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Abstract 

Sepsis is defined as a life‑threatening organ dysfunction caused by a dysregulated host response to infection. In this 
context, biomarkers could be considered as indicators of either infection or dysregulated host response or response 
to treatment and/or aid clinicians to prognosticate patient risk. More than 250 biomarkers have been identified 
and evaluated over the last few decades, but no biomarker accurately differentiates between sepsis and sepsis‑like 
syndrome. Published data support the use of biomarkers for pathogen identification, clinical diagnosis, and optimiza‑
tion of antibiotic treatment. In this narrative review, we highlight how clinicians could improve the use of pathogen‑
specific and of the most used host‑response biomarkers, procalcitonin and C‑reactive protein, to improve the clinical 
care of patients with sepsis. Biomarker kinetics are more useful than single values in predicting sepsis, when making 
the diagnosis and assessing the response to antibiotic therapy. Finally, integrated biomarker‑guided algorithms may 
hold promise to improve both the diagnosis and prognosis of sepsis. Herein, we provide current data on the clinical 
utility of pathogen‑specific and host‑response biomarkers, offer guidance on how to optimize their use, and propose 
the needs for future research.
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Introduction

Sepsis is defined as a life-threatening organ dysfunction 
caused by a dysregulated host response to infection [1]. 
In this context, biomarkers could be considered as indi-
cators of either infection or dysregulated host response 
or response to treatment and/or help clinicians to prog-
nosticate patient risk. In daily bedside practice, for the 
diagnosis and management of sepsis as well as for antibi-
otic stewardship, clinicians combine data from different 
sources that results from the intersection of three vec-
tors (Fig. 1): systemic manifestations, organ dysfunction 
and microbiological documentation. Biomarkers could 

provide additional information in the vector systemic 
manifestations (host-response biomarkers e.g., C-reactive 
protein–CRP, and procalcitonin–PCT), organ dysfunc-
tion (e.g., kidney injury biomarkers) and microbiologi-
cal documentation (pathogen-specific biomarkers—see 
Table  1). The first two vectors are neither specific nor 
sensitive to sepsis. The microbiological documentation 
often takes at least 2–3  days to finalize and is not par-
ticularly sensitive especially when cultures are collected 
while patients are receiving antimicrobial therapy. Thus, 
approximately 40–50% of cases of sepsis are deemed to 
be culture-negative [2, 3]. Biomarkers have been stud-
ied in the context of prediction of sepsis [4], diagnosis 
of sepsis [5], assessment of sepsis response to therapy 
[6–8] and biomarker-guided antibiotic therapy [9] (for 
examples of clinical scenarios of sepsis with biomarker 
use see—ESM). In addition, biomarkers of sepsis can be 
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divided into prognostic, predictive and theranostic, i.e., 
to guide choice, dose, and duration of therapy (Fig. 1).

More than 250 biomarkers have been studied and 
evaluated over the last decades, which were reviewed in 
detail recently elsewhere [10]. The aim of this review is to 
inform clinicians about biomarkers of infection or sepsis 
and guidance as to their use, namely pathogen-specific 
biomarkers, and two host-response biomarkers, PCT and 
CRP.

How to use biomarkers?
Faced with a suspicion of sepsis the clinician has several 
questions to address. As well recognized by the Surviving 
Sepsis Campaign guidelines [11] the first questions are:

1) What is the likelihood of infection?
2) What is the severity of illness and the risk to develop 
septic shock?
3) What is/are the most likely pathogen(s)?
4) What is the most appropriate antimicrobial treat-
ment?
5) Is the patient improving or not, and if not, why?
6) When can antimicrobials be stopped?

Clinicians frequently try to answer these questions with 
the aid of biomarkers, but it is important to acknowledge 
that biomarker performance in sepsis management is 
suboptimal [12].

Pathogen‑specific and host‑response biomarkers
Biomarkers are described as a biological characteristic, 
objectively measured, and used as a surrogate marker 
for a physiological or pathologic process, or as an indica-
tor of the activity of a drug [13]. In the present context, 
biomarkers of infection and sepsis could be considered 
as indicators of either infection or dysregulated host 
response or response to treatment.

Pathogen‑specific biomarkers
Although the detection of microbial nucleic acids is 
becoming more common, their place in the management 
of infections in general, and in bacterial infections spe-
cifically, remains uncertain and it is not yet well stand-
ardized [14]. Pathogen-specific biomarkers, like direct 
antigen tests, are already widely used in the critically ill. 
The pooled diagnostic performance of the major tests is 
shown in Table 1.

Most rapid antigen-based tests are based on immuno-
chromatographic assays and have the potential for bed-
side use. Influenza and SARS-CoV-2 respiratory antigen 
tests, and Streptococcus pneumoniae and Legionella spp. 
urinary antigen tests are used in community-acquired 
pneumonia (CAP). They exhibit a high specificity, but 

low to moderate sensitivity. Notwithstanding improve-
ments through automated reading, a negative test can-
not be reliably considered to be a rule-out result [15]. 
Legionella antigen tests detect Legionella pneumophila 
serogroup 1. While this is the predominant cause of 
legionellosis, false negatives occur with other serogroups 
or species [15]. The diagnostic accuracy of pneumococcal 
antigen tests is also highly dependent on serotype; lower 
sensitivity has been noted due to antigenic shift following 
the introduction of the 13-valent polysaccharide conju-
gate vaccine. Currently, few rapid diagnostic tests, such 
as the  mariPOC® test, utilize multiplex testing for several 
pathogens in a single sample. But none of the antigenic 
tests give information about antibiotic sensitivity.

Clostridioides difficile infection (CDI) can be diagnosed 
in symptomatic patients, using a two-step algorithm with 
rapid enzyme immunoassays to test stool samples for 
both glutamate dehydrogenase (GDH) and free toxins A 
and B. Low positive predictive values at low CDI preva-
lence should prevent either test from being used alone 
[16]. The GDH test is highly sensitive, and if positive, is 
combined with the more specific toxin A/B detection 
test. Careful evaluation of patients with positive GDH but 
a negative toxin A/B detection is needed, as it may indi-
cate CDI with toxin levels below the detection threshold 
in patients with diarrhea or non-toxigenic Clostridioides 
difficile carriage.

Fungal antigen assays target structural polysaccharides 
derived from fungal cell walls. (1,3)-β-D-glucan (BDG) is 
a panfungal serum biomarker commonly used to detect 
invasive candidiasis. With high sensitivity, but poor 
specificity, BDG is a valuable tool to rule-out invasive 
candidiasis in low-prevalence intensive care unit (ICU) 
[17]. However, a recent randomized clinical trial (RCT) 
failed to demonstrate survival benefits from BDG-guided 
early initiation of antifungal therapy in critically ill sep-
tic patients with a low to intermediate risk for invasive 
candidiasis, and at the cost of a substantial overuse of 
antifungals [18]. Similarly, BDG has a high negative pre-
dictive value for the diagnosis of Pneumocystis jirovecii 
pneumonia in non-HIV patients and a low/intermedi-
ate likelihood of the disease [19]. Specificity and positive 

Take‑home message 

This narrative review shows that pathogen‑specific and host‑
response biomarkers can be useful tools for clinicians since they 
provide additional information to optimize patient care at the bed‑
side. Serial determinations are more informative than a single value. 
Biomarkers should never be used as a stand‑alone test, but always 
in conjunction with a thorough clinical evaluation and comprehen‑
sive knowledge of the biomarkers’ biology, interferences, strengths, 
and limitations.
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SEPSIS

UNSPECIFIC SIGNS
OF INFECTION

MICROBIOLOGIC 
DOCUMENTATION

ORGAN
DYSFUNCTION

Prognostic

Biomarkers

Theranostic

Predictive

Assess the likelihood of an event or outcome during the course of sepsis; 
limited clinical usefulness; useful for trial enrichment

Comments

(precision medicine)

Add valuable information (post-test probability) to the initial clinical suspicion 
of sepsis (pre-test probability); can be useful in sepsis diagnosis and 
monitoring response to therapy

Fig. 1 The three vectors of the sepsis approach: systemic manifestations, organ dysfunction and microbiological documentation (see text). 
Biomarkers could provide additional information in the vector systemic manifestations (host‑response biomarkers e.g., C‑reactive protein–CRP, and 
procalcitonin–PCT), organ dysfunction (e.g., kidney injury biomarkers) and microbiological documentation (pathogen‑specific biomarkers—see 
Table 1). Biomarkers can be classified as prognostic, predictive and theranostic. Prediction refers also to the ability of a biomarker to predict the 
occurrence of sepsis before its clinical suspicion (presymptomatic) as well as identify the response to therapy. For this purpose, biomarkers kinetics 
are more informative than a single value. A useful biomarker for the assessment of response to therapy should decline or return to baseline levels 
with successful therapy or remain elevated or increase if sepsis is treatment‑refractory. To evaluate the clinical course, the biomarker should exhibit 
a large amplitude of variation, and neither ‘exhaustion’ nor ‘fatigue’ behavior with prolonged sepsis episodes
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Table 1 Main pathogen‑specific biomarkers used in routine practice in critically ill patients

Biomarker Methods Infection 
diagnosis

Sample  
(Cut‑off)

Diagnostic accuracy Comments

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Influenza A/B Ag 
test

EIA
ICT
FIA

Influenza 
pneumonia

Nasal swab
Other respira‑

tory samples

0.69  
(0.64–0.74)

0.97  
(0.96–0.98)

Sensitivity varies according to test method (higher 
sensibility with FIA > ICT—EIA) and population

Rapid results with ICT

SARS‑CoV‑2 Ag 
test

ICT
FIA

SARS‑CoV‑2 
pneumonia

Nasal swab
Other respira‑

tory samples

0.70  
(0.69–0.71)

0.98  
(0.98–0.98)

Higher sensitivity with nasal swab (versus other 
respiratory samples), among symptomatic patients 
(versus asymptomatic) and with higher viral load 
(RT‑PCR cycle threshold ≤ 25)

Rapid results

Streptococcus 
pneumoniae

urinary Ag test

ICT
FIA

Pneumococcal 
pneumonia

urine 0.72  
(0.62–0.80)

0.83  
(0.65–0.93)

Sensitivity varies depending on the pneumococcal 
serotype

Higher sensitivity with FIA > ICT, and in pneumonia 
with positive blood or pleural fluid cultures

No impact of antibiotic exposure on sensitivity
False positives: Streptococcus pneumoniae colonisa‑

tion in children, vaccination (48 h), prior infection 
(several months)

Rapid results (15 min)
Can also be used on CSF in suspected pneumococ‑

cal meningitis

Legionella
urinary Ag test

EIA
ICT
FIA

Legionellosis 
caused by 
Legionella 
spp.

urine 0.79  
(0.71–0.85)

1.00  
(0.99–1.00)

Mainly detect Legionella pneumophila serogroup 1 
(LP1), resulting in higher sensitivity for legionellosis 
cause by LP1 0.84 (0.75–0.90)

Higher sensitivity with FIA > ICT > EIA, and in severe 
legionellosis

No impact of antibiotic exposure on sensitivity
Rapid results (ICT/FIA 15 min, EIA 90 min)

Glutamate 
dehydrogenase 
(GDH)

EIA Clostridioides 
difficile infec‑
tion

unformed stool 0.94  
(0.89–0.97)

0.90  
(0.88–0.92)

At low CDI prevalence (5%), PPV 34–38% and NPV 
100%

Rapid results

Clostridium difficile 
toxins A/B

EIA Clostridioides 
difficile infec‑
tion

unformed stool 0.83  
(0.76–0.88)

0.99  
(0.98–0.99)

At low CDI prevalence (5%), PPV 69–81% and NPV 
99%

Rapid results (30 min)
Several tests include both detections of GDH and 

toxins A/B
A positive GDH result but negative toxins A/B 

detection may indicate a false positive GDH, a false 
negative toxins A/B result, CDI with toxin levels 
below the threshold of detection, or toxigenic 
Clostridioides difficile carriage

(1,3)‑β‑D‑glucan 
(BDG)  
(Fungitell® assay)

Protease 
zymo‑
gen‑
based 
col‑
orimetric 
assay

Invasive  
Candida infec‑
tion

Serum  
(> 80 pg/mL)

0.81  
(0.74–0.86)

0.60  
(0.49–0.71)

Early positivity (24‑72 h before blood culture), slow 
decreasing kinetics (up to 7 weeks persistence 
after positive blood culture)

Sensitivity depends on fungal species (lower sensi‑
bility for C. parapsilosis)

At a low prevalence of invasive Candida infection 
(< 5%), PPV 10–15% and NPV > 95%

Specificity and PPV can be increased by two con‑
secutive positive samples, increased cut‑off value, 
or combination with other specific biomarker for 
Candida such as mannan or Candida albicans germ 
tube‑specific antibody

BDG test requires glucan‑free laboratory equipment
Numerous causes of false‑positive results, but less 

frequent in current clinical practice than in theory: 
fungal colonization, severe mucositis, disruption of 
gastrointestinal tract integrity, blood transfusions, 
albumin, immunoglobulin, hemodialysis/hemofil‑
tration, surgical gauze, β‑lactam antibiotics, enteral 
nutrition, Gram‑positive bacteremia, sample 
contamination
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predictive value can be increased by repeating the test 
and/or increasing the cut-off value.

Galactomannan (GM) can be measured in serum and 
broncho-alveolar lavage (BAL) samples and shows high 
specificity for the diagnosis of invasive pulmonary asper-
gillosis (IPA). Of note, GM testing of BAL fluid is more 
sensitive than serum testing for diagnosing IPA in non-
neutropenic patients, and this test plays a central role in 
the diagnostic criteria for IPA amongst the critically ill 
[20]. Rapid, bedside Aspergillus lateral-flow device tests 
for BAL samples have been developed and research is 
ongoing (Trial ISRCTN 43895480). Cryptococcal antigen 
detection in serum is highly predictive of cryptococcal 
meningitis in HIV patients with central nervous system 
symptoms [21].

Pathogen-specific biomarker-guided algorithms have 
also been tested. Two RCT assessed a BDG-guided strat-
egy on discontinuation of empirical antifungal therapy in 

critically ill patients with suspected invasive candidiasis 
showing that it was safe and associated with a reduction 
of the duration of antifungal therapy [22, 23].

Host‑response biomarkers
In the following section, we discuss two host-response 
biomarkers, PCT and CRP.

Procalcitonin
Procalcitonin is a prohormone that is the precursor of 
calcitonin; PCT is produced by almost all organs and 
macrophages, and its levels start to increase at 3–4  h 
after an inflammatory stimulus, peaking at about 24  h, 
and with a half-life of 22–35  h [24] (Table  2). However, 
PCT levels are influenced by glomerular filtration rate as 
well as renal replacement therapy [25, 26].

Table 1 (continued)

Biomarker Methods Infection 
diagnosis

Sample  
(Cut‑off)

Diagnostic accuracy Comments

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Pneumocystis 
jirovecii 
pneumonia

Serum  
(> 80 pg/mL)

0.91  
(0.87–0.94)

0.79  
(0.72–0.84)

Increased sensitivity in HIV patients 0.94 (0.91–0.96) 
versus non‑HIV patients 0.86 (0.78–0.91)

At low/intermediate pre‑test probability (≤ 20% in 
non‑HIV and ≤ 50% in HIV), NPV ≥ 95%

A negative BDG cannot rule out the diagnosis 
among patients with a higher likelihood of Pneu-
mocystis jirovecii pneumonia

Galactomannan 
(GM)

EIA Invasive 
pulmonary 
aspergillosis

Serum 
(ODI ≥ 0.5)

Serum  
(ODI ≥ 1)

0.74  
(0.64–0.82)

0.79  
(0.60–0.91)

0.85  
(0.77–0.90)

0.88  
(0.78–0.94)

Increasing cut‑off (ODI ≥ 1) increased both sensitivity 
and specificity

False negatives are frequent in non‑neutropenic 
critically ill patients, except for Influenza‑associated 
pulmonary aspergillosis

Causes of false‑positive results: intestinal mucositis, 
β‑lactams antibiotics

BAL (ODI ≥ 0.5)
BAL (ODI ≥ 1.0)

0.79  
(0.65–0.88)

0.90  
(0.77–0.96)

0.84  
(0.74–0.91)

0.94  
(0.88–0.97)

Increasing cut‑off (ODI ≥ 1) increased both sensitivity 
and specificity

More useful for the diagnosis of invasive pulmo‑
nary aspergillosis in non‑neutropenic critically ill 
patients than that serum GM

Cryptococcal Ag 
test

EIA
ICT

Cryptococcal 
meningitis

Serum
Cerebrospinal 

fluid

0.99  
(0.88–100)

0.99  
(0.96–100)

0.95  
(0.88–0.98)

0.99  
(0.97–100)

Detects all cryptococcal serotypes
In HIV adults with cryptococcal meningitis symp‑

toms, a negative serum cryptococcal Ag test may 
rule out cryptococcal meningitis

Rapid results (10 min) with point of care lateral flow 
ICT

For the Influenza A/B Ag test, pooled sensitivity and specificity are presented for ICT only. For legionellosis diagnostic, reference test = positive culture and/or PCR 
and/or serology. For CDI diagnosis, reference test = cell cytotoxicity neutralization assay. BDG diagnostic accuracy for invasive Candida infection was assessed in 
an ICU population at risk for ICI, reference standard = European Organization for Research and Treatment of Cancer (EORTC) and the Mycoses Study Group (MSG) 
criteria for proven invasive candidiasis. For Pneumocystis jirovecii pneumonia diagnostic, reference test = cytological sputum staining, except for 2 studies with PCR. 
GM diagnostic accuracy for invasive pulmonary aspergillosis was assessed in patients with impaired immunity suspected of having invasive aspergillosis, reference 
standard = EORTC/MSG criteria for proven/probable aspergillosis. Cryptococcal antigen diagnostic accuracy for cryptococcal meningitis was assessed in HIV-positive 
patients with central nervous system symptoms, reference test = cerebrospinal fluid fungal culture

Ag antigen, BAL bronchoalveolar lavage, BDG (1,3)-β-D-glucan, CDI Clostridium difficile infection, CI confidence interval, EIA enzyme immunoassay, FIA fluorescence 
immunoassay, GM galactomannan, GDH glutamate dehydrogenase, HIV human immunodeficiency virus, ICT immunochromatographic test, NPV negative predictive 
value, ODI optical density index, PPV positive predictive value
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Prediction of sepsis
PCT is the most studied biomarker in the setting of ven-
tilator-associated pneumonia (VAP). The lack of utility of 
PCT measurements, either singly or serial, in VAP pre-
diction and diagnosis has been shown in several observa-
tional studies [4, 27].

Studies of PCT kinetics in critically ill patients showed 
poor diagnostic accuracy and a low impact regarding 
guidance for the initiation of therapy [28]. Thus, although 
associated with decreased antibiotic use in selected set-
tings, the utility of PCT to predict sepsis in the ICU is 
limited.

Diagnosis of sepsis
There is no agreed PCT cutoff value for sepsis diagno-
sis; published studies have either not reported the cut-
off value, or used values ranging from 0.5 to 2 μg/L [29]. 
Numerous noninfectious inflammatory states are also 
associated with elevated PCT serum levels [30]. Three 
separate meta-analyses of PCT for the diagnosis of sep-
sis revealed a sensitivity and specificity range of 77–85% 
and 75–83%, respectively [31–33]. While PCT may be 
superior to CRP in patients with suspicion of sepsis, PCT 
should not be used to guide antimicrobial prescription 
[11, 34]. Similarly, both the 2016 IDSA/ATS guidelines 
[35] and the 2017 ERS/ESICM/ESCMID/ALAT guide-
lines [36] do not recommend the use of PCT for the diag-
nosis of VAP.

In patients with severe CAP, PCT have been evalu-
ated to assess the presence of bacterial co-infection in 

influenza. Preliminary studies in documented influenza 
cases suggest PCT levels may offer a higher negative 
predictive value to rule out bacterial co-infection [37]. 
However, these findings have not been replicated by oth-
ers [38, 39]. More studies are needed before a wider use 
of this strategy, especially in other viral (non-Influenza) 
infections, can be recommended. In addition, a recent 
meta-analysis showed that PCT lacks sensitivity early 
during CAP and cannot reliably distinguish viral from 
bacterial infections at that point [40].

Assessment of sepsis response to therapy
Approximately 48–72  h after the diagnosis of sepsis 
is made and antibiotic therapy is initiated, it is impor-
tant to assess the clinical course of the patient and ask: 
(1) Is the patient clinically improving? (2) If the patient 
is not improving, is it due to an undetected septic com-
plication (e.g., empyema, pulmonary abscess), a second-
ary infection (at the same or another site), inadequate or 
inappropriate antibiotic therapy? (3) Or is it due to a non-
infectious cause?

In VAP patients, PCT measured at onset and on D4 of 
treatment could predict survival, differentiating patients 
with good and bad outcome [41, 42]. Persistent high lev-
els of PCT at D4 of antibiotic therapy were indicative of a 
failure of infection control [43, 44].

In clinical practice, patients who present persistently 
elevated levels of biomarkers by D3/D4 of antibiotic 
therapy should raise suspicion of treatment failure and 
should prompt an aggressive diagnostic and therapeutic 

Table 2 Main host‑response biomarkers used in routine practice in critically ill patients

CRP C-reactive protein, PCT Procalcitonin

C‑reactive protein Procalcitonin

Properties Acute phase protein (pentraxin) Hormokine

Normal values 0.08 mg/dL (median)  < 1 ng/mL

Maximum peak  > 50 mg/dL (> 1000 × reference value)  > 100 ng/mL (> 10.000 × reference value)

Source Liver Virtually all cells and macrophages

Time to increase after insult 4–6 h 3–4 h

Time to peak concentration 36–50 h Around 24 h

Half‑life 19 h 22–35 h

Possible confounders

Steroids No effect frequent false negatives

Immunosuppression No effect frequent false negatives

Neutropenia No effect frequent false negatives

Renal failure No effect ⬆⬆
Renal replacement therapy No effect ⬇⬇
Chronic liver failure ⬇ (70% of the normal) No effect

Acute liver failure No CRP increase No effect

Secondary infection (2nd hit) ⬇ (70% of 1st episode) ⬇⬇⬇ (10% of 1st episode)

Bacterial vs viral infections Poor Poor
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approach. However, caution should be exercised in using 
biomarkers as a stand-alone criterion to decide when to 
escalate the diagnostic. A clinical approach algorithm 
based on the concept of “alert PCT” (PCT ≥ 1  ng/mL 
and not decreasing > 10%/day) was evaluated in an RCT 

showing no mortality benefit at the expense of higher 
large-spectrum antibiotic consumption, more days on 
antibiotics, prolonged length of mechanical ventilation 
and ICU stay [45].

infection, without conditions requiring longer antibiotic therapies
(eg, infective endocarditis, S. aureus bacteremia, osteomyelitis)

*Do not use CRP or PCT levels as the sole criteria to initiate antibiotic therapy

• Obtain cultures
• Initiate appropriate antibiotic therapy within 1h if shock
• Initiate appropriate antibiotic therapy within 3h if sepsis
• Obtain baseline CRP or PCT levels*

Daily patient re-evaluation
Reassess after 3-5 full days of antibiotic therapy
• Progressive improvement of clinical and laboratory signs of infection 

AND absence of persistent foci of infection AND
• SOFA decreasing (2 or more points)

Stop antibiotics when:
• 5 full days of antibiotic therapy and:
- PCT decrease > 80-90% and/or
- CRP decrease > 50%
• 7 full-days of antibiotic therapy 

regardless of the biomarkers

• Diagnostic-related: considerer differential diagnosis of infection;
perform clinical, laboratory and imaging reassessment

• Drug-related: inadequate antimicrobial coverture,
route of administration, antibiotic concentration in the infectious site

• Persistant focus of infection, multiresistant bacteria,
overlapping nosocomial infection, non bacterial infection

• If clinically stable consider stopping antibiotic therapy after 7 full days; 
monitor clinical and laboratory deterioration

Acute increase in SOFA ≥ 2 points OR shock

Yes No

Fig. 2 User’s guide for biomarker‑guided antibiotic therapy. Starting antibiotics in critically ill patients with suspicion of sepsis should be done 
irrespective of any biomarker level. But this should be reassessed daily. Use the clinical course, the organ dysfunction course (with SOFA score), the 
kinetics of biomarkers and the duration of antibiotic therapy to ascertain the optimal duration of therapy. PCT, procalcitonin; CRP, C‑reactive protein; 
SOFA, sequential organ failure assessment, NOTE–CRP and PCT thresholds should be used only as indicative and orientation; These recommenda‑
tions do not apply to immune‑compromised patients nor to patients with infections requiring long‑term antibiotic therapy, like endocarditis or 
osteomyelitis. Adapted from Salluh Crit Care 2014; 18:142 [74]. *Do not use CRP or PCT levels to guide decision to initiate antibiotic therapy



149

PCT-guided antibiotic therapy
While one strategy of antibiotic stewardship is simply 
to convert fixed long antibiotic durations to fixed short 
ones, an increasingly popular approach is to use bio-
markers to personalize antibiotic treatment duration. 
This approach includes the individual patient’s response 
to therapy, matching the antibiotic discontinuation to 
the patient’s actual clinical course. While it was initially 
unknown whether such an approach would be antibi-
otic sparing, increasing evidence confirms a reduction in 
overall antibiotic use with PCT [33, 46]. So far there are 
at least 18 RCT evaluating PCT-guided antibiotic ther-
apy in critically ill patients with strong evidence that this 
strategy is safe, is associated with a shorter duration of 
therapy and, in some RCT, decrease mortality. However, 
the major criticisms were that, in the controls of the early 
RCT, the duration of antibiotic therapy was longer than 
recommended [13].

A recent systematic review and meta-analysis assessed 
the impact of PCT-guided strategy on mortality and 
duration of antibiotic therapy in critically ill patients, as 
well as other factors like industry sponsorship, algorithm 
adherence and simultaneous availability of CRP [47]. 
Overall, PCT-guided strategy decreased antibiotic dura-
tion by 1 day and improved survival, particularly in RCT 
without high protocol adherence and when PCT was 
combined with CRP.

C‑reactive protein
Serum CRP is an acute-phase protein exclusively synthe-
sized in the liver in response to cytokines, in particular 
interleukin 6. Its levels start to increase 4–6  h after an 
inflammatory stimulus, doubling every 8  h, peaking at 
36–50  h, and with a half-life of 19  h [48] (Table  2). Its 
level is not influenced by immunosuppression (steroids 
or neutropenia) nor influenced by renal failure or renal 
replacement therapy, and does not significantly differ 
between individuals with or without cirrhosis [49–52].

Prediction of sepsis
C-reactive protein kinetics in the days before ICU-
acquired sepsis accurately predicted its diagnosis with a 
maximum daily CRP increase > 4.1  mg/dL (in particular 
if associated with an absolute concentration > 8.7  mg/
dL) [53]. A similar finding was observed in a large study 
of community-acquired bloodstream infections (BSI) 
wherein CRP concentration start to increase over the 
three days preceding a definitive diagnosis of BSI [54].

The BioVAP multicenter study investigated biomarker 
kinetics in patients under invasive mechanical ventilation 
for non-infectious reasons in the days before VAP diag-
nosis and found that CRP and the CRP slope over time 
were good predictors of VAP occurrence. This finding 

was not seen with PCT kinetics [4]. However, both the 
2016 IDSA/ATS guidelines [35] and the 2017 ERS/
ESICM/ESCMID/ALAT guidelines [36] do not recom-
mend the use of any biomarker for the diagnosis of VAP, 
neither PCT nor CRP.

Diagnosis of sepsis
The value of a single CRP determination in patients with 
suspicion of sepsis has not been consistently demon-
strated by two meta-analyses (one analysis was of adult-
only trials) noting a sensitivity and specificity range from 
78–80% to 60–61%, respectively [31, 55]. The variable 
accuracy of CRP in clinical studies is also impacted by the 
use of different cutoff points typically ranging between 2 
and 10 mg/dL [48, 56]. However, in a recent prospective 
observational study, CAPTAIN study, assessing the per-
formance of 53 biomarkers in the discrimination between 
sepsis and non-septic systemic inflammatory response 
syndrome (SIRS) it was found that no biomarker or com-
bination performed better than CRP alone, and better 
than PCT [5].

The diagnosis of CAP is frequently difficult because 
chest X-ray may not present infiltrates in the first 
24–72 h. In a study performed on patients with a clinical 
diagnosis of CAP, a CT scan was performed to confirm 
the presence or absence of pneumonia. It was found that 
a very high CRP level was a good predictor of CAP in a 
patient with a false-negative chest X-ray and, conversely, 
low CRP was useful to exclude CAP in a patient with a 
false-positive chest X-ray [57]. However, PCT showed to 
be a poor discriminator of both false-positive and false-
negative chest X-rays.

Assessment of sepsis response to therapy
C-reactive protein has been extensively studied in the 
assessment of response to therapy for several severe 
infections, namely VAP, BSI and CAP; the trajectory 
after the prescription of antibiotics correlates with clini-
cal course and prognosis [6–8]. The use of relative CRP 
variations (CRP-ratio)—the ratio of each day’s CRP con-
centration in relation to the day 0 (D0) level—was more 
informative than absolute CRP changes. A sharp decrease 
in CRP-ratio is a surrogate marker of sepsis resolution 
whereas a persistently elevated or an increasing CRP-
ratio suggests sepsis is refractory to therapy. In patients 
with microbiologically documented VAP, a CRP > 0.6 of 
the initial value at D4 was a marker of poor outcome [8]. 
Similar results were observed in BSI, severe CAP, noso-
comial pneumonia and sepsis [7, 58–60].

Using the concept of CRP-ratio, four individual pat-
terns of response to antibiotic therapy have been defined 
[8]: (1) fast response pattern, consists of a rapid decline 
of CRP-ratio to < 0.4 by D4; (2) slow response pattern, is a 
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continuous decline of CRP-ratio, with a value by D4 > 0.4 
but < 0.8; (3) nonresponse pattern, is defined by a CRP-
ratio persistently > 0.8 (and sometimes even increasing); 
(4) biphasic response pattern, is characterized by an ini-
tial drop in CRP-ratio < 0.8, followed by a secondary rise 
to a value above that threshold. In severe CAP, VAP and 
BSI, patients with fast and slow response patterns had 
significantly lower mortality than patients with either 
nonresponse or biphasic patterns [6–8, 61].

Although there are no RCT, the 2017 ERS/ESICM/
ESCMID/ALAT guidelines recognize the added value 
of biomarkers in the assessment of response to therapy 
namely CRP-ratio and the identification of patterns of 
CRP-ration response [36].

CRP-guided antibiotic therapy
The number of RCT assessing CRP-guided strategy are 
scarce, namely in ICU patients [12]. The first RCT was a 
head-to-head comparison between PCT vs CRP-guided 
strategy and found that CRP was non-inferior to PCT for 
duration guidance and with no difference in morbidity or 
mortality [62]. But very important, in this single-center 
RCT the maximum duration of antibiotic therapy was 
7  days regardless of biomarker levels. So far this is the 
only RCT comparing the performance of both biomark-
ers in antibiotic duration. Subsequently, observational 
and randomized studies have found that CRP-guided 
strategy compared to PCT-guided or fixed duration 
(short course) presented no substantial differences in the 
ability to reflect improvement (or worsening) in the clini-
cal course of sepsis and septic shock as well as in reduc-
ing antibiotic exposure [46, 62–65].

Early trials investigating biomarker-guided strategies 
to guide antibiotic duration had control group patients 
treated according to standard practices [46, 66, 67]. 
Given the lack of evidence for treatment durations for 
most primary foci, these control groups received what 
would today be considered excessively prolonged ther-
apy, resulting in a potentially biased conclusion that a 
biomarker-based strategy was associated with reduced 
antibiotic exposure [68, 69]. To overcome these limita-
tions, more recent trials have used shorter, fixed control 
durations [70–73]. The individualize therapy would be 
to combine the fixed duration with biomarker guidance, 
using a “double trigger” strategy [74]. After some days 
of therapy, antibiotics could be stopped according to the 
clinical course and either decreases in biomarker lev-
els (CRP or PCT), according to a predefined algorithm, 
or the completion of 5–7  days of full days of antibiotic 
therapy, whichever came first (Fig. 2). This individualized 
strategy has been assessed in several RCT showing that 
biomarker guidance can safely decrease the duration of 

therapy in comparison with fixed duration [9, 64, 65, 75, 
76].

Future perspectives
The combination of various biomarkers to construct a diag-
nostic panel has not been shown to be consistently supe-
rior to any individual biomarker in diagnosing sepsis [5]. 
This arises from the fact that sepsis biomarkers are usually 
highly correlated, and thus diagnostic accuracy has not 
improved when these assays have been combined. Diag-
nostic accuracy of a biomarker panel is further dependent 
upon how the results of the individual assays are weighted 
and how many individual assays need to be positive for the 
overall panel to indicate the presence of sepsis. For exam-
ple, a biomarker panel can be relatively sensitive (requir-
ing only one individual assay to be “positive”) or relatively 
specific (requiring all the individual assays to be positive) 
dependent upon how the panel is interpreted. However, 
algorithms that combine biomarkers with clinical data have 
shown promise for identifying patients with sepsis in the 
emergency department [77]. One such algorithm combin-
ing clinical variables and a panel of biomarkers claimed a 
negative predictive value of 100% and a positive predictive 
value of 93% in a cohort of 158 patients [78]. Two limita-
tions of this study should be noted. Firstly, all study partici-
pants had at least two SIRS criteria so how this algorithm 
would perform in SIRS-negative sepsis is not known. Sec-
ondly, the speed with which the results of this algorithm 
was delivered was not described.

Conclusion
In summary, moving forward from where we currently 
are with biomarkers of sepsis to a point where we have 
clinically useful markers driving patient treatment path-
ways to improve outcomes will require a significant 
change in approach. Single center, unidimensional stud-
ies will unlikely bring much progress. Large multi-center 
cohort studies, utilizing state-of-the-art omics, bioin-
formatics, and machine learning algorithms to identify 
biomarkers that predict differential responses to inter-
ventions in specific clinical endotypes are what is needed. 
The combination of existing tools in multicenter and 
multidisciplinary collaborations will be the most effective 
way of discovering new biomarkers that can be imple-
mented into clinical practice to optimize patient care. 
Until then, biomarkers of sepsis can be useful adjunc-
tive tools when clinicians need additional information to 
optimize patient care at the bedside. Serial determina-
tions are more informative than a single value and bio-
markers should never be used as a stand-alone test, but 
always in conjunction with a thorough clinical evaluation 
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and a comprehensive knowledge of biomarkers’ biology, 
interferences, strengths, and limitations.
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