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Given a set of correlations originating from measurements on a quantum state of unknown Hilbert space
dimension, what is the minimal dimension d necessary to describe such correlations? We introduce the
concept of dimension witness to put lower bounds on d. This work represents a first step in a broader
research program aiming to characterize Hilbert space dimension in various contexts related to funda-
mental questions and quantum information applications.
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A theorist is invited to visit a lab. The experimentalists,
not entirely happy with the nuisance, decide to submit the
visitor to the ordeal ‘‘Guess what we are measuring.’’
Hardly distinguishing lasers from vacuum chambers, the
theorist cannot hope to identify the system under study, and
asks for a black-box description of the experiment in order
to disentangle at least the physics from the cables. It turns
out that the experiment aims at measuring correlations
between the outputs of two measuring apparatuses. On
each side, the outcome of the measurement is discrete
and can take v values—the theorist writes a; b 2
f0; 1; . . . ; v� 1g. A knob with m positions allows to
change the parameters of each measuring apparatus—the
theorist writes x, y 2 f0; 1; . . . ; m� 1g. Finally, the exper-
imentalists show the data: the frequencies P�abjxy� of
occurrence of a given pair of outcomes for each pair of
measurements. The theorist makes some calculations and
delivers a verdict. . ..

Some verdicts have been known for some time. In
particular, if P�abjxy� violates a Bell-type inequality [1],
we know for sure that an entangled quantum state has been
produced in the lab. If on the contrary P�abjxy� can be
distributed by shared randomness, the experiment may in
fact be purely classical.

The goal of this Letter is to introduce another family of
verdicts, different from the ‘‘quantum-vs-classical’’ one.
We prove that, even in a black-box scenario, the theorist
may have something to say about the dimension of the
Hilbert space of the quantum objects that are measured.
Both the enthusiastic verdict ‘‘You are using systems of
dimension at least d’’ and the disappointing one ‘‘You may
be coding in less than d dimensions’’ are possible.

From an information-theoretical point of view, the di-
mensionality of quantum systems can be seen as a re-
source. Thus, testing the Hilbert space dimension is
important for quantifying the power of quantum correla-
tions, a central issue in Quantum Information science.
Furthermore, this line of research turns out to be relevant
for Quantum Key Distribution (QKD) as well. In standard

security proofs of QKD [2], the correlations shared by the
authorized partners, Alice and Bob, are supposed to come
from measurements on a quantum state of a given dimen-
sion. This assumption turns out to be crucial for the secur-
ity of most of the existing protocols [3]. But is the
dimension of a quantum system an experimentally mea-
surable quantity? There also exist protocols whose security
does not require any hypothesis on the Hilbert space di-
mension [4]. However, to prove security in such protocols,
it is useful to understand how it is possible to bound
effectively the dimension of the systems distributed by
the eavesdropper [5].

Formally, a set of conditional probabilities P�abjxy� has
a d-dimensional representation if it can be written as

 P�abjxy� � tr��Mx
a �M

y
b�; (1)

for some state � in Cd � Cd and local measurements
operators Mx

a and My
b acting on Cd, or if it can be written

as a convex combination of probabilities of the form (1).
We are interested in the following question: what is the
minimal dimension d necessary to reproduce a given set of
probabilities P�abjxy� [6]?

The fact that we allow convex combinations of (1)
means that shared randomness is unrestricted in our sce-
nario. This is consistent with a quantum information per-
spective where classical resources are taken to be free and
we want to bound the quantum resources, in this case the
dimensionality of the quantum states, necessary to achieve
a task. Within this approach, the answer to the above
question is immediate if the initial correlations admit a
locally causal model [1], as in this case, they can be
reproduced using shared randomness only and no quantum
systems are strictly needed for their preparation. Thus, our
problem is interesting only when the initial correlations are
nonlocal.

Since classical correlations are taken to be free, the set
of d-dimensional quantum correlations is convex.
Therefore, standard techniques from convex theory can
be applied, as has been done for other quantum information
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problems such as separability [7]. Following this analogy,
we introduce the concept of dimension witnesses. A
d-dimensional witness is a linear function of the probabil-
ities P�abjxy� described by a vector ~w of real coefficients
wabxy, such that

 ~w � ~p �
X

a;b;x;y

wabxyP�abjxy� � wd (2)

for all probabilities of the form (1) with � in Cd � Cd, and
such that there are quantum correlations for which ~w � ~p >
wd. When some correlations violate (2), they can thus only
be established by measuring systems of dimension larger
than d. Dimension witnesses allow us to turn the Hilbert
space dimension, a very abstract concept, into an experi-
mentally measurable property.

In the following, we construct several examples of
2-dimensional witnesses. We also show that not all
2-outcome quantum correlations are achievable with qu-
bits, answering a question raised by Gill [8]. A proof of the
same result for two parties has been independently ob-
tained in [9], while the results of [10] answer Gill’s ques-
tion in the tripartite case.

Witnesses based on CGLMP.—A natural starting point
for our investigations is the situation corresponding tom �
2 measurement settings per side with v � 3 possible out-
comes. Indeed, in this case Collins-Gisin-Linden-Massar-
Popescu (CGLMP) introduced a Bell inequality whose
maximal quantum violation is achieved by a two-qutrit
state. The CGLMP expression is
 

C� ~p� � P�b0 	 a0� 
 P�a0 	 b1� 
 P�a1 	 b0�


 P�b1 > a1� � 3 (3)

where P�ax 	 by� �
P
a	bP�abjxy� [11,12]. Local corre-

lations satisfy C� ~p� � 0, while measurements on a partly
entangled two-qutrit state yield a maximal value of C� ~p� �
0:3050 [13].

The set of quantum probabilities corresponding to
m � 2 and v � 3 lives in a 24-dimensional space. Since
it is in general difficult to gain intuition in such a high-
dimensional space, we will focus here on a two-
dimensional subspace of this quantum set, which has
been characterized in [14]. This subspace is parameterized
by two numbers: the CGLMP value C� ~p� and

 D� ~p���
X1

x;y�0

X2

k�0

P�a�k;b�k�1��x�1��y�1�jxy�:

The precise form of the probabilities living in this subspace
as a function of C� ~p� and D� ~p� can be found in [14]. Note
that if two parties share a point ~p in the original quantum
set, they can run a depolarization protocol that will map it
onto the two-dimensional subspace while keeping the val-
ues of C� ~p� and D� ~p� constant [14].

Since the quantum region is convex, its boundary in the
two-dimensional subspace can be obtained by computing
the maximal value of

 I�� ~p� � cos�C� ~p� 
 sin�D� ~p� (4)

for all �, that is by computing how far it extends in every
direction of the two-dimensional subspace. We have com-
puted these values using the technique introduced in [15].
The optimal values I�q�� are obtained for entangled states of
the form j i � 1���������

2
�2
p �j00i 
 �j11i 
 j22i�with measure-

ments that are independent of � and which can be found in
[11]. The resulting quantum curve is represented on Fig. 1
using the parametrization of [14].

We have also determined the region accessible with
qubits by maximizing I� over all measurements

(POVMs), and two-qubit states. The optimal values I�2��
are obtained by performing two-outcome von Neumann
measurements on pure entangled two-qubit states j i �
cos�j00i 
 sin�j11i. The resulting curve is also shown in
Fig. 1. Note that contrarily to the previous case, the qubit
curve is not the result of an exact computation, but of a
numerical search using a heuristic algorithm. Indeed, the
method of [15] cannot be directly applied here, as it does
not constrain the dimension of the quantum systems, while
others techniques based on semidefinite programming [16]
are computationally too costly.

The inequalities I�� ~p� � I�2�� form a family of
2-dimensional witnesses. Any one of these inequalities
for which the maximal quantum value I�q�� > I�2�� is strictly
greater than the maximal qubit value, that is any direction
in Fig. 1 for which there is a gap between the qubit and the
general quantum curve, allows one to distinguish qubits
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FIG. 1 (color online). Quantum region in the two-dimensional
subspace described in [14]. The upper curve represents the
boundary of the general quantum region and can be achieved
by measurements on two-qutrit states. The lower curve repre-
sents the boundary of the region accessible through measure-
ments on two-qubit states. The dashed line delimits the no-
signaling correlations. The inequality I���=4 � 0 is a dimension
witness: it cannot be violated by performing measurements on
qubits, but qutrits are required.
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from higher-dimensional systems. Note that the expres-
sions (4) can also be interpreted as Bell inequalities with
local bound I�l�� � 0 if sin� is positive and I�l�� �
�2 sin��� otherwise. The inequalities with tan� 	 1 are
noteworthy because the local bound and the qubit bound
coincide, I�2�� � I�l�� � 0; i.e., qubit no longer violates
them; they can only be violated with qutrits or higher-
dimensional systems.

Although the situation that we just considered is illus-
trative, we mentioned that we had to resort to heuristic
numerical searches to compute the qubit value of the
expressions (4). We now present two situations were
stronger statements can be made. While techniques have
been developed to characterize the boundary of the general
quantum set (i.e., with no bound on the dimension) [15],
we still lack the efficient tools to characterize the quan-
tum region corresponding to fixed Hilbert-space dimen-
sion. The two examples below provide two different ap-
proaches to this problem: the first one uses semidefinite
programming; the second one establishes a link with the
Grothendieck constant.

Using semidefinite programming.—We give here an ex-
ample of a dimension witness where the maximal violation
can be determined for any two-qubit state using semide-
finite programming [17]. We consider a scenario where
Alice chooses between two settings (mA � 2) and Bob
among three settings (mB � 3). All settings yield binary
outcomes except Alice’s second setting x � 1, which is
ternary. In this case, the following Bell expression

 E� ~p� � PA�0j0� � P�00j00� � P�00j01� � P�00j02�


 P�00j10� 
 P�10j11� 
 P�20j12� 
 1 (5)

with local bound E� ~p� � 0, has recently been introduced
[18]. The maximal quantum violation Eq � 0:2532 can be
found using the method of [15] and is achieved for a
partially entangled state of two-qutrits.

In order to prove that the largest violation for qubits is
strictly smaller, we computed the maximal value of the
right-hand side of (5) over all two-qubit states � 2 C2 �
C2 and over all measurement settings. Since we seek to
maximize an expression which is linear in the probabilities
p�abjxy� � tr��Mx

a �M
y
b�, its maximum will be attained

by pure states � � j ih j and extremal POVMs. Up to a
local change of basis, any pure two-qubit state can be
written as j ���i � cos���j00i 
 sin���j11i. Every ex-
tremal POVM M for qubits has elements fMig which are
proportional to rank 1 projectors [19] and can thus be
parameterized in term of the Pauli matrices ~� �
��x; �y; �z� as Mi �

1
2 �mi1
 ~mi � ~�� where mi 	 0,P

imi � 2,
P
i ~mi � 0, and �mi�

2 � � ~mi�
2. Let u denote

the set of variables necessary to represent all POVMs using
this parameterizations, and let c�u� 	 0 represent the (qua-
dratic) constraints to which these variables are subject. For
given �, the right-hand side of (5) is a quadratic function
E��u� of u. Our problem is thus to solve the following

(nonconvex) quadratic program

 E� � max
u
E��u� s:t: c�u� 	 0: (6)

Solving such a problem is in general a difficult task, as it
may have many local optima. Following the approach of
Lasserre [16], we derived upper-bounds on E� using semi-
definite programming [17]. For any given value of �, we
obtained an upper-bound on the maximal value of the
right-hand side of (5). This value coincides up to numerical
precision with the maximum value obtained when we
discard one of the outcomes of the POVM x � 1. In this
case, the inequality (5) reduces to the Clauser-Horne-
Shimony-Holt (CHSH) inequality [20], whose maximal

violation as a function of � is �
��������������������������
1
 sin2�2��

p
� 1�=2.

The maximal qubit violation of (5) is thus equal to E�2� �
1=

���
2
p
� 1=2 � 0:2071, to be compared with the maximal

quantum violation E�q� � 0:2532 achieved using two-
qutrit states. Let us stress that our qubit bound, which
can be reached, is an upper bound on the global optimal
solution of the problem, since there exist algorithms able to
find the global optimum of semidefinite programs [17].

Link to the Grothendieck constant.—The previous ex-
amples of qubit witnesses all contain at least one three-
outcome measurement. In this case, it is perhaps not sur-
prising, though difficult to prove, that systems of dimen-
sion larger than 2 are needed to get the maximal quantum
value. In what follows, we show that qubit witnesses exist
even for two-outcome correlations, answering Gill’s ques-
tion [8–10] in the bipartite case.

Define the correlator cxy between measurement x by
Alice and y by Bob as cxy�P�a�bjxy��P�a�bjxy�,
and consider now a linear function of such correlators,

 I �
Xm

i;j�1

Mijcxiyj (7)

defined by anm�mmatrix M verifying the normalization
condition maxfxi;yjgj

Pm
i;j�1 Mijxiyjj � 1 with xi; yj � �1.

Because of this normalization, I can be seen as a standard
Bell inequality with local bound 1.

On the other hand, the correlators are quantum, i.e.,
cxy � hX � Yi for some observables X and Y with �1
eigenvalues, if and only if there exist two normalized
vectors ~x, ~y 2 RN such that cxy � ~x � ~y (see [21,22] for
details). The maximum value that any operator I can take,
when cxy is of this form, is known in the mathematical
literature as KG�N� and called the Grothendieck constant
of order N; the maximum over all N is written KG. Note
now that in the case of two-outcome correlators, the analy-
sis can be restricted to projective measurements [23]. In
this situation, any Bell operator associated to I is diagonal
in the Bell basis, implying that the largest value is obtained
for a maximally entangled state, say the singlet. Since any
two-outcome correlator for projective measurements on
the singlet state is equal to the scalar product of three-
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dimensional real vectors, the maximal value of I achiev-
able with qubits is KG�3�. Although the exact values of the
Grothendieck constants are still unknown, it is proven that
KG�3�<KG [24]: this means that there exists an inequality
I which is not saturated by correlations coming from two
qubits. This proves the existence of dimension witnesses
for qubits with two-outcome measurements. Examples of
qubit witnesses built from two-outcome measurements
were recently found in [9].

We conjecture that two-outcome measurements may be
sufficient to test the dimension of any bipartite quantum
system, in the sense that there exist dimension witnesses
built from binary measurements for any finite dimension.
Indeed, all quantum correlators in Cd � Cd can be written
as a scalar product of vectors of size 2d2 [21,22].
Therefore, if KG�N� is strictly smaller than KG for any
finiteN, which is plausible but unproven to our knowledge,
one can construct witnesses with binary measurements for
arbitrary dimension.

Conclusion and other directions.—With the goal of test-
ing the Hilbert space dimension of an unknown quantum
system, we introduced the concept of dimension witness.
We presented two examples of qubit witnesses, which can
detect correlations that require measurements on quantum
systems of dimension greater than two for their generation.
Both of these examples involved three-outcome measure-
ments; so the number of measurement outcomes exceeded
the dimension of the Hilbert space to be witnessed. This
shows, as one may expect, that not all d-outcome correla-
tions can be obtained by measuring quantum systems of
dimension smaller than d. Then, somehow surprisingly, we
proved that qubit witnesses also exist in the case of two-
outcome measurements.

Viewing the dimensionality of a quantum system as a
resource and trying to understand how to estimate or bound
it is an approach that deserve further investigation. The
concept of dimension witnesses represents only a first step
in this direction. In general, the problem of Hilbert space
characterization is not restricted to a multipartite nonlocal
scenario. When dealing with fundamental issues, for in-
stance, it can be relevant to estimate the dimension of a
quantum system without any distinction between classical
and quantum resources. The motivation is that if nature is
indeed described by quantum theory, classical degrees of
freedom have also to be coded ultimately in quantum
systems. In this context, the (possibly one-partite) global
quantum state is then taken to be pure, and the goal is,
given some initial statistical data, to determine the physical
realization of minimal dimension. One may also wonder to
what extent high-dimensional quantum systems are more
powerful than lower-dimensional ones when noise is
added. In particular, it would be interesting to look for
dimension witnesses very robust to noise. Finally, a related,
though different question concerns the multipartite case.

How can one be sure that data obtained by measurements
on a n-party quantum state do require n-partite entangle-
ment without any assumption of the local Hilbert space
dimensions?
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