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This article proposes a systematic methodological review and an objective
criticism of existing methods enabling the derivation of time, frequency,
and time-varying Granger-causality statistics in neuroscience. The capacity to
describe the causal links between signals recorded at different brain locations
during a neuroscience experiment is indeed of primary interest for neurosci-
entists, who often have very precise prior hypotheses about the relationships
between recorded brain signals. The increasing interest and the huge num-
ber of publications related to this topic calls for this systematic review, which
describes the very complex methodological aspects underlying the derivation
of these statistics. In this article, we first present a general framework that
allows us to review and compare Granger-causality statistics in the time domain,
and the link with transfer entropy. Then, the spectral and the time-varying
extensions are exposed and discussed together with their estimation and
distributional properties. Although not the focus of this article, partial and
conditional Granger causality, dynamical causal modelling, directed transfer
function, directed coherence, partial directed coherence, and their variant are
also mentioned.
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1 INTRODUCTION

The investigation of the dynamical causal relationships between neuronal populations is a very important step towards the
overall goal of understanding the links between functional cerebral aspects and their underlying brain mechanisms. This
investigation requires statistical methods able to capture not only functional connectivities (eg, symmetrical relationships)
but also, and probably more importantly, effective connectivities (eg, directional or causal relationships) between brain
activities recorded during a specific task or stimuli exposure.

The Granger-causality concept relies on passing from causality to predictability. It was provided in the 1960s by the
economist Clive Granger. According to Granger,1 if a signal X is causal for another signal Y in the Granger sense, then
the history of X should contain information that helps to predict Y above and beyond the information contained in the
history of Y alone. It is the axiomatic imposition of a temporal ordering that allows us to interpret such dependence as
causal: “The arrow of time imposes the structure necessary.”2, p. 139 The presence of this relation between X and Y will be
referred to “Granger causality” throughout the text.
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Granger1 adapted the definition of causality proposed by Wiener3 into a practical form, and since then, Granger causality
has been widely used in economics and econometrics. It is however only during the past few years that it has become
popular in neuroscience.

Since its causal nature relies on prediction, Granger causality does not necessarily mean “true causality.” Indeed, 2
distinct problems may occur. If the the causal connection from the first to the second variable is completely mediated by
a third variable, one might reject the null hypothesis of non-Granger causality between signals although manipulation
of one of them would not change the other, which contradicts what “true causality” would have implied. This is called
the sequential driving problem.4 The second problem, called different delay driving, occurs when the first variable drives
both the second and the third variables, but the driving of the second variable has a smaller delay than the driving of the
third one. Then, samples of the history of the second variable contain information that helps predict future samples of the
third variable. A bivariate analysis might spuriously reject the null hypothesis of non-Granger causality from the second
to the third variable, because it cannot distinguish that this is an indirect causality scheme.4

More generally, Granger causality may also produce misleading results when the true causal relationship involves more
variables than those that have been selected and so the accuracy of its causal interpretation relies on a suitable preliminary
variable selection procedure.5

If we concentrate on just 2 signals, the problem is twofold: The first part is the choice of a suitable causality statistic that
can easily be interpreted and that answers the question of interest. This said, the statistic needs to rely on a model that
intrinsically includes this prediction or Granger-causality principle, and so the second part of the problem is to define
and properly estimate this fundamental statistical model. A wrong statistical model indeed may lead to a wrong causality
inference.

The scope of this article is to review and describe existing Granger-causality statistics in the time and frequency
domains and then to focus on their time-varying extensions. We will describe existing estimation methods for time-varying
Granger-causality statistics, in order to give the reader a global overview and some insight on the pertinence of using a
given method depending on the research question and the nature of the data.

In Sections 4 and 5, we will present time and frequency-domain Granger-causality statistics in the stationary case. In
Section 6, we will discuss their time-varying extensions in terms of time-varying causal model estimation. In Section 7,
we will outline existing toolboxes allowing us to derive time-varying frequency-specific Granger-causality statistics and
then discuss the limitations and the potential application of these statistics in neuroscience in Section 8.

There exist already a couple of very complete works reviewing the application of Granger causality to neuroscience
data in time and frequency domain. Pereda et al6 and Bressler and Seth,7 for instance, reviewed the issue of the appli-
cation of Granger causality to neural data in time and frequency domain, and Porta and Faes8 added the issue of
information-theoretic approaches for Granger-causality analysis and their specific applications in neuroscience. The prin-
ciples of Granger-causality application in neuroscience and neuroimaging are surveyed in Seth et al,9 and Kleinberg
and Hripcsak10 reviewed the core concepts in understanding and identifying causality, as well as graphical models and
Granger-causality approaches for inference in health sciences. Amblard and Michel11 reviewed the conceptual and theo-
retical links between Granger causality and directed information theory, and Müller et al12 explained and reviewed some of
the most important coupling measures (correlation, Granger causality–based tools, entropy-based techniques, nonlinear
prediction measures, and symbolic dynamics) and classified them according to their origin and capabilities in the light of
physiological analyses. Finally, Sameshima and Baccala13 collect surveys of time, frequency, and time-variant approaches
for Granger causal inference in neuroscience.

The scope of the present article, as opposed to these excellent works, is to give a systematic methodological review
and objective criticism of existing methods that lead to time-varying Granger-causality statistics. The increasing interest
reflected by the number of publications related to this topic in neuroscience justifies this literature review undertaken
from a statistical viewpoint.

2 OTHER EXISTING APPROACHES

Computing effective connectivity is a challenging task, and various methods have been proposed in order to solve
this issue. First, the methods are based on intervention causality.14 The underlying principle is that a cause-and-effect
relationship should persist if the cause is manipulated without directly affecting any other variables, whereas any non-
causal associations should disappear. Another proposed technique is the so-called dynamic causal modelling (DCM).15,16

Dynamic causal modelling is a model-based Bayesian generalization of the “covariance structural equation modelling”
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approach.17 It assigns effective connection strengths to anatomical model that best match observed covariance structure
based on nonlinear input-state-output systems and bilinear approximation of dynamic interactions. The DCM results
strongly rely on prior connectivity specifications and especially on the assumption of stationarity. The lack of reference to
the DCM methodology here is therefore explained by its unsuitability in the context of nonstationarity. Another approach
is based on asymmetric coupling measures (see, for instance, Sugihara et al,18 for an application of the “convergent cross
mapping” approach in a context where Granger causality is not applicable). Finally, graph theory, especially the theory
of directed graphs, is of special interest for computing effective connectivity, as it provides a framework for the analysis
of the dependence structure of a time series.19

This article does not discuss either symmetric functional connectivity statistics such as correlation and coherence. The
reader is referred to Delorme et al20 and Pereda et al6 for an overall review of these statistics in the time and frequency
domains. This symmetric connectivity aspect is also very important and carries a lot of information, but its presentation
is beyond the scope of this article, which proposes a review of all existing methods, allowing us to derive a time-varying
Granger-causality statistic.

3 STATIONARITY

Many Granger-causality models rely on the assumption that the system analysed is covariance stationary. Covariance
stationarity (also known as weak- or wide-sense stationarity) requires that the first moment and the covariance of the
system do not vary with respect to time.

A random process Zt is covariance stationary if it satisfies the following restrictions on its mean function,

E[Z(t)] = mZ, ∀t ∈ R, (1)

and on its autocovariance function,

E[(Z(t1) − mZ)(Z(t2) − mZ)] = CZ(t1, t2) = CZ(𝜏) , where 𝜏 = t1 − t2, ∀t1, t2 ∈ R. (2)

The first property implies that the mean function mZ is constant with respect to t. The second property implies that the
covariance function depends only on the difference between t1 and t2. The variance is consequently constant as well.

4 TIME-DOMAIN CAUSALITY

4.1 General model
As mentioned in the introduction, Granger causality is based on prediction, and its fundamental axiom is that “the past
and present may cause the future but the future cannot cause the past.”1 The origin of Granger-no-causality was stated by
Wiener in 1956 and then adapted and defined into practical form by Granger. As we will see, Granger restates Wiener's
principle in the context of autoregressive models.1 In particular, the main idea lies in the fact that if a signal X is causal
for another signal Y in the Granger sense, then past values of X should contain information that helps to predict Y better
than merely using the information contained in past values of Y.1

This concept of predicting better with an additional variable can be linked to significance tests in multiple linear regres-
sion, where an independent variable is declared significant if the full model explains (predicts) the dependent variable
better than the model that does not contain this variable. In many fields, these tests are called marginal and are linked to
the so-called type III sum of squares in analysis of variance.

The general criterion of causality is if the prediction error of a first series given its own past is significantly bigger than its
prediction error given its own past plus the past of a second series, then this second series causes the first, in the Granger
sense.1,2,21

As Chamberlain,22 Florens,23 and Chicharro24 point out, the most general criterion of Granger noncausality can be
defined based on the equivalence of 2 conditional densities:

𝑓t(Yt|Y t−𝑝
t−1 ) = 𝑓t(Yt|Y t−𝑝

t−1 ,Xt−𝑝
t−1 ), (3)

where Xt and Yt are the 2 recorded time series; Y t−𝑝
t−1 and Xt−𝑝

t−1 denote the history from time t − 1 to t − p of Y and X,
respectively (ie, [Yt−1, … ,Yt−p], and [Xt−1, … ,Xt−p]); and p is a suitable model order. This general criterion is expressed
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in terms of the distributions only, so it does not rely on any model assumptions.25 Note that in this general definition, ft(.)
can be different for each time, and therefore, the general criterion in Equation 3 includes nonstationary models.

Any existing method for assessing Granger causality can be viewed as a restricted estimation procedure allowing us to
estimate the densities in Equation 3 and to derive a causality statistic in order to test their difference.

4.2 Linear, Gaussian, and stationary case
We will first discuss the simplest case of Granger causality, which is defined in the time domain. For linear Gaussian
autoregressive models, the assumptions are Gaussianity, homoscedasticity, and linearity. It is important to note that this
requires that the data are stationary. The quantities in Equation 3 become an autoregressive model of order p (AR(p)) for
the left-hand side,

𝑓t(Yt|Y t−𝑝
t−1 ) = 𝜙

(
Yt;𝜇 =

𝑝∑
𝑗=1

𝜗1(𝑗)Yt−𝑗 , 𝜎
2 = Σ1

)
, (4)

and a vector autoregressive model of order p (VAR(p)) for the right-hand side,

𝑓t(Yt|Y t−𝑝
t−1 ,Xt−𝑝

t−1 ) = 𝜙

(
Yt;𝜇 =

𝑝∑
𝑗=1

𝜗11(𝑗)Yt−𝑗 +
𝑝∑

𝑗=1
𝜗12(𝑗)Xt−𝑗 , 𝜎

2 = Σ2

)
, (5)

where 𝜙 stands for the Gaussian probability density function.
In the next sections, we will present the 2 widely used approaches for testing hypotheses (3) in the linear Gaussian

context. The first one is based on an F statistic expressed as the ratio of the residual variances of models26 on Equations 4
and 5. The second one is based on a Wald statistic and tests the significance of the causal VAR coefficients.27,28

4.3 Granger-causality criterion for linear Gaussian processes based on variances
The original formulation of Granger causality is expressed in terms of comparing the innovation variances of the whole
(Equation 5) and the restricted (Equation 4) linear Gaussian autoregressive models.1,21,26 Granger1 proposed the following
quantity to quantify this variance comparison:

FX→Y = ln
(
Σ1

Σ2

)
. (6)

In Hesse et al29 and Goebel et al,30 this quantity is estimated by replacing the 2 variances by estimates. A test based on
resampling this statistic is used for assessing the significance.

Geweke26,31 made several other important statements for (6). He showed first that the total interdependence between 2
variables can be decomposed in terms of their 2 reciprocal causalities plus an instantaneous feedback term. Secondly, he
showed that under fairly general conditions, FX→Y can be decomposed additively by frequency (see Section 5). Lastly, he
pointed out that it is possible to extend Granger causality to include other series. On the basis of the conditional densities,
the null hypothesis would write

𝑓t(Yt|Y t−𝑝
t−1 ,W

t−𝑝
t−1) = 𝑓t(Yt|Y t−𝑝

t−1 ,Xt−𝑝
t−1 ,W

t−𝑝
t−1), (7)

where Wt−𝑝
t−1 represents a set of variables that are controlled for when assessing the causality from X to Y. In the literature,

this extension bears the name conditional Granger causality.21

As explained in Bressler and Seth7 and Geweke,26 comparing the innovation variances of the whole and restricted linear
Gaussian autoregressive models amounts to evaluating the hypothesis

Ho: Σ1 = Σ2, (8)

which can be assessed through the statistic

F =
RSSr−RSSur

𝑝

RSSur
T−2𝑝−1

. (9)

RSSr and RSSur are the residual sum of squares of the linear models in Equations 4 and 5, needed to estimate Σ1 and Σ2,
respectively; p is the model order; and T is the total number of observations used to estimate the unrestricted model.
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This statistic follows approximately an F distribution with degrees of freedom p and T − 2p − 1. A significant F may
reasonably be interpreted as an indication that the unrestricted model provides a better prediction than does the restricted
one, and so that X causes Y in the Granger sense.

4.4 Granger-causality criterion for linear Gaussian processes based on coefficients
Another way to test for causality between 2 series under the same conditions as in section 4.3 is to estimate model (5) only
and to directly test the significance of the VAR coefficients of interest.27,28 Let us first define the complementary equation
of Equation 5,

𝑓t(Xt|Xt−𝑝
t−1 ,Y t−𝑝

t−1 ) = 𝜙

(
Xt;𝜇 =

𝑝∑
𝑗=1

𝜗22(𝑗)Xt−𝑗 +
𝑝∑

𝑗=1
𝜗21(𝑗)Yt−𝑗 , 𝜎

2 = Σ3

)
, (10)

and the variance-covariance matrix of the whole system,

Σ =
(

Σ2 Γ23
Γ23 Σ3

)
, (11)

where the off-diagonal elements may or may not be equal to zero. Testing whether X causes Y in the Granger sense
amounts to testing the hypotheses,

𝜗12(1) = 𝜗12(2) = 𝜗12(3) = · · · = 𝜗12(𝑝) = 0, (12)

and testing whether Y causes X in the Granger sense amounts to testing,

𝜗21(1) = 𝜗21(2) = 𝜗21(3) = · · · = 𝜗21(𝑝) = 0. (13)

In the context of linear Gaussian autoregressive models, the 2 null hypotheses (8) and (12) are equivalent.
We can observe that the approach using hypothesis (8) requires the computation of 2 models (an AR model and a VAR

model), whereas a single VAR model is sufficient for the approach using hypothesis (12).
Under joint normality and finite variance-covariance assumptions, the Wald statistic is defined as

W = (�̂�12)′
(

var(�̂�12)
)−1

(�̂�12), (14)

where 𝝑12 contains all the parameters 𝜗12(j), for j = 1, … , p. As T increases, this statistic asymptotically follows a 𝜒2

distribution with p degrees of freedom.28 A significant Wald statistic suggests that at least one of the causal coefficients
is different from zero and, in that sense, that X is causal for Y in the Granger sense. See Sato et al32 for an example of
application of this statistic in neuroscience.

The time-domain Granger-causality statistics in Equations 9 and 14 are derived from AR and VAR modelling of the
data. Their relevance therefore relies on the quality of the fitted models. The first issue is the selection of the model order
p. Traditional criteria used in time series are the Akaike information criterion and the Bayesian information criterion.33,34

For the first statistic, in Equation 9, it is advisable to select the same p for the 2 models. The second issue is probably
often overlooked but of utmost importance. In practice, and particularly for neuroscience data, the plausibility of the
assumptions behind these models must be checked before interpreting the resulting tests. This includes analysis of the
residuals from the fitted model.

4.5 Transfer entropy
Transfer entropy (TE) is a functional statistic developed in information theory.35 It can be used to test the null hypothesis
(3) in terms of the distributions themselves and thus does not rely on the linear Gaussian assumption. It is constructed
from the Kullback-Leibler distances between the conditional distributions 𝑓 (Yt|Y t−𝑝

t−1 ,Xt−𝑝
t−1 ) and 𝑓 (Yt|Y t−𝑝

t−1 )
24,35:

TX→Y = ∫ · · ·∫ 𝑓 (𝑦t, 𝑦
t−𝑝
t−1, xt−𝑝

t−1) ln
𝑓 (𝑦t|𝑦t−𝑝

t−1, xt−𝑝
t−1)

𝑓 (𝑦t|𝑦t−𝑝
t−1)

d𝑦td𝑦t−𝑝
t−1dxt−𝑝

t−1, (15)

where the integrals over 𝑦t−𝑝
t−1 and xt−𝑝

t−1 are both of dimension p, and so the overall integral in Equation 15 is of dimension
{2𝑝 + 1}. An even more general definition would allow the distributions f(.) to depend on time, letting the TE statistic be
time dependent.
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It has been shown that for stationary linear Gaussian autoregressive models (4) and (5), the indices (15) and (6) are
equivalent.24,36

In its general form, TE is a functional statistic, free from any parametric assumption on the 2 densities 𝑓 (Yt|Y t−𝑝
t−1 ) and

𝑓 (Yt|Y t−𝑝
t−1 ,Xt−𝑝

t−1 ). Applications of TE in neuroscience can be found for instance in Chàvez et al,37 Garofalo et al,38 Vicente
et al,39 Wibral et al,40 Lizier et al,41 and Besserve et al.42,43 The difficulties arise when trying to estimate and compute the
conditional densities in Equation 15.

The estimation can be preformed parametrically or nonparametrically. Parametric estimators impose a parametric den-
sity to the data (see, for example, the linear estimator in Montalto et al44). Moreover, several nonparametric estimators
exist to estimate 𝑓 (Yt|Y t−𝑝

t−1 ) and 𝑓 (Yt|Y t−𝑝
t−1 ,Xt−𝑝

t−1 ), and the performance of each of them strongly depends on the charac-
teristics of the data. For a general review of nonparametric estimation methods in information theory, see Vicente et al,39

Hlaváčková-Schindler et al,45 and Wibral et al.46 For simple discrete processes, the probabilities can be determined by
computing the frequencies of occurrence of different states. For continuous processes, which are those of interest for
neuroscience, it is more delicate to find a reliable nonparametric density estimation. Following Hlaváčková-Schindler
et al,45 there exist 3 main classes of nonparametric estimator. First, the partition-based estimators estimate the probability
densities by counting how many samples fall into each division of a certain partition of the data (see, for example, the bin-
ning estimator44). Secondly, the plug-in estimators are based on consistent estimates for the probability densities that are
plugged into the corresponding functional (kernel-based estimator is among the most popular plug-in estimator35,39,47,48).
Finally, the metric-based estimators rely on the fact that the larger the distance between 1 point to its nearest neighbour,
the lower the local density around that point (see, for example, the nearest-neighbour estimator44).

The major limitation of nonparametric estimation is due to the dimension of the densities in (15) that can rapidly be
too large for any nonparametric approach (known as the curse of dimensionality problem). Furthermore, in the present
case, the estimation of 𝑓 (Yt|Y t−𝑝

t−1 ) and 𝑓 (Yt|Y t−𝑝
t−1 ,Xt−𝑝

t−1 ) implies an integration in dimension 2p + 1 in Equation 15. Even
for a moderate dimension p, a huge number of observations would therefore be required. Typically, Schreiber35 proposes
to choose the minimal p, meaning p = 1, for the above reasons.35, p. 462

A supplementary parameter, called the embedding delay (𝜏), which represents the lag in time between each observation
of the past values of variables X and Y, has to be estimated. Equation 15 then becomes

TX→Y = ∫ · · ·∫ 𝑓 (𝑦t, 𝑦
t−𝑝𝜏
t−1𝜏 , xt−𝑝𝜏

t−1𝜏 ) ln
𝑓 (𝑦t|𝑦t−𝑝𝜏

t−1𝜏 , xt−𝑝𝜏
t−1𝜏 )

𝑓 (𝑦t|𝑦t−𝑝𝜏
t−1𝜏)

d𝑦td𝑦t−𝑝𝜏
t−1𝜏dxt−𝑝𝜏

t−1𝜏 . (16)

The selection of the model order p (called the embedding dimension in this context) and the embedding delay 𝜏 is a
delicate issue. As discussed in Lindner et al,49 if p is chosen too small, the causal structure may not be captured, and thus,
the TE statistic will be incorrect. On the other hand, using an embedding dimension that is higher than necessary will lead
to an increase of variability in the estimation, in addition to a considerable increase in computation time. As explained
in Montalto et al,44 the large majority of the estimation methods used a uniform conditioned embedding schemes for the
selection of the embedding dimension and the embedding delay, where the components of the histories 𝑦t−𝑝𝜏

t−1𝜏 and xt−𝑝𝜏
t−1𝜏 to

be included in the embedding vectors are selected a priori and separately for each series.
The non-uniform embedding schemes are a convenient alternative to the uniform embedding issue.44 This approach

is based on a stepwise selection of 𝑦t−𝑝𝜏
t−1𝜏 and xt−𝑝𝜏

t−1𝜏 , considered up to a maximum lag plag, by considering the quantities
that are most significant in terms of predictive information for the target variable (see Kugiumtzis50 for a non-uniform
embedding scheme approach and Faes et al51 for a non-uniform embedding approach coupled with a nearest-neighbour
estimation technique).

Other accurate techniques are devised to deal with the curse of dimensionality. Runge et al52 proposed to overcome it by
embedding the TE statistic into the framework of graphical models. Kugiumtzis50 and Faes et al53 moreover propose some
ad hoc techniques for non-uniform embedding, which circumvent the issue of the embedding parameters estimation.

A toolbox named TRENTOOL provides the computation of TE and the estimation of 𝑓 (𝑦t|𝑦t−𝑝𝜏
t−1𝜏) and 𝑓 (𝑦t|𝑦t−𝑝𝜏

t−1𝜏 , xt−𝑝𝜏
t−1𝜏 )

through kernel-based estimation.49

The model order p is optimized simultaneously with the embedding delay 𝜏 through 2 implemented criteria. The first
is the “Cao criterion,” which selects 𝜏 on an “ad hoc” basis and p through a false neighbour criterion.49,54 The second is
the “Ragwitz criterion,” which selects 𝜏 and p simultaneously by minimizing the prediction error of a local predictor.35

Typically, Wibral et al40 select the value of p as the maximum determined by the Cao criterion from p = 1 to 4, and choose
the value of 𝜏 following a popular ad hoc option, as the first zero of the autocorrelation function of the signal.
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TRENTOOL allows us moreover to compute the distribution of the TE statistic under the null hypothesis through a
permutation method. The data are shuffled in order to break the links between the signals, and then the TE statistic is
recomputed on each surrogate dataset (eg, Wibral et al40 use 1.9 × 105 permutations for assessing the significance of the
TE statistic). Analyses with TRENTOOL are limited so far to bivariate systems.

MuTE is a more recent and complete toolbox that estimates the TE together with the embedding parameters.44 Uniform
and non-uniform schemes are implemented for the embedding parameter selection and 3 different types of estimators,
namely, the linear, the binning, and the nearest-neighbour estimator, are implemented for the estimation of 𝑓 (𝑦t|𝑦t−𝑝𝜏

t−1𝜏)
and 𝑓 (𝑦t|𝑦t−𝑝𝜏

t−1𝜏 , xt−𝑝𝜏
t−1𝜏 ). This therefore allows us to perform 6 different estimations of the TE.

MuTE toolbox moreover allows us to compute the significance tests associated with the 3 different estimators imple-
mented in the toolbox. The statistical significance of the TE estimated through the linear estimator is assessed by a
parametric F test.44 For the TE estimated through the binning estimator, statistical significance is assessed based on a sur-
rogate data procedure. Transfer entropy statistic is compared to the null distribution computed by calculating TE on each
surrogate dataset, computed by shifting the original series by a randomly selected lag. As for the binning estimator, the
statistical significance of the TE estimated through the nearest-neighbour estimator exploited the method of surrogate
data implemented by the time-shift procedure.44

The formulation of causality based on the conditional independence in Equation 3 was later used and theoretically
refined in Chamberlain22 and Florens.23 Although less general, the statistics given in Equations 6 and 14 are much easier to
implement and are testable. This probably explains why they have received considerably more attention in applied work.

5 FREQUENCY-DOMAIN CAUSALITY

5.1 Geweke-Granger-causality statistic
As mentioned in section 4.3, an important advance in developing the Granger-causality methodology was to provide a
spectral decomposition of the time-domain statistics.26,55

For completeness, we give below the mathematical details of this derivation. The Fourier transform of Equations 5 and
10 for a given frequency 𝜔 (expressed as a system of equations) is(

𝜗11(𝜔) 𝜗12(𝜔)
𝜗21(𝜔) 𝜗22(𝜔)

)(
Y (𝜔)
X(𝜔)

)
=
(
𝜀1(𝜔)
𝜀2(𝜔)

)
, (17)

where Y(𝜔) and X(𝜔) are the Fourier transforms of Y T
1 and XT

1 at frequency 𝜔, and 𝜀1(𝜔) and 𝜀2(𝜔) are the Fourier
transforms of the errors of the models (5) and (10) at frequency 𝜔. The components of the matrix are

𝜗lm(𝜔) = 𝛿lm −
𝑝∑

𝑗=1
𝜗lm(𝑗)e(−i2𝜋𝜔𝑗), where

{
𝛿lm = 0, l = m,
𝛿lm = 1, l ≠ m,

, l,m = 1, 2.

Rewriting Equation 17 as (
Y (𝜔)
X(𝜔)

)
=
(

H11(𝜔) H12(𝜔)
H21(𝜔) H22(𝜔)

)(
𝜀1(𝜔)
𝜀2(𝜔)

)
, (18)

we have (
H11(𝜔) H12(𝜔)
H21(𝜔) H22(𝜔)

)
=
(
𝜗11(𝜔) 𝜗12(𝜔)
𝜗21(𝜔) 𝜗22(𝜔)

)−1

, (19)

where H is the transfer matrix. The spectral matrix S(𝜔) can now be derived as

S(𝜔) = H(𝜔)ΣH∗(𝜔), (20)

where the asterisk denotes matrix transposition and complex conjugation. Σ is the matrix21 defined in Equation 11. The
spectral matrix S(𝜔) contains cross-spectra terms, S12(𝜔) and S21(𝜔), and auto-spectra terms, S11(𝜔) and S22(𝜔). If X and
Y are independent, the cross-spectra terms are equal to zero.

Let us now write the auto-spectrum of Y as

S(𝜔)11 = H(𝜔)11Σ2H∗(𝜔)11 + 2Γ23Re(H(𝜔)11)H∗(𝜔)12) + H(𝜔)12Σ3H∗(𝜔)12. (21)
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In the following derivation, we will suppose that Γ23, the off-diagonal element of the Σ matrix in Equation 11, is equal
to zero. The nonfulfilment of this condition is an indication of instantaneous causality (or correlation) between the
2 time series, and methods to deal with these instantaneous effects incorporating them in the VAR model have been
proposed.56,57 In the case of instantaneous effects, a more complex derivation is required (see Ding et al,21 Hyvärinen
et al,56 and Faes et al57 for further details).

However, if this independence condition is fulfilled, the auto-spectrum reduces to 2 terms,

S(𝜔)11 = H(𝜔)11Σ2H∗(𝜔)11 + H(𝜔)12Σ3H∗(𝜔)12. (22)

The first term, H(𝜔)11Σ2H∗(𝜔)11, only involves the variance of the signal of interest and thus can be viewed as the
intrinsic part of the auto-spectrum. The second term, H(𝜔)12Σ3H∗(𝜔)12, only involves the variance of the second signal
and thus can be viewed as the causal part of the auto-spectrum.

In Geweke spectral formulation, the derivation of the spectral measure fX→Y requires the fulfilment of the following
properties. The measures have to be non-negative, and the sum over all frequencies of the spectral Granger-causality
components has to equal the time-domain Granger-causality quantity (6):

1
2𝜋

𝜋

∫
−𝜋

𝑓X→Y (𝜔)d𝜔 = FX→Y . (23)

The 2 conditions together imply the desirable property

FX→Y = 0 ⇐⇒ 𝑓X→Y (𝜔) = 0, ∀𝜔. (24)

The third condition is that the spectral statistics have an empirical interpretation. The spectral Granger-causality statis-
tic proposed by Geweke fulfils all 3 requirements. For a given frequency 𝜔 and scalar variables X and Y, it is defined as

𝑓X→Y (𝜔) =
S11(𝜔)

H11(𝜔)Σ2H∗
11(𝜔)

, (25)

where Σ2 is the variance defined in Equation 5, S11(𝜔) is the auto-spectrum of Y, and H11(𝜔) is the (1, 1) element of
the transfer matrix in Equation 19. The form of Equation 25 provides an important interpretation: The causal influence
depends on the relative size of the total power S11(𝜔) and the intrinsic power H11(𝜔)Σ2H∗

11(𝜔). Since the total power is
the sum of the intrinsic and the causal powers (see Equation 22), the spectral Geweke-Granger-causality (GGC) statistic
is zero when the causal power is zero (ie, when the intrinsic power equals the total power). The statistic increases as the
causal power increases.21 Given the requirements imposed by Geweke, the measure fX→Y(𝜔) has a clear interpretation: It
represents the portion of the power spectrum associated with the innovation process of model (5). However, this inter-
pretation relies on the VAR model because the innovation process is only well-defined in this context (see Brovelli et al,58

Chen et al,59,60 and Bressler et al61 for examples of application in neuroscience).
The estimation of the parameters and the model order selection procedure is the same as in section 4.4, because the

frequency-domain VAR model in Equation 17 is directly derived from the time-domain VAR model. The model order
selection has to be performed within the time-domain model estimation procedure.58,62

Lin et al62 showed that under the null hypothesis fX→Y(𝜔) = 0 and based on (25), one can derive a statistic that follows
an F distribution with degrees of freedom (p,T−2p) when the number of observations tends to infinity (it was first derived
in Brovelli et al58 and Gourévitch et al63).

5.2 Directed transfer function and partial directed coherence
The directed transfer function (DTF) and the partial directed coherence (PDC) are alternative measures also derived from
VAR estimated quantities that are closely related to the GGC statistic. Differences between these 2 measures as well as the
relation between DTF and directed coherence and the equivalence of these methods for bivariate time series are discussed
in Baccalà et al,64 Faes et al,65 and Faes and Nollo66

The DTF is a frequency-domain measure of causal influence based on the elements of the transfer matrix H(𝜔) in
Equation 19. It has both normalized and non-normalized forms.67,68 The PDC is derived from the matrix of the Fourier
transformation of the estimated VAR coefficients69 in Equation 17. See Schelter et al70 for a renormalized version of PDC
and Schelter et al71 for an example of application in neuroscience.
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The DTF is expressed as

DTFX→Y (𝜔) =

√ |H12(𝜔)|2|H11(𝜔)|2 + |H12(𝜔)|2 . (26)

As explained in Bor̆il and Sovka,4 outcomes of DTF analyses must be interpreted carefully. Indeed, although DTF decom-
poses the causal relations in the frequency domain, it does not distinguish direct from indirect connections. The direct
directed transfer function (dDTF) statistic (see Bor̆il and Sovka4 and references therein) claims to improve the DTF in this
sense, but as it is shown in Bor̆il and Sovka,4 the dDTF may not be able to distinguish direct relations from indirect ones
in some cases. The PDC solves this problem by evaluating the direct connections only.4 The PDC statistic is defined as

PDCX→Y (𝜔) =
𝜗12(𝜔)

𝝑∗
2(𝜔)𝝑2(𝜔)

, (27)

where 𝜗12(𝜔) represents the Fourier-transformed VAR coefficient (ie, the causal influence from X to Y at frequency 𝜔)
and 𝝑2(𝜔) represents all outflows from X.

The PDC is normalized, but in a different way from the DTF. Indeed, the PDC represents the outflow from X to Y,
normalized by the total amount of outflows from X. The normalized DTF however represents the inflow from X to Y,
normalized by the total amount of inflows to Y. However, the normalization used in the PDC formulation prevents to
compare the strength of the coupling among variables. A lower value of the PDC may instead correspond to a stronger
relation and conversely. The generalized partial directed coherence (GPDC) statistic (see Bor̆il and Sovka4 and references
therein) modifies the PDC statistic using an additional normalization that make values more comparable. The square
modulus of GPDC is often interpreted as the PDC but, as it is derived in Bor̆il and Sovka,4 this analogy is correct only in
the case of 1-unidirectional causal relation between 2 variables. Indeed, even for a bivariate model, the GPDC statistic
does not take into account the feedback effect in a bidirectional causal relation case (see Bor̆il and Sovka4 and references
therein for a complete insight of DTF dDTF, PDC, and GPDC statistics).

Comparisons between the GGC statistic, the DTF, and the PDC are discussed in Eichler,72 Baccalà and Sameshima,69

Gourévitch et al,63 Pereda et al,6 Winterhalder et al,73,74 and more recently in the context of information theory in
Chicharro.24 The causal interpretation of the PDC and the GGC, at least in the bivariate case, relies on Granger's definition
of causality.64-66 For the directed coherence and the DTF, the causal interpretation is different, as it relies on Sim's definition
of causality.75 See Chamberlain22 and Kuersteiner25 for a global overview and comparison of these 2 definitions of causal-
ity. Finally, Winterhalder et al73 conducted a simulation-based comparison of the DTF and the PDC (and other statistics)
in a neuroscience context.

The statistical properties of these spectral measures are very complex. For instance, the influence of signal preprocessing
(eg, smoothing and filtering) is a crucial issue that has been studied, for example, in Florin et al76 and Barnett and Seth.77

The latter study showed that filtering can be a useful preprocessing step allowing us to remove artefacts and improve
stationarity but is inappropriate for isolating causal influences within a specific frequency band.

5.2.1 Assessment of significance
Theoretical distributions for DTF and PDC have been derived and are listed below. They are all based on the asymptotic
normality of the estimated VAR coefficients. Therefore, they can be used and interpreted only if the assumptions behind
this model hold.

Schelter et al71 showed that the PDC statistic asymptotically follows a 𝜒2 distribution with 1 degree of freedom. Fur-
thermore, Schelter et al70 showed that a renormalized form of PDC can be related to a 𝜒2 distribution with 2 degrees of
freedom. Finally, Winterhalder et al73 provide simulations that suggest that this 𝜒2 distribution even works well if the
true model order is strongly overestimated. Note that the asymptotic distribution of the 3 main forms of the PDC statistic
(PDC, GPDC, and iPDC [information PDC]) have been provided by the proposers of these metrics themselves.78

Eichler72 showed that the DTF quantity can be compared to a 𝜒2 distribution with 1 degree of freedom. This property is
also based on the asymptotic normality of estimated VAR coefficients, and its accuracy is evaluated through simulations.

In Faes et al79 and Hesse et al29 propose to compute the distribution under the null hypothesis of, respectively, the PDC
and the time-varying Granger causality (estimated by the generalized recursive least squares80) through suitable surrogate
methods.
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For the PDC as well as for the DTF asymptotic distributions, Schelter81 and Eichler72 state that a major drawback is that
there are a lot of tests—one for each frequency. It is well known that when many tests are produced, caution has to be
taken in interpreting those that are significant. For example, even under the null hypothesis of no information flow, there
is a high probability that for a few frequencies, the test will be significant.

6 TIME-VARYING GRANGER CAUSALITY

Neuroscience data are nonstationary in most cases. The specificity (task or stimulus related) of the increase or decrease
and/or local field potential implies this nonstationarity, which is of primary interest. A Granger-causality statistic that
is time specific or time and frequency specific is desirable, as it would capture the evolution of Granger causality
through time.

Since the original statistics are based on AR and VAR models, and therefore on assumptions assuming that the auto-
corelation does not vary along the time, these models have to be extended to cases assuming changing autocorelation
structure in order to suitably extract a Granger-causality statistic.

Practically, getting a statistic to assess the causality between 2 series for each time requires the estimation of the den-
sities 𝑓t(Yt|Y t−𝑝

t−1 ) and 𝑓t(Yt|Y t−𝑝
t−1 ,Xt−𝑝

t−1 ) separately for each time t. There are 2 additional difficulties to keep in mind. The
first is the necessity of an objective criterion for time-varying model order selection, and the second is the difficulty of
incorporating all the recorded data (meaning all the trials) in the estimation procedure.

6.1 Nonparametric statistics
6.1.1 Wavelet-based statistic
In the context of neuroscience, Dhamala et al82 proposed to bypass the nonstationarity problem by nonparametrically
estimating the quantities that allow us to derive the spectral GGC statistic (25). They derived an evolutionary spectral
density through the continuous wavelet transform of the data and then derived a quantity related to the transfer function
(by spectral matrix factorization). On the basis of this quantity, they obtain a GGC statistic that can be interpreted as a
time-varying version of the GGC statistic defined in (25).

This approach bypassed the delicate step of estimating 𝑓t(Yt|Y t−𝑝
t−1 ) and 𝑓t(Yt|Y t−𝑝

t−1 ,Xt−𝑝
t−1 ) separately for each time. How-

ever, this method presents several drawbacks in terms of interpretation of the resulting quantity. The GGC statistic is
indeed derived from a VAR model and its interpretation directly follows from the causal nature of the VAR coefficients.
The nonparametric wavelet spectral density however does not have this Granger-causality interpretation. Therefore,
attention must be paid when interpreting this proposed evolutionary causal GGC statistic derived from spectral quantities
that are not based on a VAR model.

6.1.2 Local TE
Lizier et al41,83 and Prokopenko et al84 proposed a time-varying version of the TE (15), in order to detect dynamical causal
structure in a functional magnetic resonance imaging (fMRI) study context. The “global” TE defined in Equation 15 can
be expressed as a sum of “local transfer entropies” at each time:

TX→Y = 1
T

T∑
t=1

𝑓 (𝑦t, 𝑦
t−𝑝
t−1, xt−𝑝

t−1) ln
𝑓 (𝑦t|𝑦t−𝑝

t−1, xt−𝑝
t−1)

𝑓 (𝑦t|𝑦t−𝑝
t−1)

, (28)

where each summed quantity can be interpreted as a single “local transfer entropy”:

tx→𝑦(t) = ln
𝑓 (𝑦t|𝑦t−𝑝

t−1, xt−𝑝
t−1)

𝑓 (𝑦t|𝑦t−𝑝
t−1)

. (29)

The step from Equations 15 to 28 is obtained by replacing the joint density 𝑓 (Yt,Y t−𝑝
t−1 ,Xt−𝑝

t−1 ) with its empirical version.
As explained in Wollstadt et al,85 local TE (28) localizes information transfer in time evaluating the probability density

functions f(.) of a “stationary” process at each time. Indeed, time-independent PDFs f(.) in (15) are estimated, and then
these densities f(.) are evaluated locally in order to give information on the TE dynamic.
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Note that Prokopenko et al84 or Lizier et al41,83 do not provide an objective criterion for model order selection.
Wollstadt et al85 propose a time-varying version of the TE with the local PDFs ft(.) estimated differentially for each time.

The estimation procedure requires an ensemble of realizations, as it is the case with the multiple trials in neuroscience.
With this local TE formulation, the directed information transfer can be analysed in terms of average information

transfer (28) or, locally, by computing (29) individually for each time.
Attention must be paid to the fact that, even if the overall quantity in Equation 15 can be suitably expressed as a sum

as in Equation 29, its causal nature does not necessarily remain in each part. As such, we should not directly interpret
these individuals parts as causal local measures of causality, even if the sum of them gives an overall quantity that has an
intrinsic causal meaning.

6.2 Time-varying VAR model
As seen before in Equations 9, 14, 25, 26 and 27, parametric Granger-causality statistics in the time and frequency domains
are derived from AR and VAR modelling of the data (Equations 4 and 5, respectively). One way to extend these statistics
to the nonstationary case amounts to allowing the AR and VAR parameters to evolve in time. In addition to the difficulties
related to model order selection and the fact that we have to deal with several trials, time-varying AR and VAR models are
difficult to estimate since the number of parameters is most of the time considerable compared to the available number
of observations. To overcome the dimensionality of this problem, Chen86 propose to make 1 of the 3 following assump-
tions, local stationarity of the process,87 slowly varying nonstationary characteristics,88 and slowly varying parameters for
nonstationary models.89 In practice, it is difficult to distinguish between these assumptions, but they all allow nonstation-
arity. Chen86 asserts that if one of the above assumptions is fulfilled, the estimate of a signal at some specific time can be
approximated and inferred using the neighbourhood of this time point. Probably all time-varying methods proposed in
the literature are based on one of these characteristics.

We will discuss now the 2 widely used approaches that deal with this type of nonstationarity: the windowing approach,
based on the locally stationary assumption, and the adaptive estimation approach, based on slowly varying parameters.

6.2.1 Windowing approach
A classical approach to adapt VAR models to the nonstationary case is windowing. This methodology consists in estimat-
ing VAR models in short temporal sliding windows where the underlying process is assumed to be (locally) stationary.
See Ding et al90 for a methodological tutorial on windowing estimate in neuroscience and Long et al91 and Hoerzer et al92

for some applications in neuroscience.
The segment or window length is a trade-off between the accuracy of the parameter estimates and the resolution in

time. The shorter the segment length, the higher the time resolution but also the larger the variance of the estimated coef-
ficients. The choice of the model order is a related very important issue. With a short segment, the model order is limited,
especially since we do not have enough residuals to check the quality of the fit in each window. Some criteria have been
proposed in order to simultaneously optimize the window length and model order.62,91,93 This windowing methodology
was extensively analysed and commented in Cekic.94 This method can easily incorporate several recorded trials in the
analysis by combining all of them for the parameter estimate.90

In Cekic,94 we found that this windowing methodology has several limitations. First, increasing the time resolution
implies short time windows and thus too few residuals to assess the quality of the fit. Second, the size of the temporal
windows is somehow subjective (even if it depends on a criterion), as is the overlap between the time windows. The order
of the model in turn depends on the size of the windows, and so the quality of the estimate strongly relies on several
subjective parameters.

6.2.2 Adaptive estimation method
A second existing methodology for estimating time-varying AR and VAR models is adaptive algorithms. They consist in
estimating a different model at each time and not inside overlapped time windows. The principle is always the same: The
observations at time t are expressed as a linear combination of the past values with coefficients evolving slowly over time
plus an error term. The difference between the methods lies in the form of transition and update from coefficients at time
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t to those at time t + 1. This transition is always based on the prediction error at time t.95 The scheme is

{
𝝋t+1 = 𝑓 (𝝋t,wt)
Zt = Ct𝝋t + vt

with
⎧⎪⎨⎪⎩
𝝋t = vec[𝝑1(t),𝝑2(t), ..,𝝑𝑝(t)]′,
Zt = (Yt Xt)′,

Ct𝝋t =
𝑝∑

𝑗=1
𝜗𝑗(t)(Yt−𝑗 Xt−𝑗)′,

(30)

where 𝝑j(t) is the time-varying VAR coefficients at lag j for time t, vt is the error of the time-varying VAR equation at time
t, and wt is the error of the Markovian update of the time-varying VAR coefficients from time t to time t + 1.

There are several recursive algorithms to estimate this kind of model. They are based on the least-mean-squares
approach,96 the recursive least-squares approach (see Mainardi et al,97 Patomaki et al,98,99 and Akay100 for basic develop-
ments; Möller et al80 for an extension to multivariate and multitrial data; and Astolfi et al,101,102 Hesse et al,29 Tarvainen
et al,103 and Wilke et al104 for examples of application in neuroscience), and the recursive AR approach.105 They are all
described in detail in Schlögl.95

All these adaptive estimation methods depend on a free quantity that acts as a tuning parameter and defines the
relative influence of 𝝋t and wt on the recursive estimate of 𝝋t+1. Generally, this free tuning parameter determines
the speed of adaptation, as well as the smoothness of the time-varying VAR parameter estimates. The sensitivity of
the least-mean-squares, RLS, and recursive AR algorithms to this tuning parameter was investigated in Schlögl,95 and
estimation quality strongly depends on it. The ad hoc nature of these procedures does not allow for proper statistical
inference.

Finally, as for the previous models, the model order has to be selected. It is often optimized in terms of mean square
error, in parallel with tuning parameter selection.106,107

6.2.3 Kalman filter and the state space model
Kalman108 presented the original idea of the Kalman filter. Meinhold and Singpurwalla109 provided a Bayesian formula-
tion.

A Kalman filtering algorithm can be used to estimate time-varying VAR models if it can be expressed in a state space
form with the VAR parameters evolving in a Markovian way. This leads to the system of equations

{
𝝋t+1 = A𝝋t + wt wt ∼ N(0,Q)
Zt = Ct𝝋t + vt vt ∼ N(0,R) with

⎧⎪⎨⎪⎩
𝝋t = vec[𝝑1(t),𝝑2(t), … ,𝝑𝑝(t)]′,
Zt = (Yt Xt)′,

Ct𝝋t =
𝑝∑

𝑗=1
𝜗𝑗(t)(Yt−𝑗 Xt−𝑗)′,

(31)

where the vector 𝝋t contains the time-varying VAR coefficients that are adaptively estimated through the Kalman fil-
ter equations. The matrix Q represents the variance-covariance matrix of the state equation that defines the Markovian
process of the time-varying VAR coefficients. The matrix R is the variance-covariance matrix of the observed equation
containing the time-varying VAR model equation.

With known parameters A, Q, and R, the Kalman smoother algorithm gives the best linear unbiased estimator for the
state vector, which here contains the time-varying VAR coefficients of interest.108

In the engineering and neuroscience literature, the matrix A is systematically chosen as the identity matrix, and Q and
R are often estimated through some ad hoc estimation procedures. These procedures and their relative references are
listed in Tables 1 and 2, which are based on Schlögl.95

There are many applications of these estimation procedures in the neuroscience literature.29,39,80,101,102,116,117 For an exten-
sion to several trials, the reader is referred to Milde et al110,118 and to Havlicek et al119 for an extension to forward and
backward filter estimation procedure.

Any given method must provide a way to estimate the parameter matrices A, Q, and R simultaneously with the state
vector 𝝋t+1, while selecting the model order in a suitable way. The procedure must also manage models based on several
trials.

In the statistics literature, it has been known for a long time that the matrices A, Q, and R can be obtained through
a maximum likelihood Expectation-Maximization (EM) based approach (see Shumway and Stoffer120 and Cassidy and
Penny121 for a Bayesian extension of this methodology).

Cekic et al122 proposed a multiscale fully Bayesian implementation of the state space model in (31), providing a global
estimation of all the model parameters A, Q, and R, a time-varying frequency-specific estimation of the 𝜑t's together
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TABLE 1 Variants for estimating the covariance matrix Rt based on Schlögl95

Type Estimate of Rt References

Univariate Rt = (1 − UC)Rt−1 + UCet
2 Schack et al96

One trial et = yt − Ctxt

Multivariate R0 = Id Milde et al110

Multiple trial Rt = Rt−1(1 − UC) + UCe′e∕(K − 1)
Univariate Rt = 1 Isaksson et al111

One trial
Univariate Rt = 1 − UC Patomaki et al98

One trial Patomaki et al99

Astolfi et al112

Akay100

Univariate qt = Y ′
t−1At−1Yt−1 Jazwinski113

One trial Rt
+ =

{
(1 − UC)Rt−1

+ + UC(et − qt) if et
2 > qt

Rt−1
+ if et

2 ≤ qt
Rt = Rt

+

Univariate Same as Jazwinski113 except that Penny and Roberts114

One trial Rt = Rt−1
+

Univariate Rt = 0 Kalman108

One trial Kalman and Bucy115

Note. UC acts as tuning parameters that must be choosen between 0 and 1.

TABLE 2 Variants for estimating the covariance matrix Qt based on Schlögl95

Type Estimate of Qt References

Univariate Qt = UCxt Akay100

One trial Haykin et al112

Univariate xt = (I − kt)𝑦′t−1At−1 Isaksson et al111

One trial Qt = UC2I
Univariate Kt = 𝑦′t−1xt−1𝑦

′
t−1 + Rt Jazwinski113

One trial Lt = (1 − UC)Lt−1 +
UC∗(et

2−Kt)
𝑦t−1

′𝑦t−1
Penny and Roberts114

Qt =
{

LtI if Lt > 0
0 if Lt ≤ 0

with an objective criterion for the model order selection and finally a time-varying frequency-specific Granger-causality
statistic.

6.2.4 Wavelet dynamic vector autoregressive model
To derive a dynamic Granger-causality statistic in an fMRI experiment context, Sato et al32 proposed another time-varying
VAR model estimation procedure based on a wavelet expansion. They allow a time-varying structure for the VAR
coefficients as well as for the variance-covariance matrix, in a linear Gaussian context. Their model is expressed as

𝑓t(Yt|Y t−𝑝
t−1 ,Xt−𝑝

t−1 ) = 𝜙

(
Yt;𝜇 =

𝑝∑
𝑗=1

𝜗11(𝑗)(t)Yt−𝑗 +
𝑝∑

𝑗=1
𝜗12(𝑗)(t)Xt−𝑗 , 𝜎(t)2 = Σ(t)

)
, (32)

where 𝜗11(j)(t) and 𝜗12(j)(t) are the time-varying VAR coefficients at time t and Σ(t) is the time-varying variance-covariance
matrix at time t. These are both unknown quantities that have to be estimated.

They make use of the wavelet expansion of functions in order to estimate the time-varying VAR coefficients and the
time-varying variance-covariance matrix. As any function can be expressed as a linear combination of wavelet functions,
Sato et al32 consider the dynamic VAR coefficient vector 𝝑(t) and the dynamic covariance matrix Σt as functions of time,
and so expressed them as a linear combination of wavelet functions.



CEKIC ET AL. 1923

They proposed a 2-step iterative generalized least square estimation procedure. The first step consists in estimating the
coefficients of the expanded wavelet functions using a generalized least squares procedure. In the second step, the squared
residuals obtained in the previous step are used to estimate the wavelet expansion functions for the covariance matrix Σt
(see Sato et al32 for further details).

The authors gave asymptotic properties for the parameter estimates, and statistical assessment of Granger-causal con-
nectivities is achieved through a time-varying Wald-type statistic as described in Equation 14. An application in the context
of gene expression regulatory network modelling can be found in Fujita et al.123

This wavelet-based dynamic VAR model estimation methodology has the advantage of avoiding both stationarity and
linearity assumptions. However there is, surprisingly, no mention of a model order selection criterion, and the question
how to take into account all the recorded trials in the estimation procedure is not addressed.

7 EXISTING TOOLBOXES

Several toolboxes to analyse neuroscience data have been made available in recent years. We will only list those providing
estimate of time-varying VAR models and Granger-causality statistics. Tables 3 and 4 present a list of these toolboxes, with
references and details of their content. The description of the content is not exhaustive, and all of them contain utilities
beyond (time-varying) VAR model estimate and Granger-causality analysis.

8 DISCUSSION

8.1 Limitations
An important topic not highlighted here is the estimation procedure and interpretation of Granger-causality statistics in
a multivariate context. As discussed in section 5.2, by their relative normalization, the DTF and PDC statistics take into
account the influence of other information flows when testing for a causal relationship between 2 signals. Another mea-
sure is conditional Granger causality, which was briefly mentioned in Equation 7. Indeed, when 3 or more simultaneous
brain areas are recorded, the causal relation between any 2 of the series may either be direct, or be mediated by a third,
or a combination of both. These cases can be addressed by conditional Granger causality, which has the ability to deter-
mine whether the interaction between 2 time series is direct or mediated by another one. Conditional Granger causality in
time and frequency domains is described in Ding et al,21 based on previous work of Geweke.55 However, straightforward

TABLE 3 List of available toolboxes for estimating time-varying VAR models and Granger-causality statistics

TV-VAR implemented Implemented statistics
Toolbox Software estimation method of causality

BSMART Matlab Windowing approach based Geweke-spectral Granger
on Ding et al90

Brain System for Multivariate Implemented for single statistic (25)
Autoregressive Time series and multiple trials
Cui et al124

BioSig Matlab Kalman filter estimation type No causality statistic implemented
(mvaar.m Matlab function)

Schlögl and Brunner125 Implemented for single trial only
Variants for estimating the covariance
matrices
Rt and Qt are implemented based
on Schlögl95

GCCA (Granger Causal Matlab Windowing approach based Geweke-spectral Granger-causality statistic (25)
Connectivity Analysis) on Ding et al90

Implemented for single and Partial Granger causality7,134

multiple trials Granger autonomy127,128

Seth126 Causal density129,130

Abbreviation: TV, time varying.



1924 CEKIC ET AL.

TABLE 4 List of available toolboxes for estimating time-varying VAR models and Granger-causality statistics

TV-VAR implemented Implemented statistic
Toolbox Software estimation method of causality

eConnectome Matlab Kalman filter estimation type
(same mvaar.m Matlab function
as BioSig toolbox)

Directed transfer function (26)

He et al131 Implemented for single trial only Adaptive version of directed
transfer function104

Variants for estimating the covari-
ance
matrices Rt and Qt are imple-
mented based on95

SIFT (Source Information Flow Toolbox20) Matlab Windowing approach based on
Ding et al90

Partial directed coherence (27)

Implemented for single and mul-
tiple trials

Generalized partial directed
coherence132

Renormalized partial directed
coherence70

Kalman filter estimation type
(same mvaar.m Matlab function
as BioSig toolbox)

Directed transfer function (26)

Implemented for single trial only Full frequency directed transfer
function133

Geweke-Granger-causality (25)
GEDI (Gene expression data interpreter) R Wavelet dynamic vector autore-

gressive estimation method
(section6.2.4)

Granger-causality criterion 2 (12)
and Wald statistic (14)123

Fujita et al.123

MSGranger Matlab Bayesian Multiscale state-space
model

time-varying frequency-specific
Granger-causality

Cekic et al.122

transformation of conditional Granger causality into the frequency domain is problematic, as it may contain negative val-
ues with no meaning in terms of causality (as pointed out in Ding et al21 and partially solved for 3 variables in Chen et al60

with the proposed “partition matrix technique”).
Finally, an important extension is partial Granger causality. As described in Bressler and Seth,7,126 all brain connectivity

analyses involve variable selection, in which the relevant set of recording brain regions is selected for the analysis. In
practice, this step may exclude some relevant variables. The lack of exogenous and latent inputs in the model can lead to
the detection of apparent causal interactions that are actually spurious. The response of Guo et al134 to this challenge is
what is called partial Granger causality. This is based on the same intuition as partial coherence, namely, that the influence
of exogenous and/or latent variables on a recorded system will be highlighted by the correlations among residuals of
the VAR modelling of the selected measured variables. Guo et al134 also provide an extension in the frequency domain.
An alternative to the development of partial Granger-causality methods, already mentioned in Section 5, is the methods
allowing us to deal with instantaneous effects between time series.56,57 Faes et al,57 moreover, provide an extension to these
methods in the frequency domain.

8.2 EEG and fMRI application
The application of Granger-causality methods to fMRI data is very promising, given the high spatial resolution of the
fMRI blood-oxygen-level dependent (BOLD) signal.7,126

However, as explained in Seth et al,9 Granger-causality analysis of fMRI data has been highly controversial due to the
indirect relationship between the fMRI BOLD signal and the underlying neural processes. Functional magnetic resonance
imaging responses are indeed a convolution with an hemodynamic response function (HRF), which implies long delays
compared to real neural activity and which moreover may have significant interregional and interindividual variability.
Several findings indicate that the BOLD signal might also be biased for specific kinds of neuronal activities (higher BOLD
response for gamma range compared to lower frequencies for example135). However, because the HRF acts as a filter,
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Granger-causality analysis should be invariant to its variability. But, for this invariance to apply in practice, the sampling
rate of the signal should be of the same order as the neuronal delays, which is not currently feasible with fMRI data.136

Seth et al136 showed that Granger-causality analysis of downsampled and convolved data can lead to increasing type
I and II errors. Wen et al,137 however, showed that a monotonic relationship is preserved between Granger-causality
results observed at the neural level and in simulated BOLD signals, and that under several convolution and sampling rates
parameters in a bivariate situations. Seth et al,9 however, argued that although Granger-causality analysis is invariant to
HRF variability given sufficiently fast sampling rate and low measurement noise, current applications of Granger causality
to fMRI should be treated cautiously .

The very high time resolution offered by magnetoencephalography (MEG), scalp electroencephalography (EEG), or
intracranial electroencephalography (iEEG) methods allows the application of Granger causality to be very powerful.7 An
application of spectral Granger-causality statistics for discovering causal relationships at different frequencies in MEG
and scalp EEG data can be found for example in Astolfi et al,138 Bressler et al,61 and Brovelli et al58 A key problem with
the application of Granger-causality methods to MEG, scalp EEG, or iEEG data is the introduction of causal artefacts
during the preprocessing. Bandpass filtering, for example, can cause severe confounding in Granger-causality analysis by
introducing temporal correlations in the data and including future information in present (smoothed) data.76,126

Scalp EEG also poses the problem of volume conduction. Kaminski and Blinowska139 argued that the DTF measure
(see section 5.2) is not influenced by the volume conduction because it is a measure of phase difference between 2 chan-
nels, and that for the same reasons, preprocessing procedures are not needed. On the contrary, Brunner et al140 argued
that both the DTF and the PDC are adversely affected by volume conduction from multiple sources to the scalp electrodes
and, therefore, that in general, application of connectivity measures to scalp EEG signals without correcting for the vol-
ume conduction effect does not allows a clear interpretation in terms of underlying source dynamics. Going in the same
direction, Van de Steen et al141 argued that time-domain Granger causality and DTF applied on scalp EEG time series
do not allow interpretation in terms of interacting brain sources due to the volume conduction and to the fact that spu-
rious connectivity can occur between sensors. Indeed, they showed that mixing effects due to volume conduction can
lead to spurious causal connections. They concluded that time-domain GC and DTF should therefore be computed at the
source level (eg, on iEEG data) or derived within an analysis framework that takes into account the volume conduction
effect.141 Finally, in their recent article, Barnett and Seth142 conducted a simulation study to investigate how volume con-
duction affects the causal connectivity estimation on scalp EEG with temporal GC, DTF, PDC and phase-slope index.143

Their interesting results showed that only the PSI statistic is able to correctly detect significant information flows between
signals. However, the problem with PSI is that it cannot detect bidirectional (feedback) causal relations, because of the
nature of the PSI definition itself.

8.3 Neuroscience data specificities
As described in Vicente et al,39 neuroscience data have specific characteristics that complicates their analysis in terms of
effective connectivity.

First, as highlighted in Barnett and Seth,142 there are numerous problems associated with Granger-causal inference
from subsampled data. Subsampling may indeed induce type I and II errors and therefore lead to wrong Granger causality
inference (assessment of spurious causality, where Granger causality is absent at the finer time scale but assessed nonzero
for the subsampled process and undetectable causality, where Granger causality is present at the finer time scale and
assessed nonsignificant for the subsampled process). The reader is refereed to Barnett and Seth142 and references therein
for further reading on Granger causality and associated subsampling problems.

Furthermore, the causal interaction between 2 signals may not be instantaneous but delayed over a certain time interval
(𝜐), so the history of the variables Y and X in Equation 5 has to be taken from time t − 𝜐 − 1 to t − 𝜐 − p, instead of from
time t − 1 to t − p, depending on the research hypothesis.

The last very important issue reported here is the time-lag 𝜏 between the data points in the history of Y and X, which
permits more parsimonious models. Choosing a certain time-lag parameter means that the causal history of variables
Y and X should be selected by taking the time-points from t − 𝜐 − 1 to t − 𝜐 − 𝜏p, all of them being spaced by a lag 𝜏.
This is a very useful tool for dealing with high- or low-frequency modulations of the data, as high frequency phenom-
ena needs a small time lag and conversely for low-frequency phenomena. This time-lag parameter 𝜏 has a clear and
interpretable influence on Granger-causality statistics in the time domain, which directly relies on the estimated VAR
parameters. It is however very difficult to see what its impact is on the frequency-domain causality statistics, where
the time-domain parameter estimates are Fourier transformed and only then interpreted as a causality measure at each
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frequency. Barnett and Seth142 carefully analysed the interactions and links between the time-lag parameter 𝜏 (called
the embedding delay) and the sampling frequency, and they were able to identify critical relationships between causal
delay, sampling interval, and detectability of Granger causality (see Barnett and Seth142 and references therein for further
reading).

8.4 Asymptotic distributions
As we have seen in Sections 4 and 5, time-domain Granger-causality statistics in Equations 9 and 14 asymptotically follow
F and 𝜒2 distributions. Frequency-domain causality statistics in Equations 26 and 27 are both asymptotically related to a
𝜒2 distribution. “Asymptotic” here means when the number of observations T goes to infinity.

These distributions have the advantage of requiring very little computational time compared to bootstrap or permuta-
tion surrogate statistics. However, one has to be aware that all these properties are derived from the asymptotic properties
of the VAR estimated coefficients. They are thus accurate only if the assumptions behind VAR modelling are fulfilled.
They also may be very approximate when the number of sample points is not large enough.

Since in neuroscience causal hypotheses are often numerous (in terms of number of channels or/and number of specific
hypothesis to test), these distributions can nonetheless provide a very useful tool allowing us to rapidly check for statistical
significance of several causality hypotheses. They thus offer a quick overview of the overall causal relationships.

Another important aspect is that the tests based either on the asymptotic distributions or on resampling are only
pointwise significance tests. Therefore, when jointly testing a collection of values for a complete time or frequency or
time-frequency connectivity map, it is important to suitably correct the significance threshold for multiple comparisons.

9 CONCLUSION

Neuroscience hypotheses are often relatively complex, such as asking about time-varying causal relationships specific to
certain frequency bands and even sometimes between different frequency bands (so-called cross-frequency coupling).

Granger causality is a promising statistical tool for dealing with some of these complicated research questions about
effective connectivity. However, the postulated models behind have to be suitably estimated in order to derive accurate
statistics.

In this article, we have reviewed and described existing Granger-causality statistics and focused on model estimation
methods that possess a time-varying extension. Time-varying Granger causality is of primary interest in neuroscience
since recorded data are intrinsically nonstationary. However, its implementation is not trivial as it depends on the complex
estimate of time-varying densities. We reviewed existing methods providing time-varying Granger-causality statistics and
discussed their qualities, limits, and drawbacks.
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