. In Fig. 5.4, we also show for comparison some results, based on a larger shot noise
assumption, with n = 6.89× 10−4h3Mpc−3.
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Figure 5.3: FoM as a function of bin number, for a spectroscopic survey (like
DESspec). The analysis is performed with a cut-off at different wavenumbers
(from top to bottom): kmax = 0.2 h Mpc−1 (blue), kmax = 0.1 h Mpc−1 (green),
kmax = 0.05 h Mpc−1 (red). Different line styles show the figure of merit (FoM)
considering all the cross correlation spectra between redshift bins (solid lines) or
only auto-correlation spectra within redshift bins (dashed). The horizontal lines
show the FoM computed for an analysis based on the 3D Fourier spectrum P (k, z̄i),
defined in detail in [41, 140]. In the latter case the dependence on NBins is negligible.

Our results do not show any saturation when considering more and more redshift
bins. Naively one might think that, by considering smaller redshift bins, the shot-
noise term would start to dominate at larger scales, since there are less galaxies per
bin. But, as shown in Fig. 5.4, this effect is partially compensated by the growth
of the signal which is integrated over a narrower window function and therefore
less “washed out”. Hence the scale at which the shot-noise term starts dominating
changes very slowly when decreasing the width of the window function.

According to Fig. 5.4, we expect to start seeing a saturation of the FoM between
50 and 100 redshift bins, which is above the range of values of NBins shown in
Fig. 5.3. This comment applies to the noise of the autocorrelation spectrum in each
bin. The shot noise of cross-correlations spectra in pairs of bins is actually twice
smaller, so we expect the saturation to occur at an even larger number of bins. We
have not computed the FoM up to this level, because it would be computationally
very expensive (the calculation time of the FoM scales like N4

Bins). Also, such a large
number of bins probably becomes unrealistic as soon as one includes instrumental
noise in the analysis.

Finally, in Fig. 5.5 we show the covariance matrix at two different ` values. The
largest signal in the correlation matrix comes clearly from the auto-correlation in
each redshift bin.
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Figure 5.4: In the left panel we show the angular power spectrum C` (solid lines)
and the shot-noise contribution (dashed lines) for different top-hat window functions
of half-widths: ∆z = 0.1 (brown), ∆z = 0.025 (blue), ∆z = 0.0125 (green), ∆z =
0.00625 (orange), ∆z = 0.003125 (red). All the window functions are centered at
z = 0.55 and we consider a spectroscopic survey like DESspec for the shot-noise
contribution (assuming the lowest shot noise mentioned in Footnote 6).
In the right panel we plot the multipole ` at which the shot-noise term starts to
dominate. In red (upper lines) we consider low shot noise, while in blue (lower
lines) higher shot noise is assumed (see Footnote 6). We consider top-hat (solid
lines) and Gaussian window functions (dashed lines).

0.45 0.49 0.53 0.57 0.61 0.65
z

0.45

0.49

0.53

0.57

0.61

0.65

z′

0.00

0.15

0.30

0.45

0.60

0.75

0.90

0.45 0.49 0.53 0.57 0.61 0.65
z

0.45

0.49

0.53

0.57

0.61

0.65

z′

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Figure 5.5: We show the correlations between different redshift bins. The left panel
is computed for ` = 71 corresponding to k = 0.05 h Mpc−1, while the right panel
shows ` = 285 corresponding to k = 0.2 h Mpc−1 for the mean redshift z̄ = 0.55.
We consider a tophat window function with half-width ∆z = 0.003125.
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5.5 Conclusions and outlook

In this paper, we introduce a new version of the class code which computes the
linear angular power spectra for large scale structure, Cij

` , in redshift bins described
by a set of window functions Wi(z). This code is called classgal and includes all
relativistic effects to first order in perturbation theory. The parts that concern the
CMB have not been changed with respect to the main class distribution. Several
new features of classgal will be merged with the main code in future class versions.

The accuracy of the calculation is similar to the one of the original class code,
i.e., overall about 0.1% when using default precision, or up to 0.01% with boosted
accuracy settings [141]. Whenever possible, we checked that classgal agrees well
with cambsources. classgal offers the advantage of including by default several
window functions and the possibility of passing tabulated selection and evolution
redshift distributions, remaining accurate and efficient for narrow redshift bins and
large values of `. The code uses the Limber approximation as described in the
Appendix, but for very accurate calculation one can turn off this approximation.
For class users, it should be absolutely straight forward to work with this code
after reading the explanatory material presented in Appendix 5.6.1 of this work. A
newcomer may want to read first the description of the original code in Ref. [127].

We have illustrated the utility of this code with an example where we determine
Ωm from a DES-like galaxy redshift survey. We have studied how the figure of merit
depends on the number of redshift bins used, and to which extent slim redshift bins
compensate for the increased shot noise by an enhanced signal. Our findings agree
well with previous results [63] based on cambsources. More applications of our code
are found in the accompanying paper [41].
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5.6 Appendix

5.6.1 Differences between class and classgal

Conventions and notations used in the code

The class code uses the notation of Ma & Bertschinger [142] for both Newtonian
and synchronous gauge (as usual, the latter is fully specified by requiring in addi-
tion that θCDM vanishes at initial time, and hence at all times). Conformal time is
denoted τ and the prime stands for ′ ≡ ∂τ . Instead of H, the code uses the standard
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Hubble parameter H = a′/a2 and its derivative H ′ = a′′/a2 − 2aH2. Metric per-
turbations read (φ, ψ) in Newtonian gauge, and (η, h) in synchronous gauge. The
gauge-invariant Bardeen potentials (Φ,Ψ) appearing in Eq. (5.7) are defined in such
a way that in Newtonian gauge, they reduce to (φ, ψ), while in synchronous gauge,
they are given by ([η −Hα], [Hα + α′]), with α ≡ (h′ + 6η′)/(2k2) [142].

The quantities integrated by the code are not actual Fourier modes depending on
~k, but transfer functions depending on k, normalized with respect to the curvature
perturbation R (to be precise, this is true in the case of adiabatic initial conditions;
for isocurvature initial conditions class uses standard normalization conventions
that can easily be read from the code). Hence, for any perturbation A(τ,~k) with
adiabatic initial conditions, the transfer function A(τ, k) is defined as

A(τ, k) ≡ A(τ,~k)

R(τini, ~k)
. (5.31)

The power spectrum of A is then related to the primordial curvature power spectrum
by

〈A(τ,~k)A∗(τ,~k′)〉 = A(τ, k)2PR(k)δ(3)(~k − ~k′) , (5.32)

and the dimensionless primordial power spectrum is defined as PR(k) = k3

2π2PR(k).

Modifications to the input module

classgal incorporates a few more optional input parameters than class. In order
to compute the angular power spectra including relativistic corrections, one should
include at least output = rCl, ... in the input parameter file, instead of the usual
flag dCl referring to the same quantity without relativistic corrections computed
also by the main class. The three fields rCl rsd, rCl lensing, rCl gr are set by
default to yes, but by setting one or several of them to no, one can turn off the
contribution of redshift-space distortions + Doppler, of lensing, or of gravitational
potential terms. The user can pass a value for linear, scale-independent galaxy bias
(e.g. bias = 1.2). The density transfer function defined below in the first line of
Eq. (5.44) is multiplied everywhere by this factor. Magnification bias, by default set
to zero, is given by the option s bias that allows constant values. Source evolution
is controlled by the field dNdz evolution (by default blank and hence neglecting
evolution), that represents the number of sources per redshift and solid angle as a
function of redshift. A tabulated evolution function can be considered by passing
its file name, e.g., dNdz evolution = myevolution.dat.

The minimum and maximum value of ` that will be computed are set by l max lss

and l min. The latter is set by default to 2 but can be decreased to 1 or 0. For
` = 0 the usual output [`(`+ 1)/2π]C` would of course vanish, so there is an option
cl rescale = yes/no : if this is set to no, the code will simply output the C`’s.

The shape and characteristics of window functions can be set like in the main
class, i.e. by a sequence of the type:
selection = gaussian

selection mean = 1, 1.5, 1.8
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selection width = 0.5,0.4,0.2

where the shape can be set to gaussian, tophat or dirac (see the comments in the
file explanatory.ini for more details). These window functions can be multiplied
by a selection function common to all redshift bins. This feature is disabled when
the field dNdz selection is left blank. For an analytic selection function hard-
coded in the source files, one should write dNdz selection = analytic: by default
it will point to the function dN/dz used in this paper. For reading a tabulated
selection function from a file, one should pass the file name, e.g. dNdz selection

= myselection.dat.
The user is free to use the same tabulated redshift distribution for the evolution

and the selection function, i.e. the survey observes all the sources. One should
simply use the same file for dNdz evolution and dNdz selection.

In the matrix Cij
` , the user may wish to neglect some non-diagonal terms i 6= j

in order to speed up the code and get more compact output files. The number of
non-diagonal elements is set by non diagonal, that can be assigned between 0 and
N − 1, where N is the number of bins: 0 means ‘only auto-correlations’, 1 means
‘only auto-correlations and adjacent bins’, etc.

Modifications to the perturbation module

The role of the perturbation module is to integrate the coupled system of evolution
equations for cosmological perturbations, and to store in memory a list of source
functions SX(k, τ) for discrete values of k and τ . These source functions are all
linear combinations of transfer functions A(τ, k). In order to compute unlensed
CMB spectra, one needs three well-known source functions ST,E,B described e.g. in
[54, 143].

The perturbation module can store many other source functions SX(k, τ), de-
pending on the requested output. In the main code class v1.7, they consist in:

• individual density or velocity transfer functions {δi(τ, k), θi(τ, k)} (expressed
in the gauge selected by the user);

• metric fluctuations if the lensing spectrum or lensed CMB spectrum are re-
quested (the standard code stores only Sg ≡ Ψ and assumes Φ = Ψ, which
is a good approximation for ΛCDM at late times, but not sufficient for the
purposes of this work);

• to prepare the computation of the Fourier matter power spectrum, P (k), or of

the harmonic power spectrum of matter density in shells, C
δiδj
` , the code can

either store the total fluctuations of non-relativistic matter in a given gauge,
Sδm = δm, or the gravitational potential, Sg = Ψ, in view of inferring the
total density fluctuation from the Poisson equation (in the sub-Hubble limit
and assuming Φ = Ψ). The user can use a flag to switch between these two
schemes. Both of them provide approximations to the true observable density
power spectrum built from Eq. (5.7), that we wish to compute with classgal.
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In classgal, we need to store additional source functions corresponding to dif-
ferent terms in Eq. (5.7). These include the gauge-invariant matter density source
function (including CDM, baryons and non-relativistic neutrinos – dubbed more
generally non-cold dark matter (ncdm) in the code),

SD = δρm/ρ̄m − 2
H ′

H

θm

k2
, (Newt. or synch.) (5.33)

the gauge-invariant velocity source function

SΘ = θm , (Newt.) (5.34)

SΘ = θm + k2α , (synch.) (5.35)

the gauge-invariant Bardeen potentials

SΨ = {ψ or Hα + α′} , (5.36)

SΦ = {φ or η −Hα} , (5.37)

and the sum S(Φ+Ψ) = SΦ+SΨ. The source functions SD and SΘ coincide with D and
kV in Eq. (5.17). The code also needs to store the time derivatives SΦ′ and S(Φ+Ψ)′ .
In order to avoid heavy equations, these are not inferred from complicated differential
combinations of the Einstein equations, but from finite differences: SΦ′(τ) ' [SΦ′(τ+
dτ) − SΦ′(τ − dτ)]/[2dτ ]. Since both Φ and Ψ vary only very slowly in the matter
and dark energy dominated eras, this does not compromise the accuracy of the code.

Modifications to the transfer module

The role of the transfer module is to calculate harmonic transfer functions ∆X
` (k)

by convolving the source functions SX(τ, k) with Bessel functions, sometimes using
a kernel (accounting for selection functions, rescaling factors, etc.) For instance,
in the standard version of class and in the flat space limit, the density transfer
function ∆δi

` (k) in a given redshift bin is computed using the Poisson equation

− k2

a2
ψ = 4πGρmδm =

3

2
H2Ωm(τ)δm , (5.38)

Where Ωm(τ) is the fractional density of matter at time τ , and δm denotes the
matter density fluctuation in synchronous gauge (class also allows computations
in Newtonian gauge). This relation neglects pressure from massive neutrinos which
is however very small in the redshift range z < 3 where we use it. Then

∆δi
` (k) =

∫
dτ Wi(τ) δm(τ, k) j` (k(τ0 − τ))

=

∫
dτ Wi(τ)

2k2

3(Ωma2H2)τ
Sg(τ, k) j` (k(τ0 − τ)) . (5.39)

Here Wi(τ) stands for the selection function of the ith redshift bin of a given ex-
periment, specified by the user. The selection functions readily available in class
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are Gaussians, top-hat distributions or Dirac distributions in redshift space, always
normalized to

∫∞
0
Wi(z) = 1. Since they represent a number of galaxies per redshift

interval, Wi(z) = dN/dz, the associated function Wi(τ) is calculated by the code
according to

Wi(τ) ≡ −dz
dτ

Wi(z) = −H(τ(z))Wi(z) . (5.40)

Each selection function is associated with a mean redshift z̄i ≡
∫∞

0
dz zWi(z), and

with a characteristic conformal time τ̄i ≡ τ(z̄i). The calculation can be sped up
by using the Limber approximation for small angular scales (large `’s) and nearby
shells (small z̄i). We emphasize, however, that the Limber approximation must be
used with care, since it may introduce significant errors especially for narrow z-
window functions and for z-bin cross-correlations. The user can specify a value for
the precision parameter (`/z)Limber (set to 30 by default). When for given values of
i and ` the condition

` > (`/z)Limber z̄i (5.41)

is satisfied, the code switches to

∆δi
` (k) = Wi(τL)

2k

3(Ωma2H2)τL
Sg(τL, k)

√
π

(2`+ 1)
(5.42)

with τL ≡ τ0 − `+1/2
k

. This approximation corresponds to the first-order Limber
approximation. The transfer module contains a routine allowing to switch to the
second-order Limber approximation [124], but we checked that the difference be-
tween the two is small when the condition (5.41) is satisfied. The Limber approxi-
mation remains automatically switched off in the case of Dirac selection functions,
for which the integral of Eq. (5.39) is replaced by

∆δi
` (k) =

2k2

3(Ωma2H2)τ̄i
Sg(τ̄i, k) j` (k(τ0 − τ̄i)) . (5.43)

For high-precision calculations, the user can still avoid the Limber approximation
for whatever selection function by setting (`/z)Limber to a very large value. For
non-Dirac selection functions, the code automatically adapts the τ -sampling of the
source functions SX(k, τ) to the width of the selection function, in order to perform
an accurate integral in Eq.(5.39). Thin shells with a narrow Wi(τ) require a dense
sampling of SX(k, τ) in the vicinity of each τ̄i, and increase the computation time and
memory. Still, the approach described in these paragraphs represents the fastest and
simplest way to calculate approximate density power spectra in shells. However the
goal of this paper and of classgal is to use a more involved calculation, accounting
for all relativistic correction.

For that purpose, we need to compute many other transfer functions in classgal,
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corresponding to the different contributions in Eq. (5.17):

∆Deni
` =

∫ τ0

0

dτWi bSD j`

∆Leni
` = `(`+ 1)

∫ τ0

0

dτ W L
i SΦ+Ψ j`

∆D1i
` =

∫ τ0

0

dτ Wi

(
1+ H′

aH2 + 2−5s
(τ0−τ)aH

+ 5s− fNevo

k

)
SΘ

dj`
dx

∆D2i
` =

∫ τ0

0

dτ Wi

(
−3aH

k2

)
SΘ j`

∆Redi
` =

∫ τ0

0

dτ Wi

(
1

aH

)
SΘ

d2j`
dx2

∆G1i
` =

∫ τ0

0

dτ Wi

(
2 +

H ′

aH2
+

2− 5s

(τ0 − τ)aH
+ 5s− fNevo

)
SΨ j`

∆G2i
` =

∫ τ0

0

dτ Wi (−2 + 5s)SΦ j`

∆G3i
` =

∫ τ0

0

dτ Wi

(
1

aH

)
SΦ′ j`

∆G4i
` =

∫ τ0

0

dτ WG4
i SΦ+Ψ j`

∆G5i
` =

∫ τ0

0

dτ WG5
i S(Φ+Ψ)′ j` . (5.44)

We have omitted all the arguments: k for the transfer functions, (τ, k) for the source
functions, x ≡ k(τ0−τ) for the Bessel functions, and τ for selection and background
functions. For the integrated terms ‘Len’, G4 and G5, we have defined

W L
i (τ) =

∫ τ

0

dτ̃Wi(τ̃)

(
2− 5s

2

)
(τ − τ̃)

(τ0 − τ)(τ0 − τ̃)

WG4
i (τ) =

∫ τ

0

dτ̃Wi(τ̃)
2− 5s

(τ0 − τ̃)
(5.45)

WG5
i (τ) =

∫ τ

0

dτ̃Wi(τ̃)

(
1 +

H ′

aH2
+

2− 5s

(τ0 − τ̃)aH
+ 5s− fNevo

)
τ̃

.

These expressions are valid in flat space, and can be easily generalized to curved
space by replacing the spherical Bessel functions by hyper spherical Bessel functions
(for an introduction, see [53]).

The evolution term fNevo has been explicitly implemented in terms of the number
of sources per redshift and solid angle n̄(z), i.e. dNdz evolution, according to [18],

fNevo =
d

Hdτ

(
ln

n̄(z)H

(τ0 − τ)2

)
=

H ′

aH2
+

2

Ha (τ0 − τ)
− 1

a

d ln(n̄(z))

dz
. (5.46)
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The previous remarks concerning the Limber approximation, the Dirac selection
function, and time sampling issues for other selection functions, apply equally to
class and classgal.

Modifications to the spectra module

The main task of the spectra module is to convolve the primordial spectrum with
quadratic combinations of the transfer functions. For instance, in the standard
class version, auto-correlation (i = j) and cross-correlation (i 6= j) harmonic power
spectra of matter density fluctuations in shells are given by

C
δiδj
` = 4π

∫
dk

k
PR(k)∆δi

` (k)∆
δj
` (k) . (5.47)

In classgal, we compute a similar expression, with ∆δi
` (k) replaced by the sum

∆i
`(k) = ∆Deni

` (Density term)

+ ∆Leni
` (Lensing term)

+ ∆D1i
` + ∆D2i

` (Doppler term) (5.48)

+ ∆Redi
` (Redshift space dist.)

+ ∆G1i
` ...+ ∆G5i

` . (Gravity terms)

To show that this expression coincides with Eqs. (5.17, 5.18, 5.19), we replace ev-
erywhere H by H, τ by r = τ0 − τ and τ̃ by r̃ = τ0 − τ̃ . Doing this we obtain

∆i
`(k) =∫ τ0

0

dr

{
Wi(r)j`(kr)

[
bSD(r, k) +

(H′
H2

+
2− 5s

rH + 5s− fNevo + 1

)
r

SΨ(r, k)

+ (−2 + 5s)SΦ(r, k) +
1

H(r)
SΦ′(r, k)

]
+ Wi(r)

[
dj`
dx

∣∣∣∣
kr

(H′
H2

+
2−5s

rH +5s−fNevo

)
r

+
d2j`
dx2

∣∣∣∣
kr

k

H(r)
−3j`(kr)

H
k

]
SΘ(r, k)

k

+

∫ τ0

r

dr̃ Wi(r̃) j`(kr)

[(
2− 5s

2

)(
`(`+ 1)

r̃ − r
r̃r

+
2

r̃

)
SΦ+Ψ(r, k)

+

(H′
H2

+
2− 5s

r̃H + 5s− fNevo

)∣∣∣∣
r̃

S(Φ+Ψ)′(r, k)

]}
. (5.49)

We can invert the order of the integrals over r and r̃, and rename the integration
variables: we replace r in the first two lines and r̃ in the last line with rS. With
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this, the expression becomes

∆i
`(k) =∫ τ0

0

drSWi(rS)

{
j`(krS)

[
bSD(rS, k) +

(H′
H2

+
2− 5s

rSH
+ 5s− fNevo + 1

)
rS

SΨ(rS, k)

+ (−2 + 5s)SΦ(rS, k) +
1

H(rS)
SΦ′(rS, k)

]
+

[
dj`
dx

∣∣∣∣
krS

(H′
H2

+
2−5s

rSH
+5s−fNevo

)
rS

+
d2j`
dx2

∣∣∣∣
krS

k

H(rS)
−3j`(krS)

H
k

]
SΘ(rS, k)

k

+

∫ rS

0

dr j`(kr)

[
SΦ+Ψ(r, k)

(
2− 5s

2

)(
`(`+ 1)

rS − r
rSr

+
2

rS

)
+ S(Φ+Ψ)′(r, k)

(H′
H2

+
2− 5s

rSH
+ 5s− fNevo

)∣∣∣∣
rS

]}
. (5.50)

which is identical to the thin shell expression in Eq. (5.17), with an additional
integration over the window function, drSWi(rS).

5.6.2 Luminosity fluctuations

In this appendix we derive in detail the luminosity fluctuation used in expression
(5.8). We use the fact that the fractional fluctuation in the luminosity at fixed flux
is given by twice the fractional fluctuation in the luminosity distance,

δLS
L̄S

= 2
δDL

D̄L

.

We start from the luminosity distance fluctuation derived in [9] and we change the
integration variable from the conformal time τ to r = τ0 − τ
δDL

D̄L

=

(
1

rSHS

− 1

)
(vS · n + ΨS) +

1

2rS

∫ rS

0

dr

[
2− (rS − r)

rrS
∆Ω

]
(Ψ + Φ)

+
1

rSHS

∫ rS

0

dr (Ψ′ + Φ′)−
∫ rS

0

dr
rS − r
rS

(Ψ′ + Φ′)

+
1

2rS

∫ rS

0

dr (rS − r) r (Ψ′′ + Φ′′)

− 1

2rS

∫ rS

0

dr (rS − r) r
[
∂2
r +

2

r
∂r

]
(Ψ + Φ) +

ΨS − ΦS

2
(5.51)

where we have neglected the local monopole and dipole terms and we have written
the Laplacian in spherical coordinates, ∆ = ∂2

r + 2
r
∂r + 1

r2 ∆Ω. We have also used
n · ∇ = −∂r. The last term is not present in [9], since there it is assumed that
Ψ = Φ, however, it can be found e.g. in Ref. [113]. Considering the total derivative
along the geodesic path

d f(τ,x (τ))

dr
= −d f(τ,x (τ))

dτ
= −f ′ − n · ∇f = −f ′ + ∂rf. (5.52)
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we can rewrite the last integral of (5.51) as

1

2rS

∫ rS

0

dr (rS − r) r
[
∂2
r +

2

r
∂r

]
(Ψ + Φ)

=
1

2rS

∫ rS

0

dr (rS − r) r
[
d2

dr2
+ 2

d∂τ
dr

+ ∂2
τ +

2

r

d

dr
+

2

r
∂τ

]
(Ψ + Φ)

=
ΨS + ΦS

2
+

1

2rS

∫ rS

0

dr (rS − r) r (Ψ′′ + Φ′′) +

∫ rS

0

dr
r

rS
(Ψ′ + Φ′) .(5.53)

Combining all terms together we finally arrive at

δDL

D̄L

=

(
1

rSHS

− 1

)(
vS · n + ΨS +

∫ rS

0

dr (Ψ′ + Φ′)

)
+

1

2rS

∫ rS

0

dr

[
2− (rS − r)

rrS
∆Ω

]
(Ψ + Φ)− ΦS.
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We estimate the sensitivity of future galaxy surveys to cosmological parameters, us-
ing the redshift dependent angular power spectra of galaxy number counts, C`(z1, z2),
calculated with all relativistic corrections at first order in perturbation theory. We
pay special attention to the redshift dependence of the non-linearity scale and present
Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare
the standard P (k) analysis with the new C`(z1, z2) method. We show that for sur-
veys with photometric redshifts the new analysis performs significantly better than
the P (k) analysis. For spectroscopic redshifts, however, the large number of red-
shift bins which would be needed to fully profit from the redshift information, is
severely limited by shot noise. We also identify surveys which can measure the
lensing contribution and we study the monopole, C0(z1, z2).

6.1 Introduction

Observations and analysis of the cosmic microwave background (CMB) have led to
stunning advances in observational cosmology [52, 53]. This is due on the one hand
to an observational effort which has led to excellent data, but also to the theoretical
simplicity of CMB physics. In a next (long term) step, cosmologists will try to
repeat the CMB success story with observations of large scale structures (LSS),
i.e. the distribution of galaxies in the Universe.

The advantage of LSS data is the fact that it is three-dimensional, and therefore
contains much more information than the two-dimensional CMB. The disadvantage
is that the interpretation of the galaxy distribution is much more complicated than
that of CMB anisotropies. First of all, our theoretical cosmological models predict
the fluctuations of a continuous density field, which we have to relate to the discrete
galaxy distribution. Furthermore, on scales smaller than 30h−1Mpc, matter density
fluctuations become large and linear perturbation theory is not sufficient to compute
them. On these scales, in principle, we rely on costly N-body simulations.

In an accompanying paper [19] we describe a code, CLASSgal, which calculates
galaxy number counts, ∆(n, z), as functions of direction n and observed redshift z
in linear perturbation theory. In this code all the relativistic effects due to pecu-
liar motion, lensing, integrated Sachs Wolfe effect (ISW) and other effects of metric
perturbations as described in [17, 18] are fully taken into account. Even if a re-
alistic treatment of the problem of biasing mentioned above is still missing, the
number counts have the advantage that they are directly observable as opposed to
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the power spectrum of fluctuations in real space which depend on cosmological pa-
rameters. The problem how the galaxy distribution, number counts and distance
measurements are affected by the propagation of light in a perturbed geometry has
also been investigated in other works; see, e.g. [117, 128, 129, 130, 144, 145].

In this paper we use CLASSgal to make forecasts for the ability to measure cos-
mological parameters from Euclid-like and DES-like galaxy surveys. This also helps
to determine optimal observational specifications for such a survey. The main goal
of the paper is to compare the traditional P (k) analysis of large scale structure with
the new C`(z1, z2) method. To do this we shall study and compare the figure of merit
(FoM) for selected pairs of parameters. As our goal is not a determination of the
cosmological parameters but a comparison of methods, we shall not use constraints
on the parameters from the Planck results or other surveys. We just use the Planck
best fit values as the fiducial values for our Fisher matrix analysis. We mainly want
to analyze the sensitivity of the results to redshift binning, and to the inclusion of
cross correlations, i.e., correlations at different redshifts. We shall also study the
signal-to-noise of the different contributions to C`(z1, z2) in order to decide whether
they are measurable with future surveys.

In the next section we exemplify how the same number counts lead to different 3D
power spectra when different cosmological parameters are employed. In Section 6.3
we use the Fisher matrix technique to estimate cosmological parameters from the
number count spectrum. We pay special attention on the non-linearity scale which
enters in a non-trivial way in the Fisher matrix. We then determine the precision
with which we can estimate cosmological parameters for different choices of redshift
bins and angular resolution. In Section 6.4 we discuss our results and put them
into perspective. In Section 6.5 we conclude. Some details on the Fisher matrix
technique and the basic formula for the number counts are given in the appendix.

6.2 Number counts versus the real space power

spectrum

In this section we illustrate explicitly that the 3D power spectrum is not directly
observable. This fact is not new, but it seems not to prevent the community from
using the power spectrum which itself depends on cosmological parameters to es-
timate the latter. This is then usually taken into account by a recursive method:
one chooses a set of cosmological parameters (usually the best fit parameters from
CMB observations), determines the power spectrum under the assumption that this
set correctly describes the background cosmology, and then estimates a new set of
cosmological parameters. This process is repeated with the new parameters until
convergence is reached, see [48, 146, 147, 148] and others. It is certainly possible to
find the best fit parameters in this way, but a correct determination of the errors
is more complicated, since not only the power spectrum but also its argument k
depends on cosmological parameters. In Fig. 6.1 we show what happens when a
measured correlation function is converted into a power spectrum using the wrong
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cosmological parameters.
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Figure 6.1: Left: the observable correlation function multiplied by θ2, calculated
according to [106] for Ωm = 0.24 and z1 = z2 = 0.7. Right: the power spec-
trum ∆2(k) = k3P (k)/2π2 divided by k and scaled to z = 0, obtained by Fourier
transforming the correlation function on the top, using three different assumptions
to convert {θ, z1, z2} into comoving distances: either the fiducial value Ωm = 0.24
(solid, blue line), or two different values Ωm = 0.3, 0.5 (dashed, red line and dotted,
green line, respectively). All other cosmological parameters are fixed to the WMAP7
best fit values.

The advantage of using the power spectrum is that different Fourier modes are
in principle independent. Therefore, errors on the power spectrum are independent.
Furthermore, for small redshifts, z � 1, the parameter dependence of the distance is
simply r(z) ' H−1

0 z, z � 1, where H0 denotes the Hubble constant. This is usually
absorbed by measuring distances in units of h−1Mpc. However, for large redshifts
the relation becomes more complicated,

r(z) =

∫ z

0

dz′

H(z′)
, (6.1)

where H(z) = H0 (Ωm(1 + z)3 + ΩK(1 + z)2 + ΩDE(z))
1/2

, Ωm = 8πGρm/(3H
2
0 ) de-

notes the present matter density parameter, ΩK = −K/H2
0 is the present curvature

parameter, and ΩDE(z) = 8πGρDE(z)/(3H2
0 ) is the dark energy density parameter.

ρDE is in principle redshift dependent, but for a cosmological constant we simply
have

ρDE = ρΛ =
Λ

8πG
, ΩDE =

Λ

3H2
0

.

Furthermore, we see perturbations which are far away from us, at an earlier stage
of their evolution, when the power spectrum had a different amplitude.

We therefore propose here an alternative method to analyze large scale structure
data. What we truly measure in a galaxy survey is the position of each galaxy in
the sky, given by a direction n and a redshift z.
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If we consider only the two dominant contributions, namely the density fluctu-
ations and the redshift space distortions [61, 131, 132] in the number counts, we
have [17, 106]

∆(n, z) = D(r(z)n, t(z)) +
1

H(z)
∂r (V(r(z)n, t(z)) · n) . (6.2)

Here D is the density fluctuation in comoving gauge and V is the peculiar velocity
in longitudinal gauge. The full expression for ∆(n, z) including lensing and other
subdominant contributions from peculiar velocity and the gravitational potential is
given in Appendix 6.6.1. Both r(z) and the conformal time t(z) ≡ t0− r(z) depend
on the cosmology. To first order in perturbation theory, we can neglect the fact that
the redshift and position (z,n) that appear in the argument of D and V are also
perturbed.

Fourier transforming Eq. (6.2), and noting that in Fourier space ∂r → ik · n, we
obtain

∆(k, t(z)) = D(k, t(z)) +
k

H(z)
(k̂ · n)2V (k, t(z)) . (6.3)

Here V is the velocity potential such that V(k) = ik̂V and µ = (k̂·n) = cosφ, where
φ denotes the angle between k and n and k̂ = k/k is the unit vector in direction k.
For pure matter perturbations, the time dependence of D is independent of wave
number such that

D(k, t(z)) = G(z)D(k, t0) ,

where G(z) describes the growth of linear matter perturbations. For pure matter
perturbations, the continuity equation [53] implies

k

H(z)
V (k, t(z)) = f(z)D(k, t(z)) , where f(z) =

1 + z

G

dG

dz
=

d logG

d log(1 + z)
(6.4)

is the growth factor. Inserting this in Eq. (6.3), we obtain the following relation for
a fixed angle between k and the direction of observation, and for a fixed redshift z:

P∆(k, z) = G2(z)
(
1 + µ2f(z)

)2
PD(k) . (6.5)

If we have only one redshift bin at our disposition, the factor G2 is in principle
degenerate with a constant bias and the overall amplitude of PD(k). A more general
expression for different redshifts and directions can be found in Ref. [106].

Measuring the redshift space distortions that are responsible for the angular
dependence of P∆ allows in principle to measure the growth factor, f(z). Further-
more, assuming that density fluctuations relate to the galaxy density by some bias
factor b(z, k), while the velocities are not biased, the first term in Eq. 6.5 becomes
proportional to (b(z, k)G(z))2 while the second term behaves like G(z)f(z). This
feature allows in principle to reconstruct the bias function b(z, k). It is an inter-
esting question whether this bias can be measured better with our angular analysis
or with the standard power spectrum analysis. However, since it is probably not
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strongly dependent on cosmological parameters, its reconstruction with the power
spectrum method seems quite adequate and probably simpler. In the remainder
of the present work we shall therefore not address the interesting question of bias,
see e.g. [149, 150].

However, in the above approximation, both relativistic effects which can be rele-
vant on large scales as well as a possible clustering of dark energy are neglected. On
top of that, the matter power spectrum in Fourier space is not directly observable.
Several steps (like the relation between Fourier wave numbers and galaxy positions)
can only be performed under the assumption of a given background cosmology.
What we truly measure is a correlation function ξ(θ, z, z′), for galaxies at redshifts
z and z′ in directions n and n′, where θ is the angle between the two directions,
n · n′ = cos θ. The correlation function analysis of cosmological surveys has a long
tradition. But the correlation function has usually been considered as a function of
the distance r between galaxies which of course has the same problem as its Fourier
transform, the power spectrum: it depends on the cosmological parameters used to
determine r.

For these reasons, we work instead directly with the correlation function and
power spectra in angular and redshift space. They are related by

ξ(θ, z, z′) ≡ 〈∆(n, z)∆(n′, z′)〉 =
1

4π

∞∑
`=0

(2`+ 1)C`(z, z
′)P`(cos θ) , (6.6)

where P`(x) is the Legendre polynomial of degree `. The power spectra C`(z, z
′) can

also be defined via

∆(n, z) =
∑
`m

a`m(z)Y`m(n) , C`(z, z
′) = 〈a`m(z)a∗`m(z′)〉 , (6.7)

where the star indicates complex conjugation.
The full expression relating ∆(n, z) or C`(z, z

′) to the the primordial power
spectrum (given e.g. by inflation), valid at first order in perturbation theory and
taking into account all relativistic effects, can be found in Refs. [17] or [19].

The disadvantage of this quantity w.r.t the power spectrum is the fact that the
C`’s at different redshifts are not independent. Their correlation is actually very
important as it encodes, e.g., the radial BAO’s (Baryon Acoustic Oscillations).

We finish this section with the conclusion that in order to measure quantities
which are virtually independent of cosmological parameters the power spectrum
analysis is sufficient and probably simpler, however when we want to constrain cos-
mological parameters or related quantities like the growth factor, the angular method
proposed here is safer. It has the advantage that it is fully model independent.

6.3 The Fisher matrix and the nonlinearity scale

We consider galaxy number counts as functions of the observational direction and
the observed redshift, ∆(n, z). In Ref. [19] we describe how the code CLASSgal
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calculates the corresponding power spectrum C`(z1, z2). We shall consider these
spectra as our basic observables and assume that different `-values are uncorrelated.
The truly observed spectra have finite resolution in redshift, and are of the form

CW
` (z, z′) =

∫
W (z1, z,∆z)W (z2, z

′,∆z)C`(z1, z2)dz1dz2 . (6.8)

Here W (z1, z,∆z) is a normalized window function centered around z with half-
width ∆z. We shall use Gaussian and top hat windows (with half-width ∆z). Here
CW
` are the Legendre coefficients of the smoothed angular correlation function

ξW (θ, z, z′) =

∫
W (z1, z,∆z)W (z2, z

′,∆z)ξ(θ, z1, z2)dz1dz2 . (6.9)

6.3.1 Fisher matrix forecasts

We perform a Fisher matrix analysis to compare a forecast for future redshift sur-
veys derived from the angular power spectrum C`(z1, z2) with the one derived from
the three-dimensional Fourier power spectrum P (k). For a given list of Nbin redshift
bins with mean redshifts zi, we denote the auto- and cross-correlation angular power
spectra by Cij

` ≡ CW
` (zi, zj). Since Cij

` = Cji
` , there are [Nbin(Nbin + 1)/2] power

spectra to be considered. Assuming that the fluctuations are statistically homoge-
neous, isotropic and Gaussian distributed, the covariance matrix between different
power spectra can be approximated as in Ref. [63],

Cov[`,`′][(ij),(pq)] = δ`,`′
Cobs,ip
` Cobs,jq

` + Cobs,iq
` Cobs,jp

`

fsky (2`+ 1)
, (6.10)

where fsky is the sky fraction covered by the survey. For each multipole `, the co-
variance matrix is a symmetric matrix, Cov[`,`][(ij),(pq)] = Cov[`,`][(pq),(ij)], of dimension

[Nbin(Nbin + 1)/2)]2. The definition of the truly observable power spectrum Cobs,ij
`

takes into account the fact that we observe a finite number of galaxies instead of a
smooth field. This leads to a shot noise contribution in the auto-correlation spectra,

Cobs,ij
` = Cij

` +
δij

∆N(i)
, (6.11)

where ∆N(i) is the number of galaxies per steradian in the i-th redshift bin. In
principle also instrumental noise has to be added, but we neglect it here, assuming
that it is smaller than the shot noise. More details about the Fisher matrix and the
definition of ’figure of merit’ (FoM) are given in Appendix 6.6.2.

6.3.2 The nonlinearity scale

Our code CLASSgal uses linear perturbation theory, which is valid only for small
density fluctuations, D = δρm/ρ̄m � 1. However, on scales roughly of the order
of λ . 30h−1Mpc, the observed density fluctuations are of order unity and larger
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at late times. In order to compute their evolution, we have to resort to Newtonian
N-body simulations, which is beyond the scope of this work. Also, on non-linear
scales, the Gaussian approximation used in our expression for likelihoods and Fisher
matrices becomes incorrect. Hence, there exists a maximal wavenumber kmax and a
minimal comoving wavelength,

λmin =
2π

kmax

beyond which we cannot trust our calculations. There are more involved procedures
to deal with non-linearities instead of using a simple cutoff, see e.g. [151]. However,
in this work we follow the conservative approach of a cutoff.

For a given power spectrum Cij
` this nonlinear cutoff translates into an `-dependent

and redshift-dependent distance which can be approximated as follows. The har-
monic mode ` primarily measures fluctuations on an angular scale1 θ(`) ∼ 2π/`. Let
us consider two bins with mean redshifts z̄i ≤ z̄j and half-widths ∆zi and ∆zj. At
a mean redshift z̄ = (z̄i + z̄j)/2 the scale θ(`) corresponds to a comoving distance
r` = r(z̄)θ(`), where r(z̄) denotes the comoving distance to z̄. Let us define the “bin
separation” δzij = zinf

j − zsup
i , where zinf

j = z̄j −∆zj and zsup
i = z̄i + ∆zi. Hence δzij

is positive for well-separated bins, and negative for overlapping bins (or for the case
of an auto-correlation spectrum with i = j)2.

When δzij < 0, excluding non-linear scales simply amounts in considering corre-
lations only for distances r` > λmin. When δzij > 0, the situation is different. The
comoving radial distance corresponding to the bin separation δzij is rz = δzij H

−1(z̄).
If rz > λmin, we can consider correlations on arbitrarily small angular scales without
ever reaching non-linear wavelengths (in that case, the limiting angular scale is set
by the angular resolution of the experiment). Finally, in the intermediate case such
that 0 < δzijH

−1(z̄) < λmin, the smallest wavelength probed by a given angular

scale is given by
√
r2
` + r2

z . In summary, the condition to be fulfilled by a given
angular scale θ(`) and by the corresponding multipole ` is

λmin ≤


2π
`
r(z̄) if δzij ≤ 0 ,√(
δzij
H(z̄)

)2

+
(

2π
`
r(z̄)

)2
if 0 ≤ δzij ≤ H(z̄)λmin .

(6.12)

1Here we refer to the angular scale separating two consecutive maxima in a harmonic expansion,
and not to the scale separating consecutive maxima and minima, given by π/`. Since we want to
relate angular scales to Fourier modes, and Fourier wavelengths also refer to the distance between
two consecutive maxima, the relation θ(`) = 2π/` is the relevant one in this context.

2 In the case of a spectroscopic survey, we will use top-hat window functions. In this case
there is no ambiguity in the definition of δzij , since (zsup

i , zinf
j ) are given by the sharp edges of

the top-hats. In the case of a photometric survey, we will work with Gaussian window functions.
Then (zsup

i , zinf
j ) can only be defined as the redshifts standing at an arbitrary number of standard

deviations away from the mean redshifts (z̄i, z̄j). In the following, the standard deviation in the
i-th redshift bin is denoted ∆zi, and we decided to show results for two different definitions of the
“bin separation”, corresponding either to 2σ distances, with zinf

j = z̄j−2∆zj and zsup
i = z̄i+2∆zi,

or to 3σ distances, with zinf
j = z̄j − 3∆zj and zsup

i = z̄i + 3∆zi.
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The highest multipole fulfilling these inequalities is

`ijmax =


2πr(z̄)/λmin if δzij ≤ 0 ,

2πr(z̄)√
λ2

min−
(
δzij
H(z̄)

)2
if 0 <

δzij
H(z̄)

< λmin ,

∞ otherwise.

(6.13)

In the last case, the cut-off is given by the experimental angular resolution, `ijmax =
2π/θexp. Only multipoles Cij

` which satisfy the condition ` ≤ `ijmax are taken into
account in our analysis. In the covariance matrix, for the spectra of redshift bins
(ij) and (pq), we cut off the sum over multipoles in the Fisher matrix, Eq. (6.25) at

`max = min(`ijmax, `
pq
max) . (6.14)

The nonlinearity scale is fixed by the smallest redshift difference appearing in the
two pairs (ij), (pq). This condition ensures that nonlinear scales do not contribute
to the derivatives in the Fisher matrix, Eq. (6.25). This is an important limitation
because nonlinear scales contain a large amount of information. Clearly, it will be
necessary to overcome this limitation at least partially to profit maximally from
future surveys. Notice that with `max as in Eq. (6.14) the the Fisher matrix can
still involve non-linear contributions, but these are confined to the inverse of the
covariance matrix (6.10) where also the spectra (iq), (jp), (ip) and (jq) appear. Of
course, we need to use values for the cosmological parameters to determine r(z) and
H(z) in (6.12), but since this condition is approximate, this does not significantly
compromise our results.

6.4 Results

We now present Fisher matrix forecasts for several different types of surveys. In the
error budget we only take into account sample variance, shot noise and photometric
redshift (photo-z) uncertainties. In this sense, our results are not very realistic:
the true analysis, containing also instrumental noise, is certainly more complicated.
Nevertheless, we believe that this exercise is useful for the comparison of different
methods and different surveys.

In what follows we refer to the P (k) analysis as the 3D case, and to the C`
analysis as the 2D case. We assume a fiducial cosmology described by the minimal
(flat) ΛCDM model, neglecting neutrino masses. We study the dependence on the
following set of cosmological parameters: (ωb ≡ Ωbh

2, ωCDM ≡ ΩCDMh
2, H0, As,

ns), which denote the baryon and CDM density parameters, the Hubble parameter,
the amplitude of scalar perturbation and the scalar spectral index, respectively. We
set the curvature K = 0.

6.4.1 A Euclid-like catalog

In this section we perform a Fisher matrix analysis for an Euclid-like catalog. We
compare the galaxy surveys with spectral and photometric redshifts. We show the
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Figure 6.2: Optimal binning strategy for an Euclid-like survey. The black line is
the galaxy redshift distribution [105]. We show the case in which the z-interval
is divided into 8 bins. The width of every bin is chosen in order to have the same
number of galaxies per bin. In the left panel we consider a spectroscopic survey, with
tophat bins rounded at the edges to avoid numerical instabilities. (This rounding is
not really necessary, but it allows us to use the same integration routine for both,
tophat and Gaussian windows. Alternatively we can introduce hard limits in the
case of tophat windows. We have compared both approaches and found that the
difference is negligible.) On the right we show the case of a photometric survey, for
which bins are chosen to be Gaussian because of photo-z uncertainties.

dependence of the FoM on redshift binning and on the nonlinearity scale. We con-
centrate on a few crucial observables since this is an illustration of our method and
not a comprehensive forecast of a specific experiment. We defer to future work the
inclusion of systematic errors and instrumental noise for a given experiment.

Methodology

We determine the FoM for the joint estimation of the Hubble parameter H0 and
of the CDM density parameter ωCDM, marginalized over the other cosmological
parameters (ωb, As, ns). We do the same for the joint estimation of the baryon
density parameter ωb and ωCDM, marginalized over (H0, As, ns). We adopt two
different non-linearity scales, λmin = 34 Mpc/h and λmin = 68 Mpc/h. We assume
an angular resolution of about 3 arc minutes such that in addition to the condition
given in Eqs. (6.13, 6.14) we impose `max ≤ 3000. Note that we do not combine with
known datasets like Planck to minimize the uncertainties on parameters. The goal
here is not an optimal prediction of the improvement on cosmological parameter
estimation by Euclid (for this we would need a detailed treatment of instrument
errors). Here we want to compare two methods, the 3D and 2D analysis. In addition,
we also study the importance of off–diagonal correlators and of the non-linearity
scale.
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Binning strategy

The overall galaxy redshift distribution of the survey in the considered range 0.7 <
z < 2 is the black line in Fig. 6.2, see [105]3. Our binning strategy is to adjust
the width of each bin such that there is the same number of galaxies per redshift
bin. We verified that this choice gives higher FoM’s than the choice of constant bin
width, because it minimizes shot noise.

We consider a spectroscopic and a photometric survey. In the first case bins
are tophat in redshift. In practice, to avoid numerical instabilities, classgal uses
rounded edges, see [19]. For the photometric case, we assume to dispose of 100 times
more galaxies, but to take into account the uncertainties of the redshifts, we model
the bins as Gaussian. The width of the bins must be consistent with the photo-z
errors 0.05(1+z), for a splitting of the redshift interval 0.7 < z < 2 this corresponds
to about 6 bins. Instead, spectroscopic precision 0.001(1 + z) is not an issue in our
analysis.

In both cases (spectroscopic and photometric), we compare the results of a 2D
and 3D analysis. For the 3D spectroscopic case, the FoM is nearly independent of
the number of bins, within a few percent. Hence in the following plots we adopt a
constant value computed with Nbin = 1. The reason for this is that we assume a
known redshift dependence of the growth factor, f(z) = ΩM(z)γ with γ = 0.6. If we
would want to determine γ or to reconstruct the bias, b(z), increasing the number
of bins would be significant also for the 3D analysis. However, since this aspect is
very similar for both, the 2D and the 3D analysis, we do not study it in this work.

In the 3D photometric case, the FoM is no longer constant, but rather decreases
slowly with Nbin. In fact, photometric uncertainties cause redshift bins to be cor-
related, hence the total Fisher matrix is not well approximated by the sum of the
Fisher matrices of each bin, as assumed in [63] and in the present work. Since we
wish to refer to the most favorable bin configuration in the 3D analysis, we will
always compare 2D photometric results with the 3D photometric FoM obtained for
Nbin = 1.

2D and 3D performances

Not surprisingly, considering a smaller nonlinearity scale λmin yields a larger FoM
(compare the left and right panels of Figure 6.3). Naively, we expect to gain a
factor 8 in the FoM when going from λmin = 68h−1Mpc to λmin = 34h−1Mpc, since
we have 23 times more Fourier modes at our disposition. Fig. 6.3 quite accurately
confirms this expectation for the 3D case (black lines). Interestingly, the 2D FoM
degrades only by about a factor of 2 when the non-linearity scale is increased by
2. Since the redshift resolution is not affected by λmin, naively we would expect a
degradation by a factor of 4 from the transverse directions, but it seems that the
redshift information is as important as both transverse direction so that we only
loose a factor of 2.

3See also http://www.euclid-ec.org/.

http://www.euclid-ec.org/
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Figure 6.3: FoM for an Euclid-like survey for the non-linearity scales 34 Mpc/h,
left panels, and 68 Mpc/h, right panels. Top panels refer to spectroscopic redshifts,
bottom panels to photometric ones. For the 2D FoM we consider a cut at `max values
defined in Eq. (6.14) (dashed blue), and also the case in which cross-correlations of
bins are neglected (dotted red). For the photometric survey, we plot the result
derived from two different definitions of the bin separation (and hence of `max),
defining (zsup

i , zinf
j ) at either 2- (green) or 3-σ (blue), see Footnote 2. For this case

we also plot the FoM for the `max determination of Ref. [63] (dot-dashed orange).
The solid black line shows the value of the 3D FoM for Nbin = 1 and σz = 0.05(1+ z̄)
in the photometric case. The shadowed region exceeds this z resolution.

In Figure 6.3, we also show the FoM adopting different definitions of `max and
including only auto-correlations of redshift bins. Apart from our definition of `max

given in Eqs. (6.13, 6.14), we also consider the definition `max = r(z̄)2π/λmin used
in [63], where r(z̄) is the comoving distance to the mean redshift z̄ = 1.35 of the
survey. While in the spectroscopic case this yields results which are within 30% of
those obtained with our method, in the photometric case the FoM is significantly
improved when using our definition, compare the (dot-dashed) orange and the (long
dashed) green lines in the lower panels of Figure 6.3. The definition of Ref. [63] is
sufficient for a narrow band survey, but not for a Euclid-like survey. This shows
how much information can be gained by using our optimal definition of `max given
in Eq. (6.14) but also by taking into account cross-correlations (dashed blue lines)
as compared to considering only the auto-correlation of redshift bins (dotted red
lines). For photometric redshifts the result strongly depends on the value chosen
for δzij which determines `ijmax. The larger is δzij, the more radial information is
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lost. Compare the green (dashed, top) and blue (dashed, lower) lines for the photo-z
FoM’s, where we compare the choice of 2 and 3 standard deviation for δzij. This is
the problem of Gaussian binning. It does spread the radial information considerably.
Nevertheless, the reduction of shot noise (due to the fact that the photometric survey
is assumed to contain a hundred times more galaxies) compensates for this, and
leads to a better FoM from photometric surveys in the 2D analysis. However, in the
spectroscopic case we could still increase the number of bins.

Interestingly, with the more conservative value of the non-linearity scale λmin =
68 Mpc/h (right hand panels of Fig. 6.3), the difference between the full analy-
sis (blue, dashed) and the one involving only auto-correlations (red, dotted) be-
comes very significant also for spectroscopic surveys. When considering only auto-
correlations, the spectroscopic FoM reaches saturation at 16 bins. One reason for
this is that shot noise affects auto-correlations more strongly than cross-correlations.
But even neglecting shot noise, we still observe this saturation. We just cannot gain
more information from the auto-correlations alone by increasing the number of bins,
i.e. by a finer sampling of transverse correlations.

Comparing the spectroscopic with the photometric survey and sticking to the
2D analysis, we find that the photometric specifications yield a larger FoM. This
is not surprising, since the latter case contains 100 times more galaxies than the
spectroscopic survey, for which shot noise is correspondingly 100 times larger. Also,
the FoM for the 2D analysis mainly comes from cross correlations. This is why
different choices of δzij affect the final result so much.

The photometric FoM from the 3D analysis, however, is lower than the one from
the spectroscopic survey. In the 3D case, the redshift uncertainties translate into
uncertainties in the wavenumber k which are more relevant than the reduction of
shot noise.

When the number of bins is large enough, our 2D analysis yields a better FoM
than the standard P (k) analysis. For the photometric survey this is achieved already
at Nbin = 4 − 6 while for the spectroscopic survey probably about 120 bins would
be needed.

At some maximal number of bins the number of galaxies per bin becomes too
small and shot noise starts to dominate. At this point nothing more can be gained
from increasing the number of bins. However, since for slimmer redshift bins not only
the shot noise but also the signal increases, see [19] for details, the optimal number
of bins is larger than a naive estimate. In Ref. [19] it is shown that the shot noise,
which behaves like `(`+1)/2π (in a plot of `(`+1)C`/2π), becomes of the order of the
signal at somewhat smaller ` for slimmer redshift bins. Again, due to the increase of
the signal this dependence is rather weak down to a redshift width of ∆z = 0.0065.
For redshift slices with ∆z < 0.005, the signal does not increase anymore while the
shot noise still does. For a DES-like survey, this maximal number of bins is about
N

(DES)
max ∼ 50, while for a Euclid-like survey it is of the order of N

(Euclid)
max ∼ 200.

When using redshift bins which are significantly thicker than the redshift reso-
lution of the survey, the 3D analysis, in principle, has an advantage since it makes
use of the full redshift resolution in determining distances of galaxies, while in the
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Figure 6.4: Confidence ellipses in the H0−ΩCDMh plane (marginalized over the other
cosmological parameters) for an Euclid-like survey computed with a non-linearity
scale of 34 Mpc/h. Different colors indicate different redshift bin numbers: 4 bins
(magenta), 8 bins (red), 16 bins (green), 32 bins (blue). Black contours refer to the
3D analysis for Nbin = 1. We consider a spectroscopic survey (left panel) and a
photometric one (right panel, for 2σ bin width).

2D analysis we do not distinguish redshifts of galaxies in the same bin. A redshift
bin width of the order of the nonlinearity scale beyond which the power spectrum
is not reliable, given by r(z̄,∆z) ∼ 2∆z/H(z̄) ' λmin is the minimum needed to
recover the 3D FoM for spectroscopic surveys.

However, for spectroscopic surveys we can in principle allow for very slim bins
with a thickness significantly smaller than the nonlinearity scale, and the maximal
number of useful bins is decided by the shot noise. Comparing the Cii

` with Cjj
` , e.g.,

of neighboring bins still contains some information, e.g., on the growth factor, even
if `ijmax ∼ `iimax for small |i−j|. In simpler terms, the fact that our analysis effectively
splits transversal information coming from a given redshift and radial information
from Cij

` with large `, makes it in principle advantageous over the P (k) analysis. It
becomes clear from Fig. 6.3 (see also Fig. 6.7 below) that we need to use sufficiently
many bins and our definition of `ijmax to fully profit from this advantage.

The numerical effort of a Markov Chain Monte Carlo analysis of real data scales
roughly like N2

bin. Running a full chain of, say 105 points in parameter space requires
the calculation of about 105N2

bin/2 spectra with class. (For comparison, a CMB
chain requires ‘only’ 4× 105 spectra).

Note also, that the advantage of the 2D method is relevant only when we want
to estimate cosmological parameters. If the cosmology is assumed to be known and
we want, e.g., to reconstruct the bias of galaxies w.r.t. matter density fluctuations,
both methods are equivalent. But then, the redshift dependence also of P (k) has
to be studied and both power spectra, P (k, µ, z) and C`(z, z

′) are functions of three
variables.

In Figure 6.4 we plot, as one of several possible examples, the confidence ellipses
in the H0−ωCDM plane (marginalized over the other cosmological parameters) for
an Euclid-like survey computed with a nonlinearity scale of 34 Mpc/h for different
redshift bins. We do not assume any prior knowledge e.g. from Planck. Therefore
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Figure 6.5: FoM for ωCDM - ωb (marginalized over other cosmological parameters)
for different nonlinearity scales (34 Mpc/h, left panels, and 68 Mpc/h, right panels)
for a spectroscopic Euclid-like survey. For the 2D FoM we consider `max as defined
in Eq. (6.14) (dashed blue), and also the case in which cross-correlations of z-bins
are neglected (dotted red). The solid black line shows the value of the 3D FoM for
Nbin = 1.

again, this is not a competitive parameter estimation but only a comparison of
methods. We also show the dependence of the result on the number of bins. The
strong degeneracy between H0 and ωCDM comes from the fact that ωCDM is mainly
determined by the break in the power spectrum at the equality scale keq which of
course also depends on H0. As is well known, the break in the power spectrum
actually determines ΩCDMh ∝ ωCDM/H0. This determines the slope of the ellipse
in Figure 6.4 which is extremely well constrained. Note also that the 2D and 3D
ellipses have a slightly different slope, hence different principal axis. This implies
that they do not constrain exactly the same combinations of H0 and ωCDM.

In Fig. 6.5 we show the FoM for (ωb, ωCDM) for the spectroscopic Euclid survey.
We marginalize over the other parameters, (H0, ns, As). Also in this case, the im-
portant contribution from cross–correlations, especially for the larger non-linearity
scale is evident.

6.4.2 A DES-like catalog

We perform the same analysis as in the previous section also for a DES-like survey4.
A similar analysis has been performed in Refs. [63, 152], and the goal of this section
is to compare our results with these references. The novelties of the present anal-
ysis is that we marginalize over cosmological parameters which have been fixed in
Refs. [63, 152] and we use a more sophisticated definition of the nonlinearity scale.
Following [63] we consider a galaxy density distribution dN/dz given by

dN

dz
∝
( z

0.55

)2

exp

[
−
( z

0.55

)2
]
, (6.15)

in the redshift range 0.45 < z < 0.65, which is divided in z-bins of the same
size. The shot noise is determined by the galaxy number density, assumed to be

4www.darkenergysurvey.org

www.darkenergysurvey.org
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Figure 6.6: FoM for the nonlinearity scales 34 Mpc/h, left panels, and 68 Mpc/h,
right panels for a spectroscopic, DES-like survey. For the 2D FoM we consider `max

as defined in Eq. (6.14) (dashed blue), and also the case in which cross-correlations
between bins are neglected (dotted red). The solid black line shows the value of the
3D FoM for Nbin = 1.

n = 3.14×10−3h3Mpc−3, constant in z. In this case we only consider a spectroscopic
redshift resolution.

In Fig. 6.6 we show the FoM for the determination of (H0, ωCDM) from a DES-like
survey, marginalizing over the remaining cosmological parameters. In this case, the
FoM coming from autocorrelations alone saturates already at Nbin = 8. The FoM
including cross-correlations continues to grow and overtakes the one from the 3D
analysis at Nbin = 30.

In Fig. 6.7 we compare the FoM of each parameter in the 2D and 3D case
for different values of the non-linearity scale. The mean number of bins at which
the nonlinearity scale is reached, ∆z ' λminH(z̄)/2, is indicated as vertical grey
bar. The number of bins where the 2D analysis becomes better than the 3D one,
especially for the marginalized FoM, is typically nearly a factor of 2 larger than this
naive estimate. This may come from the fact that we include correlations with small
(or vanishing) angular separation only if |zinf

j − zsup
i | is large enough while for most

galaxies the mean bin distance |z̄j − z̄i| would be relevant. In this sense our choice
is conservative.

Interestingly, comparing Euclid and DES FoM’s we find that while the P (k) FoM
for a Euclid-like survey is more than a factor of 10 times better than the one of a
DES-like survey, this is no longer true when we compare the FoM’s from our angular
analysis at fixed number of redshift bins. However, to find the true (optimal but
still realistic) FoM we have to increase the number of redshift bins until the FoM
converges to its maximum. In practice at some point the instrumental noise which
has been neglected in our treatment will prevent further growth of the FoM so that
we refrained from going beyond Nbin = 32 which would also be numerically too
costly with our present implementation, but which will be interesting for a future
analysis.

For completeness, we also show the FoM for (ωb, ωCDM) for the DES like surveys
marginalizing over (H0, ns, As) in Fig. 6.8. Again, the FoM from auto-correlations
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Figure 6.7: In the left panels we show the ratio between FoM 2D over 3D for each
single parameter keeping the others fixed for a DES-like survey. Different colors
indicate different parameters: ωb (red), ωCDM (orange), ns (magenta), H0 (green)
and As (blue). The vertical thick gray line shows when the bin size becomes of
the same order of the non-linearity scale, where we expect that 2D and 3D analysis
should roughly give the same result. This seems only approximately true. On the
right panels we show the ratio between FoM’s from 2D over 3D for ωCDM . In
red keeping the other cosmological parameters fixed, while in blue marginalizing
over all other parameters. In the top panels we consider the nonlinearity scale
λmin = 34h−1Mpc while in the bottom panels we have λmin = 68h−1Mpc.

only (red, dotted) saturated at about 8 redshift bins.

6.4.3 Measuring the lensing potential

It is well known that the measurement of the growth rate requires an analysis of
galaxy surveys which are sensitive to redshift-space distortions [146, 153, 154, 155].
Isolating other effects can lead to an analysis which is more sensitive to other param-
eters. In this section we study especially how one can measure the lensing potential
with galaxy surveys. The lensing potential is especially sensitive to theories of mod-
ified gravity which often have a different lensing potential than General Relativity,
see, e.g. [107, 156, 157]. The lensing potential out to some redshift z is defined
by [53]

Ψκ(n, z) =

∫ rs(z)

0

dr
rs − r
rsr

(Ψ(rn, t) + Φ(rn, t)) . (6.16)
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Figure 6.8: FoM for ωCDM - ωb (marginalized over other cosmological parameters)
for different nonlinearity scales (34 Mpc/h, left panel, and 68 Mpc/h, right panel)
for a spectroscopic DES-like survey. For the 2D FoM we consider `max as defined
in Eq. (6.14) (dashed blue), and also the case in which cross-correlations of z-bins
are neglected (dotted red). The solid black line shows the value of the 3D FoM for
Nbin = 1.

Denoting its power spectrum by CΨ
` (z, z′), we can relate it to the lensing contribution

C lens
` (z, z′) [19] to the angular matter power spectrum C`(z, z

′) by

C lens
` (z, z′) = `2(`+ 1)2CΨ

` (z, z′) . (6.17)

We shall see, that this lensing power spectrum can be measured from redshift inte-
grated angular power spectra of galaxy surveys.

To study this possibility, we first introduce the signal-to-noise for the different
terms which contribute to the galaxy power spectrum as defined in Ref. [19]. For
completeness we list these terms in Appendix 6.6.1. The signal-to-noise for a given
term is given by (

S

N

)
`

=

∣∣∣C` − C̃`∣∣∣
σ`

. (6.18)

where C̃` is calculated neglecting the term under consideration (e.g., lensing), and
the r.m.s. variance is given by

σ` =

√
2

(2`+ 1)fsky

(
C` +

1

n

)
. (6.19)

It is also useful to introduce a cumulative signal-to-noise that decides whether a
term is observable within a given multipole band. We define the cumulative signal-
to-noise by (

S

N

)2

=
`max∑
`=2

(
C` − C̃`
σ`

)2

. (6.20)

Note that C`− C̃` contains not only the auto-correlation of a given term, but also its
cross-correlations with other terms so that it can be negative. Especially, for small
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`’s the lensing term is dominated by its anti-correlation with the density term and
is therefore negative.

Eq. (6.18) estimates the contribution of each term to the total signal. If its signal-
to-noise is larger than 1, in principle it is possible measure this term and therefore
to constrain cosmological variables determined by it. To evaluate the signal-to-noise
of the total C`’s, which is the truly observed quantity, we set C̃` = 0.

In Figure 6.9 we show the signal-to-noise for different width of the redshift win-
dow function. We consider a tophat window for the narrowest case, ∆z = 0.01 and
Gaussian window functions with standard deviations ∆z & 0.05(1 + z), which cor-
responds to Euclid photometric errors [105] for the panels on the second line. The
sky fraction, fsky, and the galaxy distribution dN/dz are compatible with Euclid
specifications (see black lines in Fig. (6.2)). In particular, shot noise turns out to be
negligible in this analysis. The shadowed regions in Figure 6.9 show the nonlinearity
scales, estimated as `max = 2πr(z̄)/λmin, where z̄ is the mean redshift of the bin and
λmin = 68h−1 Mpc.

As expected [17], redshift-space distortions and purely relativistic terms are
mainly important at large scales, while lensing has a weaker scale dependence. For
small ∆z, apart from the usual density term, redshift-space distortions are the main
contribution. Their signal-to-noise is larger than one, which allows to constrain
the growth factor. As ∆z increases, redshift-space distortions are washed out, and
their signal decreases significantly. On the other hand, lensing and potential terms
increase. This is due to the fact that these terms depend on integrals over z that
coherently grow as the width of the z-window function increases. While potential
terms always remain sub-dominant, the lensing signal-to-noise becomes larger than
1 for the value of ∆z = 0.5 already at ` ≈ 60.

As a reference, we also show the signal-to-noise for an infinitesimal bin width
(Dirac z-window function). This corresponds to the largest possible C` amplitude.
As in the case ∆z = 0.01, redshift-space distortion is of the same order as the
density term. Note, however, that in reality for very narrow bins, shot noise becomes
important and decreases (S/N)`, especially for large multipoles.

The case of a uniform galaxy distribution between 0.5 < z < 2.5 is also shown.
We assume fsky = 1 and neglect shot noise. In this configuration the lensing term
has a very large signal-to-noise. This can be used to constrain the lensing potential
by comparing the observable (total) C`’s to the theoretical models. In practice one
may adapt this study to catalogs of radio galaxies, which usually cover wide z ranges
but with poor redshift determination which is not needed for this case, for previous
studies see, e.g., [158, 159, 160].

In Figure 6.10 the cumulative signal-to-noise, Eq. (6.20), is shown as function
of the maximum multipole considered in the sum. Contrary to all the other terms,
the cumulative signal-to-noise of the potential terms never exceeds 1. We therefore
conclude that the considered experiment is not able to measure the potential terms.
It is not clear, whether another feasible configuration would be sensitive to them.
Notice also how the lensing term really ’kicks in’ after the zero-crossing, when it
is not longer dominated by its anti-correlation with the density term but by the
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Figure 6.9: Signal-to-noise for different terms: total (solid, black), redshift-space
distortions (dashed, red), lensing (dotted, magenta), potential terms (dot-dashed,
blue). The plot in the top line is computed with a tophat window function with
half-width ∆z = 0.01. The cases in the second line correspond to Gaussian window
functions of half-width ∆z = 0.1, 0.5 around z̄ = 1. These three plots are compatible
with Euclid specifications. In the third line, we show two extreme situations. The
Dirac z-window function corresponds to an infinitesimal z-bin (left) and a very wide
redshift range, 0.5 < z < 2.5. This last case shows a large lensing signal. Notice
the zero-crossing of the lensing term which is indicated by a downward spike in this
log-plot. The shadowed regions correspond to nonlinearity scale estimated at the
mean redshift of the bin.

contribution from the autocorrelation.
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Figure 6.10: Cumulative signal-to-noise for different terms: total (solid, black),
redshift-space distortions (dashed, red), lensing (dotted, magenta), potential terms
(dot-dashed, blue). The different plots correspond to the same configurations as in
Figure 6.9.

6.4.4 The correlation function and the monopole

So far we have not considered the observed monopole, Cij
0 , and dipole, Cij

1 , since
the former is affected by the value of the gravitational potential and the density
fluctuation at the observer position, while the latter depends on the observer velocity.
These quantities are not of interest for cosmology and cannot be determined within
linear perturbation theory.

However, there is an additional point which has to be taken into account when
considering the correlation function. Usually, the correlation function is determined
from an observed sample of galaxies by subtracting from the number of pairs with
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given redshifts and angular separation the corresponding number for a synthetic,
uncorrelated sample with the same observational characteristics (survey geometry,
redshift distribution, etc.). This is the basis of the widely used Landy–Szalay estima-
tor for the determination of the correlation function from an observed catalogue of
galaxies [161]. For this estimator, by construction, the integral over angles vanishes,
so that

C
(LS)
0 (zi, zj) = 2π

∫
ξLS(θ, zi, zj) sin θdθ = 0 . (6.21)

Here ξLS(θ, zi, zj) is already convolved with the redshift window function of the sur-
vey. If we want to compute the Landy–Szalay estimator for the correlation function
we therefore have to subtract the monopole,

ξLS(θ, zi, zj) = ξ(θ, zi, zj)−
1

4π
Cij

0 ,

or

ξLS(θ, zi, zj) =
1

4π

`max∑
`=1

(2`+ 1)Cij
` P`(cos θ) . (6.22)

This is quite relevant as becomes clear when considering the radial and the transver-
sal correlation function calculated in Ref. [106]. There this monopole is not sub-
tracted and it is found that the transversal correlation function is nearly entirely
positive while the radial correlation function is nearly entirely negative. Even though
the integral of the theoretical correlation function over all of space, which is given
by P (0), vanishes for a Harrison-Zel’dovich spectrum, this is not the case, e.g., for
the angular correlation function within a given a redshift slice or for the radial cor-
relation function. It is therefore relevant whether the Landy–Szalay estimator for
the correlation function is applied in each redshift slice or to the correlation function
of the full survey.

Furthermore, even if Cij
0 depends on quantities at the observer position (note

that in Eq. (6.24) the not observable monopole and dipole terms which come from
quantities at the observer position are already neglected), we can use the fact that
these are equal for all redshifts zi, zj and therefore differences like Cij − Cii are
independent of the observer position. We consider especially

M(z̄, δz) ≡ 1

2
[C0(z−, z−) + C0(z+, z+)]− C0(z−, z+) (6.23)

where z± = z̄ ± δz/2 (see [106]). This quantity which is the angular average of the
radial correlation function for galaxies at redshifts z+ and z−, contains interesting
clustering information.

In Fig. 6.11 we show the monopole as function of the radial redshift separation
for a mean redshift z̄ = 0.55. Since here we are only interested in the theoretical
modeling, we neglect redshift window functions and noise. The observable monopole
for δz = 0 vanishes by definition, and it tends to a constant for large δz.

The difference between the density contribution only (black line) and full result
(red dashed) is simply given by the redshift-space distortions, all other terms are
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Figure 6.11: Top panel: the monopole C`=0(z̄, δz) and the observable monopole
contribution M(z̄, δz) at mean redshift z̄ = 0.55. Bottom panel: the radial (left)
and the angular (right) correlation function at z̄ = 0.55. Solid (black) lines include
only density correlations, dashed (red) lines also include redshift-space distortions.
The correlation functions are computed using Eq. (6.6); to wash out unphysical
small scales oscillations, we use `s = 80 for ξ(z̄, δz) and `s = 400 for ξ(z̄, θ), as
defined in Eq. (5.20).

very small for this case. The Baryon Acoustic Oscillations (BAO) feature is clearly
visible at δz ≈ 0.045 in C0(z̄, δz). To confirm that this is indeed the BAO peak, the
radial 2-point correlation function ξ(z̄, δz) ≡ ξ(θ = 0, z−, z+) given by Eq. (6.6) but
calculated from ` = 0 on (see [19] for more details) is also shown, presenting the
same bump. A detailed study of the BAO peak in the angular power spectrum is left
for future work. For completeness, also the transverse angular correlation function
ξ(z̄, θ) ≡ ξ(θ, z̄, z̄) is plotted, which shows the BAO peak at θ ≈ 4◦. Contrary to
the radial case in which the BAO scales have negative correlation, the transverse
function is always positive on these scales.

Since we neglect shot noise and assume total sky coverage, cosmic variance from
Eq. (6.19), σ`=0 =

√
2C`=0(z̄, δz) leads to a signal-to-noise

(
S

N

)
`=0

=
C`=0(z̄, δz)

σ`=0

=
1√
2
< 1,

for one given redshift difference δz. This is also approximately the (S/N) for M
for large enough δz. Hence, if we add M(z̄, δz) for several only weakly correlated
redshifts we easily obtain a measurable signal with S/N > 1.
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6.5 Conclusions

We have shown how the new code classgal [19] can be used to analyze galaxy
surveys in an optimal way. With a few examples we have shown that the figure
of merit from an analysis of the C`(z, z

′) spectra can be significantly larger, up to
a factor of a few, than the one from a standard P (k) analysis. This is due to the
fact that this analysis makes optimal use of the redshift information and does not
average over directions. Clearly, in the analysis of upcoming high quality surveys
we will want to use this promising method.

We have also seen that the nonlinearity scale, the scale beyond which we can no
longer trust the theoretically calculated spectrum, is of uttermost importance for the
precision with which we estimate cosmological parameters. Within our conservative
approach, and LSS data alone, cosmological parameters cannot be obtained with
good precision, see Fig. 6.4. However, we hope that in the final data analysis we
shall have accurate matter power spectra down to significantly smaller scales from
N-body or approximation techniques. Furthermore, for an optimal determination
of cosmological parameters, we shall of course combine LSS observations with CMB
experiments, e.g. from Planck, and other cosmological data. As we have seen,
the FoM of spectroscopic surveys increases significantly with the number of bins.
However, the computational effort scales like N2

bin and thus becomes correspondingly
large. Nevertheless, the pre-factor in front of the scaling can be substantially smaller
than one when we include only cross-correlations from bins within a given spatial
distance.

We have also shown that deep angular galaxy catalogs can actually be used to
measure the lensing potential. This is a novel method, alternative to the traditional
lensing surveys, which can be used, e.g., to constrain modified gravity theories.

Since the power spectra of galaxy surveys depend on redshift, contrary to the
CMB, here also the monopole contains cosmological information which can in prin-
ciple be measured.

Acknowledgments

We thank Camille Bonvin, Enrique Gaztañaga, Anäıs Rassat and Alexandre Re-
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6.6 Appendix

6.6.1 The galaxy number power spectrum

The galaxy number counts in direction n at observed redshift z are given by [17, 19]
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∆(n, z) = D +

[
1

H∂r(V · n) +

(H′
H2

+
2

r(z)H

)
V · n− 3HV

]
+

1

r(z)

∫ r(z)

0

dr

{[
2− r(z)− r

r
∆Ω

]
(Φ + Ψ)

}
+

(H′
H2

+
2

r(z)H + 1

)
Ψ

+
1

HΦ′ − 2Φ +

(H′
H2

+
2

r(z)H

)(
Ψ +

∫ r(z)

0

dr(Φ′ + Ψ′)

)
, (6.24)

where V is the potential velocity defined throughout V = −∇V . Here primes denote
derivatives w.r.t. conformal time and the notation agrees with [19]. The first term
is the density term, the term in square brackets is the redshift space distortion and
the first term on the second line is the lensing term. The remaining gravitational
potential contributions are sometimes also called “relativistic terms”.

The C`’s from this expression contain not only the auto-correlations of each
term but also their cross-correlation with other contributions. We call the auto-
correlation of the density term Cδ

` (z, z
′), the density term; the cross-correlation of

density and velocity and the auto-correlation of the velocity term Cz
` (z, z′), the

redshift space distortion term, the cross-correlation of the lensing contribution with
density and velocity and its auto-correlation C lens

` (z, z′), the lensing term. We call
the rest the ”potential terms”, Cpot

` (z, z′). If the cross-correlation terms dominate,
any of these spectra except Cδ

` can in principle be negative even for z = z′. These
are the definitions of the parts of the full angular power spectra which are used in
Section 6.4.3. More details on how these spectra are calculated can be found in the
accompanying paper [19].

6.6.2 Basics of Fisher matrix forecasts

The Fisher matrix is defined as the derivative of the logarithm of the likelihood with
respect to pairs of model parameters. Assuming that the spectra Cij

` are Gaussian
(which is not a good assumption for small ` but becomes reasonable for ` & 20), the
Fisher matrix is given by (cf. [53, 162])

Fαβ =
∑ ∂Cij

`

∂λα

∂Cpq
`

∂λβ
Cov−1

`,(ij),(pq), (6.25)

where λα denotes the different cosmological parameters we want to constrain. The
sum over ` runs from 2 to a value `max related to the non-linearity scale kmax: we
discuss this issue in section 6.3.2. Note also that we sum over the matrix indices
(ij) with i ≤ j and (pq) with p ≤ q which run from 1 to Nbin .

In the Fisher matrix approximation, i.e. assuming that the likelihood is a multi-
variate Gaussian with respect to cosmological parameters (which usually is not the
case), the region in the full parameter space corresponding to a given Confidence
Level (CL) is an ellipsoid centered on the best-fit model with parameters λ̄α, with
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boundaries given by the equation
∑

α,β(λα− λ̄α)(λβ − λ̄β)Fαβ = [∆χ2]5, and with a

volume given (up to a numerical factor) by [det(F−1)]1/2 (see e.g. [53]). Since the
smallness of this volume is a measure of the performance of a given experiment, one
often uses the inverse of the square root of the determinant as a Figure of merit,

FoM =
[
det
(
F−1

)]−1/2
.

If we assume several parameters to be fixed by external measurements at the best-
fit value λ̄α, the 1σ ellipsoid for the remaining parameters is given by the same
equation, but with the sum running only over the remaining parameters. Hence
the volume of this ellipsoid is given by the square root of the determinant of the
sub-matrix of F restricted to the remaining parameters, that we call F̂ . In that
case, the FoM for measuring the remaining parameters reads

FoMfixed =
[
det
(

(F̂ )−1
)]−1/2

.

However, it is often relevant to evaluate how well one (or a few) parameters can be
measured when the other parameters are marginalized over. In this case, a few lines
of calculation show that the figure of merit is given by taking the sub-matrix of the
inverse, instead of the inverse of the sub-matrix (see [53]),

FoMmarg. =
[
det
(
F̂−1

)]−1/2

.

In particular, if we are interested in a single parameter λα and assume that all other
parameters are marginalized over, the FoM for measuring λα is given by

FoMmarg. =
[
(F−1)αα

]−1/2
.

When the likelihood is not a multivariate Gaussian with respect to cosmological
parameters, the 68% CL region is no longer an ellipsoid, but the FoM given above
(with the Fisher matrix being evaluated at the best-fit point) usually remains a good
indicator.

It is however possible to construct examples where the FoM estimate completely
fails. For instance, if two parameters are degenerate in a such a way that their
profile likelihood is strongly non-elliptical (e.g. with a thin and elongated banana
shape). Then Fisher-based FoM will rely on a wrong estimate of the surface of the
banana, and will return a very poor approximation of the true FoM. This happens
e.g. when including isocurvature modes [164], for mixed dark matter models [165]
or in some modified gravity models [166].

For the power spectrum analysis, following [140, 167], we define the Fisher matrix
in each redshift bin as

Fαβ=

∫ 1

−1

∫ kmax

kmin

∂ lnPobs

∂λα

∂ lnPobs

∂λβ
Veff

k2dkdµ

2(2π)2
, (6.26)

5The number ∆χ2 depends both on the requested confidence level and on the number n of
parameters: for n = 1 (resp. 2) and a 68%CL one should use ∆χ2 = 1 (resp. 2.3). For other
values see section 15.6 of [163].
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where the effective volume Veff is related to the actual volume Vbin of each redshift
bin through

Veff(k, µ, z̄) =

[
Pobs(k, µ, z̄)

Pobs(k, µ, z̄) + 1/n̄(z̄)

]2

Vbin(z̄) . (6.27)

Here z̄ is the mean redshift of the bin, and n̄(z̄) the average galaxy density in this
bin, assumed to be uniform over the sky. In the case of several non-overlapping
z-bins, we assume that measurements inside each of them are independent so that
the total Fisher matrix is the sum of those computed for every bin. This expression
is in principle valid in the flat-sky approximation. However, since it encodes all the
statistical information, we can use it for a forecast analysis. The denominator in
Eq. (6.27) features the two contributions to the variance of the observable power
spectrum Pobs(k, µ, z̄) coming from sampling variance and from shot noise. The
observable power spectrum Pobs(k, µ, z̄) (not including shot noise) is given in the
minimal ΛCDM (Λ Cold Dark Matter) model by the theoretical power spectrum
P (k) calculated at z = 0, rescaled according to

Pobs(k, µ, z̄) =
D̄A(z̄)2H(z̄)

DA(z̄)2H̄(z̄)

(
1 + µ2ΩM(z̄)γ

)2
G(z̄)2P (k) . (6.28)

The first ratio in Eq. (6.28) takes in account the volume difference for different
cosmologies. The survey volume for galaxies in a redshift bin centered on z̄ and of
width δz is proportional toDA(z̄)2H(z̄)−1δz. The quantities D̄A and H̄ are evaluated
at the fiducial cosmology. The parenthesis contains the Kaiser approximation to
redshift-space distortions [61], which together with the density term is the dominant
contribution in Eq. (6.24) for our analysis. We assume an exponent γ = 0.6 that
is a good approximation to the growth factor from linear perturbation theory in
ΛCDM. We have neglected the bias (b = 1) in order to compare the results with the
FoM derived from the angular power spectrum C`(z1, z2) where we also set b = 1.
When we consider photometric redshift surveys, we need take into account the loss of
information in the longitudinal direction due to the redshift error σz. Following [167],

we then multiply Pobs(k, µ, z̄) with an exponential cutoff e−(kµσz/H(z))2

.
In Eq. (6.26), the observable power spectrum and the effective volume are as-

sumed to be expressed in Hubble-rescaled units, e.g. [Mpc/h]3, while wave numbers
are expressed in units of [h/Mpc]. In other words, it would be more rigorous to
write everywhere ([a3

0H
3
0Pobs], [k/(a0H0)], [a3

0H
3
0Veff ]) instead of (Pobs, k, Veff): the

quantities in brackets are the dimensionless numbers that are actually measured,
see [168]. Using Hubble-rescaled units does make a difference in the calculation
of the partial derivative with respect to the model parameter H0: it is important
to keep k/h and not k constant. Also, the wavenumber kmax corresponding to the
non-linearity scale is given in units h/Mpc, so that we fix kmax/h.

Furthermore, since the computation of P (k) involves the assumption of a cosmo-
logical model to convert observable angles and redshifts into distances, expressing
the latter in Mpc/h mitigates the uncertainty introduced in this procedure since, to
first approximation, distances r(z) =

∫
dz/H(z) scale as h−1.
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We show that a longitudinal gauge degree of freedom for a vector field is equivalent
to a Pais-Uhlenbeck scalar field. With the help of this equivalence, we can determine
natural interactions of this field with scalars and fermions. Since the theory has a
global U(1) symmetry, we have the usual conserved current of the charged fields,
thanks to which the dynamics of the scalar field is not modified by the interactions.
We use this fact to consistently quantize the theory even in the presence of interac-
tions. We argue that such a degree of freedom can only be excited by gravitational
effects like the inflationary era of the early universe and may play the role of dark
energy in the form of an effective cosmological constant whose value is linked to the
inflation scale.

7.1 Introduction

The standard model of cosmology provides a very successful description of our Uni-
verse [98, 122]. However, it is based on the idea that about 96% of the energy density
in the Universe stems from particles and fields which are not part of the standard
model of particle physics and have never been observed in colliders. Dark matter,
which amounts to about 26% of the Universe content, at least has the properties of
typical non-relativistic particles, but dark energy, the component which makes up
about 70% of the energy density of the Universe must be endowed with very exotic
properties, like a strong negative pressure, in order to explain the observed current
acceleration of the expansion of the Universe. This most unexpected discovery has
been awarded the 2011 Nobel prize in physics [2, 4, 3, 169].

Even if a cosmological constant has the right properties and is in agreement with
cosmological observations, this solution is unsatisfactory from a purely theoretical
point of view, as its associated scale (ρΛ)1/4 ' 10−3eV is so much smaller than the
natural scale of gravity given by Mp ' 1018 GeV. On the other hand, one could
expect this scale to be related to some cutoff scale coming from particle physics,
which should be, at least, the scale of supersymmetry Esusy > 1TeV, again much
larger than the value of the cosmological constant inferred from observations (see
[170] for an extensive discussion about the cosmological constant problem).

This fine tuning issue of the cosmological constant has led the community to
search for different solutions to the problem of accelerated expansion. Different
dark energy models like e.g. quintessence or large scale modifications of gravity
have been explored [107, 171, 172].

Researchers have also looked into theories with higher derivatives in the La-
grangian density, like e.g. the so-called f(R) theories [68, 69] or the galileon field [70,
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71, 72, 73]. Theories with higher derivatives look dangerous at first sight because
they typically lead to the presence of ghosts (particles with negative kinetic energy)
reflecting the Ostrogradski instability [74, 75]. This instability appears because these
theories lead to higher than second order equations of motion, so that new degrees
of freedom appear and they are usually ghost-like. It has been shown recently [173],
that trying to eliminate the ghost by introducing additional constraints does not
work in general, unless the corresponding phase space gets dimensionally-reduced.
Even though without the presence of any interactions, the energy of a given field
remains constant and the instability cannot develop, we expect that the coupling of
such a field to other degrees of freedom or quantum effects will potentially provoke
uncurable instabilities.

However, exceptions to this generic rule exist in degenerate theories like the
aforementioned f(R) theories of gravity and, more recently, the galileon fields where,
thanks to the specific structure of the interactions, the equations remain of second
order even though higher derivative terms are present in the action.

Interestingly, the dark energy problem, forces us to re-think our boundaries of
what we can accept as sensible (effective) physical theories [174]. This is the youngest
example of the cross fertilization of cosmological observations and fundamental the-
oretical physics.

The present paper inscribes in this framework. Here we show that the action
for a vector field having only a residual gauge symmetry, which has already been
proposed as a candidate for dark energy [175, 176, 177, 178], can be rewritten as an
ordinary U(1) gauge vector field theory together with a (degenerate) Pais-Uhlenbeck
(PU) scalar field, the field version of the PU oscillator first discussed in [16]. Even
though this is a higher derivative oscillator, it has been shown in [179, 180] that this
model can be quantized with a positive spectrum for the Hamiltonian because it
corresponds to a special class of Hamiltonians that, although being non-hermitian,
exhibit a PT symmetry that allows to construct a quantum theory without nega-
tive energy states or a unitary evolution. However, such a construction relies on the
presence of non-hermitian operators so that the classical limit of the theory remains
unclear. In fact, the classical Hamiltonian is still unbounded and a prescription
to go from the quantum theory to the classical solutions is lacking. Moreover, al-
though it is an interesting construction to have a bounded spectrum for the quantum
theory, the problem with higher derivative terms actually becomes manifest when
interactions are introduced [181]. As a matter of fact, the free theory is not sick
and provides a unitary evolution, even though the Ostrogradski ghostly degree of
freedom is present. For special types of interactions, unitarity might be maintained
[181, 182, 183].

Here we derive an alternative way to consistently quantize the degenerate PU
field that makes use of the presence of another symmetry in which the field can be
shifted by an arbitrary harmonic function. We use this symmetry to restrict the
physical Hilbert space or to fix the gauge and quantize only the healthy physical
mode. Then, we include interactions with charged scalars or fermions, in a way which
is motivated by the interpretation of this field, and we show that our restriction of
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the physical states remains intact.
The remainder of this paper is organized as follows: In the next section we show

the relation of the vector field action with the residual gauge symmetry and the
PU field. In Section 7.3 we include interactions. In Section 7.4 we discuss the
quantization of the theory and show how it could play the role of dark energy or of
the inflaton. (Even if in its present form the model does not propose a mechanism
to end inflaton.) In Section 7.5 we conclude and discuss further investigations which
can be performed to compare this model with standard ΛCDM.

7.2 The Stückelberg trick and the Pais Uhlenbeck

field

7.2.1 From the Pais Uhlenbeck oscillator to the Pais Uhlen-
beck field

We shall start by briefly introducing the PU oscillator [16] and showing how it can
arise as the Fourier modes of a certain higher order field theory. The PU oscillator
is described by the following action:

SPU =
γ

2

∫
dt
[
z̈2 − (ω2

1 + ω2
2)ż2 + ω2

1ω
2
2z

2
]
, (7.1)

where γ is an arbitrary parameter. Since the action depends on the second time
derivative, this model is expected to exhibit the Ostrogradski instability. The corre-
sponding Hamiltonian can be derived either by using the Dirac method [184, 185] or
directly from the Ostrogradski Hamiltonian [74] as defined for higher order derivative
theories. In either case, one obtains the expression

HPU (z, x, pz, px) =
p2
x

2γ
+ pzx+

γ

2
(ω2

1 + ω2
2)x2 − γ

2
ω2

1ω
2
2z

2, (7.2)

where pz and px are the canonical conjugate momenta of the canonical variables z and
x ≡ ż respectively. The term linear in the conjugate momentum, pzx, represents the
previously advertised Ostrogradski instability. At the classical level the instability
may appear only by coupling the PU oscillator to other systems. The action (7.1)
leads to the fourth order equation of motion

d4z

dt4
+ (ω2

1 + ω2
2)

d2z

dt2
+ ω2

1ω
2
2z = 0, (7.3)

which is solved by the superposition of two modes with frequencies ω1 and ω2 in the
non-degenerate case (ω1 6= ω2):

z(t) = a1e
−iω1t + a∗1e

iω1t + a2e
−iω2t + a∗2e

iω2t. (7.4)

From this solution we see that no instabilities in the form of exponentially growing
modes appear in the classical solutions even though the Hamiltonian has the afore-
mentioned linear term associated with the Ostrogradski instability. This should not
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be surprising, since, at the classical level, only the introduction of interactions can
develop the Ostrogradski instability by shifting the poles of the corresponding prop-
agator off the real axis. Note the difference of these oscillating solutions to tachyons
(i.e., modes with negative ω2) where the above solutions would grow exponentially.

On the other hand, in the degenerate case (ω1 = ω2) we find

z (t) = (c1 + c2t) e
−iωt + (c∗1 + c∗2t) e

iωt, (7.5)

where the term linear in t comes from the fact that the roots of the characteristic
equation for the equation of motion (7.3) are degenerate (or, in other words, the
propagator has a double pole). Even though this term is growing in time, its growth
is milder than an exponentially growing mode. In particular there is no imaginary
propagation speed that would signify a classical instability in the form of a tachy-
onic mode. This linear growth is independent of the presence of the Ostrograski
instability, that is still present in the theory and can develop when interactions are
introduced.

In summary, we have seen that the PU oscillator does not have tachyonic in-
stabilities, although the Ostrogradski instability is still present and could turn the
model out of control when interactions are introduced.

In the literature the PU oscillator has been already widely studied (cf. [16, 179,
180, 181, 186, 187]). Here we are interested in the field version of the PU model.
Let us consider the action

S = ξ

∫
d4x
[
φ
(
�+m2

1

) (
�+m2

2

)
φ
]

= ξ

∫
d4x
[
(�φ)2 − (m2

1 +m2
2)∂µφ∂

µφ+m2
1m

2
2φ

2
]

(7.6)

where � = ∂µ∂
µ is the d’Alembertian operator and ξ a dimensionless parameter

whose value can be fixed by the normalization of φ. Note that the PU scalar field φ
defined here is dimensionless in four spacetime dimensions.

We now show that each spatial Fourier mode of the PU field describes a PU
oscillator where the frequencies ω1 and ω2 are determined by the masses m1 and m2.
From the action (7.6) we derive the equation of motion

(�+m2
1)
(
�+m2

2

)
φ = 0. (7.7)

Expanding the PU field in spatial Fourier modes

φ =

∫
d3k

(2π)3/2
φk(t)e

i~k·~x (7.8)

the equation of motion for each mode φk becomes

d4φk
dt4

+
(

2k2 +m2
1 +m2

2

)d2φk
dt2

+
[
k4 + k2

(
m2

1 +m2
2

)
+m2

1m
2
2

]
φk = 0. (7.9)
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Comparing Eqs. (7.3) and (7.9) we identify

ω2
1 + ω2

2 = 2k2 +m2
1 +m2

2 and ω2
1ω

2
2 = k4 + k2(m2

1 +m2
2) +m2

1m
2
2, (7.10)

so that, as expected, the frequencies are given by:

ω2
1 = k2 +m2

1

ω2
2 = k2 +m2

2. (7.11)

The action (7.6) describes two massive modes with positive masses m1 and m2

(none of them represents a tachyonic degree of freedom). However, one of them is
actually a ghost, with the sign of m2

1−m2
2 determining which one of the two modes

is the ghost. In the case where one of these parameters vanishes, one of the modes
becomes massless. This corresponds to the case without the quadratic potential in
the action, i.e., only the derivative terms remain despite the fact that one of the
modes is massive. Finally, when both masses vanish m1 = m2 = 0, we have a pure
fourth order theory and the solutions of the characteristic equation are degenerate,
i.e., both modes satisfy the usual dispersion relation for a massless mode. This is the
aforementioned degeneracy leading to the term linearly growing with time appearing
in (7.5). Each Fourier mode of a massless PU field is described by a degenerate PU
oscillator and analogously for the massive case.

7.2.2 The Stückelberg trick

In the following we shall show how the degenerate PU field can be identified with a
Stückelberg field. This field was first introduced in the Proca action for a massive
vector field to restore the U(1) gauge invariance of the theory [188]. Thus, the vector
field could acquire a non-vanishing mass and still preserve the gauge symmetry in a
somewhat simplified version of the Higgs mechanism. Here, we shall start from an
action for a massless vector field, but with a modified kinetic term,

S =

∫
d4x

[
−1

4
FµνF

µν +
1

2
ξ(∂µA

µ)2

]
, (7.12)

with Fµν = ∂µAν − ∂νAµ and ξ and arbitrary dimensionless parameter (that can
be fixed by the normalization of the longitudinal component of the vector field). In
this action, −F 2/4 is the usual Maxwell term, whereas the second term is usually
introduced in the quantization of the theory as a gauge-fixing term and partially
breaks the gauge symmetry. However, here we shall not consider it as a purely
gauge-fixing term, but as a fully physical term. This action is no longer invariant
under general U(1) transformations of the vector field, but only under residual gauge
transformations Aµ → Aµ + ∂µθ which satisfy �θ = 0. In addition to the usual
transverse modes associated with Fµν , this action has a third degree of freedom
which appears here as longitudinal vector mode1 and that is associated with ∂µA

µ.

1Here we refer to a 4-longitudinal mode such that Aµkµ 6= 0, as opposed with the usual termi-
nology used in theories with massive vector fields where the longitudinal mode refers to the mode
parallel to the 3-momentum ~k.
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Since such a mode gives a scalar physical quantity, we can alternatively interpret it
as a scalar mode.

In the past [175, 176, 177, 178], it has been shown that this additional mode gives
a contribution to the cosmological energy-momentum tensor that is proportional
to the metric tensor so that its equation of state is p = −ρ and it has therefore
been suggested that this could play the role of the dark energy as an effective
cosmological constant. So far, no evidences for longitudinal photons have been
found in colliders and electromagnetism is unbroken in the real Universe to very
high precision. Furthermore, there is no experimental evidence for the existence of
an additional U(1) gauge field in nature.

In this work, we show that when restoring U(1) gauge invariance using the
Stückelberg trick, this longitudinal mode becomes a scalar degree of freedom. In-
terestingly, it does not correspond to a normal scalar field but to the previously
introduced (degenerate) Pais-Uhlenbeck field [16], which has second time deriva-
tives in the action and fourth order equations of motion. The Ostrogradski ghost
of the PU field will be related to the ghostly degree of freedom introduced by the
gauge-fixing-like term in (7.12). In subsequent sections we shall see how to deal with
such a ghost and consistently quantize the theory.

Let us now restore U(1) gauge invariance by introducing a Stückelberg field. In
other words, we replace Aµ → Aµ + ∂µφ so that the action becomes

S =

∫
d4x

[
−1

4
FµνF

µν +
1

2
ξ (∂µ(Aµ + ∂µφ))2

]
=

∫
d4x

[
−1

4
FµνF

µν +
1

2
ξ
(
(∂µA

µ)2 + (�φ)2 + 2∂µA
µ�φ

)]
. (7.13)

This action is fully gauge-invariant under gauge transformations which act on both,
Aµ and φ

Aµ → Aµ + ∂µΛ,

φ → φ− Λ. (7.14)

The action (7.12) can thus be interpreted as the action (7.13) in a gauge such that
�φ = 0. In such a gauge, the residual gauge symmetry of (7.12) remains because the
condition �φ = 0 does not fix the gauge completely, but still is invariant under gauge
transformations Aµ → Aµ +∂µθ, φ→ φ− θ which satisfy �θ = 0. This is analogous
to the residual gauge symmetry that remains in standard electromagnetism after
imposing the Lorenz gauge condition. Since we have introduced the Stückelberg
field to restore the full U(1) gauge symmetry, one could also consider a mass term
for the vector field, as in the original Stückelberg model. Then, one would obtain a
massive PU field for the scalar field plus additional couplings to the vector field. We
will not explore this possibility here because we are only interested in studying the
massless vector field case. A way to prohibit the mass term (that would be allowed
by the required symmetries of our action) is to impose the additional symmetry for
the Stückelberg field φ→ φ+ϑ with ϑ a harmonic function. Our action (7.13) does
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fulfill this symmetry, whereas the term Aµ∂
µφ that is generated from the mass term

does not.

The equations of motion obtained from action (7.13) are

∂νF
µν + ξ∂µ [∂νA

ν +�φ] = 0 , (7.15)

� (�φ+ ∂µA
µ) = 0 . (7.16)

Notice that the second equation is nothing but the 4-divergence of the first one. If
we now fix to Lorenz gauge ∂µA

µ = 0, we are left with

�Aµ = ξ∂µ�φ , (7.17)

�2φ = 0 . (7.18)

The equation for the PU field completely decouples, whereas it acts as an effective
external conserved current term for the vector field. Such an external source is
determined by the gradient of �φ so that it only affects the longitudinal mode of
Aµ. In other words, the transverse modes completely decouple from φ and only the
longitudinal mode is affected. Indeed, if we introduce the field Bµ ≡ Aµ− ξ∂µφ, the
equations can be written as

�Bµ = 0 , (7.19)

�2φ = 0 (7.20)

where now we have ∂µB
µ = −ξ�φ as the gauge condition. The PU field determines

the longitudinal mode of the vector field Bµ which, in addition, satisfies a free wave
equation. In fact, since we still have the residual gauge symmetry, we can use it
to set B0 = 0 so that we obtain ∇ · ~B = ξ�φ. In this gauge, we have the free
wave equations of motion for the transverse modes of the vector field and for �φ,
whereas the longitudinal mode of the vector field is determined by the PU field (up
to a residual gauge transformation). Notice that naively imposing the Lorenz gauge
condition directly in the action (7.13) leads to

S =
1

2

∫
d4x

[
−∂µAν∂µAν + ξ(�φ)2

]
. (7.21)

This reproduces the correct equations of motion for the transversal modes of Aµ and
for φ, but it does not yield the correct equation for the longitudinal mode of the
vector field. We can alternatively use a gauge such that2 ∂µA

µ = − ξ
1+ξ
�φ, which

again leaves a residual gauge symmetry. Then, the equations of motion read:

�Aµ = 0 , (7.22)

�2φ = 0. (7.23)

2Since the quantity ∂µA
µ+�φ is gauge invariant, we cannot impose the condition ∂µA

µ = −�φ.
For our choice, this only happens in the limit ξ →∞.
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When imposing this gauge at the level of the action we obtain:

S =
1

2

∫
d4x

[
−∂µAν∂µAν +

ξ

1 + ξ
(�φ)2

]
(7.24)

which reproduces the correct equations of motion and, if we additionally impose the
used gauge as a subsidiary condition, we also obtain the correct relation between
∂µA

µ and �φ. In any case, it is more clear by looking at the equations of motion
directly that we have completely decoupled transverse modes for the vector field
satisfying free wave equations plus the degenerate PU field which determines the
longitudinal mode of the vector field. It will be useful to note that neither of the
two gauges discussed fixes the gauge freedom completely, but they leave us with the
residual gauge symmetry Aµ → Aµ + ∂µθ, φ → φ − θ with �θ = 0. In addition to
this residual symmetry, we also have the aforementioned symmetry that prevents
the appearance of the mass term, i.e. Aµ → Aµ, φ → φ + ϑ with �ϑ = 0. In
other words, we can perform a residual gauge transformation with two different
(harmonic) gauge parameters θ and ϑ− θ for Aµ and φ respectively.

Interestingly, the transformation for the scalar field can be regarded as a gener-
alized shift symmetry, since we can shift φ not only by a constant, like in the case
of a Goldstone boson, or a linear function of the coordinates, like in the case of the
galileon field, but by an arbitrary harmonic function. Of course, the constant shift
and the Galilean transformations are particular cases of this more general symmetry.

We know that the Maxwell term describes a well behaved theory also at the
quantum level and with interactions. However, the lack of stability under quantiza-
tion is a common feature in higher order derivative Lagrangians. As we have already
discussed, such theories suffer, for instance, from the Ostrogradski instability which
implies that their Hamiltonian is not bounded from below [74, 75]. It has been
argued, however, that the Ostrogradski ghost instability which is present in the PU
oscillator can be cured and that the theory can be consistently quantized thanks to
the presence of an unbroken PT symmetry that allows non-hermitian Hamiltonians
to lead to unitary evolution [179, 180]. However, how to take the classical limit of
theories quantized within such a framework remains unclear. In Section 7.4 we shall
come back to this issue and develop an alternative consistent quantization procedure
for the PU action based on the generalized shift symmetry and that makes no use
of non-hermitian operators.

To end this Section, we want to mention that, in the same way that we can
write the Maxwell Lagrangian in terms of the 2-form F = dA = 1

2
Fµνdx

µ ∧ dxν , as
SMaxwell = −1

2

∫
F ∧ ∗F for A = Aµdxµ, we find for the degenerate PU action,

SPU =
1

2
ξ

∫
d4x (�φ)2 =

1

2
ξ

∫
δdφ ∧ ∗δdφ . (7.25)

Hence d4x (�φ)2 = δdφ ∧ ∗δdφ = ∗d ∗ dφ ∧ d ∗ dφ. Here δ = − ∗ d∗ is the co-
differential (on a 4-dimensional Lorentz manifold) and ∗ω denotes the Hodge dual
of the p-form ω defined by

(∗ω)i1···in−p =
1

p!
ηi1···inωin−p···in , here η is the volume form, η =

√−gdx1∧· · ·∧dxn .
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Since δδ = 0, the PU action is invariant under the transformation dφ→ dφ+ δΣ for
some 2-form Σ which has the property that δΣ = dθ for some scalar field θ. The field
θ obviously satisfies �θ = δdθ = δδΣ = 0. This is nothing else that the remaining
gauge invariance or generalized shift symmetry of the PU action expressed in the
language of forms.

7.3 Interactions

As we have already mentioned, it has been shown that the free PU oscillator can be
quantized with a positive spectrum for the Hamiltonian. However, it happens very
often that a free higher derivative theory can be fine but it becomes unstable once we
introduce interactions. Actually, this is the real problem with higher order derivative
theories. Let us investigate this issue for our theory. Since φ is the Stückelberg field
of a U(1) gauge field, its natural interaction will be to charged fields by means of a
gauge interaction. In the following we shall consider two explicit examples, namely
a complex scalar field and a charged fermion.

7.3.1 Charged scalars

Let us consider the action of a complex scalar field χ whose interaction is mediated
by our Stückelberg field. We define the covariant derivative Dµ = ∂µ− i∂µφ so that
the action has a U(1) gauge symmetry. Under a gauge transformation χ → eiθχ
and φ→ φ+ θ, the following action is invariant

S =

∫
d4x
[
Dµχ(Dµχ)∗ − V (χχ∗)

]
=

∫
d4x
[
∂µχ∂

µχ∗ + χχ∗∂µφ∂
µφ− i∂µφ

(
χ∂µχ∗ − χ∗∂µχ

)
− V (χχ∗)

]
. (7.26)

Here V is a potential which depends only on the modulus of χ. It is interesting
to note that the scalar gauge field φ is automatically dynamical because it has
derivative couplings to the charged field, unlike for the case of a gauge vector field.
However, having a gauge symmetry, we can always remove it from action (7.26) by
an appropriate gauge choice, so that it does not represent an actual physical degree
of freedom of (7.26). Nevertheless, once we add the free PU action to the theory, φ
can no longer be completely gauged away since the gauge symmetry is now reduced
to gauge parameters satisfying �θ = 0. Thus, the full interacting Lagrangian is
given by

S=

∫
d4x

[
∂µχ∂

µχ∗+χχ∗∂µφ∂
µφ−i∂µφ

(
χ∂µχ∗−χ∗∂µχ

)
−V (χχ∗)+

1

2
ξ(�φ)2

]
.

(7.27)
With this additional kinetic term for the gauge field φ, it actually propagates two
degrees of freedom, one of which can be removed using the gauge freedom so that φ
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does now propagate one physical degree of freedom. Notice also that the addition
of the PU term gives its corresponding propagator.

It is also interesting to note that if the potential V (χχ∗) leads to symmetry
breaking, we obtain a non-degenerate PU model from the non-vanishing vacuum
expectation value (vev) of χχ∗. For instance, if we consider the usual renormalizable
quartic potential V (|χ|) = µ2|χ|2 + λ|χ|4 with µ2 < 0, then χ acquires a non-
vanishing vev χχ∗ ≡ v2 = −µ2/λ and the quadratic term for φ is given by

S
(2)
φ =

∫
d4x

[
1

2
ξ(�φ)2 + v2∂µφ∂

µφ

]
. (7.28)

Thus, we can generate the term with two derivatives analogous to the PU action
with m2

1 = m2
2 = −2v2/ξ from a spontaneous symmetry breaking of the charged

field.
The equations of motion derived from the above action are3

ξ�2φ− ∂µjµ = 0, (7.29)

DµD
µχ∗ +

∂V

∂χ
= 0, (7.30)

DµD
µχ+

∂V

∂χ∗
= 0 , (7.31)

where we have introduced the current

jµ = i (χ∗Dµχ− χDµχ∗) = i (χ∗∂µχ− χ∂µχ∗) + 2χχ∗∂µφ . (7.32)

Notice that the first equation can be written as a conservation equation as follows:

∂µ (ξ∂µ�φ− jµ) = 0 (7.33)

so that we have a conserved charge given by

Q =

∫
d3x

(
ξ�φ̇− j0

)
. (7.34)

Interestingly, since the χ sector has a global U(1) symmetry , the current jµ is inde-
pendently conserved on-shell, i.e., ∂µj

µ = 0 so that we have the usual conservation
of the complex field charge

Qχ =

∫
d3x j0. (7.35)

This conservation law also implies the conservation of the current jµφ = ∂µ�φ that
gives rise to the conserved charge

Qφ =

∫
d3x �φ̇ (7.36)

3Here we use the fact that Dµχ
∗ = (Dµχ)∗ so that we will not distinguish between both.
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associated with the PU field. The crucial fact here is that the χ-dependent term
disappears from the equation of motion of φ. However, the equation of motion for
χ still depends on φ. In other words, φ affects the dynamics of χ but is itself not
affected by χ. It satisfies a ”free” equation even in the presence of the coupling to
χ. This surprising behavior will be useful for the quantization of the theory because
we can use the procedure of the free field quantization to get rid of the ghost-mode
and the coupling will not reintroduce the ghost into the theory.

To quantize the theory we write it in Hamiltonian form. The conjugate momenta
are given by

πχ =
∂L
∂χ̇

= D0χ∗, (7.37)

φ1 = φ , Π1 =
∂L
∂φ̇
− d

dt

∂L
∂φ̈

= 2χχ∗φ̇− i (χχ̇∗ − χ̇χ∗)− ξ�φ̇ = j0 − ξ�φ̇, (7.38)

φ2 = φ̇ , Π2 =
∂L
∂φ̈

= ξ�φ. (7.39)

The conjugate momentum of χ∗ is of course πχ∗ = π∗χ = D0χ. Thus, the Hamiltonian
density is

H = χ̇πχ + χ̇∗π∗χ + φ̇Π1 + φ̈Π2 − L

= D0χD
0χ∗ −DiχD

iχ∗ + V (χχ∗) +
1

2
ξ(�φ)2 + ξ

((
∇2φ

)
�φ− φ̇�φ̇

)
. (7.40)

Writing this in terms of the momenta and the fields we obtain

H(χ, φ1, φ2, πχ,Π1,Π2) = πχπ
∗
χ + iφ2

(
χπχ − χ∗π∗χ

)
+ φ2Π1 +

Π2
2

2ξ
+ Π2∇2φ1

+∇χ∇χ∗ + χχ∗ (∇φ1)2 − i∇φ1 (χ∇χ∗ − χ∗∇χ) + V (χχ∗) . (7.41)

7.3.2 Charged fermions

Here we shall briefly repeat the derivations of the previous section for a coupling of
φ to a Dirac field ψ. Again, by using the covariant derivative Dµ = ∂µ − i∂µφ, the
action for a charged fermion becomes

S =

∫
d4x

[
−ψ̄ (γµDµ +m)ψ

]
=

∫
d4x

[
−ψ̄γµ∂µψ + iψ̄γµψ∂µφ−mψ̄ψ

]
. (7.42)

This action is invariant under a gauge transformation with ψ → eiθψ and φ→ φ+θ.
Again, having this symmetry at our disposal, the scalar field φ can, in principle, be
gauged away. However, when we identify it with the PU field, it actually carries
two degrees of freedom, one of which will be physical. Thus, the full interacting
Lagrangian is

S =

∫
d4x

[
−ψ̄γµ∂µψ + iψ̄γµψ∂µφ−mψ̄ψ +

1

2
ξ (�φ)2

]
. (7.43)
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This action leads to the following equations of motion

ξ�2φ− ∂µjµ = 0, (7.44)

Dµψ̄γ
µ −mψ̄ = 0, (7.45)

Dµγ
µψ +mψ = 0, (7.46)

where we have introduced the usual U(1) current jµ = iψ̄γµψ, which is conserved,
i.e., ∂µj

µ = 0 so that we have the usual conserved fermionic charge

Qψ = i

∫
d3xψ̄γ0ψ. (7.47)

Again, we also have the conserved current associated with the PU field Qφ. There-
fore, like for the case of a coupling to a charged scalar field, the PU field satisfies
the ”free” equation, i.e., its dynamics is not affected by the presence of the inter-
action with the fermionic field, however the PU field φ can, in principle, affects the
dynamics of ψ.

To end this section and for completeness, we shall compute the Hamiltonian.
The corresponding conjugate momenta are given by

πψ =
∂L
∂ψ̇

= −ψ̄γ0 ⇒ ψ̄ = πψγ
0, (7.48)

φ1 = φ , Π1 =
∂L
∂φ̇
− d

dt

∂L
∂φ̈

= iψ̄γ0ψ − ξ�φ̇ = j0 − ξ�φ̇, (7.49)

φ2 = φ̇ , Π2 =
∂L
∂φ̈

= ξ�φ. (7.50)

As we notice from Eq. (7.48), the field ψ̄ is proportional to the conjugate momentum
πψ and so we should not consider ψ̄ as a field like ψ (cf. [189]). The Hamiltonian
density reads

H = πψψ̇ + Π1φ̇+ Π2φ̈− L

= Π1φ2 +
Π2

2

2ξ
+ Π2∇2φ1 + πψγ

0
(
m+ γi∂i

)
ψ + iπψ

(
φ2 − γ0γi∂iφ1

)
ψ. (7.51)

In summary, in this Section we have shown explicitly that, by introducing inter-
actions of the PU field to charged scalars or fermions following a minimal coupling
principle, the dynamics of the PU field is not modified. The reason for this is that,
although the quadratic term giving the free propagator for φ only respects a residual
gauge symmetry, the full theory still preserves global U(1) symmetry that gives rise
to current conservation. Since it is the divergence of the conserved current that en-
ters into the equation of motion of φ (which is guaranteed precisely by introducing
it through a U(1) covariant derivative), no effects from the charged particles on the
PU field appear.

The above result that charged particles cannot excite the PU field can also been
understood from standard electromagnetism results, where photons with polariza-
tion vector proportional to the 4-momentum kµ cannot be generated out of conserved
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currents. At the quantum level, this is ensured by the Ward identities according to
which the amplitude of any process involving an external longitudinal photon (in
the 4-dimensional sense) vanishes.

It is interesting to note that the above procedure to gauge a global U(1) symme-
try is similar to making it local by introducing a longitudinal vector field. In fact, if
we consider the covariant derivative Dµ = ∂µ − iAµ, nothing here imposes that the
vector field Aµ must be transverse and only once we choose the fully gauge invariant
kinetic term −F 2/4 for Aµ, the propagating vector boson becomes transverse. This
is the natural choice if we want the gauge boson to carry a pure massless spin-1
representation of the Lorentz group and also if we want to keep the full U(1) gauge
invariance. However, other possibilities could be considered. One can, for instance,
choose the kinetic term (∂µA

µ)2/2 for the vector field so that only its temporal
component propagates. The price to pay is that only a residual gauge symmetry
remains in the sector of the gauge boson. However, this is not too problematic in
principle since the global U(1) symmetry is maintained (Aµ does not change under
a global transformation) and charge conservation is not affected. Notice also that,
in addition to the coupling of the charged fields to φ, we can also couple them to
the transverse gauge field Aµ, in principle with a different coupling constant, i.e.,
they can be differently charged under the two different U(1) fields.

7.4 Discussion

In the previous sections we have introduced interactions for the degenerate PU field
by following a symmetry principle, according to which all the interactions respect
U(1) gauge symmetry and φ is identified with the gauge field that allows to render
the gauge symmetry local. It is precisely this way of coupling the PU field that
facilitates to consistently quantize the theory. We have shown that the interactions
of the PU field with charged scalars or fermions do not modify the equation of
motion for φ, although φ itself can affect the dynamics of the charged fields. Thus,
as we shall show below, one can quantize the free field and use the gauge symmetry
to remove the ghost-like mode. The interactions will then not re-introduce it. After
quantizing the field, we shall discuss its cosmological relevance and show how it can
give rise to an effective cosmological constant.

7.4.1 Quantization and Stability of the PU field

A method to quantize the PU oscillator has been proposed in [179]. This method
relies on the fact that even if a Hamiltonian is not hermitian, it leads to a unitary
quantum theory if it exhibits an unbroken PT -symmetry. In the original approach,
the quantization procedure was developed for an isolated PU oscillator. Of course,
being isolated, the ghostly degree of freedom is harmless [181]. One should actually
check if couplings to other oscillators (or other dynamical systems) can be consis-
tently added in such a way that the theory remains stable. In [190], the coupling
of hermitian and non-hermitian Hamiltonians was explored and it was shown that
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if the coupling constant is large enough, the energies can become complex. In some
other works [182, 183], higher derivative supersymmetric theories are studied and
it is shown that some special types of interactions do not spoil the unitarity of the
theories. On the other hand, while the quantization method yields a system with
positive energies, the classical Hamiltonian remains unbounded so that one needs to
establish how the classical limit should be taken. Here we shall not make use of this
quantization approach, but we shall take advantage of the existing residual gauge
symmetry to get rid of the undesired degree of freedom. Moreover, we shall discuss
how the quantization is consistent in view of the results of the previous Section.

The Hamiltonian for the free PU field in terms of the conjugate momenta,

Π1 =
∂L
∂φ̇
− d

dt

∂L
∂φ̈

= −ξ�φ̇, (7.52)

φ2 = φ̇ , Π2 =
∂L
∂φ̈

= ξ�φ, (7.53)

is given by

H0 = Π1φ2 +
Π2

2

2ξ
+ Π2∇2φ , (7.54)

where the expected Ostrogradski instability associated with Π1 is represented by
the unbounded first term. This is not fatal by itself, as we have discussed above,
but it can, in general, lead to instabilities when we couple it to another field. At
the classical level, this instability can show up by the excitation of arbitrarily many
modes coupling to φ at the cost of lowering H0 indefinitely. As we have seen for
the PU oscillator, we do not have any tachyonic instability, all the modes have
real propagation speeds. Only for the degenerate case (that corresponds to our
Stückelberg field) we have a mode that grows linearly with time, associated with
having a double pole. This represents a much milder instability than those associated
with tachyons.

On the other hand, we notice that this Hamiltonian does not have the gauge sym-
metry of the theory. However, it will obviously lead to a set of Hamilton equations
that do satisfy the symmetry. This should not be surprising since the Hamiltonian,
in general, does not preserve symmetries. In particular, it does not respect Lorentz
symmetry, although the corresponding theory does. It is the set of physical observ-
ables that must respect the symmetries of the theory. For instance, one can always
perform a canonical transformation that will change the form of the Hamiltonian,
but will leave the equations of the dynamical system invariant. Moreover, in the
case of a field theory, it is possible to add a 3-divergence or a total time derivative
to the Hamiltonian density without modifying the quantum theory [189]. In terms
of the canonical variables, the gauge symmetry of the action reads Π1,2 → Π1,2,
φ1 → φ1 + θ, φ2 → φ2 + θ̇ with θ an arbitrary harmonic function. In principle, one
could try to construct a gauge-invariant Hamiltonian by using the aforementioned
allowed modifications, although we shall not pursue this approach here. Instead, we
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shall use the freedom given by the gauge symmetry to select a set of gauge-related
modes for which the energy is positive.

For our equations of motion, the field can be expanded in Fourier modes as
follows:

φ =

∫
d3k

(2π)3/2

1

(2k)3/2

[
(ak + ibkkt)e

i(~k·~x−kt) + (a∗k − ib∗kkt)e−i(
~k·~x−kt)

]
. (7.55)

After quantization, ak, bk and a∗k, b
∗
k are promoted to operators ak, bk and a†k, b†k

respectively. Notice that ak is the pure gauge mode since it is modified by residual
gauge transformations. In fact, gauge-invariant quantities (that will be determined
by �φ) only depend on bk and b∗k.

Using the above field decomposition, the Hamiltonian can be expressed as

H =

∫
d3x : H0 := ξ

∫
d3kk

[
b†kbk −

1

2

(
a†kbk + b†kak

)]
, (7.56)

where the double dots : : denote the normal ordering operator. As anticipated, the
Hamiltonian is not gauge invariant which is reflected by its dependence on the gauge
mode ak. Since we are free to perform a gauge transformation we could eliminate
it from the physical spectrum by fixing some suitable gauge. Below, we explicitly
show how to proceed.

Another approach is to impose an additional subsidiary condition à la Gupta-
Bleuler4 and to define a physical Hilbert space in which the expectation value of the
gauge-dependent piece of the Hamiltonian vanishes. The easiest way to achieve this
is to define the physical states as those which are annihilated by the gauge mode:
ak|phys〉 = 0. In fact, this is too restrictive and can be relaxed, since imposing the
more general condition (ak − iαbk) |phys〉 = 0 with α some arbitrary real number,
suffices to make the energy gauge invariant and positive for the physical Hilbert
space. Moreover, if we only want to have positive energies, the parameter α of the
subsidiary condition can also be complex, we just have to require that Im α > −1.
This can be seen by computing the expectation value of the Hamiltonian in a physical
state:

〈H〉phys = ξ(1 + Im α)

∫
d3kk〈b†kbk〉phys. (7.57)

Notice that for the energy of the physical modes to be positive for α real we need
ξ > 0 and it has canonical energy if ξ = 1. The case with Im α = −1 in which
the expectation value of the Hamiltonian vanishes is also interesting. Then, the
gauge mode exactly cancels the energy of the physical mode, rendering this case
equivalent to the original Gupta-Bleuler formalism for which the temporal and lon-
gitudinal modes of the electromagnetic potential cancel each other so that there is
no contribution from them to the energy5. The choice of the subsidiary condition
with α real seems a natural choice because it fully eliminates the gauge-dependent

4See for instance [191].
5In the standard Gupta-Bleuler approach to quantize electromagnetism, one requires the weak

Lorenz condition so that the positive frequency part of field operator ∂µA
µ annihilates the physical
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piece of the Hamiltonian and it amounts to identifying a physical state as the entire
equivalence class of states that differ only by a gauge mode. In terms of the PU field,
the subsidiary condition with α real can be written as φ(+)(t0)|phys〉 = 0 where φ(+)

is the positive frequency part of the field operator and t0 some given time. In other
words, the physical states are those for which the expectation value of φ vanishes at
some time, i.e., 〈φ〉phys = 0 for some t = t0.

For our bi-harmonic equation of motion, one can define the scalar product(
φk, φk′

)
= i

∫
d3x
[
Φ∗Tk Πk′ − Π∗Tk Φk′

]
= −iξ

∫
d3x
[ (
φ∗k�φ̇k′ −�φ̇∗kφk′

)
−
(
φ̇∗k�φk′ −�φ∗kφ̇k′

) ]
(7.58)

where T stands for the transpose and we have introduced the notation

Φk ≡
(
φk
φ̇k

)
Πk ≡ ξ

(
−�φ̇k
�φk

)
. (7.59)

The modes that we have used to decompose the field in (7.55) are not orthonormal
with respect to this scalar product so that the corresponding operators do not satisfy
the usual commutation relations, but they have the following commutation algebra:[

ak, a
†
k′

]
=
[
ak,b

†
k′

]
=
[
bk, a

†
k′

]
= −2

ξ
δ(3)(~k − ~k′) (7.60)

with all the other commutators vanishing. The modes that diagonalize the scalar
product are6:

φ1,k =
1

(2π)3/2

5−1/4

(2k)3/2

√
2

ξ

(
1−
√

5

2
+ ikt

)
ei(

~k·~x−kt) (7.61)

φ2,k =
1

(2π)3/2

5−1/4

(2k)3/2

√
2

ξ

(
1 +
√

5

2
+ ikt

)
ei(

~k·~x−kt) (7.62)

with eigenvalues +1 and −1 so that the modes φ2,k have negative norm and this leads
to a Hilbert space with indefinite metric. The PU field operator can be expanded
as

φ =

∫
d3k

∑
λ=1,2

(
aλ,kφλ,k + a†λ,kφ

∗
λ,k

)
, (7.63)

states, which guarantees that 〈∂µAµ〉phys = 0. This is imposed in order to recover the classical
Maxwell equations or, equivalently, so that only the transverse photons contribute to physical
observables. However, as shown in [192] one could relax this condition and only require that
physical states |ψ〉 are such that they have positive norm on physical observables 〈Oψ|Oψ〉, where
O belongs to the observables algebra, defined as those operators that commute with the generator
of the residual gauge symmetry.

6Notice the interesting appearance of the golden ratio τ = 1+
√

5
2 and its inverse τ−1 = − 1−

√
5

2 .
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where now the modes are orthonormal with respect to the scalar product (7.58) and
the annihilation and creation operators satisfy the commutation relations[

aλ,k, a
†
λ′,k′

]
= ηλ,λ′δ

(3)(~k − ~k′) (7.64)

with ηλλ′ =diag(1,−1). Here we see how the negative norm modes appear in the
commutation relations and lead to the indefinite metric for the corresponding Hilbert
space. The relation of these operators with ak and bk is given by:

ak =
5−1/4

√
2ξ

[
a1,k + a2,k −

√
5(a1,k − a2,k)

]
, (7.65)

bk =

√
2

ξ
5−1/4

(
a1,k + a2,k

)
. (7.66)

Notice that the physical gauge-invariant mode bk is now given by (a1,k + a2,k), i.e.,
�φ is given in terms of such a combination. The hamiltonian in terms of these
operators reads:

H =

∫
d3k

k√
5

[(
1 +
√

5
)

a†1,ka1,k +
(

1−
√

5
)

a†2,ka2,k +
(
a†1,ka2,k + a†2,ka1,k

)]
(7.67)

Now we can impose the subsidiary condition (ak − iαbk)|phys〉 = 0 to obtain the
physical Hilbert space. If we translate such a condition to the new operators it reads[

(1−
√

5− 2iα)a1,k + (1 +
√

5− 2iα)a2,k

] ∣∣∣phys
〉

= 0 (7.68)

and the expectation value of the Hamiltonian in a physical state is again gauge-
independent and positive definite. Another way of quantizing the theory that takes
advantage of the expansion in orthonormal modes is to fix the gauge such that we
eliminate the negative norm mode and, then, quantizing the positive norm mode
alone, in analogy to the quantization in the Coulomb gauge for standard QED. To
do this, one has to fix the gauge a2,k = 0 a priori. This corresponds to choosing the
gauge mode ak = −τ−1bk and a∗k = −τ−1b∗k, with τ the golden ratio, for the classical
amplitudes. Then, the PU field operator is expanded in terms of the remaining
positive modes, i.e.:

φ =

∫
d3k
[
a1,kφ1,k + a†1,kφ

∗
1,k

]
. (7.69)

Thus, these modes are orthogonal with norm +1 so that the annihilation and creation
operators satisfy the usual commutation relations [a1,k, a†1,k′ ] = δ(3)(~k − ~k′). We
thus avoid having to work with negative norm states and negative energies from
the beginning without having to impose a subsidiary condition. The disadvantage
of this quantization procedure will be the lost of explicit gauge-invariance. In the
quantization à la Gupta-Bleuler previously mentioned we work with all the modes.
The expectation values of the physical observables are explicitly gauge-independent
because they will only depend on bk and b†k, which are the physical modes that
cannot be removed by means of a gauge transformation.
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The natural concern arising with the discussed procedure to identify the physical
states is whether the introduction of interactions will spoil it. However, as we have
shown in the previous section, if interactions are introduced following a symmetry
principle, this will not be the case because, while the PU field will affect the sector
of charged particles, its own equation of motion remains unaffected. The reason
for this is that introducing the couplings as U(1) gauge interactions leads to the
presence of the associated Noether current, whose divergence is precisely the new
term appearing in the equation of motion of the PU field. Thus, the conservation of
this current also implies that the equation of the PU field is not modified. This is the
crucial point to guarantee that the discussed procedure to identify the physical states
remains unaffected when introducing interactions because the field decomposition
given in (7.55) is also valid (and exact) in the presence of interactions with charged
particles. The equivalent of this statement in standard QED comes from the fact
that, due to current conservation, the divergence of the vector potential satisfies a
decoupled free wave equation so that the selection of the Hilbert space is dynamically
stable.

7.4.2 Cosmological relevance

Let us finally show how the PU field can actually play the role of dark energy. For
that, we first note that �φ satisfies the usual equation for a massless scalar field
which, for a homogeneous field in a FLRW universe with metric ds2 = dt2−a(t)2d~x2,
reads [

d2

dt2
+ 3H

d

dt

]
�φ = 0. (7.70)

The solution of this equation is given by

�φ(t) = C1 + C2

∫
dt

a3
(7.71)

where C1,2 are integration constants. Since the C2-mode decays throughout the
expansion of the universe, only the constant mode C1 is relevant at late time. This
is simply the well known result that a massless7 scalar field is frozen on super-Hubble
scales. If we now compute the energy-momentum tensor for the PU field we obtain

Tµν = ξgµν

(
(�φ)2

2
+ ∂λφ∂

λ�φ

)
− 2ξ∂(µφ∂ν)�φ. (7.72)

Thus, it becomes apparent why the PU field can drive an accelerated expansion.
At late times, �φ is constant so that we obtain that the above energy-momentum
tensor is simply

Tµν =
ξ

2
(�φ)2 gµν . (7.73)

This is the form of the energy-momentum tensor of a cosmological constant with the
value Λ = 4πGξ(�φ)2. Notice that we must have ξ > 0 for the effective cosmological

7More precisely, a scalar field with a mass much smaller than the Hubble expansion rate.
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constant to be positive. This is also what one would expect since, if �φ is constant,
it contributes as a cosmological constant in the action. This result is in agreement
with Ref. [193] where the cosmology of a theory whose action is a general function
of the D’Alembertian of a scalar field is explored and it is found that de Sitter
is an attractor for this type of theories. This is also expected from the results of
Refs. [175, 176, 177, 178], where the symmetry breaking term (∇µA

µ)2 gives rise to
the appearance of an effective cosmological constant on super-Hubble scales. This
relates to our result here because our PU field plays the role of the additional degree
of freedom introduced by the symmetry breaking term there.

Since the field �φ behaves like a massless scalar field, the primordial power
spectrum generated from its quantum fluctuations during a de Sitter inflationary
phase will be the usual scale invariant one given by8 P�φ ' H4

I where HI is the
constant Hubble parameter during inflation. Of course, in a more realistic quasi de
Sitter inflationary phase, we expect a slightly tilted power spectrum with spectral
index proportional to the slow roll parameters. However, the de Sitter expression
will suffice for our purpose.

Interestingly, the scale of the effective cosmological constant is set by the scale
of inflation M2

pΛ ' (�φ)2 ' H4
I ' (M2

I /Mp)
4, with MI and Mp the inflationary

and Planck scales respectively and we have used the Friedmann equation to relate
HI with MI . Since we know that Λ ' H2

0 where H0 denotes the Hubble parameter
today, we obtain M4

I ' H0M
3
p . If we use the corresponding values for H0 and Mp

we find MI ' 1TeV, i.e., the electroweak scale. This is the result that was also
found in Ref. [175, 176, 177, 178] where the role of effective cosmological constant is
played by (∇µA

µ)2. Also, in [78] it is shown that quantum fluctuations of a scalar
field during inflation can produce dark energy provided its mass is smaller than the
Hubble expansion rate today.

This is a general feature of this type of models: If we have an action without
any dimensionfull parameter that effectively gives a massless scalar field and whose
energy density is constant on super-Hubble scales, then the value of the effective
cosmological constant that is generated during an inflationary phase taking place
at the electroweak scale coincides with the observed value. However, the scalar
field must arise from some non-standard mechanism, since the energy density of a
standard scalar field is diluted by the expansion of the universe. In the present
case, the effective scalar field is the physical degree of freedom remaining in the
degenerate PU model that is associated with the d’Alembertian of the field, while
in [175, 176, 177, 178] its role is played by the divergence of the vector field.

8The power of H4
I appearing here as opposed to the power H2

I found for the usual scalar field
can be understood from dimensional arguments, but the underlying reason is that φ satisfies a
fourth order equation so that it has a different normalization. Thus, although �φ satisfies the
same equation as a massless scalar field, the power spectrum amplitude is different.
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7.5 Conclusions and outlook

In this work we have shown that the degenerate Pais-Uhlenbeck field arises naturally
as the Stückelberg field that restores the full U(1) gauge symmetry in the action
for a vector field including the usual Maxwell term plus a term ∝ (∂µA

µ)2. We
have seen that, in a given gauge, the Stückelberg field decouples from the vector
field and satisfies the equation of motion of the degenerate PU field. Moreover,
it determines the value of the longitudinal mode of the vector field so that it can
be identified with it. After fixing to the decoupled gauge, we are left with the
residual gauge symmetry analogous to the one remaining after imposing the Lorenz
condition in standard electromagnetism. For the scalar field, this residual symmetry
is an invariance under the addition of an arbitrary harmonic function so that it is a
generalized version of the shift or galilean symmetries.

Although we have a fourth order theory, it propagates only one physical degree
of freedom, since the second degree of freedom can be removed by the residual
symmetry. Also the ghost-like mode that one expects from a fourth order theory
can be removed from the physical spectrum by an appropriate gauge choice so that
the free Hamiltonian only contains the gauge-invariant and positive energy of the
physical degree of freedom. This can be achieved easily in the case of the free field,
however, the introduction of interactions could spoil the mechanism by exciting the
ghost-like mode. We have shown that if the couplings are introduced in a manner
that the PU field acts as the gauge boson associated with a U(1) symmetry, then
the excising mechanism is not spoilt, i.e., the selection of the physical Hilbert space
is dynamically stable.

We have explicitly worked out two particular cases: coupling to a complex scalar
field and to a Dirac fermion. We have seen that in both cases, the equation of mo-
tion for the PU field remains unaffected thanks to the current conservation granted
by the global U(1) symmetry. This is crucial for the stability of the theory because
guarantees that the ghost will not be reintroduced in the theory by the interac-
tions and the quantization procedure remains consistent even in the presence of
interactions.

Even though particles that are charged under such a U(1) group are affected by
the presence of the PU field, they cannot generate the PU field. One way in which
it could be produced is from quantum fluctuations during the inflationary era in
the early universe. Once the quantum fluctuations are amplified, the super-Hubble
modes contribute as an effective cosmological constant to the energy-momentum
tensor whose scale is determined by the scale of inflation. The homogeneous evolu-
tion is exactly the same as in standard ΛCDM. However, as the cosmological term
is truly the dynamical PU field, it can be perturbed and the evolution of the cosmo-
logical perturbations including it will differ from standard ΛCDM. This provides us
with a mechanism that can help to discriminate this model from a pure cosmological
constant.
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Conclusions and outlook

During my thesis I have been working on different aspects of theoretical and observa-
tional relativistic cosmology. All addressed projects were related to the puzzling dark
sector which contributes up to 96% of the present matter content of the universe.
If Dark Matter seems to have the typical proprieties of non-relativistic particles, we
do not have any clue about the nature of Dark Energy. From the theoretical side
I have considered different approaches to explain the observed acceleration of the
expansion of the universe, while on the observational side I have worked on Large
Scale Structure observables, to understand how competitive a model independent
analysis can be for future surveys, which will hopefully enlighten us about the na-
ture of the dark sector.

The most conservative idea which has been proposed to explain the (appar-
ent) acceleration of the expansion of the universe is definitively the so-called Back-
Reaction. This idea does not require any new physics, but it is based on the fact
that the universe is homogeneous on average only. Because Einstein’s equations are
highly non-linear, they do not commute with the average procedure. Starting from
a FLRW metric as a background, and studying the perturbations around it, can be
an oversimplification which could lead to a wrong interpretation of the cosmologi-
cal observations. To study the validity of this idea is fundamental to analyze how
inhomogeneities affect light propagation, since most of the observational evidences
supporting Dark Energy come from distance-redshift relation measurements. We
have considered a toy model, which exhibit unobserved symmetries which allow to
solve exactly and fully relativistic the Einstein equations, and linear perturbation
theory to compute the vector and tensor contributions to the luminosity distance. In
the various cases that we have considered the effects induced by the inhomogeneities
on the distance-redshift relation were far too small to explain the observations with-
out assuming Dark Energy. In addition, we start having new evidences supporting
Dark Energy, which do not rely on distance-redshift relation.

Even if all the attempts of using Back-Reaction to explain the apparent accel-
eration of the universe expansion have failed until now, these effects, which are
typically on 1−2% level, should be correctly and carefully taken into account in
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future precision cosmology analysis. We need to understand how the accuracy of
our measurements is affected by stochastic inhomogeneities. In particular, they may
play a role in the determination of Dark Energy equation of state, which can dis-
criminate between a cosmological constant and a Dark Energy or Modified Gravity
model.

A less conservative approach consists in introducing an additional field which
drives the late time acceleration. Many models have been studied in the last decade.
Generically they dominate the matter content of the universe in the late time, but
they suffer from fine-tuning problems or they exhibit superluminal propagation.
In the past it has been shown that a longitudinal vector mode can play the role
of an effective cosmological constant whose value is linked with the energy scale of
inflation. In our work we have identified this mode with a scalar field described by an
higher derivative theory, namely the Pais-Uhlenbeck field. The Pais-Uhlenbeck field
has been introduced as a Stückelberg field to recover the U(1) gauge invariance in
the action for a massless vector field broken by a non-standard kinetic term. With
this motivation we have determined a natural interaction for the Pais-Uhlenbeck
field. Interestingly, its dynamics is not affected by the coupling with charged scalars
or fermions. This feature assures that the ghost mode (related to the Ostrogradski
instability for higher derivative theories) is not reintroduced by the interactions,
once we get rid of it in the quantization of the free theory.

At the background level this model behaves like an effective cosmological con-
stant. But at higher order in the perturbative expansion its dynamics can help
us to discriminate it from a ΛCDM model. We expect indeed an imprint of the
Pais-Uhlenbeck field perturbations on cosmological probes like CMB anisotropies or
matter power spectrum P (k). This analysis can be performed with current datasets,
constraining the primordial amplitude and the tilt of the Pais-Uhlenbeck perturba-
tions sourced during the inflationary era.

Nowadays in cosmology there are various models which still agree with obser-
vations. For many years the accuracy of the cosmological measurements was not
enough to sensitively decrease the allowed parameter space. The limited amount of
data required a model dependent analysis to extract some useful information. In
the last years, with the successful CMB anisotropy experiments, we are entering in
the so-called precision cosmology era, where we aim to reach a precision within the
percent level. Future missions will be focused on observing Large Scale Structures.
The galaxy distribution contains a wealthy information about the dark side of the
universe. But to reveal the nature of the dark universe we need to face different
problems, like the non-linear effects of structure formation or the galaxy bias. More-
over to reach the required precision we should consider new effects that could be
neglected in previous surveys. The amount of data from future surveys will allow
us to proceed in a model independent way. In this framework we have developed a
numerical code classgal which, accurately and efficiently, computes the Large Scale
Structures observables including all the relativistic effects at linear order in pertur-
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bation theory. We have then shown that an analysis based on observable quantities,
namely the galaxy number counts, is competitive with respect to the traditional
model dependent 3-dimensional analysis based on the matter power spectrum P (k).
We have also analyzed the amplitude of the effects that are neglected in the tradi-
tional analysis, finding that for deep redshift surveys the lensing contribution may
become important. This opens the opportunity of measuring the lensing potential
directly in galaxy surveys.

Our work was based on Fisher matrix analysis adopting a sharp cutoff for non-
linear scales. So, in this perspective, a more realistic analysis based on Monte Carlo
Markov Chain with mock data should be performed. It is also important to quantify
the theoretical error induced by middle non-linear scales. Then, we need to quantify
the impact on cosmological parameter estimation of the terms which are neglected
in the usual analysis. They may induce a bias limiting the accuracy of the param-
eter estimation. In particular we have shown that the lensing contribution is not
negligible. This means that future surveys will have the possibility to discriminate
between General Relativity and theories of Modified Gravity which usually predict
a different lensing potential. We are also interested in going to higher order cor-
relation functions, like the 3-point function and the related bispectrum. Since at
linear level a non-vanishing bispectrum requires non-gaussian perturbations, we can
determine with which accuracy Large Scale Structure observables can constrain the
primordial non-gaussianity. On the other hand CMB anisotropy experiments allow
only for small deviations from gaussian initial conditions. In this case, to compute
the 3-point function we need to re-derive the predicted galaxy number counts at
least at second order in perturbation theory.

Cosmology is entering in a new era. Future large scale surveys will provide a
wealthy amount of data challenging cosmologists to develop new approaches and
tools to really profit of it. In the next decades we will have the opportunity of
revealing the nature of the dark sector which contributes up to the 96% of the of
the present matter content of the universe. Any discovery that will help physicists
to understand the nature of Dark Energy and Dark Matter will be considered a
milestone in the history and will lead us to a new physics, with new and deeper
puzzling questions.
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