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Abstract

Word order is one of the most readily observed and extensively studied aspects of the
human language. The central object of study of this thesis are cases of variation in
word order, i.e., cases when one syntactic structure can be expressed using more than
one grammatical linearisation. We are interested in cross-linguistical properties of
word order variation and, in particular, in phenomena related to dependency length
minimisation (DLM). DLM is known as a tendency for words and phrases that are
close in the syntactic structure (dependents) to be linearly adjacent. The evidence for
this principle was observed in many languages of the world and in various types of
word order distributions.

We analyse DLM phenomena observed in word order variation using a computational
approach. Our work capitalises on syntactically-annotated corpora (treebanks) and
statistical methods which are essential for drawing generalisations from word order
variation data across dozens of languages. To analyse similar constructions in various
languages in the same way, we treat word order as a mapping between the syntactic
structures of utterances, provided by the treebanks, and their linearisations. Since we
use treebanks which annotate different languages starting from the same syntactic
criteria, the distributions of word order mappings extracted from these treebanks can
be compared meaningfully to each other.

This thesis presents three cross-linguistic computational studies of word order varia-
tion and dependency length minimisation at three levels of linguistic representation.
First, we look at word order and dependency length distributions at the language
level. One of the aims of this study is to examine the general formulation of the DLM
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principle applied to all types of constructions and dependency relations in a language.
All languages tend to minimise dependency lengths; however, the degree of this
minimisation varies substantially. The measure of the rate of DLM at the language
level provides a way to compare languages typologically across a new interesting
dimension.

Secondly, we zoom in on the DLM effects in word order distributions in one syntactic
construction: adjective variation in Romance languages. We formalise the predictions
of the language-level global DLM principle for this complex syntactic construction
involving several dependencies. We test these predictions systematically in treebanks
of five Romance languages. We reveal several DLM-related patterns in adjective
placement, confirming the promising approach to formalising and probing DLM. For
instance, we find that adjectives tend to appear before the noun they modify when
the noun has an additional right dependent than when there is no such dependent.
We also highlight the limitations of the global DLM principle, e.g., that it cannot
explain the fact that different dependencies are optimised to a different extent.

Finally, we analyse distributions of word order as generalisations of linearisation
decisions at production time. To this end, we develop a linearisation system which
models online, word-by-word production of word order. It is conceived as a plausible
model of the word order production process and, at the same time, as a model of
word order distributions both at the language and at the construction level. This
model integrates the choice between two options for the cases of word order variation
and conditions these choices on dependency length factors.

The contributions of this thesis are relevant, first of all, to the linguistic work interested
in questions about word order and DLM. Additionally, this thesis is tightly linked to
the research in natural language processing (NLP). As part of the analysis of word
order variation and DLM at the language level, we investigate how these properties
affect the performance of statistical parsers. Our linearisation model is related to
the previous work in natural language generation and sentence linearisation and
is evaluated against a state-of-the-art NLP system. The results of this thesis are,
therefore, of interest to computational studies of syntax and variation and the field of
natural language processing.
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Resumé

L’ordre des mots est l’une des propriétés les plus facilement observées et les plus
étudiées du langage humain. L’objet central de cette thèse est l’étude des cas de
variation d’ordre de mots, i.e. des cas où une structure syntaxique donnée peut être
exprimée en utilisant plus d’une linéarisation grammaticale. Nous nous intéressons
aux propriétés inter-linguistiques de la variation de l’ordre des mots et, en particulier,
aux phénomènes de minimisation de la longueur des dépendances (DLM). La DLM
est la propriété des mots et des syntagmes proches dans la structure syntaxique
d’être adjacents lorsque l’on considère l’ordre linéaire de la phrase. Ce principe
est observable dans de nombreuses langues et pour divers types de distributions
d’ordres de mots.

Nous analysons les phénomènes de DLM observés dans la variation de l’ordre des
mots en utilisant une approche computationnelle. Notre travail utilise des corpus
annotés en syntaxe (représentations arborescentes) et des méthodes statistiques. Les
deux sont essentiels pour obtenir des généralisations à partir de données annotées
pour des dizaines de langues. Pour analyser de la même façon des constructions
similaires dans différentes langues, nous traitons l’ordre des mots comme une cor-
respondance entre les structures syntaxiques, représentées sous forme d’arbres,
et leurs linéarisations. Puisque nous utilisons des corpus arborés qui annotent
différentes langues en utilisant les mêmes critères syntaxiques, les distributions inter-
linguistiques de l’ordre des mots extraites de ces arbres peuvent être comparés de
manière significative.

Cette thèse présente trois études computationnelles inter-linguistiques de la variation
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de l’ordre des mots et de la minimisation de la longueur des dépendances à trois
niveaux de représentation linguistique. Premièrement, nous examinons l’ordre des
mots et les distributions de la longueur des dépendances au niveau de la langue.
L’un des objectifs de cette étude est d’examiner la formulation générale du principe
de la DLM appliqué à tous les types de relations syntaxiques d’une langue. Toutes
les langues ont tendance à minimiser la longueur des dépendances. Cependant,
l’ampleur de cette minimisation varie considérablement. Mesurer l’étendue de la
DLM au niveau de la langue permet de comparer les langues à travers une nouvelle
dimension typologique intéressante.

Deuxièmement, nous nous concentrons sur les effets de DLM dans les distributions
de l’ordre des mots d’une construction syntaxique choisie:̃ la variation du place-
ment des adjectifs dans les langues romanes. Nous formalisons les prédictions du
principe de DLM globale pour cette construction syntaxique complexe et impliquant
plusieurs dépendances. Nous testons systématiquement ces prédictions dans des
corpus arborés de cinq langues romanes. Nous révélons plusieurs patterns dans le
placement des adjectifs liés au DLM, ce qui confirme notre approche prometteuse
pour formaliser et examiner la DLM. Par exemple, nous constatons que l’adjectif a
tendance à apparaı̂tre plus fréquemment avant le nom qu’il modifie, quand le nom a
une dépendance supplémentaire à droite (par exemple, un syntagme prépositionnel),
que lorsqu’il n’y a pas ce genre de dépendances. Nous soulignons également les
limites du principe de la DLM globale. Par exemple, il ne peut pas expliquer le fait
que différentes dépendances sont minimisées de manière différente.

Enfin, nous analysons les distributions de l’ordre des mots comme des généralisations
de décisions de linéarisation au moment de la production. Pour cela, nous développons
un système de linéarisation en ligne qui modélise la production de l’ordre des mots,
mot par mot. Il est conçu comme un modèle plausible du processus psychologique
de production de l’ordre des mots et, en même temps, comme un modèle de distri-
bution de l’ordre des mots au niveau de la langue et au niveau des constructions
syntaxiques. Ce modèle intègre le choix entre deux options pour les cas de variation
de l’ordre des mots et conditionne ce choix en s’appuyant sur le facteur de longueur
de dépendances.
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Les contributions de cette thèse sont pertinentes, tout d’abord, d’un point de vue
linguistique. De plus, cette thèse est liée à la recherche en traitement automatique du
langage naturel (TALN). Dans le cadre de l’analyse de la variation de l’ordre des mots
et de la DLM au niveau du langage, nous étudions comment ces propriétés influencent
les performances des analyseurs statistiques. Notre modèle de linéarisation est à
mettre en relation avec les travaux précédents sur la génération automatique de
phrases d’une langue naturelle. Il est évalué par rapport à un système de TALN à
l’état de l’art. Les résultats de cette thèse apportent donc des contributions en syntaxe
computationnelle et dans le domaine de la variation de l’ordre des mots, ainsi que
pour les études liées au traitement automatique du langage naturel.
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Chapter 1

Introduction

Word order is one of the most readily observable parts of the grammatical system of
human languages. Contrasts between the grammatical (1.1a) and the ungrammatical
(1.1b) sentences, which differ minimally in their word order, constitute linguistic facts
that a syntactic theory seeks to explain.

(1.1) a. John ate a cake with a fork

b. *John ate with a fork a cake

By word order, we understand the order between lexical elements and phrases in a
syntactic relation, e.g., a verb-object relation ate→ cake or a verb-modifier relation
ate → [ with a fork ]. Syntactic relations form the hierarchical tree structure of an
utterance. This tree structure is mapped onto a one-dimensional sequence of sounds
or written symbols resulting in the observed word order.

Languages of the world vary greatly in the word order constraints specified in their
grammar. For instance, the main syntactic elements of a clause — verb (V), subject
(S) and object (O) — are arranged in the SOV order in Japanese (1.2), as opposed to
English, which places them in the SVO order.

(1.2) John-ga
John-nom

keiki-o
cake-acc

tabeta
ate
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‘John ate a cake’

An even more intriguing observation is that word order constraints can be more or
less flexible in different languages. The parallel sentences in English, Italian and
Russian illustrate three constructions of varying word order flexibility (1.3–1.5).

(1.3) a. English: I saw Mary in the shop / *I saw in the shop Mary

b. Italian: Ho visto Maria al negozio / *Ho visto al negozio Maria

c. Russian: Я видел Марию в магазине / Я видел в магазине Марию

(1.4) a. English: I saw that John came / * I saw that came John

b. Italian: Ho visto che Gianni è venuto / Ho visto che è venuto Gianni

c. Russian: Я видел что Иван пришел / Я видел что пришел Иван

(1.5) a. English: I saw a new book / *I saw a book new

b. Italian: Ho visto un nuovo libro / Ho visto un libro nuovo

c. Russian: Я видел новую книгу / *Я видел книгу новую

In example (1.3), English and Italian require the direct object Maria to be adjacent to
the verb saw while Russian also allows it to appear after the prepositional phrase in the
shop. In (1.4), the SV order John came is the only grammatical option in English but it
can be reversed in the embedded clause in Italian and Russian (è venuto Gianni, пришел
Иван). Example (1.5) shows that English and Russian have only one grammatical
position for adjective modifiers which must appear before the noun. In Italian, both
pre-nominal and post-nominal positions are allowed.

The cases of availability of two orders with equivalent semantic meanings as in
examples (1.3c), (1.4b,c) and (1.5b) are known as cases of word order variation. Such
cases are challenging for a syntactic theory because they imply that one underlying
syntactic structure can be mapped onto several word order realisations. Word order
variation phenomena are not explicable with a one-to-one structure–linearisation
mapping and are not purely syntactic. Rather, these phenomena emerge at the
interface between the syntactic and the production systems of the language. The
preferences between two alternative grammatical orders and the choices observed
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in production data are affected by various types of factors, including processing
constraints and discourse context.

The linguistic data illustrated in examples (1.3–1.5) raise two related fundamental
questions. The first question concerns the variation observed across languages: To
what extent do languages vary in their word order and its flexibility, and why?
Describing word order constraints and identifying the limits of their variation is
important for the typological study of languages. Explaining why these limits exist
leads to an improved understanding of the universal properties of languages and
their structures.

The second question is concerned with the variation observed in an individual
language, e.g., in Italian in examples (1.4b) and (1.5b) and in Russian in examples
(1.3c) and (1.4c). When two word order options are available, why is one option
chosen over the other option in a given sentence? This question can be answered
thoroughly only by looking at many factors: both the ones general to a language
(Italian or Russian) and the ones specific to the context of speech. By analysing
intra-linguistic word order variation in a cross-linguistic perspective, we can further
identify the factors which are general not only to one language but to all languages.

This dissertation aims to advance our understanding of word order variation from
these two perspectives. Our focus is, in particular, on one common characteristic
of word order in natural languages: the tendency for related syntactic elements to
appear close to each other in the linearisation of the structure.

1.1 Dependency length minimisation

It has repeatedly been observed that languages tend to minimise the distance between
words and phrases connected by a syntactic relation. In examples (1.1) and (1.3a) in
English, the verb (head) and the direct object (its syntactic child) must be linearly
adjacent: the order V PP O with an intervening prepositional phrase (PP) is not
grammatical. This tendency is found both across grammatical orders of languages of
the world and in intra-linguistic word order variation patterns.
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Typological data tell us that word order patterns which produce short distances
are cross-linguistically more frequent than patterns which produce long distances
(Greenberg, 1963; Hawkins, 1994; Dryer, 1992). For example, some of the frequently
attested orders between a verb, its nominal object (N) and a relative clause modifying
the object (RelC) are V [N RelC] order (1.6) (e.g., as in English) and [RelC N] V order
(1.7) (e.g., as in Japanese). By contrast, the order V [RelC N] (1.8) is rarely found
(Dryer and Haspelmath, 2011).1

(1.6)
seeV boysN [ who write long letters ]

(1.7)
[ long letters write who ] boysN seeV

(1.8)
seeV [ who write long letters ] boysN

It is evident from the schematic representation of the distances between syntactically-
related elements (see→ boys, boys→ write) that the orders (1.6) and (1.7) place these
elements closely adjacent to each other while the order (1.8) places them further
apart.

Similar tendencies have been extensively observed for cases of word order variation
involving a choice between two or more possible grammatical orders in a language.
It was demonstrated using corpus and experimental production data that speakers

1According to World Atlas of Language Structures (http://wals.info/combinations/83A_90A), the
first two orders are attested in 415 and 132 languages, while the third one is found only in five
languages of the world.
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use more frequently the order which yields smaller distances between dependent
words compared to alternative linearisations (Hawkins, 1994; Stallings et al., 1998;
Wasow, 2002; Gries, 2003; Bresnan et al., 2007). Consider, for instance, the case of
word order variation involving a phrasal verb with particle and a nominal object
phrase in English (lookV upPrt [ a story ]NP). The order V Prt NP (1.9) was found to
be preferred compared to the order V NP Prt (1.10) when the object noun phrase is
long.

(1.9)
lookV upprt [ an old scary story ]

(1.10)
lookV [ an old scary story ] upprt

As can be seen from the illustrations in (1.9–1.10), the distances between V and Prt
(look→ up) and V and N (look→ story) are shorter in the preferred order V Prt NP.

Following recent work (Temperley, 2007; Park and Levy, 2009; Tily, 2010; Futrell
et al., 2015b), we refer to these tendencies in typological distributions and word order
variation preferences cumulatively as a dependency length minimisation (DLM) principle.
The arcs in examples (1.6–1.10) indicate syntactic dependencies between words and
dependency length is the distance between two dependent words.2

DLM emerges as a universal bias affecting word order, manifested in typological
distributions and phenomena of word order variation in many languages. Despite
the fact that the DLM principle has already received much attention, there remain
many open fundamental and intriguing questions. To what extent is DLM universal?

2Dependency length is measured as a linear distance between words. Note, however, that this notion
relies on the hierarchical representation of the sentence. For example, in the phrase write a note
with a pencil we compute the dependency length between the modifier with a pencil and its head
write, not between the modifier and a potential head node which is linearly adjacent.
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The cross-linguistic studies of Liu (2008), Gildea and Temperley (2010) and Futrell
et al. (2015a) found that all investigated languages are shaped by DLM (on average,
across all constructions in a language). However, some of the languages including
German and SOV languages such as Persian and Japanese have longer dependencies
than other languages. Further investigations are required to understand how the
effect of DLM differs between languages and why. If DLM is a universal pressure,
this also suggests that it should apply to all cases of word order variation. Previous
work found DLM effects in many word order variation constructions, but mostly of
one structural type including alternation of only two dependencies as in (1.9–1.10).
It is an open question whether DLM indeed affects all types of variation and how
the interaction with other factors influences it. Investigating these aspects of DLM
should help us answer the most perplexing question: What is the nature of the DLM
principle? Does it originate in constraints on production or comprehension processing
mechanisms or is it a more general communication pressure?

The goal of this thesis is to provide new empirical facts and theoretical consid-
erations towards answering these questions. We extend previous work based on
syntactically-annotated cross-linguistic corpus data by analysing and modelling word
order variation and DLM at three different linguistic levels: on average in a language,
in individual word order variation constructions, and in the online mechanism of
sentence linearisation.

1.2 Computational analysis of word order

This thesis pursues an empirical approach to linguistic theory: we study fundamental
questions about word order using corpus data and computational modelling.

Quantitative analysis of word order in a language requires specialised corpus data.
To establish statistical properties of word order patterns we need a large enough
sample of naturally produced sentences. Written corpora are the most common
source of such data. Nowadays, we can gather vast amounts of written digital
text. The raw text data are not, however, sufficient to analyse word order variation:
we need to know the syntactic structures of the sentences which are crucial for
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investigating word order phenomena as a mapping between syntactic structure
and its linearisation. The requirement to have access to the syntactic analysis of a
sentence ties our empirical investigations to syntactically-annotated corpora, known
as treebanks. The experiments presented in this thesis rely on certain properties of
the treebanks and the choices of syntactic annotation they make. In particular, the
treebanks that we employ provide dependency grammar annotation of the sentences
which define the way we compute dependency lengths.

Syntactic treebanks require manual annotation by linguistic experts and are therefore
expensive and scarce linguistic resources. As a consequence, until recently, quantita-
tive analyses of word order variation based on syntactic treebanks were habitually
conducted on one language of choice, commonly English. Fortunately, the number of
treebanks available in different languages grows every year. Moreover, since treebanks
serve as essential training and evaluation resources for natural language processing
applications, a systematic effort of the community is directed towards harmonising
and unifying treebanks and their annotation designs (Zeman et al., 2012; Petrov et al.,
2012; de Marneffe et al., 2014; Nivre et al., 2016). The availability of collections of
treebanks with the same syntactic annotation such as the Universal Dependencies
treebanks (Nivre et al., 2016, 2017) provides opportunities to perform large-scale
analyses of syntactic phenomena in cross-linguistic perspective. The experiments in
this thesis leverage these new linguistic resources and analyse a total of 15 languages,
contributing to the recent line of large-scale cross-linguistic research on word order.

We use computational modelling of empirical data as a means to investigate and
formally test theoretical linguistic hypotheses. The primary type of observations that
come from our data is the frequencies of occurrences of word order options. One
way to establish the preferences in word order variation constructions is simply by
comparing the frequency of two word order options (e.g., V Prt NP and V NP Prt) in
a corpus. Of course, the choice between two possible linearisations is subject to many
factors and constraints. We are primarily interested in teasing apart and testing the
effects of these factors. To do so, we use logistic regression statistical models which
have been traditionally applied in corpus analyses of syntactic variation (Gries, 2001;
Bresnan et al., 2007). These models allow us to examine many factors potentially
affecting variation and measure their effects.
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The drawback of logistic regression models is that they simplify the variation phenom-
ena by focusing only at surface factors observed in a sentence and its structure and
abstract away from complex interactions between the factors, the discourse context
of the utterance and the mechanisms of language production and comprehension.
To address some of these limitations, we develop a computational model which
is designed to model the process of word order production explicitly. This model
can be seen as an implementation of one stage of the online language production
mechanism: the mapping of the syntactic structure onto the order of words. This
model is a type of machine learning model. It is trained on linearised dependency
trees provided by a treebank to predict the next word in an utterance given the
previously produced words and the rest of the dependency tree. This second type
of computational modelling provides a means to test how the constraints on the
language production mechanism, such as online processing and memory limitations,
affect word order variation.

The computational methods applied in this thesis are connected in several ways
to natural language processing (NLP) research. While the focus of our work is
on linguistic questions concerning word order variation, some of the methods we
develop derive from the NLP models for text processing and language generation,
more specifically, statistical parsing and surface realisation models. Conversely, we
also find that the models and quantitative analyses we develop in this work are
relevant and useful for NLP research.

1.3 Overview of the thesis and its goals

The work presented in this thesis investigates cross-linguistic word order varia-
tion phenomena related to dependency length minimisation through the use of
syntactically-annotated data and computational models. Three experiments which
we present in Chapters 3 through 5 address word order variation phenomena at three
different linguistic levels: the language level, the construction level and the sentence
level. In principle, these experiments and their results can be viewed as independent
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pieces of work, but together they aim to provide a new unified perspective on word
order variation and DLM across different linguistic levels.

Before presenting our experiments and results, we outline the general theoretical and
methodological context for our work in Chapter 2. We start by describing the treebank
data we use. As mentioned previously, we use dependency-annotated treebanks. We
highlight the main properties of this grammatical annotation and the reasons for
adopting it in our work. Next, we discuss the theoretical syntactic assumptions on
word order which we implicitly adhere to when we analyse word order as a mapping
between dependency trees and their linearisations. We present previous quantitative
corpus-based work on word order variation underlining the empirical methodology
we follow in our work. As part of this chapter, we review a large part of the work on
DLM focusing on the evidence for DLM effects in word order variation constructions
as well as the main processing explanations of DLM.

Chapter 3 presents our first study dedicated to the typological language-level investi-
gation of word order properties. We analyse word order in a language as a whole
with a goal to measure and compare the degree of dependency length minimisation
and word order freedom across languages. Previous work has shown statistically that
many typologically-different languages tend to minimise dependencies at language
level (Futrell et al., 2015a). The extent of this minimisation is, however, varied: some
languages like English or French seem to minimise dependencies more than other
languages such as Persian or Russian. Is it possible to quantitatively compare the
rate of DLM across languages? We show that the answer is yes, by using statistics
extracted from dependency treebanks. We analyse previously proposed measures
of dependency lengths and show that we can robustly compute the degree of DLM
in a language based on dependency length of a sentence relative to the minimal
possible dependency length. A related question we are interested in is whether we
can compare the degree of word order freedom across languages in a similar way.
Word order variation at the level of language can also be computed using dependency
treebanks, but it is harder to do in a statistically-robust way. Language-level measures
of word order properties can contribute not only to linguistic typology but also
to NLP research. To illustrate their potential application for NLP, we evaluate the
measures of DLM and word order freedom as the correlates of statistical parsing
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performance and show that they can be applied to diagnose and inform parsing
systems.

Chapter 4 aims to investigate the relevance of the general DLM principle, as used at
the treebank level in Chapter 3, in word order variation in one syntactic construction.
We focus on adjective-noun variation in Romance languages. Many adjectives can
appear both before the noun and after the noun in Italian (see, e.g., example (1.5b))
and other Romance languages. This alternation has received substantial attention
in theoretical, empirical and computational linguistic studies. However, previous
research focuses mainly on the semantic and lexical constraints of the prenominal and
postnominal adjectival positions. Apart from the analysis of heavy adjective phrases
(Abeillé and Godard, 2000), this construction has not been previously investigated in
connection with DLM. Consequently, we use the adjective-noun word order variation
to probe the universality of the DLM principle on a new syntactic phenomenon.
We start by formalising the general cumulative DLM principle for this construction
(Temperley, 2007). Adjective-noun variation is structurally different from alternations
such as verb-particle shift (examples (1.9–1.10)) used traditionally as evidence for
DLM, and the predictions of DLM are not straightforward since they depend on
the composition of the whole noun phrase. To verify these predictions, we conduct
several systematic corpus-based statistical analyses in five Romance languages. To
our knowledge, this is the first large-scale corpus study of adjective placement across
several Romance languages. Our results reveal several types of DLM effects in
complex noun phrases with adjectives. Interestingly, some of the DLM-induced
adjective distribution patterns have not been reported in the previous literature.

The experiments in Chapters 3 and 4 focus on word order distributions observed at
two different linguistic levels: in a language as a whole, and in one specific syntactic
construction and its realisations, respectively. Apart from assuming common DLM
effects, these studies analyse two types of word order distributions independently,
without referring to the shared processes of language production which generated
these distributions. In Chapter 5, we pave the way for studying word order distribu-
tions at different linguistic levels using one integrated approach: by modelling and
analysing the word order production system directly.
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The word order part of the language production, which we focus on, is known as
sentence linearization. Our proposed model of sentence linearization is trained to
learn the mapping between the syntactic structure (unordered dependency tree)
and the word order in a sentence. Crucially, it is designed to produce word order
in an online fashion, that is, word-by-word. The choice of the next word is based
on the acquired probabilistic grammar and is made greedily with minimal use of
computational and memory resources. These architectural features make our system
a cognitively plausible implementation of an incremental word order production
process. Moreover, the choices between alternative grammatical word orders can be
naturally integrated into this system as a re-ranking step. Making a connection with
Chapter 3, we confirm the language-level DLM in a new way through the modelling
of word order based on local word order production decisions.

1.4 Publications

Part of the work presented in this thesis was previously published as the following
peer-reviewed papers.

Chapter 3 is largely based on the two papers:

• Kristina Gulordava, Paola Merlo (2015a) Diachronic Trends in Word Order Freedom
and Dependency Length in Dependency-Annotated Corpora of Latin and Ancient Greek.
International Conference on Dependency Linguistics

• Kristina Gulordava, Paola Merlo (2016) Multi-lingual Dependency Parsing Evalua-
tion: a Large-scale Analysis of Word Order Properties using Artificial Data. Transac-
tions of ACL

Chapter 4 draws on the work published in:

• Kristina Gulordava, Paola Merlo, Benoit Crabbé (2015) Dependency length min-
imisation effects in short spans: a large-scale analysis of adjective placement in complex
noun phrases. Proceedings of ACL
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• Kristina Gulordava, Paola Merlo (2015b) Structural and lexical factors in adjective
placement in complex noun phrases across Romance languages. Proceedings of
CONLL
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Chapter 2

Background

The work presented in this thesis draws on many adjacent research fields interested
in phenomena of word order and dependency length minimisation: theoretical and
empirical syntax, psycholinguistics, natural language processing, typology. This
chapter provides a general high-level picture of the previous work on the main
two topics of the thesis. At the same time, we make explicit our main starting
assumptions about the grammatical structure and its relation to word order. We focus
our discussion on the methodology and findings of the previous corpus-based word
order variation studies addressing DLM effects. In the following chapters, we discuss
in more detail the previous work which is related specifically to each of the three
experiments.

We start this chapter by first describing the dependency grammar formalism and
dependency treebank resources which constitute the empirical basis for our work.

2.1 Dependency treebanks

A treebank is a text corpus where each sentence is annotated with its syntactic
structure. The release in 1994 of the English Penn Treebank (Marcus et al., 1994) —
the first large-scale treebank of 1.6 million words — paved the way for empirical
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syntactic analyses and the development of data-driven techniques to automatic
natural language parsing.

Dependency treebanks are treebanks which annotate dependency syntactic structure
of sentences, as opposed to phrase structure (used, for example, in the Penn Treebank
annotation). The first large-scale dependency treebank is the Prague Treebank. Its
development was inspired by the long-standing Praguian linguistic tradition and
the theory of the dependency-based Functional Generative Description (Hajičová,
1998; Böhmová et al., 2003). Recently, there has been a growing interest in developing
dependency treebanks for many languages. The consolidation effort around building
and harmonising dependency treebanks has lead to the Universal Dependencies
initiative (McDonald et al., 2013; de Marneffe et al., 2014; Nivre et al., 2016) which to
this moment (v2.1, 15 November 2017 release, Nivre et al. (2017)) has produced 102
treebanks in 60 languages.

The availability of multilingual syntactically-annotated corpora in the form of de-
pendency treebanks creates a starting point for the work presented in this thesis.
This section describes the main syntactic principles underlying dependency structure
analyses and the properties of the treebanks which are essential for the experiments
described in the following chapters.

2.1.1 Dependency structure representation

The origins of the dependency grammar tradition date back to the work of Lucien
Tesnière (Tesnière, 1959, 2015). Some of the most developed dependency grammar
frameworks are the Prague School’s Functional Generative Description (Sgall et al.,
1986), Mel’čuk’s Meaning-Text Theory (Mel’čuk, 1988), and Hudson’s Word Grammar
(Hudson, 1984).

All the types of dependency grammars share the following main properties. First,
adopting the lexicalist hypothesis in syntax, the units of the syntactic structure are
assumed to be words. Secondly, the words are connected by binary grammatical
relations called dependencies. A dependency w1 → w2 between two words w1 and w2

is always asymmetric. It states that the word w2 is dependent on the word w1 which
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the cat is holding a very big mouse

ROOT

aux

nsubj

obj

amodadvmoddet

det

Figure 2.1: An example dependency tree of the English sentence the cat is holding a
very big mouse.

holding

is

aux

mouse

a

det

big

very
advmod

amod

obj

cat

the

det

nsubj

Figure 2.2: An unordered dependency tree representation of the English sentence the
cat is holding a very big mouse.

is called the head of the dependency. The dependency relations between the words in
a sentence form a tree structure as illustrated in the Figure 2.1 for a simple English
sentence. Note that the dependencies are represented by arrows pointing from the
head to the dependent.

The tree condition implies that each word — node in the tree — has one and only one
head. The root word of a sentence is indicated by a special dependency, e.g., ROOT
→ holding in our example.

In addition to the tree structure composed of binary dependencies, dependency gram-
mars specify a set of labels to distinguish between different types of dependencies.
For example, the label nsubj indicates that cat is the subject of the verb holding, while
mouse is the object of the verb identified by the label obj (Figure 2.1).

Importantly, a dependency analysis indicates hierarchical relations between lexical
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units (words) and gives, in principle, a syntactic representation which is independent
of the order of words in a sentence. Figure 2.2 illustrates a hierarchical dependency
representation of the sentence, which we call unordered dependency tree as opposed to
ordered dependency tree in Figure 2.1.

The fact that a dependency structure is assigned using a small set of criteria for
identifying the head-dependency relations and that these criteria do not depend on
the contiguous sequences of words (as in phrase-structure analyses) makes it a natural
choice for annotation of languages with relatively free word order. Consider an
extreme example of non-configurational sentence structure in Latin (Figure 2.3). The
dependency structure annotation of this sentence using the available morphological
information is straightforward despite the non-contiguous word order.1 This example
also points to why dependency representation is advantageous for annotation of
languages with different morphosyntactic properties under one annotation scheme. If
we take a sentence similar to the one in Latin in some other language, say in English,
the (unordered) dependency structure could be given in a very similar way for the
two languages, despite some crucial differences in the word order.

These reasons, among others, have led to the gradual adoption of dependency-
structure annotation for building new treebanks and to a recent effort to unify the
existing dependency annotation schemes under one annotation scheme, known as
Universal Dependencies (Nivre et al., 2016). In this work, we used Universal Depen-
dencies treebanks for most of our experiments with addition of several treebanks
from the PROIEL project Haug and Jøhndal (2008). We discuss these treebanks and
the Universal Dependencies annotation scheme in the next section.

2.1.2 Dependency treebanks and annotation schemes

Treebanks come in different forms. Apart from the annotation of syntactic depen-
dencies, a typical treebank contains other levels of linguistic information. This

1This example in Latin also illustrates so-called non-projective dependencies. An arc between two
words is defined as non-projective in an ordered dependency tree if among the words it spans
there is a word belonging to a different subtree. A presence of a non-projective arc corresponds to
non-contiguous constituents in the phrase structure of the sentence.
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quam quibus in reliquis utimur maribus
than which in other (we) use seas

ROOT

Figure 2.3: The dependency tree of a phrase in Latin, extracted from the Caesar
PROIEL treebank (Haug and Jøhndal, 2008) translated as than those which
we use in other seas.

information most frequently covers morphosyntactic properties at the level of the
word. The most common and useful word features are lemmas, part-of-speech tags (PoS
tags) and morphological features (case, number, gender, tense and other).

A popular textual format for dependency treebanks, known as CONLL format,
represents words as lines and features as columns. Each word has an index indicating
its linear position in the sentence. The dependency tree structure is provided by
indicating for each word w the index of its head node h. The dependency label for
a h → w relation is similarly indicated as a feature of the dependent word w. This
simple format allows extracting dependencies of a specific type using simple data
processing scripts. This format is widely adopted and helps to process different
treebanks and languages in the same manner.

A bigger challenge for automatic processing and analysis of multilingual dependency
treebanks are conceptual differences in the annotation decisions. Treebanks can
differ in the set of PoS tags or dependency labels that are used for annotation or,
perhaps more crucially, in the criteria to choose heads and attach dependents. In
recent years, there has been a substantial effort towards unifying and harmonising
treebanks at all levels of annotation. The first step concerned the design of a small set
of coarse-grained Universal PoS tags (Petrov et al., 2012).2 Many NLP systems rely
on PoS tagging to provide higher-level syntactic or semantic analysis of sentences.
The diversity of PoS annotation (ranging from 11 to 294 language-specific tags in 25

2See also Buchholz and Marsi (2006); Rambow et al. (2006); Nivre et al. (2007) for previous work in
this direction.
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treebanks analysed by Petrov et al. (2012)) prevents the off-the-shelf application of
systems developed in English to other languages. Based on these practical consider-
ations, Petrov et al. (2012) proposed and evaluated a set of 12 coarse universal PoS
categories. They provided the mapping of the tag sets of 25 existing treebanks to
the universal PoS tags and highlighted the resulting practical advantages for NLP
applications. For instance, they demonstrated that the transfer of parsing systems
from one language to another improves substantially when the languages share the
same universal PoS tagset.

At the moment, the Universal PoS tag set comprises 17 categories including content
word open class categories: NOUN, PROPN (proper noun), VERB, ADJ (adjective);
function word categories: PART (particle), ADP (adposition, i.e., both pre- and
post-positions), AUX (auxiliary), DET (determiner), NUM (numeral), PRON (pro-
noun), SCONJ and CCONJ (subordinate and coordinate conjunctions); and additional
categories such as PUNCT (punctuation) and SYM (symbol).3

HamleDT treebank collection (Zeman et al., 2012) is the first large-scale attempt to
harmonise the annotation schemes of existing dependency treebanks. It features, in
particular, the same set of dependency labels across all treebanks in the collection
which were automatically mapped from the language-specific dependency labels.
The HamleDT annotation is based on the Prague Dependency Treebank scheme.

These initiatives have contributed to the most recent and large-scale collaborative
effort carried out by the computational linguistic community and known as Univer-
sal Dependencies (UD) project.4 It is aimed at designing a dependency structure
annotation scheme which can be applied to typologically diverse languages. As
for Petrov et al. (2012), one of the motivations behind UD project is the need to
improve cross-linguistic transferability and comparison of automatic NLP systems.
This ambitious goal is achieved by trading off detailed syntactic analyses provided
by language-specific annotation choices for simplification of the syntactic structures
and dependency relations. This unification and simplification necessarily starts at the
level of parts-of-speech which are annotated using the coarse Universal PoS tag set.

3http://universaldependencies.org/u/pos/
4http://universaldependencies.org
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2.1 Dependency treebanks

In this thesis, we took advantage of the availability of dependency treebanks for
many languages and, in particular, the many treebanks annotated by the Universal
Dependencies project. We rely on the specific properties of the UD annotation scheme
in two ways. First, we access automatically a set of relevant syntactic constructions
(such as noun phrases containing an adjective in the experiments in Chapter 4) by
matching PoS tags (ADJ, NOUN) and dependency labels (amod). Secondly, we
compute the lengths of dependencies which are by definition conditioned on the
form of dependency trees. The linguistic decisions of the annotation scheme play,
therefore, an essential role in the interpretation of the results of our experiments. We
describe the details of the Universal Dependencies annotation scheme, which we
used in the majority of our experiments.

Universal Dependencies annotation scheme

A distinctive property of the UD annotation is its adherence to the content-head
principle of assignment of dependencies. The annotation builds on the Stanford
Dependencies scheme (de Marneffe and Manning, 2008) which was proposed as
a description of grammatical relations (initially for English) with an emphasis on
interpretable, “semantically contentful” relations useful for down-stream NLP ap-
plications such as information extraction or question answering. These applications
aim to recover the meaning of sentences and texts which often depends crucially
on non-local syntactic relations. To do this, such applications rely on automatic
syntactic parsing in their pipeline. As a consequence, the Stanford Dependencies
were designed to favour the direct extraction of predicate-argument structure and
other relations between content words. This is in contrast with traditional syntactic
formalisms which give much prominence to function words. Stanford Dependencies,
for example, make the choice of treating determiners and auxiliaries as modifiers.
However, prepositions are still considered the heads of the prepositional phrase.
The last version of the Stanford Dependencies scheme (de Marneffe et al., 2014),
which eventually developed into the current UD scheme, consistently chooses content
words as heads in a dependency tree. The main motivation for this convergence is
the cross-linguistic parallelism. If dependency relations are drawn between content
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words then they will hold also in languages without some particular function words
(e.g. prepositions or determiners).

The content-head UD representation is illustrated in the example in Figure 2.4. The
content words staring, cat, mouse are connected using fundamental grammatical rela-
tions such as nsubj and iobj. The function words is and a are dependents and modifiers
of the content words. In contrast, Figure 2.5 shows a function-head annotation variant
of a similar sentence. Here, for example, the auxiliary is is chosen to be the head of
the subject on the syntactic grounds that there is an agreement relation aligning the
number of the subject and the number of the auxiliary be. Similarly, preposition at is
chosen to be the head of the prepositional phrase because the verb stare is in a direct
relationship with the preposition at which it is said to select (the verb cannot appear
with some other preposition, e.g., on). In contrast, in the content-head annotation,
prepositions are modifiers of the nouns which are heads of prepositional phrases
(e.g., mouse is the head of PP at a mouse).5

Using the phrase-structure terminology, the basic head-assignment decisions in the
UD annotation scheme can be summarised as follows. The head of the noun phrase
(NP) is a noun, all the noun dependents such as determiners, numerals, adjectives
are its modifiers. The head of the prepositional phrase [P NP] is the head noun in the
NP, and the preposition is its dependent. The main content verb is the head of the
verb phrase, and all the auxiliary verbs (modal, tense and aspect modifiers) are its
dependents.

The advantages of the content-head annotation are evident in a cross-linguistic
comparison. Consider the sentence in English from Figure 2.4 translated into Russian
(Figure 2.6). Importantly, the shared predicate-argument structure of the sentence (cat
← staring→ mouse) is annotated by the same dependencies in the English sentence
and in the Russian sentence. On the other hand, additional syntactic information is
expressed differently in two languages: Russian uses morphological case marking to

5The content-head choices of the UD annotation scheme are controversial from a syntactic stand, as
seen, for example, from the critical take of Osborne (2015). In fact, UD is not proposed as a syntactic
theory (Nivre, 2015, p. 3). Rather, dependency relations serve to capture both surface syntactic
relations and deeper predicate-argument relations situated on the interface between syntax and
semantics.
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the cat is staring at a mouse

ROOT

aux

nsubj

iobj

detdet

case

Figure 2.4: The content-head dependency tree of the English sentence the cat is staring
at a mouse.

the cat is staring at a mouse

ROOT

pred

subj

pobj nobjnobj nobj

Figure 2.5: The function-head dependency tree of the English sentence the cat is staring
at a mouse.

express grammatical relations while English utilises function words — prepositions.
The distinction between core content word relations and secondary relations between
function and content words allows drawing parallel structural analyses between
syntactically different languages, which would not otherwise be possible.

The UD dependency labels comprise 35 categories which distinguish between core and
non-core predicate dependencies as well as nominal versus clausal dependencies. For
example, nsubj and csubj annotate nominal and clausal subject relations respectively,
while obj and iobj annotate direct object and indirect nominal objects. The UD

кошка буравит взглядом мышь
cat bores stareINST mouseACC

ROOT

nsubj

obj

mod

Figure 2.6: The Russian phrase corresponding to the English the cat is staring at the
mouse.
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documentation contains extensive reference on all relation types and many example
analyses of constructions.6

UD treebanks

At the moment, the latest version of UD treebanks (v2.1) released in November 2017
counts 60 languages and 102 treebanks. Among these, 30 languages have more than
100.000 annotated tokens. The work presented in this thesis was conducted using
the UD treebanks released with versions 1.2 and 1.3 which cover between 33 and 40
different languages. We provide the statistics of the subset of the treebanks for each
experiment separately.

PROIEL treebanks

In addition to UD treebanks, we used treebanks annotated as part of the PROIEL
project (Haug and Jøhndal, 2008). PROIEL project provides annotation for literary
texts in ancient languages such as Latin, Ancient Greek, Old Church Slavonic, Classic
Armenian and many others. We use the treebanks of Latin and Ancient Greek in our
experiments presented in Chapter 4. Starting from the UD release v2.0, the PROIEL
treebanks were converted to the UD annotation scheme and included in the collection.
However, we used the original PROIEL treebanks and not their UD versions because
we analyse and compare different literary works. The UD version contains only one,
composed, treebank per language. Instead, on the PROIEL website, the treebanks
of Latin comprising the works of Caesar, Cicero, Vulgate’s Bible and others can be
downloaded separately.7

The PROIEL annotation scheme is based on the Prague Dependency Treebank scheme
and is similar to the UD scheme. There are some minor differences in the naming of
dependency labels and one structural difference in the head-assignment rules: i.e.,
the prepositions are considered to be heads of prepositional phrases. However, these

6http://universaldependencies.org/u/dep/index.html
7https://proiel.github.io/
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properties do not make a difference for our analyses, and we leave the reader to
consult the PROIEL annotation guidelines for further information.8

2.2 Theoretical and empirical framework

Constraints on word order are part of the grammatical knowledge of speakers. A
speaker of English knows that (2.1a) is an acceptable, grammatical sentence in English
while (2.1b), with a slightly different word order, is ungrammatical:

(2.1) a. John ate a cake with a fork

b. *John ate with a fork a cake

Yet, syntactic theories differ substantially in how much prominence they attribute
to word order and where the word order constraints are placed in the grammatical
representation. In the mainstream phrase-structure transformational syntax starting
from Chomsky (1957), word order is tightly connected to the hierarchical grammatical
representation. First, it is specified by grammar as part of phrase-structure rules
creating the “deep” structure. It is then subsequently modified by movement trans-
formations resulting in “surface” structure (Chomsky, 1965; Kayne, 1994; Rizzi, 2004;
Cinque, 2005). In a most straightforward analysis of this kind, a phrase-structure rule
VP→ V NP PP captures the word order pattern in the example (2.1). A more elabo-
rate account proposed in Principles and Parameters and Government and Binding
framework (Chomsky, 1981; Chomsky and Lasnik, 1993) defines a small set of general
linearisation principles applied to the X-bar phrase structure. These rules fix the order
between all the specifiers and their heads and all the complements and their heads.
A parameter such as “complements appear to the right of their heads” captures
many regularities in one language (in English object appears on the right of the verb;
relative clauses on the right of their complementisers; PP complements on the right
of the noun). Varying the value of this parameter captures the typological variation
between head-initial and head-final languages (e.g., in Japanese the complements
appear to the left of their head; the reverse of the previous statements for English is

8http://folk.uio.no/daghaug/syntactic guidelines.pdf
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true). Adjuncts are treated differently compared to arguments, and their position is
assumed to be underspecified with respect to the head by the grammar.9

In non-transformational syntactic formalisms, in particular, generalised phrase struc-
ture grammar (Gazdar et al., 1985) and head-driven phrase structure grammar
(Pollard and Sag, 1994), the treatment of word order is conceptually different. Since
there are no movement operations modifying “deep” linearisation, word order can
be separated more explicitly from the structure-building part of the grammar. A
body of work proposed, more specifically, that immediate dominance relations should
be decoupled from linear precedence relations (Pullum, 1982; Uszkoreit, 1983; Falk,
1983; Reape, 1993).10 Instead of using one phrase-structure rule to capture the data
in 2.1, an immediate dominance rule VP → { V, NP, PP } could state that a verb
phrase consists of a verb, a noun phrase and a prepositional phrase, and a linear
precedence (word order) rule NP < PP could indicate that an object noun phrase
precedes an adjunct prepositional phrase. The use of decoupled representations in
this work is motivated as a means to address free word order variation phenomena
such as scrambling in German. It is sufficient not to specify the precedence between
two phrases to allow formally for both orders (NP PP and PP NP).

The dependency grammar tradition adheres to a similar distinction between hier-
archy and word order, where the immediate dominance relations are known as
the tectogrammatical layer of syntactic analysis (Sgall et al. (1986), see also Dowty
(1996)). As we have seen in the previous section, this layer of analysis is given by
an unordered dependency tree (Figure 2.2). In other words, immediate dominance
phrase structure rules are equivalent to dependency relations of type V→ N, V→ P,
without intermediate phrase structure nodes.11

9A more recent Minimalist approach to syntax (Chomsky, 1995) challenges the status of word order
as part of the grammar, e.g., specified by phrase-structure rules, movement or language-level
parameters. The main structure-building operation Merge which combines two syntactic phrases X
and Y is assumed to determine the hierarchical relationship between the two (e.g., whether X or Y
is the head) but does not specify the order between them. For Chomsky, word order is part of the
spell-out process producing phonological form of utterances, but not the syntax proper.

10Some earlier work in the transformational grammar tradition proposed analyses similar in spirit to
account for non-configurational languages and word order variation (Hudson, 1979; Hale, 1983).

11Dependency trees have a more shallow structure (with fewer depth levels and more children
under one head) than traditional phrase structure trees. Consequently, there is, in principle, more
combinatorial freedom to specify linear precedence rules in dependency grammars.
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In this work, our focus is exclusively on the linear precedence relations, and we treat
the dominance layer of syntactic analysis as given by the unordered dependency
trees annotated in the treebanks. In the context of the cross-linguistic analysis,
we assume that hierarchical syntactic structure is comparable across typologically
different languages with different word order properties. As we argued in Section
2.1, the dependency grammar analyses provided by the Universal Dependencies
annotation are built on the same assumption.

The two-level organisation of the grammar — decoupling hierachical from linear
information — is well supported by psycholinguistic models of sentence production
(Bock and Levelt, 1994). The experimental evidence for this distinction comes from
speech errors such as substitution or agreement errors (see Ferreira and Engelhardt
(2006) for an overview). We discuss these arguments in more detail in Chapter 5.
Note that the two-level distinction also facilitates the theoretical formalisation of
the comprehension and production processes and their relation to the grammatical
knowledge of speakers. As part of the comprehension process, a hearer-reader must
construct the hierarchical syntactic structure of the sentence given the words and
their linear order. Given a syntactic structure, presumably elaborated from a coarse
predicate-argument structure of an intended message, a speaker must linearise it into
a string of words to produce an utterance. In this simplified description, word order
acts as input for comprehension and as output for production processes while the
hierarchical structure is the output for comprehension and the input for production.

We study phenomena of word order from the perspective of production, as observed
in corpus data. Following the theoretical underpinnings presented above, our work
adopts a simplifying assumption that word order is generated from and conditioned
on the underlying dominance structure given by an unordered dependency tree.

Crucially, the mapping between the syntactic structure and its linearisation is not triv-
ial and is language dependent. While in many constructions grammatical constraints
define unambiguously the linear order of constituents (2.2a-b), we are interested in
those cases and languages where there exist several possible grammatical orders
(2.2c-d).
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(2.2) a. Johnsbj likes Maryobj

b. *Johnobj likes Marysbj

c. Джонsbj любит Мариюobj

John-NOM loves Mary-ACC

d. Мариюobj любит Джонsbj

Mary-ACC loves John-NOM

We only consider cases of word order variation where the linearisations express
exactly the same syntactic structure (e.g., John is subject and Mary is object in example
(2.2)).

The work presented in this thesis follows an empirical, corpus-based approach to
word order variation which we present in the next section. We study constructions
observed in corpora through the distribution of their occurrences. We focus on a
class of factors affecting word order variation which are conditioned on the syntactic
structure, that is, lengths of dependencies. By contrast, we do not address in detail
the factors in word order variation at other linguistic levels (semantics, discourse,
phonology).

2.2.1 Corpus-based empirical approach to word order variation

The large-scale development of syntactically-annotated corpora has inspired a resur-
gent interest for empirical syntactic work. The research methodology for word
order variation analyses consists in extracting the cases of alternation of a chosen
construction, annotating them with features corresponding to potentially relevant
factors, and conducting a statistical analysis of the constructed dataset to test the
effects of the hypothesised factors. The extraction of a set of constructions is typically
semi-automatic: first, a candidate set is extracted using a pattern-matching of the
syntactic annotations of the sentences. Afterwards, this dataset is verified and cleaned
manually. The features which could not be obtained from the syntactic annotation
(phonological, semantic, discourse information) are often added manually to the
constructed corpus. Manual cleaning and augmentation of the extracted corpus are
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typically possible on relatively small datasets containing between several hundred
and a couple of thousands of observations.

The work of Gries (2001, 2003) is one of the representative examples of this ap-
proach. It is one of the first papers to propose that the hypothesised factors in a
variation should be analysed jointly in a multifactorial statistical model instead of
testing the effect of the factors separately, one by one.

Gries analyses the case of verb-particle split construction in English (2.3). Two
orders are possible: with the particle adjacent to the verb (2.3a) and with the object
intervening between the verb and the particle (2.3b).

(2.3) a. John picked up [ the book ]

b. John picked [ the book ] up

He uses the British National corpus and extracts 403 examples of this construction.
As Gries discusses in his paper, the previous studies coming from different linguistic
traditions and fields provide many analyses of the verb-particle variation. The
variables that have been proposed include syntactic properties of the construction:
the type of the direct object noun phrase (pronoun, definite, indefinite), the length
and syntactic complexity of the direct object; semantic properties: e.g., how idiomatic
the verb phrase is; phonological properties: where the stress falls on the verb, the
length in syllables of the noun phrase; discourse properties: e.g., the information
status of the direct object (given or new). Overall, Gries identifies and includes in his
analysis 20 variables previously identified in the literature to explain patterns in the
verb-particle variation. The values of the variables were annotated for each example
sentence manually.

The resulting dataset consisting of 403 data points with 20 variables is analysed
using several statistical tools: a classifier, a linear discriminant analysis and a logistic
model. The use of logistic models is wide-spread in statistical analyses of word order
variation since there are typically two competing word orders and the predicted
variable is, therefore, a binary variable. In Chapter 4, we discuss more in detail
generalised linear models and their extensions which we use for our analyses. For
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each variable in the verb-particle variation, logistic regression gives a coefficient
which determines its effect on the choice between the V Prt NP (2.3a) and V NP Prt
(2.3b) orders. Gries found that the length of the object noun phrase has the strongest
independent effect on the variation, with longer objects driving the preference for the
V Prt NP order.

As can be seen from the work of Gries (2001, 2003) and other methodologically-
similar studies (Arnold et al., 2000; Bresnan et al., 2007), the main challenges for
exhaustive corpus-based analyses of syntactic variation lie in the manual cleaning
and annotation of the data with the information on many relevant factors. In our
work, we opt for fully automated analyses which focus only on a subset of factors.
Among the factors which can affect word order variation, we analyse only the ones
which can be extracted automatically from the syntactic annotation of the sentences.
The advantage of this approach is that we can study variation at much larger scale:
in larger samples of observations and across a number of languages.

Bresnan et al. (2007) is an important and influential work, providing a number of
arguments in favour of adopting corpus-based statistical analyses as tools and data
for theoretical syntax. Bresnan et al. (2007) investigate the case of dative alternation
in English (2.4).

(2.4) a. ... gave [ toys ] [ to the children ]

b. ... gave [ the children ] [ toys ]

The alternation in this construction is between the order of the theme (toys) and
the recipient (the children) with the recipient-theme order resulting in double object
structure (2.4b). Bresnan et al. (2007) analyse many factors affecting this variation,
including the relative length of the theme and the recipient, the animacy of the
recipient, the given-new status of the theme, and others. They find that most of
the factors have an independent effect on the choice of order in dative alternation.
Similarly to the results reported by Gries (2001), the relative length of the phrases
is one of the prominent factors identified: a longer theme phrase tends to be placed
after a shorter recipient and vice versa. Importantly, Bresnan et al. (2007) show
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that the effects they find hold in two different corpus samples: spoken spontaneous
speech and written journalistic texts. This result is taken to indicate that the factors
affecting dative alternation are part of the general probabilistic syntactic knowledge
of speakers and not simply a contingency of a particular corpus, genre or modality.

One of the experiments carried out in Bresnan et al. (2007) concerns the lexical biases
in dative alternation. Semantic properties of the theme and recipients arguments
often depend on the verb semantics. For example, the recipients of the verb bring
express a given referent much more often than the recipients of the verb take. To
account for this lexically-conditioned variation, Bresnan et al. (2007) employ a novel
statistical technique for word order variation analysis: a logistic mixed effect model
(Pinheiro and Bates, 2000; Bates et al., 2014), an extension to the logistic and linear
models. Using this model, the authors show that the effects of the factors observed
by fitting a logistic regression are independent of lexical properties of verbs. We
adopt the statistical model and methodology from Bresnan et al. (2007) for our
experiments reported in Chapter 4 to take into account the lexically-conditioned part
of the adjective variation in Romance languages. We provide a detailed description
of generalised mixed effect models in Section 4.1.2.

2.3 Dependency length minimisation

Dependency length minimisation (DLM) is a term that we use in this work to refer to
a number of related tendencies in language production as observed in corpus data,
psycholinguistic experiments and typological variation. This section provides an
overview of research on DLM with a focus on corpus-based studies.

“Languages tend to put related words in a sentence close to each other” is one possible way
to state DLM very generally at the grammatical and typological level of description.
This tendency has been noted in such form already by Behaghel (1932). In one form
or another, adjacency principles have been used to account in a systematic way for
many word order patterns in languages. The fact that a prepositional phrase cannot
intervene between a verb and its object complement (*John ate with a fork a cake) can be
explained, for example, in terms of a constraint on the adjacency of syntactically and
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semantically dependent elements (verb and object). In the typological variation, an
adjacency principle was used, for example, to account for the order of modifiers in
the noun phrase (Rijkhoff, 1998). Based on the assumption that adjectives should be
more semantically related to the noun than numerals, Rijkhoff (1998) concludes that
there should be a preference toward word orders such as Num Adj N, Adj N Num
or N Adj Num where the noun and the adjective are adjacent, and against orders
such as Adj Num N or N Num Adj, where the adjective and the noun are placed
apart. While these predictions are born out to some extent in a typological sample of
languages, the whole picture was shown to be much more complicated (Dryer, 1992;
Cinque, 2005).

The most relevant for our work is the other type of evidence for DLM effects which
comes from word order variation studies. We review in the following section the
well-documented phenomena such as “heavy-NP shift”, “short-before-long tendency”
and other, gathered under the umbrella of the DLM principle.

2.3.1 DLM effects in word order variation

The most frequently studied constructions in English in connection with the minimi-
sation of lengths of dependencies are “rightward” shifts in the canonical placement
of heavy noun phrases and other related alternations in postverbal domain (Wasow,
2002). These constructions typically involve two dependents following the head verb
and include verb-particle split ((2.5), Gries (2001); Lohse et al. (2004)), dative alter-
nation ((2.6), Bresnan et al. (2007)), heavy-NP shift ((2.7), Ross (1967); Stallings et al.
(1998)), ordering of multiple prepositional phrases ((2.8), Hawkins (1999); Wiechmann
and Lohmann (2013)).

(2.5) a. throw the trash out

b. throw out the trash

(2.6) a. give a book to Mary

b. give Mary a book

(2.7) a. reveal the news at dawn
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b. reveal at dawn the news

(2.8) a. arrive at work on Thursday

b. arrive on Thursday at work

The first order is typically the preferred, canonical one in these constructions, but
the preferences can change if some of the constituents become longer, or heavier,
phrases.

(2.9) a. throw [ the bin with old trash ] out

b. throw out [ the bin with old trash ]

(2.10) a. give [ a book which I have bought ] to Mary

b. give Mary [ a book which I have bought ]

(2.11) a. reveal [ the news about the merger with a competitor ] at dawn

b. reveal at dawn [ the news about the merger with a competitor ]

(2.12) a. arrive [ at the new office branch ] on Thursday

b. arrive on Thursday [ at the new office branch ]

The preference for the second order in the examples (2.9–2.12) can be described as
a heavy phrase shift (Stallings et al., 1998), since a phrase (e.g. the noun phrase a
book which I have bought in (2.10)) moves rightwards from its canonical, immediately
postverbal, position in the sentence. Other related constructions in English that can
be seen as a heavy phrase shift include extrapositions such as a woman appeared [ who
was not invited ].

However, a more accurate generalisation of these data can be stated as a “short-before-
long” preference, that is: “shorter phrases tend to occur before longer phrases”. This
generalisation takes into account the fact that often both verb dependents (2.10–2.12)
can be long phrases and it is the difference in their lengths which influences the
preferred order. Evidence for the relative length generalisation is given by corpus
investigations (Hawkins, 1994; Wasow, 1997; Hawkins, 1999; Bresnan et al., 2007)
which found that the corpus frequency of the option b in the examples (2.9–2.12)
is correlated with the length of the shifted phrase relative to the length of the
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Head-initial language: x [ x x ] [ x x x x ]

Head-final language: [ x x x x ] [ x x ] x

Figure 2.7: Illustration of “short-before-long” principle for head-initial and “long-
before-short” principle for head-final languages.

second dependent. Additional evidence comes from experimental data in the form
of acceptability judgments (Wasow and Arnold, 2003) and production frequencies
(Stallings and MacDonald, 2011).

While this generalisation is quite accurate for English, it does not hold in the same way
in head-final languages such as Japanese. In fact, Japanese data show the preference
for “long-before-short” ordering of phrases in the verbal domain (Hawkins, 1994;
Yamashita and Chang, 2001). Since Japanese is a head-final language, the verb in the
sentence is placed at the end, after its dependents. Similarly, noun and prepositional
phrases have their heads at the right edge of the phrase. Thus, Japanese verb phrase
shows the exact mirror ordering to that of the English verb phrase (Figure 2.7).
Taking together the evidence from head-initial languages and head-final languages
(preferences similar to those in Japanese were found in Korean (Choi, 2007) and
Basque (Ros et al., 2015)) we can reformulate the previously proposed heavy-XP shift
or “short-before-long” principle in terms of a more general distance or dependency
length minimisation effect. As can be intuitively seen from the illustration in Figure
2.7, if we take as relevant properties the distances between the phrases and their head
(the verb), the generalisation can be stated cross-linguistically as the minimisation of
the distances between the head and its dependents, or, equivalently, the lengths of
the dependencies.12 The work of Hawkins (1994, 2004) provides substantial evidence
for the generalisation of these word order alternation data based on dependency
length. It is also one of the first worked-out explanations of the DLM effects in terms

12Section 4.2 further discusses the relation between “short-before-long” principle and the dependency
length minimisation formulation.
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of processing bias.

2.3.2 Processing accounts of DLM effects

The processing account outlined in Hawkins (1994) provides a metric to calculate
online parsing complexity based on an intuitive idea that processing distant depen-
dent constituents should be harder than processing constituents close to the head.
The explanation for parsing complexity lies, in its turn, in the direct correlation with
working memory limitations of the human sentence processing mechanism.

The metric of processing complexity is based on the idea that processing a phrase and
constructing its parsing structure requires identification of its immediate constituents
(ICs) — the head node and the syntactic types of its daughter nodes — and includes
processing of all constituents between the first and the last IC (Constituent Recognition
Domain, CRD, (Hawkins, 1994, 58)). For example, the parser can construct the verb
phrase (VP) in the heavy-NP shift example (2.13a) only after identifying the head verb
gave, the daughter noun phrase (after seeing the determiner the) and the prepositional
phrase (after seeing the preposition to):

I [VP gave [NP the valuable book that was difficult to find] [PP to Mary]] (2.13a)

1 2 3 4 5 6 7 8 9 10

I [VP gave [PP to Mary] [NP the valuable book that was difficult to find]] (2.13b)

1 2 3 4

As the two variants of the same sentence illustrate, depending on the ordering of
constituents, the parser might be able to build the VP structure very early during
the processing (2.13b) or relatively late (2.13a). According to the principle of Early
Immediate Constituents (EIC, (Hawkins, 1994, 77)), “the human parser prefers linear
orders that maximise the IC-to-non-IC ratios of constituent recognition domains”. In
other words, it is best for the human parser to minimise the average processing time
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(that is, the number of observed words) necessary to identify the structure of a phrase.
For the example in (2.13a and 2.13b), the principle of EIC predicts that the sentence
in (2.13a) will be harder to process than the sentence in (2.13b) as the constituent
recognition domain of the VP in (2.13a) includes ten words, while it contains only
four words in (2.13b).

EIC computation works similarly for head-final languages (Hawkins, 1994, 80). The
number of words to process is counted from the first phrase head, e.g., the determiner
the, to the last phrase head, i.e., the verb. Since the heads of the dependent phrases
are phrase-final, the computation of IC-to-non-IC ratio proceeds in a way which is
the exact mirror to the head-initial scenario (Figure 2.7).

The Minimisation of Domains principle (Hawkins, 2001, 2004) is an extension of
the EIC principle which proposes that both syntactic and semantic dependencies
are susceptible to minimisation. As such, this principle is approaching a very
general formulation of the DLM principle which we cited at the beginning of this
section (Behaghel, 1932). For instance, (Hawkins, 2004) uses semantic and syntactic
dependency minimisation to explain why complements are more adjacent to heads
than adjuncts. In reality, he restates the syntactic constituency principles from a
processing perspective.

While the processing principles proposed by Hawkins are initially developed for
parsing, he attempts to propose that these principles are more general and apply in a
similar way to language production. This assertion is motivated only empirically, that
is, by the fact that the DLM effects are observed in word order variation, including
corpus data and experiments with elicited production. The overall picture painted by
Hawkins suggests that the DLM principle is a manifestation of the properties of one
processing mechanism operating both in production and comprehension.

Gibson’s Dependency Locality Theory (DLT, Gibson (1998, 2000)) suggests a re-
lated processing account of DLM. DLT is developed as a general theory of syntactic
complexity to account for phenomena in sentence processing such as difficulties in
comprehension of nesting clauses and the relative difficulty of processing object-
versus subject-extraction. Similarly to Hawkins’ work, DLT provides a measure of
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2.3 Dependency length minimisation

complexity of a sentence based on its syntactic structure. The syntactic complexity of
a sentence is a sum of two components: storage cost and integration cost. Storage
cost computes the memory requirements for maintaining the partially-built syntactic
structure and the requirements that should be yet satisfied. Integration cost computes
the processing load of activating previous words which should be connected to the
currect word (i.e., assigning a head to a dependent or vice versa). Importantly, inte-
gration cost increases with the distance between the previous and the current words
being integrated. Intuitively, this is because the activation of the stored elements
decreases over time. The (re)activation is harder the longer the stored element was
inactive. More precisely, the distance and activation decay is measured in terms of
a number of new discourse elements introduced between the last activation of the
stored lexical element and the current word.

As Gibson (1998, Section 4) discusses, distance-based integration cost explains the
preference for short-before-long order in word order alternations such as heavy-NP
shift in English. Gibson explains the preference between two possible word orders in
terms of judgments of intuitive complexity and suggests that the relevant measure is
the maximal integration cost (as opposed to, e.g., the average cost). Hawkins’ and
Gibson’s proposals differ in conceptual explanation (minimisation of the time to
construct a constituent versus minimisation of activation time) and the definitions
of distance between the dependent elements (lengths in number of words versus
lengths in number of discourse references). Despite this, the overall argument and
the computations involved in deriving the short-before-long (or long-before-short for
head-final languages) principle are very much similar in DLT to the ones applied in
EIC principle. Compare the computations in examples (2.13a) and (2.14). The two
lines in example (2.14) indicate the units of storage cost and integration cost. We are
interested in integration cost which differs for the two possible orders. The maximal
integration cost is 3 in the example (2.14) because at the moment of attaching Mary to
the verb gave there are three discourse referents (two verbs and one noun) which were
introduced in-between, decaying the activation of the verb. A similar computation
for the order (2.13b) results in maximal integration cost of only 1, suggesting that the
order (2.13b) has lower processing complexity and should be preferred against the
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order (2.13a), exactly as in Hawkins’ account.

I [VP gave [NP the valuable book that was difficult to find] [PP to Mary]] (2.14)

1 0 0 1 0 1 0 0 1 0 1

0 0 0 1 0 0 0 0 0 0 3

2.3.3 Recent large-scale work on DLM

DLT is primarily concerned with explaining comprehension data. In important follow-
up work, Temperley (2007) tests systematically the predictions of DLT in production
using corpus frequencies. The objective of this work is to apply DLT computations to
varied constructions in English and test its predictions statistically in a treebank. To
do so, Temperley (2007) simplifies and generalises DLT in several important ways,
propelling the use of a more general “dependency length minimisation” principle.
First, he measures the distance between dependent elements simply as a number of
intervening words (as opposed to a number of discourse referents). Secondly, the
complexity of a sentence or a phrase is measured as a total length of all its dependen-
cies. This definition corresponds to associating complexity with the (total) processing
time of a sentence as opposed to the peak value of memory or computational load
encountered during processing. One piece of evidence collected in favour of this inter-
pretation of complexity concerns the ordering of more than two postverbal elements.
If maximal processing load (or, in Hawkins’ EIC principle, the overall constituency
domain) is correlated with complexity, then only the dependency between the head
and the most distant dependent should be minimised. The order of the other two
dependents does not need to be optimised and follow the short-before-long principle.
Contrary to this prediction, Temperley (2007) shows that the first dependent tends to
be shorter than the second dependent even when a third dependent is present.

The formulation of a DLT-inspired complexity criterion for preferences in production
allowed Temperley to make quantifiable predictions for several syntactic variation
constructions, expanding substantially on the traditional data of alternations in the
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postverbal domain. For instance, one prediction concerns the lengths of subject
versus object noun phrases. Since noun phrases are mostly right-branching, the
distance between the verb and the subject is approximately the length of the subject
phrase. On the other hand, the distance between the verb and its object does not
depend on the object length. Consequently, dependency length minimisation predicts
that subject noun phrases should be on average shorter than object noun phrases,
which is confirmed statistically. Similarly, adverbial clauses appearing before the
subject and the verb tend to be shorter than adverbial clauses appearing after the
verb. The general DLM prediction confirmed by these data can be stated as “In a
primarily right-branching language, the left-branching constituents should be short.”
(Temperley, 2007, p. 306). Interestingly, Temperley also reports some cases which
do not support the DLM principle. In particular, the predicted long-before-short
ordering of pre-modifying adjuncts is not confirmed by the corpus data. Instead, a
slight short-before-long tendency is observed, suggesting the presence of other factors
which interact with dependency length constraints and affect word order choices.

The generalised approach proposed by Temperley (2007) to test DLM predictions in
syntactic choice constructions based on the lengths of dependencies in a treebank
was adopted and extended in several subsequent papers (Gildea and Temperley,
2007; Temperley, 2008; Park and Levy, 2009; Gildea and Temperley, 2010). These
studies take one step further to quantify the presence of DLM in a language overall,
i.e., by comparing the dependency lengths of English sentences with dependency
lengths in parallel sentences with a permuted order of words. The idea is that,
given a dominance structure (provided by the treebank annotation), there exist
an order of words which minimises the total length of dependencies in it. By
comparing the average length of dependencies between the original word order, the
“optimal” word order, and a random, not optimised, word order, one can provide
quantitative evidence for DLM on “average”, for the language as a whole. This
approach treats all dependencies equally, and the word order of each sentence is
optimised independently.13

Using such quantitative comparisons, Gildea and Temperley (2010) found that English

13A comparison with the “optimal” linearisations preserving the direction of dependency across
sentences was also proposed (Gildea and Temperley, 2007).
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minimises dependencies to a large degree, with average dependency length of 2.24
being relatively close to the optimal dependency length of 1.58 (WSJ corpus). On the
other hand, the German treebank used in the analysis has the average dependency
length of 2.95 further away from the optimal dependency length of 1.56.14 Futrell
et al. (2015b) conducted similar experiments on treebanks of 40 languages and found
that all languages minimise dependencies compared to average dependency lengths
of random order permutations but the extent of this minimisation is variable. For
instance, perhaps unsurprisingly, languages with free word order such as Latin and
Ancient Greek have relatively long on average dependencies.

In another type of large-scale analysis of DLM effects, Rajkumar et al. (2016) re-
examine the preferences in variation constructions studied by Temperley (2007).
Methodologically, Rajkumar et al. (2016) follow the path of traditional statistical
approaches to word order variation described above (Gries, 2003; Bresnan et al.,
2007) but extend them in two interesting ways. First, the authors simultaneously
examine the variation of four different types of constructions in relation to the same
set of factors. Secondly, they use one single model for the four constructions which
is optimised jointly on the combined dataset of patterns. To do so, instead of a
simple logistic regression distinguishing between two alternative orders (e.g., 0 and
1), Rajkumar et al. (2016) use a logistic-based ranking model. The ranking approach
allows one to define the choice between word order options without specifying
distinct labels for each construction. For each word order observed in the corpus,
potential alternative orders are constructed, and the model learns to rank the observed
order higher than the alternatives, based on their sentence-level features.

Rajkumar et al. (2016) extend the work of Temperley (2007) by controlling for
frequency-based factors in addition to dependency length effects. They include,
in particular, the average n-gram log-probability of the words in a sentence and the
log-likelihood of a sentence based on its probabilistic context-free grammar (PCFG)
parse. These measures are inspired by expectation-based accounts of comprehension
difficulty (Hale, 2001; Levy, 2008). In production, however, they mostly play a role of
controls for cases when a is preferred over b because a is, in general, more frequent
than b, regardless of the dependency lengths of the ab and ba orders. Similarly to

14See also Park and Levy (2009) for a similar finding.
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Temperley (2007), Rajkumar et al. (2016) use the total dependency length of a sentence
as an independent variable in their analysis. They investigate several variants of
dependency length: computed as a number of discourse referents (as in Gibson’s
DLT), as a number of words (as in Temperley’s interpretation of DLT) and as a
number of stressed syllables. They find that the three measures produce very similar
accuracies in predicting the correct word order option on the Brown and Wall Street
Journal (WSJ) corpora. The differences are not significant for the Brown corpus, but
the discourse referent measure is slightly but significantly more accurate on the WSJ
corpus. Consequently, they adopt Gibson’s measure of dependency length for their
analyses.

The primary outcome of the study of Rajkumar et al. (2016) is the confirmation of
the findings of Temperley (2007) controlling for frequency effects. Thus, they provide
robust evidence for the dependency length minimisation in several constructions of
word order variation in English. The effect of dependency length and other factors are,
interestingly, very similar in the two corpora that were examined. This result suggests
that genre does not affect syntactic properties of word order variation, supporting a
similar observation by Bresnan et al. (2007). As in Temperley (2007), Rajkumar et al.
(2016) also find that not all constructions follow DLM. The ordering of preverbal
adjuncts leans towards the short-before-long order instead of the long-before-short
order predicted by DLM.

2.3.4 Summary

The previous work reviewed in this section provides substantial evidence for DLM
effects in word order variation phenomena. However, the data examined remain
often limited to English and a few constructions of similar type, e.g., alternations in
the postverbal domain. The recent work based on cross-linguistic treebank data put
forward an approach to analyse DLM effects on a large-scale, across many types of
dependencies and constructions. This thesis contributes to the growing body of work
in this direction. We analyse and refine the approach of Gildea and Temperley (2010)
to measure average dependency lengths of sentences (Chapter 3). We extend the data
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relevant for DLM theories by analysing the adjective variation in Romance languages
using the treebank-based general DLM formalisation (Chapter 4).
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The DLM principle and word order
variability at the language level

This thesis presents computational analyses of word order variation and dependency
length minimisation (DLM). The presentation will proceed in a top-down fashion. In
this chapter, we start by looking at these two aspects of word order at the top level of
representation, that is, as observed in a language overall.

The language-level quantitative approach to studying word order properties is a
new direction in computational linguistic research, inspired by the emergence of
multilingual syntactic treebanks. This approach is useful from two perspectives. First,
the parameterisation of word order is instrumental for classification and comparison
of languages in typological studies. Second, typological and quantitative properties of
languages inform the development and adaptation of NLP systems, such as statistical
parsers, for multilingual tasks. Some fundamental questions that the quantitative
approach can help answer are “Which word order properties are important for
defining a cross-linguistic typology?” and “Which languages have freer word order
than others?” In the context of NLP applications, it is crucial to know which word
order properties are relevant for a particular task, how word order properties affect
the performance of a system and for which languages a system should be expected
to obtain similar results.

63



Chapter 3 The DLM principle and word order variability at the language level

Our experiments expand on the previous work in this emerging field in two ways.

First, we show that we can quantify dependency lengths in a treebank to compare
how much languages minimise their dependencies (Section 3.1). Our case study of
several texts in Latin and Ancient Greek serves as an illustration of the proposed
DLM ratio measure and its properties and limitations. The treebanks come from
the PROIEL project (Haug and Jøhndal, 2008) and contain four texts in Latin (from
the 1st century BC and the 4th century AD) and two in Ancient Greek (from the 4th
century AD and 4th century BC). We work with these ancient languages because they
have relatively free word order and long dependencies providing us with enough
variability for interesting empirical analysis. In addition to dependency length, we
analyse and quantify other word order properties in Latin and Ancient Greek texts.
We focus, in particular, on word order variability computed as arc-direction entropy.

Secondly, we demonstrate that the DLM and word order variability measures are
useful in practical NLP applications, specifically, as word order correlates of parsing
performance (Section 3.2). Statistical dependency parsers are widely assumed to
perform worse on longer dependencies and languages with relatively free word order.
The treebanks of Latin and Ancient Greek provide us with an opportunity to test this
claim in a controlled setting. To further extend the analysis of the effect of word order
properties, quantified as DLM ratio and arc-direction entropy measures, on parsing
performance, we propose to evaluate artificial treebanks constructed by permuting
sentences of natural language treebanks.

3.1 Measuring DLM and word order variability in a

treebank

In this section, we present and analyse several measures of dependency lengths and
word order variability in a dependency treebank. Our exposition is based on the
discussion of the previous work which has proposed several related but slightly
different measures. Our choice of the measures is motivated by the previous findings
and the theoretical and empirical considerations about their statistical properties. We
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illustrate the empirical properties on the PROIEL treebanks of Latin and Ancient
Greek which we introduce below.

3.1.1 Corpus data for empirical analysis: Latin and Ancient Greek

PROIEL treebanks

The empirical results we report in this section, concerning measurements of depen-
dency length and word order variability, are obtained for Latin and Ancient Greek
languages based on their treebanks. We chose these languages for our case studies
for several reasons. First, both Latin and Ancient Greek allow much freedom in the
linearisation of sentence elements. Secondly, they are traditionally extensively docu-
mented and curated and have been syntactically annotated more recently (Bamman
and Crane, 2008; Haug and Jøhndal, 2008). Compared to modern languages that have
treebank resources, these two ancient languages have greater word order variability.
While there is an increasing treebank coverage of the languages of the world, the
majority of the existing treebanks have been developed for Indo-European languages
and widely spoken languages such as Chinese, Arabic and Japanese. Unfortunately,
the indigenous languages featuring interesting word order properties do not yet have
necessary treebank resources for quantitative analysis.

Also, we have access to several texts in the Ancient Greek and Latin treebanks that
were written in the same language but that have different word order properties, since
they come from different historical periods. The comparison of word order between
these texts provides some interesting observations about word order properties and
diachronic change.

The dependency treebanks of Latin and Ancient Greek used in our study come
from the PROIEL collection (Haug and Jøhndal, 2008). The PROIEL corpora contain
exclusively prose and is, therefore, more appropriate for a word order variation study
than previously developed treebanks, such as the Perseus treebanks (Bamman and
Crane, 2011), which also contain poetry. Moreover, the PROIEL collection allows us to
analyse different texts and authors independently of each other. Table 3.1 presents the
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Language Text Period #Sent #Words

Latin Caesar, Commentarii belli Gallici 58–49 BC 1154 22408
Cicero, Epistulae ad Atticum & De officii 68–43 BC 3830 44370
Peregrinatio Aetheriae 4th c. AD 921 17554
Jerome’s Vulgate 4th c. AD 8903 79389

Ancient Greek Herodotus, Histories 450–420 BC 5098 75032
New Testament 4th c. AD 10627 119371

Table 3.1: Summary of the properties of six Latin and Ancient Greek treebanks,
including the historical period and size of each text. Italic indicates the
short names we will be using for the texts.

texts included in the corpus with their time periods and their number of sentences
and words.

The two Greek texts are Herodotus’ Histories (5th century BC) and the New Testament
(4th century AD). Two of the texts in Latin are from the Classical Latin period (Caesar
and Cicero), and the other two are in the Late Latin of the 4th century (Vulgate and
Peregrinatio). Note that Jerome’s Vulgate is a translation of the Greek New Testament.
The sizes of the texts are uneven, but each includes at least 17’000 words or 900
sentences.

The dependency annotation scheme is similar to the Universal Dependencies tree-
banks, as we mentioned in Chapter 2. We implemented an automatic procedure to
extract the lengths of dependencies and other statistics on dependency arcs. This pro-
cedure is straightforward given the syntactic information contained in the annotation,
such as the word and head indices.

3.1.2 Measuring the degree of DLM

We introduced the DLM principle as a general way to refer to tendencies observed in
language production to place syntactically related words and constituents close to
each other in the linear order of an utterance. We distinguish further two groups of
minimisation effects: those we observe at the level of grammar and those we find in
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word order alternation preferences. Typological data on word order constraints across
the languages of the world has long provided evidence that frequently found grammar
types produce shorter dependencies than rarely found grammars (Greenberg, 1963;
Hawkins, 1983). The corpus data have been the frequent source of evidence for DLM
effects at the level of word order variation.

Recently, the corpus data has been leveraged as evidence for DLM at the language
level, without explicitly distinguishing between the effects in the grammar or in
the variation (Temperley, 2008; Liu, 2008; Gildea and Temperley, 2010; Futrell et al.,
2015b). These studies make use of dependency treebanks that make it possible to
compute dependency length automatically for a large number of sentences and all
types of dependencies. While a dependency length statistics at the treebank level
confounds several distinct DLM effects, it serves as a systematic way to analyse
the general tendency of languages to minimise dependencies. For instance, using
dependency treebanks from 40 languages, Futrell et al. (2015b) concluded that there
is an overall tendency toward DLM cross-linguistically. However, languages minimise
dependencies to varying extents. In this work, we take this one step further and
argue that the quantification of dependency length at the treebank level can be used
to compare the degree of DLM across languages.

We use the dependency length DL(s) of a sentence s as our basic measure, following
the previous analyses of DLM at the treebank level.1 Formally, take a sentence s =
w1, . . . , wn annotated with its dependency tree structure ts, where indices i = 1, . . . , n
give the linear order of words. Then, the length of a dependency d ∈ ts between
words wi and wj is equal to |j− i|. For instance, the length of a dependency between
adjacent words is equal to 1. The dependency length of a sentence is the sum of the
lengths of all its dependencies:

DL(s) = ∑
wi→wi∈ts

|j− i| (3.1)

In the sentence in Figure 3.1, there are five dependencies whose individual lengths
— computed as the difference between word indices — are indicated above the

1Alternatively, one could use the average length of a single dependency 〈DL(d)〉 as a basic measure.
Note that DL(s) = (n− 1) · 〈DL(d)〉 where n is the length of the sentence.
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A boy writes a long letter
1 2 3 4 5 6

1

3

2

11

Figure 3.1: Illustration of the computation of dependency lengths. The DL of this
sentence is 8.

dependency arcs. The total dependency length of the sentence is 8.

The DL of a sentence depends on the sentence length n and the tree structure t.
Longer sentences have more dependencies (equal to n − 1) and, consequently, a
higher total DL. If we want to compare languages with respect to their dependency
length at the treebank level, we cannot compute a simple average of DLs across
all sentences in a treebank as was done, for example, in the work of Gildea and
Temperley (2010). Such a measure will depend on the composition of a treebank by
sentences of different lengths creating a confounding factor in comparisons across
treebanks.

Even more crucially, two sentences with the same length can have different DLs
because of the particular syntactic structures they are generated from. For example,
the two sentences in Figure 3.2 have slightly different tree structures: the head verb
writes has two children in the first sentence and three children in the second sentence.
The resulting dependency lengths of the sentences are also different: DL(s1) = 5
and DL(s2) = 6. Generally, a larger average number of children per head, known as
the branching factor of a tree, leads to a larger DL of a sentence (Ferrer-i-Cancho,
2013).

This example illustrates a conceptual problem: an absolute dependency length
measure is not appropriate to compare whether one sentence (or treebank or language)
minimises dependencies more than some other sentence. This problem has been
recognised in previous work that proposed to compare the DLs of sentences with
their minimal possible DLs (Gildea and Temperley, 2007; Park and Levy, 2009; Gildea
and Temperley, 2010; Tily, 2010; Futrell et al., 2015b). Gildea and Temperley (2007,
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DL = 5: A boy writes a letter

1
2

11

DL = 6: Mary writes Paul a letter

1 1

3

1

Figure 3.2: Illustration of difference in DLs for two sentences with the same length.

2010) proposed an algorithm to produce, given an underlying syntactic structure
of a sentence, a linear order of the words that yields the minimal possible DL. As
an illustration, consider the minimal DL of the two sentences from the previous
example (Figure 3.3). The words in the first sentence can be placed so that the lengths
of the dependencies sum up to 4 (DL of the original linearization is 5). Note that
the dependencies (e.g., boy → a, writes → boy, writes → letter, etc.) remain exactly
the same as in the source sentence (Figure 3.2). Similarly, an optimal — from the
perspective of DLM — linearization for the second sentence yields a DL equal to 5,
smaller than the DL of the original word order which was equal to 6. Importantly,
there is a difference between the minimal DLs of the two sentences which reflects the
fact that the underlying tree structure constraints possible linearizations and can lead
to long dependencies in some cases but not in others.2

In addition, previous work has compared the DLs of observed linearizations to the
DLs of random linearizations of words in a sentence (Ferrer-i-Cancho, 2004; Liu, 2008;
Park and Levy, 2009; Gildea and Temperley, 2010; Futrell et al., 2015b). The optimal
DL serves as a lower bound while the random DL serves as an upper bound on
possible DL values given a tree structure. By placing the DLs of actual sentences
between these upper and lower bounds, one can observe whether there is a DLM
effect at the treebank level. Gildea and Temperley (2010) observed that actual DLs are

2 An implicit assumption behind the comparison of an observed word order with an optimal order
constructed as a permutation of words in the sentence is that DLM operates on a fully generated
underlying syntactic representation. In other words, the language production mechanism generates
a syntactic structure of a sentence which is then linearised through some principles including
the DLM principle. This interpretation is in line with our initial assumptions on word order as a
separate part of the grammar on top of unordered hierarchical representation.
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DL = 4: A boy writes letter a

1 1 11

DL = 5: Mary writes Paul letter a

1 1

2

1

Figure 3.3: Illustration of difference in optimal DLs for two sentences with the same
length.

very close to optimal DLs for English but less so for German, a language known for
its long dependencies. On a sample of 40 languages, Futrell et al. (2015b) confirm
that all languages tend to have shorter dependencies compared to their randomly
permuted counterparts, but the extent of this minimisation varies across languages.
For illustration, in Figure 3.4, we plot the DL, random DL (RandDL) and optimal DL
(OptDL) measures for the six PROIEL treebanks, averaged across sentences of the
same length. We can observe that the DL values of each are smaller than the random
upper bound but also larger than the optimal lower bound. Futrell et al. (2015b) focus
on the importance of cross-linguistic confirmation of the DLM principle as observed
in Figure 3.4 from the difference between the curves. Instead, our goal is to estimate,
using the same data, which treebanks in Figure 3.4 minimise dependencies more than
the others.

Figure 3.4 also highlights the fact that DL measures depend on the sentence length.
In particular, Ferrer-i-Cancho (2004) showed theoretically that the average random
DL is distributed as a function of n2. The relations of the actual and optimal DLs to
sentence length cannot be established theoretically in a similar manner, since they
depend, in particular, on the average branching factor of the tree (Ferrer-i-Cancho,
2013).3 This means that the average dependency length across all sentences in a
treebank cannot be directly compared to the average minimal and random DLs (e.g.,
as previously proposed by Gildea and Temperley (2010)). Ferrer-i-Cancho and Liu

3 Based on the empirical distributions in the treebanks, Futrell et al. (2015b) suggest quadratic
approximations for the three curves. However, our empirical tests and the theoretical considerations
in (Ferrer-i-Cancho, 2013) point to a subquadratic and, possibly, linear relation between the optimal
and actual DLs and the sentence length.
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Figure 3.4: Actual (DL), optimal (OptDL) and random (RandDL) dependency length
measures in PROIEL treebanks averaged across sentences of the same
length.

(2014) make this point in a theoretical probabilistic analysis of dependency length
distributions and their relation to the sentence length. Informally, as can be seen in
Figure 3.4, the difference between the measures increases with sentence length.

We would like to suggest that a better measure for cross-linguistic quantification of
DLM at the treebank level is the average ratio of the DL and the optimal DL computed
for each sentence in a treebank:

DLMRatio =
1
k

k

∑
i=1

DL(si)

OptDL(si)
(3.2)

In other words, we propose to compute the relative average DL, normalised by the
minimal possible DL.

Tily (2010, pp. 63–68) previously used this measure to track the rate of DLM in
historical corpora of English. Despite the high variance in the DLM ratio across texts
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Figure 3.5: Average DLM ratio measure for sentences of different lengths in the
PROIEL treebanks.

of the same period, he found a trend towards shorter dependencies from older to
more recent English. Tily (2010) uses the ratio measure to confirm at a conceptual level
the effect of DLM on language change; he does not analyse statistical properties of the
measure nor its relation to the sentence length. Ferrer-i-Cancho (2004) computed the
ratio measure for sentences in one treebank (Romanian) and found a slight tendency
for the ratio to increase with the sentence length.

To demonstrate the validity of the DLM ratio measure for empirical cross-linguistic
comparison of DLM effects, we analyse it on a collection of historical treebanks in
Latin and Ancient Greek from the PROIEL collection (Haug and Jøhndal, 2008).

Empirical analysis of the DLM ratio in the PROIEL treebanks

First, we analyse the relation of the DLM ratio measure with the sentence length.
Figure 3.5 plots the DLM ratio measure averaged for sentences of the same length in
our six PROIEL treebanks. The OptDL factor in the DLM ratio is computed using
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the algorithm of Gildea and Temperley (2010) summarised in Section 3.2.3. The grey
regions around the fitted smoothed curves show standard errors in the estimation
of the average DLM ratio.4 As we can see from the plot, the DLM ratio depends
(non-linearly) on the sentence length and does not immediately alleviate our basic
problem of averaging across sentences of different lengths. Simplifying, we can
describe the relationship as having two regimes: for short sentences of length 2–10,
there is a clear increase in the DLM ratio, while for sentences of length greater than
10 we can consider the DLM ratio to be almost constant with sentence length. It
is not, in fact, surprising that very short sentences tend to have small DLM ratios
close to 1. For sentences of length 2, the only possible orders are both optimal with
respect to dependency length. Similarly, for sentences of length 3, 4, 5 there should
be a relatively high probability that an order is optimal given that there are not many
possible orders. This can also be concluded informally from the fact that the average
DL of random linearizations is very close to the optimal DL for very short sentences
(see Figure 3.4).

Figure 3.6 demonstrates the histogram distribution of DLM ratio values in our
treebanks. We can see a peak for the DLM ratio of value 1 in all treebanks, particularly
noticeable in Cicero and Vulgate. Apart from this irregularity on the left edge of the
distribution, the DLM ratio distribution is close to log-normal. As can be seen from
the density diagram in Figure 3.7, if we eliminate all sentences shorter than 10 words,
the remaining DLM values are approximately distributed log-normally.5

Overall, these empirical data suggest that we can measure the DLM ratio robustly
starting with sentences of length 10. While very short sentences are harder to compare
across languages and treebanks, we will assume in the following that the DLM ratio
for longer sentences approximates well enough the total degree of DLM in a treebank,
including both short and long sentences. Future empirical and theoretical analyses of
the DLM ratio could clarify how the DLM principle affects DLs in short sentences.

Table 3.2 gives the treebank-level DLM measure — the average DLM ratio for sen-

4This and all other plots in this thesis are produced using R package ggplot2 developed by Hadley
Wickham.

5The sentence length threshold of 10 is based on the Figure 3.5. The distribution of DLM measure
was very similar in our data starting from sentences of length 6 and longer.
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Figure 3.6: Count distribution of DLM ratio values across sentences of all lengths.

tences of length 10 and longer — for the six treebanks in Latin and Ancient Greek.
We also report the standard deviation (SD) and standard error (SE) values. Small
standard errors confirm, in particular, that the estimation of the DLM ratio is robust.
The differences in the DLM ratio between texts in the same language are always larger
than twice the highest standard error (0.02) suggesting that their ranking with respect
to the degree to which they minimise dependencies is also statistically robust.

The ranking of texts we obtain using the DLM ratio measure is interesting from a
diachronic perspective. The texts written in the BC period in Latin (Caesar, Cicero)
have higher DLM ratios than the texts written later (Peregrinatio, Vulgate). The same
is true for Ancient Greek: Herodotus has a much higher DLM ratio than the New
Testament text. This observation is in line with our intuition about diachronic change
in Latin and Ancient Greek. These dead languages are known for their notoriously
free word order; their descendants — modern Romance and Greek languages — have
much more rigid word order. In non-configurational languages, in which words are
not necessarily organised in constituents, the freedom of word order is intuitively
correlated with longer distances between related words. We should then expect Latin
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3.1 Measuring DLM and word order variability in a treebank

Figure 3.7: Density estimation of the distribution of DLM ratio values across sentences
equal to or longer than 10 words.

and Ancient Greek to have progressively shorter dependencies with the loss of word
order freedom. Tily (2010) suggests similarly that the minimisation of dependency
length in the historical development of English is connected to the loss of case
marking and the development of rigid word order. Also, modern Romance languages
have very short dependencies as can be seen from the data in Futrell et al. (2015b)
and our own results in Section 3.2.

Given the size of our sample — four and two texts in two languages — we cannot
claim strong diachronic evidence for DLM. Rather, we take these data as a confirma-
tion that the average DLM ratio is a good treebank-level measure of the degree of
DLM as it gives empirical estimations well aligned with our linguistic expectations.

The question raised by the Latin and Ancient Greek data of how DLM is related to
word order freedom is not trivial. On the one hand, as we have suggested above, the
freedom of word order is intuitively correlated with longer dependency lengths. On
the other hand, it is possible in principle that the availability of word order options
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Language Text # Sent DLM ratio SD SE

Latin Caesar 752 2.09 0.45 0.016

Cicero 1256 1.89 0.45 0.013

Peregrinatio 482 1.70 0.43 0.019

Vulgate 2271 1.50 0.34 0.007

Ancient Greek Herodotus 2724 1.86 0.43 0.008

NewTestament 3568 1.56 0.34 0.006

Table 3.2: Average DLM ratio (for sentences of length 10 and longer), its standard
deviation and standard error computed for the PROIEL treebanks.

facilitates the choice of shorter dependencies according to the DLM principle. In
addition, we expect that some languages can have longer dependencies than other
languages even if all have relatively fixed word order. For instance, a language with
the head-final or the head-initial order. The use of the SOV or VSO structure implies
that such languages will have longer dependencies between subject and verb, or verb
and object, in comparison to SVO languages.

To our knowledge, the lengths of dependencies have not been previously analysed in
the typological literature, either as an independent variable or as a correlate of word
order freedom. The DLM ratio measure is interesting, therefore, from a typological
point of view because it allows us to quantify the degree of DLM in a language and
to answer questions such as “Which language minimises dependencies more?” A
related typological question is then “Which language has freer word order?” Recently,
a number of studies have proposed to quantify word order variability using treebank-
based measures (Liu, 2010; Futrell et al., 2015a). In the following, we introduce
these measures and apply them to compute word order variability in the PROIEL
treebanks.
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3.1 Measuring DLM and word order variability in a treebank

3.1.3 Measuring word order variability

Very generally, word order variation in a sentence means that a number of different
possible grammatical orders of its words can be used to express the same particular
syntactic structure. The number and the relative frequency of these orders in produc-
tion indicate how variable the order in a sentence is. For example, if there is only
one grammatical order, then there is no word order freedom at all; the more possible
orders there are, the more word order freedom we can attribute to the language.
Formally, the extent of word order variation in a sentence can be expressed as the
conditional entropy H of the probability distribution of possible orders o1, . . . ok given
the words w and the syntactic structure of the sentence t:

H(order|w, t) = − ∑
i=1...k

P(oi|w, t) · logP(oi|w, t). (3.3)

The probability distribution of orders is taken to be their relative frequency in natural
language production. The entropy of this distribution will give us the measure of
variability of the order: the higher the number of possible orders k and the more
uniform their probabilities, the higher the entropy of the distribution. If only one
order is available (k = 1), entropy will be minimal and equal to 0.

The overall measure of word order freedom in a language is the entropy of the word
order summed over all possible sentences (i.e., their words and syntactic structure):

H(order) = ∑
w,t

p(w, t) · H(order|w, t). (3.4)

For a sample of N sentences, the approximation of total entropy is simply the average
entropy of all sentences si = (wi, ti):

H(order) ≈ 1
N

N

∑
i=1

H(order|wi, ti). (3.5)

A fundamental problem for an accurate estimation of the total entropy is the sparsity
of the observed distribution of sentences and their possible orders. In fact, the creative
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power of a language is such that it is hard to find the same sentence twice in any
corpus or dialogue. We can partly alleviate this problem by conditioning word order
variation only on unlexicalised syntactic structures, e.g., unlexicalised dependency
trees. Instead of words, we take the parts of speech as the nodes of a dependency
tree. However, the combinatorial space of all possible unlexicalised trees still remains
unbounded and hard to estimate. Futrell et al. (2015a) investigated an approximation
of the total entropy through the factorisation of complete unlexicalised trees into
small subtrees consisting of a head and its children. They found that this simplified
estimation still has significant sparsity issues and is not robust on samples of 1’000
sentences.

For the reasons outlined above, in this work, we will use a very simple but robust
approximation of word order entropy which is the entropy of the direction of depen-
dencies. This measure has been previously employed by Liu (2010) to quantitatively
describe the typology of word order in dependency treebanks. Futrell et al. (2015a)
have found that the head-direction entropy can be robustly estimated already in
samples of as few as 1’000 sentences.

Instead of considering how the complete order of an unlexicalised tree can vary, we
consider only how the order between a head and its children varies. For each head h
and child c, two word orders — pre-head and post-head — are possible: o1 = h c,
o2 = c h. The entropy of the distribution of these two orders gives us the degree of
variability of the direction of dependency h → c. More precisely, we compute the
conditional entropy of dependency direction given the part-of-speech tags of the head
h and the child c and the dependency relation r between them: H(dir|h, c, r). The
overall entropy is the average arc-direction entropy H(dir) across all dependencies
h r−→ c observed in a treebank:

H(dir) ≈ 1
N

N

∑
i=1

H(dir|hi, ci, ri) (3.6)

Note that we need to take into account both the functional relation and the part-
of-speech tags of the words in a dependency. Functional relations carry crucial
information about the syntactic structure of a sentence. For example, a noun and a
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verb can appear in both a subject-verb and an object-verb relation. The entropy of
these two relations should be computed separately. Part-of-speech tags often carry
essential syntactic information in addition to the functional relation. For instance,
determiners, numerals and adjectives are all in the modification relation with their
head noun. However, they can have different orders with respect to the noun, as is
the case in Romance languages, where determiners and numerals precede the noun,
but adjectives most often follow the noun. Confounding the various modifier types
under one functional relation can lead to overestimation of the entropy.

Arc-direction entropy is sensitive to some but not all aspects of word order variation.
It can be used, for instance, to capture the difference between adjective-noun word
order properties in Germanic and Romance languages. In English, this word order is
fixed, as adjectives appear almost exclusively prenominally; the arc-direction entropy
for the adjective-noun dependency will, therefore, be close to 0. In Italian, by contrast,
adjectives can both precede and follow nouns; the arc-direction entropy will be greater
than 0.

Importantly, arc-direction entropy does not take into account word order variation
between sister nodes. For example, the word order variability in the postverbal
domain in English does not contribute to the arc-direction entropy value. This aspect
of word order variation is already harder to approximate since we need to take into
account more parameters of variation with respect to the simple arc-direction entropy
(i.e., the head PoS, child1 PoS, child2 PoS, relation1, relation2). We have conducted
several preliminary experiments with sister-order entropy, computed similarly to
arc-direction entropy. However, we do not use this measure in this chapter for two
reasons. First, the values of sister-order entropy were strongly correlated with the
values of the arc-direction entropy.6 Secondly, as expected, the estimation of the
sister-order entropy was more sensitive to the treebank size than the arc-direction
entropy. In this work, we focus therefore on the arc-direction entropy measure, which
is, at the moment, the most studied and robust approximation of word order freedom.
While we believe that developing and analysing measures of word order variation
based on treebank statistics is a useful direction for quantitative typological research,

6On the fourteen treebanks in the sample used in the parsing evaluation study (Section 3.2), the
correlation was equal to 0.87 (p < 0.001).
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we also suggest an alternative perspective on measuring word order variation in
Chapter 5, inspired by the development of an integrated word order production
system.

Arc-direction entropy in PROIEL treebanks

The values of arc-direction entropy computed for our six PROIEL treebanks are
presented in Table 3.3. These values range between 0.35 (Caesar) and 0.47 (Herodotus).
For Ancient Greek, the older Herodotus text has more word order freedom (entropy
of 0.47) and longer dependencies (DLM ratio of 1.86) than the more recent New
Testament (0.38 and 1.56, respectively). Interestingly, the entropy values do not
align perfectly with the DLM ratio and the diachronic scale in Latin: Caesar, for
example, has the longest dependencies but lower entropy (0.35) than the more
recent Peregrinatio and Vulgate texts, which have higher entropy (0.43) but shorter
dependencies (1.5–1.7 against 2.1) . A probable explanation for these results is that
arc-direction entropy aggregates many types of word order variation phenomena and
is not sensitive enough to track the changes in word order which may affect only
some of the constructions. Alternatively, we can speculate that the change in word
order is guided by a general tendency to reduce complexity in languages. It is more
readily observed in the degree of DLM since dependency lengths are directly related
to the processing complexity. On the other hand, word order variation and processing
complexity have not been linked directly before. The diachronic development of
DLM and word order variation is an intriguing research question but to address it
adequately would require a much larger sample of languages.

In addition, our empirical results suggest that the arc-direction entropy and DLM
ratio measure capture potentially two different aspects of word order. We confirm
this observation in the next section, where we demonstrate that these measures also
have a practical application: they serve as useful correlates of parsing performance
across typologically diverse languages.
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Language Text Entropy DLM ratio

Latin Caesar 0.35 2.09

Cicero 0.43 1.89

Peregrinatio 0.43 1.70

Vulgate 0.43 1.50

Ancient Greek Herodotus 0.47 1.86

New Testament 0.38 1.56

Table 3.3: The arc-direction entropy values (Entropy) computed for the Latin and
Ancient Greek treebanks in our sample. DLM ratio values computed
previously are given for comparison.

3.2 Evaluating the effect of word order properties on

parsing performance

The measures we have presented and assessed qualitatively in the previous section
constitute a potentially interesting way to quantify word order properties at the
treebank level. These can be used, for example, to describe and compare the properties
of languages in a typological study. In this section, we will show that measures of
word order properties at the treebank level can also be used to inform multilingual
NLP technology. Specifically, we will apply the DLM ratio and entropy measures to
evaluate the effect of corresponding word order properties on parsing performance.

Parsing is the task of producing a correct syntactic analysis of a sentence given its
surface representation — a string of words. Modern statistical parsing systems are
supervised machine learning algorithms which are given a treebank with sentences
and their manual syntactic annotation as training data. After training on these so-
called gold trees, they perform very well on unseen sentences; for instance, some
recent systems achieved correct labelled dependencies above 92% for English (Chen
and Manning, 2014; Andor et al., 2016). With the development of treebanks for many
other languages, there is a growing interest in building multilingual parsing systems
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that can be trained and can obtain good results in any language without changes
to the parsing architecture. The results for many languages — in particular, for
languages with relatively free word order and rich morphological systems — are
typically inferior to the results on English (Seddah et al., 2011, 2013; Andor et al.,
2016; Zeman et al., 2017). In fact, it is a common assertion that high word order
variability and longer dependencies negatively affect parsing performance. English
has a relatively fixed order and short dependencies. Its word order is unambiguously
defined for many syntactic relations such as modifier-noun or verb-object, which
simplifies syntactic analysis in some respects. Evaluations of the effect of dependency
length on parsing performance in English have been conducted by Rimell et al. (2009);
Nivre et al. (2010). McDonald and Nivre (2011) used 13 languages from the CONLL-X
shared task (Buchholz and Marsi, 2006) and analysed the effect of sentence and
dependency lengths on the parsing performance averaged across these languages.
Unfortunately, a cross-linguistic large-scale analysis of the effect of word order
properties is not straightforward. Multiple confounding factors affecting parsing
performance hamper such an analysis. Apart from few basic factors such as the
size of the training treebank, these confounding factors are very hard to control
for. For example, different treebanks will have different average sentence lengths,
different lexicon sizes and different percentages of words in the test set that were
never observed in the training set. Probably even more crucial for cross-linguistic
parsing evaluation is the difference between annotation schemes. Indeed, this is one
of the main reasons behind the development of Universal Dependencies treebanks
(Agić et al., 2015; Nivre et al., 2016, 2017).

In this section, we evaluate the effect of word order properties on parsing performance,
measured as the DLM ratio and arc-direction entropy. First, we will confirm that
longer dependencies are harder to parse on the treebanks of Latin and Ancient
Greek. These treebanks constitute a special evaluation set-up since they contain
several texts that come from the same language but from different time periods and,
presumably, differ minimally in their properties such as the lexicon and morphology
compared to the word order. Secondly, we propose a new framework for artificially
creating treebanks that are minimal pairs with respect to the word order properties
of interest, similar to the set-up of PROIEL treebanks. This framework allows us to
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perform an analysis of word order in parsing across many languages with different
morphological and syntactic properties.

3.2.1 Background: Dependency parsing and evaluation

Since we work with dependency treebanks, we perform the evaluation of dependency
parsing systems (as opposed to constituency parsing systems). In this section, we
briefly describe the statistical approach to dependency parsing, including the archi-
tecture of MaltParser, which we use in our experiments. We also examine previous
dependency parsing work that analyses the effect of word order properties and
dependency length on parsing performance.

Dependency parsing: basic notions

Dependency parsing consists of producing a dependency tree representation t given
an input sentence s. Statistical dependency parsing is based on learning an underlying
function f : s → t given a gold treebank, i.e., a set of pairs {(si, ti)}. Statistical
dependency parsing received growing attention in the NLP field, starting with the
work of Nivre et al. (2006) and McDonald et al. (2006). At the moment, dependency
parsing is the most prominent parsing subfield thanks to the expansion of parsing
technology to languages other than English and the development of multilingual
dependency treebanks.

The two main architectures used for dependency parsing are the so-called transition-
based and graph-based architectures. In this work, we conduct our experiments
using a popular system known as MaltParser, which is a canonical implementation
of the transition-based architecture Nivre et al. (2006). Dependency parsing is being
constantly improved. While we present the results only for MaltParser, the evaluation
framework we propose can be used to evaluate and analyse the performance of all
types of dependency parsers.

Evaluation of a parser trained on one portion of a treebank is conducted on a
distinct, test portion of a treebank. We will use the notation Ttrain → Ttest to refer
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to an evaluation scenario with training data Ttrain and test data Ttest. The measures
standardly used for dependency parsing evaluation are unlabelled and labelled
accuracy scores (UAS and LAS). UAS computes how many dependencies wi → wj

output by a parser are found in the gold dependency annotation. LAS computes
how many labelled dependencies wi →l wj, including the functional label l of the
dependency, are produced correctly.

MaltParser

MaltParser is an implementation of a stack-based transition parsing architecture. It
belongs to a more general bottom-up (or shift-reduce) type of parser that constructs
a parsing tree starting from its leaf nodes and tries to gradually combine them into
pieces of syntactic structure. Transition-based parsers process the leaf nodes — the
words in a sentence — from left to right in an incremental fashion.

More formally, instead of learning to construct a syntactic tree directly, the parser is
trained to construct its derivation incrementally, constrained by the input string of
words and a set of possible actions at each step. A derivation consists of transitions
between states. Possible transitions can include, for example, attaching a newly
observed word to a previously observed word, creating, therefore, a dependency
between them. Parsing architecture defines which transitions a parser can use and
how it encodes a partially analysed sentence in its intermediate configurations. Shift-
reduce parsers use a buffer to encode the unobserved part of a sentence and a stack to
encode the part which was already observed and partially analysed. The most basic
set of transitions includes left-arc and right-arc reduce actions (create a dependency
between the word on top of the stack and the first word in the buffer) and a shift
action (move the first word of the buffer to the stack).7 This set of transitions is
sufficient to produce derivations for all projective dependency trees.

In addition to the set of possible transitions, the parsing algorithm needs to specify
how one of these transitions is chosen at each step in the derivation. For data-driven
parsers, the best transition is identified using a statistical classifier. The classifier is

7For a more accurate, formal description of transitions, see, for example, Kübler et al. (2009).
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trained on the gold derivations extracted from the training treebank and learns which
transition to use in which configuration. Importantly, the configuration is encoded
in terms of features such as “the part of speech of the word on top of the stack” or
“the number of dependents previously attached to the word on top of the stack”. The
performance of MaltParser is affected significantly by the choice of the features; in this
work, we use MaltOptimiser (Ballesteros and Nivre, 2012) to automatically identify
the best feature set based on held-out validation data. MaltParser also implements
several variations in the parsing algorithm which employ different sets of transitions,
including those required for deriving non-projective dependency trees. Based on
validation data, MaltOptimiser chooses the most appropriate of these algorithms for
the treebank.

Effect of word order properties on parsing performance

The work of Rimell et al. (2009) and several follow-up experiments with dependency
parsers (Nivre et al., 2010; Bender et al., 2011; Merlo, 2015) analyse parsing perfor-
mance in syntactically complex constructions involving long dependencies in English.
These constructions include subject and object relative clauses, wh-questions and
other constructions characterised by a long dependency between a verb and one
of its arguments. Because of the recursive structure of the language, the length
of such dependencies is, in principle, unbounded. Nivre et al. (2010) found that
the two representatives of dependency parsers — transition-based MaltParser and
graph-based MSTParser — perform much worse on these hard constructions than on
average in a treebank. Note that the constructions investigated in these studies are
very infrequent: the most frequent subject relative clause construction appears in only
6 to 10% of sentences; other constructions appear in only 0 to 3% of sentences (Rimell
et al., 2009). Consequently, the test set containing these constructions is small — 560
sentences — and was extracted semi-automatically using the treebank annotation.
Since this construction-focused parsing evaluation methodology is language-specific
and can require manual extraction and evaluation, it is not surprising that it has not
been extended to other languages.

A more large-scale evaluation of parsing performance with respect to the lengths
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of dependencies is presented in McDonald and Nivre (2011). It is also conducted
only in English, but the lengths of dependencies are analysed for all sentences and
construction types. The results are presented for the two main-stream dependency
parsers: MaltParser and MSTParser. First, the study establishes that both parsers have
declining performance with growing sentence length. According to the authors, this
is primarily due to the increase in the presence of complex syntactic constructions
such as the ones studied in the work discussed above. The accuracy of parsing is
also shown to decrease for longer dependencies. In addition, McDonald and Nivre
(2011) look at other structural factors that can affect parsing performance, such as
the tree depth (the distance to the root, in their notation) and the branching factor
(i.e., the number of siblings). An increase in either of these parameters affects parsing
performance negatively. The results of the evaluation experiments in McDonald and
Nivre (2011) are used to inform a better parsing model combining the advantages of
both MaltParser and MSTParser. Note that, on the basis of the reported results, we
cannot establish an explicit relation between any of the parameters studied and the
parsing performance, in particular, because all the parameters are correlated. In this
work, we aim for a parsing evaluation analysis which allows us to control for sentence
length and syntactic structure and to evaluate the effect of lengths of dependencies
independently of these correlated factors.

To our knowledge, no previous studies have addressed in a similar systematic manner
other word order properties such as the degree of word order variation in a language.
The most relevant observations come from the Shared Tasks on morphologically-rich
languages (Seddah et al., 2011, 2013). The tasks are set up to evaluate both constituent
and dependency parsers and provide detailed treebank information related to lexical
and morphological complexity such as the size of the lexicon, the average number
of word types per token and similar metrics. A comparison across nine languages
in a dependency parsing scenario with the same training set size (5’000 sentences)
shows, for example, that Korean and Hebrew (∼ 83% LAS) treebanks are harder to
parse than French or Polish (∼ 89% LAS) treebanks. However, even if the training
size is the same, it is not clear whether Korean and Hebrew are harder because of
their morphological richness and associated word order freedom or because of other
factors such as the average sentence length in the treebank, the size of the dependency
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label set and so on. The organisers of the shared task perform some very general
correlation analyses, e.g., comparing the ratio of the treebank size and the size of
the label set against the parsing performance, and admit that they “cannot tell why
certain treebanks appear more challenging to parse than others, and it is still unclear
whether the difficulty is inherent on the language, in the currently available [parsing]
models, or because of the annotation scheme and treebank consistency” (Seddah
et al., 2013, p.175).

3.2.2 Parsing evaluation on Latin and Ancient Greek treebanks

Given the previous evidence of the effect of long dependencies for parsing, we can
put forward the following hypothesis on DL at the sentence level:

A dependency tree with a small overall dependency length should be easier to
parse than a tree with a large overall dependency length.

To test this hypothesis at the treebank level, we can use the DLM ratio to measure
the extent to which the dependency trees minimise the overall dependency length.
If there is a systematic relation between the length of dependencies and the parsing
performance, treebanks with a lower DLM ratio should be easier to parse than
treebanks with a higher DLM ratio. Given the PROIEL treebank collection, which
contains several texts in the same language annotated with the same annotation
scheme, we have an opportunity to test this hypothesis on texts that constitute the
controlled minimal pairs for such analysis.

To evaluate the effect of word order properties and to verify that the texts in the same
language but from different epochs share the same lexicon and can be considered
minimal pairs, we test several training and testing configurations. Specifically, we use
two different set-ups: training and testing within the same text and across texts of
different periods.

First, we evaluate the parsing performance across time periods. As training data,
we use texts from one period with similar word order properties (e.g., two texts in
Latin from the BC period) and test the parsing performance on texts from a different
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Language Training treebank Test treebank Train Size UAS

Latin BC AD 67k 67.27

AD BC 106k 57.72

Ancient Greek Herodotus New Testament 75k 76.05

New Testament Herodotus 120k 61.27

Table 3.4: Parsing accuracy for period-based training and test configurations for Latin
and Ancient Greek.

period (e.g., two texts in Latin from the AD period). For both Latin and Ancient
Greek, we perform therefore two evaluations: BC→ AD and AD→ BC. We evaluate
the parsing performance using the unlabelled accuracy score (UAS). The results of
these four evaluation configurations are presented in Table 3.4. We can observe that
the results are relatively high, allowing us to conclude that the training and test texts
are indeed written in the same language and share a lexicon and other properties
that are crucial for the adequate performance of the parser. Despite the uncontrolled
training size of the data for the BC→ AD and AD→ BC scenarios, we can note that
parsing of BC texts — which have longer dependencies and generally higher word
order variation according to our DLM ratio and entropy measures (Table 3.3) — is
harder than parsing of AD texts (57.7 UAS vs 67.3 UAS for Latin and 61.3 UAS vs 76.1
UAS for Ancient Greek). In fact, since the training data in the AD→ BC scenarios
is larger than in the BC → AD scenarios, we can safely attribute the difference in
performance to the difference in word order properties.

To further confirm our result in a more controlled setting, we perform a set of
evaluations using training and test data from the same text. For the “within-text”
evaluation, we apply a standard random split, with 90% of the corpus assigned
to training and 10% assigned to testing, for each text separately. We eliminated
potentially confounding effects due to different training sizes by including only
around 18’000 words for each text in Latin (the size of the Peregrinatio corpus), and
around 75’000 in Ancient Greek. The results of these experiments are given in Table
3.5.
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Language Treebank Training size UAS Entropy DLM ratio

Latin Caesar 18k 66.46 0.35 2.09

Cicero 18k 63.11 0.43 1.89

Peregrinatio 18k 74.35 0.43 1.70

Vulgate 18k 83.92 0.43 1.50

all texts 155k 78.30

Ancient Greek Herodotus 75k 69.76 0.47 1.86

New Testament 75k 88.01 0.38 1.56

all texts 195k 79.94

Table 3.5: Parsing accuracy for random-split training (90%) and test (10%) configura-
tions for each language and for each text independently. The entropy and
DLM ratio values are duplicated from Table 3.3.

In general, we can observe that the older Latin and Ancient Greek texts have lower
UAS scores than their more recent counterparts which have more fixed word order
with shorter dependencies. Interestingly, Caesar has slightly higher parsing accuracy
(66.5 UAS) than Cicero (63.1) which can be due to its lower arc-direction entropy (0.35
versus 0.43) which counteracts the higher DLM ratio (2.1 versus 1.9).

As a side result, we also report a strong baseline for each language, calculated by
training and testing on all texts combined and split randomly with a 90%/10% split.
The cumulative parsing accuracy on both Latin and Ancient Greek is relatively high
as seen from the ‘all texts’ random split configuration. These performance values are
especially high compared to the previous results reported for other Latin and Ancient
Greek treebanks, e.g., in LDT and AGDT with 61.9% and 70.5% of UAS, respectively
(Lee et al., 2011). This increase in accuracy is likely due to the fact that our texts are
prose and not poetry.

To summarise, in both across-text and single-text experiments, we see that the
accuracy for older texts written in Latin in the BC period is much lower than the
accuracy for late Latin texts written in the AD period. This pattern correlates with the
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previously observed smaller degree of dependency length minimisation and word
order variation of BC texts compared to AD texts. Similarly, for Greek, Herodotus
is much more difficult to parse than the New Testament text, which corresponds
to their differences in the rate of DLM as well as the entropy of word order. Our
results provide the first confirmation obtained in a controlled evaluation setting for
the general assertion that freer order languages are harder to parse. As we stressed in
this section, the collection of Latin and Ancient Greek treebanks presents an especially
advantageous set-up for such evaluation. In general, we cannot directly correlate
the performance of a parser on two different languages and treebanks with their
DLM and entropy values since there are many other confounding properties of the
treebanks. Also, the PROIEL data do not allow us to separate the effects of the two
word order properties which are partially correlated. To address these challenges, we
propose a new framework to artificially construct minimal pair treebanks for analysis
of word order properties.

3.2.3 Creating artificial treebanks for minimal pair evaluation

General methodology

The new evaluation methodology we propose consists in modifying an existing
treebank T to create an artificial treebank T′, so that T′ is its minimal pair with
respect to some property of interest, and analysing the parsing performance by
comparing the results on the two treebanks. In this section, which focuses on analyses
of word order properties in parsing performance, we create several kinds of artificial
treebanks in the same manner: each sentence s′ in T′ is a permutation of the words
of the original sentence s in T. We permute words in various ways according to
the word order property whose effect on parsing we want to analyse. Crucially, we
change only the order of the words in a sentence; the dependency tree structure t of
a permuted sentence s′ in T′ always remains the same as in the original sentence s in
T. Formally, if T = {(si, ti)} then T′ = {(s′i, ti)}, where s′ = permutation(s).

Given a permutation, for each treebank in our sample of languages we conduct two
parsing evaluations: TTrain → TTest and T′Train → T′Test, where the training-test data
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split for T and T′ is always the same, that is, permutation(s) ∈ T′Train ⇐⇒ s ∈ TTrain

and permutation(s) ∈ T′Test ⇐⇒ s ∈ TTest. As before, the parsing performance is
measured as unlabelled and labelled attachment scores (UAS and LAS), the propor-
tion of correctly attached arcs in the unlabelled or labelled tree, respectively.

Given the training–testing set-up, the differences in unlabelled attachment scores
∆UAS = UAS(TTest) − UAS(T′Test) can be directly attributed to the differences in
word order properties o between T and T′, setting aside other treebank properties
h. More formally, we can assume that UAS(T) = f (oT, hT) and UAS(T′) = f (oT′ , hT).
Except for word order properties oT and oT′ , the two equations share all other treebank
properties hT — such as the size of the treebank, its average dependency length, the
size of PoS tagset — and f is a function that applies to all languages, here embodied
by a given parser.

This methodology can also be used to analyse parsing performance at the sentence
level. Consider a pair of sentences s and its permuted variant s′. The two sentences
share all lexical items and underlying dependencies between them. Consequently, if
the parsing accuracy on the two sentences is not the same, the explanation must be
sought in their different word orders. In standard treebank evaluation settings, exact
sentence-level comparisons are not possible, as two sentences very rarely constitute
a truly minimal pair with respect to any specific syntactic property. Our approach
opens up the possibility of a deeper understanding of parsing behaviour at the
sentence level and even of individual dependencies based on large sets of minimal
pairs.

Permutations to test DLM and arc-direction entropy

We create two types of permuted treebanks to optimise for the two word order
parameters — dependency length and word order variability — which we showed
can be measured robustly as the DLM ratio and arc-direction entropy. We perform two
types of word order permutations to the treebanks in our sample: a permutation that
minimises the lengths of the dependencies in a dependency tree and a permutation
that minimises the variability of word order. Below we describe the permutation
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procedures in more detail. For each original treebank and its permuted versions,
we compute the DLM ratio and arc-direction entropy values, as described in the
section 3.1. We then compare how the parsing performances on the original and the
permuted trees vary in relation to the differences in the DLM ratio and entropy across
the pairs of treebanks.

Creating trees with minimal DL Given a sentence s and its dependency tree t in
a natural language, we employ the algorithm proposed by Gildea and Temperley
(2010) to create a new artificial sentence s′ with a permuted order of words. The
algorithm reorders the words in a sentence s to yield a projective dependency tree
with the minimal overall dependency length DL(s′).8 To do so, it recursively orders
the subtrees consisting of a head and its immediate children, starting from the root
node. For each subtree, first, all children nodes are sorted according to the number
of nodes in the subtree headed by the child node (including all its descendants), i.e.,
according to the length of the phrase. The algorithm then places the children ordered
in this way c1, c2, . . . on the left and on the right of the head in alternation, starting
from the shortest child phrase. The children on the same side of the head are also
ordered based on their sizes, with the shortest phrases closer to the head, producing,
e.g., a resulting order such as . . . c5c3c1hc2c4 . . .. Children of the same size are ordered
between each other as found in the original sentence.

Note that this algorithm is deterministic and that the dependency length of each
sentence is optimised independently. By definition, the DLM ratio for sentences
permuted in such a way is equal to 1. As we will see, this type of permutation
generally leads to very high arc-direction entropy in the treebank, since the order of
children with respect to their head is not constrained by the grammar in any way.

We exclude from our analysis sentences with any non-final punctuation marks and
sentences with multiple roots. In natural language treebanks, punctuation marks
such as commas or parentheses are typically attached to the head of the clause or

8 In principle, an order with minimal DL can be non-projective. However, such cases are rare in
natural language trees, which have limited topology. In particular, natural language trees have
small average branching factors, while a non-projective order with minimal DL occurs only if at
least one node of out-degree 3 is present in the tree (Chung, 1984).
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the sentence they appear in. Often this creates a long dependency when punctuation
marks serve to separate two phrases or indicate their edges (in a parenthetical use).
These long dependencies do not determine the degree of DLM in a language from
a linguistic perspective. However, the frequency of punctuation marks can affect
the value of the DLM ratio and bias our results. We decided, therefore, to exclude
sentences with punctuation from our analysis (excluding the period which was simply
removed for all sentences).9

Creating trees with minimal entropy To obtain treebanks with a minimal arc-
direction entropy equal to 0, we can fix the order of each type of dependency, defined
by a tuple (rel, h, c). There exist therefore many possible permutations resulting
in zero arc-direction entropy. We choose to assign the same direction (either Left
or Right) to all the dependencies. This results in two permutations yielding fully
right-branching (RB) and fully left-branching (LB) treebanks. We order the children
on the same side of a head in the same way as in the OptDL permutation: the shortest
children are closest to the head. For the RB permutation, children of the same size
are kept in the order of the original sentence; for the LB permutation, this order is
reversed, so that the RB and LB orders are symmetrical. These two permutations
are particularly interesting, as they give us the two extremes in the space of possible
tree-branching structures. Moreover, since the LB/RB word orders for each sentence
are completely symmetrical, the two treebanks constitute a minimal pair with respect
to the tree-branching parameter.

Importantly, there exist both predominantly right-branching (e.g. English) and left-
branching natural languages (Japanese, Persian) and the comparison of LB- with
RB-permuted treebanks will show how much of the difference in parsing typologically
different natural languages can be attributed to their different branching directions. Of
course, the parsing sensitivity to the parameter depends on the parsing architecture.

A transition-based parser such as MaltParser relies on left-to-right processing of
words and the fully right-branching or fully left-branching orders can yield potentially
different results.

9Note that Latin and Ancient Greek texts do not have punctuation marks. As a result, this problem
has not arisen in our previous experiments.
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3.2.4 Experiments with MaltParser on 14 treebanks

Parsing set-up

For all our experiments we use MaltParser, introduced in section 3.2.1. For optimal
outcomes, the transition-based MaltParser must be provided with a list of features
tailored for each treebank and each language. We use the MaltOptimizer package
Ballesteros and Nivre (2012) to find the best features based on the training set. We
conduct four training-test evaluations per gold treebank: using its original natural
language sentences and OptDL-permuted, LB-permuted and RB-permuted variants.
The training-test splits are identical for the four evaluation scenarios.

Dependency treebanks

We use a sample of 14 dependency treebanks for 12 languages. The treebanks for
Bulgarian, English, Finnish, French, German, Italian and Spanish come from the
Universal Dependencies project and use the same annotation scheme (Nivre et al.,
2016). We use the treebank for Dutch from the CONLL 2006 shared task (Buchholz
and Marsi, 2006). The Polish treebank is described in Woliński et al. (2011) and the
Persian treebank in Rasooli et al. (2013). For comparison, we add two Latin and two
Ancient Greek dependency annotated texts from the PROIEL collection Haug and
Jøhndal (2008). We include the Cicero and Vulgate texts in Latin and the Herodotus
and New Testament texts in Ancient Greek. The quantitative properties of these
treebanks are presented in Table 3.6 (second and third column). This set includes
treebanks that had at least 3’000 sentences in their training set after elimination of
sentences not fit for permutation (with punctuation marks or multiple roots). This
excluded from our analysis some otherwise typologically interesting languages such
as Basque and Arabic. Where available, we used the training-test split of a treebank
provided by its distributors; in other cases, we split the treebank randomly with a
9-to-1 training-test set proportion.
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Language Abbr. Size Av. sentence length DLM ratio Entropy

Italian it 57k 12.1 1.30 0.18

Spanish es 63k 15.1 1.32 0.16

French fr 72k 14.5 1.32 0.12

Polish pl 29k 6.8 1.33 0.36

Bulgarian bg 30k 8.5 1.36 0.20

English en 62k 9.5 1.40 0.10

Finnish fi 46k 5.7 1.42 0.35

Vulgate (La) la.V 63k 8.8 1.50 0.43

NewTestament (AG) el.NT 69k 10.5 1.56 0.38

Dutch nl 38k 8.4 1.62 0.29

German de 65k 11.5 1.65 0.22

Herodotus (AG) el.H 59k 14.4 1.87 0.47

Cicero (La) la.C 35k 11.6 1.88 0.44

Persian fa 35k 9.4 1.99 0.16

Table 3.6: Training size (in number of words), average sentence length, DLM ratio and
arc-direction entropy (Entropy) measures for the treebanks in our sample.
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Word order properties of original and permuted treebanks

Table 3.6 also presents the values of the DLM ratio and entropy measures calculated
on the training set of the original non-permuted treebanks. From these data, we
confirm that the DLM ratio and entropy measures capture different word order
properties as they are not correlated (Spearman correlation r = 0.38, p > 0.1). For
example, we can find languages with a low DLM ratio and high entropy (Finnish) and
with a high DLM ratio and low entropy (Persian). Furthermore, these two measures
do not necessarily reflect genetic similarity between languages of the same family; for
example, two languages from different language families — Polish (Indo-European
family) and Finnish (Finno-Ugric family) — are situated close to each other in the
space of two word order parameters.

Table 3.7 shows how the DLM ratio and entropy values change when we apply
the two permutations to the treebanks. Compared to the values of the original
treebanks, the DLM ratio and entropy values of the artificial treebanks are much
more narrowly distributed: 1.35± 0.05 (mean ± standard deviation) compared to
1.54± 0.24 for the DLM ratio and 0.65± 0.02 compared to 0.28± 0.13 for entropy.
Importantly, the treebanks in the LB-/RB-permuted set have, on average, both lower
entropy and a lower DLM ratio than the original treebanks. The treebanks in the
OptDL set have a lower DLM ratio but higher entropy than the original treebanks.
We expect these differences in DLM and word order variability measures to affect
parsing performance evaluated using UAS and LAS for each of the four sets of
treebanks. More precisely, as outlined in Section 3.2.3, we assume that the difference
in UAS values (e.g., between the original and LB-permuted treebanks) — ∆UAS =

UAS(LB) −UAS(Original) — will depend on the difference in the DLM ratio —
∆DLMratio = DLMratio(LB)−DLMratio(Original) — and the difference in entropy
— ∆Entropy = Entropy(LB)− Entropy(Original) (computed from Table 3.7). Smaller
values of delta measures indicate shorter dependencies and less variable word order
and should lead to better parsing performance in terms of larger ∆UAS values. Below,
we present the parsing performance measures obtained for our 14 treebanks and test
these assertions empirically.
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Language DLM ratio Entropy

Original OptDL LB/RB Original OptDL LB/RB

Italian 1.30 1.00 1.34 0.18 0.65 0.00

Spanish 1.32 1.00 1.36 0.16 0.66 0.00

French 1.32 1.00 1.38 0.12 0.66 0.00

Polish 1.33 1.00 1.35 0.36 0.62 0.00

Bulgarian 1.36 1.00 1.36 0.20 0.65 0.00

English 1.40 1.00 1.38 0.10 0.65 0.00

Finnish 1.42 1.00 1.42 0.35 0.64 0.00

Vulgate (La) 1.50 1.00 1.34 0.43 0.65 0.00

NewTestament (AG) 1.56 1.00 1.33 0.38 0.66 0.00

Dutch 1.62 1.00 1.22 0.29 0.58 0.00

German 1.65 1.00 1.44 0.22 0.67 0.00

Herodotus (AG) 1.87 1.00 1.38 0.47 0.67 0.00

Cicero (La) 1.88 1.00 1.31 0.44 0.65 0.00

Persian 1.99 1.00 1.32 0.16 0.66 0.00

Mean(±st. deviation) 1.54±0.24 1.35±0.05 0.28±0.13 0.65±0.02

Table 3.7: The DLM ratio and arc-direction entropy (Entropy) measures for the original
and permuted treebanks in our sample. The two ‘LB/RB’ columns present
the measures for LB-/RB-permuted treebanks optimised for zero entropy;
the two ‘OptDL’ columns present the measures for treebanks optimised for
the minimal DLM ratio.
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Results

Table 3.8 presents the parsing performance values of MaltParser for all treebanks and
permutation scenarios.

Overall, all three sets of permuted data are easier to parse than the original data. We
observe an increase of +1% and +6% UAS for OptDL and LB/RB data, respectively.
The better results on the LB-/RB-permuted data must be due to the property of the
treebank highlighted previously: the LB/RB data have both lower entropy and a
lower DLM ratio than the original data.

The performance of the parser on our artificial treebanks confirms that the lengths of
the dependencies and the word order variability are two factors that negatively affect
parsing accuracy. Two illustrative examples are the texts in Latin, a language with
highly variable word order, and German, a language known for its long dependencies
(as confirmed by its high DML ratio of 1.65). For the Cicero text, for example,
we can conclude that its variable word order is indeed the primary reason for the
very low parsing performance (67% UAS). These numbers improve significantly
when the treebanks are rearranged in a fixed LB/RB word order (88% UAS). This
permutation reduces the DLM ratio by 0.57 and reduces entropy by 0.44, yielding a
very considerable increase in UAS of 21%. The other permutation, which minimises
dependency lengths, reduces the DLM ratio by 0.88 but increases entropy by 0.21. This
increase in entropy dampens the beneficial effect of DL reduction, and performance
increases 12%, less than in the fixed-order permutation. For German, our analysis
gives the same overall results. The DLM ratio in the RB/LB scenario decreases slightly
(from 1.65 to 1.44) and its entropy also decreases (-0.22). The performance of the
parser on RB-/LB-permuted data is better than on the original data (89% versus 86%
UAS). Moreover, when the DLM ratio is reduced (-0.65, in the OptDL permutation),
but entropy is increased (from 0.22 to 0.67), we find a reduction in performance (from
86% to 84% for UAS). These data suggest that the word order variability of German,
minimised in the RB/LB case, has a potentially higher impact on parsing difficulty
than its long dependencies.

A more detailed picture emerges when we compare pairwise the original treebanks
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Language Original OptDL LB RB

UAS LAS UAS LAS UAS LAS UAS LAS

it 93.9 90.6 90.7 84.6 94.2 90.0 95.0 90.8

es 85.7 80.7 80.1 71.7 85.2 76.0 87.8 80.3

fr 84.1 80.0 81.3 73.7 90.0 82.4 90.7 85.2

pl 92.1 88.0 94.3 88.4 93.7 89.2 93.6 88.9

bg 92.6 88.6 91.6 84.5 91.9 85.1 92.7 87.1

en 89.6 87.7 84.7 78.7 89.3 82.9 88.8 83.4

fi 82.9 79.7 85.2 80.6 90.1 84.7 90.7 86.6

la.V 86.0 80.5 87.6 80.9 92.5 85.9 92.5 86.4

el.NT 84.8 79.0 88.1 80.7 92.5 85.0 90.5 73.0

nl 88.4 84.3 92.8 87.0 95.0 89.9 94.7 89.9

de 85.5 79.7 83.7 75.0 88.8 77.9 89.3 81.2

el.H 71.7 65.0 83.0 73.7 88.8 79.3 87.6 66.7

la.C 67.4 58.8 78.6 67.4 87.6 75.8 87.2 76.1

fa 82.7 73.7 83.5 73.3 89.8 79.7 89.7 79.9

Average 84.8 79.7 86.1 78.6 90.7 83.1 90.8 82.5

Table 3.8: Parsing performance results measured as unlabelled and labelled accuracy
scores (UAS and LAS, %) for four types of treebanks in 14 languages:
original treebanks, their versions permuted for minimal dependency length
(OptDL) and their versions permuted for minimal arc-direction entropy
(LB/RB).
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to the permuted treebanks for each of the languages. For this analysis, we use only
the UAS measure, since attachment decisions are more directly dependent on word
order than labelling decisions, which are mediated by correct attachments. Hence,
we limit our analysis to three parameters: the DLM ratio, entropy and UAS.

Figures 3.8 (OptDL) and 3.9 (LB) plot the differences in UAS of MaltParser between
pairs of the permuted and the original treebanks for each language to the differ-
ences in DLM ratio and entropy between these treebanks. Our dependent variable
∆UAS = UAS(T′) − UAS(T) is computed from Table 3.8. The x-axis and y-axis
values ∆DLM = DLMRatio(T) − DLMRatio(T′) and ∆Entropy = Entropy(T) −
Entropy(T′) compute the differences of the measures between the original treebank
and the permuted treebank based on the numbers in Table 3.7. Note that we have
chosen to calculate these differences reversing the two factors, compared to the ∆UAS
value, for better readability of the figures: an increase in the entropy or dependency
length values corresponds to a decrease in the difficulty of parsing and, therefore, to
the increase of the dependent variable ∆UAS.

For the OptDL data (Figure 3.8), the overall picture is coherent with the previously
observed patterns: the more the DLs are minimised and the less entropy is added
to the artificial treebank, the larger the gain in parsing performance (violet-to-blue
circles in the lower left corner and yellow-to-red circles in the upper right corner).
Again, we observe an interaction between the DLM ratio and entropy parameters: for
the languages with a relatively low DLM ratio and low entropy originally, such as
English or Spanish, the performance on the permuted data decreases. This is because,
while the DLM ratio decreases, entropy increases. For this group of languages, the
particular trade-off between these two properties leads to lower parsing accuracy.

The LB-permuted data show similar trends (Figure 3.9). An interesting regularity is
shown by four languages (Latin Vulgate, Ancient Greek New Testament, Dutch and
Persian) on the off-diagonal. Although they have different relative entropy and DLM
ratio values, which span from near minimal to maximal values, the improvement in
parsing performance on these languages is very similar (as indicated by the same
colour). This again strongly points to the fact that both the DLM ratio and entropy
contribute to the observed parsing performance values.
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Figure 3.8: Differences in UAS of MaltParser between OptDL-permuted and original
pairs of treebanks for the corpora in our sample.

We can further confirm the effect of dependency length by comparing the parsing
accuracy across sentences.10 Consider the Dutch treebank and its RB-permuted pair.
For each sentence and its permuted counterpart, we can compute the difference
in their dependency lengths (∆DLM = DLM − DLMRB) and compare it to the
difference in parsing performance (∆UAS = UASRB −UAS). We expect to observe
that ∆UAS increases when ∆DLM increases. Indeed, the parsing results for Dutch
show a positive correlation between these two values (r = 0.40, p < 0.001). Note that
this sentence-level monolingual analysis is different from the similar analysis of the
effect of dependency length on parsing performance in English (McDonald and Nivre,
2011) in an important way. In particular, the DLM ratio measure is independent of

10Note that the entropy measure is computed on a whole treebank and cannot be meaningfully
compared across sentences.
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Figure 3.9: Differences in UAS of MaltParser between LB-permuted and original pairs
of treebanks for the corpora in our sample.

the sentence length, and we can, crucially, separate the effect of longer dependencies
from the effect of longer sentences.

All these analyses confirm and quantify that dependency length and word order
variability affect parsing performance.

Sentence-level analysis of parsing performance

Looking at Table 3.8, we observe that MaltParser shows the same average accuracy for
RB- and LB-permuted data. However, some languages show significantly different
results between their LB- and RB-permuted data, especially in their labelled accuracy
scores. The New Testament corpus, for example, is much easier to parse when it is
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rearranged in left-branching order (91% RB vs 93% LB UAS, 73% RB vs 85% LB LAS).
Our artificial data allows us to investigate this difference in the scores by looking at
parsing accuracy at the sentence level.

The differences in MaltParser accuracies on RB- and LB-permuted data are striking
because these data have the same head-direction entropy and dependency length
properties. The only word order difference is in the branching parameter, resulting in
two completely symmetrical word orders for each sentence of the original treebank.
To understand the behaviour of MaltParser, and of transition-based parsers in general,
we looked at the out-degree, or branching factor, of the syntactic trees. The intuition is
that when many children appear on one side of a head, the parser behaviour on head-
final and head-initial orders can diverge due to sequences of different operations,
such as shift versus attach, that must be chosen in the two cases.11

The data for the New Testament treebank indicates that the branching factor plays
a role in the differences between LB and RB parsing scenarios. For each pair of
sentences with LB/RB orders, we computed the parsing accuracies (UAS and LAS)
and the branching factor as the average out-degree of the dependency tree. We then
tested whether the better performance on the LB data is correlated with the branching
factor across the sentences (UASLB −UASRB ∼ BF). The Pearson correlation for UAS
values was 0.08 (p = 0.02), but for LAS values the correlation was 0.30 and highly
significant (p < 0.001). On sentences with larger branching factors, the labelled
accuracy scores on the LB data were higher than on the RB data.

We combine our result for the branching factor with an observation based on the
confusion matrix of the labels, to provide a more accurate explanation of the compara-
tively low LAS in the RB-permuted treebank of the New Testament corpus. We found
that when a verb or a noun has several one-word children, such as ‘aux’ (auxiliaries),
‘atr’ (attributes), ‘obl’ (obliques), or ‘adv’ (adverbs), these elements frequently receive
the wrong label if they appear after the head (RB data), but are labelled correctly
if they appear before the head (LB data). It appears that the leftward placement of
children is advantageous for the transition-based MaltParser: at the moment of the

11The MaltParser configurations for LB and RB data had the same parsing algorithm (Covington
projective).
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first attachment decision for the child closest to the head, it has access to a larger
left context. When children appear after the head, the first child is attached before
any other children are seen by the parser and the labelling decision is less informed,
leading to more labelling errors.

It should be noted that it is not always possible to identify a single source of difficulty
in the error analysis. Contrary to the New Testament, Spanish is easier to parse when
it is rearranged into the right-branching order (88% RB vs 85% LB UAS, 80% RB
vs 76% LB LAS). However, the types of difficult dependencies emerging from the
different branching of the LB/RB data were not similar or symmetric to those of New
Testament. In the case of Spanish, we did not observe a distinct dimension of errors
that would explain the 4% difference in UAS scores.12

3.2.5 Perspectives for parsing evaluation using artificial treebank

data

Our results highlight both the contributions and the challenges of the proposed
evaluation framework. On the one hand, the results show that we can identify
and manipulate word order properties of treebanks to analyse the impact of these
properties on parsing performance and suggest avenues to improve it. In this
respect, our framework is similar to standard analyses of parsing performance
based on separate manipulations of individual word-level features (such as omitting
morphological annotation or changing coarse PoS tags to fine PoS tags). Similarly to
these evaluation procedures, our approach can lead to improved parsing models or a
better choice of parsing model by discovering their strengths and weaknesses.

In addition to MaltParser, we also evaluated MSTParser using the same framework.
The results of this evaluation were reported in the TACL paper (Gulordava and Merlo,
2016). MaltParser and MSTParser are not directly comparable due to differences
in the training set-up (MaltParser features are optimised for each language and

12 Overall, the variance in the LB/RB performances on Spanish is relatively high, and the mean
difference (computed across UAS scores for sentences) is not statistically significant (t-test: p > 0.5)
– a result we would expect if errors cannot be imputed to clear structural factors.
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permutation). Nevertheless, MSTParser performs slightly better on average than
MaltParser on permuted datasets. Also, MSTParser does not show any difference in
performance on LB-/RB-permuted treebanks. In general, analysing several parsers in
the same evaluation framework advances our understanding of parsing architectures.
Subsequently, when two parsing systems are known to have different strengths and
weaknesses, they can be successfully combined in an ensemble model for more robust
performance (Surdeanu and Manning, 2010; McDonald and Nivre, 2011).

A contribution of the parsing performance analyses in a multilingual setting is the
identification of difficult properties of treebanks. For the Cicero and Herodotus texts,
for example, our method reveals that their word order properties are causes for the
low parsing performances compared to the other languages. This result confirms
our linguistic intuition, but it could not be formally concluded without factoring
out confounds such as the size of the training set or the dissimilarity between the
training and test sets, which could also be reasons for low parsing performance.
Together, the knowledge of word order properties of a language and the knowledge
of parsing performance related to these properties give us an a priori estimation of
which parsing system could be better suited for a particular language.

On the other hand, our method also raises some complexities. Compared to com-
monly used parsing performance analyses related to word-level features, the main
challenges to a systematic analysis of word order lie in its multifactorial nature and
in the large choice of quantifiable properties correlated with parsing performance.
The multifactorial nature of word order means that it is very hard to manipulate
one word order property in isolation from other word order properties. The two
properties we have looked at — the DLM ratio and arc-direction entropy — cannot
be manipulated independently since minimising one property leads to the increase
of the other. Another challenge is due to the fact that, as we have seen in Section 3.1,
formal quantitative approaches to studying word order variation cross-linguistically
are just beginning to appear and not all word order features have been robustly
quantified.

Our method, which consists in creating artificial treebanks, can prove useful beyond
parsing evaluation. For instance, our data could enrich the training data for tasks such
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as de-lexicalised parser transfer (McDonald et al., 2011). Word order properties play
an important role in computing similarity between languages and finding the source
language leading to the best parser performance in the target language (Naseem
et al., 2012; Rosa and Zabokrtsky, 2015). A possibly large artificially permuted
treebank with word order properties similar to the target language could then be a
better training match than a small treebank of an existing target natural language.
Shortly after the publication of our work (Gulordava and Merlo, 2016), a paper which
explores exactly this idea by constructing very many artificially permuted treebanks
was published (Wang and Eisner, 2016).

3.3 Conclusions

This chapter demonstrates how we can analyse DLM effects and word order variation
at the language-level by quantifying these word order properties in dependency-
annotated treebanks. We argued that the DLM ratio — the average ratio between the
dependency length of a sentence and its minimal possible dependency length — is a
robust measure for comparison of the degree of DLM across languages and treebanks.
Measuring word order variation as a unique parameter is a harder task because of the
sparsity of the observed combinations of the order of words. The arc-direction entropy
captures robustly one aspect of word order variation: the variability in the position
of a child with respect to its head. Our empirical analysis of PROIEL and other
treebanks suggests that DLM ratio and arc-direction entropy provide information
about orthogonal or complementary properties of word order. The measures of DLM
and word order variation at the language level can, therefore, give important new
information for typological comparisons of the languages of the world.

In addition to linguistic studies, the measures of word order at the treebank level
can be useful for natural language processing applications. We successfully applied
these measures to analyse, quantitatively and on a large scale, the effect of word
order properties on parsing performance. We proposed two new scenarios for a
controlled evaluation: the comparison between texts in the same language (Latin and
Ancient Greek) using PROIEL treebanks and the comparison between minimal pair
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treebanks constructed artificially by permuting the order of words in sentences. Using
these evaluation scenarios, we confirmed that treebanks and sentences with longer
dependencies are harder to parse while controlling for many confounding factors
(including, for example, the sentence length). We also confirmed experimentally, for
the first time to our knowledge, a common intuition that treebanks with higher word
order variation are harder to parse.

The experiments we have presented in this chapter highlight clearly that there is large
space for future work on exploring and quantifying word order properties at the
language level. We investigated only a restricted set of properties which, of course,
do not describe word order exhaustively. New interesting data could come from
quantifying other word order properties and studying the properties we have touched
upon in much more detail and across many more languages. A very exciting direction
for future research lies in understanding and quantifying the relation between DLM
and word order freedom.

Parsing performance is also affected by syntactic and word order properties other
than those we have studied in this chapter including, for instance, the branching
factor or the position of the root node. Luckily, our artificial treebank evaluation
framework allows us to test many potential properties in the same systematic way
without running into the problem of data sparsity. In fact, while we conducted our
experiments on only three types of permuted treebanks, we can easily construct
many more permutation types. Each permuted treebank with specific word order
parameter values provides us with a data point in the evaluation space. Thus, we
can obtain, in principle, many data points for a statistically reliable estimation of the
effects of word order properties, even if we investigate several properties at the same
time.
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Chapter 4

DLM effects in adjective-noun order
variation

This chapter investigates the dependency length minimisation (DLM) effects in
the variation of prenominal and postnominal placement of adjectives in Romance
languages. We pursue a traditional corpus-based multifactorial analysis to test the
effects of lengths of dependencies on the variation. Our aim is to verify whether the
general DLM principle is at work in the adjective-noun variation — a construction
which has not received a lot of attention in relation to DLM. By probing the variation
in this way, we find some properties in the distribution of adjectives which have not
been pointed out before. In this new perspective, a number of syntactic phenomena
previously treated separately, such as the postnominal preference of heavy adjectives
and the effect on the adjective placement of the dependents in a complex noun phrase,
can be explained in terms of one principle.
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4.1 Background

4.1.1 Adjective variation in Romance and heavy adjectives

Adjectives modifying nouns in Romance languages have two possible positions:
preceding the noun or following it, as illustrated in the examples (4.1–4.4) for a noun
phrase a difficult situation in Italian, French, Spanish and Portuguese:

(4.1) Italian:

a. una difficile situazione

b. una situazione difficile

(4.2) French:

a. une difficile situation

b. une situation difficile

(4.3) Spanish:

a. una difı́cil situación

b. una situación difı́cil

(4.4) Portuguese:

a. uma difı́cil situação

b. uma situação difı́cil

The default position of adjectives in all Romance languages is uncontroversially as-
sumed to be the postnominal position (variant b in the examples above). In fact, it is
the most frequent order overall in the corpus-based data and, when asked to choose
between the two minimal pair word orders as in (4.1–4.4), without the sentence
context, native speakers have strong preferences for the postnominal order. In such
simple noun phrases consisting only of an adjective and a noun, speakers could
also judge the prenominal order to be ungrammatical. The acceptability judgments
and production preferences are influenced noticeably by the context in which the
noun phrase appears in the sentence. For a slightly modified noun phrase a difficult
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economical situation (instead of just a difficult situation), the prenominal word order
(i.e., une difficile situation economique in French) is already more acceptable than the
order a in the examples (4.1–4.4).1

Despite the many potential factors affecting the placement of adjectives in a sentential
context, the investigation of this construction in theoretical syntax has mostly focused
on simple noun phrases of the type (4.1–4.4) and the semantic differences between
the prenominal and postnominal adjectives which present a puzzle on their own.
First, some classes of adjectives such as adjectives of color and nationality can appear
only postnominally (in all Romance languages):

(4.5) a. una camicia rossa

b. *una rossa camicia

‘a red shirt’

(4.6) a. un ragazzo americano

b. *un americano ragazzo

‘an American boy’

Secondly, there exist few adjectives in each language which exhibit robust alternations
in their meaning when used prenominally and postnominally:2

(4.7) a. un pauvre homme

‘a pitiful man’

b. un homme pauvre

‘a broke man’

(4.8) a. une grande actrice

‘a great actress’

b. une actrice grande

‘a tall actress’
1Based on the informal queries of native speakers, p.c. The corresponding frequency patterns in

production can be verified through a corpus or Google search queries.
2Thuilier (2012) lists, for example, nine such adjectives in French referring to them as homophones.
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Finally, adjectives can have the same lexical meaning but different semantic interpreta-
tion when used prenominally and postnominally. This alternation has received special
attention in the literature (Bouchard, 1998; Alexiadou, 2001; Truswell, 2005; Cinque,
2010).3 One of the differences in the interpretation corresponds to the restrictive
versus non-restrictive scope of the adjective over the noun.

(4.9) Spanish (example from Alexiadou (2001)):

a. el oloroso lirio (non-restrictive)

b. el lirio oloroso (restrictive)

‘the fragrant lily’

(4.10) Italian:

a. le strette strade (non-restrictive)

b. le strade strette (restrictive)

‘the narrow streets’

A postnominal adjective (4.9b, 4.10b) specifies a quality of the noun which distin-
guishes its referent from a set of nouns of this type (el lirio oloroso is the one lily
which is fragrant; le strade strette is a subset of all streets). A prenominal adjective, by
contrast, denotes a presupposed, non-restrictive quality of the noun. Similarly, the
postnominal position is often associated with adding the contrast or establishing the
difference (‘the narrow streets and not the wide ones’) while the prenominal posi-
tion is more neutral and provides an attributive characterization to the noun (‘some
streets that happen to be narrow’). In a number of extreme theoretical accounts, the
position of an adjective is isomorphic to its semantic interpretation (Waugh, 1977;
Bouchard, 1998; Cinque, 2010). It implies that all adjectives appearing prenominally
and postnominally always receive different interpretation in the two positions.

We adopt here an alternative view on the relation between the syntax and the se-
mantics of adjective position. In our opinion, the account of variation in adjective

3In fact, this topic has been of much interest for French linguists starting already from 18th century
(Roubaud (1786)). This early work is reviewed in Waugh (1977) and Forsgren (1978). See also
Truswell (2005) and Blöhdorn (2008) for a brief summary.
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placement based only on the differences in restrictive and non-restrictive interpreta-
tion cannot be taken as a complete explanation for preferences between prenominal
and postnominal orders. It is recognised that the slight differences in interpretation
are not robust: they are not easily identified and acknowledged by all native speakers
(Abeillé and Godard, 1999; Thuilier, 2012). This is particularly true for subjective
attributive adjectives such as difficult, interesting, charming, horrible etc. For instance,
there is no difference in the interpretation of the two orders in the example (4.11) in
French.

(4.11) French (example from Abeillé and Godard (1999)):

a. un jeune homme charmant

b. un charmant jeune homme

‘a charming young man’

In this work, we will assume that, for this type of adjectives that can appear both
prenominally and postnominaly, the two word order variants have the same meaning.
More specifically, we suggest that, for the noun phrases which make part of naturally
occurring sentences (the kind of noun phrases which we will be analysing) the
semantic factors such as the ones proposed by, e.g., Bouchard (1998) and Cinque
(2010), do not play the first role in defining the adjective placement preferences.
In addition to lexical constraints (such as the obligatory postnominal position for
adjectives of color), other syntactic, discourse and phonological properties can play
an important role in the adjective-noun variation. They have been analysed in
the previous literature but to a lesser extent. The work presented in this chapter
extends this previous work and provides new empirical data on adjective variation
in sentential context through a cross-linguistic corpus-based study of five Romance
languages.

Specifically, this chapter is dedicated to a systematic analysis of the effect of syntactic
properties in the noun phrase related to dependency length minimisation. We survey
below the literature directly relevant to this aspect of adjective variation. We first
describe the phenomenon of heavy adjective shift, potentially related to the DLM
principle, and the work that has addressed this variation. We then discuss the
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previous corpus-based statistical work on the variation in adjective placement, in
particular, the extensive analysis of French data by Thuilier (2012).

Heavy adjective shift

In English, while the normal position of an adjective is prenominal, an adjective
phrase with a complement should appear obligatorily after the noun (4.12). The same
postnominal requirement for adjectives with a complement holds also for Romance
languages (4.13).

(4.12) a. a man [ proud of his achievements ]

b. *a [ proud of his achievements ] man

(4.13) Italian translation of (4.12):

a. un uomo [ orgoglioso delle sue riuscite ]

b. *un [ orgoglioso delle sue riuscite ] uomo

A similar restriction was observed by Greenberg (1963) for adverbial modifiers of
the adjectives in a typological sample of languages: the order Adj Adv N is not
grammatical (contrasting with other possible orders Adv Adj N, N Adv Adj and N
Adj Adv) as illustrated for English in the example (4.14).

(4.14) a. *a running smoothly meeting

b. a smoothly running meeting

Williams (1982) generalises these data under the Head-Final Filter principle — a
constraint preventing post-head material in prenominal modifiers. In other words, he
postulates an adjacency requirement for the head of the parent phrase (the noun) and
the head of the modifier phrase (the adjective). When a complement or an adverb
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of the adjective intervenes between the adjective and the noun, such order is not
acceptable.4

Languages can employ different ways to avoid this dispreferred order, for example,
by extraposing the dependent of the adjective (4.15) or by placing the whole adjective
phrase postnominally, which is the default order in Romance languages (4.16).

(4.15) a difficult book [ for anyone to read ]

(4.16) un libro [ difficile da leggere per chiunque ]

However, as Abeillé and Godard (2000) note, there are many counter-examples to
Williams’ generalisation. For example, some adverbs in English can appear in Adj
Adv N order as in a fair enough proposal. Also, in some languages such as Russian, the
[ Adj PP ] N order is at least marginally acceptable (4.17).

(4.17) [ гордый до слез ] Иван5

[ proud up to (his) tears ] Ivan

Abeillé and Godard (2000) propose for French an alternative principle based on the
heaviness of adjective phrases. In addition to the data presented above, this principle
is devised to account for the other data on the variation in adjective position such as
the tendency of many adjective phrases (non-bare adjectives) to appear postnominally
in French. Abeillé and Godard (2000) suggest that this tendency is conditioned on the
syntactic feature [lite]/[non-lite] and that the prenominal and postnominal adjectives
must be, respectively, lite and non-lite. For bare adjectives, the value of the feature
is defined in the lexicon. For example, the postnominal-only adjectives of color are
specified as non-lite and therefore occur postnominally. The feature is also defined for
other lexical elements such as adverbs. For an adjective phrase, the weight value is a

4The Head-final Filter was shown to be connected to a more recent theoretical attempt at describing
typological patterns of variation as a Final-over-Final constraint in the grammar (Sheehan, 2017).
This principle, in turn, makes predictions similar to the Hawkins’ domain minimisation processing
preferences (Sheehan, 2012).

5Interestingly, the prenominal adjective order seems to be more acceptable when the noun phrase is
a sentence final subject, e.g. Их встретил [ гордый до слез ] Иван (gloss: ‘them met proud up to
tears Ivan’).
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result of the syntactically-informed combination of the values of the feature of the
phrase elements. If a lite adjective is modified by an adverb which is lite (e.g., très
‘very’) then the adjective phrase will be also lite. If, instead, the adverb is non-lite
(e.g., politiquement ‘politically’) then the adjective phrase will also be non-lite and will
appear postnominally. Adjectives with (post-head) complements are always non-lite
and therefore cannot appear prenominally, in line with the Head-Final Filter.

This proposal for “heavy” (non-lite) adjectives to appear postnominally is reminiscent
of the similar treatment of noun phrases and their rightward extraposition often
referred to as heavy-NP shift (Section 2.2). It was observed, for example, that a noun
with a relative clause can be extraposed more easily than a simple noun phrase (e.g.
with only prenominal modifiers) (Wasow, 2002).

This connection between the “heavy adjective shift” and heavy-NP shift appears also
in empirical studies of adjective distribution in French (Forsgren, 1978; Thuilier, 2012).
In fact, Forsgren (1978) proposes explicitly that the short-before-long principle applies
in the case of the noun-adjective pair and results in the longer adjective phrases
preferring postnominal placement (observed in his corpus study). As we will show in
the next section, while in the case of postverbal complements, the short-before-long
principle is directly equivalent to dependency length minimisation, it is not clear
whether this is true for the case of adjective-noun pair.

We can obtain some preliminary evidence in favor of the adjective shift generalisation
from a frequency analysis of a small number of languages whose treebanks are readily
available (Figure 4.1). The data are based on a sample of languages from the UD
treebank collection and show the percent of postnominal placement for two categories
— simple (bare) adjectives (green bars) and heavy adjectives (adjective phrases, red
bars). Based on this coarse distinction, we observe that there are more postnominal
heavy adjectives compared to postnominal simple adjectives. However, this evidence
is very preliminary and does not necessarily suggest a more general DLM principle
at work (as the work on head-final languages suggested for the alternation of verbal
dependents cross-linguistically). We cannot say therefore whether the heavy adjective
postposition preference can be connected to a more general case of dependency length
minimisation, as it is the case of heavy-NP shift in English. We leave a rigorous cross-
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Figure 4.1: The illustration of difference between percetage of postnominal simple
(green bars) and heavy (red bars) adjectives across several languages.

linguistic analysis of the adjective-noun variation beyond the Romance languages for
future work.

In this chapter, we focus, instead, on the distribution of adjectives in complex noun
phrases in Romance and show that these data can already provide new insight on
whether the DLM principle is at work in adjective-noun variation and heavy adjective
shift. We propose a theoretical formalisation of DLM for the case of the noun phrase
and conduct the empirical statistical tests of the DLM predictions on the corpora of
five Romance languages.

Corpus-based analysis of adjective variation in French

A rather small number of quantitative corpus-based studies on the order of adjectives
were conducted for English on the relative order between several prenominal adjec-
tives (Wulff, 2003) and Romance languages on the relative order between adjective
and noun (Waugh, 1977; Forsgren, 1978; Centeno-Pulido, 2010; Fox and Thuilier, 2012;
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Thuilier et al., 2012). We are not aware of any cross-linguistic corpus-based studies
of adjective variation for more than one Romance language. We describe here in
detail the work of Thuilier (2012) which is the most complete statistical treatment of
adjective position in one of the Romance languages – French — and is very related to
our work from the methodological point of view.

The work described in Thuilier et al. (2012) and Fox and Thuilier (2012) on adjective
placement in French provides an extensive analysis of a large number of factors
affecting the patterns of variation. This work follows a corpus-based empirical
approach to variation based on the same methodology that the work of Gries (2003)
and Bresnan et al. (2007) described previously. Similarly, the goal of this work is to
assess the relative effect of the factors previously proposed in the literature using
naturally occurring data and a multifactorial statistical model.

The factors analysed include lexical factors such as whether the adjective and the noun
form a collocation, semantic factors such as the class of the adjective (an adjective
of nationality or color, or a relational adjective), phonological factors (length of the
adjective in syllables) and a number of syntactic factors. The syntactic variables,
which are the most relevant ones for this overview, cover the structure of the adjective
phrase as well as the noun phrase. To test the data on heavy adjective shift presented
in the work of Abeillé and Godard (2000), Thuilier (2012) includes the presence of an
adverb or a coordination of adjectives in the adjective phrase as variables in the model
to verify that they favor the postnominal placement.6 In addition, the structural
composition of the noun phrase such as presence of other noun dependents have
been suggested in the previous literature to affect the adjective placement (Forsgren,
1978). In particular, the reference grammar of French (Grevisse and Goosse, 2007)
suggests that in cases where there are several modifiers of a noun they should be
placed, if possible, on the opposite sides of the noun, to make a more “balanced”
noun phrase. For example, in the presence of a relative clause or a prepositional
phrase (which always occur after the noun), the adjective should be placed before
noun. Finally, the definiteness of the noun phrase (indicated by an article) and the

6While the factors such as the presence of adverb or coordination in the adjective phrase are analysed,
the presence of adjectival complements is not included in the model. This is because adjectives
with complements have to follow obligatorily the noun.
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syntactic function of the noun phrase (subject, object or an attribute) were proposed
to affect the adjective placement. All these factors were included in the statistical
analysis to verify their impact in a large corpus and in one mutlifactorial model.

Several logistic regression models with the independent variables listed above were
trained on the corpus data to predict the observed variable: the prenominal or the
postnominal placement of an adjective. Simple logistic models were used to analyse
the distribution of all adjectives in the corpus and a generalised mixed effect model
was used to analyse only the distribution of alternating adjectives. The latter model
uses adjective lemmas as random effects, an approach that we pursue and describe in
more details in this chapter.

The output of the statistical analysis of adjective placement in French with respect to
the syntactic factors is the following. The presence of an adverb or a coordination
are significant factors which favor the postnominal placement, confirming thus the
heavy adjective analysis proposed by Abeillé and Godard (2000). The presence of a
prepositional phrase or a postnominal adjective favor prenominal placement of the
target adjective. However, the modification of a noun by a relative clause complement
does not carry a significant effect, contrary to the modification by a PP. If the NP is
introduced by a definite article (also a possessive or a demonstrative) the prenominal
adjective placement was found to be preferred. The syntactic function on the NP, on
the other hand, was not found to have an affect on the adjective placement.

The work of Thuilier establishes several results which motivate the experiments we
present in this chapter. Most importantly, the analyses of adjective placement were
conducted on a syntactically-annotated corpus with mostly automatic encoding of
token and sentence features. It was not possible to identify automatically from the
corpus the pragmatic and discourse factors (for example, the new or given status of
the noun phrase, intonation and so on). Consequently, they were not included in the
model. Despite this, the model with all other features (lexical, syntactic, semantic)
achieved very high performance in predicting the position of the adjectives (92.6%
accuracy for all adjectives and 87% for alternating adjectives). We can conclude from
this result that adjective order alternation is mostly constrained by the lexico-semantic
properties of the adjective and the syntactic properties of the noun phrase. These
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factors can be successfully studied in a corpus without taking into account pragmatic
and discourse factors which do not play a main role in the variation. Another
important result is the fact that, as discussed above, a number of syntactic factors
were shown to play an important role in the adjective placement in addition to the
preferences defined in the lexicon.

There remains, however, a number of open questions and issues not addressed in
the work of Fox and Thuilier (2012); Thuilier et al. (2012); Thuilier (2012). While
the results confirm the appropriateness of the multifactorial statistical approach to
explaining the adjective alternation, the interaction of various factors is not taken into
account. A preference which ties two or more factors together cannot be expressed
in terms of a simple linear combination of variables. From a practical, modelling
point of view, it can be infeasible to test for interactions between all pairs of variables.
In fact, this consideration leads to a more general limitation of the previous work.
A statistical analysis can test and evaluate the effect of factors in a variation but it
does not explain why these factors are relevant. Thuilier (2012) does not attempt to
explain why certain syntactic factors turn out to be significant in her analysis. An
important question is whether there is a more general underlying principle that can
explain the effect of these syntactic factors together. A theoretical analysis would also
be necessary to put forward the potential interactions between the variables which
could be then tested using statistical tools and corpus data.

4.1.2 Statistical models for word order variation analysis

Linear regression analysis

A simple linear regression model is a statistical model for two variables, X and Y. The
underlying assumption is that there exist a linear relation between X — the predictor
variable, also called independent variable — and Y, the target or response variable:
Y = β0 + β1X. We can observe and reconstruct this relationship only through a
sample of data points (x1, y1), (x2, y2), . . . (xn, yn) which are obtained empirically and
are not necessarily drawn from the analytical equation describing Y given X. More
precisely, the simple linear regression model is specified by the Equation (4.1), where
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X and Y are random variables. A data set is assumed to be sampled from the model
given the random noise (or random error) ε “corrupting” the measurement of Y.

Y = β0 + β1X + ε (4.1)

Given a data set of observations, the goal is to estimate the parameters βi of the
model (also called regression coefficients). We will refer to β0 as the intercept and β1

as the slope of the model. The estimated parameters can then be used to predict the
values of Y given the observed values of X and to analyse and test the effect of X on
Y.

The maximum likelihood estimation of parameters — finding βi which maximise the
total probability of the observed data P(Y | X, β) — is straightforward for simple
linear regression models if the random noise ε is assumed to be normally distributed.
More precisely, if ε ∼ N(0, σ2) then the probability of observing a value y given a
value x is:

p(Y = y | X = x) =
1√

2πσ2
e−

(y−(β0+β1x))2

2σ2 (4.2)

The maximum likelihood estimation amounts to finding the values of β0 and β1

which maximise the total probability of the observed data set:

β∗0, β∗1 = arg max
n

∏
i=1

p(Y = yi | X = xi) (4.3)

In the case of normally distributed random error, maximum likelihood estimation
is equivalent to least squares estimation. Intuitively, it corresponds to finding the
regression line which minimises the sum of squared distances from the the dataset
points (xi, yi) to the predicted points (xi, yi∗) on the line.

The simple regression model can be generalised to more than one predictor variables
X1, . . . Xk. The multiple regression model is specified similarly as:

Y = β0 + β1X1 + . . . + βkXk + ε (4.4)
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And can be written in a short form using vector representation:

Y = βX + ε (4.5)

Linear regression is used often in psycholinguistics to study, for example, the relation
between the reading time of a sentence (response variable) and its syntactic properties
(predictor variables). The chief purpose of such analyses is to evaluate and test the
hypotheses associated with the variables Xi (e.g., an object relative clause requires
longer processing) on the dependent variable Y (reading time is a proxy measurement
of processing effort). Statistically, this amounts to testing whether the coefficient
βi for the variable Xi is different from 0. If this coefficient is equal to 0 we would
conclude that there is no (linear) relation between Xi and Y. If βi is different from 0 it
captures whether an increase in the value of Xi results in an increase or a decrease
of the value of Y (graphically seen as a positive or negative slope of the line) and by
how much. The coefficients βi are estimated based on the observed data sample and
a statistical test is necessary to determine whether βi is different from 0 in the actual
population from which this sample is extracted. More precisely, we want to test the
null hypothesis that βi is equal to zero and possibly reject it based on a computed
statistic at some significance level. In case of a multiple linear regression with
normally distributed error the t-test statistic is used to check individual parameters
βi.

Logistic models

Linear regression is an appropriate model for continuous response variables such
as reading time. In corpus-based syntactic studies, instead, the response variables
are normally of categorical type. When modelling word order variation the response
variable is most often binary: e.g., split or adjacent order in the verb-particle con-
struction (as is modeled in Gries’s work described before) or prenominal versus
postnominal order of an adjective (as used in the work of Thuilier). To describe the
relation between the predictor variables and the binary response variable we use a
type of generalised linear model, known as logit model.
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A binary response variable Y can take two values: 0 and 1. The logistic regression
can be seen intuitively as finding the parameters β so that:

Y =

1, if βX + ε > 0

0, otherwise
(4.6)

Under the assumption that random error is distributed by the standard logistic
distribution, we can then write the probability of Y = 1 as follows:

p(Y = 1 | X = x) =
eβx

1 + eβx (4.7)

Alternatively, the same relation can be expressed using the inverse of the logistic
function — the logit transform:

βx = ln
µ

1− µ
, (4.8)

where µ = p(Y = 1 | X = x).

The estimation of parameters in logit models cannot be obtained from analytical
computation similarly to the maximum likelihood estimates for the linear regression
models. Instead, numeric estimation algorithms are typically employed and imple-
mented in statistical software such as R language. The significance of individual
coefficients βi is assessed by computing the Wald statistic or the likelihood ratio test
statistic. The likelihood ratio test is used, more generally, to compare the goodness
of fit to the observed data of two nested models — a null model and an alternative
model with additional parameters.

Mixed-effects models

An extension of linear and logistic regression models that is used commonly in
psycholinguistics and was adopted in some more recent analyses of word order
variation are linear and logistic mixed-effects models (Jaeger, 2008; Baayen et al.,
2008; Quené and Van den Bergh, 2008; Winter, 2013). These models are designed to
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take into account the effect of grouping in the data observations. For example, when
collecting experimental data of reading times, typically each participant is asked
to read a number of sentences. In the resulting data, there will be groups of data
points which share the same value of the categorical subject variable. As a result,
these N groups of observations (corresponding to N subjects) can have some distinct
properties affecting the response variable which cannot be generalised to the whole
population. For example, some people tend to read (in general) faster than the others.
The reading time measurements obtained for such subjects can be much shorter than
for some other subjects, regardless of the other parameters affecting the reading time.
To account for this variation at the group level, mixed-effect models separate two
types of factors: fixed effects (the ones we hypothesise and test) and random effects
(the ones that are introduced by grouping variables sampled randomly from some
population). A subject’s average reading speed is exactly this kind of random effect
since we assume that the subjects in the experiment were chosen randomly and are
therefore expected to be normally distributed with respect to the reading speed at
the population level.

Intuitively, we can also think of having N different models of reading time — one for
each subject i — but where the coefficients for the population-level factors must be
shared. The following notation specifies a linear mixed effect model:

Y1,j = X1,jβ + Z1,jb1 + ε1,j

Y2,j = X2,jβ + Z2,jb2 + ε2,j

. . .

YN,j = XN,jβ + Z1,jbN + εN,j

(4.9)

The coefficients β of the fixed effects X are the same for all observations Yi,j where
i is the index of the group (e.g., subject id) and j is the index of the point coming
from the group i (j varies from 1 to ni where ni is the number of observations for
the group i). The coefficients bi are, on the other hand, defined for each group i
separately. Furthermore, since they correspond to random effects, the coefficients
bi are assumed to be independent and normally distributed: bi ∼ N(0, Σ), where
Σ is a covariance matrix. Random errors εi,j are assumed to be sampled randomly
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from a normal distribution (the same for all groups), as previously for simple linear
regressions. The parameters of the model which are estimated from the observed
data are β, Σ and σ.

The logit mixed-effects model is formulated similarly to the linear mixed-effects
model in the Equation (4.9) by substituting the values of Y on the left by the logit
transformations of P(Y = 1) as in Equation (4.8) (Jaeger, 2008).

In this work, we use the freely accessible, widely used lme4 package in R (Bates
et al., 2014) to estimate the logit mixed-effect models and test the fixed effects β. The
package employs numeric algorithms for the maximum likelihood estimation of the
parameters (described in detail in Bates et al. (2014)). To test whether the coefficients
are different from 0, the recommended general approach that can be applied to both
logistic and linear, simple and mixed effects models is to do the likelihood ratio test
on the models with and without the parameter of interest.

4.2 Modelling DLM effects in the adjective placement

in complex noun phrases

In this section, we demonstrate how we can apply the general principle of DLM
to the noun phrase. Our starting point is a global DLM principle inspired by the
work of Temperley (2007) and Gildea and Temperley (2010). Two main ideas behind
this specific formalisation of the DLM principle are the global minimisation of
dependencies in the sentence, as given by the sum of the individual dependencies,
and the reliance on the dependency annotation provided by a treebank for decisions
related to the syntactic structure of the sentences.

We will show below that the DLM principle for word order variation defined as a
preference for a word order which minimises the total sum of all dependencies in
the sentence is compatible with the evidence for DLM, such as the heavy-NP shift
in English, analysed previously in terms of relative lengths of constituents (Wasow,
2002) or the processing domain minimisation (Hawkins, 1994). For the adjective-noun
variation, where there are several dependencies that can be minimised, it is reasonable
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to take the global minimisation principle as an initial hypothesis. As in Chapter 3,
the length of a dependency is computed in terms of number of words.

We rely on the dependency structure annotation given in a treebank to formalise
the computation of the dependency lengths. In other words, we only consider the
dependencies which are given in a pre-existing linguistic analysis. We adopt this
approach to avoid making any ad hoc assumptions about the syntactic structure
jointly with our minimisation analysis. This is an important point for our work
distinguishing it from the previous accounts of DLM for specific word order variation
constructions: we explicitly separate the investigation of DLM effects from the analysis
of the syntactic structure. We rely on the dependency grammar analysis and not on
the other previously used accounts (e.g., Hawkins (1994)) for several reasons. As we
have seen, there exist a harmonised cross-linguistic dependency grammar for many
languages and corpora necessary for a large-scale automatic analysis of word order
variation. On the other hand, the syntactic analyses used by Hawkins (1994) are done
manually on samples of small scale and for a selected set of constructions. Moreover,
the dependency analysis is a very general syntactic analysis which makes feasible the
transfer of DLM generalisations between different constructions (e.g., the variation in
postverbal domain in English and adjective-noun variation in Romance).

In comparison, the previous studies have used various ways to choose what de-
pendencies are relevant for their analyses and also how to compute their lengths.
In Hawkins (1994), the relevant dependencies have been assumed to hold between
constituents instead of head words (as specified by a dependency grammar); the left
edge (the starting word) of the constituent is taken to effectively define the length
of the “dependency” between, for example a verb and its complement. Although,
Hawkins’ subsequent work assumes that semantic dependencies between the verb
and the head noun are also minimised (Hawkins, 2004; Lohse et al., 2004). For Gib-
son (1998, 2000), alternatively, the relevant processing DLM measure is the distance
between the head words of syntactic constituents. For reasons related to memory
storage and activation assumptions, the distance is computed in terms of the number
of intervening discourse referents, instead of the number of words. Given these dif-
ferences between various flavors of DLM, the formalisation based on the dependency
annotation gives a more general approach to the problem. It allows unifying the
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V XP YP: J’ai participé [ à une soirée très agreable ] [ avec mes amis ]
V X Y

d′1

d′2

V YP XP: J’ai participé [ avec mes amis ] [ à une soirée très agreable ]
V Y X

d′′2

d′′1

Figure 4.2: Illustration of the alternation of postverbal dependents in French in the
sentence ‘I participated [XP to a very enjoyable evening ] [YP with my
friends ] ’.

previous DLM accounts and providing an analysis of DLM effects in a systematic
way under the same assumptions about syntactic structure.

Note that the above differences in the definition and operationalisation of depen-
dency lengths have not been problematic for establishing the previous evidence for
DLM. One reason is that, for the most commonly studied constructions, such as the
alternation of postverbal complements, slightly different principles still point to the
same preferences. In fact, on the basis of the alternation of postverbal dependents
in head-initial languages only (without, e.g., taking into account the evidence from
verb-final languages such as Japanese), the short-before-long or the principle of
end weight (Wasow, 2002), Hawkins’ domain minimisation principle (minimising
the maximal dependency length, (Hawkins, 1994)) and the global DLM principle
(minimising the sum of dependencies) are all equivalent.

This point is illustrated in Figure 4.2 for an example in French. Two prepositional
phrase dependents of the verb participé, XP and YP, can be exchanged to produce two
alternative orders V XP YP or V YP XP. Importantly, the two phrases both occur on
the same side of the head which we will indicate using the notation V {XP, YP}. In
this case, we can easily show that the short-before-long principle based on the relative
length between the two phrases will give the same predictions as a principle based
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on the minimisation of dependencies.

The only two dependencies that change their lengths between the two alternative
word orders are indicated in Figure 4.2. All other dependencies, including the ones
internal to XP and YP, or internal to the VP are not relevant to deciding between
these two word orders.7 If we assume the global DLM principle which prefers the
order which minimises the overall sum of all dependencies in the sentence then, for
our example, the order V XP YP should be preferred if d′2 + d′1 < d′′1 + d′′2 . Since
d′2 − d′′2 is equal to the length of the phrase XP and d′′1 − d′1 is equal to the length of
the phrase YP, we can rewrite the preference condition as follows: |XP| < |YP|. In
other words, the order V XP YP is preferred if XP is shorter than YP. The preference
for the short-before-long order is exactly equivalent to the preference for the order
which minimises the length of dependencies. Note also that this calculation gives the
same result if, instead of dependencies V–X and V–Y where X and Y are the content
heads of the phrases XP and YP (nouns soirée and amis), we consider the distance
between the verb V and the functional heads of the phrases (prepositions à and avec)
as Hawkins (1994) proposes. The choice between the two possible syntactic structures
is, therefore, not crucial for establishing a DLM effect in this construction.

The computations in the example above are particularly straight-forward because the
word order alternation is of the type Head {XP, YP}. In the cases where there are
two dependents of one head appearing on the same side of the head, the difference
between the two orders always amounts to the differences in the lengths of two
dependent phrases XP and YP. Not all cases of word order alternation are however of
the simple Head {XP, YP} type. The variation in the adjective placement in Romance
which we investigate in this chapter is an example of a different structural type of
alternation and cannot be reduced to the analysis of only two dependencies. To see the
principled difference between the two word order variation constructions, consider an
example of the adjective placement in a relatively complex noun phrase (Figure 4.3).
When the adjective changes its position relative to the head, this affects a number
of dependencies both inside the noun phrase (d2, d3) and the external dependency

7If there are other dependents in the VP, it is possible that neither of the two word orders will be
optimal from the DLM perspective. However, the relative preference between the two word orders
considered here will not change.
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Adj N: J’ai participé à [ une [ très agreable ] soirée organisée par des amis ]
X α Adj N Y

d′1

d′2 d′3

N Adj: J’ai participé à [ une soirée [ très agreable ] organisée par des amis ]
X N α Adj Y

d′′1 d′′2

d′′3

Figure 4.3: Illustration of the adjective-noun order alternation in French in the sen-
tence ‘I participated [ [ to a very enjoyable ] evening [organised by my
friends ] ’.

between the noun and its head (d1). Note, for example, that the dependency X–N
is shorter for the postnominal order (d′′1 < d′1) but the dependency N–Y is longer
(d′′3 > d′3). These two dependencies have distinct functional types and it is not clear
whether it makes sense to compare their lengths. In the general case, the dependency
lengths will depend on the composition of the adjective phrase, on the composition of
the noun phrase (whether the noun has any additional modifiers), on the position of
the noun with respect to its head. Overall, the case of adjective variation in complex
noun phrases is unlike the case of postverbal dependents (Figure 4.2) where the only
two parameters were the lengths of two dependencies of the same functional type.

The fact that in the adjective-noun order variation many dissimilar dependencies
change their length poses two general questions for the formulation of the DLM
principle which were not relevant for the case of Head {XP, YP} alternation.

1. First, which dependencies should we consider if we want to study the position
of the adjective? We can apply a global interpretation of DLM and take into
account all dependencies or, alternatively, we can consider a local DLM principle
and retain as relevant only the dependency between the adjective and its head
noun.

2. Secondly, if all modified dependencies influence the adjective placement, do
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they do it in the same way? In other words, can the global DLM principle be
expressed in terms of a comparison of the sum of all dependencies for the two
sentences?

In relation to the previous work on adjective variation discussed in Section 4.1.1,
we can pose one more question. Is the treatment of the adjective-noun variation
in terms of DLM more appropriate than the adoption of a principle such as heavy-
adjective shift? (Or are they equivalent as it is the case for heavy-XP shift and DLM
in postverbal alternation in English?). Note that the adjective phrase can have some
pre-adjectival modifiers (α, adverb très) and post-adjectival modifiers (we will refer to
them as γ, none are present in the example in Figure 4.3). The presence of α and γ

elements in the adjective phrase affect the lengths of dependencies in different ways.
On the other hand, the heavy-adjective principle would treat them holistically.

In this chapter, we analyse the corpus-based distribution of adjectives in Romance
languages with the goal to shed light on these fundamental and intriguing ques-
tions for the research on dependency length minimisation. We start by formulating
the global DLM principle for the adjective-noun construction using the sum of all
dependency lengths as our measure. We derive the prediction for prenominal and
postnominal placement preferences using this formalisation and compare them to
the predictions arising when each dependency is minimised individually.

Throughout the formalisation and subsequent analyses we use the definition of
dependency length (DL) in terms of number of words, as in Chapter 3. Recall that
if two words wi and wj (j > i) are connected by a dependency in a dependency
tree annotation of the sentence w1, . . . wl, the length of this dependency equals the
difference between their indices: DL = j− i. If two words are adjacent in the sentence,
their dependency length will be therefore equal to 1.

4.2.1 Formalisation and predictions of the DLM principle

Consider, as a first prototypical case, a simple noun phrase with only one adjective
phrase as a modifier (Figure 4.4).
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Adj N: X [NP [AP α Adj γ ] N ]

d′1
d′2

N Adj: X [NP N [AP α Adj γ ] ]

d′′1
d′′2

(a) Left external dependency

Adj N: [NP [AP α Adj γ ] N ] X

d′1 d′2

N Adj: [NP N [AP α Adj γ ] ] X

d′′1
d′′2

(b) Right external dependency

Figure 4.4: Prenominal and postnominal variants of a simple noun phrase given left
(a) and right (b) external dependency X–N.

The adjectival modifier can be a complex phrase with some left dependents and some
right dependents. A left dependent would be typically an adverb, e.g., very proud and
a right dependent would be typically a complement, e.g. proud of his achievements. We
indicate all of the left and all of the right dependents in our schematic representation
by α and γ, respectively. To simplify the notation, we will also use α and γ to indicate
the overall lengths of the left and right dependents when we compute the dependency
lengths.

Note that in Figure 4.4 and in all the following examples, the dependency annotation
of the schematic constructions follows the content-head annotation of the UD scheme
(Chapter 2) which we adopt consistently as our underlying syntactic representation.
This implies that the noun N is the head of the noun phrase (and not the determiner,
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DL pre-N DL post-N Preference

N–Adj γ + 1 α + 1 pre-N if α > 0, post-N if γ > 0

X–N, X on the left α + γ + 2 1 post-N, more so if α, γ > 0

X–N, X on the right 1 α + γ + 2 pre-N, more so if α, γ > 0

Table 4.1: The lengths of N–Adj and X–N dependencies in the case of prenominal
(pre-N) and postnominal (post-N) placement of the adjective. For each
dependency, we specify what order would be preferred if this dependency
tends to be minimised (independently from other dependencies).

for example) and that the relevant dependencies are all between the noun and its
modifiers and the noun and its head.

The head of the noun N is indicated by X. The left position of X can correspond, for
example, to a verb-object relation between X and N. The sentence I knewX a manN very
proud of his achievements is an example of this structural variant represented in Figure
4.4a. X can also frequently be a noun taking N as its prepositional complement as
in sonX of a manN (since the head of a prepositional phrase is always a noun in the
content-head annotation). The right position of X corresponds typically to a subject-
verb relation between X and N. The sentence A manN very proud of his achievements
would not doX this belongs to this second structural variant depicted in Figure 4.4b.
In French and other Romance languages, the sentences analogous to the English
examples above can in principle appear with prenominal or postnominal adjective
(as illustrated in the example in Figure 4.3).

The only two dependencies that change their lengths between Adj N and N Adj orders
and are therefore relevant for the DLM principle are the noun-adjective dependency
and the X–noun (X–N) dependency. Table 4.1 indicates the lengths of these two
dependencies in four cases illustrated in Figure 4.4. In particular, the adjective-noun
dependency length depends on both the length of the pre-adjectival material α and
post-adjectival material γ of the adjective phrase. The length of the X–N dependency
depends on the adjective position and on the overall length of the adjective phrase
equal to α + γ + 1.
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∆DL Preference

X=Left 2γ + 1 post-N, more so if γ > 0

X=Right −2α− 1 pre-N, more so if α > 0

Table 4.2: Dependency length difference and the corresponding preference for a
simple type of the noun phrase (∆DL = DL1 − DL2).

Table 4.1 also lists the preferences between prenominal and postnominal orders for
each of the dependencies if they are to be minimised independently. In particular,
whatever the position of X is, the minimisation of the N–Adj dependency should favor
the postnominal placement of AdjP in the presence of post-adjectival elements γ and
should favor the prenominal placement of AdjP in the presence of the pre-adjectival
elements α.

The two alternative linearisations for each of the two structural variants (a) and (b)
in Figure 4.4 also yield different total dependency lengths. By convention, we will
always indicate the total dependency lengths (the sum of all dependencies) in the
prenominal order as DL1, and in the postnominal order as DL2. Their difference
is always calculated as ∆DL = DL1 − DL2.8 If ∆DL > 0 then the postnominal
order is preferred, otherwise if ∆DL < 0 the prenominal order is preferred. Given
the dependency lengths in Table 4.1, the resulting differences in the sum of DLs
are summarised in Table 4.2. Qualitatively, the differences in preferences between
the two tables arise in two cases: when X=Left and α > 0 and when X=Right and
γ > 0. In these cases, the two dependencies point in the opposite directions for
minimisation. The sum measure obtains a compromise which results in a general
post-N preference when X=Left (contrary to the N–Adj dependency individual pre-N
preference when α > 0) and a general pre-N preference when X=Right (contrary to
the N–Adj individual post-N preference when γ > 0).

The predictions by the DLM analysis carried out above are influenced crucially by

8We do not need to take into account the dependencies which have the same length for both word
orders when computing the difference DL1 − DL2 because they will cancel out. We therefore will
compute only the sum of dependency lengths of the relevant dependencies (e.g. d′1, d′2) to be DL1
and DL2.
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the position of the noun phrase with respect to its parent X. This is a surprising
prediction which has not been evoked often in the literature. Nevertheless, a related
observation comes from Forsgren (1978) who has proposed that the syntactic function
of the noun (subject or object) affects the adjective position, with subject noun
phrases favoring prenominal placement and object noun phrases favoring, instead,
postnominal placement. Given that the subject function corresponds to the position
X=Right and the object function corresponds to the position X=Left (where X is a
verb), his observation would coincide with the DLM predictions as stated in Table 4.2.
On the other hand, Thuilier (2012) in her corpus-based analysis of French has not
found the subject/object function to be a significant predictor of the variation.

The predictions of the DLM account for complex adjective phrases are only partially
aligned with the previous literature. Overall, the presence of post-adjectival material
favors postnominal placement both from the point of view of minimisation of the
adjective-noun dependency and the total dependency length. This corresponds to the
observed tendency for adjectives with complements to appear on the right of the noun
(Head-Final Filter, Section 4.1.1). However, the presence of pre-adjectival dependents
such as adverbs is predicted to favor prenominal placement if the adjective-noun
dependency or the total dependency length are minimised. This is against the
observation that adjectives with adverbs tend to appear postnominally in French
(Abeillé and Godard, 2000; Thuilier, 2012).

Noun phrases with additional dependents

The noun can also have other modifiers or dependents apart from the adjective. In
our illustration in Figure 4.5, we consider a noun with an additional right dependent
indicated by Y. These types of noun phrases are very common in Romance languages
(almost 50% of noun phrases in our sample include at least one post-head dependent).
Importantly, the position of the phrase YP is fixed with respect to the noun. We
consider the non-adjectival modifiers of a noun that appear categorically on its right,
such as prepositional phrases (soirée [ dans un parcY]) or relative clauses (soirée [
organiséeY par ... ] in the example in Figure 4.3 corresponding to the structure (a) in
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Adj N: X [NP [AP α Adj γ ] N Y ]

d′1
d′2

d′3

N Adj: X [NP N [AP α Adj γ ] Y ]

d′′1
d′′2

d′′3

(a) Left external dependency

Adj N: [NP [AP α Adj γ ] N Y ] X

d′1 d′2
d′3

N Adj: [NP N [AP α Adj γ ] Y ] X

d′′1

d′′2
d′′3

(b) Right external dependency

Figure 4.5: Noun phrase structure variants with an additional right dependent Y.

Figure 4.5). We exclude from our analysis other modifiers of the noun which appear
prenominally such as demonstratives or numerals.

Figure 4.5 illustrates two possible placements for an adjective phrase: prenominal
Adj N Y and postnominal adjacent to the noun N Adj Y. In fact, a third order is also
possible in Romance languages with adjective placed postnominally after Y: N Y Adj.
To simplify for the moment, we will assume only the first two possible orders for our
illustrations.

In this noun phrase structure, there are now three dependencies which should be
taken into account in a DLM analysis. In addition to X–N and N–Adj, the dependency
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DL pre-N DL post-N Preference

N–Adj γ α pre-N if α > 0, post-N if γ > 0

N–Y 1 α + γ + 2 pre-N, more so if α, γ > 0

X–N, X on the left α + γ + 2 1 post-N, more so if α, γ > 0

X–N, X on the right |Y|+ 1 α + γ + 2 + |Y| pre-N, more so if α, γ > 0

Table 4.3: The lengths of N–Adj, N–Y and X–N dependencies in the case of prenominal
(pre-N) and postnominal (post-N) placement of the adjective. For each
dependency, we specify what order would be preferred if this dependency
tends to be minimised (independently from other dependencies).

∆DL Preference

X=Left γ− α post-N, if γ > 0, pre-N if α > 0

X=Right −3α− γ− 2 pre-N, more so if α, γ > 0

Table 4.4: Dependency length difference and the corresponding word order preference
in complex noun phrases with a right dependent Y (∆DL = DL1 − DL2).

N–Y also gets two different lengths in the two possible orders. The computed lengths
DL1 and DL2 for the three dependencies are shown in Table 4.3.9 The values for the
dependency Adj–N are the same as for the noun phrases without a right dependent
(Table 4.1); for the dependency X–N there is an additional component |Y| (the length
of the phrase YP) but it is cancelled out when we look at the difference between
prenominal and postnominal DLs. The resulting preferences towards an order
minimising Adj–N and X–N dependencies individually are therefore exactly the same
as for the case of simple noun phrases without Y. The N–Y dependency shows, in
turn, a clear preference for the prenominal placement of the adjective which would
allow adjacency between N and YP.

The total length of the three dependencies for the Adj N and N Adj orders is given

9Note that we do not need to take into account here the position of the head Y in the phrase YP.
Similarly to the case of postverbal dependents, this position is irrelevant for the computation of
the difference of the lengths of N–Y dependency for the two orders since its contribution will be
cancelled out.
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in Table 4.4. As previously, we distinguish between the structure with X on the left
of the noun N and with X on the right of N. These values are not exactly equal
to the ones obtained for the simple noun phrase (Table 4.2) because they include
the contribution of the N–Y dependency. Overall, there is a shift towards more
prenominal preference which is a consequence of the strong prenominal preference
of the N–Y dependency.

Summary of predictions

Given the structures and dependencies analysed above, we can formulate the predic-
tions for the adjective placement stemming from the DLM principle. We test these
predictions empirically using the corpus data of five Romance languages as described
in the next section.

If we adopt the most general global DLM principle that the total sum of all depen-
dencies should be minimised then the preferred order should be correlated with the
value of ∆DL as summarised in Tables 4.2 and 4.4.

It is possible that the global DLM principle is not sensitive enough because there are
some dependencies in the noun phrase whose minimisation can favor the opposite
orders. Ideally, we would like to measure and test the DLM effect for each of these
dependencies separately. This is, however, not straightforward. The lengths of the
three dependencies are built up from the same two parameters α and γ and the
corresponding factors will be, as a result, correlated and not independent.

Instead, we propose to test a simplified set of factors abstracting away from the
interaction of X–N and N–Y dependencies with the composition of the adjective
phrase. Given the preferences in Tables 4.1 and 4.3, we simplify them into the
following predictions which capture the overall tendency in minimisation of individual
dependencies:
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Dependency Preference

X–N prenominal if X=Right, postnominal if X=Left

N–Y prenominal

N–Adj prenominal if α > 0, postnominal if γ > 0

The factors for the dependencies X–N and N–Y are therefore a binary approximation
of the factors corresponding to individual dependency lengths. The N–Y factor
should indicate, for example, whether there is an overall tendency towards more
prenominal order when Y is present, while the X–N factor will tell us whether there
is a difference in the distribution of adjectives when X is on the right or on the left of
the noun.

In addition to these main predictions, we will refer back to the more fine-grained
predictions devised previously when we analyse the results, obtained from the corpus
data, in connection with the interaction of the dependency factors.

4.2.2 Experimental setup

In this section, we describe the corpus data and the details of statistical methods we
use to analyse the distribution of adjectives in Romance languages.

Data extraction

Our analyses are based on the data from five Romance languages: Italian, French,
Catalan, Spanish and Portuguese. We use the Universal Dependencies treebanks
v1.3 for these languages which are available freely online (Nivre et al., 2016).10

We do not include other Romance languages into our analysis chiefly for lack of
availability of sufficiently large syntactically annotated corpora for those languages.
For example, there exist a UD treebank of Romanian, but its size (in the version 1.3
of UD treebanks that we have obtained for our experiments) is relatively small (less

10http://universaldependencies.org
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than 5000 sentences). Since we study complex noun phrases and the word order
variation associated with many parameters, we focused on five languages that had the
largest treebanks available. Each UD treebank comes divided into three parts (train,
development and test) which are habitually used to train and evaluate NLP parsing
systems. We use only the training sections of the treebanks in our experiments which
constitute between 80% and 90% of the overall annotated data.

Using the dependency annotation, we extracted all noun phrases which contain an
adjective. The simple automatic procedure finds the nouns and adjectives using the
part-of-speech tags (‘ADJ’ for adjectives and ‘NOUN’ for nouns) and extracts only the
cases when the adjective is the child of a noun (based on the annotation information
described in the Chapter 2). The relevant properties such as the position of the noun
head and the presence of a right dependent are also extracted automatically based on
the dependency annotation. The resulting data is a table with rows corresponding
to the observations and columns corresponding to the variables we want to study.
Importantly, we also extract the lemmas of adjectives. As we have discussed previously,
the adjective placement is strongly conditioned lexically. The lemma variable is
therefore one of the defining factors in the analysis.

Some basic preprocessing steps were applied on the extracted data to ensure that
all nouns and adjectives are well-formed words (and not, for example, symbols or
numeric expressions). Importantly, we also removed all examples of the noun phrases
which contain punctuation. Punctuation can indicate a focused or a parenthetical
adjective phrase which do not have the same syntactic distribution as the non-stressed
standard cases of adjectival modification.

The resulting data contains between 7200 and 15900 observations per language. The
statistics of the data in terms of the number of adjective tokens (i.e., the number of
observations), the number of adjective types (i.e., the number of distinct lemmas)
and the frequency of the prenominal and postnominal orders are given in Table
4.5 (first three columns). Overall, an adjective appears in prenominal position in
between 22% (Catalan) and 32% (Italian) of observations confirming empirically that
the postnominal position is the default one in Romance languages.

Since the variation is very constrained for some types of adjectives (e.g., adjectives
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Order All Adj # All Adj % Alternating Adj # Alternating Adj %

Spanish
Adj N 4533 28.5 3835 57.2
N Adj 10400 65.4 2586 38.6
N YP Adj 970 6.1 282 4.2

Total tokens 15903 6703 42.1
Total types 3410 334 9.8

Catalan
Adj N 3641 21.8 3276 54.7
N Adj 11711 70.2 2405 40.2
N YP Adj 1319 7.9 306 5.1

Total tokens 16671 5987 35.9
Total types 2637 250 9.5

French
Adj N 4202 28.5 3520 70.4
N Adj 9380 63.7 1299 26.0
N YP Adj 1138 7.7 179 3.6

Total tokens 14720 4998 34.0
Total types 2777 181 6.5

Italian
Adj N 3669 32.0 2991 55.7
N Adj 7251 63.3 2192 40.8
N YP Adj 541 4.7 186 3.5

Total tokens 11461 5369 46.8
Total types 2151 329 15.3

Portuguese
Adj N 2142 29.8 1870 67.8
N Adj 4729 65.9 806 29.2
N YP Adj 309 4.3 84 3.0

Total tokens 7180 2760 38.4
Total types 1686 162 9.6

Table 4.5: Token and type frequencies of adjectives and their placement in the ex-
tracted data for five Romance languages.
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of color or nationality appear almost exclusively postnominally) it makes sense to
exclude them from our analysis which assumes that both prenominal and postnominal
orders are in principle available. Out of all adjectives, we extracted therefore only
the ones which appear at least once in a prenominal position and at least once in a
postnominal position in our corpus. Table 4.5 (columns 4, 5) gives the size of this
subset of alternating adjectives and the overall number of observations in which they
occur. We retain, as can be seen from these numbers, between 6.5 and 15% of distinct
adjectives. Note that since most of the adjectives appear only once in the corpora
(this is the familiar Zipf’s law for lexical frequency), this relatively small number of
adjective types accounts for around 34 to 47% of total observations. For this reason,
the focus on the data with alternating adjectives is also more appropriate from the
practical point of view. Since we will use adjective lemma as a parameter in our
model, it is desirable to have more than one observation for each parameter value to
obtain robust numerical estimations.11

Note that the statistics on prenominal versus postnominal frequency shifts towards
more prenominal order when only alternating adjectives are taken into account (Table
4.5 indicates between 55 and 70% of prenominal orders). This is not surprising since
many alternating and often prenominal adjectives such as good, beautiful, small etc are
some of the most frequent adjectives.

Statistical analysis using logit mixed effect models

To analyse the variation we use logit mixed effect models described in Section 4.1.2.
Our statistical analysis is similar to the ones conducted in Bresnan et al. (2007);
Thuilier (2012); Fox and Thuilier (2012).

The output variable which our statistical models are designed to predict is always
Order. In the experiments in this section we only consider two possible orders: Adj
N and N Adj (YP). As can be seen from Table 4.5, the number of observations which
have the third possible order N YP Adj is very small (only 3–5% of cases). When we

11In fact, the mixed effect models which we describe below did not always converge when used with,
e.g., 3000 random effects (adjective lemmas) for 15000 observations.
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combined the two categories N Adj and N Adj YP under one category the results of
our models did not change significantly compared to the results obtained when N
Adj YP cases were removed from the data. We assume, therefore, that we can merge
the two postnominal orders under one category N Adj without significant loss of
generality. This allows us to apply models with the binary response variable which
are easy to interpret and can be compared to the models previously used in word
order variation studies.

We encode the values of our binary Order variable as follows: Order = 0 corresponds
to Adj N and Order = 1 to N Adj order. When interpreting the results of our model,
if the coefficient βi is positive this will mean that the factor i ‘votes’ for the value 1
favoring, therefore, the postnominal order. If βi is negative then the factor i favors,
instead, the prenominal order. The sign of β0, or intercept, of the model tells us
whether the adjective position in the data is more prenominal or postnominal on
average.

The predictor variables corresponding to individual dependency lengths effects
that we test are: PositionX, PresenceY, Alpha, Gamma. PositionX, PresenceY are
binary variables; PositionX codes two values: X=Left and X=Right and PresenceY

codes True and False values. Alpha, Gamma are numeric variables with discrete
values 0, 1, 2, . . . which count the sizes of left and right dependents of the adjective as
number of words.

An alternative model which stems from the global DLM principle has only one pa-
rameter ∆DL which is computed as DL1−DL2 for each noun phrase by constructing
a prenominal (DL1) and a postnominal placement (DL2) of the adjective phrase. ∆DL
is a numeric variable with integer values; the increase in ∆DL is predicted to correlate
with postnominal placement (β > 0).

The main type of the model we use to test the effect of these predictor variables on
the variable Order is logit mixed effects model with adjective lemmas as random
effects. As we have discussed above, distinct adjective types have different preferences
for prenominal and postnominal orders. Consider a toy corpus where adj1 appears
100 times, out of which 20 times in prenominal position, and adj2 appears 100
times, out of which 80 times in prenominal position. The average distribution of
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prenominal and postnominal orders is 50% in this corpus, however, this number
does not accurately describe the distribution of either adj1 or adj2. To account for
this variation systematically, we consider the observations for each adjective type to
form a group, similarly to the grouping by subject in psycholinguistic experiments. A
model with adjective lemmas as random effects can be seen therefore as a lexicalised
model of variation, i.e., where the order depends on the word type and not only on
more abstract syntactic information.

For brevity, we will use the lme4 notation to describe our models. The following
expression specifies a model with fixed effects X1, X2, X3 and random effects Adj.

Order ∼ X1 + X2 + X3 + (1 | Adj) (4.10)

This is a simplified notation for a model with an intercept β0, slope coefficients
β1, β2, β3 of the effects X1, X2, X3 and random intercepts b0i for each adjective lemma
Adji. We do not include random slopes b1i, b2i, b3i into our model because we do not
have sufficient data for robust estimation of the large number of parameters. The
omission of random slopes corresponds to a reasonable assumption in the absence of
relevant evidence that the lexical type of adjective does not affect the strength of the
effects X1, X2, X3.

The null model for the testing of individual parameters is a model without any fixed
effects but with the random adjective effects:

H0 : Order ∼ (1 | Adj) (4.11)

The results of fitting this model on our five datasets are given in Table 4.6.12 For
each language, the table lists a standard summary for a mixed effect model fit. The
parameters of each model are aligned column-wise for easier comparison of results
across languages. First, the table lists the intercepts β0 of the models which are not
significantly different from 0, apart for French. This just means that the prenominal
placement observed from the numbers in Table 4.5 can be largely explained by a
small number of frequent adjectives favoring prenominal placement. The value

12This and subsequent tables are generated automatically from lme4 models in R using texreg

package Leifeld (2013).
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Italian Spanish Catalan French Portuguese

(Intercept) −0.03 −0.03 0.01 −0.34∗∗ −0.17

(0.08) (0.08) (0.10) (0.13) (0.12)

Log Likelihood -2733.02 -3606.76 -2752.28 -1815.71 -1242.55

Num. obs. 5369 7739 5987 4998 2760

Num. groups: Adj 329 414 250 181 162

Var: Adj (Intercept) 1.42 1.52 1.59 2.37 1.46
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.6: The null model: OrderBinary ∼ (1 | Adj). The values in parentheses
indicate the standard errors of the estimates of a parameter (here, the
intercept).

in parentheses below each intercept value is the standard error for the parameter.
This table and subsequent tables summarizing the fit of our model also include
the important parameters such as the total number of observations, the number of
groups (distinct adjective lemmas) and the variance of adjective intercepts. Other
values in the table such as the log-likelihood values are not supposed to be compared
across models and languages since they are evaluated on different datasets. Instead,
they will be compared to the log-likelihood values of models with additional fixed
effects.

4.2.3 Results and discussion

We start first by presenting the results for the global DLM model and the most
powerful model — the model that includes all individual factors deduced from our
DLM analysis. We then present the analyses of each factor separately for a detailed
understanding and interpretation of the results.
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Italian Spanish Catalan French Portuguese

(Intercept) −0.03 −0.03 0.01 −0.33∗ −0.16

(0.08) (0.08) (0.10) (0.13) (0.12)

∆DL 0.06∗∗∗ 0.05∗∗∗ 0.02 0.04 0.07∗∗∗

(0.01) (0.01) (0.01) (0.02) (0.02)

Log Likelihood -2721.42 -3594.54 -2751.44 -1814.31 -1235.79

Num. obs. 5369 7739 5987 4998 2760

Num. groups: Adj 329 414 250 181 162

Var: Adj (Intercept) 1.40 1.52 1.59 2.36 1.47

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.7: The fit of the global DLM model: Order ∼ ∆DL + (1 | Adj).

Global DLM model

The model which tests the global cumulative DLM principle has only one independent
variable ∆DL which subsumes all the relative lengths of the dependencies in the
noun phrase. The model fit on our data is given in Table 4.7.

Despite the fact that ∆DL has positive effect for all five languages, it is a small effect
which reaches significance only for Italian, Spanish and Portuguese. This result
suggests that adjective variation in Romance languages respects only to some extent
the principle of minimisation of total dependency length in a sentence. There could
be two main reasons for this result: the DLM does not readily apply for the case of
adjective variation, or that the DLM effects of the dependencies do not interact in a
simple way as assumed by the global model. In fact, the global model does not tell
us which dependencies are minimised since their individual effects are confounded
together. The models we present next are designed to investigate and test the DLM
effects individually.
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Model with all individual parameters

The most potentially powerful model we test is the model which includes the four
parameters Alpha, Gamma, PositionX, PresenceY capturing the variation in the lengths
of three dependencies N–Adj, N–Y and X–N which we identified in the previous
section. In principle, a more powerful model would include also the interactions
between these four parameters. However, such model has many more degrees of
freedom and the algorithm for estimation of these parameters could not converge on
our data. We present therefore the fit of the model only with the linear combination
of the four parameters (Table 4.8).

First of all, note that this model improves considerably the log-likelihood of the data
compared to the previous global DLM model, including for Italian, Spanish and
Portuguese where the DLM effect was significant. The testing of statistical significance
of these values between these two models is problematic since they are not nested.
We can compare instead the values of Akaike Information Criterion (AIC) which take
into account the log-likelihood and the number of parameters in the model. Note that
our second model has three more parameters and is theoretically more powerful than
the first one. Despite this, the values of AIC indicate clearly that the second model
generalises better the data than the first one (smaller AIC values indicate better fit, f.
e. stands for fixed effects):

AIC Italian Spanish Catalan French Portuguese

Global model (1 f. e.) 5448.84 7195.09 5508.88 3634.62 2477.58
Complete model (4 f. e.) 5190.02 6792.85 5217.24 3523.97 2334.14
∆ AIC 258.82 403.24 291.64 110.65 143.44

We can conclude, therefore, that adjective-noun variation exhibits DLM effects but the
various dependencies are not minimised to the same extent as assumed by the simple
global DLM model. We turn now to the interpretation of the values of coefficients
estimated for our four parameters in Table 4.8.
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Italian Spanish Catalan French Portuguese

(Intercept) 0.13 0.33∗∗ 0.31∗ −0.13 −0.02

(0.13) (0.12) (0.14) (0.17) (0.19)

Alpha 0.89∗∗∗ 0.56∗∗∗ 0.85∗∗∗ 0.52∗∗∗ 1.02∗∗∗

(0.12) (0.07) (0.10) (0.10) (0.16)

Gamma 0.10∗∗∗ 0.06∗∗∗ 0.01 0.06∗ 0.10∗∗

(0.02) (0.02) (0.02) (0.03) (0.03)

PresenceY=True −0.96∗∗∗ −1.16∗∗∗ −1.05∗∗∗ −0.85∗∗∗ −1.02∗∗∗

(0.08) (0.07) (0.08) (0.10) (0.12)

PositionX=Left 0.16 0.09 0.13 0.07 0.21

(0.10) (0.09) (0.10) (0.11) (0.15)

Log Likelihood -2589.01 -3390.43 -2602.62 -1755.98 -1161.07

Num. obs. 5369 7739 5987 4998 2760

Num. groups: Adj 329 414 250 181 162

Var: Adj (Intercept) 1.54 1.66 1.74 2.43 1.65

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.8: The model with all individual parameters specified as: Order ∼ α + γ +
PresenceY + PositionX + (1 | Adj).
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Composition of the adjective phrase

Contrary to the predictions in Section 4.2.1 (page 130) for the noun-adjective depen-
dency, the factor Alpha does not have the prenominal effect, instead, it has a strong
postnominal effect β ∈ [0.52, 1.02], statistically significant for all languages (p < 0.001).
As we anticipated, this result is in line with the previous corpus-based observations
for French (Thuilier, 2012) and extends them for other Romance languages. The other
factor related to the composition of the adjective phrase, Gamma, favors postnominal
placement as predicted both by the minimisation of the adjective-noun dependency
and the previous work describing the heavy adjective shift. Note that the effect is
rather small (and not significant for Catalan) which can be due to the fact that there
is an interaction between Alpha and Gamma parameters and other dependencies N–Y
and X–N.

In fact, if we consider a subset of the data where there are no right dependents of the
noun (PresenceY=False, around 50% of the overall data), the effect of the Gamma factor
increases substantially reaching values in the range 0.72–0.99 (Table 4.913). These
results for Gamma are now in agreement with the predictions for simple noun phrases
(Table 4.2, page 133). The change in the values of Alpha and Gamma show that there
is an interaction between these parameters and the presence of a right dependent
which is also expected if N–Y dependency is minimised. Note, however, that this
situation is also consistent with a principle of heavy adjective postposition sensitive
to the overall size of the adjective phrase Alpha + Gamma plus the minimisation of the
N–Y dependency which depends too on the total adjective phrase length.

To verify whether the factors Alpha and Gamma can be subsumed under one variable
LengthAP without loss of generality, we fit the model with this one factor on the
same data (only simple noun phrases). As expected, LengthAP favors significantly
postposition (p < 0.001 for all languages). The comparison of AIC values of the two
models gives a slight preference for the model with the two parameters:

13We do not include the PositionX factor since it was not significant in the overall model.
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Italian Spanish Catalan French Portuguese

(Intercept) 0.34∗ 0.62∗∗∗ 0.86∗∗∗ −0.01 0.43∗

(0.14) (0.14) (0.20) (0.22) (0.21)

Alpha 2.76∗∗∗ 2.36∗∗∗ 3.57∗∗∗ 1.91∗∗∗ 2.41∗∗∗

(0.35) (0.27) (0.43) (0.29) (0.43)

Gamma 0.99∗∗∗ 0.86∗∗∗ 0.98∗∗∗ 0.99∗∗∗ 0.72∗∗∗

(0.13) (0.12) (0.18) (0.17) (0.13)

Log Likelihood -1178.63 -1426.42 -927.60 -760.50 -517.08

Num. obs. 2767 3469 2587 2253 1258

Num. groups: Adj 299 377 231 166 141

Var: Adj (Intercept) 3.31 3.71 4.77 5.21 3.15

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.9: The analysis of the Alpha and Gamma parameters in the noun phrases with-
out any right dependents: Order ∼ α + γ + (1 | Adj).
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AIC Italian Spanish Catalan French Portuguese

Alpha and Gamma 2365 2860 1863 1529 1042
LengthAP 2390 2890 1897 1536 1059
∆ AIC 25 30 36 6 16

The differences in AIC values are, nevertheless, rather small to conclude with certainty
that there exists any distinct effect of the presence of left versus right dependents
of the adjective in terms of dependency length minimisation. To summarise, the
overall tendency for adjectival postnominal placement for both Alpha and Gamma

suggests that the adjective-noun dependency is not necessarily minimised, especially
when there is an interaction between these factors and the minimisation of the N–Y
dependency. The differences in the strength of the effects between Alpha and Gamma

should be most probably attributed to lexical factors, such as a type of adverb, as
proposed by Abeillé and Godard (2000). Our syntactic factors are inevitably too
coarse to capture this part of the variation.

Presence of a right dependent Y

As can be seen from Table 4.8, the presence of a right dependent Y is a strong
predictor for prenominal order in adjective variation (β ∈ [−1.16,−0.85], p < 0.001
for all languages). This result confirms clearly that the N–Y dependency is minimised.
The preference for more prenominal order in the presence of postnominal dependents
has already been observed for French (Forsgren, 1978; Thuilier, 2012). Forsgren (1978)
motivates it by the overall “balance” considerations for the organisation of the noun
phrase, i.e., if there are two dependents of the noun they will create a more balanced
structure if they appear on the two sides of the noun. Importantly, our account of
this effect is, instead, deductive and not simply descriptive of the data observed. We
have formally predicted the observed pattern as a consequence of a general DLM
principle. An additional contribution of our work is that we demonstrate that the
N–Y minimisation effects is a general effect observed in the other four Romance
languages in addition to French.
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Figure 4.6: The percentage of postnominal order of adjectives in noun phrases with
only simple adjectives in two conditions: when there is a right dependent
Y (green bars) and when there is no right dependent (red bars).

Interestingly, we find that the effect also persists when the adjective phrase is a simple
adjective and, as a result, N–Y dependency can be at most of length 2. The effect
can be observed clearly at the level of average adjective placement (without taking
into account the individual lexical preferences of the adjectives) in Figure 4.6.14 For
all languages, when there is no right dependent Y (red bars) we observe a higher
percentage of postnominal order than when there is a right dependent (green bars).
This result is surprising since it suggests that there is a strong minimisation effect for
very short dependencies. It is unlikely that this effect can be attributed to processing
constraints such as limited short-term memory. To investigate the mechanisms behind
the DLM effects in this construction, we conduct a follow-up corpus-based analysis
on the distribution of simple adjectives in N + Y noun phrases in Italian presented in
Section 4.3.

14The effect of PresenceY is also statistically significant in the corresponding mixed-effect analysis
with adjectives as random effects.
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Figure 4.7: The percentage of postnominal adjectives in two conditions: X is on the
right of the noun (red bars) and when X is on the left of the noun (green
bars).

Position of NP parent X

The estimation of the complete model in Table 4.8 says that while the PositionX=Left
factor is estimated as favoring postnominal placement this result is not statistically
significant for any language. Despite this, the overall average distribution of adjectives
for the two conditions (when X=Right and X=Left) shows the tendency consistent
with the DLM predictions (Figure 4.7). For all languages, when X is on the left of
N (green bars) we observe a higher percentage of postnominal order than when
X is on the right of N (red bars), exactly as predicted by the minimisation of X–N
dependency.

One reason why we observe the predicted tendency in the overall distribution but
do not get the significant effect for the X–N factor in our statistical model could
be the interaction between this and the other factors. As we have seen, both Alpha

and Gamma push towards more postnominal order. In case of X=Left, this effect
corresponds exactly to the minimisation of the X–N dependency. In case of X=Right,
there is a strong prenominal effect of the N–Y dependency which can overlap with
the prenominal effect from the X–N factor. An additional issue is that the X=Right
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cases are much less frequent than X=Left cases (20% vs 80% of cases). To see whether
there is an independent effect of X–N dependency we can analyse the subset of noun
phrases without any right dependents and only containing simple adjectives. Figure
4.8 is very similar to Figure 4.7 and indicates that the previously observed effect is
equally present when only one factor — X–N dependency — is active. Note that
the effect of X–N binary factor is significant in a simple logistic regression (without
random effects).15 However, similarly to the results in Table 4.8, the same effect is
no longer significant when random adjective effects are taken into account. The
difference in the results between the models with and without random effects can
arise from the skewed distribution of adjectival types between the two conditions
(X=Left and X=Right). In other words, the adjectives with typically prenominal
placement tend to appear more in the noun phrases situated to the left of their parent
X, while the adjectives with typically postnominal placement tend to appear more
in the noun phrases situated to the right of their parent X. Note that this bias does
not seem to be an artifact of the corpus sample since, rather surprisingly, it arises
in all five languages in our sample. There could be many potential explanations for
this bias that are not directly related to DLM principle (e.g., the information status
of the noun phrases with respect to their position in the sentence). As we discuss in
the following, these data are nevertheless also consistent with the minimisation of
X–N dependency, although not at the level of language variation, but at the level of
grammar.

Discussion

Our analysis of the factors Alpha and Gamma has concluded that there is no clear
minimisation effect for the adjective-noun dependency when α > 0. Overall, it seems
that the heavy adjective shift generalisation should be preferred over the adjective-
noun dependency minimisation. There is, however, additional evidence for the
adjective-noun dependency minimisation which comes from the fact that the order N
YP Adj is very infrequent compared to the N Adj YP order. The heavy adjective shift
principle cannot explain this asymmetry because both orders are postnominal. The

15The corresponding β values for the five languages, in their order in Table 4.8: 0.58∗∗∗, 0.34∗∗ , 0.39∗∗∗,
0.44∗∗∗, 0.63∗∗∗
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Figure 4.8: The percentage of postnominal adjectives for two positions of X: right (red
bars) and left (green bars). Only noun phrases with simple adjectives and
without other dependents Y are included.

dependency length minimisation of the noun-adjective dependency would clearly
favor the order N Adj YP where the adjective phrase and the noun are adjacent. The
phrase YP is typically longer than the phrase AdjP, therefore the order N AdjP YP
will be preferred over the order N YP AdjP if we assume a simple DLM treatment
parallel to the case of postverbal dependents V {XP, YP}.

In light of the evidence for the minimisation of the X–N dependency, we can address
the postnominal preference with α > 0, problematic for the DLM account, along the
following lines. As we noted before, the position of X is predominantly on the left of
the noun (80%). In this position, the minimisation of X–N implies the postnominal
order favored by both Alpha and Gamma. We can speculate that this postnominal
preference, occuring in the majority of the noun phrases, has been spread to the
minority context where X appears on the right of the noun. In other words, we
can assume that the DLM effect applies not at the level of variation — for each
individual noun phrase and its dependency lengths — but at the level of grammar,
similarly to the constructions analysed in Temperley (2007). Hawkins (1994, 2004)
has claimed extensively that the DLM effects observed in the corpus data for inter-
language variation are parallel to the tendencies observed at the level of grammars in
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a typological sample. Similarly, the bias in the distribution of adjective types with
respect to the position of X can be seen as a manifestation of a DLM principle at a
level of abstraction higher than individual noun phrases.

At the moment, we do not distinguish between the cases of dependency length
minimisation at the level of variation and at the level of grammar when we analyse
corpus data automatically. The interaction between DLM effects and the syntax in
general is an important topic for future research.

4.2.4 Summary

We can summarise the results of our statistical analyses as follows. The presence of
a right nominal dependent Y is a highly significant effect, favoring consistently the
prenominal placement of the adjectival modifier compared to its default position when
Y is not present. Heavy adjective phrases containing pre-adjectival and post-adjectival
dependents both favor postnominal placement compared to simple adjectives. The
position of the parent of the noun phrase X has a global effect on the distribution
of the adjectives favoring more prenominal adjectives when X is on the right of the
noun and more postnominal adjectives in the opposite position.

Overall, we observe a complex case of variation with three dependencies that are
minimised in the interaction with each other. These interactions are hard to analyse
statistically in one model since the predictor variables are highly correlated. A simple
global DLM model computing the sum of all dependencies in the sentence cannot
capture these interactions.

4.3 Interaction of DLM and lexico-semantic factors in

adjective variation in Italian

In this section, we take a closer look at the minimisation of N–Y dependency which,
as we have shown above, has a consistent prenominal effect across all five Romance
languages under investigation.
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First, this preference has not attracted a lot of attention in the previous literature. In
empirical work on French, Forsgren (1978) has noted the tendency for more balanced
noun phrases which includes the preference for a more prenominal adjectival position
when some other dependents are present in the noun phrase (confirmed later on
a larger corpus by Thuilier (2012)). In the theoretical literature, however, such
preference has not been mentioned and the N Adj YP order is considered, contrary
to the observational facts, to be the default one (Laenzlinger, 2005).

Secondly, the minimisation of N–Y dependency occurs even when the adjective
phrase consists of only one word (Figure 4.6). This is a surprising result given that
the dependency which is minimised is very short. Since a processing explanation
based on the memory storage constraints is improbable we would like to study the
N–Y minimisation in more detail to understand the nature of the observed DLM
effect. We focus on the adjective alternation in Italian and collect the statistics for
adjective distribution subcategorised by the type of the right dependent YP. In fact,
the YP notation we used in our analysis subsumes many types of syntactic phrases
that can have different lexical and syntactic relation with the head noun.

We rely on the dependency annotation to extract additional information about the
noun phrase such as the first word of the YP phrase and the head word of the YP
phrase. We can use the first word of the YP phrase to subcategorise it into the
phrase types. In our analysis, we retain only the most frequent types of the phrases:
prepositional phrases (starting with a preposition) and relative clauses. We combine
relative clauses which start with a relative pronoun (che) and reduced relative clauses
without it. We identify the latter clauses as the dependents YP whose head is a
verb (part-of-speech tag VERB) and which do not start with a preposition. Italian
prepositions merge with definite articles into complex determiners such as del = di + il,
al = a + il. We categorise these and other contracted variants of a preposition (e.g., d’,
ad) under the same PP category labelled using the default form of the preposition.

Table 4.10 presents the percentages of prenominal, postnominal and post-YP place-
ment of adjectives broken down for the most frequent types of PP phrases and relative
clauses. For comparison, we also give the percentage of postnominal and prenominal
placement when there are no right dependents in the noun phrase (first line of the
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Type of YP # Adj N % N Adj % N YP Adj %

no YP 2767 46.7 53.3 —

PP

di 1161 66.8 28.9 4.3

a 103 69.9 28.2 1.9

in 96 63.5 32.3 4.2

other 180 52.8 44.4 2.8

RelC 264 64.4 35.2 0.4

Table 4.10: The percentages of Adj N, N Adj and N YP Adj order broken down for
the most frequent types of YP phrases in Italian.

table). We can observe that there is a substantial bias towards more prenominal
orders for all types of PP phrases and relative clauses. We confirm this observation
statistically by fitting a familiar mixed effect model with the type of YP (including
the absence of YP) as fixed effect and the adjective lemmas as random effects (Ta-
ble 4.11). The fitted coefficients show that all the YP phrases induce a prenominal
preference but to a different extent. In particular, the prepositional phrases with di,
the most common preposition in Italian, show the strongest tendency for preposing
the adjective (β = −1.49). Relative clauses, on the other hand, show the weakest
prenominal preference (β = −0.61). Overall the prepositional phrases seem to have
a stronger preference for adjacency with the noun than relative clauses. Our result
mirrors traditional grammatical analyses of the noun phrase where a noun and a
prepositional phrase are placed closer in the syntactic structure than a noun and its
relative clause (e.g., nouns can have selectional preferences for the preposition). The
distributional data of adjective placement gives a new perspective on this relation.

The fact that prenominal placement is strongly favored by di-phrases warrants some
attention. There are many noun phrases of N-di-N type which are analysed as lexical
compounds and which we treat in the same way as other types of phrases in our
analysis above. These include the expressions such as casa di riposo (elderly home),
colpo di fulmine (love at the first sight), punto di vista (point of view) and others. This
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YP type Intercept PP a PP di PP in PP other RelC

β 0.77∗∗∗ −1.42∗∗∗ −1.49∗∗∗ −1.01∗∗∗ −0.77∗∗∗ −0.61∗∗∗

(0.10) (0.28) (0.11) (0.29) (0.20) (0.18)

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.11: The statistical analysis of the effect of different YP phrases: Order ∼
YP type + (1 | Adj).

suggests that the bias observed can be due to a presence of some lexical constraints
in addition to (or in substitution of) a more general DLM effect. To verify this lexical
hypothesis we futher analyse the distribution of adjectives in di-phrases breaking
them down into three categories: N-di-N phrases with a bare common noun following
the preposition (libro di vetta, mountain-top book), N-di-N phrases with a proper noun
(libro di Maria, book of Maria) and N-di-DP phrases where the preposition is followed
by an article signaling a noun phrase (libro della nonna, book of the grandmother). The
first type of noun phrases can be considered as fixed lexical units and an adjective is
generally not allowed to intervene: *libro nuovo di vetta.16 In the other types of noun
phrases this position is acceptable: libro nuovo di Maria, libro nuovo della nonna.

Table 4.12 gives the percentages of prenominal and postnominal adjectives when
a right dependent of the noun is of one of the three types of di-phrases. As we
hypothesised, there is a great number of prenominal adjectives in N-di-N phrases
(74.7%) which must be due to their lexical compound status. Interestingly, the
preference induced by other types of di-phrases remains strongly prenominal (it is
statistically significant in a mixed-effect model, similar to the one presented in Table
4.11).

We can conclude that there is a strong lexical component in the minimisation effects
that we have observed for N–Y dependency. It is, however, not purely lexical as
manifested by the results for non-compound di-phrases and for the relative clauses.
Moreover, if we assume that the adjective cannot intervene between the noun and its

16Note that such seemingly categorical constraints can be also sometimes violated, e.g.: quel punto
particolareAdj di vista.
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4.4 Conclusions and future directions

Type of di-N phrase Example # Adj N N Adj N YP Adj

No YP 2767 46.7 53.3 —

Bare noun libro di vetta 364 74.7 17.6 7.7

Det + N libro della nonna 655 62.4 34.7 2.9

Proper noun libro di Maria 107 67.3 31.8 0.9

Table 4.12: The percentages of adjective placement when YP dependent is a preposi-
tional phrase with preposition di introducing a bare noun, a noun phrase
(with a determiner) or a proper noun.

dependent Y for lexical reasons, that is, if N + YP form a lexical unit, then the order
N YP Adj should be much more frequent than it is in the observed data (Tables 4.10,
4.12). There is an increase in N YP Adj order for N-di-N phrases (7.7%), however, it is
a very small number compared to the default order of simple adjective plus noun
phrases (53.3%). Interactions between lexical and syntactic properties behind the
dependency length minimisation effects is an exciting topic for future research.

4.4 Conclusions and future directions

In this chapter, we have investigated the adjective-noun order variation in sentential
context in Romance languages. To our knowledge, this is the first theoretical and
empirical analysis of this construction in connection to the dependency length min-
imisation principles. In addition, as far as we know, this is the first cross-linguistic
large-scale quantitative study of adjective variation across several Romance languages.
Overall, we found that there is a significant influence of syntactic factors such as
the lengths of dependencies on the adjective placement in Romance languages. The
effects are very consistent across all five languages that we have studied: Italian,
Spanish, Catalan, French and Portuguese.

Interestingly, we found that even very short dependencies such as the dependency
between the noun and its dependent Y and the dependency between the noun and
its head X are minimised to some extent. This is surprising given that DLM effects
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Chapter 4 DLM effects in adjective-noun order variation

are typically attributed to memory-related constraints on language processing. Note,
however, that the effects we found cannot be purely lexical as we argued in Section 4.3.
Alternatively, such short-range effects might be attributed to categorical, grammatical
constraints, such as the fact that a complement should appear closer to the verb than
an adjunct or that the adjective should appear closer to the noun than a relative clause
(e.g., the order N RelC Adj is not possible). Our view is that there is a continuum
of DLM effects which arise from a combination and interaction of various lexical,
syntactical and processing constraints.

The approach we pursued here — adopting the most general DLM principle and
relying on the dependency treebanks for syntactic analysis of sentences — proved
to be a good way to approach a complex case of variation with many potential
heterogeneous DLM effects. In future work, the application of this approach to the
constructions that were not studied before will likely reveal related and new types of
DLM effects. The first candidate constructions for an extended investigation could
be the adjective and participle variation in Slavic languages, where, interestingly, an
adjective or a participle with a complement can be found prenominally (seemingly vi-
olating the heavy adjective principle). Beyond the adjective variation, the construction
of a related type is the alternation in the order of adverb and verb (Jackendoff, 1972;
Alexiadou, 1997; Abeillé and Godard, 2003). Adverbs, e.g., in English or French, can
appear in both pre-head and post-head position, similarly to adjectives in Romance,
and the dependents of the verb, such as its object or indirect object, show a varying
degree of adjacency effects similarly to the noun and its dependents (complements,
PPs, relative clauses). The analyses of such constructions should lead to develop a
more informed and accurate general DLM principle which could unify the effects of
lengths of dependencies with lexical relations and which could explain explicitly the
interaction of various dependencies.

The question of lexically-conditioned DLM effects is tighly connected with the as-
sumptions on the underlying syntactic representation. As we argued in this chapter,
an important advantage in using a pre-defined syntactic annotation is the generalisa-
tion of DLM effects across languages and constructions. We assumed, in fact, that
word order is a (sophisticated) mapping between the flat hierarchical structures such
as dependency trees to the linear arrangements of words. DLM effects are part of
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the linearisation mechanism, conditioned on the underlying representation, but are
not in any way coded in the input structure. Alternatively, richer hierarchical repre-
sentations could contain more information for DLM encoding than flat dependency
trees. For example, the difference in adjacency between the noun and its modifiers
can be explicitly given by the phrase structure [ [N Adj] PP ] RelC ]. If we assumed
this syntactic analysis we could readily explain the preference for N Adj PP order
versus N PP Adj order. On the other hand, this structure does not explain the fact
that Adj N PP order is more frequent compared to Adj N order (when there is no
PP). The question that arises naturally is whether we can induce the word order
preferences that can be sometimes coded by deep(er) hierarchical syntactic structures
from flat representations such as dependency trees. To answer this question we need
a complete model of linearisation. The next chapter presents the first steps towards
developing such model.
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Chapter 5

A computational model of sentence
linearisation and word order variation

The previous chapters presented two independent methods to analyse word order
variation and DLM effects at two different levels of linguistic abstraction. In Chapter
3, we quantified the degree of DLM and word order variation at the language level.
In Chapter 4, we studied in detail one particular word order variation construction
and analysed its distribution independently of all other constructions in the language.
Both studies leveraged dependency treebank resources to do the analysis but the
computational methods employed were different: in Chapter 3, we quantified word
order properties of a treebank as a whole based on high-level word order statistics and,
in Chapter 4, we used a mixed-effect model to analyse and predict adjective placement
for each sentence in a treebank. These two types of word order distributions at the two
levels of representation — language level and construction level — are intrinsically
related but have been analysed only separately in most previous work. In this chapter,
we argue that they can be modelled and analysed jointly as part of a single sentence
linearisation process.

The fundamental linguistic connection between word order distributions observed at
the language level and at the construction level is that they are both generated by the
same production system. During a speech act, an utterance is produced according to
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some online processing mechanism that uses the grammatical knowledge of a speaker.
The ensemble of utterances produced by speakers necessarily reflects properties and
biases of the production mechanism and the grammar. These properties should be
observed in language-level word order patterns and in preferences between word
order options of one construction. If a pressure to minimise dependencies is a
processing constraint influencing word order placement during production, it can
potentially explain DLM effects observed both at the level of language and at the
level of individual constructions and give them a unifying account.

Previous quantitative syntactic research on word order variation abstracts away from
the properties and constraints of the language production mechanism. A typical
analysis involves comparing two grammatical word orders and identifying and
quantifying the effect of various properties on the preferences between the two
(Gries, 2003; Bresnan et al., 2007; Thuilier et al., 2012) — this is our approach in
Chapter 4 to study adjective alternation. One of the implicit assumptions behind
such analyses is that the two alternative orders are fully constructed and available for
comparison as complete sentences or phrases. This assumption is unrealistic from the
production perspective: we do not plan complete utterances in advance, rather, they
are constructed online as we speak. If memory retrieval mechanisms affect the choice
of word order, we need an online model of word order production to incorporate
them faithfully. In comprehension, memory constraints have been incorporated
explicitly into a number of computational models including incremental probabilistic
parsers (Vasishth and Lewis, 2006; Demberg and Keller, 2009a; Levy et al., 2009; Wu
et al., 2010; Van Schijndel et al., 2013). For instance, difficulties in sentence processing,
measured in self-paced reading time or eye-tracking experiments, were shown to
emerge in a syntactic parser with explicit memory constraints (Demberg and Keller,
2009b). To our knowledge, there are no comparable computational psycholinguistic
models developed to study word order and DLM effects in language production.

Language production is typically seen as a hierarchical incremental process which
maps a mentally constructed “message” onto lexical items, their functional roles, a
syntactic structure and, finally, a phonological realisation, that is, an utterance (Levelt,
1989; Bock and Levelt, 1994). Modelling computationally a complete language pro-
duction system characterised by complex interactions and many levels of processing
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is a challenging task. There exist several implementations of the complete language
production system using the connectionist architecture (Dell et al., 1999; Chang, 2002;
Chang et al., 2006). Due to computational limitations, these models are designed
for simplified hand-crafted languages with small lexicons and very limited syntactic
grammars including, e.g., only sentences with one clause. As such, these models
cannot be used for large-scale analysis of naturally occurring word order variation
data. Moreover, they are designed for one language (English) and cannot be applied
cross-linguistically.

In this work, we do not attempt to model the mechanism of language production in
its entirety. Instead, we focus only on the level of processing relevant to word order.
We assume a serial architecture where, at the moment of uttering a sentence, the
underlying syntactic representation has already been generated by a speaker, and
we are interested in the process of producing a word order given the underlying
syntactic structure, a process known as sentence linearisation.1 In the NLP literature,
models of sentence linearisation have been previously developed as part of natural
language generation (NLG) systems. Since these systems are devised for practical
NLP applications, they are robust and language independent but, at the same time,
they do not bear directly on the study of human language production. In this chapter,
we propose the first statistical system which is explicitly designed to be a plausible
psycholinguistic model of sentence linearisation. Developing this system is a first
step towards studying word order and DLM effects at several linguistic levels as part
of one language production process.

This chapter is organised as follows. We start by reviewing the relevant language
production literature and motivating the cognitive requirements for a sentence lin-
earisation system. These include online, word-by-word processing and a generative
probabilistic architecture (Section 5.1). Next, we present the architecture of our system
which generates one word at a time based on a score function which combines the
probability of the subtree uttered so far and a future score for generating the remain-
ing words (Section 5.2). To assess the limits of the incremental greedy search, we
evaluate our system on four languages and show that it can reach good performance,

1Sentence linearisation can be seen as a reverse of sentence processing, where the input is the words
and their order and the output is the syntactic structure.
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Chapter 5 A computational model of sentence linearisation and word order variation

compared to a state-of-the-art statistical linearisation system, by predicting only
several words at each step (Section 5.3). In the last part of this chapter, we show how
our basic linearisation system can be extended to model explicitly the choice between
two alternating orders using a re-ranking function (Section 5.4). This mechanism also
allows us to introduce an efficient way to condition online word order choices on
dependency length factors. In this way, we integrate word order variation preferences
and DLM pressures into a more general word order production system.

5.1 Background and motivation

This section motivates several cognitive constraints on the architecture of a sentence
linearisation system imposed by experimental evidence from language production.
We also give an overview of previously proposed statistical models of language
production and sentence linearisation.

5.1.1 Language production and cognitive basis for a sentence

linearisation system

A dominant view in the language production literature is that the process of pro-
duction consists of a series of stages corresponding to specific levels of linguistic
representation (Fromkin, 1971; Garrett, 1988; Bock and Levelt, 1994). These serial
models assume two main separate production processes: grammatical encoding and
phonological encoding. We are interested here in the grammatical encoding which
comprises the selection of lexical items and construction of the syntactic structure.
The input to grammatical encoding module is assumed to be some form of a mental
message — a representation of meaning formed by a speaker. For example, when a
person is given a picture, she observes it and creates a mental message consisting of
the concepts depicted in the picture. She does not necessarily choose at this point
concrete lexical items for these concepts. The grammatical encoding is separated
further into two modules: functional and positional (Garrett, 1988; Bock and Levelt,
1994). Functional processing involves lexical selection (e.g., the choice of lemmas
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for the concepts) and the assignment of grammatical roles for the elements of the
main event frame (e.g., a subject or an object). Positional processing consists in
linearising the lexical items given the functional structure and enriching them with
correct grammatical inflection. We will also adopt a strong assumption that the
processing levels of language production are executed in a pipeline (Bock and Levelt,
1994; Vigliocco and Nicol, 1998). In other words, processing at each level is influenced
only by the information provided by the level directly above it.

The division between functional and positional levels of processing implies that word
order is selected after the assignment of grammatical structure. In Chapter 2, we
have motivated a similar view on separating hierarchical syntactic representation and
linear precedence constraints from a theoretical syntactic perspective. The evidence
for this distinction in production comes from the exchange errors which were shown
to happen with structurally-related but not necessarily linearly adjacent phrases
(Garrett, 1980). Moreover, priming experiments showed that grammatical functions
and linear orders induce separate priming effects (Bock et al., 1992).

In this work, we are interested in modelling the linearisation part of the positional
processing module of language production. Given the assumptions outlined above,
this corresponds to modelling the mapping of the underlying syntactic tree structure
onto its linearisation. Following NLG notation, we will refer to this task in the
language production pipeline as sentence linearisation.

Natural language production and its processing modules exhibit some properties
which should be reflected in our model of sentence linearisation. Production is
characterised, in particular, by simultaneous planning and execution of utterances
(Ferreira and Swets, 2002; MacDonald, 2013). Speakers do not plan their complete
utterances in advance: if this were the case, then we would expect long pauses
between utterances (Ferreira, 1991); instead, it is well documented that disfluencies,
lengthening of words and interjections occur mid-utterance in an attempt to gain extra
planning time (Fox Tree and Clark, 1997). However, there is also clear evidence that
speakers plan more than one word at a time and that sometimes language production
requires the retrieval of non-local syntactic context, e.g., the retrieval of the postverbal
object in English before the utterance is started (Ferreira and Swets, 2002; Meyer,
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1996). In the language production literature, this general property of the production
system to interleave planning and execution is referred to as incrementality.

The incrementality of serial language production means that generation at all levels of
representation (functional, positional, phonological) proceeds online and in parallel.
The formulation of the sentence linearisation task which is adopted in NLG work
simplifies this picture: the input syntactic representation driving the choice of word
order is assumed to be available in its entirety before the linearisation starts. The
model we propose does not make this strong input assumption: the linearisation
proceeds recursively by subtrees, or word order domains (Reape, 1994), formed by
the head and its immediate children; we assume that these are the only elements
accessible during each word ordering decision. For example, to start a sentence,
only the head verb and its immediate dependents such as the subject head word
and the object head word must be available. This corresponds to the assumption
that the overall predicate structure of the sentence has been decided before speaking
begins, which is a much weaker assumption than the assumption that the whole
syntactic structure is fixed beforehand. The syntactically-local linearisation process
outlined above is further supported by the evidence from Bock and Cutting (1992)
who found that noun phrases in the embedded clauses do not induce agreement
errors in the main clause. This suggests that the main clause and the embedded
clauses are produced, to some extent, independently.

In the context of computational modeling of sentence linearisation, we will also use
the term incrementality to refer to the ability of the system to generate a sentence as
an online process, left-to-right and word-by-word. This notion is similar to the notion
of incrementality in sentence processing. Analogously to processing, the decision
about generating the next word is conditioned on the previously generated words.
An important difference between linearisation and parsing mechanisms is that the
former has access to the underlying syntactic structure. The basic version of our
linearisation model is a purely incremental model that generates one word at a time.
It is the least cognitively demanding model since only the choice of one word is
entertained at each point in time, and a small local space of possible continuations is
explored. We also compare this minimal model to a more powerful system which
produces several words at a time. At each step, it explores a larger space of possible
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continuations and therefore requires more processing resources than the simpler
word-by-word system.

Finally, speakers are known to have probabilistic syntactic and lexical knowledge
(Manning, 2003; Bresnan et al., 2007) and they employ this knowledge during syntactic
processing and production (Stallings et al., 1998; Hale, 2001; Jurafsky, 2003). Moreover,
production and comprehension (including linearisation and syntactic processing)
are tightly interleaved: during comprehension, listeners make predictions about
upcoming structures which are claimed to originate from a simultaneous production
process mirroring that of the interlocutor (Pickering and Garrod, 2007, 2013). The
probabilistic predictions speakers make should, therefore, be a part of the production
system. To model this aspect of production, we condition the choice of the next
generated word in our system on the probabilities of a generative dependency
grammar learned from a treebank.

5.1.2 Computational models of language production and sentence

linearisation

The most developed model of the complete language production process — mapping a
message to the utterance — is the connectionist dual-path model (Chang, 2002; Chang
et al., 2006; Chang, 2009). It is characterised by a recurrent neural network predicting
the next word given the previous word (sequencing system) and an additional “path”
encoding the input message and the relation between concepts, functional roles and
lexemes. The syntax is not available as input for this model, only a set of concepts
defining the semantic message of the sentence. Instead, syntactic information is
assumed to be learned implicitly by the recurrent neural network. One of the main
difficulty for these models lies in encoding semantic and lexical information. For
example, the neural network encodes each of the possible lexical units (verbs, nouns,
adjectives) as a distinct neuron of the lexical layer. This means that the lexicon should
be pre-coded before the training of the model which is unrealistic for a natural
language. Consequently, connectionist production models are typically trained on
a simple lexicon of only several hundreds of units. By a way of simulation, the
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h

. . . w−2 w−1 w1 w2 . . .

Figure 5.1: A subtree headed by h which is linearised by the generative process. The
subtrees headed by each wi are linearised recursively.

dual-path model was applied on selected cases of word order alternation, including
the modelling of heavy-NP shift in English and Japanese (Chang, 2009). The results
suggest that heavy-NP shift can originate implicitly through the general learning
biases of the computational model as opposed to independent DLM effects. However,
the limited applicability of the dual-path model makes it unsuitable for studying
word order variability and DLM effects at large scale and across different types of
constructions and languages.

The sentence linearisation part of the language production process has been modelled
more extensively in the statistical NLG literature (Filippova and Strube, 2009; Bohnet
et al., 2010; Wang and Zhang, 2012; Bohnet et al., 2012; Liu et al., 2015; Puduppully
et al., 2016). The shared task on sentence linearisation (Belz et al., 2011), referred to as
surface realisation, aimed to provide a standardised reliable comparison of systems
and proposed an evaluation on the same input data based on dependency annotation.
Among the sentence linearisation models that have been proposed, the probabilistic
generative system of Futrell and Gibson (2015) and the transition-based ZGen (Liu
et al., 2015; Puduppully et al., 2016) are the ones most directly related to our work.

Futrell and Gibson (2015) applied top-down generative dependency parsing models
(first introduced by Eisner (1996) and subsequent work) to the sentence linearisation
task. The model of Eisner (Model C in his paper), is a simple generative model
which defines how immediate dependents are generated conditioned on the head
h (Figure 5.1). The children on the left and on the right of the head are generated
independently, based on a head-outward Markov process. In other words, the i-
th child wi (w−i) is generated conditioned on the previously generated child wi−1

(w−i+1) with the probability pR(wi | h, wi−1) for the children on the right of the head
and the probability pL(w−i | h, w−i+1) for the children on the left of the head. The
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probability of the subtree formed by the head and its immediate children linearised as
w−l . . . w−1hw1 . . . wr equals therefore ∏r

i=1 pR(wi | h, wi−1) ·∏l
i=1 pL(w−i | h, w−i+1).

The overall probability of the tree is obtained recursively by multiplying probabilities
for each subtree, starting from the root node. Given this generative model one
can compute the probability of a particular order w−l . . . w−1hw1 . . . wr given the
unordered set of children wi under the head h. Futrell and Gibson (2015) propose
a dynamic algorithm to compute these values efficiently for all possible orderings.
They evaluate various versions of the generative dependency model with different
smoothing methods for probability estimation and on a number of languages. They
also test an extended Eisner model which includes larger conditioning context of
n-grams of size 3, i.e., pR(wi | h, wi−1wi−2). The authors report human evaluation
results: acceptabilty of up to 3.6/5 (original sentences have average acceptability of
4.5/5) and proportion of reordered sentence judged to have the same meaning as the
original English sentence up to 85%. Unfortunately, they do not conduct any direct
comparisons of their models with the previously proposed linearisation systems and
these numbers are hard to place in context. The BLEU score on their English treebank
reported is only 57.7 which is substantially below the best results in the Surface
Realisation shared task Belz et al. (2011), reaching 89 BLEU, though these numbers
are not directly comparable.

Importantly, the generative model used in Futrell and Gibson (2015), as well as
other previously proposed top-down statistical linearisation models (Guo et al.,
2011), requires a global search to find the most probable word order. This implies
a production process where planning of the complete word order happens before
the production of the first word. In comparison, we propose to model language
production incrementally as an online procedure generating the next word using
local decisions.

The state-of-the-art system of Liu et al. (2015); Puduppully et al. (2016) is another
adaptation of a parsing system to the task of sentence linearisation and one of the
few systems freely distributed online.2 It is based on the transition-based parsing
architecture (similar to MaltParser, Section 3.2.1) as opposed to the generative parsing
architecture and is incremental in the sense that it chooses the next word based on

2https://github.com/SUTDNLP/ZGen
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previously chosen words. To our knowledge, it is the only incremental architecture
proposed so far for the sentence linearisation task. Despite this, ZGen cannot be
taken as a model of the cognitive process of linearisation. First, it uses a beam
search with the default number of 64 hypotheses. It means that a list of partial
hypotheses of the word order (fixing the words from 1 to k) is kept in memory and
the next decision consists in expanding these partial sequences of words (fixing the
words from 1 to k + 1) and constructing a new list of best-scored hypotheses. In
addition, ZGen uses a carefully designed set of discriminative lookahead features
which include combinations of the word to generate next with its sister and child
nodes not ordered yet. Both these mechanisms allows the model to explore a large
portion of the search space in a non-incremental way. Secondly, as a transition-based
system, ZGen does not have a probabilistic interpretation. To predict the next word
(or, more precisely, the next transition), the algorithm uses a discriminative classifier
on the state features which do not explicitly include syntactic and lexical frequencies.
Overall, these properties limit the applicability of ZGen for cognitive modeling. On
the other hand, the properties such as a large beam make it a strong upper bound for
performance comparison with a simpler and incremental model.

5.2 Architecture of the sentence linearisation model

The input of the sentence linearisation model is a hierarchical structure of an utterance
which in this work is taken to be an unordered dependency tree. This choice allows us
to use familiar dependency treebank resources to evaluate our sentence linearisation
system and to compare its performance with other sentence linearisation systems
developed for dependency trees in the NLG literature. As we discussed in Chapter
2, the characteristic properties of the UD dependency respresentation such as cross-
linguistically universal dependencies relations and the priority given to the relations
between content words makes unordered UD trees well suited as the input for the
mapping between syntax and word order.

Specifically, the input for our sentence linearisation system is an unordered depen-
dency tree consisting of the words (the tree nodes) and the grammatical relations
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Figure 5.2: An unordered dependency tree representing the sentence a very big cat is
holding a mouse.

between them (the dependencies). Figure 5.2 shows the unordered dependency tree
of an example sentence a very big cat is holding a mouse which we will use to illustrate
the sentence linearisation procedure.

In a sum, the linearisation procedure consists in traversing the tree in a top-down
fashion and generating the order of the immediate children of each node (with respect
to each other and with respect to the head). This basic recursive procedure is very
similar to many generative models of tree structures, starting from the phrase struc-
ture elaboration process proposed for production by Yngve (1960). The distinguishing
property of our model is that the next node to be ordered is chosen greedily based
on the previously generated words and a score function which incorporates limited
lookahead on the nodes not ordered yet. Below, we describe in detail the search
procedure and the score function that we use.

5.2.1 Top-down recursive procedure

The diagram in Figure 5.3 illustrates the tree traversal and the linearisation for the
sentence a very big cat is holding a mouse. The scheme presents an extended version of
the dependency tree, where each head appears twice – as a head of a subtree (i.e., a
non-terminal, in bold) and as a leaf (i.e., a terminal word). The bulk of the work lies
in ordering correctly the nodes of the same subtree, i.e., the head and its immediate
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Figure 5.3: An example of the top-down left-to-right linearisation procedure for the
dependency tree representing the sentence a very big cat is holding a mouse.
The words in bold are non-terminal nodes in the tree.

children. For example, incremental ordering of the phrase a very big cat proceeds as
follows, given an oracle score function predicting the correct next word. We start by
choosing the first word among all the immediate children of cat (nodes a and big)
plus the word cat itself. Assume the choice falls on a. Since a doesn’t have children,
we generate it and proceed to choose the next node among the remaining nodes (big
and cat). Now we choose the node big, but we don’t immediately generate its word.
Instead, we expand the subtree headed by big (very big) recursively and generate all its
nodes applying our left-to-right linearisation based on the score function predicting
the next word. After spelling out all words in the subtree very big, we output the last
word cat.

More formally, our greedy recursive linearisation procedure starts from the root node
of the unordered dependency tree and proceeds as follows (Algorithm 1):

1. Form a set of nodes Dh by combining the head node h and its immediate
children {ni} (line 2).

2. Incrementally order the nodes in this set from the leftmost node to the rightmost
node starting from a special symbol n0 (lines 3–13):
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a) Choose the best next node nk from the set Dh according to the score function
of the prefix p = n0, n1, . . . , nk−1, nk where n0, . . . , nk−1 are previously
generated nodes from Dh (line 5).

b) If the node nk does not have any children or is the head h, produce the
chosen word (line 7); otherwise linearise the subtree headed by this node
recursively (line 9).

c) Continue until all the nodes are output.

Algorithm 1 Incremental linearisation procedure

1: procedure Linearise(h, t)
2: Dh ← {h, Children(h, t)}
3: p← n0
4: while Dh not empty do
5: next← arg max Score(Dh, p, next)
6: if next is h or Children(next, t) is empty then
7: yield next . produce the word next
8: else
9: Linearise(next, t)

10: end if
11: p← Append(p, next)
12: Dh ← Dh \ next
13: end while
14: end procedure
15: Linearise(ROOT, t) . t is the input unordered dependency tree

Our procedure orders subtrees independently from each other which implies, among
other things, that nodes in a subtree form a contiguous string. In other words, the
linearised dependency trees produced by our linearisation model will always be
projective. It is an important and interesting question how to model non-projective
linearisations but it is out of scope of the current work.3

The basic procedure outlined above assumes that the choice of the next word is
greedy. From the processing perspective, this means that only one partial hypothesis
should be maintained during production and the words could be, in principle,

3Section 6.2 entertains some ideas for future work in this direction.
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uttered straight after being chosen by the linearisation module. A simple greedy
model of this type would also require a small amount of memory and computational
resources during processing. We can conceive a more powerful model in two ways:
first, more than one partial linearisation hypothesis could be maintained by the
speaker or, secondly, the placement of more than one word could be chosen at each
linearisation step. In the sentence comprehension literature, both serial and parallel
processing mechanisms have been considered cognitively plausible (Boston et al.,
2011). Production is, however, different from comprehension in this respect. If several
hypotheses are constructed during the linearisation process, the speaker cannot start
phonological production if these hypotheses differ in the order of the very first words
or phrases. In other words, maintaining several linearisation hypotheses is equivalent
to optimising word order globally (in the worst case).

Here we explore a second variant of the linearisation model which orders several
words at a time. This model requires more computational time to produce the
next word since a larger number of possible continuations is evaluated compared
to predicting only one word (e.g., m · (m− 1) · . . . · (m− l), where m is the number
of words to order and l is the number of words to predict next). Crucially, however,
linearisation proceeds in the same serial greedy manner commiting to one partial
hypothesis from the beginning.

The recursive linearisation procedure is straightforward. The main challenge is to
design an efficient and accurate function which determines which node is generated
next. We propose such probabilistic scoring function in the next section.

5.2.2 Probabilistic score function

Our starting point for ordering the words in every set Dh is a probabilistic generative
model akin to an n-gram language model that estimates the probability of the prefix
p = n0, n1, . . . , nk (where ni ∈ Dh) as a product of the conditional probabilities of
each node P(ni | h, n0 . . . ni−1), i = 1, . . . k. We further factorise these probabilities
into direction and n-gram probabilities similarly to the generative model proposed
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by Eisner (1996) for dependency parsing and adopted by Futrell and Gibson (2015)
for sentence linearisation.

The main difference compared to the previously proposed generative dependency
models is that we do not directly use the probability P(p) as our score function.
Instead, we define the score of a prefix p as the product of its generative probability,
factorised as the product of the probabilities P(ni) for each of the nodes ni ∈ p, and
the future score — the score of the nodes nj ∈ Dh, nj /∈ p that have not been ordered
yet:4

Score(p) = ∏
ni∈p

score(ni, p) · ∏
nj /∈p

score f (nj, p) (5.1)

The first part of the Score(p) is defined as follows:

• if ni = h, score(ni, p) = P(ni | n0 . . . ni−1)

• if ni 6= h:

– if h /∈ {n1 . . . ni−1}, score(ni, p) = P(ni | h, n0 . . . ni−1) · P(le f t | ni, h)

– if h ∈ {n1 . . . ni−1}, score(ni, p) = P(ni | h, n0 . . . ni−1) · P(right | ni, h)

The probability of generating a child is factorised as the probability of generating it
on the left or on the right of the head (direction probability) and the probability of
generating it given the previously generated children (n-gram probability) and the
head.

The second component of Score(p) is a score which estimates an upper bound on the
probability of a linearisation of the rest of nodes in Dh, if we commit to generating p.
It is defined as:

• if nj = h, score f (nj, p) = 1

4The use of future score in linearisation is, perhaps, reminiscent of the similar use of future scores
for efficient A* search in phrase-based statistical machine translation. The conceptual relation
between language production and machine translation processes is evident. In early NLP work,
language generation was considered as the last step in the pipeline of machine translation (Yngve,
1960). Early statistical NLG work (Langkilde and Knight, 1998; Bangalore and Rambow, 2000) uses
n-gram scoring over word lattices produced by generation grammars, similarly to some decoding
techniques used in MT.
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• if nj 6= h:

– if h /∈ p, score f (nj, p) = max(P(le f t | nj, h), P(right | nj, h))

– if h ∈ p, score f (nj, p) = P(right | nj, h)

It can be seen as an upper bound since it is equal to the probability score(nj, p) where
n-gram probability P(nj | h, n0 . . . nj−1) is equal to 1. The future score is an important
mechanism to constrain the space of hypotheses for the generative model. It is
designed to take into account the fact that the generation of the head node defines
the relative placement of all the children, including the ones which have not yet been
generated. If the prefix already contains the head word then we know that all the
following nodes will be on the right of the head and the future score is equal to
P(right | nj, h). If we do not know yet where the head is, then node nj can end up on
its left or on its right and we use the maximum of the two probabilities as the upper
bound on its potential score.

The future score providing limited lookahead for the model is necessary since we
want to obtain an accurate greedy linearisation procedure. For generative models
without lookahead, a large beam is typically required to find good final hypotheses
(Henderson, 2003; Titov and Henderson, 2010). The future score is also a plausible
addition from the perspective of the input representation. Indeed, we assume that all
children of the head in the set Dh are known to the speaker.

Given a previously constructed partial order p, a next node (Algorithm 1, line 5) is
chosen according to the best-scored new prefix with an appended node 〈p, nk〉:

next = arg max
nk∈Dh\p

Score(〈p, nk〉). (5.2)

In case of models predicting m words at a time, this step is modified to evaluate all
possible extensions of p of length m:

next = arg max
<n1,...nm>∈Sm[Dh\p]

Score(〈p, n1, . . . nm〉). (5.3)
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Figure 5.4: Neural network architecture for estimation of n-gram probabilities.

For example, a model predicting three words at a time evaluates all permutations
〈n1, n2, n3〉 for all possible n1, n2, n3 ∈ Dh \ p and chooses the one which produces
the highest score.

5.2.3 Estimation of probabilities

Arc-direction probabilities We compute arc-direction probabilities using frequency
counts for all head-child pairs defined by part-of-speech tags and dependency labels.
Since the space of observations is relatively small we do not apply any smoothing to
this set of parameters.5

Estimation of n-gram probabilities We estimate the n-gram probabilities using a
neural network to incorporate lexical features and to deal with sparseness. In the
preliminary experiments, we also experimented with unlexicalised frequency-based

5Preliminary experiments did not show significant improvement when the arc-direction probabilities
were estimated using a neural network or by adding additional lexical features.
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estimation, similarly to the estimation of the arc-direction probabilities. We report
only the results of the neural network approach since it consistently outperformed
the frequency-based approach. Also, while the results of the latter approach change
significantly based on the input features of the nodes (PoS tags or dependency labels
or both), the neural network functions as a feature selection mechanism and allows
us to avoid the additional manual feature engineering.6

Neural networks are now habitually used to produce accurate standalone and inte-
grated language models and have been shown to perform better or on par with the
classical language models built using maximum likelihood estimation and smoothing
techniques (Bengio et al., 2003; Mikolov et al., 2010; Collobert et al., 2011). Recurrent
neural networks and, in particular, Long Short-Term Memory (LSTM) networks have
proved to be the best-suited architectures for the language modelling task (Sun-
dermeyer et al., 2012; Jozefowicz et al., 2016). Feed-forward and recurrent neural
networks are also now commonly used as building blocks of parsing systems (Hen-
derson, 2003; Titov and Henderson, 2007; Chen and Manning, 2014; Weiss et al., 2015;
Dyer et al., 2016). One of such building blocks, known as word embeddings, allows
learning a representation of a category in a high-dimensional discrete space (for
example, a vocabulary of word forms or PoS tags) as a low-dimensional continuous
vector.

Our lexicalised model is schematically presented in Figure 5.4. We experiment with
both lexicalised n-gram probabilities (input and output include the word feature)
and unlexicalised n-gram probabilities (input and output include only PoS tag and
dependency label features). The architecture of the two types of models is the same
apart from the input and output layers.

The neural network encoding of the input to the output proceeds as follows. First,
we map PoS tag, dependency label and word features of nodes n1, . . . , ni−1 in the
n-gram to dense embedding vectors, following Chen and Manning (2014) (among

6Neural networks are very powerful machine learning models which allow to fit complex functions
from the input to the output based on labelled training data. However, the use of neural networks
in this work is limited to estimating only simple n-gram probabilities and an extensive background
in neural networks is not required for understanding of the following discussion. We address the
reader to the textbook of Goldberg (2017) for a detailed introduction to neural networks for NLP.
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many others) which use similar representations for parsing. We use vectors of size
32 for PoS tag and dependency label embeddings and vectors of size 64 for word
embeddings. The combined vector of embeddings for each of the n-gram nodes is
then passed to an LSTM layer with 128 hidden units. In addition, we incorporate the
features of the head word in our network. The combined output of the LSTM layer
and head embedding is passed to a fully-connected hidden layer with 128 non-linear
(ReLU) units which is then mapped to the output softmax layer. The softmax layer is
constructed to output the probability of observing a node ni, defined by its output
features: PoS, dependency label and word. The output space of the unlexicalised
model is limited to all possible combinations of PoS tags and dependency labels.
For lexicalised models, we use a small 500-word vocabulary to avoid efficiency and
sparsity issues. The softmax output vector gives, therefore, probabilities of the 500
most frequent words in the training set. The words which are less frequent receive
the probability based on their PoS tag and dependency label as in the unlexicalised
model. Note that traditional n-gram language models use much larger vocabularies
but require millions of words in a training corpus to achieve a robust estimation of
the probabilities. Some sentence linearisation models use additional raw text data to
train a lexicalised language model (so-called pre-trained word embeddings). In this
work, we focus on the performance of a sentence linearisation system given only a
treebank, without any additional resources.

We implement our neural network models using the Keras package with Theano
backend (Chollet et al., 2015).7 We use adaptive gradient descent optimisation known
as Adam (Kingma and Ba, 2014) to fit the parameters of the model to the training
data.

7https://keras.io/
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5.3 Evaluation of the basic sentence linearisation

model

In this section, we evaluate and analyse the linearisation algorithm presented above.
Our first goal is to demonstrate the feasibility of the proposed incremental procedure.
We want to understand whether the model can find globally-coherent orders by
relying on greedy and, to a large degree, local decisions. We compare our model
to the state-of-the-art sentence linearisation system, which provides a strong upper
bound on non-global linearisation. Our point of comparison is the latest version
of ZGen (Puduppully et al., 2016). As discussed in the Section 5.2, it is a powerful
system exploring many combinations of rich non-local features to find the best
linearisation. It achieved state-of-the-art results on the surface realisation shared task
data in English improving on the results obtained during the task (Belz et al., 2011).
We use ZGen in its default configuration which sets the size of the beam of its search
algorithm to 64.

Our evaluation also aims to establish the general relation between the word order
properties of a language and linearisation performance. We evaluate our system on
four languages with relatively diverse word order properties: English, Italian, Persian,
and Russian. English has relatively fixed word order, Italian and, especially, Russian
show more word order flexibility and Persian is interesting because it is an SOV
language, while the other languages have SVO order.

5.3.1 Data

The dependency treebanks of our four languages come from the Universal Depen-
dencies (v1.3) annotation project (Nivre et al., 2016). We strip the sentences of their
punctuation marks, since we are interested in language production in general and not
necessarily in the production of written text only.8 We use the word, coarse universal

8Contrary to the experiments in Chapter 3, we do not remove sentences which contain punctuation
from our sample but simply strip them of the punctuation marks. For parsing, punctuation marks
such as parentheses provide important cues about the phrase structure; a sentence with stripped
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Language Training set Dev. set Test set

English 180K 22K 22K

Italian 219K 9.5K 9.7K

Persian 110K 14.5K 14.5K

Russian 250K 25K 25K

Table 5.1: Sizes of the training, development and testing sections of the treebanks.

PoS tag, and dependency label information provided in the treebanks for the input
dependency trees. Contrary to the Surface Realisation shared task (Belz et al., 2011),
we do not pre-process multi-word expressions and proper names as single tokens.9

Because of the different pre-processing and the use of a different corpus, our results
cannot be directly compared to the previous results on English. We provide a fair
comparison with previous work by reporting the performance of ZGen which was
shown to out-perform the systems participating in the Surface Realisation task. To
our knowledge, Italian, Persian and Russian languages have not been previously
used for sentence linearisation evaluation. Our results on these languages therefore
give first baselines for future work.

We train our linearisation model and ZGen on the training sets of the treebanks and
analyse their performance on the development and test sets. For English, Italian and
Persian we use training-development-test splits provided in the UD distribution. For
Russian, which is a very large treebank, we used only 250’000 words for training data
and 25’000 words for testing and development sets to keep the sizes of the datasets
comparable across languages. The exact sizes of our datasets are reported in Table 5.1.
To analyse in detail the performance of our system and the effect of its parameters
we performed the majority of the experiments on the development sets.

punctuation marks can be therefore hard to parse correctly. In comparison, a linearisation algorithm
has access to the underlying syntactic tree and should rely less on punctuation marks for producing
the correct order. We assume therefore that the removal of punctuation marks does not affect the
sentence linearisation task significantly.

9Despite the similar annotation guidelines in four different languages, such pre-processing would
require language-specific manual verification which we could not perform.
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5.3.2 Evaluation measures

We evaluate the order that is produced by the systems against the gold-standard
original order using BLEU score — an n-gram precision measure commonly used
in machine translation (Papineni et al., 2002). A BLEU score captures the surface
similarity of the output order and the original order of words. As in machine
translation, the conceptual problem of BLEU is that it cannot capture the semantic
equivalence between the two outputs. For the task of sentence linearisation, it
means that BLEU will find grammatical word order alternations of the gold order
to be incorrect (n-gram precision will be less than 100%). Despite this issue, BLEU
is standardly used for evaluation in the task of sentence linearisation and, more
generally, for evaluation of natural language generation (Belz et al., 2011). First, BLEU
scores were shown to correlate well with other automatic measures of generation
accuracy adopted from machine translation such as NIST, TER and METEOR on
English and German (Reiter and Belz, 2009; Cahill, 2009). Secondly, the ranking of
the systems obtained through human judgements on clarity, readability and meaning
similarity correspond well to the ranking given by automatic evaluation scores (Reiter
and Belz, 2009; Belz et al., 2011), leading to the suggestion that: “it may be appropriate
to use existing automatic metrics (with caution) to evaluate the linguistic quality of
generated texts” (Reiter and Belz, 2009, p. 555). Based on these observations, we
adopt BLEU as our primary measure of the performance of sentence linearisation
systems. We leave a more detailed human evaluation analysis for future work.

In addition to BLEU, we report arc direction accuracy for the output order, i.e., the
percentage of children that are placed correctly with respect to their heads. This
measure is particularly interesting for us in relation to the treebank-level analysis
of the arc direction entropy presented in Chapter 3. Note that BLEU scores do not
distinguish between all cases where a head H and its dependents (D1, D2) are ordered
incorrectly. Consider for example the gold order H D1 D2 and two output orders H D2

D1 and D1 H D2. Both outputs will have a similar n-gram precision error between H,
D1 and D2 phrase boundaries but the first order has correct head-child dependency
directions. Conversely, two orders can have the same arc-direction entropy (e.g., H D1

D2 and H D2 D1) but different BLEU scores. The arc direction accuracy measure seems
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English Italian Persian Russian

Systems BLEU arc dir % BLEU arc dir % BLEU arc dir % BLEU arc dir %

ZGen 84.8 97.1 82.1 95.4 80.9 98.1 68.6 91.4

Unlex 1w 66.7 93.1 65.1 90.0 62.5 94.3 49.8 83.7

Unlex 3w 77.3 95.6 71.9 92.3 75.4 97.2 58.5 87.7

Unlex 5w 78.9 95.9 73.5 92.8 77.2 97.8 60.6 88.6

Lex 1w 66.9 93.4 66.4 90.7 65.2 94.6 51.5 84.6

Lex 3w 78.8 95.7 73.6 93.0 75.9 97.4 60.1 88.1

Lex 5w 80.5 96.0 75.4 93.4 78.4 97.9 61.3 89.1

Table 5.2: The performance results on the development sets of our greedy incremental
generative system, predicting one (1w), three (3w) or five (5w) words at a
time, and the ZGen system (Puduppully et al., 2016) for comparison.

to be complementary to the BLEU measure and can help us distinguish between the
types of errors that a system makes.

5.3.3 Results and discussion

Table 5.2 reports the performance on the development sets of the greedy lexicalised
and unlexicalised models predicting one word at a time and their variants predicting
three and five words. We can see the performance of ZGen as an upper bound on
the performance of our systems. The purely incremental word-by-word linearisation
system constitutes the lower bound while the system predicting five words at a time
is the most powerful out of the variants of our model and is the closest to a system
with global search. While the 5-word prediction corresponds effectively to conducting
a global search for many subtrees, we assume that the system predicting three words
at a time is a cognitively plausible compromise in terms of degree of incrementality
and computational load. To demonstrate that performance generalises to the test sets
we report the BLEU scores of our lexicalised model predicting three words and ZGen
in Table 5.3. We discuss first the results of our model in comparison to ZGen. In
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English Italian Persian Russian

ZGen 84.2 81.7 79.7 67.3

Lex 3w 78.4 72.3 75.5 58.7

Table 5.3: The results on the test sets (BLEU).

the second part of this section, we look at the cross-linguistic patterns in sentence
linearisation accuracies and connect them to the language-level measures of word
order variability analysed in Chapter 3.

First, we can see that our basic greedy unlexicalised model shows quite low perfor-
mance compared to ZGen (Table 5.2). However, much better results are obtained
if we linearise predicting several words at a time. Predicting three words improves
the performance by 7 to 10 BLEU points. The further improvement obtained by
predicting five words is around 2 points. This small improvement over 3w model
suggests that an incremental greedy prediction of only three words approximates
rather well the best solution that can be found by global search. In addition, partial
lexicalisation helps to improve performance, by around 0.5 (Persian) to 1.7 (Italian)
points for the 3w model. Note that, compared to the lexicalised system of ZGen
and our partially-lexicalised model, the unlexicalised models obtain relatively high
BLEU scores suggesting that a large part of the sentence linearisation system is condi-
tioned only on the underlying syntactic representation. Overall, the psychologically
interesting lexicalised system predicting three words compares favourably to the
state-of-the-art system, with BLEU scores below by 4.2 (Persian) to 9.6 (Italian) on
the test sets (Table 5.3). The main reason for the inferior performance of our system
compared to ZGen seem to be the strong independence assumptions that we adopt:
even if we output the best global solution our model does not reach the performance
of ZGen. Interestingly, our models perform much better in terms of BLEU scores
than the globally-optimised models of Futrell and Gibson (2015), who report BLEU
scores of only 57.7 for the English UD treebank.

The other important reason for the inferior results of our system compared to ZGen
is the absence of phrase length features in the architecture of our model. Our model
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does not take into account the length of dependencies and therefore cannot predict
any DLM-related word order patterns, such as the fact that shorter phrases precede
longer phrases in the postverbal domain. Section 5.4 presents a modified version
of our model which has access to dependency length information and explicitly
incorporates the choice between alternative grammatical word orders in incremental
generation architecture.

Cross-linguistic analysis of the results

Across the four languages, English is the easiest to linearise while the performance
numbers on Russian are significantly lower than the other three languages, despite
the larger amount of the training data. Intuitively, these results should be due to
English having strict word order constraints and Russian having rather flexible and
discourse-conditioned word order. However, as we have argued in Chapter 3, it is
hard to make certain cross-linguistic comparisons based on treebanks which differ in
many properties in addition to the word order. To conduct a more informed analysis
of the results across languages, we adopt the evaluation proposal of Nivre and Fang
(2017) and break down the BLEU and arc direction performance numbers for different
types of dependencies (Table 5.4). Nivre and Fang (2017) note that the differences in
the number of words per sentence between isolating languages and morphologically-
rich languages bias the performance measures to give higher parsing performance
values to the languages of the first group. In our case, this could mean that worse
results for Russian compared to, e.g., English or Italian, are due to the fact that these
languages have easier-to-order words such as determiners (absent in Russian) or
prepositions (often substituted by case marking in Russian). However, the numbers
in Table 5.4 show that this confounding factor does not change the overall picture. We
report the performance for a ‘core’ subset of dependencies including nsubj, dobj, xcomp
and other dependencies belonging arguably to the predicate-argument structure of
the sentence. All languages show lower performance for core dependencies, but the
drop for English (7.3 BLEU) is smaller than for other languages, including Russian
(10.2 BLEU points drop). This result suggests that core dependents in English have
less word order variability than in other languages (Italian, Russian), which in turn
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BLEU arc dir %

Language all core all core

English 77.3 70.3 95.6 96.5

Italian 72.0 60.3 92.3 86.5

Persian 75.4 65.4 97.2 99.0

Russian 58.5 48.3 87.7 82.0

Table 5.4: Results of the unlexicalised model predicting three words broken down for
all/core dependencies.

makes it a plausible reason for the low overall performance results on these languages.
Note, additionally, that the linearisation systems we evaluate (including ZGen) do
not have access to the morphological annotation. Russian is a case-marking language,
and some of the functional relations are encoded using case suffixes. The primary
distinctions between subject (nominative case), object (accusative case) and indirect
object (dative case) are encoded in dependency labels, but some others are not. Finally,
the Russian treebank is a collection of literary texts as opposed to newswire and
internet-crawled texts of other treebanks which can be one more reason for very low
sentence linearisation performance on this language.

Another interesting cross-linguistic observation concerns the arc-direction accuracy
results. For ZGen and our linearisation system (both for ‘core’ and for all dependen-
cies), the following ranking with respect to the arc-direction accuracy holds: Persian
> English > Italian > Russian.10 Importantly, the arc-direction accuracies correlate
with the reverse arc-direction entropy values that we computed in Chapter 4. More
precisely, Persian has the smallest arc-direction entropy (0.16) and has the highest
arc-direction accuracy in the linearisation (97–98%). The reverse is true for Russian:
the entropy value of the Russian treebank is 0.45 and the arc-direction accuracy is
only 88–91%. The fact that for Persian and English arc-direction accuracy is very
high suggests that low BLEU scores are due to the variability in the order of sister
phrases as opposed to the order of heads and their children. In particular, the 99%

10Note that the arc-direction accuracy ranking is different from the ranking based on BLEU scores.
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accuracy on core dependencies in Persian reflects the fact that it is an SOV language
and therefore the order of main constituents such as the subject and the object are
always on the left of their head — the verb.

More generally, arc-direction accuracy can be seen as an alternative way to measure
variation in the order of head and its dependents. The higher the arc-direction
accuracy, the less arc-direction variation in a language. We have argued in Chapter 3
that arc-direction entropy is a robust measure of word order variation. However, its
computation is subject to strong independence assumptions, e.g., that the position of
a child depends only on its PoS tag and the PoS tag and the dependency label of its
head. These assumptions are relaxed in the sentence linearisation systems. In our
system, for example, the position of a child also depends on the previously uttered
words in the phrase (n-gram probabilities).11 Moreover, the fact that two systems
with different architectures — ZGen and our linearisation system — obtain similar
arc-direction accuracies suggests that they capture and indirectly quantify the same
aspect of word order variation. Overall, we would like to propose that a sentence
linearisation system can be used to quantify word order properties discussed in
Chapter 3 such as the degree of word order variability in a language. The use of
sentence linearisation systems can prove to be more robust across different languages
and treebanks thanks to the generalisation ability of the underlying machine learning
algorithms. In addition to arc-direction accuracy, other automatic evaluation measures
adopted in the sentence linearisation task, such as BLEU score, might be used to
measure new aspects of word order variation. BLEU captures, in particular, the errors
in the ordering of sister phrases and it would be interesting to quantify this aspect of
word order variation which is hard to do robustly (Section 3.1).

11In a set of preliminary experiments, we tested a linearisation model where children were placed
with respect to their heads according to only the arc-direction probabilities. This model produced
substantially lower results, both in terms of BLEU scores and arc-direction scores, than a model
using both arc-direction and n-gram probabilities. These results confirm that arc-direction variation
is conditioned on the broader context than the one used to compute arc-direction entropy in
Chapter 3.
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5.4 Word order variation as a re-ranking mechanism

This section presents an extension of our sentence linearisation model which incor-
porates explicitly the choice between two alternating word orders. Our goal is to
develop a system which can efficiently condition its decisions on dependency length
features and can be subsequently used to study word order variation and DLM
phenomena in a new principled way, as part of a general incremental word order
production process.

The basic sentence linearisation system presented in the previous sections is charac-
terised by its generative architecture. We argued that this property is desirable for a
cognitively plausible model of sentence linearisation if we assume that speakers store
probabilistic grammatical knowledge and use it in comprehension and production. In
fact, as part of our linearisation system, we learn a probabilistic dependency grammar
defined by probabilities P(n0 . . . h . . . ni | h) over expansion rules h → n0 . . . h . . . ni.
We did not include the lengths of dependencies as factors in this probabilistic gram-
mar. One of the reasons concerns the computational difficulty. Adding the length as
a factor that should be predicted by the generative model substantially increases the
probability space and leads to sparse observations in the training data. Conceptually,
this type of model cannot take into account the relative length of phrases which we
know plays an important role in DLM effects in word order variation. This is because
the probabilities P(n1 | p, h) and P(n2 | p, h) for the two candidate nodes n1 and
n2 are computed independently and can take into account only the length of the
generated node itself or the length factors of the nodes in the prefix. They do not take
into account the presence or absence of the other candidate node, nor its length.12

For these reasons, we propose a discriminative mechanism to deal with cases of word
order variation and conditioning factors such as lengths of dependencies. While
a generative model predicts the distribution over all words in a vocabulary given
the previous context p = n0, . . . , nk−1, a discriminative model chooses between the
subset of nodes defined by the domain Dh, e.g. nk ∈ Dh \ {n0, . . . , nk−1}. The latter

12To take into account the relative influence of factors of two nodes in a generative model, we would
need to introduce joint probabilities for the bigrams, i.e., P(n1n2 | p, h), which would result in
severe sparsity problems.
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type of model can take therefore into account information about the relation between
candidate nodes.

5.4.1 Description of the advanced model

This section presents the architecture of our advanced model and gives details on
how we integrate the modelling of word order variation phenomena as part of our
incremental language production.

We augment our basic system with an additional re-ranking step at each ordering
decision. This re-ranking which, for the moment, we apply for the two best-scored
candidate nodes, can be taken to mirror traditional logistic models of word order
variation. Consider a familiar example of variation in the order of postnominal
dependents in English (Wasow, 2002). There are commonly two alternative orders that
are grammatical and semantically equivalent, e.g., for the verb-particle construction,
a boy threw the trash out and a boy threw out the trash. We have seen in Chapters 2
and 4 that the choice between these two orders is commonly modeled as logistic
regression incorporating syntactic, lexical and frequency features associated with the
two orders (Gries, 2003; Bresnan et al., 2007). A ranking model is a natural extension
of logistic regression for modelling more than one word order variation construction
(Rajkumar et al., 2016). Our re-ranking model implements a single mechanism for
word order variation decisions shared across all constructions in a language. Crucially,
this mechanism is incorporated in our incremental model (hence, re-ranking) which
makes it possible to analyse word order variation and dependency length effects as
part of the online linearisation procedure.

We propose the following modification to our basic linearisation model, as illus-
trated schematically in Figure 5.5. At the moment of choosing the next word nk

given the previously uttered words n0, n1, . . . , nk−1, we first compute the scores
Score(n0, n1, . . . n1

k), Score(n0, n1, . . . n2
k), . . . for each possible node n1

k, n2
k , . . ., as in the

basic model. For each of the two best-scored nodes n1
k and n2

k, we compose a set of
input features associated with this node, including its PoS tag and dependency label,
and, crucially, its Score(n0, n1, . . . ni

k). We train a pairwise re-ranker implemented as
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Figure 5.5: Schematic representation of the re-ranking step.

a binary classifier with perceptron update, similarly to White and Rajkumar (2009),
to choose one continuation out of the two competing continuations n1

k and n2
k based

on these features.

To model DLM effects associated with long phrases, we also include as an input to
the re-ranker the length of the phrases headed by the nodes ni

k, that is, the size of the
dependency subtree headed by these nodes. Our discussion of the DLM principle
in the previous chapters revolved around the idea that a global DLM principle
generalising the observed “short-before-long” and “long-before-short” effects should
take into account the lengths of dependencies as opposed to the lengths of phrases.
However, the assumptions on the incremental hierarchical nature of the linearisation
process that we adopted in this chapter constrain this interpretation. Indeed, to know
the length of a dependency between a head and its dependent ni

k we need to have
information on the order of children in the subtree headed by ni

k. Our recursive
algorithm assumes that the linearisation (and potentially the structural expansion)
of the subtrees proceed independently from each other. This assumption prevents
the re-ranker to access the information about the exact length of the dependency
between the head and ni

k. In principle, we could obtain an estimation of this length
by predicting the average position of a head with respect to its children. For example,
in a head-initial language, we would expect the head to be close to the left edge
of the phrase. For the current experiments, we take the sizes of the phrases as an
approximation of the dependency lengths. We make, therefore, a weak assumption
that we know the size of the subtree ni

k (while the exact ordering of the children of ni
k

is still not known).
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This discussion makes it clear that the architecture of the production system creates
some complications for a production account of the global DLM principle. This is,
perhaps, unsurprising given that the global DLM principle assumes minimisation
of the total dependency length of the sentence and incremental production assumes
instead at least some non-global decisions. These issues become much more trans-
parent when a bias in language production is sought to be explained as part of a
working implementation of the production mechanism.

Taken as a computational model of word order variation, our binary re-ranking
model differs from traditional logistic word order variation models, including the
ranking model of Rajkumar et al. (2016), in two aspects. First, the crucial property
of our approach is that we model word order variation as part of the sentence
linearisation process by including the scores provided by the underlying language
production model and the acquired generative probabilistic grammar. Secondly,
the choice between two alternative word orders is naturally made at the point
when the two hypotheses diverge. In comparison, a typical logistic model is based
on the comparison of complete alternative orders and ignores the mechanisms of
language production. In our model, the preference for shorter dependencies in word
order variation and at the language level should come from local decisions of the
incremental linearisation system.

In this respect, our approach can also be seen as an adaptation of the work of
White and Rajkumar (2009, 2012) for incremental linearisation. White and Rajkumar
(2009) presented a system for re-ranking of the n-best list of complete linearisations
produced by a CCG grammar generator using averaged perceptron training. White
and Rajkumar (2012) enhanced their global re-ranker with dependency length features
to produce more natural sentences where, e.g., shorter verb complements precede
longer ones. In contrast to our approach, the work of White and Rajkumar (2009, 2012)
uses global search over possible CCG derivations and applies re-ranking to the list
of candidate complete sentences as the last step of the linearisation algorithm. This
model, therefore, is not incremental and cannot be taken as a cognitively-plausible
model of the sentence linearisation process. Our approach shows that we can use
similar re-ranking techniques also as part of an incremental system.
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English Italian Persian Russian

Systems BLEU avg DL BLEU avg DL BLEU avg DL BLEU avg DL

Gold - 2.42 - 2.45 - 3.44 - 2.59

Unlex 3w 77.3 2.57 72.0 2.76 75.4 3.55 58.5 3.08

+ reranking 74.9 2.55 70.7 2.80 75.1 3.53 58.3 2.96

+ length features 76.1 2.51 73.2 2.65 75.6 3.52 59.9 2.77

Table 5.5: Results of the model with additional re-ranking applied. The performance
numbers of the basic model predicting three words are given for compari-
son.

5.4.2 Results and discussion

Table 5.5 reports the performance of the unlexicalised model predicting one word at a
time with the binary word order variation re-ranker with and without phrase length
features. For comparison, we include the performance of our basic unlexicalised
model predicting three words at a time.

First of all, we see a clear improvement with an additional re-ranking step over the
model predicting one word at a time with performance coming close to the reference
model predicting three words. This result suggests that the information that the
classifier exploits, namely the knowledge about the two best continuation nodes and
their scores, is very relevant for choosing the best hypothesis. These results show that
it is possible to obtain an efficient greedy model by trading in some discriminative
information.

Adding phrase length features improves the performance across all four languages,
by 0.5 (Persian) to 2.5 (Italian) BLEU points, confirming that lengths of phrases are
significant factors affecting word order variation. Note that for Italian and Russian
the resulting BLEU scores (73.2 and 59.9, respectively) are higher than the reference
3w model scores (72.0 and 58.5).

To better observe the effect of phrase lengths, we report the average dependency
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lengths (DLs) for gold trees and trees linearised by our systems (Table 5.5). We find
that the increase in performance goes along with the decrease in average DL. The
systems aware of phrase lengths produced significantly shorter DLs compared to
the reranking systems without length features and the basic unlexicalised models;
the gold order is the one having the lowest DLs for all languages. Interestingly, the
languages where the improvement is the smallest (Persian, 0.5 BLEU, 0.01 difference
in average DL and English, 1.2 BLEU, 0.04 difference in average DL) are the ones
where the average DL without length features is already close to the gold average DL.
These results can be seen as a confirmation of the general DLM principle, discussed
throughout this thesis, using a new computational methodology based on application
and evaluation of sentence linearisation models.

Similarly to the arc-direction accuracy, the differences in the performance between
the systems with and without length features can be seen as an alternative measure
of the degree of DLM in a language. Intuitively, the more the system performance
improves when using length features, the more the language minimises dependencies
(compared to a linearisation system unaware of phrase lengths). Yet, there is one
important difference with respect to our measure of DLM ratio (Section 3.1): the
sentence linearisation system only produces linearisations which are consistent with
the grammar it learnt during the training. It never generates completely ungram-
matical orders violating local constraints such as the permutations in the examples
in Figure 3.3 yielding minimal DLs. Recall that such permutations are the basis of
comparison for DLM ratio computation. In this respect, the DLM measure based
on sentence linearisation accuracy is related to the previous work which compared
the actual DLs of sentences with the optimal-DL orders constrained by the language
grammar (Gildea and Temperley, 2010; Futrell et al., 2015b). The DLM ratio measure
from Chapter 3 captures both the minimisation at the level of word order variation
and at the level of grammar. By contrast, the degree of DLM computed by means of
the sentence linearisation evaluation reflects more the degree of DLM in word order
variation since many ordering choices are fixed by the grammar. For example, Persian
shows very little minimisation of dependencies according to the decrease in average
DL (only 0.01), but it has very high DLM ratio value of 1.99 (Table 3.6). This apparent
conflict of the two measures is cleared by the observation that Persian is an SOV
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language. Because the verb is sentence-final, the dependencies between the subject
and the verb are longer in an SOV language than in an SVO language. The high DLM
ratio stems, therefore, from the low rate of DLM at the grammar level. The small
increase in sentence linearisation performance with phrase length features suggests
instead that there is a high rate of DLM at word order variation level. Experiments
with sentence linearisation systems can, therefore, measure in a new systematic way
the rate of DLM in word order variation, teasing it apart from inherently grammatical
differences in dependency length across languages. The linearisations produced by
the system with phrase length features still have longer dependencies on average
compared to the gold word orders. Even if the improvement on Persian is only 0.01,
the gold orders have shorter dependencies (by 0.08 on average) suggesting that a part
of word order variation conditioned on dependency lengths is not captured by the
system. These questions open exciting avenues for future work.

5.5 Conclusions

In this chapter, we have proposed the first step towards systematic computational
modelling of word order phenomena as part of the language production process.
We suggested to model word order as a sentence linearisation process — the part of
the production process which incrementally maps the syntactic representation of a
sentence onto the order of words. We argued that a psycholinguistically-plausible
sentence linearisation model should have incremental architecture and make use of
the probabilistic syntactic knowledge of speakers. The sentence linearisation model
we developed is based on simple generative probabilistic grammars traditionally
used as models of sentence comprehension, e.g., in statistical parsing. While a
generative model naturally incorporates probabilistic lexical and syntactic knowledge
of speakers, it poses challenges for efficient search of the best probable word order.
Speakers produce sentences fluently without pausing for a long time, suggesting that
the search for a good linearisation should be efficient. We showed that with a limited
kind of lookahead a generative system could reach good performance compared to
the state-of-the-art fully discriminative system with a beam search. Moreover, it does
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so while keeping the hypothesis search space small and, consequently, the processing
time and memory resource demands relatively low.

The re-ranking version of the linearisation system proposes a way to choose the next
word based on the comparison between two possible continuations. As our results
show, by trading in some discriminative information, we can use the fast greedy
generation of the next word and reach performances similar to the model exploring
a larger search space predicting three words at a time. Re-ranking can be seen as a
way to model word order variation in a way similar to the traditional logistic models.
Importantly, this architecture also allows us to condition word order choices on factors
such as the lengths of phrases. Incorporating phrase length features into the model
leads to better performance and smaller average DLs — a result which confirms the
general DLM principle in a novel way. One of the results of our evaluation of the
linearisation systems across four languages — English, Italian, Russian and Persian
— is that we can use sentence linearisation systems to measure language-level word
order properties such as the rate of DLM or word order freedom. These systems can
be used therefore as robust (although more computationally involved) alternatives to
treebank-based statistical measures that we have analysed in Chapter 3.

From a more theoretical perspective, we proposed a formal model of how DLM
preferences could be operating in language production. Our proposal opens a new
approach for investigations of word order variation phenomena and DLM effects.
Looking further on, the integrated generative model of word order production and
variation should allow us to investigate interactions between DLM, probabilistic
factors and the cognitive properties of the model architecture — the incrementality
and modularity. These cognitive constraints imply limited access to lexical items and
imprecise estimation of the dependency lengths. If the processing system indeed
exhibits these limitations, they should surface in the observed word order choices. A
related question is how the processing mechanism involved in written production
differs from that in spoken production. Many DLM effects were previously observed
both for written and spoken data (Wasow, 2002; Bresnan et al., 2007; Francis and
Michaelis, 2017). However, written texts differ from speech because they could be
affected by comprehension biases as well as production biases. Contrasting com-
putation models of comprehension (sentence processing) and production (sentence
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linearisation) could lead to a theory-driven analysis of differences in written and
spoken word order variation. Such experiments could be interesting to conduct, in
particular, on head-final languages. The processing of, e.g., dependents of the verb,
must happen without access to the head (verb) which appears later in the sentence.
In comparison to a comprehension system, a production system can, presumably,
condition its ordering decisions on the information given by the head.
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Conclusions

The work presented in this thesis examined several aspects of word order variation
and dependency length minimisation. We looked at these phenomena in syntactic
production as observed at three major levels of abstraction: in word order distributions
over all structures and sentences in a language, in one isolated construction of word
order alternation, and in the linearisation choices during online production.

These three interdisciplinary studies vary in the data they look at and the meth-
ods they use. They make connections to several independent domains of linguistic
research including quantitative syntax, language processing, language production,
typology and natural language processing. Ultimately, however, these studies were
conducted to answer the same question: how do word order variation and depen-
dency length minimisation work in languages? A computational solution to this
problem consists in constructing a model which explains and predicts word order
distribution at a given level of abstraction by incorporating properties and constraints
leading to observed DLM effects. A general cross-linguistic model of word order
variation is hardly at reach, but we provided several new empirical facts and methods
that contribute to its development.
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6.1 Contributions

Chapter 3 analysed word order and a general global version of the DLM principle
at the language level. One can define DLM as a tendency to minimise the distance
between all types of dependencies in a language. Given a treebank, this description
can be formalised as a tendency to minimise the sum of the lengths of all annotated
dependencies. This formalisation is useful from several perspectives. First, it can
be used to compute an overall rate of DLM in a language (Temperley, 2008; Gildea
and Temperley, 2010; Futrell et al., 2015a). We showed that the rate of DLM could be
computed in such way as to allow meaningful quantitative comparison of languages
with respect to this property and answer typological questions such as “Does this
language minimise dependencies more than the other one?”. The DLM-ratio measure
enabling cross-linguistic quantitative comparisons is valuable for developing a typol-
ogy of free word order languages. On the one hand, long dependencies are intuitively
correlated with flexible word order. On the other hand, we found that DLM ratio and
word order flexibility (measured as arc-direction entropy) capture distinct aspects of
word order, as suggested by the diachronic investigation of the Latin and Ancient
Greek treebanks. In future, the language-level measures of word order properties
such as DLM ratio and arc-direction entropy can serve to elaborate the typology
of languages of the world quantitatively. In this work, we demonstrated that these
measures are also useful for NLP research, particularly, as estimates of difficulty
for statistical parsing. NLP parsing systems are known to encounter difficulties in
identifying long-distance dependencies (Rimell et al., 2009). They also obtain lower
performance on morphologically-rich languages with flexible word order than, for
example, on English (Seddah et al., 2013). The use of DLM ratio and arc-direction
entropy allowed us to confirm at large-scale and across many languages the negative
effect of these word order properties on parsing performance. To meaningfully
compare the effect of word order on parsing performance across different languages
and treebanks, we proposed a method to control for confounding factors such as the
size of the training set, the average sentence length and others. The method is based
on creating permuted versions of sentences to manipulate a word order property, e.g.,
by minimising the lengths of dependencies or by minimising the amount of word
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order variation. The minimal pairs of sentences created in this way differ only in
their word order but share all other characteristics. The proposed method is general
and can be applied to test word order properties other than the rate of DLM and the
amount of word order variation to diagnose parsing performance in depth.

The global DLM principle formulated for all dependencies annotated in a treebank is
also a good starting point for analysing specific word order variation constructions.
In Chapter 4, we approached in this way adjective-noun order variation in Romance
languages. Our goal was to find and test potential DLM effects conditioning the choice
of adjective position. Adjective-noun order variation is particularly interesting since it
is structurally different from the majority of word order variation constructions which
were evoked as evidence for the DLM principle. The adjective-noun construction
involves the variation in the order between the modifier and the head, i.e., XP H vs H
XP orders, while previously studied constructions frequently involve the variation
in the order of sisters on the one side of the head, i.e., H XP YP vs H YP XP order.
We showed that, from the perspective of the global DLM principle, the first type
of variation affects the lengths of several dependencies, not only the adjective-noun
dependency, compared to the second type of variation which only concerns two
dependencies H–X and H–Y. We formulated the predictions of the DLM principle
in this novel structural configuration and tested them on the data of five Romance
languages: Italian, Spanish, French, Catalan and Portuguese. To our knowledge,
this is the first large-scale corpus study of adjective variation involving more than
one Romance language. We found effects of minimisation, consistent across all five
languages, for several dependencies. The dependency between the noun and the
adjective, the dependency between the noun and its postnominal dependent (Y) and
the dependency between the noun and its head (X) are all minimised but to a different
extent. The minimisation of the N–X and, especially, the N–Y dependencies is a new
empirical fact for the syntactic puzzle of the adjective-noun variation. These data
also highlight the existence of diverse types of DLM effects. For instance, that the
minimisation of N–Y dependency is affected by the type of lexico-semantic relation
between the noun and its right dependents (a PP or a relative clause).

Chapter 5 provides a new perspective on computational modelling of word order
variation and DLM. DLM effects are commonly observed in spoken and written
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production data. What is the mechanism in production that is responsible for these
effects? If it is a processing pressure, how is it incorporated in the general language
production process and how does it interact with word order planning? We suggested
that we can provide initial answers to these questions by developing a psychologically
plausible model of sentence linearisation — one module of the overall language
production process which maps the hierarchical syntactic representation onto the
order of words. We argued that cognitive plausibility means at least two things:
that the order is constructed incrementally and that the choice of the next word is
based on probabilistic grammatical knowledge of speakers. These requirements arise
from the experimental evidence on language production. For instance, we know
that speakers do not plan entire sentences before they start speaking which means
that word order cannot be optimised globally and there should be some degree
of online processing in deciding which word or phrase to say next. Our model is
based on incremental recursive linearisation of dependency subtrees. The next word
to produce (out of the nodes in a subtree including the head and its children) is
chosen using a score function. Our probabilistic score function combines generative
syntactic probabilities and limited lookahead in the form of a future score to provide
accurate but, to a large extent, local decisions. The resulting linearisation process is
incremental since the model chooses one or several next words at each step greedily.
We evaluated the model on four languages and compared it to the state-of-the-art
sentence linearisation statistical model without incremental constraints. We found
that the incremental model achieved relatively good performance compared to the
state-of-the-art confirming the empirical plausibility of the imposed architectural
constraints. In addition, we experimented with a mechanism to incorporate the
choice between alternative word orders in the incremental architecture. This choice
was conditioned on features related to dependency lengths. The variation and DLM
aspects of word order were naturally incorporated in a discriminative re-ranking
step on top of the score function decisions of the basic linearisation model. We
showed that conditioning the choice between two possible continuations on the
phrase length features improved performance of the models. The fact that the overall
dependency length of the output trees decreased with the improved performance
confirms once again that languages prefer orders which minimise dependencies. Our
study suggests, more generally, that incremental sentence linearisation models are a
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promising tool in studying word order variation phenomena from the perspective
of language production and that they can be used as a more robust alternative to
quantify language-level word order properties such as the rate of DLM or arc-direction
entropy.

6.2 Future work

Three computational treebank-based approaches to word order and DLM presented
in Chapters 3 to 5 open a lot of interesting possibilities for future research. We already
discussed some ideas for direct continuations of these studies at the end of each
chapter. In this section, we would like to briefly address the general emerging picture
on DLM as well as some related topics that could not make part of this thesis.

6.2.1 Unified account of processing-related biases

DLM in its most general formulation can refer to a large number of effects in lan-
guage production, ranging from typological tendencies across languages to categorial
constituency rules in language grammars to fine-grained gradual preferences in word
order alternation constructions. DLM effects in word order variation can be observed
both in long and short spans (Chapter 4). It is tempting to provide an account of
all these seemingly related phenomena in terms of one universal principle. Such
principle could stem from communication efficiency pressures (including processing
load) shaping language through its evolution. This is a view advocated by Hawkins
(2004) and, very recently, by Futrell and Levy (2017) who propose a new general
principle of “information locality”, subsuming the DLM principle.

A straightforward and intuitive way to extend the DLM principle defined based on
the syntactic notion of dependencies is to condition the “strength” of minimisation
on the type of dependency. As mentioned in Chapters 2 and 4, Hawkins (2001, 2004)
proposes the Minimisation of Domains (MiD) principle (an extension of his purely
syntactic Early Immediate Constituents principle) as a formalisation of the intuition
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that semantically-involved dependencies should be minimised more strongly than
purely syntactic dependencies. Lohse et al. (2004) adopt MiD principle to explain
the variation in the verb-particle split construction in English.1 They analyse the
minimisation effects between verbs and particles using two semantic dependencies
defined in terms of entailment. First, there is a verb-particle dependency if the verb
meaning is dependent on the particle, that is, the meaning of the entire verb+particle
phrase (e.g., turn off the lights) does not entail the meaning of the verb in isolation (turn).
Secondly, there is a particle-verb dependency if the particle meaning is dependent
on the verb, that is, the meaning of the verb+particle phrase (e.g., call parents up)
does not entail the meaning be/become/going+particle (e.g., going up). Unfortunately,
this definition is problematic for many reasons, including the polysemy of verbs and
particles and the reliance on entailment judgments provided by human annotators.
Consequently, it cannot be operationalised on a large scale and applied in the same
way to all types of dependencies.

An alternative simple and intuitive measure of “strength” of a dependency is
pointwise mutual information (PMI) between the head and the dependent PMI =
log p(h|d)p(d|h)

p(h,d) . The definition of PMI relies on the probabilities of observing the head
p(h) and the dependent p(d) and their co-occurrence p(h, d). High PMI means that h
and d often co-occur, in other words, the presence of h is highly predictive of d and
vice versa. PMI is symmetric and does not take into account the semantics of the items.
It can be estimated, for example, from co-occurrence statistics of two lexical items
in a large enough corpus. Following the experiments in Section 4.3, we conducted
preliminary investigations of adjective variation in Italian to test whether PMI affects
the minimisation of the dependency between the noun and its right dependents (such
as prepositional phrases) (Gulordava, 2016). We found a significant effect of PMI but
also of other related — and correlated — factors such as the frequency of the N-PP
phrase and the conditional probability p(PP|N). The use of probabilistic measures
such as PMI is particularly interesting since it can be related to the notion of surprisal
(Hale, 2001; Levy, 2008; Rajkumar et al., 2016). In comprehension, high surprisal
values explain difficulties observed in sentence processing at the moment when an

1Wiechmann and Lohmann (2013) apply MiD principle in a similar way to analyse alternation in the
order of prepositional phrases in postveral domain.
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unexpected word must be processed and incorporated in a partially constructed
syntactic structure. Conditional log-probability log p(PP|N) is the surprisal of the
prepositional phrase given the noun.

Futrell and Levy (2017) propose that DLM is derived from a more general information
locality principle under the assumption that dependencies connect pairs of words
that have higher mutual information than other pairs of words. Information locality
is proposed as a general communication efficiency principle — a consequence of
the fact that language is a noisy-channel communication tool. The assumption that
noise happens during transmission, e.g., in the form of deletion errors, leads to the
conclusion that elements which are predictive of a word have to be close linearly to
facilitate the processing and interpretation of this word. Futrell shows that words
in a head-dependent relationship are on average more predictive of each other, i.e.,
have higher PMI than other pairs of elements in the sentence2 Consequently, the
information locality principle should apply for the dependent elements, leading to
what we call the DLM principle.

The information locality principle, inducing formally the idea that PMI could be taken
as a measure of dependency “strength”, provides an interesting high-level account
of DLM. However, it is not clear to what extent the DLM effects observed in specific
constructions and word order variation phenomena can be explained using this new
tool. Indeed, if languages respected the “higher PMI — more adjacent position”
principle rigidly, unsupervised syntax induction would be an easy task, which it is
not (Klein, 2005). Our preliminary results on adjective variation also suggest that
the simple PoS-tag based PMI measures cannot account for fine-grained preferences
between Adj N PP and N Adj PP orders. An extensive cross-linguistic analysis of
PMI and related probabilistic factors is required to establish better the overall picture.
The use of incremental generative linearisation models, developed in Chapter 5, can
also prove useful to test PMI-related predictions. Our linearisation model explicitly
incorporates probabilities which means that PMI or conditional surprisal values
can be used as factors conditioning word order and dependency lengths during

2These results are based on dependencies defined by UD annotation and statistics on co-occurrence
of PoS tags of pair of elements.

205



Chapter 6 Conclusions

linearisation. Such a model can be used to test systematically and cross-linguistically
the general effect of these factors across all types of dependencies.

6.2.2 Non-projective order and DLM

In this thesis, we did not touch on the question of non-projective dependencies
and their relation to DLM. In particular, our sentence linearisation model (Chapter
5) can produce only projective structures. While some natural languages exhibit
a significant degree of non-projectivity its occurrence is limited in the four Indo-
European languages which we used in our linearisation experiments: there is only
0.2-0.3% of non-projective arcs in English, Italian and Persian and 0.7% in Russian.
These percentages are relatively small because the flat content-head dependency
annotation of UD favours low non-projectivity.

Also, we have not discussed the effect of non-projective dependencies on parsing
analysis in Chapter 3. The challenge here is that the presence of long dependencies is
strongly correlated with non-projectivity, as predicted theoretically (Ferrer-i-Cancho,
2006). The two properties — DLM ratio and percentage of non-projective dependen-
cies — measured on our UD treebank data have the Pearson correlation of 0.66. While
this correlation is strong, it is not perfect and suggests that both dependency length
and non-projectivity should be taken into account to explain parsing performance
values.

Despite a strong empirical and theoretical association between non-projective struc-
tures and long dependencies, interestingly, non-projectivity sometimes leads to word
orders which minimise dependency length. Such cases include, for instance, extrapo-
sition constructions in English, exemplified in (6.1) (Levy, 2005; Francis, 2010).

(6.1) a. Evidence [ that shows a new side effect of the medicine ] has been found.

b. Evidence has been found [ that shows a new side effect of the medicine ].

In this example, there are two dependencies of interest: the dependency between
evidence and the extracted relative clause that shows a new side effect of the medicine and
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the dependency between the verb found and the subject evidence. It is not difficult to see
that the second order, which involves extraposition, is the one with the shorter overall
dependency length. Yet, out of the two structures, the non-projective extraposition is
more difficult to process, and this difficulty correlates with the surprisal measure of
processing load (Levy et al., 2012). Interestingly, there have been found differences
between comprehension and production of the extraposed constructions (Francis,
2010; Francis and Michaelis, 2017). In a recent study, Francis and Michaelis (2017)
conduct and compare a preference experiment and an elicited production experiment
of extraposition constructions. They show, among other results, that the relative effect
of the length of the two manipulated phrases (VP has been found and the relative
clause) is different in the two tasks.

It is an intriguing question how non-projective structures arise in production and how
this mechanism can be implemented in a linearisation model, especially since they
seem to violate the assumption of incremental hierarchical planning. An apparent
violation arises because the VP and the relative clause under the noun head belong
to different subtrees. One explanation that was proposed is the “easy-first” principle
(MacDonald, 2013), which suggests that simpler and shorter to produce phrases are
spelt out first. Such principle could explain the extraposition construction and “short-
before-long” preferences, but it is not clear how it applies to the “long-before-short”
effects in head-final languages and how it should be exactly incorporated in the
incremental planning (Jaeger and Norcliffe, 2009).

There exist a puzzling interaction of different processing pressures in non-projective
extraposition constructions. Further investigation and computational modelling are
necessary to shed light on how these pressures operate and differ in comprehension
and production.

6.3 Conclusions

Word order is, perhaps, the most fundamental observable property of the grammar.
It is hard to understate the importance of the studies on word order in linguistics and
the number of questions that are still unresolved. Variation and DLM phenomena
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in word order are two major topics which cut through several domains of language
study: syntax, production and comprehension. We believe this thesis can be taken
as a testimony to the fruitful approach of combining tools and ideas from several
linguistic research traditions and looking at the same questions from various points
of views. We are optimistic that this perspective and the results of the thesis will
inspire further contributions to the continuous study of language and word order.
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biroğlu Eryiğit, Giuseppe G. A. Celano, Savas Cetin, Fabricio Chalub, Jinho Choi,
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Adam Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika
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